entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
UpSample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uy/cuykwspdedcweei632sohoszydcdycwgfpbqfmts2rz3pbme75y3.py # Topologically Sorted Source Nodes: [up_x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # up_x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 1.0), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_2, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x6 = xindex x4 = (xindex // 48) x7 = xindex % 48 tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = triton_helpers.minimum(tmp23, tmp2) tmp25 = tmp20 * tmp24 tmp26 = tmp16 + tmp25 tmp27 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last') tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp24 tmp31 = tmp27 + tmp30 tmp32 = tmp26 - tmp31 tmp33 = tmp6.to(tl.float32) tmp34 = tmp5 - tmp33 tmp35 = triton_helpers.maximum(tmp34, tmp4) tmp36 = triton_helpers.minimum(tmp35, tmp2) tmp37 = tmp32 * tmp36 tmp38 = tmp31 + tmp37 tl.store(out_ptr1 + (x7 + (64*x4)), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/he/che6nd6gb4vfumohfsklsm5klcp45g4jlpyy34ahgnzt6epbx2ro.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_4, %primals_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/p6/cp6kjjnbx6x6vx773fn74my6orskkocw7j5ex7lhq72nsdcqflhu.py # Topologically Sorted Source Nodes: [conv2d, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # leaky_relu => gt, mul_5, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_5), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [up_x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(primals_2, buf1, 192, grid=grid(192), stream=stream0) del primals_2 buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 48) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, buf2, 64, grid=grid(64), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_4, buf5, buf6, 256, grid=grid(256), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, leaky_relu_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_6, buf8, buf9, 256, grid=grid(256), stream=stream0) del buf7 del primals_6 return (buf9, primals_3, primals_5, buf3, buf5, buf6, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class UpSample(nn.Sequential): def __init__(self, skip_input, output_features): super(UpSample, self).__init__() self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1) self.leakyreluA = nn.LeakyReLU(0.2) self.convB = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1) self.leakyreluB = nn.LeakyReLU(0.2) def forward(self, x, concat_with): up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size (3)], mode='bilinear', align_corners=True) return self.leakyreluB(self.convB(self.leakyreluA(self.convA(torch. cat([up_x, concat_with], dim=1))))) def get_inputs(): return [torch.rand([4, 3, 4, 4]), torch.rand([4, 1, 4, 4])] def get_init_inputs(): return [[], {'skip_input': 4, 'output_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x4 = xindex // 48 x7 = xindex % 48 tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = triton_helpers.minimum(tmp23, tmp2) tmp25 = tmp20 * tmp24 tmp26 = tmp16 + tmp25 tmp27 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask, eviction_policy='evict_last') tmp29 = tmp28 - tmp27 tmp30 = tmp29 * tmp24 tmp31 = tmp27 + tmp30 tmp32 = tmp26 - tmp31 tmp33 = tmp6.to(tl.float32) tmp34 = tmp5 - tmp33 tmp35 = triton_helpers.maximum(tmp34, tmp4) tmp36 = triton_helpers.minimum(tmp35, tmp2) tmp37 = tmp32 * tmp36 tmp38 = tmp31 + tmp37 tl.store(out_ptr1 + (x7 + 64 * x4), tmp38, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf3, (4, 3, 4, 4), (64, 16, 4, 1), 0) get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (192)](primals_2, buf1, 192, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (64, 16, 4, 1), 48) triton_poi_fused_cat_1[grid(64)](primals_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf4, primals_4, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1)) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf9 = buf4 del buf4 triton_poi_fused_convolution_leaky_relu_2[grid(256)](buf7, primals_6, buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 del primals_6 return buf9, primals_3, primals_5, buf3, buf5, buf6, buf8 class UpSampleNew(nn.Sequential): def __init__(self, skip_input, output_features): super(UpSampleNew, self).__init__() self.convA = nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1) self.leakyreluA = nn.LeakyReLU(0.2) self.convB = nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1) self.leakyreluB = nn.LeakyReLU(0.2) def forward(self, input_0, input_1): primals_3 = self.convA.weight primals_4 = self.convA.bias primals_5 = self.convB.weight primals_6 = self.convB.bias primals_2 = input_0 primals_1 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
varun-affinsys/Monocular-Depth-Estimation-with-Transfer-Learning-pretrained-MobileNetV2
UpSample
false
16,669
[ "MIT" ]
70
9b20c5b3d7a9f90e1dc6f40e17ee31d9b3dee684
https://github.com/varun-affinsys/Monocular-Depth-Estimation-with-Transfer-Learning-pretrained-MobileNetV2/tree/9b20c5b3d7a9f90e1dc6f40e17ee31d9b3dee684
GTConv_2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xs/cxshdstuiqvf6vwig3tx5gvibyp7xmydycbesv25izblg5r4pe7f.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_2, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bk/cbkp5vs2bvh5lx344ocjxfjq7mtq2jq3scxaj7margujfllz422u.py # Topologically Sorted Source Nodes: [softmax, mul, A_1], Original ATen: [aten._softmax, aten.mul, aten.sum] # Source node to ATen node mapping: # A_1 => sum_2 # mul => mul # softmax => div, exp, sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %permute), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [0]), kwargs = {}) triton_poi_fused__softmax_mul_sum_1 = async_compile.triton('triton_poi_fused__softmax_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp9 = tl.load(in_ptr3 + (4*x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (1)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp16 = tl.load(in_ptr3 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (2)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp24 = tl.load(in_ptr3 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (3)) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp32 = tl.load(in_ptr3 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tmp1 - tmp3 tmp5 = tl_math.exp(tmp4) tmp8 = tmp5 / tmp7 tmp10 = tmp8 * tmp9 tmp13 = tmp12 - tmp3 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp7 tmp17 = tmp15 * tmp16 tmp18 = tmp10 + tmp17 tmp21 = tmp20 - tmp3 tmp22 = tl_math.exp(tmp21) tmp23 = tmp22 / tmp7 tmp25 = tmp23 * tmp24 tmp26 = tmp18 + tmp25 tmp29 = tmp28 - tmp3 tmp30 = tl_math.exp(tmp29) tmp31 = tmp30 / tmp7 tmp33 = tmp31 * tmp32 tmp34 = tmp26 + tmp33 tl.store(out_ptr0 + (x0), tmp34, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 1), (1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(primals_2, buf0, buf1, 1, 4, grid=grid(1), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax, mul, A_1], Original ATen: [aten._softmax, aten.mul, aten.sum] triton_poi_fused__softmax_mul_sum_1.run(primals_2, buf0, buf1, primals_1, buf2, 16, grid=grid(16), stream=stream0) del buf0 del buf1 return (buf2, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class GTConv_2(nn.Module): def __init__(self, in_channels, out_channels): super(GTConv_2, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.weight = nn.Parameter(torch.Tensor(in_channels, 1, 1)) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight) def forward(self, A): A = A.permute(2, 0, 1) A = torch.sum(F.softmax(self.weight, dim=0) * A, dim=0) return A def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None) @triton.jit def triton_poi_fused__softmax_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp9 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + 1) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp16 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr0 + 2) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp24 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr0 + 3) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp32 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp4 = tmp1 - tmp3 tmp5 = tl_math.exp(tmp4) tmp8 = tmp5 / tmp7 tmp10 = tmp8 * tmp9 tmp13 = tmp12 - tmp3 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp7 tmp17 = tmp15 * tmp16 tmp18 = tmp10 + tmp17 tmp21 = tmp20 - tmp3 tmp22 = tl_math.exp(tmp21) tmp23 = tmp22 / tmp7 tmp25 = tmp23 * tmp24 tmp26 = tmp18 + tmp25 tmp29 = tmp28 - tmp3 tmp30 = tl_math.exp(tmp29) tmp31 = tmp30 / tmp7 tmp33 = tmp31 * tmp32 tmp34 = tmp26 + tmp33 tl.store(out_ptr0 + x0, tmp34, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 1), (1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 1, 1), (1, 1, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(1)](primals_2, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_mul_sum_1[grid(16)](primals_2, buf0, buf1, primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 return buf2, primals_1, primals_2 class GTConv_2New(nn.Module): def __init__(self, in_channels, out_channels): super(GTConv_2New, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.weight = nn.Parameter(torch.Tensor(in_channels, 1, 1)) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.weight) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
verashira/TSPNet
GTConv_2
false
16,670
[ "MIT" ]
83
ee454165dcc61cdbbff19565364e2221727ed2b8
https://github.com/verashira/TSPNet/tree/ee454165dcc61cdbbff19565364e2221727ed2b8
TemporalBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/br/cbrsin5ilet2p5ejknshkjy36qtxuryxvwsfnzlo572vabnsecbe.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [0, 0, 0, 3], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 7 x2 = (xindex // 28) x3 = xindex % 28 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/g2/cg25gcbxz2lzm2h6254fvqhmqruekmleewelubixm24ucaftps33.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (28*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (7*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ia/ciaqsocoo26wf5xtcz4cyvyxuofwon22npw6fmquasazsvxrglyn.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 4), (28, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 112, grid=grid(112), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf0, buf1, 16, 7, grid=grid(16, 7), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) del buf1 buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf3, primals_3, buf4, 64, grid=grid(64), stream=stream0) del primals_3 return (buf3, primals_2, reinterpret_tensor(buf0, (4, 4, 7), (28, 1, 4), 0), buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler def TemporalConvLayer(input_channels, output_channels, kernel_size): m = nn.Conv1d(in_channels=input_channels, out_channels=output_channels, kernel_size=kernel_size) nn.init.xavier_normal_(m.weight) return m class TemporalBlock(nn.Module): def __init__(self, input_size, output_size, num_channels, kernel_size, dropout): super().__init__() self.pad = nn.ZeroPad2d((0, 0, 0, kernel_size - 1)) self.tconv = TemporalConvLayer(input_size, num_channels, kernel_size) self.relu = nn.ReLU() def forward(self, x): x = self.pad(x) x = self.tconv(x.transpose(1, 2)).transpose(1, 2) x = self.relu(x) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'num_channels': 4, 'kernel_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 112 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 7 x2 = xindex // 28 x3 = xindex % 28 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp3, xmask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 28 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 7 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7, 4), (28, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(112)](primals_1, buf0, 112, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) triton_poi_fused_convolution_1[grid(16, 7)](buf0, buf1, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4), (16, 4, 1)) del buf1 buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(64)](buf3, primals_3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf3, primals_2, reinterpret_tensor(buf0, (4, 4, 7), (28, 1, 4), 0 ), buf4 def TemporalConvLayer(input_channels, output_channels, kernel_size): m = nn.Conv1d(in_channels=input_channels, out_channels=output_channels, kernel_size=kernel_size) nn.init.xavier_normal_(m.weight) return m class TemporalBlockNew(nn.Module): def __init__(self, input_size, output_size, num_channels, kernel_size, dropout): super().__init__() self.pad = nn.ZeroPad2d((0, 0, 0, kernel_size - 1)) self.tconv = TemporalConvLayer(input_size, num_channels, kernel_size) self.relu = nn.ReLU() def forward(self, input_0): primals_1 = self.tconv.weight primals_3 = self.tconv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
verashira/TSPNet
TemporalBlock
false
16,671
[ "MIT" ]
83
ee454165dcc61cdbbff19565364e2221727ed2b8
https://github.com/verashira/TSPNet/tree/ee454165dcc61cdbbff19565364e2221727ed2b8
SoftmaxAllocator
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class SoftmaxAllocator(torch.nn.Module): """Portfolio creation by computing a softmax over the asset dimension with temperature. Parameters ---------- temperature : None or float If None, then needs to be provided per sample during forward pass. If ``float`` then assumed to be always the same. formulation : str, {'analytical', 'variational'} Controls what way the problem is solved. If 'analytical' then using an explicit formula, however, one cannot decide on a `max_weight` different than 1. If `variational` then solved via convex optimization and one can set any `max_weight`. n_assets : None or int Only required and used if `formulation='variational`. max_weight : float A float between (0, 1] representing the maximum weight per asset. """ def __init__(self, temperature=1, formulation='analytical', n_assets= None, max_weight=1): super().__init__() self.temperature = temperature if formulation not in {'analytical', 'variational'}: raise ValueError('Unrecognized formulation {}'.format(formulation)) if formulation == 'variational' and n_assets is None: raise ValueError( 'One needs to provide n_assets for the variational formulation.' ) if formulation == 'analytical' and max_weight != 1: raise ValueError( 'Cannot constraint weights via max_weight for analytical formulation' ) if formulation == 'variational' and n_assets * max_weight < 1: raise ValueError( 'One cannot create fully invested portfolio with the given max_weight' ) self.formulation = formulation if formulation == 'analytical': self.layer = torch.nn.Softmax(dim=1) else: x = cp.Parameter(n_assets) w = cp.Variable(n_assets) obj = -x @ w - cp.sum(cp.entr(w)) cons = [cp.sum(w) == 1.0, w <= max_weight] prob = cp.Problem(cp.Minimize(obj), cons) self.layer = CvxpyLayer(prob, [x], [w]) def forward(self, x, temperature=None): """Perform forward pass. Parameters ---------- x : torch.Tensor Tensor of shape `(n_samples, n_assets`). temperature : None or torch.Tensor If None, then using the `temperature` provided at construction time. Otherwise a `torch.Tensor` of shape `(n_samples,)` representing a per sample temperature. Returns ------- weights : torch.Tensor Tensor of shape `(n_samples, n_assets`). """ n_samples, _ = x.shape device, dtype = x.device, x.dtype if not (temperature is None) ^ (self.temperature is None): raise ValueError('Not clear which temperature to use') if temperature is not None: temperature_ = temperature else: temperature_ = float(self.temperature) * torch.ones(n_samples, dtype=dtype, device=device) inp = x / temperature_[..., None] return self.layer(inp ) if self.formulation == 'analytical' else self.layer(inp)[0] def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 return buf1, class SoftmaxAllocatorNew(torch.nn.Module): """Portfolio creation by computing a softmax over the asset dimension with temperature. Parameters ---------- temperature : None or float If None, then needs to be provided per sample during forward pass. If ``float`` then assumed to be always the same. formulation : str, {'analytical', 'variational'} Controls what way the problem is solved. If 'analytical' then using an explicit formula, however, one cannot decide on a `max_weight` different than 1. If `variational` then solved via convex optimization and one can set any `max_weight`. n_assets : None or int Only required and used if `formulation='variational`. max_weight : float A float between (0, 1] representing the maximum weight per asset. """ def __init__(self, temperature=1, formulation='analytical', n_assets= None, max_weight=1): super().__init__() self.temperature = temperature if formulation not in {'analytical', 'variational'}: raise ValueError('Unrecognized formulation {}'.format(formulation)) if formulation == 'variational' and n_assets is None: raise ValueError( 'One needs to provide n_assets for the variational formulation.' ) if formulation == 'analytical' and max_weight != 1: raise ValueError( 'Cannot constraint weights via max_weight for analytical formulation' ) if formulation == 'variational' and n_assets * max_weight < 1: raise ValueError( 'One cannot create fully invested portfolio with the given max_weight' ) self.formulation = formulation if formulation == 'analytical': self.layer = torch.nn.Softmax(dim=1) else: x = cp.Parameter(n_assets) w = cp.Variable(n_assets) obj = -x @ w - cp.sum(cp.entr(w)) cons = [cp.sum(w) == 1.0, w <= max_weight] prob = cp.Problem(cp.Minimize(obj), cons) self.layer = CvxpyLayer(prob, [x], [w]) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/deepdow
SoftmaxAllocator
false
16,672
[ "Apache-2.0" ]
511
cbb99347fba9a447d4fcae64fe5137c203643e44
https://github.com/vishalbelsare/deepdow/tree/cbb99347fba9a447d4fcae64fe5137c203643e44
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul_2 # Graph fragment: # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add_2 # x_3 => var_mean_1 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # x_2 => add_2 # x_3 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qh/cqhjuvjwt67rfrtkbjxo2mmttmolmi426zzzghxnkgalqlbdvejq.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/44/c444sh6bryz652bk24ocru63kbqhe67iwwzctt3isl7imfgv5iaa.py # Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_2 # x_8 => add_5 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {}) triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1; del buf1 # reuse buf14 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf16) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_8.run(buf17, primals_11, 16, grid=grid(16), stream=stream0) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf18) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_2, x_8], Original ATen: [aten.add] triton_poi_fused_add_9.run(buf19, primals_1, buf12, primals_13, 16, grid=grid(16), stream=stream0) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class TransformerEncoderLayer(nn.Module): def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0): super().__init__() self.embed_dim = embed_dim self.self_attn = torch.nn.MultiheadAttention(embed_dim=self. embed_dim, num_heads=num_heads, dropout=attention_dropout) self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim) self.dropout = dropout self.activation_dropout = activation_dropout self.normalize_before = True self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim) self.layer_norm = torch.nn.LayerNorm(self.embed_dim) self.init_parameters() def forward(self, x, key_padding_mask=None, attn_mask=None): residual = x x = self.self_attn_layer_norm(x) x, _att = self.self_attn(query=x, key=x, value=x, key_padding_mask= key_padding_mask, attn_mask=attn_mask) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x residual = x x = self.layer_norm(x) x = F.relu(self.fc1(x)) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x return x def init_parameters(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.constant_(self.fc1.bias, 0.0) nn.init.xavier_uniform_(self.fc2.weight) nn.init.constant_(self.fc2.bias, 0.0) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 del primals_3 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha= 1, beta=1, out=buf4) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha= 1, beta=1, out=buf5) buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0) del buf3 triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf8 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0) del buf10 extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12) del primals_7 buf13 = buf1 del buf1 buf14 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12, buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del primals_9 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf16) buf17 = buf16 del buf16 triton_poi_fused_relu_8[grid(16)](buf17, primals_11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_11 buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf18) buf19 = buf18 del buf18 triton_poi_fused_add_9[grid(16)](buf19, primals_1, buf12, primals_13, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_13 return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor( buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4 ), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0)) class TransformerEncoderLayerNew(nn.Module): def __init__(self, embed_dim, num_heads, hidden_size, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0): super().__init__() self.embed_dim = embed_dim self.self_attn = torch.nn.MultiheadAttention(embed_dim=self. embed_dim, num_heads=num_heads, dropout=attention_dropout) self.self_attn_layer_norm = torch.nn.LayerNorm(self.embed_dim) self.dropout = dropout self.activation_dropout = activation_dropout self.normalize_before = True self.fc1 = torch.nn.Linear(self.embed_dim, hidden_size) self.fc2 = torch.nn.Linear(hidden_size, self.embed_dim) self.layer_norm = torch.nn.LayerNorm(self.embed_dim) self.init_parameters() def init_parameters(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.constant_(self.fc1.bias, 0.0) nn.init.xavier_uniform_(self.fc2.weight) nn.init.constant_(self.fc2.bias, 0.0) def forward(self, input_0): primals_4 = self.self_attn.in_proj_weight primals_5 = self.self_attn.in_proj_bias primals_1 = self.self_attn.out_proj.weight primals_2 = self.self_attn.out_proj.bias primals_3 = self.self_attn_layer_norm.weight primals_7 = self.self_attn_layer_norm.bias primals_6 = self.fc1.weight primals_8 = self.fc1.bias primals_10 = self.fc2.weight primals_9 = self.fc2.bias primals_11 = self.layer_norm.weight primals_13 = self.layer_norm.bias primals_12 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
vengalraoguttha/EGG
TransformerEncoderLayer
false
16,673
[ "MIT" ]
254
e4f8412f197543ec7f1f00cf89b5a364b038dc57
https://github.com/vengalraoguttha/EGG/tree/e4f8412f197543ec7f1f00cf89b5a364b038dc57
SpatialCrossMapLRN
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/t4/ct42qpaygn7av2p6rystjl4hk3ybzwp5jyvmk3jaiukfiri3pq65.py # Topologically Sorted Source Nodes: [mul, add, div_2, x], Original ATen: [aten.mul, aten.add, aten.pow, aten.div] # Source node to ATen node mapping: # add => add # div_2 => pow_2 # mul => mul # x => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 1.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_add_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add, div_2, x], Original ATen: [aten.mul, aten.add, aten.pow, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel class SpatialCrossMapLRN(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, k=1, ACROSS_CHANNELS=True): super(SpatialCrossMapLRN, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta self.k = k def forward(self, x): if self.ACROSS_CHANNELS: div = x.pow(2).unsqueeze(1) div = self.average(div).squeeze(1) div = div.mul(self.alpha).add(self.k).pow(self.beta) else: div = x.pow(2) div = self.average(div) div = div.mul(self.alpha).add(self.k).pow(self.beta) x = x.div(div) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class SpatialCrossMapLRNNew(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, k=1, ACROSS_CHANNELS=True): super(SpatialCrossMapLRNNew, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta self.k = k def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vfdev-5/models-comparison.pytorch
SpatialCrossMapLRN
false
16,674
[ "BSD-3-Clause" ]
174
6a09c41c1ed6160af0734924700a9150249c3df6
https://github.com/vfdev-5/models-comparison.pytorch/tree/6a09c41c1ed6160af0734924700a9150249c3df6
Symmetric
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ua/cuap46dhii2ejpiq36jm7hnikeyglwoqc7s2ccq5kcgjuxb3yh7q.py # Topologically Sorted Source Nodes: [tril, add], Original ATen: [aten.tril, aten.add] # Source node to ATen node mapping: # add => add # tril => full_default, le, sub, where # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %arg0_1, %full_default), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_add_tril_0 = async_compile.triton('triton_poi_fused_add_tril_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tril_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tril_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tl.full([1, 1], -1, tl.int64) tmp8 = tmp6 <= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + (4*y3)), tmp11, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tril, add], Original ATen: [aten.tril, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_tril_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class NonSquareError(ValueError): def __init__(self, name, size): super().__init__( 'The {} parametrization can just be applied to square matrices. Got a tensor of size {}' .format(name, size)) class VectorError(ValueError): def __init__(self, name, size): super().__init__( 'Cannot instantiate {} on a tensor of less than 2 dimensions. Got a tensor of size {}' .format(name, size)) class Symmetric(nn.Module): def __init__(self, lower=True): """ Vector space of symmetric matrices, parametrized in terms of the upper or lower triangular part of a matrix. Args: size (torch.size): Size of the tensor to be parametrized lower (bool): Optional. Uses the lower triangular part of the matrix to parametrize the matrix. Default: ``True`` """ super().__init__() self.lower = lower @staticmethod def frame(X, lower): if lower: return X.tril(0) + X.tril(-1).transpose(-2, -1) else: return X.triu(0) + X.triu(1).transpose(-2, -1) def forward(self, X): if len(X.size()) < 2: raise VectorError(type(self).__name__, X.size()) if X.size(-2) != X.size(-1): raise NonSquareError(type(self).__name__, X.size()) return self.frame(X, self.lower) @staticmethod def in_manifold(X, eps=1e-06): return X.dim() >= 2 and X.size(-2) == X.size(-1) and torch.allclose(X, X.transpose(-2, -1), atol=eps) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_tril_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 <= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tl.full([1, 1], -1, tl.int64) tmp8 = tmp6 <= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + 4 * y3), tmp11, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_tril_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class NonSquareError(ValueError): def __init__(self, name, size): super().__init__( 'The {} parametrization can just be applied to square matrices. Got a tensor of size {}' .format(name, size)) class VectorError(ValueError): def __init__(self, name, size): super().__init__( 'Cannot instantiate {} on a tensor of less than 2 dimensions. Got a tensor of size {}' .format(name, size)) class SymmetricNew(nn.Module): def __init__(self, lower=True): """ Vector space of symmetric matrices, parametrized in terms of the upper or lower triangular part of a matrix. Args: size (torch.size): Size of the tensor to be parametrized lower (bool): Optional. Uses the lower triangular part of the matrix to parametrize the matrix. Default: ``True`` """ super().__init__() self.lower = lower @staticmethod def frame(X, lower): if lower: return X.tril(0) + X.tril(-1).transpose(-2, -1) else: return X.triu(0) + X.triu(1).transpose(-2, -1) @staticmethod def in_manifold(X, eps=1e-06): return X.dim() >= 2 and X.size(-2) == X.size(-1) and torch.allclose(X, X.transpose(-2, -1), atol=eps) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/geotorch
Symmetric
false
16,675
[ "MIT" ]
422
ba38d406c245d609fee4b4dac3f6427bf6d73a8e
https://github.com/vishalbelsare/geotorch/tree/ba38d406c245d609fee4b4dac3f6427bf6d73a8e
Cov2Corr
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/kb/ckblvunazeclbnt7tolqku2k57jaxzpwmdzncsumsjozyn2rnbno.py # Topologically Sorted Source Nodes: [stds], Original ATen: [aten.sqrt] # Source node to ATen node mapping: # stds => sqrt # Graph fragment: # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%diagonal,), kwargs = {}) triton_poi_fused_sqrt_0 = async_compile.triton('triton_poi_fused_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + ((5*x0) + (16*x1)), xmask, eviction_policy='evict_last') tmp1 = libdevice.sqrt(tmp0) tl.store(out_ptr0 + (x2), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/n5/cn5teeeignn4sp3kp3ujrwymtwcb7yaywvx3h7kpqyi4ixhma2ot.py # Topologically Sorted Source Nodes: [corr], Original ATen: [aten.div] # Source node to ATen node mapping: # corr => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %bmm), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tmp0 / tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [stds], Original ATen: [aten.sqrt] stream0 = get_raw_stream(0) triton_poi_fused_sqrt_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf0, (4, 1, 4), (4, 0, 1), 0), out=buf1) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [corr], Original ATen: [aten.div] triton_poi_fused_div_1.run(buf2, arg0_1, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Cov2Corr(nn.Module): """Conversion from covariance matrix to correlation matrix.""" def forward(self, covmat): """Convert. Parameters ---------- covmat : torch.Tensor Covariance matrix of shape (n_samples, n_assets, n_assets). Returns ------- corrmat : torch.Tensor Correlation matrix of shape (n_samples, n_assets, n_assets). """ n_samples, n_assets, _ = covmat.shape stds = torch.sqrt(torch.diagonal(covmat, dim1=1, dim2=2)) stds_ = stds.view(n_samples, n_assets, 1) corr = covmat / torch.matmul(stds_, stds_.permute(0, 2, 1)) return corr def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (5 * x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp1 = libdevice.sqrt(tmp0) tl.store(out_ptr0 + x2, tmp1, xmask) @triton.jit def triton_poi_fused_div_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tmp0 / tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sqrt_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 0), 0 ), reinterpret_tensor(buf0, (4, 1, 4), (4, 0, 1), 0), out=buf1) del buf0 buf2 = buf1 del buf1 triton_poi_fused_div_1[grid(64)](buf2, arg0_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf2, class Cov2CorrNew(nn.Module): """Conversion from covariance matrix to correlation matrix.""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/deepdow
Cov2Corr
false
16,676
[ "Apache-2.0" ]
511
cbb99347fba9a447d4fcae64fe5137c203643e44
https://github.com/vishalbelsare/deepdow/tree/cbb99347fba9a447d4fcae64fe5137c203643e44
InformedSender
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # h_4 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_1, %unsqueeze_3, %unsqueeze_5, %unsqueeze_7], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x3), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2s2pec3vduo4xn2kfu53hypzbhir2ql56lmvazfmymhwv2ehhv5.py # Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # h_6 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3w/c3wxeqk5okayj66zgai4mx3d5w7kam547j5qjthdexbfu7754q7x.py # Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # h_9 => sigmoid_1 # Graph fragment: # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6u/c6ultulfey36ctsvwbs642uch4qmc3elyv6cdtf3dh7jgv5ywknj.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # logits => exp, log, sub_1, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_4, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %log), kwargs = {}) triton_per_fused__log_softmax_3 = async_compile.triton('triton_per_fused__log_softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 100 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (100*x0)), rmask & xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(rmask & xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl_math.log(tmp13) tmp15 = tmp8 - tmp14 tl.store(out_ptr2 + (r1 + (100*x0)), tmp15, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_5, (100, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_i_9], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del buf2 del buf3 # Topologically Sorted Source Nodes: [h_5], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf6, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [h_8], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [h_9], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_2.run(buf8, 16, grid=grid(16), stream=stream0) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [h_12], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] triton_per_fused__log_softmax_3.run(buf9, buf12, 4, 100, grid=grid(4), stream=stream0) del buf9 return (buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), buf4, buf6, buf8, buf12, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data import torch.distributions class InformedSender(nn.Module): def __init__(self, game_size, feat_size, embedding_size, hidden_size, vocab_size=100, temp=1.0): super(InformedSender, self).__init__() self.game_size = game_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.temp = temp self.lin1 = nn.Linear(feat_size, embedding_size, bias=False) self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1), stride=(game_size, 1), bias=False) self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=( hidden_size, 1), bias=False) self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False) def forward(self, x, _aux_input=None): emb = self.return_embeddings(x) h = self.conv2(emb) h = torch.sigmoid(h) h = h.transpose(1, 2) h = self.conv3(h) h = torch.sigmoid(h) h = h.squeeze(dim=1) h = h.squeeze(dim=1) h = self.lin4(h) h = h.mul(1.0 / self.temp) logits = F.log_softmax(h, dim=1) return logits def return_embeddings(self, x): embs = [] for i in range(self.game_size): h = x[i] if len(h.size()) == 3: h = h.squeeze(dim=-1) h_i = self.lin1(h) h_i = h_i.unsqueeze(dim=1) h_i = h_i.unsqueeze(dim=1) embs.append(h_i) h = torch.cat(embs, dim=2) return h def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'game_size': 4, 'feat_size': 4, 'embedding_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy ='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x3, tmp22, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 100 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 100 * x0), rmask & xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(rmask & xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tl_math.log(tmp13) tmp15 = tmp8 - tmp14 tl.store(out_ptr2 + (r1 + 100 * x0), tmp15, rmask & xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_4, (1, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(primals_5, (100, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 buf5 = extern_kernels.convolution(buf4, primals_3, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 4), (16, 4, 4, 1)) buf6 = buf5 del buf5 triton_poi_fused_sigmoid_1[grid(64)](buf6, 64, XBLOCK=64, num_warps =1, num_stages=1) buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (4, 1, 4, 4), (16, 4, 4, 1), 0), primals_4, stride=(4, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 1, 4), (4, 4, 4, 1)) buf8 = buf7 del buf7 triton_poi_fused_sigmoid_2[grid(16)](buf8, 16, XBLOCK=16, num_warps =1, num_stages=1) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 100), (1, 4), 0), out=buf9) buf12 = empty_strided_cuda((4, 100), (100, 1), torch.float32) triton_per_fused__log_softmax_3[grid(4)](buf9, buf12, 4, 100, XBLOCK=1, num_warps=2, num_stages=1) del buf9 return buf12, primals_3, primals_4, reinterpret_tensor(primals_1, (4, 4 ), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (4, 1), 16 ), reinterpret_tensor(primals_1, (4, 4), (4, 1), 32 ), reinterpret_tensor(primals_1, (4, 4), (4, 1), 48 ), buf4, buf6, buf8, buf12, primals_5 class InformedSenderNew(nn.Module): def __init__(self, game_size, feat_size, embedding_size, hidden_size, vocab_size=100, temp=1.0): super(InformedSenderNew, self).__init__() self.game_size = game_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.temp = temp self.lin1 = nn.Linear(feat_size, embedding_size, bias=False) self.conv2 = nn.Conv2d(1, hidden_size, kernel_size=(game_size, 1), stride=(game_size, 1), bias=False) self.conv3 = nn.Conv2d(1, 1, kernel_size=(hidden_size, 1), stride=( hidden_size, 1), bias=False) self.lin4 = nn.Linear(embedding_size, vocab_size, bias=False) def return_embeddings(self, x): embs = [] for i in range(self.game_size): h = x[i] if len(h.size()) == 3: h = h.squeeze(dim=-1) h_i = self.lin1(h) h_i = h_i.unsqueeze(dim=1) h_i = h_i.unsqueeze(dim=1) embs.append(h_i) h = torch.cat(embs, dim=2) return h def forward(self, input_0): primals_2 = self.lin1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.lin4.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
vengalraoguttha/EGG
InformedSender
false
16,677
[ "MIT" ]
254
e4f8412f197543ec7f1f00cf89b5a364b038dc57
https://github.com/vengalraoguttha/EGG/tree/e4f8412f197543ec7f1f00cf89b5a364b038dc57
Skew
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cj/ccjuuly6fidcw2gw62lriqicb7r7civplo5sqjfmpqvmkho27yfd.py # Topologically Sorted Source Nodes: [X, sub], Original ATen: [aten.tril, aten.sub] # Source node to ATen node mapping: # X => full_default, le, sub, where # sub => sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub, -1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%le, %arg0_1, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_sub_tril_0 = async_compile.triton('triton_poi_fused_sub_tril_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_tril_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_tril_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], -1, tl.int64) tmp2 = tmp0 <= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tmp6 <= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [X, sub], Original ATen: [aten.tril, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_tril_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class NonSquareError(ValueError): def __init__(self, name, size): super().__init__( 'The {} parametrization can just be applied to square matrices. Got a tensor of size {}' .format(name, size)) class VectorError(ValueError): def __init__(self, name, size): super().__init__( 'Cannot instantiate {} on a tensor of less than 2 dimensions. Got a tensor of size {}' .format(name, size)) class Skew(nn.Module): def __init__(self, lower=True): """ Vector space of skew-symmetric matrices, parametrized in terms of the upper or lower triangular part of a matrix. Args: size (torch.size): Size of the tensor to be parametrized lower (bool): Optional. Uses the lower triangular part of the matrix to parametrize the matrix. Default: ``True`` """ super().__init__() self.lower = lower @staticmethod def frame(X, lower): if lower: X = X.tril(-1) else: X = X.triu(1) return X - X.transpose(-2, -1) def forward(self, X): if len(X.size()) < 2: raise VectorError(type(self).__name__, X.size()) if X.size(-2) != X.size(-1): raise NonSquareError(type(self).__name__, X.size()) return self.frame(X, self.lower) @staticmethod def in_manifold(X): return X.dim() >= 2 and X.size(-2) == X.size(-1) and torch.allclose(X, -X.transpose(-2, -1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_tril_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], -1, tl.int64) tmp2 = tmp0 <= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tmp6 <= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_tril_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class NonSquareError(ValueError): def __init__(self, name, size): super().__init__( 'The {} parametrization can just be applied to square matrices. Got a tensor of size {}' .format(name, size)) class VectorError(ValueError): def __init__(self, name, size): super().__init__( 'Cannot instantiate {} on a tensor of less than 2 dimensions. Got a tensor of size {}' .format(name, size)) class SkewNew(nn.Module): def __init__(self, lower=True): """ Vector space of skew-symmetric matrices, parametrized in terms of the upper or lower triangular part of a matrix. Args: size (torch.size): Size of the tensor to be parametrized lower (bool): Optional. Uses the lower triangular part of the matrix to parametrize the matrix. Default: ``True`` """ super().__init__() self.lower = lower @staticmethod def frame(X, lower): if lower: X = X.tril(-1) else: X = X.triu(1) return X - X.transpose(-2, -1) @staticmethod def in_manifold(X): return X.dim() >= 2 and X.size(-2) == X.size(-1) and torch.allclose(X, -X.transpose(-2, -1)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/geotorch
Skew
false
16,678
[ "MIT" ]
422
ba38d406c245d609fee4b4dac3f6427bf6d73a8e
https://github.com/vishalbelsare/geotorch/tree/ba38d406c245d609fee4b4dac3f6427bf6d73a8e
Naked
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/h3/ch3vddee6wytmxwojh633v4cwca77f2yokywsve6dxv4nn6gpdzt.py # Topologically Sorted Source Nodes: [new_zeros], Original ATen: [aten.new_zeros] # Source node to ATen node mapping: # new_zeros => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 1], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [new_zeros], Original ATen: [aten.new_zeros] stream0 = get_raw_stream(0) triton_poi_fused_new_zeros_0.run(buf0, 64, grid=grid(64), stream=stream0) return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import Tensor class Naked(Module): """Returns a tensor filled with the scalar value zero. Args: out_features (int, default=1): Size of each output sample. Shape: - Input: :math:`(N, *, H_{\\text{in}})` where :math:`*` means any number of additional dimensions and :math:`H_{\\text{in}}` is the number of input features. - Output: :math:`(N, *, H_{\\text{out}})` where all but the last dimension are the same shape as the input and :math:`H_{\\text{out}}` is the number of output features. Examples: >>> from pfhedge.nn import Naked >>> >>> m = Naked() >>> input = torch.empty((2, 3)) >>> m(input) tensor([[0.], [0.]]) """ def __init__(self, out_features: 'int'=1): super().__init__() self.out_features = out_features def forward(self, input: 'Tensor') ->Tensor: return input.new_zeros(input.size()[:-1] + (self.out_features,)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_new_zeros_0[grid(64)](buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf0, class NakedNew(Module): """Returns a tensor filled with the scalar value zero. Args: out_features (int, default=1): Size of each output sample. Shape: - Input: :math:`(N, *, H_{\\text{in}})` where :math:`*` means any number of additional dimensions and :math:`H_{\\text{in}}` is the number of input features. - Output: :math:`(N, *, H_{\\text{out}})` where all but the last dimension are the same shape as the input and :math:`H_{\\text{out}}` is the number of output features. Examples: >>> from pfhedge.nn import Naked >>> >>> m = Naked() >>> input = torch.empty((2, 3)) >>> m(input) tensor([[0.], [0.]]) """ def __init__(self, out_features: 'int'=1): super().__init__() self.out_features = out_features def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/pfhedge
Naked
false
16,679
[ "MIT" ]
81
4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
https://github.com/vishalbelsare/pfhedge/tree/4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
GatingMechanism
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csri6wwfniooapojnvlazqato2l25js4bmokyvjl2oosbqofjge7.py # Topologically Sorted Source Nodes: [add, r, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.sigmoid_backward] # Source node to ATen node mapping: # add => add # mul => mul # r => sigmoid # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_6), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_4), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp7 tmp12 = tmp7 * tmp11 tl.store(out_ptr0 + (x2), tmp9, xmask) tl.store(out_ptr1 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/eh/ceh5s4h6pc2rtclg56lxeiyydwznnbeadlztvs46rtot5dpld3yc.py # Topologically Sorted Source Nodes: [add_1, sub, z, add_2, h, sub_1, mul_1, mul_2, g], Original ATen: [aten.add, aten.sub, aten.sigmoid, aten.tanh, aten.rsub, aten.mul] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # g => add_3 # h => tanh # mul_1 => mul_1 # mul_2 => mul_2 # sub => sub # sub_1 => sub_1 # z => sigmoid_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_7), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 0.1), kwargs = {}) # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sub,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %view_11), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_6), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %tanh), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_out_ptr1 + (x2), xmask) tmp11 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x2), xmask) tmp14 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr6 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = 0.1 tmp8 = tmp6 - tmp7 tmp9 = tl.sigmoid(tmp8) tmp12 = tmp10 + tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tmp17 = libdevice.tanh(tmp16) tmp18 = 1.0 tmp19 = tmp18 - tmp9 tmp21 = tmp19 * tmp20 tmp22 = tmp9 * tmp17 tmp23 = tmp21 + tmp22 tl.store(in_out_ptr0 + (x2), tmp9, xmask) tl.store(in_out_ptr1 + (x2), tmp17, xmask) tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf5) del primals_11 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, r, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0.run(buf0, primals_2, buf1, primals_5, primals_6, buf6, buf10, 256, grid=grid(256), stream=stream0) del primals_2 del primals_5 buf7 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf7) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse buf9 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add_1, sub, z, add_2, h, sub_1, mul_1, mul_2, g], Original ATen: [aten.add, aten.sub, aten.sigmoid, aten.tanh, aten.rsub, aten.mul] triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1.run(buf4, buf8, primals_8, buf3, primals_10, primals_12, buf7, primals_14, primals_6, buf9, 256, grid=grid(256), stream=stream0) del buf3 del buf7 del primals_10 del primals_12 del primals_14 del primals_8 return (buf9, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), buf8, primals_13, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class GatingMechanism(torch.nn.Module): def __init__(self, d_input, bg=0.1): super(GatingMechanism, self).__init__() self.Wr = torch.nn.Linear(d_input, d_input) self.Ur = torch.nn.Linear(d_input, d_input) self.Wz = torch.nn.Linear(d_input, d_input) self.Uz = torch.nn.Linear(d_input, d_input) self.Wg = torch.nn.Linear(d_input, d_input) self.Ug = torch.nn.Linear(d_input, d_input) self.bg = bg self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh() def forward(self, x, y): r = self.sigmoid(self.Wr(y) + self.Ur(x)) z = self.sigmoid(self.Wz(y) + self.Uz(x) - self.bg) h = self.tanh(self.Wg(y) + self.Ug(torch.mul(r, x))) g = torch.mul(1 - z, x) + torch.mul(z, h) return g def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_input': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp7 tmp12 = tmp7 * tmp11 tl.store(out_ptr0 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_out_ptr1 + x2, xmask) tmp11 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x2, xmask) tmp14 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr6 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = 0.1 tmp8 = tmp6 - tmp7 tmp9 = tl.sigmoid(tmp8) tmp12 = tmp10 + tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tmp17 = libdevice.tanh(tmp16) tmp18 = 1.0 tmp19 = tmp18 - tmp9 tmp21 = tmp19 * tmp20 tmp22 = tmp9 * tmp17 tmp23 = tmp21 + tmp22 tl.store(in_out_ptr0 + x2, tmp9, xmask) tl.store(in_out_ptr1 + x2, tmp17, xmask) tl.store(out_ptr0 + x2, tmp23, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf5) del primals_11 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0[grid(256)](buf0, primals_2, buf1, primals_5, primals_6, buf6, buf10, 256, XBLOCK =256, num_warps=4, num_stages=1) del primals_2 del primals_5 buf7 = buf1 del buf1 extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf7) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 buf9 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_add_mul_rsub_sigmoid_sub_tanh_1[grid(256)](buf4, buf8, primals_8, buf3, primals_10, primals_12, buf7, primals_14, primals_6, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del buf7 del primals_10 del primals_12 del primals_14 del primals_8 return buf9, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf6, (64, 4), (4, 1), 0 ), buf8, primals_13, buf10 class GatingMechanismNew(torch.nn.Module): def __init__(self, d_input, bg=0.1): super(GatingMechanismNew, self).__init__() self.Wr = torch.nn.Linear(d_input, d_input) self.Ur = torch.nn.Linear(d_input, d_input) self.Wz = torch.nn.Linear(d_input, d_input) self.Uz = torch.nn.Linear(d_input, d_input) self.Wg = torch.nn.Linear(d_input, d_input) self.Ug = torch.nn.Linear(d_input, d_input) self.bg = bg self.sigmoid = torch.nn.Sigmoid() self.tanh = torch.nn.Tanh() def forward(self, input_0, input_1): primals_1 = self.Wr.weight primals_2 = self.Wr.bias primals_4 = self.Ur.weight primals_5 = self.Ur.bias primals_7 = self.Wz.weight primals_8 = self.Wz.bias primals_9 = self.Uz.weight primals_10 = self.Uz.bias primals_11 = self.Wg.weight primals_12 = self.Wg.bias primals_13 = self.Ug.weight primals_14 = self.Ug.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
victor-psiori/Transformers-RL
GatingMechanism
false
16,680
[ "MIT" ]
50
85b3f2376ba473a45ca18c969aebb1ae82cf8475
https://github.com/victor-psiori/Transformers-RL/tree/85b3f2376ba473a45ca18c969aebb1ae82cf8475
EntropicLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ff/cffphee3zyybrew6cx4vo5qmxaybitssbt3a57r577gjzw7gyb5v.py # Topologically Sorted Source Nodes: [mul, exp, neg, mean, neg_1], Original ATen: [aten.mul, aten.exp, aten.neg, aten.mean] # Source node to ATen node mapping: # exp => exp # mean => mean # mul => mul # neg => neg # neg_1 => neg_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%exp,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%neg, [0]), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) triton_poi_fused_exp_mean_mul_neg_0 = async_compile.triton('triton_poi_fused_exp_mean_mul_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mean_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_mean_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp15 = tl.load(in_ptr0 + (192 + x0), xmask) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = -tmp3 tmp6 = tmp5 * tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = -tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = tl_math.exp(tmp11) tmp13 = -tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = -tmp17 tmp19 = tmp14 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = -tmp21 tl.store(out_ptr0 + (x0), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, exp, neg, mean, neg_1], Original ATen: [aten.mul, aten.exp, aten.neg, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_exp_mean_mul_neg_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import Tensor from typing import Callable from typing import Union from abc import ABC def _format_float(value: 'float') ->str: """ >>> _format_float(1) '1' >>> _format_float(1.0) '1.' >>> _format_float(1e-4) '1.0000e-04' """ tensor = torch.tensor([value]) return torch._tensor_str._Formatter(tensor).format(value) def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def exp_utility(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Applies an exponential utility function. An exponential utility function is defined as: .. math:: u(x) = -\\exp(-a x) \\,. Args: input (torch.Tensor): The input tensor. a (float, default=1.0): The risk aversion coefficient of the exponential utility. Returns: torch.Tensor """ return -(-a * input).exp() class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class EntropicLoss(HedgeLoss): """Creates a criterion that measures the expected exponential utility. The loss of the profit-loss :math:`\\text{pnl}` is given by: .. math:: \\text{loss}(\\text{pnl}) = -\\mathbf{E}[u(\\text{pnl})] \\,, \\quad u(x) = -\\exp(-a x) \\,. .. seealso:: - :func:`pfhedge.nn.functional.exp_utility`: The corresponding utility function. Args: a (float > 0, default=1.0): Risk aversion coefficient of the exponential utility. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import EntropicLoss >>> >>> loss = EntropicLoss() >>> input = -torch.arange(4.0) >>> loss(input) tensor(7.7982) >>> loss.cash(input) tensor(-2.0539) """ def __init__(self, a: 'float'=1.0): if not a > 0: raise ValueError('Risk aversion coefficient should be positive.') super().__init__() self.a = a def extra_repr(self) ->str: return 'a=' + _format_float(self.a) if self.a != 1 else '' def forward(self, input: 'Tensor') ->Tensor: return -exp_utility(input, a=self.a).mean(0) def cash(self, input: 'Tensor') ->Tensor: return -(-exp_utility(input, a=self.a).mean(0)).log() / self.a def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torch import Tensor from typing import Callable from typing import Union from abc import ABC assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_exp_mean_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp15 = tl.load(in_ptr0 + (192 + x0), xmask) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = -tmp3 tmp6 = tmp5 * tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = -tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = tl_math.exp(tmp11) tmp13 = -tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = -tmp17 tmp19 = tmp14 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = -tmp21 tl.store(out_ptr0 + x0, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_exp_mean_mul_neg_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, def _format_float(value: 'float') ->str: """ >>> _format_float(1) '1' >>> _format_float(1.0) '1.' >>> _format_float(1e-4) '1.0000e-04' """ tensor = torch.tensor([value]) return torch._tensor_str._Formatter(tensor).format(value) def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def exp_utility(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Applies an exponential utility function. An exponential utility function is defined as: .. math:: u(x) = -\\exp(-a x) \\,. Args: input (torch.Tensor): The input tensor. a (float, default=1.0): The risk aversion coefficient of the exponential utility. Returns: torch.Tensor """ return -(-a * input).exp() class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class EntropicLossNew(HedgeLoss): """Creates a criterion that measures the expected exponential utility. The loss of the profit-loss :math:`\\text{pnl}` is given by: .. math:: \\text{loss}(\\text{pnl}) = -\\mathbf{E}[u(\\text{pnl})] \\,, \\quad u(x) = -\\exp(-a x) \\,. .. seealso:: - :func:`pfhedge.nn.functional.exp_utility`: The corresponding utility function. Args: a (float > 0, default=1.0): Risk aversion coefficient of the exponential utility. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import EntropicLoss >>> >>> loss = EntropicLoss() >>> input = -torch.arange(4.0) >>> loss(input) tensor(7.7982) >>> loss.cash(input) tensor(-2.0539) """ def __init__(self, a: 'float'=1.0): if not a > 0: raise ValueError('Risk aversion coefficient should be positive.') super().__init__() self.a = a def extra_repr(self) ->str: return 'a=' + _format_float(self.a) if self.a != 1 else '' def cash(self, input: 'Tensor') ->Tensor: return -(-exp_utility(input, a=self.a).mean(0)).log() / self.a def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/pfhedge
EntropicLoss
false
16,681
[ "MIT" ]
81
4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
https://github.com/vishalbelsare/pfhedge/tree/4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
ActorNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oz/coz2vvm7j43dgp2scg63a7xyihnzn7xcwkbiwytoo3i3naiahfwp.py # Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul] # Source node to ATen node mapping: # mul => mul # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 2), kwargs = {}) triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 2.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, mul], Original ATen: [aten.tanh, aten.mul] triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, primals_6, buf6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ActorNetwork(nn.Module): def __init__(self, state_size, action_size, hidden_size, seed=1412): super(ActorNetwork, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.head = nn.Linear(hidden_size, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = self.head(x) return 2 * torch.tanh(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 2.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), buf4, primals_6, buf6, primals_4, buf7 class ActorNetworkNew(nn.Module): def __init__(self, state_size, action_size, hidden_size, seed=1412): super(ActorNetworkNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.head = nn.Linear(hidden_size, action_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.head.weight primals_7 = self.head.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
vlgiitr/Workshop-Spring-2022
ActorNetwork
false
16,682
[ "MIT" ]
69
003ed62c75a876e946eaa481c27224dd38914015
https://github.com/vlgiitr/Workshop-Spring-2022/tree/003ed62c75a876e946eaa481c27224dd38914015
SphereEmbedded
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6u/c6urmuxyijrmi2u5y4k3eyu3cv6vhbr2twirw4ueqejtf6r6oxpc.py # Topologically Sorted Source Nodes: [norm, truediv, mul], Original ATen: [aten.linalg_vector_norm, aten.div, aten.mul] # Source node to ATen node mapping: # mul => mul # norm => pow_1, pow_2, sum_1 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {}) triton_poi_fused_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tmp14 = 1.0 tmp15 = tmp13 * tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, truediv, mul], Original ATen: [aten.linalg_vector_norm, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_div_linalg_vector_norm_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn def _extra_repr(**kwargs): if 'n' in kwargs: ret = 'n={}'.format(kwargs['n']) elif 'dim' in kwargs: ret = 'dim={}'.format(kwargs['dim']) else: ret = '' if 'k' in kwargs: ret += ', k={}'.format(kwargs['k']) if 'rank' in kwargs: ret += ', rank={}'.format(kwargs['rank']) if 'radius' in kwargs: ret += ', radius={}'.format(kwargs['radius']) if 'lam' in kwargs: ret += ', lambda={}'.format(kwargs['lam']) if 'f' in kwargs: ret += ', f={}'.format(kwargs['f'].__name__) if 'tensorial_size' in kwargs: ts = kwargs['tensorial_size'] if len(ts) != 0: ret += ', tensorial_size={}'.format(tuple(ts)) if 'triv' in kwargs: ret += ', triv={}'.format(kwargs['triv'].__name__) if 'no_inv' in kwargs: if kwargs['no_inv']: ret += ', no inverse' if 'transposed' in kwargs: if kwargs['transposed']: ret += ', transposed' return ret def _in_sphere(x, r, eps): norm = x.norm(dim=-1) rs = torch.full_like(norm, r) return (torch.norm(norm - rs, p=float('inf')) < eps).all() def project(x): return x / x.norm(dim=-1, keepdim=True) def uniform_init_sphere_(x, r=1.0): """Samples a point uniformly on the sphere into the tensor ``x``. If ``x`` has :math:`d > 1` dimensions, the first :math:`d-1` dimensions are treated as batch dimensions. """ with torch.no_grad(): x.normal_() x.data = r * project(x) return x class InManifoldError(ValueError): def __init__(self, X, M): super().__init__('Tensor not contained in {}. Got\n{}'.format(M, X)) class SphereEmbedded(nn.Module): def __init__(self, size, radius=1.0): """ Sphere as the orthogonal projection from :math:`\\mathbb{R}^n` to :math:`\\mathbb{S}^{n-1}`, that is, :math:`x \\mapsto \\frac{x}{\\lVert x \\rVert}`. Args: size (torch.size): Size of the tensor to be parametrized radius (float): Optional. Radius of the sphere. A positive number. Default: ``1.`` """ super().__init__() self.n = size[-1] self.tensorial_size = size[:-1] self.radius = SphereEmbedded.parse_radius(radius) @staticmethod def parse_radius(radius): if radius <= 0.0: raise ValueError( 'The radius has to be a positive real number. Got {}'. format(radius)) return radius def forward(self, x): return self.radius * project(x) def right_inverse(self, x, check_in_manifold=True): if check_in_manifold and not self.in_manifold(x): raise InManifoldError(x, self) return x / self.radius def in_manifold(self, x, eps=1e-05): """ Checks that a vector is on the sphere. For tensors with more than 2 dimensions the first dimensions are treated as batch dimensions. Args: X (torch.Tensor): The vector to be checked. eps (float): Optional. Threshold at which the norm is considered to be equal to ``1``. Default: ``1e-5`` """ return _in_sphere(x, self.radius, eps) def sample(self): """ Returns a uniformly sampled vector on the sphere. """ x = torch.empty(*(self.tensorial_size + (self.n,))) return uniform_init_sphere_(x, r=self.radius) def extra_repr(self): return _extra_repr(n=self.n, radius=self.radius, tensorial_size= self.tensorial_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': [4, 4]}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tmp14 = 1.0 tmp15 = tmp13 * tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_linalg_vector_norm_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def _extra_repr(**kwargs): if 'n' in kwargs: ret = 'n={}'.format(kwargs['n']) elif 'dim' in kwargs: ret = 'dim={}'.format(kwargs['dim']) else: ret = '' if 'k' in kwargs: ret += ', k={}'.format(kwargs['k']) if 'rank' in kwargs: ret += ', rank={}'.format(kwargs['rank']) if 'radius' in kwargs: ret += ', radius={}'.format(kwargs['radius']) if 'lam' in kwargs: ret += ', lambda={}'.format(kwargs['lam']) if 'f' in kwargs: ret += ', f={}'.format(kwargs['f'].__name__) if 'tensorial_size' in kwargs: ts = kwargs['tensorial_size'] if len(ts) != 0: ret += ', tensorial_size={}'.format(tuple(ts)) if 'triv' in kwargs: ret += ', triv={}'.format(kwargs['triv'].__name__) if 'no_inv' in kwargs: if kwargs['no_inv']: ret += ', no inverse' if 'transposed' in kwargs: if kwargs['transposed']: ret += ', transposed' return ret def _in_sphere(x, r, eps): norm = x.norm(dim=-1) rs = torch.full_like(norm, r) return (torch.norm(norm - rs, p=float('inf')) < eps).all() def project(x): return x / x.norm(dim=-1, keepdim=True) def uniform_init_sphere_(x, r=1.0): """Samples a point uniformly on the sphere into the tensor ``x``. If ``x`` has :math:`d > 1` dimensions, the first :math:`d-1` dimensions are treated as batch dimensions. """ with torch.no_grad(): x.normal_() x.data = r * project(x) return x class InManifoldError(ValueError): def __init__(self, X, M): super().__init__('Tensor not contained in {}. Got\n{}'.format(M, X)) class SphereEmbeddedNew(nn.Module): def __init__(self, size, radius=1.0): """ Sphere as the orthogonal projection from :math:`\\mathbb{R}^n` to :math:`\\mathbb{S}^{n-1}`, that is, :math:`x \\mapsto \\frac{x}{\\lVert x \\rVert}`. Args: size (torch.size): Size of the tensor to be parametrized radius (float): Optional. Radius of the sphere. A positive number. Default: ``1.`` """ super().__init__() self.n = size[-1] self.tensorial_size = size[:-1] self.radius = SphereEmbeddedNew.parse_radius(radius) @staticmethod def parse_radius(radius): if radius <= 0.0: raise ValueError( 'The radius has to be a positive real number. Got {}'. format(radius)) return radius def right_inverse(self, x, check_in_manifold=True): if check_in_manifold and not self.in_manifold(x): raise InManifoldError(x, self) return x / self.radius def in_manifold(self, x, eps=1e-05): """ Checks that a vector is on the sphere. For tensors with more than 2 dimensions the first dimensions are treated as batch dimensions. Args: X (torch.Tensor): The vector to be checked. eps (float): Optional. Threshold at which the norm is considered to be equal to ``1``. Default: ``1e-5`` """ return _in_sphere(x, self.radius, eps) def sample(self): """ Returns a uniformly sampled vector on the sphere. """ x = torch.empty(*(self.tensorial_size + (self.n,))) return uniform_init_sphere_(x, r=self.radius) def extra_repr(self): return _extra_repr(n=self.n, radius=self.radius, tensorial_size= self.tensorial_size) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/geotorch
SphereEmbedded
false
16,683
[ "MIT" ]
422
ba38d406c245d609fee4b4dac3f6427bf6d73a8e
https://github.com/vishalbelsare/geotorch/tree/ba38d406c245d609fee4b4dac3f6427bf6d73a8e
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dk/cdk3l2gdrurg6uj2ckltekowplr53hgrpb57mjds3uwpjtqhrw64.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # input_2 => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500, ), (1, )) assert_size_stride(primals_5, (784, 500), (500, 1)) assert_size_stride(primals_6, (784, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_4, 2000, grid=grid(2000), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 784), (784, 1), torch.float32) # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (500, 784), (1, 500), 0), alpha=1, beta=1, out=buf3) del primals_6 return (buf3, buf0, buf2, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((784, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((784, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from collections import OrderedDict class Decoder(nn.Module): def __init__(self, style_dim, class_dim): super(Decoder, self).__init__() self.linear_model = nn.Sequential(OrderedDict([('linear_1', nn. Linear(in_features=style_dim + class_dim, out_features=500, bias=True)), ('tan_h_1', nn.Tanh()), ('linear_2', nn.Linear( in_features=500, out_features=784, bias=True))])) def forward(self, style_latent_space, class_latent_space): x = torch.cat((style_latent_space, class_latent_space), dim=1) x = self.linear_model(x) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'style_dim': 4, 'class_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (500, 8), (8, 1)) assert_size_stride(primals_4, (500,), (1,)) assert_size_stride(primals_5, (784, 500), (500, 1)) assert_size_stride(primals_6, (784,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 500), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_tanh_1[grid(2000)](buf2, primals_4, 2000, XBLOCK= 128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 784), (784, 1), torch.float32) extern_kernels.addmm(primals_6, buf2, reinterpret_tensor(primals_5, (500, 784), (1, 500), 0), alpha=1, beta=1, out=buf3) del primals_6 return buf3, buf0, buf2, primals_5 class DecoderNew(nn.Module): def __init__(self, style_dim, class_dim): super(DecoderNew, self).__init__() self.linear_model = nn.Sequential(OrderedDict([('linear_1', nn. Linear(in_features=style_dim + class_dim, out_features=500, bias=True)), ('tan_h_1', nn.Tanh()), ('linear_2', nn.Linear( in_features=500, out_features=784, bias=True))])) def forward(self, input_0, input_1): primals_3 = self.linear_model.linear_1.weight primals_4 = self.linear_model.linear_1.bias primals_5 = self.linear_model.linear_2.weight primals_6 = self.linear_model.linear_2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
vicissitude1999/multi-level-vae
Decoder
false
16,684
[ "MIT" ]
68
83bc98fbe5046c61941298d4fd49b08fd868ee89
https://github.com/vicissitude1999/multi-level-vae/tree/83bc98fbe5046c61941298d4fd49b08fd868ee89
MixtureDensityHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ag/cagauppfc5dyrage7yy5leg6gsn632zg5ott3n34jtilpqfqtgis.py # Topologically Sorted Source Nodes: [elu, add, sigma_1], Original ATen: [aten.elu, aten.add] # Source node to ATen node mapping: # add => add # elu => expm1, gt, mul, mul_2, where # sigma_1 => add_1 # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-15), kwargs = {}) triton_poi_fused_add_elu_0 = async_compile.triton('triton_poi_fused_add_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp8 = tmp7 + tmp3 tmp9 = 1e-15 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pi], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [elu, add, sigma_1], Original ATen: [aten.elu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_elu_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn from torch.autograd import Variable from torch.distributions import Categorical class MixtureDensityHead(nn.Module): def __init__(self, config: 'DictConfig', **kwargs): self.hparams = config super().__init__() self._build_network() def _build_network(self): self.pi = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian) nn.init.normal_(self.pi.weight) self.sigma = nn.Linear(self.hparams.input_dim, self.hparams. num_gaussian, bias=self.hparams.sigma_bias_flag) self.mu = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian) nn.init.normal_(self.mu.weight) if self.hparams.mu_bias_init is not None: for i, bias in enumerate(self.hparams.mu_bias_init): nn.init.constant_(self.mu.bias[i], bias) def forward(self, x): pi = self.pi(x) sigma = self.sigma(x) sigma = nn.ELU()(sigma) + 1 + 1e-15 mu = self.mu(x) return pi, sigma, mu def gaussian_probability(self, sigma, mu, target, log=False): """Returns the probability of `target` given MoG parameters `sigma` and `mu`. Arguments: sigma (BxGxO): The standard deviation of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. mu (BxGxO): The means of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. target (BxI): A batch of target. B is the batch size and I is the number of input dimensions. Returns: probabilities (BxG): The probability of each point in the probability of the distribution in the corresponding sigma/mu index. """ target = target.expand_as(sigma) if log: ret = -torch.log(sigma) - 0.5 * LOG2PI - 0.5 * torch.pow(( target - mu) / sigma, 2) else: ret = ONEOVERSQRT2PI / sigma * torch.exp(-0.5 * ((target - mu) / sigma) ** 2) return ret def log_prob(self, pi, sigma, mu, y): log_component_prob = self.gaussian_probability(sigma, mu, y, log=True) log_mix_prob = torch.log(nn.functional.gumbel_softmax(pi, tau=self. hparams.softmax_temperature, dim=-1) + 1e-15) return torch.logsumexp(log_component_prob + log_mix_prob, dim=-1) def sample(self, pi, sigma, mu): """Draw samples from a MoG.""" categorical = Categorical(pi) pis = categorical.sample().unsqueeze(1) sample = Variable(sigma.data.new(sigma.size(0), 1).normal_()) sample = sample * sigma.gather(1, pis) + mu.gather(1, pis) return sample def generate_samples(self, pi, sigma, mu, n_samples=None): if n_samples is None: n_samples = self.hparams.n_samples samples = [] softmax_pi = nn.functional.gumbel_softmax(pi, tau=self.hparams. softmax_temperature, dim=-1) assert (softmax_pi < 0).sum().item( ) == 0, 'pi parameter should not have negative' for _ in range(n_samples): samples.append(self.sample(softmax_pi, sigma, mu)) samples = torch.cat(samples, dim=1) return samples def generate_point_predictions(self, pi, sigma, mu, n_samples=None): samples = self.generate_samples(pi, sigma, mu, n_samples) if self.hparams.central_tendency == 'mean': y_hat = torch.mean(samples, dim=-1) elif self.hparams.central_tendency == 'median': y_hat = torch.median(samples, dim=-1).values return y_hat.unsqueeze(1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(input_dim=4, num_gaussian=4, sigma_bias_flag=4, mu_bias_init=[4, 4])}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.autograd import Variable from torch.distributions import Categorical assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp8 = tmp7 + tmp3 tmp9 = 1e-15 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_elu_0[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf3) del primals_6 del primals_7 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1 class MixtureDensityHeadNew(nn.Module): def __init__(self, config: 'DictConfig', **kwargs): self.hparams = config super().__init__() self._build_network() def _build_network(self): self.pi = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian) nn.init.normal_(self.pi.weight) self.sigma = nn.Linear(self.hparams.input_dim, self.hparams. num_gaussian, bias=self.hparams.sigma_bias_flag) self.mu = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian) nn.init.normal_(self.mu.weight) if self.hparams.mu_bias_init is not None: for i, bias in enumerate(self.hparams.mu_bias_init): nn.init.constant_(self.mu.bias[i], bias) def gaussian_probability(self, sigma, mu, target, log=False): """Returns the probability of `target` given MoG parameters `sigma` and `mu`. Arguments: sigma (BxGxO): The standard deviation of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. mu (BxGxO): The means of the Gaussians. B is the batch size, G is the number of Gaussians, and O is the number of dimensions per Gaussian. target (BxI): A batch of target. B is the batch size and I is the number of input dimensions. Returns: probabilities (BxG): The probability of each point in the probability of the distribution in the corresponding sigma/mu index. """ target = target.expand_as(sigma) if log: ret = -torch.log(sigma) - 0.5 * LOG2PI - 0.5 * torch.pow(( target - mu) / sigma, 2) else: ret = ONEOVERSQRT2PI / sigma * torch.exp(-0.5 * ((target - mu) / sigma) ** 2) return ret def log_prob(self, pi, sigma, mu, y): log_component_prob = self.gaussian_probability(sigma, mu, y, log=True) log_mix_prob = torch.log(nn.functional.gumbel_softmax(pi, tau=self. hparams.softmax_temperature, dim=-1) + 1e-15) return torch.logsumexp(log_component_prob + log_mix_prob, dim=-1) def sample(self, pi, sigma, mu): """Draw samples from a MoG.""" categorical = Categorical(pi) pis = categorical.sample().unsqueeze(1) sample = Variable(sigma.data.new(sigma.size(0), 1).normal_()) sample = sample * sigma.gather(1, pis) + mu.gather(1, pis) return sample def generate_samples(self, pi, sigma, mu, n_samples=None): if n_samples is None: n_samples = self.hparams.n_samples samples = [] softmax_pi = nn.functional.gumbel_softmax(pi, tau=self.hparams. softmax_temperature, dim=-1) assert (softmax_pi < 0).sum().item( ) == 0, 'pi parameter should not have negative' for _ in range(n_samples): samples.append(self.sample(softmax_pi, sigma, mu)) samples = torch.cat(samples, dim=1) return samples def generate_point_predictions(self, pi, sigma, mu, n_samples=None): samples = self.generate_samples(pi, sigma, mu, n_samples) if self.hparams.central_tendency == 'mean': y_hat = torch.mean(samples, dim=-1) elif self.hparams.central_tendency == 'median': y_hat = torch.median(samples, dim=-1).values return y_hat.unsqueeze(1) def forward(self, input_0): primals_1 = self.pi.weight primals_2 = self.pi.bias primals_4 = self.sigma.weight primals_5 = self.sigma.bias primals_6 = self.mu.weight primals_7 = self.mu.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1], output[2]
robburdon/pytorch_tabular
MixtureDensityHead
false
16,685
[ "MIT" ]
560
9bf75f22c6e1b3033ad699713e77c283d55f3555
https://github.com/robburdon/pytorch_tabular/tree/9bf75f22c6e1b3033ad699713e77c283d55f3555
EntropicRiskMeasure
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/q5/cq5pyy7uuhttdtwlvpdslpclevyeftvcgmr4nhwzi2nq6w6rebkz.py # Topologically Sorted Source Nodes: [mul, exp, neg, mean, neg_1, log, truediv], Original ATen: [aten.mul, aten.exp, aten.neg, aten.mean, aten.log, aten.div] # Source node to ATen node mapping: # exp => exp # log => log # mean => mean # mul => mul # neg => neg # neg_1 => neg_1 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -1.0), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%exp,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%neg, [0]), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%neg_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log, 1.0), kwargs = {}) triton_poi_fused_div_exp_log_mean_mul_neg_0 = async_compile.triton('triton_poi_fused_div_exp_log_mean_mul_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_log_mean_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_exp_log_mean_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp15 = tl.load(in_ptr0 + (192 + x0), xmask) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = -tmp3 tmp6 = tmp5 * tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = -tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = tl_math.exp(tmp11) tmp13 = -tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = -tmp17 tmp19 = tmp14 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = -tmp21 tmp23 = tl_math.log(tmp22) tmp24 = 1.0 tmp25 = tmp23 * tmp24 tl.store(out_ptr0 + (x0), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, exp, neg, mean, neg_1, log, truediv], Original ATen: [aten.mul, aten.exp, aten.neg, aten.mean, aten.log, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_exp_log_mean_mul_neg_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import Tensor from typing import Callable from typing import Union from abc import ABC def _format_float(value: 'float') ->str: """ >>> _format_float(1) '1' >>> _format_float(1.0) '1.' >>> _format_float(1e-4) '1.0000e-04' """ tensor = torch.tensor([value]) return torch._tensor_str._Formatter(tensor).format(value) def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def exp_utility(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Applies an exponential utility function. An exponential utility function is defined as: .. math:: u(x) = -\\exp(-a x) \\,. Args: input (torch.Tensor): The input tensor. a (float, default=1.0): The risk aversion coefficient of the exponential utility. Returns: torch.Tensor """ return -(-a * input).exp() def entropic_risk_measure(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Returns the entropic risk measure. See :class:`pfhedge.nn.EntropicRiskMeasure` for details. """ return (-exp_utility(input, a=a).mean(0)).log() / a class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class EntropicRiskMeasure(HedgeLoss): """Creates a criterion that measures the entropic risk measure. The entropic risk measure of the profit-loss distribution :math:`\\text{pnl}` is given by: .. math:: \\text{loss}(\\text{pnl}) = \\frac{1}{a} \\log(- \\mathbf{E}[u(\\text{pnl})]) \\,, \\quad u(x) = -\\exp(-a x) \\,. .. seealso:: - :func:`pfhedge.nn.functional.exp_utility`: The corresponding utility function. Args: a (float, default=1.0): Risk aversion coefficient of the exponential utility. This parameter should be positive. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import EntropicRiskMeasure >>> >>> loss = EntropicRiskMeasure() >>> input = -torch.arange(4.0) >>> loss(input) tensor(2.0539) >>> loss.cash(input) tensor(-2.0539) """ def __init__(self, a: 'float'=1.0): if not a > 0: raise ValueError('Risk aversion coefficient should be positive.') super().__init__() self.a = a def extra_repr(self) ->str: return 'a=' + _format_float(self.a) if self.a != 1 else '' def forward(self, input: 'Tensor') ->Tensor: return entropic_risk_measure(input, a=self.a) def cash(self, input: 'Tensor') ->Tensor: return -self(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module from torch import Tensor from typing import Callable from typing import Union from abc import ABC assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_exp_log_mean_mul_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr0 + (64 + x0), xmask) tmp10 = tl.load(in_ptr0 + (128 + x0), xmask) tmp15 = tl.load(in_ptr0 + (192 + x0), xmask) tmp1 = -1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.exp(tmp2) tmp4 = -tmp3 tmp6 = tmp5 * tmp1 tmp7 = tl_math.exp(tmp6) tmp8 = -tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 * tmp1 tmp12 = tl_math.exp(tmp11) tmp13 = -tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 * tmp1 tmp17 = tl_math.exp(tmp16) tmp18 = -tmp17 tmp19 = tmp14 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = -tmp21 tmp23 = tl_math.log(tmp22) tmp24 = 1.0 tmp25 = tmp23 * tmp24 tl.store(out_ptr0 + x0, tmp25, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_exp_log_mean_mul_neg_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, def _format_float(value: 'float') ->str: """ >>> _format_float(1) '1' >>> _format_float(1.0) '1.' >>> _format_float(1e-4) '1.0000e-04' """ tensor = torch.tensor([value]) return torch._tensor_str._Formatter(tensor).format(value) def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def exp_utility(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Applies an exponential utility function. An exponential utility function is defined as: .. math:: u(x) = -\\exp(-a x) \\,. Args: input (torch.Tensor): The input tensor. a (float, default=1.0): The risk aversion coefficient of the exponential utility. Returns: torch.Tensor """ return -(-a * input).exp() def entropic_risk_measure(input: 'Tensor', a: 'float'=1.0) ->Tensor: """Returns the entropic risk measure. See :class:`pfhedge.nn.EntropicRiskMeasure` for details. """ return (-exp_utility(input, a=a).mean(0)).log() / a class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class EntropicRiskMeasureNew(HedgeLoss): """Creates a criterion that measures the entropic risk measure. The entropic risk measure of the profit-loss distribution :math:`\\text{pnl}` is given by: .. math:: \\text{loss}(\\text{pnl}) = \\frac{1}{a} \\log(- \\mathbf{E}[u(\\text{pnl})]) \\,, \\quad u(x) = -\\exp(-a x) \\,. .. seealso:: - :func:`pfhedge.nn.functional.exp_utility`: The corresponding utility function. Args: a (float, default=1.0): Risk aversion coefficient of the exponential utility. This parameter should be positive. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import EntropicRiskMeasure >>> >>> loss = EntropicRiskMeasure() >>> input = -torch.arange(4.0) >>> loss(input) tensor(2.0539) >>> loss.cash(input) tensor(-2.0539) """ def __init__(self, a: 'float'=1.0): if not a > 0: raise ValueError('Risk aversion coefficient should be positive.') super().__init__() self.a = a def extra_repr(self) ->str: return 'a=' + _format_float(self.a) if self.a != 1 else '' def cash(self, input: 'Tensor') ->Tensor: return -self(input) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/pfhedge
EntropicRiskMeasure
false
16,686
[ "MIT" ]
81
4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
https://github.com/vishalbelsare/pfhedge/tree/4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
VectorQuantizer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/x6/cx6vj6jd2qhcbwnwwajpsdipepno6iepsyrvmepfo457t522sl26.py # Topologically Sorted Source Nodes: [latents, flat_latents], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # flat_latents => view # latents => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [-1, 4]), kwargs = {}) triton_poi_fused_clone_view_0 = async_compile.triton('triton_poi_fused_clone_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((16*x1) + (64*(y0 // 16)) + (y0 % 16)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oh/coh3kyu6rghphyqtfflzqlsbjfinc4c7cmryrm7sbhmrnnvqqu6w.py # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] # Source node to ATen node mapping: # add => add # dist => sub # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) triton_poi_fused_add_mul_pow_sub_sum_1 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3l/c3ltycq3kz4scgm57x763xs5lwirtcz6gwjv67cofz752mk5hx4y.py # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] # Source node to ATen node mapping: # argmin => argmin # Graph fragment: # %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%sub, 1), kwargs = {}) triton_poi_fused_argmin_2 = async_compile.triton('triton_poi_fused_argmin_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mp/cmpgj6ikboi2l4ugbuk2ph25t6rrg25op2mnyozbehtmww4v7gj2.py # Topologically Sorted Source Nodes: [one_hot, encoding_one_hot, quantized_latents], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.view] # Source node to ATen node mapping: # encoding_one_hot => convert_element_type_1 # one_hot => convert_element_type, eq, iota # quantized_latents => view_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_1, %iota), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.int64), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type, torch.float32), kwargs = {}) # %view_1 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%convert_element_type_1, [64, 4]), kwargs = {}) triton_poi_fused__to_copy_arange_eq_view_3 = async_compile.triton('triton_poi_fused__to_copy_arange_eq_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_eq_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_eq_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tmp3.to(tl.float32) tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q2/cq24hmqtvfblft2slktho4yrwgljb7yc26un25ohqnsjv4htdt4u.py # Topologically Sorted Source Nodes: [latents, commitment_loss, mul_1, vq_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] # Source node to ATen node mapping: # commitment_loss => mean, pow_3, sub_1 # latents => clone # mul_1 => mul_1 # vq_loss => add_1 # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %clone), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.25), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mean), kwargs = {}) triton_per_fused_add_clone_mse_loss_mul_4 = async_compile.triton('triton_per_fused_add_clone_mse_loss_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clone_mse_loss_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = (rindex // 4) % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr1 + (r1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp10 + tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hw/chwygzi5nyxhprs3zdxgfmgjft5cozvbp3ndu6tgtrshdfvktxae.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + (16*y3)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hv/chvjnf47pob5gcg7s6gozmhfrxafd765t6zvezusswetka32p7n6.py # Topologically Sorted Source Nodes: [latents, commitment_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] # Source node to ATen node mapping: # commitment_loss => sub_1 # latents => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %clone), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.0078125), kwargs = {}) triton_poi_fused_clone_mse_loss_mse_loss_backward_6 = async_compile.triton('triton_poi_fused_clone_mse_loss_mse_loss_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mse_loss_mse_loss_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_6(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [latents, flat_latents], Original ATen: [aten.clone, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_clone_view_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] triton_poi_fused_add_mul_pow_sub_sum_1.run(buf2, buf0, primals_2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] triton_poi_fused_argmin_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [one_hot, encoding_one_hot, quantized_latents], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.view] triton_poi_fused__to_copy_arange_eq_view_3.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [quantized_latents], Original ATen: [aten.mm] extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf9 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [latents, commitment_loss, mul_1, vq_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] triton_per_fused_add_clone_mse_loss_mul_4.run(buf9, buf5, primals_1, 1, 256, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(primals_1, buf5, buf7, 16, 16, grid=grid(16, 16), stream=stream0) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [latents, commitment_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] triton_poi_fused_clone_mse_loss_mse_loss_backward_6.run(buf8, primals_1, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 return (buf7, buf9, buf8, reinterpret_tensor(buf4, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn import torch.nn.functional as F class VectorQuantizer(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizer, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def get_codebook_indices(self, latents: 'Tensor') ->Tensor: flat_latents = latents.view(-1, self.D) dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) return encoding_inds def forward(self, latents: 'Tensor') ->Tensor: latents = latents.permute(0, 2, 3, 1).contiguous() latents_shape = latents.shape encoding_inds = self.get_codebook_indices(latents) encoding_one_hot = torch.nn.functional.one_hot(encoding_inds, num_classes=self.K).float() quantized_latents = torch.matmul(encoding_one_hot, self.embedding. weight) quantized_latents = quantized_latents.view(latents_shape) commitment_loss = F.mse_loss(quantized_latents.detach(), latents) embedding_loss = F.mse_loss(quantized_latents, latents.detach()) vq_loss = commitment_loss * self.beta + embedding_loss quantized_latents = latents + (quantized_latents - latents).detach() return quantized_latents.permute(0, 3, 1, 2).contiguous(), vq_loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import Tensor from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (y0 // 16) + y0 % 16), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused__to_copy_arange_eq_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tmp3.to(tl.float32) tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = rindex // 4 % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr1 + (r1 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp10 + tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) @triton.jit def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + 16 * y3), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_6(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_view_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4 ), 0), out=buf1) buf2 = buf1 del buf1 triton_poi_fused_add_mul_pow_sub_sum_1[grid(256)](buf2, buf0, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_argmin_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused__to_copy_arange_eq_view_3[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 buf5 = buf0 del buf0 extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf9 = buf6 del buf6 triton_per_fused_add_clone_mse_loss_mul_4[grid(1)](buf9, buf5, primals_1, 1, 256, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 16)](primals_1, buf5, buf7, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_clone_mse_loss_mse_loss_backward_6[grid(64, 4)](buf8, primals_1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 return buf7, buf9, buf8, reinterpret_tensor(buf4, (4, 64), (1, 4), 0) class VectorQuantizerNew(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizerNew, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def get_codebook_indices(self, latents: 'Tensor') ->Tensor: flat_latents = latents.view(-1, self.D) dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) return encoding_inds def forward(self, input_0): primals_2 = self.embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
vipavlovic/pyprobml
VectorQuantizer
false
16,687
[ "MIT" ]
4,895
59a2edc682d0163955db5e2f27491ad772b60141
https://github.com/vipavlovic/pyprobml/tree/59a2edc682d0163955db5e2f27491ad772b60141
Warp
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ip/ciphktz7r6maftyty3k7lvyxrzyoxmr2cm64z2e5h5nsrp7z3viz.py # Topologically Sorted Source Nodes: [grid], Original ATen: [aten.stack] # Source node to ATen node mapping: # grid => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_6, %unsqueeze_7], -1), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 4 x2 = (xindex // 8) x3 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 0.6666666666666666 tmp10 = tmp6 * tmp9 tmp11 = -1.0 tmp12 = tmp10 + tmp11 tmp13 = 3 + ((-1)*x1) tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.0 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tmp16 * tmp18 tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = tmp0 >= tmp3 tmp23 = tl.full([1], 2, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp5 >= tmp1 tmp26 = tmp5 < tmp3 tmp27 = tmp26 & tmp22 tmp28 = tl.load(in_ptr0 + (x2), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tmp5 >= tmp3 tmp30 = tmp5 < tmp23 tmp31 = tmp29 & tmp30 tmp32 = tmp31 & tmp22 tmp33 = tl.load(in_ptr0 + (x2), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tmp5 >= tmp23 tmp35 = tl.full([1], 3, tl.int64) tmp36 = tmp5 < tmp35 tmp37 = tmp34 & tmp36 tmp38 = tmp37 & tmp22 tmp39 = tl.load(in_ptr0 + (x2), tmp38 & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tmp5 >= tmp35 tmp41 = tl.full([1], 4, tl.int64) tmp42 = tmp5 < tmp41 tmp43 = tmp40 & tmp22 tmp44 = tl.load(in_ptr0 + (x2), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp45 = tl.where(tmp37, tmp39, tmp44) tmp46 = tl.where(tmp31, tmp33, tmp45) tmp47 = tl.where(tmp26, tmp28, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp22, tmp47, tmp48) tmp50 = tl.where(tmp4, tmp21, tmp49) tl.store(out_ptr0 + (x3), tmp50, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/is/cisrqzvop2qq4acfte26goiyf5wuyunfh2lpx7kuhv3muv3kofy5.py # Topologically Sorted Source Nodes: [x_warped], Original ATen: [aten.grid_sampler_2d] # Source node to ATen node mapping: # x_warped => abs_1, abs_2, add_1, add_2, add_3, add_4, add_5, add_6, add_7, add_8, add_9, bitwise_and, bitwise_and_1, clamp_max, clamp_max_1, clamp_min, clamp_min_1, convert_element_type_10, convert_element_type_11, convert_element_type_2, convert_element_type_3, convert_element_type_4, convert_element_type_5, convert_element_type_6, convert_element_type_7, convert_element_type_9, div, div_1, eq, eq_1, floor, floor_1, floor_2, floor_3, fmod, fmod_1, full_default_1, full_default_10, full_default_11, full_default_12, full_default_2, full_default_3, full_default_4, full_default_5, full_default_6, full_default_8, full_default_9, ge, ge_1, ge_2, ge_3, ge_4, ge_5, ge_6, ge_7, index, index_1, index_2, index_3, logical_and, logical_and_1, logical_and_10, logical_and_11, logical_and_2, logical_and_3, logical_and_4, logical_and_5, logical_and_6, logical_and_7, logical_and_8, logical_and_9, lt_1, lt_2, lt_3, lt_4, lt_5, lt_6, lt_7, lt_8, mul_10, mul_11, mul_12, mul_3, mul_4, mul_5, mul_6, mul_7, mul_8, mul_9, sub_10, sub_11, sub_12, sub_13, sub_2, sub_3, sub_4, sub_5, sub_6, sub_7, sub_8, sub_9, where_1, where_10, where_11, where_12, where_13, where_14, where_2, where_3, where_4, where_5, where_6, where_7, where_8 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, 1.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, 0.0), kwargs = {}) # %abs_1 : [num_users=2] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, 3.0), kwargs = {}) # %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div,), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%floor, torch.int8), kwargs = {}) # %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Scalar](args = (%convert_element_type_2, 1), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%bitwise_and, 0), kwargs = {}) # %fmod : [num_users=2] = call_function[target=torch.ops.aten.fmod.Scalar](args = (%abs_1, 3.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%fmod, 0.0), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (3.0, %fmod), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %add_2, %sub_3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%where_1, 0), kwargs = {}) # %clamp_max : [num_users=5] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 3), kwargs = {}) # %floor_2 : [num_users=9] = call_function[target=torch.ops.aten.floor.default](args = (%clamp_max,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%floor_2, 0), kwargs = {}) # %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%floor_2, 4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, 1.5), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 1.5), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, 0.0), kwargs = {}) # %abs_2 : [num_users=2] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_2, 3.0), kwargs = {}) # %floor_1 : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div_1,), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%floor_1, torch.int8), kwargs = {}) # %bitwise_and_1 : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Scalar](args = (%convert_element_type_3, 1), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%bitwise_and_1, 0), kwargs = {}) # %fmod_1 : [num_users=2] = call_function[target=torch.ops.aten.fmod.Scalar](args = (%abs_2, 3.0), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%fmod_1, 0.0), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (3.0, %fmod_1), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %add_4, %sub_5), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%where_2, 0), kwargs = {}) # %clamp_max_1 : [num_users=5] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 3), kwargs = {}) # %floor_3 : [num_users=9] = call_function[target=torch.ops.aten.floor.default](args = (%clamp_max_1,), kwargs = {}) # %ge_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%floor_3, 0), kwargs = {}) # %lt_2 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%floor_3, 4), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_1, %lt_2), kwargs = {}) # %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_1, %logical_and), kwargs = {}) # %logical_and_2 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %logical_and_1), kwargs = {}) # %convert_element_type_5 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%floor_3, torch.int64), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %convert_element_type_5, %full_default_2), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%floor_2, torch.int64), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %convert_element_type_4, %full_default_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_1, %view_2, %where_4, %where_3]), kwargs = {}) # %add_5 : [num_users=8] = call_function[target=torch.ops.aten.add.Tensor](args = (%floor_2, 1), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %clamp_max), kwargs = {}) # %add_6 : [num_users=8] = call_function[target=torch.ops.aten.add.Tensor](args = (%floor_3, 1), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %clamp_max_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %sub_7), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_5 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_2, %mul_5, %full_default_3), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %where_5), kwargs = {}) # %ge_2 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_5, 0), kwargs = {}) # %lt_3 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%add_5, 4), kwargs = {}) # %ge_3 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%floor_3, 0), kwargs = {}) # %lt_4 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%floor_3, 4), kwargs = {}) # %logical_and_3 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_3, %lt_4), kwargs = {}) # %logical_and_4 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_3, %logical_and_3), kwargs = {}) # %logical_and_5 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_2, %logical_and_4), kwargs = {}) # %convert_element_type_7 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%floor_3, torch.int64), kwargs = {}) # %full_default_5 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_7 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_5, %convert_element_type_7, %full_default_5), kwargs = {}) # %convert_element_type_6 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_5, torch.int64), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_5, %convert_element_type_6, %full_default_4), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_1, %view_2, %where_7, %where_6]), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, %floor_2), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %clamp_max_1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %sub_9), kwargs = {}) # %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_8 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_5, %mul_6, %full_default_6), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index_1, %where_8), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %mul_10), kwargs = {}) # %ge_4 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%floor_2, 0), kwargs = {}) # %lt_5 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%floor_2, 4), kwargs = {}) # %ge_5 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_6, 0), kwargs = {}) # %lt_6 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%add_6, 4), kwargs = {}) # %logical_and_6 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_5, %lt_6), kwargs = {}) # %logical_and_7 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_5, %logical_and_6), kwargs = {}) # %logical_and_8 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_4, %logical_and_7), kwargs = {}) # %convert_element_type_9 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_6, torch.int64), kwargs = {}) # %full_default_8 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_10 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_8, %convert_element_type_9, %full_default_8), kwargs = {}) # %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_1, %view_2, %where_10, %where_9]), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %clamp_max), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_1, %floor_3), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %sub_11), kwargs = {}) # %full_default_9 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_11 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_8, %mul_7, %full_default_9), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index_2, %where_11), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_11), kwargs = {}) # %ge_6 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_5, 0), kwargs = {}) # %lt_7 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%add_5, 4), kwargs = {}) # %ge_7 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%add_6, 0), kwargs = {}) # %lt_8 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%add_6, 4), kwargs = {}) # %logical_and_9 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_7, %lt_8), kwargs = {}) # %logical_and_10 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%lt_7, %logical_and_9), kwargs = {}) # %logical_and_11 : [num_users=3] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge_6, %logical_and_10), kwargs = {}) # %convert_element_type_11 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_6, torch.int64), kwargs = {}) # %full_default_11 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_13 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_11, %convert_element_type_11, %full_default_11), kwargs = {}) # %convert_element_type_10 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_5, torch.int64), kwargs = {}) # %full_default_10 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_11, %convert_element_type_10, %full_default_10), kwargs = {}) # %index_3 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [%view_1, %view_2, %where_13, %where_12]), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, %floor_2), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max_1, %floor_3), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %sub_13), kwargs = {}) # %full_default_12 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_14 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%logical_and_11, %mul_8, %full_default_12), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index_3, %where_14), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_12), kwargs = {}) triton_poi_fused_grid_sampler_2d_1 = async_compile.triton('triton_poi_fused_grid_sampler_2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_grid_sampler_2d_1', 'mutated_arg_names': ['in_out_ptr2'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_grid_sampler_2d_1(in_out_ptr2, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex x4 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x2)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + ((2*x0) + (32*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tmp4 = 0.0 tmp5 = tmp3 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = 0.3333333333333333 tmp8 = tmp6 * tmp7 tmp9 = libdevice.floor(tmp8) tmp10 = tmp9.to(tl.int8) tmp11 = tl.full([1], 1, tl.int8) tmp12 = tmp10 & tmp11 tmp13 = tl.full([1], 0, tl.int8) tmp14 = tmp12 == tmp13 tmp15 = 3.0 tmp16 = libdevice.fmod(tmp6, tmp15) tmp17 = tmp16 + tmp4 tmp18 = tmp15 - tmp16 tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = triton_helpers.maximum(tmp19, tmp4) tmp21 = triton_helpers.minimum(tmp20, tmp15) tmp22 = libdevice.floor(tmp21) tmp23 = 1.0 tmp24 = tmp22 + tmp23 tmp25 = tmp24 >= tmp4 tmp26 = 4.0 tmp27 = tmp24 < tmp26 tmp28 = tmp25 & tmp27 tmp30 = tmp29 * tmp1 tmp31 = tmp30 + tmp1 tmp32 = tmp31 - tmp4 tmp33 = tl_math.abs(tmp32) tmp34 = tmp33 * tmp7 tmp35 = libdevice.floor(tmp34) tmp36 = tmp35.to(tl.int8) tmp37 = tmp36 & tmp11 tmp38 = tmp37 == tmp13 tmp39 = libdevice.fmod(tmp33, tmp15) tmp40 = tmp39 + tmp4 tmp41 = tmp15 - tmp39 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = triton_helpers.maximum(tmp42, tmp4) tmp44 = triton_helpers.minimum(tmp43, tmp15) tmp45 = libdevice.floor(tmp44) tmp46 = tmp45 >= tmp4 tmp47 = tmp45 < tmp26 tmp48 = tmp47 & tmp28 tmp49 = tmp46 & tmp48 tmp50 = tmp45 + tmp23 tmp51 = tmp50 < tmp26 tmp52 = tmp51 & tmp28 tmp53 = tmp22 >= tmp4 tmp54 = tmp22 < tmp26 tmp55 = tmp53 & tmp54 tmp56 = tmp51 & tmp55 tmp57 = tmp47 & tmp55 tmp58 = tmp44 - tmp45 tmp59 = tmp24 - tmp21 tmp60 = tmp58 * tmp59 tmp61 = tmp50 >= tmp4 tmp62 = tmp61 & tmp56 tmp63 = tl.where(tmp62, tmp60, tmp4) tmp64 = tmp50 - tmp44 tmp65 = tmp21 - tmp22 tmp66 = tmp64 * tmp65 tmp67 = tmp58 * tmp65 tmp68 = tmp61 & tmp52 tmp69 = tl.where(tmp68, tmp67, tmp4) tmp70 = tmp64 * tmp59 tmp71 = tmp46 & tmp57 tmp72 = tmp22.to(tl.int64) tmp73 = tl.full([1], 0, tl.int64) tmp74 = tl.where(tmp71, tmp72, tmp73) tmp75 = tmp45.to(tl.int64) tmp76 = tl.where(tmp71, tmp75, tmp73) tmp77 = tl.full([XBLOCK], 4, tl.int32) tmp78 = tmp74 + tmp77 tmp79 = tmp74 < 0 tmp80 = tl.where(tmp79, tmp78, tmp74) tl.device_assert(((0 <= tmp80) & (tmp80 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp80 < 4") tmp82 = tmp76 + tmp77 tmp83 = tmp76 < 0 tmp84 = tl.where(tmp83, tmp82, tmp76) tl.device_assert(((0 <= tmp84) & (tmp84 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp84 < 4") tmp86 = tl.load(in_ptr1 + (tmp84 + (4*tmp80) + (16*x4)), xmask, eviction_policy='evict_last') tmp87 = tl.where(tmp71, tmp70, tmp4) tmp88 = tmp86 * tmp87 tmp89 = tl.where(tmp62, tmp72, tmp73) tmp90 = tmp50.to(tl.int64) tmp91 = tl.where(tmp62, tmp90, tmp73) tmp92 = tmp24.to(tl.int64) tmp93 = tl.where(tmp68, tmp92, tmp73) tmp94 = tl.where(tmp68, tmp90, tmp73) tmp95 = tl.where(tmp49, tmp92, tmp73) tmp96 = tmp95 + tmp77 tmp97 = tmp95 < 0 tmp98 = tl.where(tmp97, tmp96, tmp95) tl.device_assert(((0 <= tmp98) & (tmp98 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp98 < 4") tmp100 = tl.where(tmp49, tmp75, tmp73) tmp101 = tmp100 + tmp77 tmp102 = tmp100 < 0 tmp103 = tl.where(tmp102, tmp101, tmp100) tl.device_assert(((0 <= tmp103) & (tmp103 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp103 < 4") tmp105 = tl.load(in_ptr1 + (tmp103 + (4*tmp98) + (16*x4)), xmask, eviction_policy='evict_last') tmp106 = tmp89 + tmp77 tmp107 = tmp89 < 0 tmp108 = tl.where(tmp107, tmp106, tmp89) tl.device_assert(((0 <= tmp108) & (tmp108 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp108 < 4") tmp110 = tmp91 + tmp77 tmp111 = tmp91 < 0 tmp112 = tl.where(tmp111, tmp110, tmp91) tl.device_assert(((0 <= tmp112) & (tmp112 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp112 < 4") tmp114 = tl.load(in_ptr1 + (tmp112 + (4*tmp108) + (16*x4)), xmask, eviction_policy='evict_last') tmp115 = tmp114 * tmp63 tmp116 = tmp88 + tmp115 tmp117 = tl.where(tmp49, tmp66, tmp4) tmp118 = tmp105 * tmp117 tmp119 = tmp116 + tmp118 tmp120 = tmp93 + tmp77 tmp121 = tmp93 < 0 tmp122 = tl.where(tmp121, tmp120, tmp93) tl.device_assert(((0 <= tmp122) & (tmp122 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp122 < 4") tmp124 = tmp94 + tmp77 tmp125 = tmp94 < 0 tmp126 = tl.where(tmp125, tmp124, tmp94) tl.device_assert(((0 <= tmp126) & (tmp126 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp126 < 4") tmp128 = tl.load(in_ptr1 + (tmp126 + (4*tmp122) + (16*x4)), xmask, eviction_policy='evict_last') tmp129 = tmp128 * tmp69 tmp130 = tmp119 + tmp129 tl.store(in_out_ptr2 + (x3), tmp130, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [grid], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(arg1_1, buf0, 128, grid=grid(128), stream=stream0) del arg1_1 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = buf9; del buf9 # reuse buf22 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_warped], Original ATen: [aten.grid_sampler_2d] triton_poi_fused_grid_sampler_2d_1.run(buf22, buf0, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 del buf0 return (buf22, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Warp(torch.nn.Module): """Custom warping layer.""" def __init__(self, mode='bilinear', padding_mode='reflection'): super().__init__() self.mode = mode self.padding_mode = padding_mode def forward(self, x, tform): """Warp the tensor `x` with `tform` along the time dimension. Parameters ---------- x : torch.Tensor Tensor of shape `(n_samples, n_channels, lookback, n_assets)`. tform : torch.Tensor Tensor of shape `(n_samples, lookback)` or `(n_samples, lookback, n_assets)`. Note that in the first case the same transformation is going to be used over all assets. To prevent folding the transformation should be increasing along the time dimension. It should range from -1 (beginning of the series) to 1 (end of the series). Returns ------- x_warped : torch.Tensor Warped version of input `x` with transformation `tform`. The shape is the same as the input shape - `(n_samples, n_channels, lookback, n_assets)`. """ n_samples, _n_channels, lookback, n_assets = x.shape dtype, device = x.dtype, x.device if tform.ndim == 3: ty = tform elif tform.ndim == 2: ty = torch.stack(n_assets * [tform], dim=-1) else: raise ValueError( 'The tform tensor needs to be either 2 or 3 dimensional.') tx = torch.ones(n_samples, lookback, n_assets, dtype=dtype, device= device) tx *= torch.linspace(-1, 1, steps=n_assets, device=device, dtype=dtype )[None, None, :] grid = torch.stack([tx, ty], dim=-1) x_warped = nn.functional.grid_sample(x, grid, mode=self.mode, padding_mode=self.padding_mode, align_corners=True) return x_warped def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 4 x2 = xindex // 8 x3 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp6 = tmp5.to(tl.float32) tmp7 = 2.0 tmp8 = tmp6 < tmp7 tmp9 = 0.6666666666666666 tmp10 = tmp6 * tmp9 tmp11 = -1.0 tmp12 = tmp10 + tmp11 tmp13 = 3 + -1 * x1 tmp14 = tmp13.to(tl.float32) tmp15 = tmp14 * tmp9 tmp16 = 1.0 tmp17 = tmp16 - tmp15 tmp18 = tl.where(tmp8, tmp12, tmp17) tmp19 = tmp16 * tmp18 tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = tmp0 >= tmp3 tmp23 = tl.full([1], 2, tl.int64) tmp26 = tmp5 < tmp3 tmp27 = tmp26 & tmp22 tmp28 = tl.load(in_ptr0 + x2, tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp29 = tmp5 >= tmp3 tmp30 = tmp5 < tmp23 tmp31 = tmp29 & tmp30 tmp32 = tmp31 & tmp22 tmp33 = tl.load(in_ptr0 + x2, tmp32 & xmask, eviction_policy= 'evict_last', other=0.0) tmp34 = tmp5 >= tmp23 tmp35 = tl.full([1], 3, tl.int64) tmp36 = tmp5 < tmp35 tmp37 = tmp34 & tmp36 tmp38 = tmp37 & tmp22 tmp39 = tl.load(in_ptr0 + x2, tmp38 & xmask, eviction_policy= 'evict_last', other=0.0) tmp40 = tmp5 >= tmp35 tl.full([1], 4, tl.int64) tmp43 = tmp40 & tmp22 tmp44 = tl.load(in_ptr0 + x2, tmp43 & xmask, eviction_policy= 'evict_last', other=0.0) tmp45 = tl.where(tmp37, tmp39, tmp44) tmp46 = tl.where(tmp31, tmp33, tmp45) tmp47 = tl.where(tmp26, tmp28, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp22, tmp47, tmp48) tmp50 = tl.where(tmp4, tmp21, tmp49) tl.store(out_ptr0 + x3, tmp50, xmask) @triton.jit def triton_poi_fused_grid_sampler_2d_1(in_out_ptr2, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex x4 = xindex // 16 tmp0 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x2), xmask, eviction_policy ='evict_last') tmp29 = tl.load(in_ptr0 + (2 * x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tmp4 = 0.0 tmp5 = tmp3 - tmp4 tmp6 = tl_math.abs(tmp5) tmp7 = 0.3333333333333333 tmp8 = tmp6 * tmp7 tmp9 = libdevice.floor(tmp8) tmp10 = tmp9.to(tl.int8) tmp11 = tl.full([1], 1, tl.int8) tmp12 = tmp10 & tmp11 tmp13 = tl.full([1], 0, tl.int8) tmp14 = tmp12 == tmp13 tmp15 = 3.0 tmp16 = libdevice.fmod(tmp6, tmp15) tmp17 = tmp16 + tmp4 tmp18 = tmp15 - tmp16 tmp19 = tl.where(tmp14, tmp17, tmp18) tmp20 = triton_helpers.maximum(tmp19, tmp4) tmp21 = triton_helpers.minimum(tmp20, tmp15) tmp22 = libdevice.floor(tmp21) tmp23 = 1.0 tmp24 = tmp22 + tmp23 tmp25 = tmp24 >= tmp4 tmp26 = 4.0 tmp27 = tmp24 < tmp26 tmp28 = tmp25 & tmp27 tmp30 = tmp29 * tmp1 tmp31 = tmp30 + tmp1 tmp32 = tmp31 - tmp4 tmp33 = tl_math.abs(tmp32) tmp34 = tmp33 * tmp7 tmp35 = libdevice.floor(tmp34) tmp36 = tmp35.to(tl.int8) tmp37 = tmp36 & tmp11 tmp38 = tmp37 == tmp13 tmp39 = libdevice.fmod(tmp33, tmp15) tmp40 = tmp39 + tmp4 tmp41 = tmp15 - tmp39 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = triton_helpers.maximum(tmp42, tmp4) tmp44 = triton_helpers.minimum(tmp43, tmp15) tmp45 = libdevice.floor(tmp44) tmp46 = tmp45 >= tmp4 tmp47 = tmp45 < tmp26 tmp48 = tmp47 & tmp28 tmp49 = tmp46 & tmp48 tmp50 = tmp45 + tmp23 tmp51 = tmp50 < tmp26 tmp52 = tmp51 & tmp28 tmp53 = tmp22 >= tmp4 tmp54 = tmp22 < tmp26 tmp55 = tmp53 & tmp54 tmp56 = tmp51 & tmp55 tmp57 = tmp47 & tmp55 tmp58 = tmp44 - tmp45 tmp59 = tmp24 - tmp21 tmp60 = tmp58 * tmp59 tmp61 = tmp50 >= tmp4 tmp62 = tmp61 & tmp56 tmp63 = tl.where(tmp62, tmp60, tmp4) tmp64 = tmp50 - tmp44 tmp65 = tmp21 - tmp22 tmp66 = tmp64 * tmp65 tmp67 = tmp58 * tmp65 tmp68 = tmp61 & tmp52 tmp69 = tl.where(tmp68, tmp67, tmp4) tmp70 = tmp64 * tmp59 tmp71 = tmp46 & tmp57 tmp72 = tmp22.to(tl.int64) tmp73 = tl.full([1], 0, tl.int64) tmp74 = tl.where(tmp71, tmp72, tmp73) tmp75 = tmp45.to(tl.int64) tmp76 = tl.where(tmp71, tmp75, tmp73) tmp77 = tl.full([XBLOCK], 4, tl.int32) tmp78 = tmp74 + tmp77 tmp79 = tmp74 < 0 tmp80 = tl.where(tmp79, tmp78, tmp74) tl.device_assert((0 <= tmp80) & (tmp80 < 4) | ~xmask, 'index out of bounds: 0 <= tmp80 < 4') tmp82 = tmp76 + tmp77 tmp83 = tmp76 < 0 tmp84 = tl.where(tmp83, tmp82, tmp76) tl.device_assert((0 <= tmp84) & (tmp84 < 4) | ~xmask, 'index out of bounds: 0 <= tmp84 < 4') tmp86 = tl.load(in_ptr1 + (tmp84 + 4 * tmp80 + 16 * x4), xmask, eviction_policy='evict_last') tmp87 = tl.where(tmp71, tmp70, tmp4) tmp88 = tmp86 * tmp87 tmp89 = tl.where(tmp62, tmp72, tmp73) tmp90 = tmp50.to(tl.int64) tmp91 = tl.where(tmp62, tmp90, tmp73) tmp92 = tmp24.to(tl.int64) tmp93 = tl.where(tmp68, tmp92, tmp73) tmp94 = tl.where(tmp68, tmp90, tmp73) tmp95 = tl.where(tmp49, tmp92, tmp73) tmp96 = tmp95 + tmp77 tmp97 = tmp95 < 0 tmp98 = tl.where(tmp97, tmp96, tmp95) tl.device_assert((0 <= tmp98) & (tmp98 < 4) | ~xmask, 'index out of bounds: 0 <= tmp98 < 4') tmp100 = tl.where(tmp49, tmp75, tmp73) tmp101 = tmp100 + tmp77 tmp102 = tmp100 < 0 tmp103 = tl.where(tmp102, tmp101, tmp100) tl.device_assert((0 <= tmp103) & (tmp103 < 4) | ~xmask, 'index out of bounds: 0 <= tmp103 < 4') tmp105 = tl.load(in_ptr1 + (tmp103 + 4 * tmp98 + 16 * x4), xmask, eviction_policy='evict_last') tmp106 = tmp89 + tmp77 tmp107 = tmp89 < 0 tmp108 = tl.where(tmp107, tmp106, tmp89) tl.device_assert((0 <= tmp108) & (tmp108 < 4) | ~xmask, 'index out of bounds: 0 <= tmp108 < 4') tmp110 = tmp91 + tmp77 tmp111 = tmp91 < 0 tmp112 = tl.where(tmp111, tmp110, tmp91) tl.device_assert((0 <= tmp112) & (tmp112 < 4) | ~xmask, 'index out of bounds: 0 <= tmp112 < 4') tmp114 = tl.load(in_ptr1 + (tmp112 + 4 * tmp108 + 16 * x4), xmask, eviction_policy='evict_last') tmp115 = tmp114 * tmp63 tmp116 = tmp88 + tmp115 tmp117 = tl.where(tmp49, tmp66, tmp4) tmp118 = tmp105 * tmp117 tmp119 = tmp116 + tmp118 tmp120 = tmp93 + tmp77 tmp121 = tmp93 < 0 tmp122 = tl.where(tmp121, tmp120, tmp93) tl.device_assert((0 <= tmp122) & (tmp122 < 4) | ~xmask, 'index out of bounds: 0 <= tmp122 < 4') tmp124 = tmp94 + tmp77 tmp125 = tmp94 < 0 tmp126 = tl.where(tmp125, tmp124, tmp94) tl.device_assert((0 <= tmp126) & (tmp126 < 4) | ~xmask, 'index out of bounds: 0 <= tmp126 < 4') tmp128 = tl.load(in_ptr1 + (tmp126 + 4 * tmp122 + 16 * x4), xmask, eviction_policy='evict_last') tmp129 = tmp128 * tmp69 tmp130 = tmp119 + tmp129 tl.store(in_out_ptr2 + x3, tmp130, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(128)](arg1_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = buf9 del buf9 buf22 = buf10 del buf10 triton_poi_fused_grid_sampler_2d_1[grid(256)](buf22, buf0, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf0 return buf22, class WarpNew(torch.nn.Module): """Custom warping layer.""" def __init__(self, mode='bilinear', padding_mode='reflection'): super().__init__() self.mode = mode self.padding_mode = padding_mode def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
vishalbelsare/deepdow
Warp
false
16,688
[ "Apache-2.0" ]
511
cbb99347fba9a447d4fcae64fe5137c203643e44
https://github.com/vishalbelsare/deepdow/tree/cbb99347fba9a447d4fcae64fe5137c203643e44
BertLayerNormNoVar
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ke/ckesoupia4od4yj57n7ovmr2wav7eopyyngdjidks2sqhi3s4yx5.py # Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # u => mean # x => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mean_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp14 = tmp12 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [u, x, mul, add], Original ATen: [aten.mean, aten.sub, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BertLayerNormNoVar(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNormNoVar, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) x = x - u return self.weight * x + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp14 = tmp12 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class BertLayerNormNoVarNew(nn.Module): def __init__(self, hidden_size, eps=1e-12): super(BertLayerNormNoVarNew, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
vtu81/auto_LiRPA
BertLayerNormNoVar
false
16,689
[ "BSD-3-Clause" ]
161
294152077c0abfafb5d62fee39335e60eff087b4
https://github.com/vtu81/auto_LiRPA/tree/294152077c0abfafb5d62fee39335e60eff087b4
ExpectedShortfall
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jx/cjxh7o6uweuye22f754lhnkh7xxdv7kmocrjwgndxj6t7vq2kpqc.py # Topologically Sorted Source Nodes: [mean, neg], Original ATen: [aten.mean, aten.neg] # Source node to ATen node mapping: # mean => mean # neg => neg # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%getitem, [0]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {}) triton_poi_fused_mean_neg_0 = async_compile.triton('triton_poi_fused_mean_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_neg_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_neg_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = -tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [topk], Original ATen: [aten.topk] buf0 = torch.ops.aten.topk.default(arg0_1, 1, 0, False) del arg0_1 buf1 = buf0[0] del buf0 buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [mean, neg], Original ATen: [aten.mean, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_mean_neg_0.run(buf3, 64, grid=grid(64), stream=stream0) return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch from torch import Tensor from typing import Callable from typing import Union from typing import Optional from abc import ABC from math import ceil def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def topp(input: 'Tensor', p: 'float', dim: 'Optional[int]'=None, largest: 'bool'=True): """Returns the largest :math:`p * N` elements of the given input tensor, where :math:`N` stands for the total number of elements in the input tensor. If ``dim`` is not given, the last dimension of the ``input`` is chosen. If ``largest`` is ``False`` then the smallest elements are returned. A namedtuple of ``(values, indices)`` is returned, where the ``indices`` are the indices of the elements in the original ``input`` tensor. Args: input (torch.Tensor): The input tensor. p (float): The quantile level. dim (int, optional): The dimension to sort along. largest (bool, default=True): Controls whether to return largest or smallest elements. Returns: torch.Tensor Examples: >>> from pfhedge.nn.functional import topp >>> >>> input = torch.arange(1.0, 6.0) >>> input tensor([1., 2., 3., 4., 5.]) >>> topp(input, 3 / 5) torch.return_types.topk( values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2])) """ if dim is None: return input.topk(ceil(p * input.numel()), largest=largest) else: return input.topk(ceil(p * input.size(dim)), dim=dim, largest=largest) def expected_shortfall(input: 'Tensor', p: 'float', dim: 'Optional[int]'=None ) ->Tensor: """Returns the expected shortfall of the given input tensor. Args: input (torch.Tensor): The input tensor. p (float): The quantile level. dim (int, optional): The dimension to sort along. Returns: torch.Tensor Examples: >>> from pfhedge.nn.functional import expected_shortfall >>> >>> input = -torch.arange(10.0) >>> input tensor([-0., -1., -2., -3., -4., -5., -6., -7., -8., -9.]) >>> expected_shortfall(input, 0.3) tensor(8.) """ if dim is None: return -topp(input, p=p, largest=False).values.mean() else: return -topp(input, p=p, largest=False, dim=dim).values.mean(dim=dim) class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class ExpectedShortfall(HedgeLoss): """Creates a criterion that measures the expected shortfall. .. seealso:: - :func:`pfhedge.nn.functional.expected_shortfall` Args: p (float, default=0.1): Quantile level. This parameter should satisfy :math:`0 < p \\leq 1`. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import ExpectedShortfall >>> >>> loss = ExpectedShortfall(0.5) >>> input = -torch.arange(4.0) >>> loss(input) tensor(2.5000) >>> loss.cash(input) tensor(-2.5000) """ def __init__(self, p: 'float'=0.1): if not 0 < p <= 1: raise ValueError('The quantile level should satisfy 0 < p <= 1.') super().__init__() self.p = p def extra_repr(self) ->str: return str(self.p) def forward(self, input: 'Tensor') ->Tensor: return expected_shortfall(input, p=self.p, dim=0) def cash(self, input: 'Tensor') ->Tensor: return -self(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import Tensor from typing import Callable from typing import Union from typing import Optional from abc import ABC from math import ceil assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_neg_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp3 = -tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.topk.default(arg0_1, 1, 0, False) del arg0_1 buf1 = buf0[0] del buf0 buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_mean_neg_0[grid(64)](buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf3, def bisect(fn: 'Callable[[Tensor], Tensor]', target: 'Tensor', lower: 'Union[float, Tensor]', upper: 'Union[float, Tensor]', precision: 'float'=1e-06, max_iter: 'int'=100000) ->Tensor: """Perform binary search over a tensor. The output tensor approximately satisfies the following relation: .. code-block:: fn(output) = target Args: fn (callable[[Tensor], Tensor]): A monotone function. target (Tensor): Target of function values. lower (Tensor or float): Lower bound of binary search. upper (Tensor or float): Upper bound of binary search. precision (float, default=1e-6): Precision of output. max_iter (int, default 100000): If the number of iterations exceeds this value, abort computation and raise RuntimeError. Returns: torch.Tensor Raises: RuntimeError: If the number of iteration exceeds ``max_iter``. Examples: >>> target = torch.tensor([-1.0, 0.0, 1.0]) >>> fn = torch.log >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([0.3679, 1.0000, 2.7183]) >>> torch.allclose(fn(output), target, atol=1e-6) True Monotone decreasing function: >>> fn = lambda input: -torch.log(input) >>> output = bisect(fn, target, 0.01, 10.0) >>> output tensor([2.7183, 1.0000, 0.3679]) >>> torch.allclose(fn(output), target, atol=1e-6) True """ lower, upper = map(torch.as_tensor, (lower, upper)) if not (lower < upper).all(): raise ValueError('condition lower < upper should be satisfied.') if (fn(lower) > fn(upper)).all(): def mf(input): return -fn(input) return bisect(mf, -target, lower, upper, precision=precision, max_iter=max_iter) n_iter = 0 while torch.max(upper - lower) > precision: n_iter += 1 if n_iter > max_iter: raise RuntimeError( f'Aborting since iteration exceeds max_iter={max_iter}.') m = (lower + upper) / 2 output = fn(m) lower = lower.where(output >= target, m) upper = upper.where(output < target, m) return upper def topp(input: 'Tensor', p: 'float', dim: 'Optional[int]'=None, largest: 'bool'=True): """Returns the largest :math:`p * N` elements of the given input tensor, where :math:`N` stands for the total number of elements in the input tensor. If ``dim`` is not given, the last dimension of the ``input`` is chosen. If ``largest`` is ``False`` then the smallest elements are returned. A namedtuple of ``(values, indices)`` is returned, where the ``indices`` are the indices of the elements in the original ``input`` tensor. Args: input (torch.Tensor): The input tensor. p (float): The quantile level. dim (int, optional): The dimension to sort along. largest (bool, default=True): Controls whether to return largest or smallest elements. Returns: torch.Tensor Examples: >>> from pfhedge.nn.functional import topp >>> >>> input = torch.arange(1.0, 6.0) >>> input tensor([1., 2., 3., 4., 5.]) >>> topp(input, 3 / 5) torch.return_types.topk( values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2])) """ if dim is None: return input.topk(ceil(p * input.numel()), largest=largest) else: return input.topk(ceil(p * input.size(dim)), dim=dim, largest=largest) def expected_shortfall(input: 'Tensor', p: 'float', dim: 'Optional[int]'=None ) ->Tensor: """Returns the expected shortfall of the given input tensor. Args: input (torch.Tensor): The input tensor. p (float): The quantile level. dim (int, optional): The dimension to sort along. Returns: torch.Tensor Examples: >>> from pfhedge.nn.functional import expected_shortfall >>> >>> input = -torch.arange(10.0) >>> input tensor([-0., -1., -2., -3., -4., -5., -6., -7., -8., -9.]) >>> expected_shortfall(input, 0.3) tensor(8.) """ if dim is None: return -topp(input, p=p, largest=False).values.mean() else: return -topp(input, p=p, largest=False, dim=dim).values.mean(dim=dim) class HedgeLoss(Module, ABC): """Base class for hedging criteria.""" def forward(self, input: 'Tensor') ->Tensor: """Returns the loss of the profit-loss distribution. This method should be overridden. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ def cash(self, input: 'Tensor') ->Tensor: """Returns the cash amount which is as preferable as the given profit-loss distribution in terms of the loss. The output ``cash`` is expected to satisfy the following relation: .. code:: loss(torch.full_like(pnl, cash)) = loss(pnl) By default, the output is computed by binary search. If analytic form is known, it is recommended to override this method for faster computation. Args: input (torch.Tensor): The distribution of the profit and loss. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Returns: torch.Tensor """ return bisect(self, self(input), input.min(), input.max()) class ExpectedShortfallNew(HedgeLoss): """Creates a criterion that measures the expected shortfall. .. seealso:: - :func:`pfhedge.nn.functional.expected_shortfall` Args: p (float, default=0.1): Quantile level. This parameter should satisfy :math:`0 < p \\leq 1`. Shape: - Input: :math:`(N, *)` where :math:`*` means any number of additional dimensions. - Output: :math:`(*)` Examples: >>> from pfhedge.nn import ExpectedShortfall >>> >>> loss = ExpectedShortfall(0.5) >>> input = -torch.arange(4.0) >>> loss(input) tensor(2.5000) >>> loss.cash(input) tensor(-2.5000) """ def __init__(self, p: 'float'=0.1): if not 0 < p <= 1: raise ValueError('The quantile level should satisfy 0 < p <= 1.') super().__init__() self.p = p def extra_repr(self) ->str: return str(self.p) def cash(self, input: 'Tensor') ->Tensor: return -self(input) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vishalbelsare/pfhedge
ExpectedShortfall
false
16,690
[ "MIT" ]
81
4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
https://github.com/vishalbelsare/pfhedge/tree/4d7ff173995e0795942bc6ec55f3fdc5bfb7a5f1
MultiHeadDenseLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/63/c63vni4s3zrtuet6lyjpxcypmqkvbqayktup372j57pexdqkhf6i.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] # Source node to ATen node mapping: # output_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import tensorflow as tf import torch.nn as nn import torch.nn.functional as F def get_activation(activ): if callable(activ): return activ if activ is None: return lambda x: x if activ == 'tanh': return F.tanh elif activ == 'relu': return F.relu elif activ == 'gelu': return F.gelu elif activ == 'glu': return lambda x: F.glu(x, -1) else: raise ValueError('Unknown activation: {}'.format(activ)) class MultiHeadDenseLayer(nn.Module): """ Auto splitting or combining heads for the linear transformation. """ def __init__(self, input_size, output_units, num_heads, activation=None, use_bias=True, is_output_transform=False): """ Initializes MultiHeadDenseLayer. Args: input_size: The input dimension. output_units: A int scalar or int list, indicating the transformed output units. It must be a int scalar when `is_output_transform` is True. num_heads: The head num. activation: A string or a callable function for activation. use_bias: A boolean, whether to add bias tensor. is_output_transform: A boolean, whether to use this layer for the output transformation in multi head attention. """ super(MultiHeadDenseLayer, self).__init__() self._output_units = output_units self._num_heads = num_heads self._use_bias = use_bias self._is_output_transform = is_output_transform self._activation = activation self._activation_fn = get_activation(activation) self._flatten_output_units = tf.nest.flatten(self._output_units) if is_output_transform: assert not tf.nest.is_nested(self._output_units) self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_( torch.empty(input_size, self._output_units))) else: self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_( torch.empty(input_size, sum(self._flatten_output_units))), requires_grad=True) if self._use_bias: self._bias = torch.nn.Parameter(torch.zeros(sum(self. _flatten_output_units)), requires_grad=True) def compat_kernel_shape(self, input_shape): """ Compatible kernel for variable storage. """ if self._is_output_transform: return [input_shape[-1] * input_shape[-2], self._output_units] return [input_shape[-1], sum(self._flatten_output_units)] @property def kernel_shape(self): """ The kernel shape. """ if self._is_output_transform: return [self._num_heads, -1, self._output_units] return [-1, sum(self._flatten_output_units)] def forward(self, inputs): """ Implements ``call()`` for MultiHeadDenseLayer. Args: inputs: A float tensor of shape [batch_size, length, hidden_size] when output_projection is False, otherwise a float tensor of shape [batch_size, length, num_heads, num_units_per_head]. Returns: The projected tensor with shape [batch_size, length, num_heads, num_units_per_head] per `self._output_units` when output_projection is False, otherwise [batch_size, length, output_units]. """ kernel = torch.reshape(self._kernel, self.kernel_shape) if self._is_output_transform: output = torch.einsum('abcd,cde->abe', inputs, kernel) else: output = torch.einsum('abc,cd->abd', inputs, kernel) if self._use_bias: output += self._bias if not self._is_output_transform: output = torch.split(output, self._flatten_output_units, dim=-1) output = tf.nest.map_structure(lambda x, num_units: torch. reshape(x, list(x.size())[:-1] + [self._num_heads, num_units // self._num_heads]), output, self. _flatten_output_units, check_types=False) output = tf.nest.flatten(output) if self._activation_fn is not None: output = tf.nest.map_structure(self._activation_fn, output, check_types=False) return tf.nest.pack_sequence_as(self._output_units, output) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_units': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import tensorflow as tf import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4), (64, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_2, (1, 16, 4), (64, 4, 1), 0), reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (1, 4, 16), (64, 1, 4), 0) def get_activation(activ): if callable(activ): return activ if activ is None: return lambda x: x if activ == 'tanh': return F.tanh elif activ == 'relu': return F.relu elif activ == 'gelu': return F.gelu elif activ == 'glu': return lambda x: F.glu(x, -1) else: raise ValueError('Unknown activation: {}'.format(activ)) class MultiHeadDenseLayerNew(nn.Module): """ Auto splitting or combining heads for the linear transformation. """ def __init__(self, input_size, output_units, num_heads, activation=None, use_bias=True, is_output_transform=False): """ Initializes MultiHeadDenseLayer. Args: input_size: The input dimension. output_units: A int scalar or int list, indicating the transformed output units. It must be a int scalar when `is_output_transform` is True. num_heads: The head num. activation: A string or a callable function for activation. use_bias: A boolean, whether to add bias tensor. is_output_transform: A boolean, whether to use this layer for the output transformation in multi head attention. """ super(MultiHeadDenseLayerNew, self).__init__() self._output_units = output_units self._num_heads = num_heads self._use_bias = use_bias self._is_output_transform = is_output_transform self._activation = activation self._activation_fn = get_activation(activation) self._flatten_output_units = tf.nest.flatten(self._output_units) if is_output_transform: assert not tf.nest.is_nested(self._output_units) self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_( torch.empty(input_size, self._output_units))) else: self._kernel = torch.nn.Parameter(torch.nn.init.xavier_normal_( torch.empty(input_size, sum(self._flatten_output_units))), requires_grad=True) if self._use_bias: self._bias = torch.nn.Parameter(torch.zeros(sum(self. _flatten_output_units)), requires_grad=True) def compat_kernel_shape(self, input_shape): """ Compatible kernel for variable storage. """ if self._is_output_transform: return [input_shape[-1] * input_shape[-2], self._output_units] return [input_shape[-1], sum(self._flatten_output_units)] @property def kernel_shape(self): """ The kernel shape. """ if self._is_output_transform: return [self._num_heads, -1, self._output_units] return [-1, sum(self._flatten_output_units)] def forward(self, input_0): primals_1 = self._kernel primals_3 = self._bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ishine/neurst
MultiHeadDenseLayer
false
16,691
[ "Apache-2.0" ]
208
2ba322393fcfed4261b33f4a657e12bbe321baaa
https://github.com/ishine/neurst/tree/2ba322393fcfed4261b33f4a657e12bbe321baaa
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_p], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_p => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jw/cjwpmepxdrhjkf3qqr4e6qwmehd4cbfk26molvzkvgaoyj3su3bt.py # Topologically Sorted Source Nodes: [log_p, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] # Source node to ATen node mapping: # log_p => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # mean => mean # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp25 = tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_p], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [log_p, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean] triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from matplotlib.font_manager import * class FocalLoss(nn.Module): """ Focal loss: focus more on hard samples """ def __init__(self, gamma=0, eps=1e-07): """ :param gamma: :param eps: """ super(FocalLoss, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input, target): """ :param input: :param target: :return: """ log_p = self.ce(input, target) p = torch.exp(-log_p) loss = (1.0 - p) ** self.gamma * log_p return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from matplotlib.font_manager import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = -tmp18 tmp20 = 0.015625 tmp21 = tmp19 * tmp20 tmp22 = -tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = 1.0 tmp24 - tmp23 tmp26 = tmp24 * tmp21 tmp27 = tmp26 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1[grid (1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class FocalLossNew(nn.Module): """ Focal loss: focus more on hard samples """ def __init__(self, gamma=0, eps=1e-07): """ :param gamma: :param eps: """ super(FocalLossNew, self).__init__() self.gamma = gamma self.eps = eps self.ce = torch.nn.CrossEntropyLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
wang-tf/RepNet-MDNet-VehicleReID
FocalLoss
false
16,692
[ "MIT" ]
226
d3d184331206ca4bdb5ea399e5b90a9ccc53b400
https://github.com/wang-tf/RepNet-MDNet-VehicleReID/tree/d3d184331206ca4bdb5ea399e5b90a9ccc53b400
L1DepthLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vw/cvw56h5ri54hrna7duzfdrodishi5abxn5plg4lwgig6fevc7ryu.py # Topologically Sorted Source Nodes: [ne_1, labels_1s, labels_masked, predictions_masked], Original ATen: [aten.ne, aten._to_copy, aten.mul] # Source node to ATen node mapping: # labels_1s => convert_element_type_1 # labels_masked => mul_1 # ne_1 => ne_1 # predictions_masked => mul # Graph fragment: # %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg1_1, -1), kwargs = {}) # %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne_1, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %convert_element_type_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %convert_element_type_1), kwargs = {}) triton_poi_fused__to_copy_mul_ne_0 = async_compile.triton('triton_poi_fused__to_copy_mul_ne_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_mul_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_mul_ne_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp1 = -1.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tmp0 * tmp3 tmp6 = tmp5 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4h/c4h2gxzjjtb6pgifnf4w3l34kbyjis7mca2psf5ba3iotwzkl2qr.py # Topologically Sorted Source Nodes: [ne, sum_1, total_sents, gt], Original ATen: [aten.ne, aten.sum, aten._to_copy, aten.gt] # Source node to ATen node mapping: # gt => gt # ne => ne # sum_1 => sum_1 # total_sents => convert_element_type # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg0_1, 0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne,), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_1, torch.float32), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convert_element_type, 0), kwargs = {}) triton_per_fused__to_copy_gt_ne_sum_1 = async_compile.triton('triton_per_fused__to_copy_gt_ne_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_ne_sum_1', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_gt_ne_sum_1(in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp6.to(tl.float32) tmp8 = tmp7 > tmp1 tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp7, None) tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ne_1, labels_1s, labels_masked, predictions_masked], Original ATen: [aten.ne, aten._to_copy, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_mul_ne_0.run(arg1_1, arg2_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg1_1 del arg2_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.bool) # Topologically Sorted Source Nodes: [ne, sum_1, total_sents, gt], Original ATen: [aten.ne, aten.sum, aten._to_copy, aten.gt] triton_per_fused__to_copy_gt_ne_sum_1.run(arg0_1, buf3, buf4, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, buf1, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class L1DepthLoss(nn.Module): """Custom L1 loss for depth sequences.""" def __init__(self, args): super(L1DepthLoss, self).__init__() self.args = args self.word_dim = 1 def forward(self, predictions, label_batch, length_batch): """ Computes L1 loss on depth sequences. Ignores all entries where label_batch=-1 Normalizes first within sentences (by dividing by the sentence length) and then across the batch. Args: predictions: A pytorch batch of predicted depths label_batch: A pytorch batch of true depths length_batch: A pytorch batch of sentence lengths Returns: A tuple of: batch_loss: average loss in the batch total_sents: number of sentences in the batch """ total_sents = torch.sum(length_batch != 0).float() labels_1s = (label_batch != -1).float() predictions_masked = predictions * labels_1s labels_masked = label_batch * labels_1s if total_sents > 0: loss_per_sent = torch.sum(torch.abs(predictions_masked - labels_masked), dim=self.word_dim) normalized_loss_per_sent = loss_per_sent / length_batch.float() batch_loss = torch.sum(normalized_loss_per_sent) / total_sents else: batch_loss = torch.tensor(0.0, device=self.args['device']) return batch_loss, total_sents def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_mul_ne_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp1 = -1.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tmp0 * tmp3 tmp6 = tmp5 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp6, xmask) @triton.jit def triton_per_fused__to_copy_gt_ne_sum_1(in_ptr0, out_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.int64) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp6.to(tl.float32) tmp8 = tmp7 > tmp1 tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp7, None) tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_mul_ne_0[grid(256)](arg1_1, arg2_1, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 del arg2_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.bool) triton_per_fused__to_copy_gt_ne_sum_1[grid(1)](arg0_1, buf3, buf4, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf0, buf1, buf3, buf4 class L1DepthLossNew(nn.Module): """Custom L1 loss for depth sequences.""" def __init__(self, args): super(L1DepthLossNew, self).__init__() self.args = args self.word_dim = 1 def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
wanyao1992/structural-probes
L1DepthLoss
false
16,693
[ "Apache-2.0" ]
357
3071c93b23601d834628d79a74e46e8ab5e5a66b
https://github.com/wanyao1992/structural-probes/tree/3071c93b23601d834628d79a74e46e8ab5e5a66b
HLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mr/cmr3tv5ws2snvq6sc6sxr656wx47kzohgg6mk4czehbbxdzlihyt.py # Topologically Sorted Source Nodes: [softmax, log_softmax], Original ATen: [aten._softmax, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax_1, sub_1 # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax_1), kwargs = {}) triton_poi_fused__log_softmax__softmax_0 = async_compile.triton('triton_poi_fused__log_softmax__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) tl.store(out_ptr1 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nk/cnk3zca2cotrn52zquetkd3446ncgzdqpvoo7a7vey3gzfcyn5ha.py # Topologically Sorted Source Nodes: [softmax, log_softmax, b], Original ATen: [aten._softmax, aten._log_softmax, aten.mul] # Source node to ATen node mapping: # b => mul # log_softmax => exp_1, log, sub_2, sum_2 # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_2), kwargs = {}) triton_poi_fused__log_softmax__softmax_mul_1 = async_compile.triton('triton_poi_fused__log_softmax__softmax_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax__softmax_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax__softmax_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x3), xmask) tmp10 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp11 = tl_math.exp(tmp10) tmp13 = tl_math.exp(tmp12) tmp14 = tmp11 + tmp13 tmp16 = tl_math.exp(tmp15) tmp17 = tmp14 + tmp16 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tl_math.log(tmp20) tmp22 = tmp9 - tmp21 tmp23 = tmp8 * tmp22 tl.store(out_ptr0 + (x3), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6i/c6itufbdrnaj667i4cvubs4njswzdhatiecgr4dqngg4yvtxvy54.py # Topologically Sorted Source Nodes: [sum_1, mean, b_1], Original ATen: [aten.sum, aten.mean, aten.mul] # Source node to ATen node mapping: # b_1 => mul_1 # mean => mean # sum_1 => sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, -1.0), kwargs = {}) triton_per_fused_mean_mul_sum_2 = async_compile.triton('triton_per_fused_mean_mul_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_mul_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tmp12 = -1.0 tmp13 = tmp11 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax, log_softmax], Original ATen: [aten._softmax, aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax__softmax_0.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax, log_softmax, b], Original ATen: [aten._softmax, aten._log_softmax, aten.mul] triton_poi_fused__log_softmax__softmax_mul_1.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [sum_1, mean, b_1], Original ATen: [aten.sum, aten.mean, aten.mul] triton_per_fused_mean_mul_sum_2.run(buf4, buf2, 1, 64, grid=grid(1), stream=stream0) del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class HLoss(nn.Module): """ returning the negative entropy of an input tensor """ def __init__(self, is_maximization=False): super(HLoss, self).__init__() self.is_neg = is_maximization def forward(self, x): b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1) if self.is_neg: b = 1.0 * b.sum(dim=1).mean() else: b = -1.0 * b.sum(dim=1).mean() return b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) tl.store(out_ptr1 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax__softmax_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + x3, xmask) tmp10 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp11 = tl_math.exp(tmp10) tmp13 = tl_math.exp(tmp12) tmp14 = tmp11 + tmp13 tmp16 = tl_math.exp(tmp15) tmp17 = tmp14 + tmp16 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tl_math.log(tmp20) tmp22 = tmp9 - tmp21 tmp23 = tmp8 * tmp22 tl.store(out_ptr0 + x3, tmp23, xmask) @triton.jit def triton_per_fused_mean_mul_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tmp12 = -1.0 tmp13 = tmp11 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax__softmax_0[grid(256)](arg0_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax__softmax_mul_1[grid(256)](buf0, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_mean_mul_sum_2[grid(1)](buf4, buf2, 1, 64, XBLOCK= 1, num_warps=2, num_stages=1) del buf2 return buf4, class HLossNew(nn.Module): """ returning the negative entropy of an input tensor """ def __init__(self, is_maximization=False): super(HLossNew, self).__init__() self.is_neg = is_maximization def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vt-vl-lab/SDN
HLoss
false
16,694
[ "MIT" ]
88
d1f0a448acf720b9b86527f808cb17d30ed2f4e9
https://github.com/vt-vl-lab/SDN/tree/d1f0a448acf720b9b86527f808cb17d30ed2f4e9
Align
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7l/c7lrnzz7u6zsph7qtb6own22vqc34am7brqewva4qc33ddgzxza7.py # Topologically Sorted Source Nodes: [sub, norm, pred], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.neg] # Source node to ATen node mapping: # norm => pow_1, pow_2, sum_1 # pred => neg # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.25), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {}) triton_poi_fused_linalg_vector_norm_neg_sub_0 = async_compile.triton('triton_poi_fused_linalg_vector_norm_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_neg_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_linalg_vector_norm_neg_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp6 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp17 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp18 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp4 + tmp9 tmp13 = tmp11 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp10 + tmp15 tmp19 = tmp17 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = 0.25 tmp24 = libdevice.pow(tmp22, tmp23) tmp25 = -tmp24 tl.store(out_ptr0 + (x2), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, norm, pred], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_linalg_vector_norm_neg_sub_0.run(arg0_1, arg1_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class Align(torch.nn.Module): def __init__(self, p): super(Align, self).__init__() self.p = p def forward(self, e1, e2): pred = -torch.norm(e1 - e2, p=self.p, dim=1) return pred def only_pos_loss(self, e1, r, e2): return -F.logsigmoid(-torch.sum(torch.pow(e1 + r - e2, 2), 1)).sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'p': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_linalg_vector_norm_neg_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp6 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp17 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp18 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tmp3 * tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = tmp8 * tmp8 tmp10 = tmp4 + tmp9 tmp13 = tmp11 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp10 + tmp15 tmp19 = tmp17 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = 0.25 tmp24 = libdevice.pow(tmp22, tmp23) tmp25 = -tmp24 tl.store(out_ptr0 + x2, tmp25, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_linalg_vector_norm_neg_sub_0[grid(64)](arg0_1, arg1_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf0, class AlignNew(torch.nn.Module): def __init__(self, p): super(AlignNew, self).__init__() self.p = p def only_pos_loss(self, e1, r, e2): return -F.logsigmoid(-torch.sum(torch.pow(e1 + r - e2, 2), 1)).sum() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
weihangzhang/EAkit
Align
false
16,695
[ "MIT" ]
102
dde8e914480cd1a3585271f70db11d567d9c2a04
https://github.com/weihangzhang/EAkit/tree/dde8e914480cd1a3585271f70db11d567d9c2a04
N_TransE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/w2/cw2psuktwvgqiciur5rr6hsrv47ce76ixqoodmx4iymb6o43ia3n.py # Topologically Sorted Source Nodes: [add, sub, norm, pred], Original ATen: [aten.add, aten.sub, aten.linalg_vector_norm, aten.neg] # Source node to ATen node mapping: # add => add # norm => pow_1, pow_2, sum_1 # pred => neg # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.25), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {}) triton_poi_fused_add_linalg_vector_norm_neg_sub_0 = async_compile.triton('triton_poi_fused_add_linalg_vector_norm_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_linalg_vector_norm_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_linalg_vector_norm_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp8 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr2 + (16 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp16 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp18 = tl.load(in_ptr2 + (32 + x0 + (64*x1)), xmask) tmp23 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp24 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp26 = tl.load(in_ptr2 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tmp5 * tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp28 * tmp28 tmp30 = tmp22 + tmp29 tmp31 = 0.25 tmp32 = libdevice.pow(tmp30, tmp31) tmp33 = -tmp32 tl.store(in_out_ptr0 + (x2), tmp33, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, sub, norm, pred], Original ATen: [aten.add, aten.sub, aten.linalg_vector_norm, aten.neg] stream0 = get_raw_stream(0) triton_poi_fused_add_linalg_vector_norm_neg_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class N_TransE(torch.nn.Module): def __init__(self, p, params): super(N_TransE, self).__init__() self.p = p self.params = params def forward(self, e1, r, e2): pred = -torch.norm(e1 + r - e2, p=self.p, dim=1) return pred def loss(self, pos_score, neg_score, target): return F.relu(pos_score + self.params[0] - neg_score).sum( ) + self.params[1] * F.relu(pos_score - self.params[2]).sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'p': 4, 'params': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_linalg_vector_norm_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp8 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr2 + (16 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp18 = tl.load(in_ptr2 + (32 + x0 + 64 * x1), xmask) tmp23 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp24 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp26 = tl.load(in_ptr2 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tmp5 * tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp19 = tmp17 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp27 = tmp25 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp28 * tmp28 tmp30 = tmp22 + tmp29 tmp31 = 0.25 tmp32 = libdevice.pow(tmp30, tmp31) tmp33 = -tmp32 tl.store(in_out_ptr0 + x2, tmp33, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_linalg_vector_norm_neg_sub_0[grid(64)](buf1, arg0_1, arg1_1, arg2_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class N_TransENew(torch.nn.Module): def __init__(self, p, params): super(N_TransENew, self).__init__() self.p = p self.params = params def loss(self, pos_score, neg_score, target): return F.relu(pos_score + self.params[0] - neg_score).sum( ) + self.params[1] * F.relu(pos_score - self.params[2]).sum() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
weihangzhang/EAkit
N_TransE
false
16,696
[ "MIT" ]
102
dde8e914480cd1a3585271f70db11d567d9c2a04
https://github.com/weihangzhang/EAkit/tree/dde8e914480cd1a3585271f70db11d567d9c2a04
L1DistanceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/du/cduvmb5hpbjgwnwykzo2hhalu225cbhq36a4xnrmox4sitjisfkt.py # Topologically Sorted Source Nodes: [pow_1, ne_1, sum_1, total_sents, gt], Original ATen: [aten.pow, aten.ne, aten.sum, aten._to_copy, aten.gt] # Source node to ATen node mapping: # gt => gt # ne_1 => ne_1 # pow_1 => pow_1 # sum_1 => sum_1 # total_sents => convert_element_type_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg2_1, 2), kwargs = {}) # %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg2_1, 0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_1,), kwargs = {}) # %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_1, torch.float32), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convert_element_type_1, 0), kwargs = {}) triton_per_fused__to_copy_gt_ne_pow_sum_0 = async_compile.triton('triton_per_fused__to_copy_gt_ne_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_ne_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_gt_ne_pow_sum_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tmp0 * tmp0 tmp2 = 0.0 tmp3 = tmp0 != tmp2 tmp4 = tmp3.to(tl.int64) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp7.to(tl.float32) tmp9 = tmp8 > tmp2 tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp1, None) tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp8, None) tl.store(out_ptr3 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vo/cvoi446gy7yflmv6g5aq7ogsszwzcewz6p6hjw7csauq7kcquqp3.py # Topologically Sorted Source Nodes: [ne, labels_1s, labels_masked, predictions_masked], Original ATen: [aten.ne, aten._to_copy, aten.mul] # Source node to ATen node mapping: # labels_1s => convert_element_type # labels_masked => mul_1 # ne => ne # predictions_masked => mul # Graph fragment: # %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%arg0_1, -1), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ne, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %convert_element_type), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %convert_element_type), kwargs = {}) triton_poi_fused__to_copy_mul_ne_1 = async_compile.triton('triton_poi_fused__to_copy_mul_ne_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_mul_ne_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_mul_ne_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask) tmp1 = -1.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tmp0 * tmp3 tmp6 = tmp5 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.bool) # Topologically Sorted Source Nodes: [pow_1, ne_1, sum_1, total_sents, gt], Original ATen: [aten.pow, aten.ne, aten.sum, aten._to_copy, aten.gt] stream0 = get_raw_stream(0) triton_per_fused__to_copy_gt_ne_pow_sum_0.run(arg2_1, buf0, buf4, buf5, 1, 256, grid=grid(1), stream=stream0) del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ne, labels_1s, labels_masked, predictions_masked], Original ATen: [aten.ne, aten._to_copy, aten.mul] triton_poi_fused__to_copy_mul_ne_1.run(arg0_1, arg1_1, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf4, buf1, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class L1DistanceLoss(nn.Module): """Custom L1 loss for distance matrices.""" def __init__(self, args): super(L1DistanceLoss, self).__init__() self.args = args self.word_pair_dims = 1, 2 def forward(self, predictions, label_batch, length_batch): """ Computes L1 loss on distance matrices. Ignores all entries where label_batch=-1 Normalizes first within sentences (by dividing by the square of the sentence length) and then across the batch. Args: predictions: A pytorch batch of predicted distances label_batch: A pytorch batch of true distances length_batch: A pytorch batch of sentence lengths Returns: A tuple of: batch_loss: average loss in the batch total_sents: number of sentences in the batch """ labels_1s = (label_batch != -1).float() predictions_masked = predictions * labels_1s labels_masked = label_batch * labels_1s total_sents = torch.sum(length_batch != 0).float() squared_lengths = length_batch.pow(2).float() if total_sents > 0: loss_per_sent = torch.sum(torch.abs(predictions_masked - labels_masked), dim=self.word_pair_dims) normalized_loss_per_sent = loss_per_sent / squared_lengths batch_loss = torch.sum(normalized_loss_per_sent) / total_sents else: batch_loss = torch.tensor(0.0, device=self.args['device']) return batch_loss, total_sents def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_gt_ne_pow_sum_0(in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tmp0 * tmp0 tmp2 = 0.0 tmp3 = tmp0 != tmp2 tmp4 = tmp3.to(tl.int64) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp7.to(tl.float32) tmp9 = tmp8 > tmp2 tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp1, None) tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp8, None) tl.store(out_ptr3 + tl.full([1], 0, tl.int32), tmp9, None) @triton.jit def triton_poi_fused__to_copy_mul_ne_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask) tmp1 = -1.0 tmp2 = tmp0 != tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tmp0 * tmp3 tmp6 = tmp5 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp6, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((), (), torch.bool) get_raw_stream(0) triton_per_fused__to_copy_gt_ne_pow_sum_0[grid(1)](arg2_1, buf0, buf4, buf5, 1, 256, num_warps=2, num_stages=1) del arg2_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__to_copy_mul_ne_1[grid(256)](arg0_1, arg1_1, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf4, buf1, buf2, buf5 class L1DistanceLossNew(nn.Module): """Custom L1 loss for distance matrices.""" def __init__(self, args): super(L1DistanceLossNew, self).__init__() self.args = args self.word_pair_dims = 1, 2 def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
wanyao1992/structural-probes
L1DistanceLoss
false
16,697
[ "Apache-2.0" ]
357
3071c93b23601d834628d79a74e46e8ab5e5a66b
https://github.com/wanyao1992/structural-probes/tree/3071c93b23601d834628d79a74e46e8ab5e5a66b
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sb/csblfv3ubqa36w6jnnhhp6c2tom3ahfqz3qg436ur7v2jxh54w6u.py # Topologically Sorted Source Nodes: [mean, var, add, std, sub, mul, add_1, truediv], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # std => sqrt # sub => sub # truediv => div # var => var # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 1, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = (xindex // 4) x3 = (xindex // 64) x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp2 = tl.load(in_ptr1 + (4*x5), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x5)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x5)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x5)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (16 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (32 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (48 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp19 / tmp9 tmp21 = tmp13 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp14 - tmp20 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp16 - tmp20 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp18 - tmp20 tmp30 = tmp29 * tmp29 tmp31 = tmp28 + tmp30 tmp32 = 3.0 tmp33 = tmp31 / tmp32 tmp34 = 1e-06 tmp35 = tmp33 + tmp34 tmp36 = libdevice.sqrt(tmp35) tmp37 = tmp36 + tmp34 tmp38 = tmp12 / tmp37 tl.store(out_ptr0 + (x4), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xe/cxeeexo3d7slxyisdt4v3bk7wlqur2lagwbd5pwumoeon47zx4tw.py # Topologically Sorted Source Nodes: [output, mul_1], Original ATen: [aten.add, aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # output => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %unsqueeze), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 4 x3 = (xindex // 256) x5 = xindex % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x6), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var, add, std, sub, mul, add_1, truediv], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, mul_1], Original ATen: [aten.add, aten.mul] triton_poi_fused_add_mul_1.run(buf0, primals_3, primals_4, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_3 return (buf1, primals_1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LayerNorm(torch.nn.Module): def __init__(self, input_dim): super(LayerNorm, self).__init__() self.gamma = torch.nn.Parameter(torch.ones(input_dim)) self.beta = torch.nn.Parameter(torch.zeros(input_dim)) self.eps = 1e-06 def forward(self, x, mask): mean = x.mean(-1, keepdim=True) std = torch.sqrt(x.var(dim=1, keepdim=True) + self.eps) output = self.gamma * (x - mean) / (std + self.eps) + self.beta return output * mask.unsqueeze(1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex // 4 x3 = xindex // 64 x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask) tmp2 = tl.load(in_ptr1 + 4 * x5, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x5), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + (16 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (32 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (48 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp19 / tmp9 tmp21 = tmp13 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp14 - tmp20 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp16 - tmp20 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp18 - tmp20 tmp30 = tmp29 * tmp29 tmp31 = tmp28 + tmp30 tmp32 = 3.0 tmp33 = tmp31 / tmp32 tmp34 = 1e-06 tmp35 = tmp33 + tmp34 tmp36 = libdevice.sqrt(tmp35) tmp37 = tmp36 + tmp34 tmp38 = tmp12 / tmp37 tl.store(out_ptr0 + x4, tmp38, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 4 x3 = xindex // 256 x5 = xindex % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x6, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(1024)](buf0, primals_3, primals_4, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 return buf1, primals_1, primals_4 class LayerNormNew(torch.nn.Module): def __init__(self, input_dim): super(LayerNormNew, self).__init__() self.gamma = torch.nn.Parameter(torch.ones(input_dim)) self.beta = torch.nn.Parameter(torch.zeros(input_dim)) self.eps = 1e-06 def forward(self, input_0, input_1): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
watchernyu/MatchLSTM-Analyze-Adversarial-Training
LayerNorm
false
16,698
[ "MIT" ]
50
00bd33d3dd22d5291dc2c1ec5feef5eb93b59b3a
https://github.com/watchernyu/MatchLSTM-Analyze-Adversarial-Training/tree/00bd33d3dd22d5291dc2c1ec5feef5eb93b59b3a
StructuredAttention_bi
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hb/chbhiaabilrxfybu2ffrrnkpdqbtolbw723vatlywaxvb4btkitd.py # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/my/cmy25ejia5o2rat776uwsbvvmsxs5ygvdojzg6lcj5wdlcpt6zvw.py # Topologically Sorted Source Nodes: [S], Original ATen: [aten.clone] # Source node to ATen node mapping: # S => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 256 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f6/cf6lhku2tgwut532oeldk25tmzvy6b5dwxzjnns4de2kv6vcqpvk.py # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize_1 => div_1 # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %expand_1), kwargs = {}) triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/q3/cq3ruqxwm6cmgps6qylyac5rvpmrxurz3kthn3ocqajzputfgic2.py # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_c], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] # Source node to ATen node mapping: # S_c => exp, sum_3 # masked_S => sub_1 # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 10000000000.0), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %mul), kwargs = {}) # %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {}) # %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor_1, 100), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_3,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_mul_rsub_sub_3 = async_compile.triton('triton_poi_fused__softmax_mul_rsub_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_rsub_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp10 = tmp2 - tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp4 tmp19 = tmp15 - tmp18 tmp20 = tmp19 * tmp2 tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp24 = tmp2 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tmp22 - tmp25 tmp27 = tmp26 * tmp2 tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = 100.0 tmp31 = tmp29 * tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp13 - tmp28 tmp34 = tmp33 * tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp32 + tmp35 tmp37 = tmp20 - tmp28 tmp38 = tmp37 * tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp36 + tmp39 tmp41 = tmp27 - tmp28 tmp42 = tmp41 * tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp44, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5y/c5yhcwckcqghymevlsiqwppovavdudja35vktakcntspddvdwrjf.py # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_q], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] # Source node to ATen node mapping: # S_q => exp_1, sum_4 # masked_S => sub_1 # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 10000000000.0), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %mul), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 100), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-2], True), kwargs = {}) triton_poi_fused__softmax_mul_rsub_sub_4 = async_compile.triton('triton_poi_fused__softmax_mul_rsub_sub_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_rsub_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask) tmp8 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp9 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp16 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask) tmp22 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp23 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp10 = tmp2 - tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp4 tmp19 = tmp15 - tmp18 tmp20 = tmp19 * tmp2 tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp24 = tmp2 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tmp22 - tmp25 tmp27 = tmp26 * tmp2 tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = 100.0 tmp31 = tmp29 * tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp13 - tmp28 tmp34 = tmp33 * tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp32 + tmp35 tmp37 = tmp20 - tmp28 tmp38 = tmp37 * tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp36 + tmp39 tmp41 = tmp27 - tmp28 tmp42 = tmp41 * tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + (x2), tmp28, xmask) tl.store(out_ptr1 + (x2), tmp44, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b7/cb7uozmjxla2t6movk7i4huoyj2mo2ck62tpbsmpbnnyumxjznmk.py # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_c, S_c_1, S_q, S_q_1], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] # Source node to ATen node mapping: # S_c => div_2, exp # S_c_1 => mul_3 # S_q => div_3, exp_1 # S_q_1 => mul_4 # masked_S => sub_1 # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 10000000000.0), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %mul), kwargs = {}) # %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {}) # %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor_1, 100), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_3,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %view_2), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 100), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_3, %view_2), kwargs = {}) triton_poi_fused__softmax_mul_rsub_sub_5 = async_compile.triton('triton_poi_fused__softmax_mul_rsub_sub_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_rsub_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 4) x0 = xindex % 4 x3 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr4 + (x0 + (4*x3)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr5 + (x0 + (4*x3)), xmask, eviction_policy='evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp9 = tmp7 - tmp8 tmp10 = 100.0 tmp11 = tmp9 * tmp10 tmp12 = tl_math.exp(tmp11) tmp14 = tmp12 / tmp13 tmp15 = tmp14 * tmp1 tmp17 = tmp7 - tmp16 tmp18 = tmp17 * tmp10 tmp19 = tl_math.exp(tmp18) tmp21 = tmp19 / tmp20 tmp22 = tmp21 * tmp1 tl.store(out_ptr0 + (x4), tmp15, xmask) tl.store(out_ptr1 + (x4), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [S], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] triton_poi_fused_div_2.run(arg0_1, buf2, 1024, grid=grid(1024), stream=stream0) buf3 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [S], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (64, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [S_mask], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg2_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg3_1, (64, 1, 4), (4, 4, 1), 0), out=buf4) del arg2_1 del arg3_1 buf5 = reinterpret_tensor(buf0, (4, 4, 4, 4, 1), (64, 16, 4, 1, 256), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_c], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] triton_poi_fused__softmax_mul_rsub_sub_3.run(buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 256, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_q], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] triton_poi_fused__softmax_mul_rsub_sub_4.run(buf3, buf4, buf9, buf10, 256, grid=grid(256), stream=stream0) buf7 = buf1; del buf1 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, masked_S, S_c, S_c_1, S_q, S_q_1], Original ATen: [aten.rsub, aten.mul, aten.sub, aten._softmax] triton_poi_fused__softmax_mul_rsub_sub_5.run(buf3, buf4, buf5, buf6, buf9, buf10, buf7, buf11, 1024, grid=grid(1024), stream=stream0) del buf10 del buf5 del buf6 del buf9 buf8 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [A_c], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (64, 4, 4), (16, 4, 1), 0), out=buf8) del arg0_1 buf12 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [A_q], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(arg1_1, buf12, 1024, grid=grid(1024), stream=stream0) del arg1_1 buf13 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [A_q], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf11, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf12, (64, 4, 4), (16, 4, 1), 0), out=buf13) del buf11 del buf12 return (reinterpret_tensor(buf8, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf13, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4, 4, 4), (256, 64, 16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class StructuredAttention_bi(nn.Module): def __init__(self, dropout=0.1, scale=100): super(StructuredAttention_bi, self).__init__() self.dropout = dropout self.scale = scale def forward(self, C, Q, c_mask, q_mask): _bsz, _, _num_img, _num_region, _hsz = Q.shape S, S_mask = self.similarity(C, Q, c_mask, q_mask) S_c = F.softmax(S * self.scale, dim=-1) S_q = F.softmax(S * self.scale, dim=-2) S_c = S_c * S_mask S_q = S_q * S_mask A_c = torch.matmul(S_c, Q) A_q = torch.matmul(S_q.transpose(-2, -1), C) return A_c, A_q, S_mask, S_mask.transpose(-2, -1) def similarity(self, C, Q, c_mask, q_mask): C = F.dropout(F.normalize(C, p=2, dim=-1), p=self.dropout, training =self.training) Q = F.dropout(F.normalize(Q, p=2, dim=-1), p=self.dropout, training =self.training) S_mask = torch.matmul(c_mask.unsqueeze(-1), q_mask.unsqueeze(-2)) S = torch.matmul(C, Q.transpose(-2, -1)) masked_S = S - 10000000000.0 * (1 - S_mask) return masked_S, S_mask def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4, 4]), torch. rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 256 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp10 = tmp2 - tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp4 tmp19 = tmp15 - tmp18 tmp20 = tmp19 * tmp2 tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp24 = tmp2 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tmp22 - tmp25 tmp27 = tmp26 * tmp2 tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = 100.0 tmp31 = tmp29 * tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp13 - tmp28 tmp34 = tmp33 * tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp32 + tmp35 tmp37 = tmp20 - tmp28 tmp38 = tmp37 * tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp36 + tmp39 tmp41 = tmp27 - tmp28 tmp42 = tmp41 * tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp44, xmask) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask) tmp8 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp9 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp16 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask) tmp22 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp23 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp10 = tmp2 - tmp9 tmp11 = tmp10 * tmp4 tmp12 = tmp8 - tmp11 tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp4 tmp19 = tmp15 - tmp18 tmp20 = tmp19 * tmp2 tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp24 = tmp2 - tmp23 tmp25 = tmp24 * tmp4 tmp26 = tmp22 - tmp25 tmp27 = tmp26 * tmp2 tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = 100.0 tmp31 = tmp29 * tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp13 - tmp28 tmp34 = tmp33 * tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp32 + tmp35 tmp37 = tmp20 - tmp28 tmp38 = tmp37 * tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp36 + tmp39 tmp41 = tmp27 - tmp28 tmp42 = tmp41 * tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + x2, tmp28, xmask) tl.store(out_ptr1 + x2, tmp44, xmask) @triton.jit def triton_poi_fused__softmax_mul_rsub_sub_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 4 x0 = xindex % 4 x3 = xindex // 16 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr4 + (x0 + 4 * x3), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr5 + (x0 + 4 * x3), xmask, eviction_policy= 'evict_last') tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = 10000000000.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 - tmp5 tmp7 = tmp6 * tmp2 tmp9 = tmp7 - tmp8 tmp10 = 100.0 tmp11 = tmp9 * tmp10 tmp12 = tl_math.exp(tmp11) tmp14 = tmp12 / tmp13 tmp15 = tmp14 * tmp1 tmp17 = tmp7 - tmp16 tmp18 = tmp17 * tmp10 tmp19 = tl_math.exp(tmp18) tmp21 = tmp19 / tmp20 tmp22 = tmp21 * tmp1 tl.store(out_ptr0 + x4, tmp15, xmask) tl.store(out_ptr1 + x4, tmp22, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(1024)](buf0, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_div_2[grid(1024)](arg0_1, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (64, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(arg2_1, (64, 4, 1), (4, 1, 1), 0), reinterpret_tensor(arg3_1, (64, 1, 4), (4, 4, 1), 0), out=buf4) del arg2_1 del arg3_1 buf5 = reinterpret_tensor(buf0, (4, 4, 4, 4, 1), (64, 16, 4, 1, 256), 0 ) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) triton_poi_fused__softmax_mul_rsub_sub_3[grid(256)](buf3, buf4, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 256, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 1, 4), (64, 16, 4, 256, 1), torch.float32) triton_poi_fused__softmax_mul_rsub_sub_4[grid(256)](buf3, buf4, buf9, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = buf1 del buf1 buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_mul_rsub_sub_5[grid(1024)](buf3, buf4, buf5, buf6, buf9, buf10, buf7, buf11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf10 del buf5 del buf6 del buf9 buf8 = buf3 del buf3 extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (64, 4, 4), (16, 4, 1), 0), out=buf8 ) del arg0_1 buf12 = buf7 del buf7 triton_poi_fused_clone_1[grid(1024)](arg1_1, buf12, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del arg1_1 buf13 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf11, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf12, (64, 4, 4), (16, 4, 1), 0), out=buf13 ) del buf11 del buf12 return reinterpret_tensor(buf8, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0 ), reinterpret_tensor(buf13, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0 ), reinterpret_tensor(buf4, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0 ), reinterpret_tensor(buf4, (4, 4, 4, 4, 4), (256, 64, 16, 1, 4), 0) class StructuredAttention_biNew(nn.Module): def __init__(self, dropout=0.1, scale=100): super(StructuredAttention_biNew, self).__init__() self.dropout = dropout self.scale = scale def similarity(self, C, Q, c_mask, q_mask): C = F.dropout(F.normalize(C, p=2, dim=-1), p=self.dropout, training =self.training) Q = F.dropout(F.normalize(Q, p=2, dim=-1), p=self.dropout, training =self.training) S_mask = torch.matmul(c_mask.unsqueeze(-1), q_mask.unsqueeze(-2)) S = torch.matmul(C, Q.transpose(-2, -1)) masked_S = S - 10000000000.0 * (1 - S_mask) return masked_S, S_mask def forward(self, input_0, input_1, input_2, input_3): arg1_1 = input_0 arg0_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1], output[2], output[3]
vivekrajput566/03testing2022
StructuredAttention_bi
false
16,699
[ "MIT" ]
49
f7e04f921c6607d383806ca2bbb85d2de84e0369
https://github.com/vivekrajput566/03testing2022/tree/f7e04f921c6607d383806ca2bbb85d2de84e0369
AlignEA
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/az/cazasdcnfd4vdvnvqp76gldss6jpfbd546uzzb2vc5bkonvjunrj.py # Topologically Sorted Source Nodes: [add, sub, pow_1, sum_1], Original ATen: [aten.add, aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # add => add # pow_1 => pow_1 # sub => sub # sum_1 => sum_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) triton_poi_fused_add_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_add_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr2 + (16 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp14 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp16 = tl.load(in_ptr2 + (32 + x0 + (64*x1)), xmask) tmp20 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp21 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp23 = tl.load(in_ptr2 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp5 + tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp12 + tmp18 tmp22 = tmp20 + tmp21 tmp24 = tmp22 - tmp23 tmp25 = tmp24 * tmp24 tmp26 = tmp19 + tmp25 tl.store(out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, sub, pow_1, sum_1], Original ATen: [aten.add, aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_add_pow_sub_sum_0.run(arg0_1, arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class AlignEA(torch.nn.Module): def __init__(self, p, feat_drop, params): super(AlignEA, self).__init__() self.params = params def forward(self, e1, r, e2): return torch.sum(torch.pow(e1 + r - e2, 2), 1) def only_pos_loss(self, e1, r, e2): return -F.logsigmoid(-torch.sum(torch.pow(e1 + r - e2, 2), 1)).sum() def loss(self, pos_score, neg_score, target): return F.relu(pos_score - self.params[0]).sum() + self.params[1 ] * F.relu(self.params[2] - neg_score).sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'p': 4, 'feat_drop': 4, 'params': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr2 + (16 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp14 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr2 + (32 + x0 + 64 * x1), xmask) tmp20 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp21 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp23 = tl.load(in_ptr2 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 + tmp7 tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp10 tmp12 = tmp5 + tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp12 + tmp18 tmp22 = tmp20 + tmp21 tmp24 = tmp22 - tmp23 tmp25 = tmp24 * tmp24 tmp26 = tmp19 + tmp25 tl.store(out_ptr0 + x2, tmp26, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_pow_sub_sum_0[grid(64)](arg0_1, arg1_1, arg2_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class AlignEANew(torch.nn.Module): def __init__(self, p, feat_drop, params): super(AlignEANew, self).__init__() self.params = params def only_pos_loss(self, e1, r, e2): return -F.logsigmoid(-torch.sum(torch.pow(e1 + r - e2, 2), 1)).sum() def loss(self, pos_score, neg_score, target): return F.relu(pos_score - self.params[0]).sum() + self.params[1 ] * F.relu(self.params[2] - neg_score).sum() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
weihangzhang/EAkit
AlignEA
false
16,700
[ "MIT" ]
102
dde8e914480cd1a3585271f70db11d567d9c2a04
https://github.com/weihangzhang/EAkit/tree/dde8e914480cd1a3585271f70db11d567d9c2a04
N_R_Align
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dl/cdl26m2hy376ftir63aeqndptbftlfcqva4itwmmgwwbyrs6eth2.py # Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] # Source node to ATen node mapping: # cosine_similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {}) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x3), xmask) tmp17 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-06 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tl.store(out_ptr0 + (x3), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/eu/ceuwdky2xdaefd6i42mj44mw54md2rx7qikfobocu3ikagjrvotq.py # Topologically Sorted Source Nodes: [cosine_similarity, sigmoid, mul, cosine_similarity_1, sigmoid_1, mul_1, add], Original ATen: [aten.sum, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # cosine_similarity => sum_3 # cosine_similarity_1 => sum_6 # mul => mul_1 # mul_1 => mul_3 # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sum_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, 4), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sum_6,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, -3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sum_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = 4.0 tmp9 = tmp7 * tmp8 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp18 = -3.0 tmp19 = tmp17 * tmp18 tmp20 = tmp9 + tmp19 tl.store(out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cosine_similarity_1], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg3_1, arg2_1, buf1, 256, grid=grid(256), stream=stream0) del arg2_1 del arg3_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cosine_similarity, sigmoid, mul, cosine_similarity_1, sigmoid_1, mul_1, add], Original ATen: [aten.sum, aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_mul_sigmoid_sum_1.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) del buf0 del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class N_R_Align(torch.nn.Module): def __init__(self, params): super(N_R_Align, self).__init__() self.params = params self.cos_sim = nn.CosineSimilarity(dim=1, eps=1e-06) def forward(self, e1, e2, n1, n2): return self.params * torch.sigmoid(self.cos_sim(n1, n2)) + (1 - self.params) * torch.sigmoid(self.cos_sim(e1, e2)) def loss(self, pos_score, neg_score, target): return -torch.log(pos_score).sum() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'params': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x3, xmask) tmp17 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-06 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tl.store(out_ptr0 + x3, tmp31, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = 4.0 tmp9 = tmp7 * tmp8 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tl.sigmoid(tmp16) tmp18 = -3.0 tmp19 = tmp17 * tmp18 tmp20 = tmp9 + tmp19 tl.store(out_ptr0 + x2, tmp20, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)]( arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)]( arg3_1, arg2_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg2_1 del arg3_1 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_sum_1[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 return buf2, class N_R_AlignNew(torch.nn.Module): def __init__(self, params): super(N_R_AlignNew, self).__init__() self.params = params self.cos_sim = nn.CosineSimilarity(dim=1, eps=1e-06) def loss(self, pos_score, neg_score, target): return -torch.log(pos_score).sum() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
weihangzhang/EAkit
N_R_Align
false
16,701
[ "MIT" ]
102
dde8e914480cd1a3585271f70db11d567d9c2a04
https://github.com/weihangzhang/EAkit/tree/dde8e914480cd1a3585271f70db11d567d9c2a04
HLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ys/cysoifgxjwksczk5yhq6eelde7trgm4tvc6bjotmoumtqdbpytoz.py # Topologically Sorted Source Nodes: [log, b, setitem, sum_1, b_1], Original ATen: [aten.log, aten.mul, aten.lift_fresh, aten.index_put, aten.sum] # Source node to ATen node mapping: # b => mul # b_1 => mul_1 # log => log # setitem => full_default, index_put # sum_1 => sum_1 # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %log), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%mul, [%isnan], %full_default), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%index_put,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -1.0), kwargs = {}) triton_per_fused_index_put_lift_fresh_log_mul_sum_0 = async_compile.triton('triton_per_fused_index_put_lift_fresh_log_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_lift_fresh_log_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_put_lift_fresh_log_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp3 = libdevice.isnan(tmp2).to(tl.int1) tmp4 = 0.0 tmp5 = tl.where(tmp3, tmp4, tmp2) tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = -1.0 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [log, b, setitem, sum_1, b_1], Original ATen: [aten.log, aten.mul, aten.lift_fresh, aten.index_put, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_index_put_lift_fresh_log_mul_sum_0.run(buf2, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HLoss(nn.Module): def __init__(self): super(HLoss, self).__init__() def forward(self, x): b = x * torch.log(x) b[torch.isnan(b)] = 0 b = -1.0 * b.sum() return b def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_index_put_lift_fresh_log_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp3 = libdevice.isnan(tmp2).to(tl.int1) tmp4 = 0.0 tmp5 = tl.where(tmp3, tmp4, tmp2) tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = -1.0 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_index_put_lift_fresh_log_mul_sum_0[grid(1)](buf2, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf2, class HLossNew(nn.Module): def __init__(self): super(HLossNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
wengong-jin/chemprop
HLoss
false
16,702
[ "MIT" ]
77
3ad3577367d8a53f28aade0be41b56b1f25b6125
https://github.com/wengong-jin/chemprop/tree/3ad3577367d8a53f28aade0be41b56b1f25b6125
depthwise_block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5x/c5x7dqzlsrbbcjewbqspqqmnmhn5phgfzvac63teaxnhogxx6tll.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class depthwise_conv(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, x): C, H, W = x.shape[1:] x = x.reshape(-1, 1, H, W) x = self.depthwise(x) x = x.view(-1, C, H, W) return x class depthwise_block(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'): super(depthwise_block, self).__init__() self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1) if activation == 'relu': self.activation = nn.ReLU() elif activation == 'lrelu': self.activation = nn.LeakyReLU() elif activation == 'tanh': self.activation = nn.Tanh() def forward(self, x, act=True): x = self.depthwise(x) if act: x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), ( 16, 16, 4, 1), 0), buf2 class depthwise_conv(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, x): C, H, W = x.shape[1:] x = x.reshape(-1, 1, H, W) x = self.depthwise(x) x = x.view(-1, C, H, W) return x class depthwise_blockNew(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'): super(depthwise_blockNew, self).__init__() self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1) if activation == 'relu': self.activation = nn.ReLU() elif activation == 'lrelu': self.activation = nn.LeakyReLU() elif activation == 'tanh': self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.depthwise.depthwise.weight primals_3 = self.depthwise.depthwise.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
whiteking64/lang-seg
depthwise_block
false
16,703
[ "MIT" ]
202
9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
https://github.com/whiteking64/lang-seg/tree/9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
AttentionCollapse
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qd/cqdeq43qe4svv73gibse7ntoxuifjzkednfi423ripuw5mckogv5.py # Topologically Sorted Source Nodes: [tformed], Original ATen: [aten.clone] # Source node to ATen node mapping: # tformed => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ui/cui7anloawealrzbumkds6wbiicpbubccdpdo2m54sjrhg42gt5e.py # Topologically Sorted Source Nodes: [tformed_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # tformed_2 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (128 + y0 + (4*x2) + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dz/cdzmb2fpv7buo6llqitadw7ow4xpzz7zuqu4gu35vc7ewvfcz4ov.py # Topologically Sorted Source Nodes: [tformed_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # tformed_3 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_12,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (192 + y0 + (4*x2) + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yh/cyhc6vqrvxdwror3qad2xznv3nhvsq2cdug4s47ednfph342be3e.py # Topologically Sorted Source Nodes: [tformed_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # tformed_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = (xindex // 4) y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (64 + y0 + (4*x2) + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h3/ch3fpuxjyvuxhfpz6c44vn5w5pucpfuuwmaqidmok5uucjefe4vw.py # Topologically Sorted Source Nodes: [tformed, tformed_1, tformed_2, tformed_3], Original ATen: [aten.add] # Source node to ATen node mapping: # tformed => add # tformed_1 => add_1 # tformed_2 => add_2 # tformed_3 => add_3 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %primals_3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %primals_3), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x2), xmask) tmp5 = tl.load(in_out_ptr2 + (x2), xmask) tmp7 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp8 = tmp7 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(in_out_ptr1 + (x2), tmp4, xmask) tl.store(in_out_ptr2 + (x2), tmp6, xmask) tl.store(in_out_ptr3 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xc/cxc5doccwebfyrprs4yc5eszfjx732wl6fqnr3rgnt2avrxpjv6g.py # Topologically Sorted Source Nodes: [scaled_w], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scaled_w => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cn/ccnuca5xfcii44dqwy7ozzizo6jkf7qvyd2gmp6ieo5azn6ggycd.py # Topologically Sorted Source Nodes: [scaled_w], Original ATen: [aten._softmax] # Source node to ATen node mapping: # scaled_w => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3x/c3xtnwvb2qy7bomk5dg6i5p7ppxw7fuvbwxggnrmx6zfe2nrwklv.py # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%permute_3, %permute_7, %permute_11, %permute_15],), kwargs = {}) triton_poi_fused_stack_7 = async_compile.triton('triton_poi_fused_stack_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + (4*x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 * tmp6 tmp8 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tmp15 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tmp0 >= tmp3 tmp25 = tl.full([1], 8, tl.int64) tmp26 = tmp0 < tmp25 tmp27 = tmp24 & tmp26 tmp28 = tl.load(in_ptr0 + (64 + x0 + (16*((-4) + x1))), tmp27 & xmask, other=0.0) tmp29 = tl.load(in_ptr2 + (4*x0), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tmp28 * tmp29 tmp31 = tl.load(in_ptr0 + (68 + x0 + (16*((-4) + x1))), tmp27 & xmask, other=0.0) tmp32 = tl.load(in_ptr2 + (1 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tmp35 = tl.load(in_ptr0 + (72 + x0 + (16*((-4) + x1))), tmp27 & xmask, other=0.0) tmp36 = tl.load(in_ptr2 + (2 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 * tmp36 tmp38 = tmp34 + tmp37 tmp39 = tl.load(in_ptr0 + (76 + x0 + (16*((-4) + x1))), tmp27 & xmask, other=0.0) tmp40 = tl.load(in_ptr2 + (3 + (4*x0)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tmp39 * tmp40 tmp42 = tmp38 + tmp41 tmp43 = tmp42 / tmp20 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp27, tmp43, tmp44) tmp46 = tmp0 >= tmp25 tmp47 = tl.full([1], 12, tl.int64) tmp48 = tmp0 < tmp47 tmp49 = tmp46 & tmp48 tmp50 = tl.load(in_ptr0 + (128 + x0 + (16*((-8) + x1))), tmp49 & xmask, other=0.0) tmp51 = tl.load(in_ptr3 + (4*x0), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 * tmp51 tmp53 = tl.load(in_ptr0 + (132 + x0 + (16*((-8) + x1))), tmp49 & xmask, other=0.0) tmp54 = tl.load(in_ptr3 + (1 + (4*x0)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp53 * tmp54 tmp56 = tmp52 + tmp55 tmp57 = tl.load(in_ptr0 + (136 + x0 + (16*((-8) + x1))), tmp49 & xmask, other=0.0) tmp58 = tl.load(in_ptr3 + (2 + (4*x0)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp59 = tmp57 * tmp58 tmp60 = tmp56 + tmp59 tmp61 = tl.load(in_ptr0 + (140 + x0 + (16*((-8) + x1))), tmp49 & xmask, other=0.0) tmp62 = tl.load(in_ptr3 + (3 + (4*x0)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp63 = tmp61 * tmp62 tmp64 = tmp60 + tmp63 tmp65 = tmp64 / tmp20 tmp66 = tl.full(tmp65.shape, 0.0, tmp65.dtype) tmp67 = tl.where(tmp49, tmp65, tmp66) tmp68 = tmp0 >= tmp47 tmp69 = tl.full([1], 16, tl.int64) tmp70 = tmp0 < tmp69 tmp71 = tl.load(in_ptr0 + (192 + x0 + (16*((-12) + x1))), tmp68 & xmask, other=0.0) tmp72 = tl.load(in_ptr4 + (4*x0), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp73 = tmp71 * tmp72 tmp74 = tl.load(in_ptr0 + (196 + x0 + (16*((-12) + x1))), tmp68 & xmask, other=0.0) tmp75 = tl.load(in_ptr4 + (1 + (4*x0)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp74 * tmp75 tmp77 = tmp73 + tmp76 tmp78 = tl.load(in_ptr0 + (200 + x0 + (16*((-12) + x1))), tmp68 & xmask, other=0.0) tmp79 = tl.load(in_ptr4 + (2 + (4*x0)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp80 = tmp78 * tmp79 tmp81 = tmp77 + tmp80 tmp82 = tl.load(in_ptr0 + (204 + x0 + (16*((-12) + x1))), tmp68 & xmask, other=0.0) tmp83 = tl.load(in_ptr4 + (3 + (4*x0)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp84 = tmp82 * tmp83 tmp85 = tmp81 + tmp84 tmp86 = tmp85 / tmp20 tmp87 = tl.full(tmp86.shape, 0.0, tmp86.dtype) tmp88 = tl.where(tmp68, tmp86, tmp87) tmp89 = tl.where(tmp49, tmp67, tmp88) tmp90 = tl.where(tmp27, tmp45, tmp89) tmp91 = tl.where(tmp4, tmp23, tmp90) tl.store(out_ptr0 + (x2), tmp91, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 4, 16, grid=grid(4, 16), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf12, 4, 16, grid=grid(4, 16), stream=stream0) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf13) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_3], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(primals_1, buf18, 4, 16, grid=grid(4, 16), stream=stream0) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf19) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_1], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(primals_1, buf6, 4, 16, grid=grid(4, 16), stream=stream0) buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tformed_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf7) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse buf14 = reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0); del buf13 # reuse buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse # Topologically Sorted Source Nodes: [tformed, tformed_1, tformed_2, tformed_3], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf2, buf8, buf14, buf20, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [w], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf9 = reinterpret_tensor(buf4, (16, 1), (1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [w_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf9, buf10, 16, grid=grid(16), stream=stream0) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf10, buf11, 16, grid=grid(16), stream=stream0) buf15 = reinterpret_tensor(buf10, (16, 1), (1, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [w_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf15, buf16, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf16, buf17, 16, grid=grid(16), stream=stream0) buf21 = reinterpret_tensor(buf16, (16, 1), (1, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [w_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [scaled_w_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf22, buf23, 16, grid=grid(16), stream=stream0) del buf22 buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] triton_poi_fused_stack_7.run(primals_1, buf5, buf11, buf17, buf23, buf24, 64, grid=grid(64), stream=stream0) del buf11 del buf17 del buf23 del buf5 return (reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0), primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf3, reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(buf8, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), buf21, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AttentionCollapse(nn.Module): """Collapsing over the channels with attention. Parameters ---------- n_channels : int Number of input channels. Attributes ---------- affine : nn.Module Fully connected layer performing linear mapping. context_vector : nn.Module Fully connected layer encoding direction importance. """ def __init__(self, n_channels): super().__init__() self.affine = nn.Linear(n_channels, n_channels) self.context_vector = nn.Linear(n_channels, 1, bias=False) def forward(self, x): """Perform forward pass. Parameters ---------- x : torch.Tensor Tensor of shape `(n_samples, n_channels, lookback, n_assets)`. Returns ------- torch.Tensor Tensor of shape `(n_samples, n_channels, n_assets)`. """ n_samples, _n_channels, _lookback, _n_assets = x.shape res_list = [] for i in range(n_samples): inp_single = x[i].permute(2, 1, 0) tformed = self.affine(inp_single) w = self.context_vector(tformed) scaled_w = torch.nn.functional.softmax(w, dim=1) weighted_sum = (inp_single * scaled_w).mean(dim=1) res_list.append(weighted_sum.permute(1, 0)) return torch.stack(res_list, dim=0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * x1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (128 + y0 + 4 * x2 + 16 * x1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (192 + y0 + 4 * x2 + 16 * x1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex % 4 x2 = xindex // 4 y0 = yindex x3 = xindex tmp0 = tl.load(in_ptr0 + (64 + y0 + 4 * x2 + 16 * x1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x2, xmask) tmp5 = tl.load(in_out_ptr2 + x2, xmask) tmp7 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp8 = tmp7 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(in_out_ptr1 + x2, tmp4, xmask) tl.store(in_out_ptr2 + x2, tmp6, xmask) tl.store(in_out_ptr3 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_stack_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr1 + 4 * x0, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 * tmp6 tmp8 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tmp15 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tmp0 >= tmp3 tmp25 = tl.full([1], 8, tl.int64) tmp26 = tmp0 < tmp25 tmp27 = tmp24 & tmp26 tmp28 = tl.load(in_ptr0 + (64 + x0 + 16 * (-4 + x1)), tmp27 & xmask, other=0.0) tmp29 = tl.load(in_ptr2 + 4 * x0, tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp30 = tmp28 * tmp29 tmp31 = tl.load(in_ptr0 + (68 + x0 + 16 * (-4 + x1)), tmp27 & xmask, other=0.0) tmp32 = tl.load(in_ptr2 + (1 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tmp35 = tl.load(in_ptr0 + (72 + x0 + 16 * (-4 + x1)), tmp27 & xmask, other=0.0) tmp36 = tl.load(in_ptr2 + (2 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 * tmp36 tmp38 = tmp34 + tmp37 tmp39 = tl.load(in_ptr0 + (76 + x0 + 16 * (-4 + x1)), tmp27 & xmask, other=0.0) tmp40 = tl.load(in_ptr2 + (3 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp41 = tmp39 * tmp40 tmp42 = tmp38 + tmp41 tmp43 = tmp42 / tmp20 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp27, tmp43, tmp44) tmp46 = tmp0 >= tmp25 tmp47 = tl.full([1], 12, tl.int64) tmp48 = tmp0 < tmp47 tmp49 = tmp46 & tmp48 tmp50 = tl.load(in_ptr0 + (128 + x0 + 16 * (-8 + x1)), tmp49 & xmask, other=0.0) tmp51 = tl.load(in_ptr3 + 4 * x0, tmp49 & xmask, eviction_policy= 'evict_last', other=0.0) tmp52 = tmp50 * tmp51 tmp53 = tl.load(in_ptr0 + (132 + x0 + 16 * (-8 + x1)), tmp49 & xmask, other=0.0) tmp54 = tl.load(in_ptr3 + (1 + 4 * x0), tmp49 & xmask, eviction_policy= 'evict_last', other=0.0) tmp55 = tmp53 * tmp54 tmp56 = tmp52 + tmp55 tmp57 = tl.load(in_ptr0 + (136 + x0 + 16 * (-8 + x1)), tmp49 & xmask, other=0.0) tmp58 = tl.load(in_ptr3 + (2 + 4 * x0), tmp49 & xmask, eviction_policy= 'evict_last', other=0.0) tmp59 = tmp57 * tmp58 tmp60 = tmp56 + tmp59 tmp61 = tl.load(in_ptr0 + (140 + x0 + 16 * (-8 + x1)), tmp49 & xmask, other=0.0) tmp62 = tl.load(in_ptr3 + (3 + 4 * x0), tmp49 & xmask, eviction_policy= 'evict_last', other=0.0) tmp63 = tmp61 * tmp62 tmp64 = tmp60 + tmp63 tmp65 = tmp64 / tmp20 tmp66 = tl.full(tmp65.shape, 0.0, tmp65.dtype) tmp67 = tl.where(tmp49, tmp65, tmp66) tmp68 = tmp0 >= tmp47 tl.full([1], 16, tl.int64) tmp71 = tl.load(in_ptr0 + (192 + x0 + 16 * (-12 + x1)), tmp68 & xmask, other=0.0) tmp72 = tl.load(in_ptr4 + 4 * x0, tmp68 & xmask, eviction_policy= 'evict_last', other=0.0) tmp73 = tmp71 * tmp72 tmp74 = tl.load(in_ptr0 + (196 + x0 + 16 * (-12 + x1)), tmp68 & xmask, other=0.0) tmp75 = tl.load(in_ptr4 + (1 + 4 * x0), tmp68 & xmask, eviction_policy= 'evict_last', other=0.0) tmp76 = tmp74 * tmp75 tmp77 = tmp73 + tmp76 tmp78 = tl.load(in_ptr0 + (200 + x0 + 16 * (-12 + x1)), tmp68 & xmask, other=0.0) tmp79 = tl.load(in_ptr4 + (2 + 4 * x0), tmp68 & xmask, eviction_policy= 'evict_last', other=0.0) tmp80 = tmp78 * tmp79 tmp81 = tmp77 + tmp80 tmp82 = tl.load(in_ptr0 + (204 + x0 + 16 * (-12 + x1)), tmp68 & xmask, other=0.0) tmp83 = tl.load(in_ptr4 + (3 + 4 * x0), tmp68 & xmask, eviction_policy= 'evict_last', other=0.0) tmp84 = tmp82 * tmp83 tmp85 = tmp81 + tmp84 tmp86 = tmp85 / tmp20 tmp87 = tl.full(tmp86.shape, 0.0, tmp86.dtype) tmp88 = tl.where(tmp68, tmp86, tmp87) tmp89 = tl.where(tmp49, tmp67, tmp88) tmp90 = tl.where(tmp27, tmp45, tmp89) tmp91 = tl.where(tmp4, tmp23, tmp90) tl.store(out_ptr0 + x2, tmp91, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4, 16)](primals_1, buf0, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(4, 16)](primals_1, buf12, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf13) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(4, 16)](primals_1, buf18, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf19) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 16)](primals_1, buf6, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf7) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0) del buf7 buf14 = reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0) del buf13 buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0) del buf19 triton_poi_fused_add_4[grid(64)](buf2, buf8, buf14, buf20, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_5[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_6[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf4, (16, 1), (1, 1), 0) del buf4 extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_5[grid(16)](buf9, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_6[grid(16)](buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf15 = reinterpret_tensor(buf10, (16, 1), (1, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_5[grid(16)](buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_6[grid(16)](buf16, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) buf21 = reinterpret_tensor(buf16, (16, 1), (1, 1), 0) del buf16 extern_kernels.mm(reinterpret_tensor(buf20, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf21) buf22 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_5[grid(16)](buf21, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused__softmax_6[grid(16)](buf22, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf22 buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_stack_7[grid(64)](primals_1, buf5, buf11, buf17, buf23, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf11 del buf17 del buf23 del buf5 return reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0 ), primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf2, (16, 4), (4, 1), 0 ), buf3, reinterpret_tensor(buf6, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf14, (16, 4), (4, 1), 0 ), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), buf21, primals_4 class AttentionCollapseNew(nn.Module): """Collapsing over the channels with attention. Parameters ---------- n_channels : int Number of input channels. Attributes ---------- affine : nn.Module Fully connected layer performing linear mapping. context_vector : nn.Module Fully connected layer encoding direction importance. """ def __init__(self, n_channels): super().__init__() self.affine = nn.Linear(n_channels, n_channels) self.context_vector = nn.Linear(n_channels, 1, bias=False) def forward(self, input_0): primals_2 = self.affine.weight primals_3 = self.affine.bias primals_4 = self.context_vector.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
vishalbelsare/deepdow
AttentionCollapse
false
16,704
[ "Apache-2.0" ]
511
cbb99347fba9a447d4fcae64fe5137c203643e44
https://github.com/vishalbelsare/deepdow/tree/cbb99347fba9a447d4fcae64fe5137c203643e44
Gating
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oh/cohhzozgklcdr3g2cpdmnac2zvbvmk53smneafef4zekz5p2kieu.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5w/c5w7akvs3zwvcp3upuvqzxikaskbktlfscwqcnyswqcpupiprav4.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bj/cbjysb56yh4ggfzb72c3xdhbbnmqhfc3pvpexw6rfp2nme2jhyyl.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vl/cvlc7qn5a6szczc2wpaipmwq6huly3r2j6sxosub4hbev3a57usj.py # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fg/cfgc4yc2rsgeg4bjrc6khcrfof4lgqmi7k4zphx5eypv2nwse2sl.py # Topologically Sorted Source Nodes: [conv2d_6, x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_6 => relu_6 # x_7 => tanh # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%relu_6,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_tanh_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_tanh_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_tanh_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + (x3), tmp5, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ye/cyebozxca6jp635wdmfcsgijoarij4dugzvje3cbkk3jnd43fj3x.py # Topologically Sorted Source Nodes: [conv2d_7, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # x_9 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pp/cppqhhzivxo4mypqinn3f65ugarvjjsgory2kyopras44d2jcfvf.py # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_11 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/im/cimwjimwdnu46ilztcd57kammlorgwebx2vcs645peqpjj2j4pwk.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # x_12 => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_9, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_9, %amax), kwargs = {}) triton_poi_fused__log_softmax_7 = async_compile.triton('triton_poi_fused__log_softmax_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wb/cwb6yk7fx4digcmhrmo6tjyge2t73fzx437t3vl5lroa6x7t6fem.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # x_12 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_8 = async_compile.triton('triton_poi_fused__log_softmax_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (8, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (8, ), (1, )) assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (4, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 131072, grid=grid(131072), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 16, 16), (8192, 256, 16, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 32768, grid=grid(32768), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 8, 8), (4096, 64, 8, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf9, primals_11, 16384, grid=grid(16384), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 8, 8), (4096, 64, 8, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf11, primals_13, 16384, grid=grid(16384), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1)) buf13 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.float32) buf24 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.tanh, aten.threshold_backward] triton_poi_fused_convolution_relu_tanh_threshold_backward_4.run(buf12, primals_15, buf13, buf24, 16384, grid=grid(16384), stream=stream0) del buf12 del primals_15 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.avg_pool2d] buf14 = torch.ops.aten.avg_pool2d.default(buf13, [8, 8], [8, 8], [0, 0], False, True, None) buf15 = buf14 del buf14 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 1, 1), (64, 1, 1, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf17, primals_17, 256, grid=grid(256), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 1, 1), (64, 1, 1, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [conv2d_8, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf19, primals_19, 256, grid=grid(256), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 4, 1, 1), (4, 1, 1, 1)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf21, primals_21, 16, grid=grid(16), stream=stream0) del primals_21 buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_7.run(buf21, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_8.run(buf22, buf23, 16, grid=grid(16), stream=stream0) del buf22 return (reinterpret_tensor(buf23, (4, 4), (4, 1), 0), primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Gating(nn.Module): """ FCN architecture for large scale scene coordiante regression. """ def __init__(self, num_experts, capacity=1): """ Constructor. """ super(Gating, self).__init__() self.capacity = capacity self.conv1 = nn.Conv2d(3, 8, 3, 1, 1) self.conv2 = nn.Conv2d(8, 16, 3, 2, 1) self.conv3 = nn.Conv2d(16, 32, 3, 2, 1) self.conv4 = nn.Conv2d(32, 64 * capacity, 3, 2, 1) self.res1_conv1 = nn.Conv2d(64 * capacity, 64 * capacity, 3, 1, 1) self.res1_conv2 = nn.Conv2d(64 * capacity, 64 * capacity, 1, 1, 0) self.res1_conv3 = nn.Conv2d(64 * capacity, 64 * capacity, 3, 1, 1) self.fc1 = nn.Conv2d(64 * capacity, 64 * capacity ** 2, 1, 1, 0) self.fc2 = nn.Conv2d(64 * capacity ** 2, 64 * capacity ** 2, 1, 1, 0) self.fc3 = nn.Conv2d(64 * capacity ** 2, num_experts, 1, 1, 0) def forward(self, inputs): """ Forward pass. inputs -- 4D data tensor (BxCxHxW) """ x = inputs x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.res1_conv1(x)) x = F.relu(self.res1_conv2(x)) x = F.relu(self.res1_conv3(x)) if self.capacity == 1: x = torch.tanh(x) x = F.avg_pool2d(x, x.size()[2:]) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) x = F.log_softmax(x, dim=1) return x[:, :, 0, 0] def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'num_experts': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 8 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 16 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_tanh_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = libdevice.tanh(tmp4) tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + x3, tmp5, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (8, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_3, (8,), (1,)) assert_size_stride(primals_4, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (32, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (4, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 64, 64), (32768, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(131072)](buf1, primals_3, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 32, 32), (16384, 1024, 32, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(65536)](buf3, primals_5, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 16, 16), (8192, 256, 16, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(32768)](buf5, primals_7, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_3[grid(16384)](buf7, primals_9, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 8, 8), (4096, 64, 8, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_3[grid(16384)](buf9, primals_11, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 8, 8), (4096, 64, 8, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_3[grid(16384)](buf11, primals_13, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 8, 8), (4096, 64, 8, 1)) buf13 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch. float32) buf24 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_tanh_threshold_backward_4[grid(16384) ](buf12, primals_15, buf13, buf24, 16384, XBLOCK=256, num_warps =4, num_stages=1) del buf12 del primals_15 buf14 = torch.ops.aten.avg_pool2d.default(buf13, [8, 8], [8, 8], [0, 0], False, True, None) buf15 = buf14 del buf14 buf16 = extern_kernels.convolution(buf15, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 1, 1), (64, 1, 1, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_5[grid(256)](buf17, primals_17, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 buf18 = extern_kernels.convolution(buf17, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 1, 1), (64, 1, 1, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_5[grid(256)](buf19, primals_19, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_19 buf20 = extern_kernels.convolution(buf19, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 4, 1, 1), (4, 1, 1, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_6[grid(16)](buf21, primals_21, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_21 buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) triton_poi_fused__log_softmax_7[grid(16)](buf21, buf22, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) triton_poi_fused__log_softmax_8[grid(16)](buf22, buf23, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf22 return (reinterpret_tensor(buf23, (4, 4), (4, 1), 0), primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf19, buf21, buf24) class GatingNew(nn.Module): """ FCN architecture for large scale scene coordiante regression. """ def __init__(self, num_experts, capacity=1): """ Constructor. """ super(GatingNew, self).__init__() self.capacity = capacity self.conv1 = nn.Conv2d(3, 8, 3, 1, 1) self.conv2 = nn.Conv2d(8, 16, 3, 2, 1) self.conv3 = nn.Conv2d(16, 32, 3, 2, 1) self.conv4 = nn.Conv2d(32, 64 * capacity, 3, 2, 1) self.res1_conv1 = nn.Conv2d(64 * capacity, 64 * capacity, 3, 1, 1) self.res1_conv2 = nn.Conv2d(64 * capacity, 64 * capacity, 1, 1, 0) self.res1_conv3 = nn.Conv2d(64 * capacity, 64 * capacity, 3, 1, 1) self.fc1 = nn.Conv2d(64 * capacity, 64 * capacity ** 2, 1, 1, 0) self.fc2 = nn.Conv2d(64 * capacity ** 2, 64 * capacity ** 2, 1, 1, 0) self.fc3 = nn.Conv2d(64 * capacity ** 2, num_experts, 1, 1, 0) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.res1_conv1.weight primals_11 = self.res1_conv1.bias primals_12 = self.res1_conv2.weight primals_13 = self.res1_conv2.bias primals_14 = self.res1_conv3.weight primals_15 = self.res1_conv3.bias primals_16 = self.fc1.weight primals_17 = self.fc1.bias primals_18 = self.fc2.weight primals_19 = self.fc2.bias primals_20 = self.fc3.weight primals_21 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return output[0]
vislearn/esac
Gating
false
16,705
[ "BSD-3-Clause" ]
62
4004b251525fa238a1cb6e1043fb41a4719a4ff2
https://github.com/vislearn/esac/tree/4004b251525fa238a1cb6e1043fb41a4719a4ff2
LearnedKernel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yj/cyjqjllbc3bikte2womjnjqgo2d7wrcb5dt3tpl2sgyogireta4f.py # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] # Source node to ATen node mapping: # linear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%squeeze,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h2/ch2cxgshazmhthvy3pttpudu75sh6pzdtcfjodzy4xxoyu2c7tqv.py # Topologically Sorted Source Nodes: [linear, mul, sum_1], Original ATen: [aten.add, aten.mul, aten.sum] # Source node to ATen node mapping: # linear => add # mul => mul # sum_1 => sum_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %squeeze_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_add_mul_sum_1 = async_compile.triton('triton_poi_fused_add_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr2 + (4 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr2 + (8 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp17 = tl.load(in_ptr2 + (12 + x0 + (64*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 + tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 + tmp1 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear, mul, sum_1], Original ATen: [aten.add, aten.mul, aten.sum] triton_poi_fused_add_mul_sum_1.run(buf1, primals_3, primals_1, buf2, 16, grid=grid(16), stream=stream0) del buf1 del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4, 4), (64, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class LearnedKernel(nn.Module): def __init__(self, args: 'Namespace'): super(LearnedKernel, self).__init__() self.A = nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size) def forward(self, encodings: 'torch.Tensor'): return (self.A(encodings[:, 1, :].squeeze(1)) * encodings[:, 0, :]. squeeze(1)).sum(dim=1, keepdim=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config(ffn_hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_mul_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr2 + (4 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr2 + (8 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp17 = tl.load(in_ptr2 + (12 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp11 = tmp10 + tmp1 tmp13 = tmp11 * tmp12 tmp14 = tmp9 + tmp13 tmp16 = tmp15 + tmp1 tmp18 = tmp16 * tmp17 tmp19 = tmp14 + tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) triton_poi_fused_add_mul_sum_1[grid(16)](buf1, primals_3, primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (4, 4, 4), (64, 4, 1), 0) class LearnedKernelNew(nn.Module): def __init__(self, args: 'Namespace'): super(LearnedKernelNew, self).__init__() self.A = nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size) def forward(self, input_0): primals_2 = self.A.weight primals_3 = self.A.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
wengong-jin/chemprop
LearnedKernel
false
16,706
[ "MIT" ]
77
3ad3577367d8a53f28aade0be41b56b1f25b6125
https://github.com/wengong-jin/chemprop/tree/3ad3577367d8a53f28aade0be41b56b1f25b6125
depthwise_clipseg_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bd/cbdohqvf5ovewdd5y6dtctx4lewezgg3jimtio6amaolbcczwafo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1, %convolution_2, %convolution_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (16*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp15 + tmp7 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp14, tmp16, tmp17) tmp19 = tmp0 >= tmp12 tmp20 = tl.full([1], 3, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr3 + (x0 + (16*x2)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp23 + tmp7 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp22, tmp24, tmp25) tmp27 = tmp0 >= tmp20 tmp28 = tl.full([1], 4, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tl.load(in_ptr4 + (x0 + (16*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 + tmp7 tmp32 = tl.full(tmp31.shape, 0.0, tmp31.dtype) tmp33 = tl.where(tmp27, tmp31, tmp32) tmp34 = tl.where(tmp22, tmp26, tmp33) tmp35 = tl.where(tmp14, tmp18, tmp34) tmp36 = tl.where(tmp4, tmp10, tmp35) tl.store(out_ptr0 + (x3), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 48), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_3, buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del buf2 del buf3 del primals_3 return (buf4, primals_2, reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class depthwise_clipseg_conv(nn.Module): def __init__(self): super(depthwise_clipseg_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=3, padding=1) def depthwise_clipseg(self, x, channels): x = torch.cat([self.depthwise(x[:, i].unsqueeze(1)) for i in range( channels)], dim=1) return x def forward(self, x): channels = x.shape[1] out = self.depthwise_clipseg(x, channels) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 16 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp15 + tmp7 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp14, tmp16, tmp17) tmp19 = tmp0 >= tmp12 tmp20 = tl.full([1], 3, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr3 + (x0 + 16 * x2), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp23 + tmp7 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp22, tmp24, tmp25) tmp27 = tmp0 >= tmp20 tl.full([1], 4, tl.int64) tmp30 = tl.load(in_ptr4 + (x0 + 16 * x2), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 + tmp7 tmp32 = tl.full(tmp31.shape, 0.0, tmp31.dtype) tmp33 = tl.where(tmp27, tmp31, tmp32) tmp34 = tl.where(tmp22, tmp26, tmp33) tmp35 = tl.where(tmp14, tmp18, tmp34) tmp36 = tl.where(tmp4, tmp10, tmp35) tl.store(out_ptr0 + x3, tmp36, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), primals_2, stride=(1, 1), padding= (1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 0, 4, 1), 48), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](buf0, primals_3, buf1, buf2, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del buf3 del primals_3 return buf4, primals_2, reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), reinterpret_tensor(primals_1, (4, 1, 4, 4), (64, 16, 4, 1), 48 ) class depthwise_clipseg_convNew(nn.Module): def __init__(self): super(depthwise_clipseg_convNew, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=3, padding=1) def depthwise_clipseg(self, x, channels): x = torch.cat([self.depthwise(x[:, i].unsqueeze(1)) for i in range( channels)], dim=1) return x def forward(self, input_0): primals_2 = self.depthwise.weight primals_3 = self.depthwise.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
whiteking64/lang-seg
depthwise_clipseg_conv
false
16,707
[ "MIT" ]
202
9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
https://github.com/whiteking64/lang-seg/tree/9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
SAModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6q/c6qyrmvchep2lyeodxjgze7brt2fv4khvsx2os2smplvfajckxaz.py # Topologically Sorted Source Nodes: [x_2, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # x_2 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SAModule(nn.Module): """Spatial Attention Module""" def __init__(self): super(SAModule, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): input = x avg_c = torch.mean(x, 1, True) max_c, _ = torch.max(x, 1, True) x = torch.cat((avg_c, max_c), 1) x = self.conv(x) x = self.sigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](primals_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class SAModuleNew(nn.Module): """Spatial Attention Module""" def __init__(self): super(SAModuleNew, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
whkwls2653/Pytorch_Face_Recognition-
SAModule
false
16,708
[ "MIT" ]
62
60f3849def589957d9080457a1a9833112a71f6c
https://github.com/whkwls2653/Pytorch_Face_Recognition-/tree/60f3849def589957d9080457a1a9833112a71f6c
BoundaryDecoderAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jv/cjv3jqpetzvyv5nexuffuiovdlgdbngcubr6hxoj7yjckp6ar7yv.py # Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mv] # Source node to ATen node mapping: # beta => mul, sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_7), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mv_0 = async_compile.triton('triton_poi_fused_mv_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*(x0 // 4)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (1)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (2)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (3 + (4*(x0 // 4))), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + (3)) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp6 = tmp3 * tmp5 tmp9 = tmp7 + tmp8 tmp10 = libdevice.tanh(tmp9) tmp13 = tmp10 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp26 = libdevice.tanh(tmp25) tmp29 = tmp26 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sy/csy4qelncjapr2yflzj2dmmwcwvhc6qh4y7m4efmiyzs3u6qvgbu.py # Topologically Sorted Source Nodes: [beta_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.add, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] # Source node to ATen node mapping: # beta_1 => add_1 # e_x => exp # e_x_1 => mul_2 # max_1 => max_1 # sub => sub # sum_1 => sum_2 # x => clamp_max, clamp_min # x_1 => mul_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %unsqueeze_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %primals_9), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul_1, -1, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %primals_9), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1], True), kwargs = {}) triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1 = async_compile.triton('triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp4 = -15.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 15.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp9 = tmp7 * tmp8 tmp11 = tmp10 + tmp2 tmp12 = triton_helpers.maximum(tmp11, tmp4) tmp13 = triton_helpers.minimum(tmp12, tmp6) tmp15 = tmp13 * tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp17 + tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp4) tmp20 = triton_helpers.minimum(tmp19, tmp6) tmp22 = tmp20 * tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp24 + tmp2 tmp26 = triton_helpers.maximum(tmp25, tmp4) tmp27 = triton_helpers.minimum(tmp26, tmp6) tmp29 = tmp27 * tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tmp9 - tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 * tmp8 tmp34 = tmp15 - tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 * tmp14 tmp37 = tmp33 + tmp36 tmp38 = tmp22 - tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp39 * tmp21 tmp41 = tmp37 + tmp40 tmp42 = tmp29 - tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp43 * tmp28 tmp45 = tmp41 + tmp44 tl.store(out_ptr0 + (x0), tmp30, xmask) tl.store(out_ptr1 + (x0), tmp45, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f7/cf7xlxpd6f5ap4f5nu2podbfzwt7je3yh6uhnjax6zq5zayosidk.py # Topologically Sorted Source Nodes: [beta_1, x, x_1, sub, e_x, e_x_1, add_2, softmax], Original ATen: [aten.add, aten.clamp, aten.mul, aten.sub, aten.exp, aten.div] # Source node to ATen node mapping: # add_2 => add_2 # beta_1 => add_1 # e_x => exp # e_x_1 => mul_2 # softmax => div # sub => sub # x => clamp_max, clamp_min # x_1 => mul_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %unsqueeze_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %primals_9), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %primals_9), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1e-06), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, %add_2), kwargs = {}) triton_poi_fused_add_clamp_div_exp_mul_sub_2 = async_compile.triton('triton_poi_fused_add_clamp_div_exp_mul_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_exp_mul_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_exp_mul_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr1 + (x2), xmask) tmp10 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp4 = -15.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 15.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp9 = tmp7 * tmp8 tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 * tmp8 tmp15 = 1e-06 tmp16 = tmp14 + tmp15 tmp17 = tmp13 / tmp16 tl.store(in_out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Fk], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Fk_prime], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mv] stream0 = get_raw_stream(0) triton_poi_fused_mv_0.run(buf0, buf1, primals_7, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [beta_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.add, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1.run(buf2, primals_8, primals_9, buf3, buf4, 4, grid=grid(4), stream=stream0) buf5 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [beta_1, x, x_1, sub, e_x, e_x_1, add_2, softmax], Original ATen: [aten.add, aten.clamp, aten.mul, aten.sub, aten.exp, aten.div] triton_poi_fused_add_clamp_div_exp_mul_sub_2.run(buf5, primals_8, primals_9, buf3, buf4, 16, grid=grid(16), stream=stream0) del buf3 del buf4 buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0), primals_1, out=buf6) return (reinterpret_tensor(buf6, (4, 4), (4, 1), 0), buf5, primals_1, primals_6, primals_7, primals_8, primals_9, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def masked_softmax(x, m=None, axis=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=axis, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=axis, keepdim=True) + 1e-06) return softmax class BoundaryDecoderAttention(torch.nn.Module): """ input: p: batch x inp_p p_mask: batch q: batch x time x inp_q q_mask: batch x time h_tm1: batch x out depth: int output: z: batch x inp_p+inp_q """ def __init__(self, input_dim, output_dim, enable_cuda=False): super(BoundaryDecoderAttention, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.enable_cuda = enable_cuda self.V = torch.nn.Linear(self.input_dim, self.output_dim) self.W_a = torch.nn.Linear(self.output_dim, self.output_dim) self.v = torch.nn.Parameter(torch.FloatTensor(self.output_dim)) self.c = torch.nn.Parameter(torch.FloatTensor(1)) self.init_weights() def init_weights(self): torch.nn.init.xavier_uniform(self.V.weight.data, gain=1) torch.nn.init.xavier_uniform(self.W_a.weight.data, gain=1) self.V.bias.data.fill_(0) self.W_a.bias.data.fill_(0) torch.nn.init.normal(self.v.data, mean=0, std=0.05) self.c.data.fill_(1.0) def forward(self, H_r, mask_r, h_tm1): batch_size, time = H_r.size(0), H_r.size(1) Fk = self.V.forward(H_r.view(-1, H_r.size(2))) Fk_prime = self.W_a.forward(h_tm1) Fk = Fk.view(batch_size, time, -1) Fk = torch.tanh(Fk + Fk_prime.unsqueeze(1)) beta = torch.matmul(Fk, self.v) beta = beta + self.c.unsqueeze(0) beta = masked_softmax(beta, mask_r, axis=-1) z = torch.bmm(beta.view(beta.size(0), 1, beta.size(1)), H_r) z = z.view(z.size(0), -1) return z, beta def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mv_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * (x0 // 4), xmask, eviction_policy='evict_last' ) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr2 + 1) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr2 + 2) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr1 + (3 + 4 * (x0 // 4)), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr2 + 3) tmp28 = tl.broadcast_to(tmp27, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp6 = tmp3 * tmp5 tmp9 = tmp7 + tmp8 tmp10 = libdevice.tanh(tmp9) tmp13 = tmp10 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp21 = tmp18 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 + tmp24 tmp26 = libdevice.tanh(tmp25) tmp29 = tmp26 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + x0, tmp30, xmask) @triton.jit def triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp4 = -15.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 15.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp9 = tmp7 * tmp8 tmp11 = tmp10 + tmp2 tmp12 = triton_helpers.maximum(tmp11, tmp4) tmp13 = triton_helpers.minimum(tmp12, tmp6) tmp15 = tmp13 * tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp17 + tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp4) tmp20 = triton_helpers.minimum(tmp19, tmp6) tmp22 = tmp20 * tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp24 + tmp2 tmp26 = triton_helpers.maximum(tmp25, tmp4) tmp27 = triton_helpers.minimum(tmp26, tmp6) tmp29 = tmp27 * tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tmp9 - tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 * tmp8 tmp34 = tmp15 - tmp30 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 * tmp14 tmp37 = tmp33 + tmp36 tmp38 = tmp22 - tmp30 tmp39 = tl_math.exp(tmp38) tmp40 = tmp39 * tmp21 tmp41 = tmp37 + tmp40 tmp42 = tmp29 - tmp30 tmp43 = tl_math.exp(tmp42) tmp44 = tmp43 * tmp28 tmp45 = tmp41 + tmp44 tl.store(out_ptr0 + x0, tmp30, xmask) tl.store(out_ptr1 + x0, tmp45, xmask) @triton.jit def triton_poi_fused_add_clamp_div_exp_mul_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr1 + x2, xmask) tmp10 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp4 = -15.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = 15.0 tmp7 = triton_helpers.minimum(tmp5, tmp6) tmp9 = tmp7 * tmp8 tmp11 = tmp9 - tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = tmp12 * tmp8 tmp15 = 1e-06 tmp16 = tmp14 + tmp15 tmp17 = tmp13 / tmp16 tl.store(in_out_ptr0 + x2, tmp17, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor( primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_mv_0[grid(16)](buf0, buf1, primals_7, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf4 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_add_clamp_exp_max_mul_sub_sum_1[grid(4)](buf2, primals_8, primals_9, buf3, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0) del buf2 triton_poi_fused_add_clamp_div_exp_mul_sub_2[grid(16)](buf5, primals_8, primals_9, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf3 del buf4 buf6 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0 ), primals_1, out=buf6) return reinterpret_tensor(buf6, (4, 4), (4, 1), 0 ), buf5, primals_1, primals_6, primals_7, primals_8, primals_9, buf0, buf1 def masked_softmax(x, m=None, axis=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=axis, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=axis, keepdim=True) + 1e-06) return softmax class BoundaryDecoderAttentionNew(torch.nn.Module): """ input: p: batch x inp_p p_mask: batch q: batch x time x inp_q q_mask: batch x time h_tm1: batch x out depth: int output: z: batch x inp_p+inp_q """ def __init__(self, input_dim, output_dim, enable_cuda=False): super(BoundaryDecoderAttentionNew, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.enable_cuda = enable_cuda self.V = torch.nn.Linear(self.input_dim, self.output_dim) self.W_a = torch.nn.Linear(self.output_dim, self.output_dim) self.v = torch.nn.Parameter(torch.FloatTensor(self.output_dim)) self.c = torch.nn.Parameter(torch.FloatTensor(1)) self.init_weights() def init_weights(self): torch.nn.init.xavier_uniform(self.V.weight.data, gain=1) torch.nn.init.xavier_uniform(self.W_a.weight.data, gain=1) self.V.bias.data.fill_(0) self.W_a.bias.data.fill_(0) torch.nn.init.normal(self.v.data, mean=0, std=0.05) self.c.data.fill_(1.0) def forward(self, input_0, input_1, input_2): primals_3 = self.v primals_8 = self.c primals_2 = self.V.weight primals_5 = self.V.bias primals_4 = self.W_a.weight primals_7 = self.W_a.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
watchernyu/MatchLSTM-Analyze-Adversarial-Training
BoundaryDecoderAttention
false
16,709
[ "MIT" ]
50
00bd33d3dd22d5291dc2c1ec5feef5eb93b59b3a
https://github.com/watchernyu/MatchLSTM-Analyze-Adversarial-Training/tree/00bd33d3dd22d5291dc2c1ec5feef5eb93b59b3a
VertexConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/my/cmywhultrq2bo2glrc4pxf5zvi76gyyi6wzgrympkqvplmtgmnrp.py # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conved => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multiplier_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multiplier_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/75/c75jlyxuwipv3ifbkjkkh4mwrk7s337gjsvnes7y5u4mbf6dvkhx.py # Topologically Sorted Source Nodes: [pooled_feats], Original ATen: [aten.convolution] # Source node to ATen node mapping: # pooled_feats => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%bmm, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (4, 16, 1), (16, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [multiplier_1, transformed_feats], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf3, primals_1, out=buf4) del buf3 # Topologically Sorted Source Nodes: [pooled_feats], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 4), (4, 4, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [pooled_feats], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (reinterpret_tensor(buf6, (4, 4), (4, 1), 0), primals_1, primals_2, primals_4, buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Transform(nn.Module): """ A Vertex Transformation module Permutation invariant transformation: (N, k, d) -> (N, k, d) """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.convKK = nn.Conv1d(k, k * k, dim_in, groups=k) self.activation = nn.Softmax(dim=-1) self.dp = nn.Dropout() def forward(self, region_feats): """ :param region_feats: (N, k, d) :return: (N, k, d) """ N, k, _ = region_feats.size() conved = self.convKK(region_feats) multiplier = conved.view(N, k, k) multiplier = self.activation(multiplier) transformed_feats = torch.matmul(multiplier, region_feats) return transformed_feats class VertexConv(nn.Module): """ A Vertex Convolution layer Transform (N, k, d) feature to (N, d) feature by transform matrix and 1-D convolution """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.trans = Transform(dim_in, k) self.convK1 = nn.Conv1d(k, 1, 1) def forward(self, region_feats): """ :param region_feats: (N, k, d) :return: (N, d) """ transformed_feats = self.trans(region_feats) pooled_feats = self.convK1(transformed_feats) pooled_feats = pooled_feats.squeeze(1) return pooled_feats def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=4, bias=None) assert_size_stride(buf0, (4, 16, 1), (16, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 extern_kernels.bmm(buf3, primals_1, out=buf4) del buf3 buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 4), (4, 4, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_3[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf6, (4, 4), (4, 1), 0 ), primals_1, primals_2, primals_4, buf1, buf4 class Transform(nn.Module): """ A Vertex Transformation module Permutation invariant transformation: (N, k, d) -> (N, k, d) """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.convKK = nn.Conv1d(k, k * k, dim_in, groups=k) self.activation = nn.Softmax(dim=-1) self.dp = nn.Dropout() def forward(self, region_feats): """ :param region_feats: (N, k, d) :return: (N, k, d) """ N, k, _ = region_feats.size() conved = self.convKK(region_feats) multiplier = conved.view(N, k, k) multiplier = self.activation(multiplier) transformed_feats = torch.matmul(multiplier, region_feats) return transformed_feats class VertexConvNew(nn.Module): """ A Vertex Convolution layer Transform (N, k, d) feature to (N, d) feature by transform matrix and 1-D convolution """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.trans = Transform(dim_in, k) self.convK1 = nn.Conv1d(k, 1, 1) def forward(self, input_0): primals_2 = self.trans.convKK.weight primals_3 = self.trans.convKK.bias primals_4 = self.convK1.weight primals_5 = self.convK1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
weiyx15/DHGNN
VertexConv
false
16,710
[ "MIT" ]
124
870a1763c34af6ee9a7a3207fed4a5e6bdb95d23
https://github.com/weiyx15/DHGNN/tree/870a1763c34af6ee9a7a3207fed4a5e6bdb95d23
Transform
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/my/cmywhultrq2bo2glrc4pxf5zvi76gyyi6wzgrympkqvplmtgmnrp.py # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conved => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 4), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multiplier_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multiplier_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (4, 16, 1), (16, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conved], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multiplier_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [multiplier_1, transformed_feats], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf3, primals_1, out=buf4) del buf3 return (buf4, primals_1, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Transform(nn.Module): """ A Vertex Transformation module Permutation invariant transformation: (N, k, d) -> (N, k, d) """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.convKK = nn.Conv1d(k, k * k, dim_in, groups=k) self.activation = nn.Softmax(dim=-1) self.dp = nn.Dropout() def forward(self, region_feats): """ :param region_feats: (N, k, d) :return: (N, k, d) """ N, k, _ = region_feats.size() conved = self.convKK(region_feats) multiplier = conved.view(N, k, k) multiplier = self.activation(multiplier) transformed_feats = torch.matmul(multiplier, region_feats) return transformed_feats def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=4, bias=None) assert_size_stride(buf0, (4, 16, 1), (16, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 extern_kernels.bmm(buf3, primals_1, out=buf4) del buf3 return buf4, primals_1, primals_2, buf1 class TransformNew(nn.Module): """ A Vertex Transformation module Permutation invariant transformation: (N, k, d) -> (N, k, d) """ def __init__(self, dim_in, k): """ :param dim_in: input feature dimension :param k: k neighbors """ super().__init__() self.convKK = nn.Conv1d(k, k * k, dim_in, groups=k) self.activation = nn.Softmax(dim=-1) self.dp = nn.Dropout() def forward(self, input_0): primals_2 = self.convKK.weight primals_3 = self.convKK.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
weiyx15/DHGNN
Transform
false
16,711
[ "MIT" ]
124
870a1763c34af6ee9a7a3207fed4a5e6bdb95d23
https://github.com/weiyx15/DHGNN/tree/870a1763c34af6ee9a7a3207fed4a5e6bdb95d23
ScaledDotProductAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vw/cvwqcezjgw4hcr2zvuks3igdsd4iniq3ke5z3ruhzsvxj35eqh2j.py # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] # Source node to ATen node mapping: # attn_1 => div # e_x => exp # e_x_1 => mul_1 # max_1 => max_1 # sub => sub # sum_1 => sum_1 # x => clamp_max, clamp_min # x_1 => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %arg2_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 2, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2], True), kwargs = {}) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0 = async_compile.triton('triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = triton_helpers.maximum(tmp10, tmp3) tmp12 = triton_helpers.minimum(tmp11, tmp5) tmp14 = tmp12 * tmp13 tmp15 = triton_helpers.maximum(tmp8, tmp14) tmp17 = tmp16 * tmp1 tmp18 = triton_helpers.maximum(tmp17, tmp3) tmp19 = triton_helpers.minimum(tmp18, tmp5) tmp21 = tmp19 * tmp20 tmp22 = triton_helpers.maximum(tmp15, tmp21) tmp24 = tmp23 * tmp1 tmp25 = triton_helpers.maximum(tmp24, tmp3) tmp26 = triton_helpers.minimum(tmp25, tmp5) tmp28 = tmp26 * tmp27 tmp29 = triton_helpers.maximum(tmp22, tmp28) tmp30 = tmp8 - tmp29 tmp31 = tl_math.exp(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp14 - tmp29 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 * tmp13 tmp36 = tmp32 + tmp35 tmp37 = tmp21 - tmp29 tmp38 = tl_math.exp(tmp37) tmp39 = tmp38 * tmp20 tmp40 = tmp36 + tmp39 tmp41 = tmp28 - tmp29 tmp42 = tl_math.exp(tmp41) tmp43 = tmp42 * tmp27 tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + (x0), tmp29, xmask) tl.store(out_ptr1 + (x0), tmp44, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/73/c73ulpsraxahj2gseyz7pjma7y7eg6gvtqpca55bh6jaui66cdc5.py # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, add, softmax], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.add] # Source node to ATen node mapping: # add => add # attn_1 => div # e_x => exp # e_x_1 => mul_1 # max_1 => max_1 # softmax => div_1 # sub => sub # x => clamp_max, clamp_min # x_1 => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 4), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, -15.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15.0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %arg2_1), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%mul, 2, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, %arg2_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-06), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add), kwargs = {}) triton_poi_fused_add_clamp_div_exp_max_mul_sub_1 = async_compile.triton('triton_poi_fused_add_clamp_div_exp_max_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_exp_max_mul_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_exp_max_mul_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp7 = tl.load(in_ptr0 + (x2), xmask) tmp9 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 * tmp7 tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 / tmp15 tl.store(in_out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, sum_1], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0.run(buf0, arg2_1, buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attn_1, x, x_1, max_1, sub, e_x, e_x_1, add, softmax], Original ATen: [aten.div, aten.clamp, aten.mul, aten.max, aten.sub, aten.exp, aten.add] triton_poi_fused_add_clamp_div_exp_max_mul_sub_1.run(buf3, arg2_1, buf1, buf2, 64, grid=grid(64), stream=stream0) del arg2_1 del buf1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, arg3_1, out=buf4) del arg3_1 return (buf4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch def masked_softmax(x, m=None, dim=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=dim, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=dim, keepdim=True) + 1e-06) return softmax class ScaledDotProductAttention(torch.nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, dropout=0.1): super().__init__() self.temperature = temperature self.dropout = torch.nn.Dropout(dropout) def forward(self, q, k, v, mask): attn = torch.bmm(q, k.transpose(1, 2)) attn = attn / self.temperature attn = masked_softmax(attn, mask, 2) attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'temperature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp9 * tmp1 tmp11 = triton_helpers.maximum(tmp10, tmp3) tmp12 = triton_helpers.minimum(tmp11, tmp5) tmp14 = tmp12 * tmp13 tmp15 = triton_helpers.maximum(tmp8, tmp14) tmp17 = tmp16 * tmp1 tmp18 = triton_helpers.maximum(tmp17, tmp3) tmp19 = triton_helpers.minimum(tmp18, tmp5) tmp21 = tmp19 * tmp20 tmp22 = triton_helpers.maximum(tmp15, tmp21) tmp24 = tmp23 * tmp1 tmp25 = triton_helpers.maximum(tmp24, tmp3) tmp26 = triton_helpers.minimum(tmp25, tmp5) tmp28 = tmp26 * tmp27 tmp29 = triton_helpers.maximum(tmp22, tmp28) tmp30 = tmp8 - tmp29 tmp31 = tl_math.exp(tmp30) tmp32 = tmp31 * tmp7 tmp33 = tmp14 - tmp29 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 * tmp13 tmp36 = tmp32 + tmp35 tmp37 = tmp21 - tmp29 tmp38 = tl_math.exp(tmp37) tmp39 = tmp38 * tmp20 tmp40 = tmp36 + tmp39 tmp41 = tmp28 - tmp29 tmp42 = tl_math.exp(tmp41) tmp43 = tmp42 * tmp27 tmp44 = tmp40 + tmp43 tl.store(out_ptr0 + x0, tmp29, xmask) tl.store(out_ptr1 + x0, tmp44, xmask) @triton.jit def triton_poi_fused_add_clamp_div_exp_max_mul_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp7 = tl.load(in_ptr0 + x2, xmask) tmp9 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = -15.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 15.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp8 = tmp6 * tmp7 tmp10 = tmp8 - tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = tmp11 * tmp7 tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 / tmp15 tl.store(in_out_ptr0 + x2, tmp16, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_exp_max_mul_sub_sum_0[grid(16)](buf0, arg2_1, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf0 del buf0 triton_poi_fused_add_clamp_div_exp_max_mul_sub_1[grid(64)](buf3, arg2_1, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg2_1 del buf1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, arg3_1, out=buf4) del arg3_1 return buf4, buf3 def masked_softmax(x, m=None, dim=-1): """ Softmax with mask (optional) """ x = torch.clamp(x, min=-15.0, max=15.0) if m is not None: m = m.float() x = x * m e_x = torch.exp(x - torch.max(x, dim=dim, keepdim=True)[0]) if m is not None: e_x = e_x * m softmax = e_x / (torch.sum(e_x, dim=dim, keepdim=True) + 1e-06) return softmax class ScaledDotProductAttentionNew(torch.nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, dropout=0.1): super().__init__() self.temperature = temperature self.dropout = torch.nn.Dropout(dropout) def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1]
wjurayj/commonsense-rl
ScaledDotProductAttention
false
16,712
[ "Apache-2.0" ]
55
fbbe4fa4a21865095783845fce2f0c4f4346e40f
https://github.com/wjurayj/commonsense-rl/tree/fbbe4fa4a21865095783845fce2f0c4f4346e40f
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/in/cin6bebkpfuweyzzgtljy26zh2yhrs7rpusw2jnlmszgn4jg27lx.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %permute_8 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%clone, [0, 2, 1]), kwargs = {}) triton_poi_fused_clone_transpose_0 = async_compile.triton('triton_poi_fused_clone_transpose_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + (4*x1) + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_weights => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wd/cwdechbtujfh3khensgj7m65ycmclcmrggkwsxpoa3is2n47bah4.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %view_1], 2), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oj/coje6ro7aly3k4hwvxmkcoxi6nwxzpg23gh2inoddo4imx7svkus.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6h/c6hrz6skegptbwysr7x2cgs54meeqjj4yiqej4kdtkfcybd253z5.py # Topologically Sorted Source Nodes: [attention_weights_2], Original ATen: [aten.mean] # Source node to ATen node mapping: # attention_weights_2 => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_3, [1]), kwargs = {}) triton_poi_fused_mean_5 = async_compile.triton('triton_poi_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [query_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf10 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone, aten.transpose] stream0 = get_raw_stream(0) triton_poi_fused_clone_transpose_0.run(primals_2, buf1, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, attention_scores], Original ATen: [aten.clone, aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mix], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, buf0, buf6, 128, grid=grid(128), stream=stream0) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_4.run(buf8, 64, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_weights_2], Original ATen: [aten.mean] triton_poi_fused_mean_5.run(buf4, buf9, 16, grid=grid(16), stream=stream0) del buf4 return (buf8, buf9, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), buf2, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), buf8, primals_4, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, query_dim, context_dim, attention_type='general'): super(Attention, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(query_dim, query_dim, bias=False) if query_dim != context_dim: self.linear_proj = nn.Linear(query_dim, context_dim, bias=False) self.linear_out = nn.Linear(context_dim * 2, context_dim, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, query, context): """ Args: query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of queries to query the context. context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data overwhich to apply the attention mechanism. Returns: :class:`tuple` with `output` and `weights`: * **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]): Tensor containing the attended features. * **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]): Tensor containing attention weights. """ batch_size, output_len, query_dim = query.size() batch_size, query_len, context_dim = context.size() if self.attention_type == 'general': query = query.reshape(batch_size * output_len, query_dim) query = self.linear_in(query) query = query.reshape(batch_size, output_len, query_dim) if query_dim != context_dim: query = self.linear_proj(query) attention_scores = torch.bmm(query, context.transpose(1, 2). contiguous()) attention_scores = attention_scores.view(batch_size * output_len, query_len) attention_weights = self.softmax(attention_scores) attention_weights = attention_weights.view(batch_size, output_len, query_len) mix = torch.bmm(attention_weights, context) combined = torch.cat((mix, query), dim=2) combined = combined.view(batch_size * output_len, 2 * context_dim) output = self.linear_out(combined).view(batch_size, output_len, context_dim) output = self.tanh(output) attention_weights = attention_weights.mean(dim=1) return output, attention_weights def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'query_dim': 4, 'context_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_transpose_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 4 y3 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) tl.store(out_ptr1 + (y2 + 4 * x1 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_mean_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) buf10 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_transpose_0[grid(16, 4)](primals_2, buf1, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0), buf1, out=buf2) buf3 = reinterpret_tensor(buf1, (16, 4), (4, 1), 0) del buf1 triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf5) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](buf5, buf0, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf0 buf7 = reinterpret_tensor(buf5, (16, 4), (4, 1), 0) del buf5 extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0) del buf7 triton_poi_fused_tanh_4[grid(64)](buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mean_5[grid(16)](buf4, buf9, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 return buf8, buf9, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0 ), buf2, reinterpret_tensor(buf6, (16, 8), (8, 1), 0 ), buf8, primals_4, buf10 class AttentionNew(nn.Module): """ Applies attention mechanism on the `context` using the `query`. **Thank you** to IBM for their initial implementation of :class:`Attention`. Here is their `License <https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__. Args: dimensions (int): Dimensionality of the query and context. attention_type (str, optional): How to compute the attention score: * dot: :math:`score(H_j,q) = H_j^T q` * general: :math:`score(H_j, q) = H_j^T W_a q` Example: >>> attention = Attention(256) >>> query = torch.randn(5, 1, 256) >>> context = torch.randn(5, 5, 256) >>> output, weights = attention(query, context) >>> output.size() torch.Size([5, 1, 256]) >>> weights.size() torch.Size([5, 1, 5]) """ def __init__(self, query_dim, context_dim, attention_type='general'): super(AttentionNew, self).__init__() if attention_type not in ['dot', 'general']: raise ValueError('Invalid attention type selected.') self.attention_type = attention_type if self.attention_type == 'general': self.linear_in = nn.Linear(query_dim, query_dim, bias=False) if query_dim != context_dim: self.linear_proj = nn.Linear(query_dim, context_dim, bias=False) self.linear_out = nn.Linear(context_dim * 2, context_dim, bias=False) self.softmax = nn.Softmax(dim=-1) self.tanh = nn.Tanh() def forward(self, input_0, input_1): primals_3 = self.linear_in.weight primals_4 = self.linear_out.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
wjurayj/commonsense-rl
Attention
false
16,713
[ "Apache-2.0" ]
55
fbbe4fa4a21865095783845fce2f0c4f4346e40f
https://github.com/wjurayj/commonsense-rl/tree/fbbe4fa4a21865095783845fce2f0c4f4346e40f
bottleneck_block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zu/czufwylkocw24g7a2s2zvr53dauuvjo7xakshnrimfau2of7256f.py # Topologically Sorted Source Nodes: [max_1, x_3, x_4], Original ATen: [aten.max, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # max_1 => max_1 # x_3 => add # x_4 => relu # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%primals_1, 1, True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %getitem), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_max_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_add_max_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_max_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_max_relu_threshold_backward_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp3 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = 0.0 tmp15 = tmp13 <= tmp14 tl.store(in_out_ptr0 + (x3), tmp13, xmask) tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [max_1, x_3, x_4], Original ATen: [aten.max, aten.add, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_max_relu_threshold_backward_0.run(buf1, primals_3, primals_1, buf2, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class depthwise_conv(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, x): C, H, W = x.shape[1:] x = x.reshape(-1, 1, H, W) x = self.depthwise(x) x = x.view(-1, C, H, W) return x class bottleneck_block(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'): super(bottleneck_block, self).__init__() self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1) if activation == 'relu': self.activation = nn.ReLU() elif activation == 'lrelu': self.activation = nn.LeakyReLU() elif activation == 'tanh': self.activation = nn.Tanh() def forward(self, x, act=True): sum_layer = x.max(dim=1, keepdim=True)[0] x = self.depthwise(x) x = x + sum_layer if act: x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_max_relu_threshold_backward_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp0 + tmp2 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp3 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = 0.0 tmp15 = tmp13 <= tmp14 tl.store(in_out_ptr0 + x3, tmp13, xmask) tl.store(out_ptr0 + x3, tmp15, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_max_relu_threshold_backward_0[grid(256)](buf1, primals_3, primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), ( 16, 16, 4, 1), 0), buf2 class depthwise_conv(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, x): C, H, W = x.shape[1:] x = x.reshape(-1, 1, H, W) x = self.depthwise(x) x = x.view(-1, C, H, W) return x class bottleneck_blockNew(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1, activation='relu'): super(bottleneck_blockNew, self).__init__() self.depthwise = depthwise_conv(kernel_size=3, stride=1, padding=1) if activation == 'relu': self.activation = nn.ReLU() elif activation == 'lrelu': self.activation = nn.LeakyReLU() elif activation == 'tanh': self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.depthwise.depthwise.weight primals_3 = self.depthwise.depthwise.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
whiteking64/lang-seg
bottleneck_block
false
16,714
[ "MIT" ]
202
9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
https://github.com/whiteking64/lang-seg/tree/9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
depthwise_conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/h3/ch3jaerz3yy2cwhlkdxgu5zovr4b3pud2kkovjsigzdkknwn2xvn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (16, 1, 4, 4), (16, 1, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class depthwise_conv(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_conv, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, x): C, H, W = x.shape[1:] x = x.reshape(-1, 1, H, W) x = self.depthwise(x) x = x.view(-1, C, H, W) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding =(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (16, 1, 4, 4), (16, 1, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0) class depthwise_convNew(nn.Module): def __init__(self, kernel_size=3, stride=1, padding=1): super(depthwise_convNew, self).__init__() self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride= stride, padding=padding) def forward(self, input_0): primals_2 = self.depthwise.weight primals_3 = self.depthwise.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
whiteking64/lang-seg
depthwise_conv
false
16,715
[ "MIT" ]
202
9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
https://github.com/whiteking64/lang-seg/tree/9d063b126f1b64e38ddb20cc75fc74435bfdcbd3
MNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qo/cqob4y7we7ssswzup73e45osaymfmr5k5ifwhqnc6qo7lydqmsmk.py # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] # Source node to ATen node mapping: # prod => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) return (buf1, primals_1, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = math.sqrt(3.0) * std torch.nn.init.uniform_(self.W_hat, -r, r) def forward(self, x, reuse=False): W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return mnac(x, W) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp3 + tmp4 tmp6 = tmp5 - tmp2 tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf1, primals_1, primals_2, buf0 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class MNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = math.sqrt(3.0) * std torch.nn.init.uniform_(self.W_hat, -r, r) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W_hat primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
wlm2019/Neural-Arithmetic-Units
MNACLayer
false
16,716
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
GaussLinearStandardized
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/e5/ce55sepn3b42pnrdw3nnkczyuweovuaogw6wve4n5ydrjwclrhna.py # Topologically Sorted Source Nodes: [mul, weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # weight => mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] # Source node to ATen node mapping: # bias => mul_2 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1.0), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias, linear], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import math import torch from torch.nn.modules import Module from torch.nn.parameter import Parameter import torch.nn.functional as F class GaussLinearStandardized(Module): def __init__(self, in_features, out_features, bias=True, raw_weight_variance=1.0, raw_bias_variance=1.0): super(GaussLinearStandardized, self).__init__() self.in_features = in_features self.out_features = out_features self.raw_weight_variance = raw_weight_variance self.raw_bias_variance = raw_bias_variance self.epsilon_weight = Parameter(torch.Tensor(out_features, in_features) ) if bias: self.epsilon_bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('epsilon_bias', None) self.reset_parameters() def reset_parameters(self): self.epsilon_weight.data.normal_() if self.epsilon_bias is not None: self.epsilon_bias.data.normal_() def forward(self, input): stdv = 1.0 / math.sqrt(self.in_features) weight = self.epsilon_weight * stdv * math.sqrt(self. raw_weight_variance) if self.epsilon_bias is not None: bias = self.epsilon_bias * math.sqrt(self.raw_bias_variance) else: bias = None return F.linear(input, weight, bias) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch.nn.modules import Module from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), ( 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class GaussLinearStandardizedNew(Module): def __init__(self, in_features, out_features, bias=True, raw_weight_variance=1.0, raw_bias_variance=1.0): super(GaussLinearStandardizedNew, self).__init__() self.in_features = in_features self.out_features = out_features self.raw_weight_variance = raw_weight_variance self.raw_bias_variance = raw_bias_variance self.epsilon_weight = Parameter(torch.Tensor(out_features, in_features) ) if bias: self.epsilon_bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('epsilon_bias', None) self.reset_parameters() def reset_parameters(self): self.epsilon_weight.data.normal_() if self.epsilon_bias is not None: self.epsilon_bias.data.normal_() def forward(self, input_0): primals_1 = self.epsilon_weight primals_2 = self.epsilon_bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
widedeepnetworks/widedeepnetworks
GaussLinearStandardized
false
16,717
[ "Apache-2.0" ]
50
81a8629d62d31643f3d598992ac6376a8fc5c48a
https://github.com/widedeepnetworks/widedeepnetworks/tree/81a8629d62d31643f3d598992ac6376a8fc5c48a
PosNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gy/cgyeivaj5xohig6bokzkqeo2uatkrsikluo6qxgc3gxiv2okwbcm.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # W => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class PosNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.xavier_normal_(self.W_hat) def forward(self, input, reuse=False): W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(input, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0) def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class PosNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.xavier_normal_(self.W_hat) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W_hat primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
wlm2019/Neural-Arithmetic-Units
PosNACLayer
false
16,718
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
GumbelMNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uk/cukxpxu3y2z3ockiurz3auo6fuabuxyidhlinysaxu22bvje56hl.py # Topologically Sorted Source Nodes: [mul, add_2, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add_2 => add_2 # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (0)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp3 = 1e-08 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp3 - tmp5 tmp7 = tl_math.log(tmp6) tmp8 = -tmp7 tmp9 = tmp1 + tmp8 tmp12 = tmp9 / tmp11 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp0 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp16 - tmp13 tl.store(out_ptr0 + (x4), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] # Source node to ATen node mapping: # prod => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ai/caimbi34x5fh62r7pvtxllp4bzj3d6tfgnrr536u5d6cfwqdnodb.py # Topologically Sorted Source Nodes: [add, log, sub, log_1, gumbel, add_1, truediv, W], Original ATen: [aten.add, aten.log, aten.rsub, aten.neg, aten.div, aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # W => sigmoid # add => add # add_1 => add_1 # gumbel => neg # log => log # log_1 => log_1 # sub => sub # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rand, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1e-08, %log), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %neg), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %primals_3), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%div,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_2), kwargs = {}) triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp9 = tl.load(in_ptr1 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp2 = 1e-08 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.log(tmp5) tmp7 = -tmp6 tmp8 = tmp0 + tmp7 tmp11 = tmp8 / tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 - tmp12 tmp15 = tmp12 * tmp14 tl.store(in_out_ptr0 + (x0), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [rand], Original ATen: [aten.rand] buf0 = torch.ops.aten.rand.default([4, 4], device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add_2, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_1, primals_2, buf1, primals_3, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [prod], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, log, sub, log_1, gumbel, add_1, truediv, W], Original ATen: [aten.add, aten.log, aten.rsub, aten.neg, aten.div, aten.sigmoid, aten.sigmoid_backward] triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2.run(buf4, primals_2, primals_3, 16, grid=grid(16), stream=stream0) del primals_2 return (buf3, primals_1, primals_3, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import torch.utils.data def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class GumbelMNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.tau = torch.nn.Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False) self.register_buffer('target_weights', torch.tensor([1, -1, 0], dtype=torch.float32)) self.U = torch.Tensor(out_features, in_features, 3) self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.constant_(self.W_hat, 0) torch.nn.init.constant_(self.tau, 1) def forward(self, x, reuse=False): if self.allow_random: gumbel = -torch.log(1e-08 - torch.log(torch.rand(self. out_features, self.in_features, device=x.device) + 1e-08)) W = torch.sigmoid((self.W_hat + gumbel) / self.tau) else: W = torch.sigmoid(self.W_hat) expected_W = torch.sigmoid(self.W_hat) self.writer.add_histogram('W', expected_W) self.writer.add_tensor('W', expected_W, verbose_only=False) return mnac(x, W) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import collections import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + 0) tmp11 = tl.broadcast_to(tmp10, [XBLOCK]) tmp3 = 1e-08 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp3 - tmp5 tmp7 = tl_math.log(tmp6) tmp8 = -tmp7 tmp9 = tmp1 + tmp8 tmp12 = tmp9 / tmp11 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp0 * tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = tmp16 - tmp13 tl.store(out_ptr0 + x4, tmp17, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp9 = tl.load(in_ptr1 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp2 = 1e-08 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tmp5 = tmp2 - tmp4 tmp6 = tl_math.log(tmp5) tmp7 = -tmp6 tmp8 = tmp0 + tmp7 tmp11 = tmp8 / tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 - tmp12 tmp15 = tmp12 * tmp14 tl.store(in_out_ptr0 + x0, tmp15, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.rand.default([4, 4], device=device(type= 'cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_1, primals_2, buf1, primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = buf1 del buf1 triton_poi_fused_add_div_log_neg_rsub_sigmoid_sigmoid_backward_2[grid (16)](buf4, primals_2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf3, primals_1, primals_3, buf2, buf4 def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class GumbelMNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.tau = torch.nn.Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False) self.register_buffer('target_weights', torch.tensor([1, -1, 0], dtype=torch.float32)) self.U = torch.Tensor(out_features, in_features, 3) self.W_hat = torch.nn.Parameter(torch.Tensor(out_features, in_features) ) self.register_parameter('bias', None) def reset_parameters(self): torch.nn.init.constant_(self.W_hat, 0) torch.nn.init.constant_(self.tau, 1) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_3 = self.tau primals_2 = self.W_hat primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
wlm2019/Neural-Arithmetic-Units
GumbelMNACLayer
false
16,719
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
ReRegualizedLinearMNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l2/cl23l5fiaxfzcbzsqcfhvlknaeors2mbghsxhr7mglikkzchqhch.py # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] # Source node to ATen node mapping: # add => add # mul => mul # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %view_1), kwargs = {}) triton_poi_fused_add_mul_sub_0 = async_compile.triton('triton_poi_fused_add_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp0 * tmp5 tmp7 = tmp6 + tmp4 tmp8 = tmp7 - tmp5 tl.store(out_ptr0 + (x4), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/25/c25daqto32eti46zoqo3oi4plwezv2f3emcnmorgtd7ez3nnjfw4.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.prod] # Source node to ATen node mapping: # out => prod # Graph fragment: # %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_1, -2), kwargs = {}) triton_poi_fused_prod_1 = async_compile.triton('triton_poi_fused_prod_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_prod_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jq/cjqhgphxfkkc24uqzov6wvxtamt3opo4zeafn2r6fmnmmd4jzchy.py # Topologically Sorted Source Nodes: [], Original ATen: [aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # Graph fragment: # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, 0.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_ge_le_logical_and_2 = async_compile.triton('triton_poi_fused_ge_le_logical_and_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ge_le_logical_and_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_ge_le_logical_and_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = 1.0 tmp4 = tmp0 <= tmp3 tmp5 = tmp2 & tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, add, sub_1], Original ATen: [aten.mul, aten.add, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sub_0.run(primals_2, primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.prod] triton_poi_fused_prod_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [aten.ge, aten.le, aten.logical_and] triton_poi_fused_ge_le_logical_and_2.run(primals_1, buf2, 16, grid=grid(16), stream=stream0) del primals_1 return (buf1, primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearMNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def forward(self, x, reuse=False): if self.allow_random: self._regualizer_nmu_z.append_input(x) W = torch.clamp(self.W, 0.0 + self.mnac_epsilon, 1.0 ) if self.nac_oob == 'regualized' else self.W self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) if self.mnac_normalized: c = torch.std(x) x_normalized = x / c z_normalized = mnac(x_normalized, W, mode='prod') out = z_normalized * c ** torch.sum(W, 1) else: out = mnac(x, W, mode='prod') return out def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp0 * tmp5 tmp7 = tmp6 + tmp4 tmp8 = tmp7 - tmp5 tl.store(out_ptr0 + x4, tmp8, xmask) @triton.jit def triton_poi_fused_prod_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_ge_le_logical_and_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 >= tmp1 tmp3 = 1.0 tmp4 = tmp0 <= tmp3 tmp5 = tmp2 & tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sub_0[grid(64)](primals_2, primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_prod_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_ge_le_logical_and_2[grid(16)](primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 return buf1, primals_2, buf0, buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) def mnac(x, W, mode='prod'): out_size, in_size = W.size() x = x.view(x.size()[0], in_size, 1) W = W.t().view(1, in_size, out_size) if mode == 'prod': return torch.prod(x * W + 1 - W, -2) elif mode == 'exp-log': return torch.exp(torch.sum(torch.log(x * W + 1 - W), -2)) elif mode == 'no-idendity': return torch.prod(x * W, -2) else: raise ValueError(f'mnac mode "{mode}" is not implemented') class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearMNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
wlm2019/Neural-Arithmetic-Units
ReRegualizedLinearMNACLayer
false
16,720
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
Gain
# AOT ID: ['1_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yc/cycfud6aitpfqomu7ebttrdfibrh3rmvgq6ldroorolwrqcdywo2.py # Topologically Sorted Source Nodes: [waveform, clamp], Original ATen: [aten.mul, aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # waveform => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.38624708435209876), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, -1), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_clamp_mul_0 = async_compile.triton('triton_poi_fused_clamp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.38624708435209876 tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [waveform, clamp], Original ATen: [aten.mul, aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import random import torch from torchaudio.transforms import Vol class Gain(torch.nn.Module): def __init__(self, min_gain: 'float'=-20.0, max_gain: 'float'=-1): super().__init__() self.min_gain = min_gain self.max_gain = max_gain def forward(self, audio: 'torch.Tensor') ->torch.Tensor: gain = random.uniform(self.min_gain, self.max_gain) audio = Vol(gain, gain_type='db')(audio) return audio def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.38624708435209876 tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 1.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GainNew(torch.nn.Module): def __init__(self, min_gain: 'float'=-20.0, max_gain: 'float'=-1): super().__init__() self.min_gain = min_gain self.max_gain = max_gain def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
wesbz/torchaudio-augmentations
Gain
false
16,721
[ "MIT" ]
112
e7b379be60376bb4a44f72a6840358871b3ff06d
https://github.com/wesbz/torchaudio-augmentations/tree/e7b379be60376bb4a44f72a6840358871b3ff06d
VisionLanguageFusionModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qw/cqw7yoyglmtjad3kirznl5odetqfs3k6pjtnfdbzklyhsdvuvgft.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rh/crhjfwyl6xoj5ylcsbbh6lp2vlegits2zkdej3b3wb2q4ddfnejv.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pm/cpm6gl4u3a4e45uns7vkybxer4zj3tjjqs2ajlop7vgzzco4h2fq.py # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.mul] # Source node to ATen node mapping: # tgt => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %squeeze), kwargs = {}) triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 4), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 8), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [tgt], Original ATen: [aten.mul] triton_poi_fused_mul_4.run(buf10, primals_1, primals_6, 16, grid=grid(16), stream=stream0) del primals_6 return (buf10, primals_1, primals_2, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor import torch.utils.data import torch from torch import nn from typing import Optional class VisionLanguageFusionModule(nn.Module): def __init__(self, d_model, nhead, dropout=0.0): super().__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout =dropout) def with_pos_embed(self, tensor, pos: 'Optional[Tensor]'): return tensor if pos is None else tensor + pos def forward(self, tgt, memory, memory_key_padding_mask: 'Optional[Tensor]'=None, pos: 'Optional[Tensor]'=None, query_pos: 'Optional[Tensor]'=None): tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos ), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=None, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt * tgt2 return tgt def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import Tensor import torch.utils.data import torch from torch import nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 4), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 8), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf3, primals_4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_mul_4[grid(16)](buf10, primals_1, primals_6, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 return buf10, primals_1, primals_2, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0) class VisionLanguageFusionModuleNew(nn.Module): def __init__(self, d_model, nhead, dropout=0.0): super().__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout =dropout) def with_pos_embed(self, tensor, pos: 'Optional[Tensor]'): return tensor if pos is None else tensor + pos def forward(self, input_0, input_1): primals_3 = self.multihead_attn.in_proj_weight primals_4 = self.multihead_attn.in_proj_bias primals_1 = self.multihead_attn.out_proj.weight primals_6 = self.multihead_attn.out_proj.bias primals_2 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
wjn922/ReferFormer
VisionLanguageFusionModule
false
16,722
[ "Apache-2.0" ]
125
17ca2d8024116068ecae66d0e7155e1d4429b204
https://github.com/wjn922/ReferFormer/tree/17ca2d8024116068ecae66d0e7155e1d4429b204
Task
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cq/ccqfqpgzxaos3bswguvdn3wt2ewpdl4jaru3enf3c7svmx3j3ar2.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (2, 2), (2, 1)) assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Task(nn.Module): def __init__(self): super().__init__() self.p = nn.Parameter(torch.ones(2, 2)) def forward(self, x): return self.p + x def get_inputs(): return [torch.rand([4, 4, 2, 2])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (2, 2), (2, 1)) assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(64)](primals_1, primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 return buf0, class TaskNew(nn.Module): def __init__(self): super().__init__() self.p = nn.Parameter(torch.ones(2, 2)) def forward(self, input_0): primals_1 = self.p primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
woqidaideshi/bagua
Task
false
16,723
[ "MIT" ]
635
0ee96da598685748519d58d24ce983499cb36721
https://github.com/woqidaideshi/bagua/tree/0ee96da598685748519d58d24ce983499cb36721
ModuleForDdpCommHook
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3j/c3jyortvllaykpler373rz7oktpwexjmntais526ul7ro2uxfxcg.py # Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x2), xmask) tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_3, (2, 2), (2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_3, primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_1 del primals_2 del primals_3 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, 2), (2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class Task(nn.Module): def __init__(self): super().__init__() self.p = nn.Parameter(torch.ones(2, 2)) def forward(self, x): return self.p + x class ModuleForDdpCommHook(nn.Module): def __init__(self): super().__init__() self.t0 = Task() def forward(self, x, rank): return self.t0(x + rank) def get_inputs(): return [torch.rand([4, 4, 2, 2]), torch.rand([4, 4, 2, 2])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x2, xmask) tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_2, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_3, (2, 2), (2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(64)](primals_3, primals_1, primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 del primals_3 return buf0, class Task(nn.Module): def __init__(self): super().__init__() self.p = nn.Parameter(torch.ones(2, 2)) def forward(self, x): return self.p + x class ModuleForDdpCommHookNew(nn.Module): def __init__(self): super().__init__() self.t0 = Task() def forward(self, input_0, input_1): primals_3 = self.t0.p primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
woqidaideshi/bagua
ModuleForDdpCommHook
false
16,724
[ "MIT" ]
635
0ee96da598685748519d58d24ce983499cb36721
https://github.com/woqidaideshi/bagua/tree/0ee96da598685748519d58d24ce983499cb36721
ReRegualizedLinearPosNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/37/c37tg4ls7v2pb7u3bftxslxobq4jqhy3ym7ktkzc2k4ickfvvxb2.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # W => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, 0.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_0 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0.run(primals_1, buf0, buf2, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearPosNACLayer(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def forward(self, x, reuse=False): if self.allow_random: self._regualizer_nmu_z.append_input(x) W = torch.clamp(self.W, 0.0 + self.mnac_epsilon, 1.0 ) if self.nac_oob == 'regualized' else self.W self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(x, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0[grid(16)](primals_1, buf0, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class RegualizerNMUZ: def __init__(self, zero=False): self.zero = zero self.stored_inputs = [] def __call__(self, W): if self.zero: return 0 x_mean = torch.mean(torch.cat(self.stored_inputs, dim=0), dim=0, keepdim=True) return torch.mean((1 - W) * (1 - x_mean) ** 2) def append_input(self, x): if self.zero: return self.stored_inputs.append(x) def reset(self): if self.zero: return self.stored_inputs = [] class ReRegualizedLinearPosNACLayerNew(ExtendedTorchModule): """Implements the NAC (Neural Accumulator) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', mnac_epsilon=0, mnac_normalized=False, regualizer_z=0, **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.mnac_normalized = mnac_normalized self.mnac_epsilon = mnac_epsilon self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='mnac', type='bias', shape=regualizer_shape, zero_epsilon=mnac_epsilon) self._regualizer_oob = Regualizer(support='mnac', type='oob', shape =regualizer_shape, zero_epsilon=mnac_epsilon, zero=self.nac_oob == 'clip') self._regualizer_nmu_z = RegualizerNMUZ(zero=regualizer_z == 0) self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(0.25) r = min(0.25, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, 0.5 - r, 0.5 + r) self._regualizer_nmu_z.reset() def optimize(self, loss): self._regualizer_nmu_z.reset() if self.nac_oob == 'clip': self.W.data.clamp_(0.0 + self.mnac_epsilon, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'z': self._regualizer_nmu_z(self.W), 'W-OOB': self._regualizer_oob( self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
wlm2019/Neural-Arithmetic-Units
ReRegualizedLinearPosNACLayer
false
16,725
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
ReRegualizedLinearNACLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xr/cxrzzxmepxvrewbyc2d3tcsqmccjipo5vlhfxrqmlcetw2hhxr7u.py # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # W => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, -1.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%primals_1, -1.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%primals_1, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_clamp_ge_le_logical_and_0 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [W], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and] stream0 = get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0.run(primals_1, buf0, buf2, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import math import torch import torch.utils.data def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class ReRegualizedLinearNACLayer(ExtendedTorchModule): """Implements the RegualizedLinearNAC Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='nac', type='bias', shape=regualizer_shape) self._regualizer_oob = Regualizer(support='nac', type='oob', shape= regualizer_shape, zero=self.nac_oob == 'clip') self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(2.0 / (self.in_features + self.out_features)) r = min(0.5, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, -r, r) def optimize(self, loss): if self.nac_oob == 'clip': self.W.data.clamp_(-1.0, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'W-OOB': self._regualizer_oob(self.W)}) def forward(self, input, reuse=False): W = torch.clamp(self.W, -1.0, 1.0) self.writer.add_histogram('W', W) self.writer.add_tensor('W', W) self.writer.add_scalar('W/sparsity_error', sparsity_error(W), verbose_only=False) return torch.nn.functional.linear(input, W, self.bias) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import collections import math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_ge_le_logical_and_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -1.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = tmp0 >= tmp1 tmp6 = tmp0 <= tmp3 tmp7 = tmp5 & tmp6 tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_clamp_ge_le_logical_and_0[grid(16)](primals_1, buf0, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1) del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2 def sparsity_error(W): W_error = torch.min(torch.abs(W), torch.abs(1 - torch.abs(W))) return torch.max(W_error) class SummaryWriterNamespaceNoLoggingScope: def __init__(self, writer): self._writer = writer def __enter__(self): self._writer._logging_enabled = False def __exit__(self, type, value, traceback): self._writer._logging_enabled = True return False class DummySummaryWriter: def __init__(self, **kwargs): self._logging_enabled = False pass def add_scalar(self, name, value, verbose_only=True): pass def add_summary(self, name, tensor, verbose_only=True): pass def add_histogram(self, name, tensor, verbose_only=True): pass def add_tensor(self, name, tensor, verbose_only=True): pass def print(self, name, tensor, verbose_only=True): pass def namespace(self, name): return self def every(self, epoch_interval): return self def verbose(self, verbose): return self def no_logging(self): return SummaryWriterNamespaceNoLoggingScope(self) class NoRandomScope: def __init__(self, module): self._module = module def __enter__(self): self._module._disable_random() def __exit__(self, type, value, traceback): self._module._enable_random() return False class ExtendedTorchModule(torch.nn.Module): def __init__(self, default_name, *args, writer=None, name=None, **kwargs): super().__init__() if writer is None: writer = DummySummaryWriter() self.writer = writer.namespace(default_name if name is None else name) self.allow_random = True def set_parameter(self, name, value): parameter = getattr(self, name, None) if isinstance(parameter, torch.nn.Parameter): parameter.fill_(value) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.set_parameter(name, value) def regualizer(self, merge_in=None): regualizers = collections.defaultdict(int) if merge_in is not None: for key, value in merge_in.items(): self.writer.add_scalar(f'regualizer/{key}', value) regualizers[key] += value for module in self.children(): if isinstance(module, ExtendedTorchModule): for key, value in module.regualizer().items(): regualizers[key] += value return regualizers def optimize(self, loss): for module in self.children(): if isinstance(module, ExtendedTorchModule): module.optimize(loss) def log_gradients(self): for name, parameter in self.named_parameters(recurse=False): if parameter.requires_grad: gradient, *_ = parameter.grad.data self.writer.add_summary(f'{name}/grad', gradient) self.writer.add_histogram(f'{name}/grad', gradient) for module in self.children(): if isinstance(module, ExtendedTorchModule): module.log_gradients() def no_internal_logging(self): return self.writer.no_logging() def _disable_random(self): self.allow_random = False for module in self.children(): if isinstance(module, ExtendedTorchModule): module._disable_random() def _enable_random(self): self.allow_random = True for module in self.children(): if isinstance(module, ExtendedTorchModule): module._enable_random() def no_random(self): return NoRandomScope(self) class Regualizer: def __init__(self, support='nac', type='bias', shape='squared', zero= False, zero_epsilon=0): super() self.zero_epsilon = 0 if zero: self.fn = self._zero else: identifier = '_'.join(['', support, type, shape]) self.fn = getattr(self, identifier) def __call__(self, W): return self.fn(W) def _zero(self, W): return 0 def _mnac_bias_linear(self, W): return torch.mean(torch.min(torch.abs(W - self.zero_epsilon), torch .abs(1 - W))) def _mnac_bias_squared(self, W): return torch.mean((W - self.zero_epsilon) ** 2 * (1 - W) ** 2) def _mnac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon)) def _mnac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W - 0.5 - self.zero_epsilon) - 0.5 + self.zero_epsilon) ** 2) def _nac_bias_linear(self, W): W_abs = torch.abs(W) return torch.mean(torch.min(W_abs, torch.abs(1 - W_abs))) def _nac_bias_squared(self, W): return torch.mean(W ** 2 * (1 - torch.abs(W)) ** 2) def _nac_oob_linear(self, W): return torch.mean(torch.relu(torch.abs(W) - 1)) def _nac_oob_squared(self, W): return torch.mean(torch.relu(torch.abs(W) - 1) ** 2) class ReRegualizedLinearNACLayerNew(ExtendedTorchModule): """Implements the RegualizedLinearNAC Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, nac_oob='regualized', regualizer_shape='squared', **kwargs): super().__init__('nac', **kwargs) self.in_features = in_features self.out_features = out_features self.nac_oob = nac_oob self._regualizer_bias = Regualizer(support='nac', type='bias', shape=regualizer_shape) self._regualizer_oob = Regualizer(support='nac', type='oob', shape= regualizer_shape, zero=self.nac_oob == 'clip') self.W = torch.nn.Parameter(torch.Tensor(out_features, in_features)) self.register_parameter('bias', None) def reset_parameters(self): std = math.sqrt(2.0 / (self.in_features + self.out_features)) r = min(0.5, math.sqrt(3.0) * std) torch.nn.init.uniform_(self.W, -r, r) def optimize(self, loss): if self.nac_oob == 'clip': self.W.data.clamp_(-1.0, 1.0) def regualizer(self): return super().regualizer({'W': self._regualizer_bias(self.W), 'W-OOB': self._regualizer_oob(self.W)}) def extra_repr(self): return 'in_features={}, out_features={}'.format(self.in_features, self.out_features) def forward(self, input_0): primals_1 = self.W primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
wlm2019/Neural-Arithmetic-Units
ReRegualizedLinearNACLayer
false
16,726
[ "MIT" ]
147
f9de9d004bb2dc2ee28577cd1760d0a00c185836
https://github.com/wlm2019/Neural-Arithmetic-Units/tree/f9de9d004bb2dc2ee28577cd1760d0a00c185836
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/i4/ci4j7o62hjlvxysby5leuec4f5mnobz3p5wi5zmgnb6pfgczycms.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_2, %repeat_1], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*((((4*x1) + x0) // 16) % 4)) + (16*((((4*x1) + (64*x2) + x0) // 64) % 4)) + ((((4*x1) + x0) % 16) % 4)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*(x1 % 4)) + (16*x2) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fy/cfyhpfvlh7v2kamyddf44ycfki2eygiwxnllf3xlbccy7vzxtcnc.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # e => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/c3/cc3jesmqsfkxzdmzwd3u5t52xvkpzl4rtjwuve7z2oe4uqfzknpd.py # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] # Source node to ATen node mapping: # gt => gt_1 # Graph fragment: # %gt_1 : [num_users=5] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_4, 0), kwargs = {}) triton_poi_fused_gt_2 = async_compile.triton('triton_poi_fused_gt_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f5/cf5atbk7j66ttv4hfabzy4hlvzlgp4cmnvsrrdv7lu2mgbytrlxj.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => amax, exp, sub, sum_1 # attention_10 => amax_3, exp_3, sub_3, sum_4 # attention_3 => where_4 # attention_4 => amax_1, exp_1, sub_1, sum_2 # attention_6 => where_7 # attention_7 => amax_2, exp_2, sub_2, sum_3 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 36, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask).to(tl.int1) tmp9 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask).to(tl.int1) tmp16 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (32 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask).to(tl.int1) tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (48 + x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp41 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp46 = tl.load(in_ptr4 + (16 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp52 = tl.load(in_ptr4 + (32 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp58 = tl.load(in_ptr4 + (48 + x0), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp75 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp80 = tl.load(in_ptr6 + (16 + x0), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp86 = tl.load(in_ptr6 + (32 + x0), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp92 = tl.load(in_ptr6 + (48 + x0), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + (x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp109 = tl.load(in_ptr8 + (x0), xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (16 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (16 + x0), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (32 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (32 + x0), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (48 + x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + (x2), tmp28, xmask) tl.store(out_ptr1 + (x2), tmp39, xmask) tl.store(out_ptr2 + (x2), tmp62, xmask) tl.store(out_ptr3 + (x2), tmp73, xmask) tl.store(out_ptr4 + (x2), tmp96, xmask) tl.store(out_ptr5 + (x2), tmp107, xmask) tl.store(out_ptr6 + (x2), tmp130, xmask) tl.store(out_ptr7 + (x2), tmp141, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lu/cludl62f6qo4f34m7ejzpxdcunrj3shfeb7xo4jvuj3n5a4sh6a6.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => div, exp, sub # attention_10 => div_3, exp_3, sub_3 # attention_3 => where_4 # attention_4 => div_1, exp_1, sub_1 # attention_6 => where_7 # attention_7 => div_2, exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_4 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i1', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*i1', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr5 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp14 = tl.load(in_ptr6 + (x4), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr7 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr8 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr9 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr10 + (x4), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr11 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr12 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr13 + (x4), xmask, eviction_policy='evict_last').to(tl.int1) tmp34 = tl.load(in_ptr14 + (x4), xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr15 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr16 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(out_ptr0 + (x3), tmp12, xmask) tl.store(out_ptr1 + (x3), tmp22, xmask) tl.store(out_ptr2 + (x3), tmp32, xmask) tl.store(out_ptr3 + (x3), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mu/cmu4dmnjb3m2bpsy345zghpbe6uqogqd4h7akjugnavnr5t7dfhe.py # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.clone] # Source node to ATen node mapping: # h_prime => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/p6/cp6dbvqyf5xgpxxdiwciohgb2ayhhg4kfwvauizjk22u4hoilsvn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 16 x0 = xindex % 16 x2 = (xindex // 256) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp18 & xmask, other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (x0 + (16*((-8) + x1)) + (64*x2)), tmp30 & xmask, other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + (x0 + (16*((-12) + x1)) + (64*x2)), tmp39 & xmask, other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x3), tmp52, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 512, grid=grid(512), stream=stream0) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_gt_2.run(primals_4, buf4, 256, grid=grid(256), stream=stream0) del primals_4 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf10, buf11, 512, grid=grid(512), stream=stream0) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf11, (64, 8), (8, 1), 0), primals_6, out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_7, out=buf19) del primals_7 buf20 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf19, buf20, 512, grid=grid(512), stream=stream0) buf21 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_7], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf20, (64, 8), (8, 1), 0), primals_8, out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf21, buf22, 64, grid=grid(64), stream=stream0) buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_9, out=buf28) del primals_9 buf29 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf28, buf29, 512, grid=grid(512), stream=stream0) buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_10], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf29, (64, 8), (8, 1), 0), primals_10, out=buf30) buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf30, buf31, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_3.run(buf4, buf3, buf2, buf13, buf12, buf22, buf21, buf31, buf30, buf5, buf6, buf14, buf15, buf23, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf34 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_4.run(buf4, buf3, buf2, buf5, buf6, buf13, buf12, buf14, buf15, buf22, buf21, buf23, buf24, buf31, buf30, buf32, buf33, buf7, buf16, buf25, buf34, 256, grid=grid(256), stream=stream0) del buf12 del buf14 del buf15 del buf2 del buf21 del buf23 del buf24 del buf30 del buf32 del buf33 del buf5 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf0, buf8, 256, grid=grid(256), stream=stream0) del buf0 buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf10, buf17, 256, grid=grid(256), stream=stream0) del buf10 buf18 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), out=buf18) buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf19, buf26, 256, grid=grid(256), stream=stream0) del buf19 buf27 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf25, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), out=buf27) buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf28, buf35, 256, grid=grid(256), stream=stream0) del buf28 buf36 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf34, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf35, (16, 4, 4), (16, 4, 1), 0), out=buf36) buf37 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_6.run(buf9, buf18, buf27, buf36, buf37, 1024, grid=grid(1024), stream=stream0) return (buf37, buf3, buf4, buf7, buf9, buf13, buf16, buf18, buf22, buf25, buf27, buf31, buf34, buf36, reinterpret_tensor(buf35, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf29, (8, 64), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf20, (8, 64), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf11, (8, 64), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (8, 64), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) N = h.size()[1] batch_size = h.size(0) a_input = torch.cat([h.repeat(1, 1, N).view(batch_size, N * N, -1), h.repeat(1, N, 1)], dim=2).view(batch_size, N, -1, 2 * self. out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GAT, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 16 x2 = xindex // 128 x3 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * ((4 * x1 + x0) // 16 % 4) + 16 * ((4 * x1 + 64 * x2 + x0) // 64 % 4) + (4 * x1 + x0) % 16 % 4), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * (x1 % 4) + 16 * x2 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_gt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask).to(tl.int1) tmp9 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (16 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask).to(tl.int1) tmp16 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (32 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask).to(tl.int1) tmp23 = tl.load(in_ptr1 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (48 + x0), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp41 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp46 = tl.load(in_ptr4 + (16 + x0), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp52 = tl.load(in_ptr4 + (32 + x0), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp58 = tl.load(in_ptr4 + (48 + x0), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp75 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp80 = tl.load(in_ptr6 + (16 + x0), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp86 = tl.load(in_ptr6 + (32 + x0), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp92 = tl.load(in_ptr6 + (48 + x0), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp109 = tl.load(in_ptr8 + x0, xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (16 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp114 = tl.load(in_ptr8 + (16 + x0), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (32 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp120 = tl.load(in_ptr8 + (32 + x0), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (48 + x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp126 = tl.load(in_ptr8 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + x2, tmp28, xmask) tl.store(out_ptr1 + x2, tmp39, xmask) tl.store(out_ptr2 + x2, tmp62, xmask) tl.store(out_ptr3 + x2, tmp73, xmask) tl.store(out_ptr4 + x2, tmp96, xmask) tl.store(out_ptr5 + x2, tmp107, xmask) tl.store(out_ptr6 + x2, tmp130, xmask) tl.store(out_ptr7 + x2, tmp141, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr4 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr5 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp14 = tl.load(in_ptr6 + x4, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr7 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr8 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr9 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp24 = tl.load(in_ptr10 + x4, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr11 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr12 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr13 + x4, xmask, eviction_policy='evict_last').to(tl .int1) tmp34 = tl.load(in_ptr14 + x4, xmask, eviction_policy='evict_last') tmp38 = tl.load(in_ptr15 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp41 = tl.load(in_ptr16 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(out_ptr0 + x3, tmp12, xmask) tl.store(out_ptr1 + x3, tmp22, xmask) tl.store(out_ptr2 + x3, tmp32, xmask) tl.store(out_ptr3 + x3, tmp42, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 16 x0 = xindex % 16 x2 = xindex // 256 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp18 & xmask, other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (x0 + 16 * (-8 + x1) + 64 * x2), tmp30 & xmask, other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (x0 + 16 * (-12 + x1) + 64 * x2), tmp39 & xmask, other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x3, tmp52, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](buf0, buf1, 512, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_gt_2[grid(256)](primals_4, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_5, out=buf10) del primals_5 buf11 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf10, buf11, 512, XBLOCK=128, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 8), (8, 1), 0), primals_6, out=buf12) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_7, out=buf19) del primals_7 buf20 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf19, buf20, 512, XBLOCK=128, num_warps=4, num_stages=1) buf21 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf20, (64, 8), (8, 1), 0), primals_8, out=buf21) buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf21, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_9, out=buf28) del primals_9 buf29 = empty_strided_cuda((4, 16, 8), (128, 8, 1), torch.float32) triton_poi_fused_cat_0[grid(512)](buf28, buf29, 512, XBLOCK=128, num_warps=4, num_stages=1) buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf29, (64, 8), (8, 1), 0), primals_10, out=buf30) buf31 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf30, buf31, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf32 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_3[grid(64)](buf4, buf3, buf2, buf13, buf12, buf22, buf21, buf31, buf30, buf5, buf6, buf14, buf15, buf23, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf34 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_4[grid(256)](buf4, buf3, buf2, buf5, buf6, buf13, buf12, buf14, buf15, buf22, buf21, buf23, buf24, buf31, buf30, buf32, buf33, buf7, buf16, buf25, buf34, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf12 del buf14 del buf15 del buf2 del buf21 del buf23 del buf24 del buf30 del buf32 del buf33 del buf5 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf0, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf10, buf17, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf10 buf18 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0), out=buf18 ) buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf19, buf26, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf19 buf27 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf25, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 4, 1), 0), out=buf27 ) buf35 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf28, buf35, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf28 buf36 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf34, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf35, (16, 4, 4), (16, 4, 1), 0), out=buf36 ) buf37 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) triton_poi_fused_cat_6[grid(1024)](buf9, buf18, buf27, buf36, buf37, 1024, XBLOCK=128, num_warps=4, num_stages=1) return (buf37, buf3, buf4, buf7, buf9, buf13, buf16, buf18, buf22, buf25, buf27, buf31, buf34, buf36, reinterpret_tensor(buf35, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf29, (8, 64), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), reinterpret_tensor(buf26, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf20, (8, 64), (1, 8), 0), reinterpret_tensor( primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf17, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf11, (8, 64), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (8, 64), (1, 8), 0), reinterpret_tensor( primals_3, (1, 8), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) N = h.size()[1] batch_size = h.size(0) a_input = torch.cat([h.repeat(1, 1, N).view(batch_size, N * N, -1), h.repeat(1, N, 1)], dim=2).view(batch_size, N, -1, 2 * self. out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) def forward(self, input_0, input_1): primals_2 = self.attention_0.W primals_3 = self.attention_0.a primals_5 = self.attention_1.W primals_6 = self.attention_1.a primals_7 = self.attention_2.W primals_8 = self.attention_2.a primals_9 = self.attention_3.W primals_10 = self.attention_3.a primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
wjurayj/commonsense-rl
GAT
false
16,727
[ "Apache-2.0" ]
55
fbbe4fa4a21865095783845fce2f0c4f4346e40f
https://github.com/wjurayj/commonsense-rl/tree/fbbe4fa4a21865095783845fce2f0c4f4346e40f
GL
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4w/c4w3ab6nj2qw57qqmzaoatp4wlwryyrhn5czabkeax5yy3qug5h7.py # Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution), kwargs = {}) triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_0.run(buf1, primals_3, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GL(nn.Module): def __init__(self, dim): super().__init__() self.gl_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim ) def forward(self, x): return x + self.gl_conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_convolution_0[grid(256)](buf1, primals_3, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class GLNew(nn.Module): def __init__(self, dim): super().__init__() self.gl_conv = nn.Conv2d(dim, dim, kernel_size=3, padding=1, groups=dim ) def forward(self, input_0): primals_1 = self.gl_conv.weight primals_2 = self.gl_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
wofmanaf/ResT
GL
false
16,728
[ "Apache-2.0" ]
178
508e30b28036e2cb882a03d24268dc70eb0c82a3
https://github.com/wofmanaf/ResT/tree/508e30b28036e2cb882a03d24268dc70eb0c82a3
HighWay
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mq/cmqzn4tuak4dmmt5haqtljb4thsuzy6lq5otm3atysewj5viuiif.py # Topologically Sorted Source Nodes: [t_1, gate, mul, sub, mul_1, add_1], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # gate => sigmoid # mul => mul # mul_1 => mul_1 # sub => sub # t_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %primals_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x2), xmask) tmp8 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp6 - tmp3 tmp9 = tmp7 * tmp8 tmp10 = tmp5 + tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [t], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [t_1, gate, mul, sub, mul_1, add_1], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_0.run(buf0, primals_3, primals_4, primals_2, buf1, 16, grid=grid(16), stream=stream0) return (buf1, primals_2, primals_3, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import Parameter class HighWay(torch.nn.Module): def __init__(self, f_in, f_out, bias=True): super(HighWay, self).__init__() self.w = Parameter(torch.Tensor(f_in, f_out)) nn.init.xavier_uniform_(self.w) if bias: self.bias = Parameter(torch.Tensor(f_out)) nn.init.constant_(self.bias, 0) else: self.register_parameter('bias', None) def forward(self, in_1, in_2): t = torch.mm(in_1, self.w) if self.bias is not None: t = t + self.bias gate = torch.sigmoid(t) return gate * in_2 + (1.0 - gate) * in_1 def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'f_in': 4, 'f_out': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x2, xmask) tmp8 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tmp6 = 1.0 tmp7 = tmp6 - tmp3 tmp9 = tmp7 * tmp8 tmp10 = tmp5 + tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_0[grid(16)](buf0, primals_3, primals_4, primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf1, primals_2, primals_3, primals_4, buf0 class HighWayNew(torch.nn.Module): def __init__(self, f_in, f_out, bias=True): super(HighWayNew, self).__init__() self.w = Parameter(torch.Tensor(f_in, f_out)) nn.init.xavier_uniform_(self.w) if bias: self.bias = Parameter(torch.Tensor(f_out)) nn.init.constant_(self.bias, 0) else: self.register_parameter('bias', None) def forward(self, input_0, input_1): primals_1 = self.w primals_3 = self.bias primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
weihangzhang/EAkit
HighWay
false
16,729
[ "MIT" ]
102
dde8e914480cd1a3585271f70db11d567d9c2a04
https://github.com/weihangzhang/EAkit/tree/dde8e914480cd1a3585271f70db11d567d9c2a04
SobelConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f7/cf774fuh4amyoeuoxa6sglmoamws55ijtnl37ts6zbkimeyceaau.py # Topologically Sorted Source Nodes: [sobel_weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # sobel_weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 36) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [sobel_weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_3, primals_1, buf0, 144, grid=grid(144), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 return (buf2, primals_3, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SobelConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=True, requires_grad=True): assert kernel_size % 2 == 1, "SobelConv2d's kernel_size must be odd." assert out_channels % 4 == 0, "SobelConv2d's out_channels must be a multiple of 4." assert out_channels % groups == 0, "SobelConv2d's out_channels must be a multiple of groups." super(SobelConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias if requires_grad else False if self.bias: self.bias = nn.Parameter(torch.zeros(size=(out_channels,), dtype=torch.float32), requires_grad=True) else: self.bias = None self.sobel_weight = nn.Parameter(torch.zeros(size=(out_channels, int(in_channels / groups), kernel_size, kernel_size)), requires_grad=False) kernel_mid = kernel_size // 2 for idx in range(out_channels): if idx % 4 == 0: self.sobel_weight[idx, :, 0, :] = -1 self.sobel_weight[idx, :, 0, kernel_mid] = -2 self.sobel_weight[idx, :, -1, :] = 1 self.sobel_weight[idx, :, -1, kernel_mid] = 2 elif idx % 4 == 1: self.sobel_weight[idx, :, :, 0] = -1 self.sobel_weight[idx, :, kernel_mid, 0] = -2 self.sobel_weight[idx, :, :, -1] = 1 self.sobel_weight[idx, :, kernel_mid, -1] = 2 elif idx % 4 == 2: self.sobel_weight[idx, :, 0, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid - i, i] = -1 self.sobel_weight[idx, :, kernel_size - 1 - i, kernel_mid + i] = 1 self.sobel_weight[idx, :, -1, -1] = 2 else: self.sobel_weight[idx, :, -1, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid + i, i] = -1 self.sobel_weight[idx, :, i, kernel_mid + i] = 1 self.sobel_weight[idx, :, 0, -1] = 2 if requires_grad: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=True) else: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=False) def forward(self, x): if torch.cuda.is_available(): self.sobel_factor = self.sobel_factor if isinstance(self.bias, nn.Parameter): self.bias = self.bias sobel_weight = self.sobel_weight * self.sobel_factor if torch.cuda.is_available(): sobel_weight = sobel_weight out = F.conv2d(x, sobel_weight, self.bias, self.stride, self. padding, self.dilation, self.groups) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 36 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(144)](primals_3, primals_1, buf0, 144, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return buf2, primals_3, primals_4, buf0 class SobelConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=True, requires_grad=True): assert kernel_size % 2 == 1, "SobelConv2d's kernel_size must be odd." assert out_channels % 4 == 0, "SobelConv2d's out_channels must be a multiple of 4." assert out_channels % groups == 0, "SobelConv2d's out_channels must be a multiple of groups." super(SobelConv2dNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias if requires_grad else False if self.bias: self.bias = nn.Parameter(torch.zeros(size=(out_channels,), dtype=torch.float32), requires_grad=True) else: self.bias = None self.sobel_weight = nn.Parameter(torch.zeros(size=(out_channels, int(in_channels / groups), kernel_size, kernel_size)), requires_grad=False) kernel_mid = kernel_size // 2 for idx in range(out_channels): if idx % 4 == 0: self.sobel_weight[idx, :, 0, :] = -1 self.sobel_weight[idx, :, 0, kernel_mid] = -2 self.sobel_weight[idx, :, -1, :] = 1 self.sobel_weight[idx, :, -1, kernel_mid] = 2 elif idx % 4 == 1: self.sobel_weight[idx, :, :, 0] = -1 self.sobel_weight[idx, :, kernel_mid, 0] = -2 self.sobel_weight[idx, :, :, -1] = 1 self.sobel_weight[idx, :, kernel_mid, -1] = 2 elif idx % 4 == 2: self.sobel_weight[idx, :, 0, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid - i, i] = -1 self.sobel_weight[idx, :, kernel_size - 1 - i, kernel_mid + i] = 1 self.sobel_weight[idx, :, -1, -1] = 2 else: self.sobel_weight[idx, :, -1, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid + i, i] = -1 self.sobel_weight[idx, :, i, kernel_mid + i] = 1 self.sobel_weight[idx, :, 0, -1] = 2 if requires_grad: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=True) else: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=False) def forward(self, input_0): primals_2 = self.bias primals_3 = self.sobel_weight primals_1 = self.sobel_factor primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
workingcoder/EDCNN
SobelConv2d
false
16,730
[ "Apache-2.0" ]
117
68305f465d2b731b60ce78bd0c95c7742d9f52d1
https://github.com/workingcoder/EDCNN/tree/68305f465d2b731b60ce78bd0c95c7742d9f52d1
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # euclidean_distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/eh/cehyiwb7y4oe66fuumukufepdyg2ib3qv4htt6sb7ioiv6e6jogk.py # Topologically Sorted Source Nodes: [mul, sub_1, mul_1, add, loss_contrastive], Original ATen: [aten.mul, aten.rsub, aten.add, aten.mean] # Source node to ATen node mapping: # add => add_1 # loss_contrastive => mean # mul => mul # mul_1 => mul_1 # sub_1 => sub_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %arg2_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %sub_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_mean_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (r2), None) tmp1 = tmp0 * tmp0 tmp3 = tmp1 * tmp2 tmp4 = 2.0 tmp5 = tmp4 - tmp0 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7 * tmp7 tmp9 = 1.0 tmp10 = tmp9 - tmp2 tmp11 = tmp8 * tmp10 tmp12 = tmp3 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, sub_1, mul_1, add, loss_contrastive], Original ATen: [aten.mul, aten.rsub, aten.add, aten.mean] triton_per_fused_add_mean_mul_rsub_1.run(buf2, buf0, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.utils.data import torch.nn.parallel import torch.optim class ContrastiveLoss(torch.nn.Module): def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True ) loss_contrastive = torch.mean(torch.pow(euclidean_distance, 2). squeeze() * label.float() + torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2).squeeze() * (1 - label.float())) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn.parallel import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + r2, None) tmp1 = tmp0 * tmp0 tmp3 = tmp1 * tmp2 tmp4 = 2.0 tmp5 = tmp4 - tmp0 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7 * tmp7 tmp9 = 1.0 tmp10 = tmp9 - tmp2 tmp11 = tmp8 * tmp10 tmp12 = tmp3 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_mean_mul_rsub_1[grid(1)](buf2, buf0, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf2, class ContrastiveLossNew(torch.nn.Module): def __init__(self, margin=2.0): super(ContrastiveLossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
wenqingchu/Semantic-CariGANs
ContrastiveLoss
false
16,731
[ "BSD-3-Clause" ]
50
d6c2fc2046ee62b42dd70fa8892775e33337bbdf
https://github.com/wenqingchu/Semantic-CariGANs/tree/d6c2fc2046ee62b42dd70fa8892775e33337bbdf
My_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/f5/cf55hzfs4d6sek6raokztbrpilfqp73tuew5xrffgm46u64bkxxn.py # Topologically Sorted Source Nodes: [mean, vx, mean_1, vy, mul, sum_1, pow_1, sum_2, sqrt, pow_2, sum_3, sqrt_1, mul_1, rho, mul_2, x_s, mul_3, y_s, mul_4, pow_3, pow_4, add, x_m, y_m, sub_2, pow_5, add_1, ccc, neg], Original ATen: [aten.mean, aten.sub, aten.mul, aten.sum, aten.pow, aten.sqrt, aten.div, aten.std, aten.add, aten.neg] # Source node to ATen node mapping: # add => add # add_1 => add_1 # ccc => div_1 # mean => mean # mean_1 => mean_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # rho => div # sqrt => sqrt # sqrt_1 => sqrt_1 # sub_2 => sub_2 # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # vx => sub # vy => sub_1 # x_m => mean_2 # x_s => sqrt_2, var # y_m => mean_3 # y_s => sqrt_3, var_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg1_1,), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mean_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %sqrt_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1,), kwargs = {correction: 1.0}) # %sqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %sqrt_2), kwargs = {}) # %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg1_1,), kwargs = {correction: 1.0}) # %sqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sqrt_3), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_2, 2), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_3, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %pow_4), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg0_1,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%arg1_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_2, %mean_3), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %pow_5), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div_1,), kwargs = {}) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 13, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp3 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp7 / tmp8 tmp12 = tmp4 - tmp11 tmp13 = tmp10 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp10 * tmp10 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = tmp12 * tmp12 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp26 = tl.broadcast_to(tmp1, [RBLOCK]) tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0)) tmp29 = tl.full([1], 256, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp1 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [RBLOCK]) tmp36 = triton_helpers.promote_to_tensor(tl.sum(tmp34, 0)) tmp38 = tl.broadcast_to(tmp5, [RBLOCK]) tmp40 = triton_helpers.promote_to_tensor(tl.sum(tmp38, 0)) tmp41 = tmp40 / tmp30 tmp42 = tmp5 - tmp41 tmp43 = tmp42 * tmp42 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp47 = libdevice.sqrt(tmp20) tmp48 = libdevice.sqrt(tmp24) tmp49 = tmp47 * tmp48 tmp50 = tmp16 / tmp49 tmp51 = 2.0 tmp52 = tmp50 * tmp51 tmp53 = 255.0 tmp54 = tmp36 / tmp53 tmp55 = libdevice.sqrt(tmp54) tmp56 = tmp52 * tmp55 tmp57 = tmp46 / tmp53 tmp58 = libdevice.sqrt(tmp57) tmp59 = tmp56 * tmp58 tmp60 = tmp55 * tmp55 tmp61 = tmp58 * tmp58 tmp62 = tmp60 + tmp61 tmp63 = tmp9 - tmp11 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp59 / tmp65 tmp67 = -tmp66 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp67, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf13 = buf11; del buf11 # reuse buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [mean, vx, mean_1, vy, mul, sum_1, pow_1, sum_2, sqrt, pow_2, sum_3, sqrt_1, mul_1, rho, mul_2, x_s, mul_3, y_s, mul_4, pow_3, pow_4, add, x_m, y_m, sub_2, pow_5, add_1, ccc, neg], Original ATen: [aten.mean, aten.sub, aten.mul, aten.sum, aten.pow, aten.sqrt, aten.div, aten.std, aten.add, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0.run(buf14, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn import torch.nn.parallel import torch.optim from torch.autograd import Variable as Variable import torch.utils.data import torch._utils class My_loss(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): vx = x - torch.mean(x) vy = y - torch.mean(y) rho = torch.sum(vx * vy) / (torch.sqrt(torch.sum(torch.pow(vx, 2))) * torch.sqrt(torch.sum(torch.pow(vy, 2)))) x_m = torch.mean(x) y_m = torch.mean(y) x_s = torch.std(x) y_s = torch.std(y) ccc = 2 * rho * x_s * y_s / (torch.pow(x_s, 2) + torch.pow(y_s, 2) + torch.pow(x_m - y_m, 2)) return -ccc def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn as nn import torch.nn.parallel import torch.optim from torch.autograd import Variable as Variable import torch.utils.data import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp3 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp7 / tmp8 tmp12 = tmp4 - tmp11 tmp13 = tmp10 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp10 * tmp10 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = tmp12 * tmp12 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp26 = tl.broadcast_to(tmp1, [RBLOCK]) tmp28 = triton_helpers.promote_to_tensor(tl.sum(tmp26, 0)) tmp29 = tl.full([1], 256, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp1 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [RBLOCK]) tmp36 = triton_helpers.promote_to_tensor(tl.sum(tmp34, 0)) tmp38 = tl.broadcast_to(tmp5, [RBLOCK]) tmp40 = triton_helpers.promote_to_tensor(tl.sum(tmp38, 0)) tmp41 = tmp40 / tmp30 tmp42 = tmp5 - tmp41 tmp43 = tmp42 * tmp42 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp47 = libdevice.sqrt(tmp20) tmp48 = libdevice.sqrt(tmp24) tmp49 = tmp47 * tmp48 tmp50 = tmp16 / tmp49 tmp51 = 2.0 tmp52 = tmp50 * tmp51 tmp53 = 255.0 tmp54 = tmp36 / tmp53 tmp55 = libdevice.sqrt(tmp54) tmp56 = tmp52 * tmp55 tmp57 = tmp46 / tmp53 tmp58 = libdevice.sqrt(tmp57) tmp59 = tmp56 * tmp58 tmp60 = tmp55 * tmp55 tmp61 = tmp58 * tmp58 tmp62 = tmp60 + tmp61 tmp63 = tmp9 - tmp11 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp59 / tmp65 tmp67 = -tmp66 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp67, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf13 = buf11 del buf11 buf14 = buf13 del buf13 get_raw_stream(0) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0[grid(1)]( buf14, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf14, class My_lossNew(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
wtomin/MIMA-Net
My_loss
false
16,732
[ "MIT" ]
58
c0330777313ac04b25e53b137dbecd78b5c8dde6
https://github.com/wtomin/MIMA-Net/tree/c0330777313ac04b25e53b137dbecd78b5c8dde6
FusionMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xn/cxncjpzgxjplm55ywcfy5vnpvvgzqmw56ruh2sgj4c3gtprfogbe.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum] # Source node to ATen node mapping: # max_1 => maximum # Graph fragment: # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%arg0_1, %arg1_1), kwargs = {}) triton_poi_fused_maximum_0 = async_compile.triton('triton_poi_fused_maximum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.maximum] stream0 = get_raw_stream(0) triton_poi_fused_maximum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Fusion(nn.Module): """ Base Fusion Class""" def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def tile_x2(self, x1, x2, x2_proj=None): if x2_proj: x2 = x2_proj(x2) x2 = x2.unsqueeze(-1).unsqueeze(-1) x2 = x2.repeat(x1.shape[0], 1, x1.shape[-2], x1.shape[-1]) return x2 def forward(self, x1, x2, x2_mask=None, x2_proj=None): raise NotImplementedError() class FusionMax(Fusion): """ max(x1, x2) """ def __init__(self, input_dim=3): super(FusionMax, self).__init__(input_dim=input_dim) def forward(self, x1, x2, x2_mask=None, x2_proj=None): if x1.shape != x2.shape and len(x1.shape) != len(x2.shape): x2 = self.tile_x2(x1, x2, x2_proj) return torch.max(x1, x2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_maximum_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class Fusion(nn.Module): """ Base Fusion Class""" def __init__(self, input_dim=3): super().__init__() self.input_dim = input_dim def tile_x2(self, x1, x2, x2_proj=None): if x2_proj: x2 = x2_proj(x2) x2 = x2.unsqueeze(-1).unsqueeze(-1) x2 = x2.repeat(x1.shape[0], 1, x1.shape[-2], x1.shape[-1]) return x2 def forward(self, x1, x2, x2_mask=None, x2_proj=None): raise NotImplementedError() class FusionMaxNew(Fusion): """ max(x1, x2) """ def __init__(self, input_dim=3): super(FusionMaxNew, self).__init__(input_dim=input_dim) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
wx-b/cliport
FusionMax
false
16,733
[ "Apache-2.0" ]
110
c29b0c4b6b1c4e4da5bda6c7f8c718e36f28a6e8
https://github.com/wx-b/cliport/tree/c29b0c4b6b1c4e4da5bda6c7f8c718e36f28a6e8
LossBasic
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/44/c44ntnggxfqyfpe4l3bhd2g5c5pog4ogpxy7jq6sdg37vqok2wuk.py # Topologically Sorted Source Nodes: [mse_loss, abs_1, abs_2, add, abs_3, abs_4, add_1, l1_loss, add_2], Original ATen: [aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # abs_3 => abs_3 # abs_4 => abs_4 # add => add # add_1 => add_1 # add_2 => add_2 # l1_loss => abs_5, mean_1, sub_5 # mse_loss => mean, pow_1, sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_1,), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, %abs_2), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_3,), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_4,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_3, %abs_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %add_1), kwargs = {}) # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) triton_per_fused_abs_add_mean_mse_loss_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_mse_loss_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_mse_loss_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_mean_mse_loss_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 4 r2 = (rindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = (-1) + r1 tmp8 = tl.full([1], 0, tl.int64) tmp9 = tmp7 >= tmp8 tmp10 = tl.load(in_ptr0 + (tl.broadcast_to((-1) + r0, [RBLOCK])), tmp9, other=0.0) tmp11 = r1 tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp11 < tmp12 tmp14 = tl.load(in_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp13, other=0.0) tmp15 = tmp10 - tmp14 tmp16 = tl_math.abs(tmp15) tmp17 = (-1) + r2 tmp18 = tmp17 >= tmp8 tmp19 = tl.load(in_ptr0 + (tl.broadcast_to((-4) + r0, [RBLOCK])), tmp18, other=0.0) tmp20 = r2 tmp21 = tmp20 < tmp12 tmp22 = tl.load(in_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp21, other=0.0) tmp23 = tmp19 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tmp16 + tmp24 tmp26 = tl.load(in_ptr1 + (tl.broadcast_to((-1) + r0, [RBLOCK])), tmp9, other=0.0) tmp27 = tl.load(in_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp13, other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tl_math.abs(tmp28) tmp30 = tl.load(in_ptr1 + (tl.broadcast_to((-4) + r0, [RBLOCK])), tmp18, other=0.0) tmp31 = tl.load(in_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp21, other=0.0) tmp32 = tmp30 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tmp29 + tmp33 tmp35 = tmp25 - tmp34 tmp36 = tl_math.abs(tmp35) tmp37 = tl.broadcast_to(tmp36, [RBLOCK]) tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0)) tmp40 = 256.0 tmp41 = tmp6 / tmp40 tmp42 = tmp39 / tmp40 tmp43 = tmp41 + tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp43, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse_loss, abs_1, abs_2, add, abs_3, abs_4, add_1, l1_loss, add_2], Original ATen: [aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_sub_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasic(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasic, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, pred, ground_truth): return self.l2_loss(pred, ground_truth) + self.l1_loss(self. gradient(pred), self.gradient(ground_truth)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_mean_mse_loss_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 4 r2 = rindex // 4 % 4 tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = -1 + r1 tmp8 = tl.full([1], 0, tl.int64) tmp9 = tmp7 >= tmp8 tmp10 = tl.load(in_ptr0 + tl.broadcast_to(-1 + r0, [RBLOCK]), tmp9, other=0.0) tmp11 = r1 tmp12 = tl.full([1], 4, tl.int64) tmp13 = tmp11 < tmp12 tmp14 = tl.load(in_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp13, other=0.0) tmp15 = tmp10 - tmp14 tmp16 = tl_math.abs(tmp15) tmp17 = -1 + r2 tmp18 = tmp17 >= tmp8 tmp19 = tl.load(in_ptr0 + tl.broadcast_to(-4 + r0, [RBLOCK]), tmp18, other=0.0) tmp20 = r2 tmp21 = tmp20 < tmp12 tmp22 = tl.load(in_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp21, other=0.0) tmp23 = tmp19 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tmp16 + tmp24 tmp26 = tl.load(in_ptr1 + tl.broadcast_to(-1 + r0, [RBLOCK]), tmp9, other=0.0) tmp27 = tl.load(in_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp13, other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tl_math.abs(tmp28) tmp30 = tl.load(in_ptr1 + tl.broadcast_to(-4 + r0, [RBLOCK]), tmp18, other=0.0) tmp31 = tl.load(in_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp21, other=0.0) tmp32 = tmp30 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tmp29 + tmp33 tmp35 = tmp25 - tmp34 tmp36 = tl_math.abs(tmp35) tmp37 = tl.broadcast_to(tmp36, [RBLOCK]) tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0)) tmp40 = 256.0 tmp41 = tmp6 / tmp40 tmp42 = tmp39 / tmp40 tmp43 = tmp41 + tmp42 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp43, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_sub_0[grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasicNew(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasicNew, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
xenbaloch/efficientderain
LossBasic
false
16,734
[ "MIT" ]
109
d5646815fd14a5a03c859102ecd2f298db7e53be
https://github.com/xenbaloch/efficientderain/tree/d5646815fd14a5a03c859102ecd2f298db7e53be
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yk/cykzmvqy6iq2fqtx7fa2g6rjdukpk5okhaztywpycwhbwun5ulux.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%permute, %primals_1], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 4 x2 = (xindex // 32) x3 = (xindex // 8) x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x2) + (16*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x3) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.tanh] # Source node to ATen node mapping: # energy => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gd/cgdtd7uw2iemby2kfb22fx3vkhdbrpyx2y2l6nq45fmox3ad7stv.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qs/cqsyda2m63ct5ijcfgcipyyfn273chi5d3kmpjuf5asa7h4wdpdv.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_2, primals_1, buf0, 128, grid=grid(128), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_5, (4, 1, 4), (0, 0, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 16, grid=grid(16), stream=stream0) del buf4 return (buf5, primals_5, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, hidden_size): super(Attention, self).__init__() self.hidden_size = hidden_size self.attn = nn.Linear(hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.rand(hidden_size), requires_grad=True) stdv = 1.0 / math.sqrt(self.v.size(0)) self.v.data.uniform_(-stdv, stdv) def forward(self, hidden, encoder_outputs): timestep = encoder_outputs.size(1) h = hidden.expand(timestep, -1, -1).transpose(0, 1) attn_energies = self.score(h, encoder_outputs) return attn_energies.softmax(2) def score(self, hidden, encoder_outputs): energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2))) energy = energy.transpose(1, 2) v = self.v.expand(encoder_outputs.size(0), -1).unsqueeze(1) energy = torch.bmm(v, energy) return energy def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 4 x2 = xindex // 32 x3 = xindex // 8 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x2 + 16 * x1 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x3 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x4, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_2, primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_tanh_1[grid(64)](buf2, primals_4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_5, (4, 1, 4), (0, 0, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), out =buf3) buf4 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = buf3 del buf3 triton_poi_fused__softmax_3[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf4 return buf5, primals_5, reinterpret_tensor(buf0, (16, 8), (8, 1), 0 ), buf2, buf5 class AttentionNew(nn.Module): def __init__(self, hidden_size): super(AttentionNew, self).__init__() self.hidden_size = hidden_size self.attn = nn.Linear(hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.rand(hidden_size), requires_grad=True) stdv = 1.0 / math.sqrt(self.v.size(0)) self.v.data.uniform_(-stdv, stdv) def score(self, hidden, encoder_outputs): energy = torch.tanh(self.attn(torch.cat([hidden, encoder_outputs], 2))) energy = energy.transpose(1, 2) v = self.v.expand(encoder_outputs.size(0), -1).unsqueeze(1) energy = torch.bmm(v, energy) return energy def forward(self, input_0, input_1): primals_4 = self.v primals_3 = self.attn.weight primals_5 = self.attn.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
wptoux/attention-ocr
Attention
false
16,735
[ "MIT" ]
57
ed08719db86a2aaf7e0cbae6169d9919835879d7
https://github.com/wptoux/attention-ocr/tree/ed08719db86a2aaf7e0cbae6169d9919835879d7
ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4j/c4jl5m5y24onp52mw7qcvibjgpz2yys33yfj3idumydodmt4ojyk.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 254016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3969) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kx/ckx3dr2mk7yu7dobko5u5xgzcvgu2sbmviszgl2xoxawvzg7a5hf.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/w3/cw3faaaz7gty2gm7f4xovy33nk7gnjdtullauud6hfrckqbvdjvs.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 238144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3721) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a2/ca2lfs3rl4afomtng753d7cmatdcwn3fjki3ped72ucym7wkdbcw.py # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3600) % 8 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 8, 64, 64), (32768, 4096, 64, 1)) assert_size_stride(primals_2, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (32, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (16, 32, 2, 2), (128, 4, 2, 1)) assert_size_stride(primals_7, (16, ), (1, )) assert_size_stride(primals_8, (8, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_9, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 63, 63), (63504, 3969, 63, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 254016, grid=grid(254016), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 492032, grid=grid(492032), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 61, 61), (59536, 3721, 61, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_7, 238144, grid=grid(238144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 60, 60), (28800, 3600, 60, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf7, primals_9, 115200, grid=grid(115200), stream=stream0) del primals_9 return (buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 8, 64, 64), (32768, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 8, 2, 2), (32, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 32, 2, 2), (128, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 16, 2, 2), (64, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class ConvNet(nn.Module): def __init__(self, gpus, layouts, dtypes): super(ConvNet, self).__init__() self.dtypes = dtypes if isinstance(gpus, list): self.layer_gpus = gpus else: gpus = [gpus] * 4 self.conv0 = torch.nn.Conv2d(8, 16, (2, 2)) self.conv1 = torch.nn.Conv2d(16, 32, (2, 2)) self.conv2 = torch.nn.Conv2d(32, 16, (2, 2)) self.conv3 = torch.nn.Conv2d(16, 8, (2, 2)) def forward(self, x): x = x self.layer_gpus if hasattr(self, 'layer_gpus') else [x.device] * 4 x = self.conv0(x) x = self.conv1(x) x = self.conv2(x) return self.conv3(x) def get_inputs(): return [torch.rand([4, 8, 64, 64])] def get_init_inputs(): return [[], {'gpus': False, 'layouts': 4, 'dtypes': torch.float32}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn import torch.utils.data.distributed import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 254016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3969 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 238144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3721 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 8, 64, 64), (32768, 4096, 64, 1)) assert_size_stride(primals_2, (16, 8, 2, 2), (32, 4, 2, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (32, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (16, 32, 2, 2), (128, 4, 2, 1)) assert_size_stride(primals_7, (16,), (1,)) assert_size_stride(primals_8, (8, 16, 2, 2), (64, 4, 2, 1)) assert_size_stride(primals_9, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 63, 63), (63504, 3969, 63, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(254016)](buf1, primals_3, 254016, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(492032)](buf3, primals_5, 492032, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 61, 61), (59536, 3721, 61, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(238144)](buf5, primals_7, 238144, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 8, 60, 60), (28800, 3600, 60, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_3[grid(115200)](buf7, primals_9, 115200, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 return (buf7, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5) class ConvNetNew(nn.Module): def __init__(self, gpus, layouts, dtypes): super(ConvNetNew, self).__init__() self.dtypes = dtypes if isinstance(gpus, list): self.layer_gpus = gpus else: gpus = [gpus] * 4 self.conv0 = torch.nn.Conv2d(8, 16, (2, 2)) self.conv1 = torch.nn.Conv2d(16, 32, (2, 2)) self.conv2 = torch.nn.Conv2d(32, 16, (2, 2)) self.conv3 = torch.nn.Conv2d(16, 8, (2, 2)) def forward(self, input_0): primals_2 = self.conv0.weight primals_3 = self.conv0.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.conv3.weight primals_9 = self.conv3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
woqidaideshi/bagua
ConvNet
false
16,737
[ "MIT" ]
635
0ee96da598685748519d58d24ce983499cb36721
https://github.com/woqidaideshi/bagua/tree/0ee96da598685748519d58d24ce983499cb36721
TripletLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bn/cbnw4uewpv7yyudtpcdoczlgvlxmpcnzej45i7ca2geg5hg5zbwg.py # Topologically Sorted Source Nodes: [dist, clamp, dist_1, eq, mat_sim, sub, mul, add_1, sort, mul_1, add_2, sort_1], Original ATen: [aten.add, aten.clamp, aten.sqrt, aten.eq, aten._to_copy, aten.rsub, aten.mul, aten.sort] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # clamp => clamp_min # dist => add # dist_1 => sqrt # eq => eq # mat_sim => convert_element_type # mul => mul # mul_1 => mul_1 # sort => sort # sort_1 => sort_1 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %permute), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %add), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_tensor, 1e-12), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%expand_2, %permute_2), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -9999999.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, %mul), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%add_1, 1, True), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 9999999.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, %mul_1), kwargs = {}) # %sort_1 : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%add_2, 1), kwargs = {}) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (r1 + (4*x0)), xmask, other=0.0) tmp29 = tl.load(in_ptr1 + (x0 + (4*r1)), xmask, other=0.0) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = tmp11 + tmp22 tmp24 = tmp0 + tmp23 tmp25 = 1e-12 tmp26 = triton_helpers.maximum(tmp24, tmp25) tmp27 = libdevice.sqrt(tmp26) tmp30 = tmp28 == tmp29 tmp31 = tmp30.to(tl.float32) tmp32 = 1.0 tmp33 = tmp32 - tmp31 tmp34 = -9999999.0 tmp35 = tmp33 * tmp34 tmp36 = tmp27 + tmp35 tmp37 = r1 tmp38 = tmp37.to(tl.int16) tmp39 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp40 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41, tmp42, = triton_helpers.sort_with_index(tmp39, tmp40, None, 1, stable=False, descending=True) tmp43 = 9999999.0 tmp44 = tmp31 * tmp43 tmp45 = tmp27 + tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp47, tmp48, = triton_helpers.sort_with_index(tmp46, tmp40, None, 1, stable=False, descending=False) tl.store(in_out_ptr0 + (r1 + (4*x0)), tmp24, xmask) tl.store(out_ptr0 + (r1 + (4*x0)), tmp41, xmask) tl.store(out_ptr1 + (r1 + (4*x0)), tmp47, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/e3/ce32pujiahet4pqxynqfc4b7tbaczqldo5uzescozpvluutc4mbw.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean] # Source node to ATen node mapping: # loss => add_3, clamp_min_1, full_default, mean, mul_2, sub_1 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %sub_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul_2, 4.0), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_3, 0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min_1,), kwargs = {}) triton_per_fused_add_clamp_min_mean_mul_neg_sub_1 = async_compile.triton('triton_per_fused_add_clamp_min_mean_mul_neg_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mean_mul_neg_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = -1.0 tmp4 = tmp3 * tmp2 tmp5 = 4.0 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = tmp11 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [dist, clamp, dist_1, eq, mat_sim, sub, mul, add_1, sort, mul_1, add_2, sort_1], Original ATen: [aten.add, aten.clamp, aten.sqrt, aten.eq, aten._to_copy, aten.rsub, aten.mul, aten.sort] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0.run(buf1, arg0_1, arg1_1, buf2, buf4, 4, 4, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 del buf1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean] triton_per_fused_add_clamp_min_mean_mul_neg_sub_1.run(buf7, buf4, buf2, 1, 4, grid=grid(1), stream=stream0) del buf2 del buf4 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F from torch.optim.lr_scheduler import * def _batch_hard(mat_distance, mat_similarity, indice=False): sorted_mat_distance, positive_indices = torch.sort(mat_distance + - 9999999.0 * (1 - mat_similarity), dim=1, descending=True) hard_p = sorted_mat_distance[:, 0] hard_p_indice = positive_indices[:, 0] sorted_mat_distance, negative_indices = torch.sort(mat_distance + 9999999.0 * mat_similarity, dim=1, descending=False) hard_n = sorted_mat_distance[:, 0] hard_n_indice = negative_indices[:, 0] if indice: return hard_p, hard_n, hard_p_indice, hard_n_indice return hard_p, hard_n def euclidean_dist(x, y): m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(1, -2, x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist class TripletLoss(nn.Module): """ Compute Triplet loss augmented with Batch Hard Details can be seen in 'In defense of the Triplet Loss for Person Re-Identification' """ def __init__(self, margin, normalize_feature=False): super(TripletLoss, self).__init__() self.margin = margin self.normalize_feature = normalize_feature self.margin_loss = nn.MarginRankingLoss(margin=margin) def forward(self, emb, label): if self.normalize_feature: emb = F.normalize(emb) mat_dist = euclidean_dist(emb, emb) assert mat_dist.size(0) == mat_dist.size(1) N = mat_dist.size(0) mat_sim = label.expand(N, N).eq(label.expand(N, N).t()).float() dist_ap, dist_an = _batch_hard(mat_dist, mat_sim) assert dist_an.size(0) == dist_ap.size(0) y = torch.ones_like(dist_ap) loss = self.margin_loss(dist_an, dist_ap, y) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'margin': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.optim.lr_scheduler import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_out_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (r1 + 4 * x0), xmask, other=0.0) tmp29 = tl.load(in_ptr1 + (x0 + 4 * r1), xmask, other=0.0) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = tmp11 + tmp22 tmp24 = tmp0 + tmp23 tmp25 = 1e-12 tmp26 = triton_helpers.maximum(tmp24, tmp25) tmp27 = libdevice.sqrt(tmp26) tmp30 = tmp28 == tmp29 tmp31 = tmp30.to(tl.float32) tmp32 = 1.0 tmp33 = tmp32 - tmp31 tmp34 = -9999999.0 tmp35 = tmp33 * tmp34 tmp36 = tmp27 + tmp35 tmp37 = r1 tmp38 = tmp37.to(tl.int16) tmp39 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp40 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41, _tmp42 = triton_helpers.sort_with_index(tmp39, tmp40, None, 1, stable=False, descending=True) tmp43 = 9999999.0 tmp44 = tmp31 * tmp43 tmp45 = tmp27 + tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp47, _tmp48 = triton_helpers.sort_with_index(tmp46, tmp40, None, 1, stable=False, descending=False) tl.store(in_out_ptr0 + (r1 + 4 * x0), tmp24, xmask) tl.store(out_ptr0 + (r1 + 4 * x0), tmp41, xmask) tl.store(out_ptr1 + (r1 + 4 * x0), tmp47, xmask) @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = -1.0 tmp4 = tmp3 * tmp2 tmp5 = 4.0 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = tmp11 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_0[grid(4)]( buf1, arg0_1, arg1_1, buf2, buf4, 4, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del buf1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6 del buf6 triton_per_fused_add_clamp_min_mean_mul_neg_sub_1[grid(1)](buf7, buf4, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf4 return buf7, def _batch_hard(mat_distance, mat_similarity, indice=False): sorted_mat_distance, positive_indices = torch.sort(mat_distance + - 9999999.0 * (1 - mat_similarity), dim=1, descending=True) hard_p = sorted_mat_distance[:, 0] hard_p_indice = positive_indices[:, 0] sorted_mat_distance, negative_indices = torch.sort(mat_distance + 9999999.0 * mat_similarity, dim=1, descending=False) hard_n = sorted_mat_distance[:, 0] hard_n_indice = negative_indices[:, 0] if indice: return hard_p, hard_n, hard_p_indice, hard_n_indice return hard_p, hard_n def euclidean_dist(x, y): m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(1, -2, x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist class TripletLossNew(nn.Module): """ Compute Triplet loss augmented with Batch Hard Details can be seen in 'In defense of the Triplet Loss for Person Re-Identification' """ def __init__(self, margin, normalize_feature=False): super(TripletLossNew, self).__init__() self.margin = margin self.normalize_feature = normalize_feature self.margin_loss = nn.MarginRankingLoss(margin=margin) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
xmy0916/IDM
TripletLoss
false
16,738
[ "MIT" ]
68
ab29fbd6d3d8c4650f3dbe41a7d21f745d6167ee
https://github.com/xmy0916/IDM/tree/ab29fbd6d3d8c4650f3dbe41a7d21f745d6167ee
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/o3/co3d4uczgn4hnp2c2mmd2klxzxa4xpmugvew6ck4bqcfarjihat2.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2032128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 15876) % 32 x0 = xindex % 15876 x4 = (xindex // 15876) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (15904*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hx/chxkdyors3jjvwnlhtsz37rzok3735d24totvrauro5pqu2n2ahc.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 508032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 63 x1 = (xindex // 63) % 63 x2 = (xindex // 3969) x3 = xindex % 3969 tmp0 = tl.load(in_ptr0 + ((2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (126 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (127 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + (4000*x2)), tmp6, xmask) tl.store(out_ptr1 + (x3 + (4096*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sa/csadke7kw6t6ekznz65r7azao7tz6nwhfwdnjwuka76t4arkrfpz.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 476288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3721) % 32 x0 = xindex % 3721 x4 = (xindex // 3721) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3744*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wq/cwq5fnnqdr3ppjkhho5ypi5zgiudfipuvctfbnkk2txoz4vdy7ju.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_3 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (61 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (62 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yt/cyteh5nkeip2gobwmta4k2qqbxqzk333dqicv43jffxywz55c2po.py # Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_4 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 784) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2v/c2vkrvdrexw5lsxbic3axyiyqiu4cht7j5djoa7nquwryylur75r.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => _low_memory_max_pool2d_with_offsets_2, getitem_5 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = (xindex // 14) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5n/c5ndncijnqs7lladdg4llekoswjycengnicsisr3nhyfv4ar6cfe.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_7 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 3, 128, 128), (49152, 16384, 128, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 3136), (3136, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (43, 128), (128, 1)) assert_size_stride(primals_11, (43, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 126, 126), (508032, 15876, 126, 1)) buf1 = empty_strided_cuda((4, 32, 126, 126), (508928, 15904, 126, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 2032128, grid=grid(2032128), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 32, 63, 63), (128000, 4000, 63, 1), torch.float32) buf3 = empty_strided_cuda((4, 32, 63, 63), (131072, 4096, 63, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 508032, grid=grid(508032), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 61, 61), (119072, 3721, 61, 1)) buf5 = empty_strided_cuda((4, 32, 61, 61), (119808, 3744, 61, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, buf5, 476288, grid=grid(476288), stream=stream0) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.int8) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 115200, grid=grid(115200), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 28, 28), (50176, 784, 28, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 200704, grid=grid(200704), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.int8) buf11 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 50176, grid=grid(50176), stream=stream0) buf12 = empty_strided_cuda((16, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 128), (1, 3136), 0), out=buf12) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu] triton_poi_fused_relu_6.run(buf13, primals_9, 2048, grid=grid(2048), stream=stream0) del primals_9 buf14 = empty_strided_cuda((16, 43), (43, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf13, reinterpret_tensor(primals_10, (128, 43), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_11 return (buf14, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (16, 3136), (3136, 1), 0), buf13, primals_10, primals_8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 128, 128), (49152, 16384, 128, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 3136), (3136, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((43, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((43, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data.distributed class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, (3, 3)) self.pool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(32, 32, (3, 3)) self.pool2 = nn.MaxPool2d((2, 2)) self.conv3 = nn.Conv2d(32, 64, (3, 3)) self.pool3 = nn.MaxPool2d((2, 2)) self.fc1 = nn.Linear(7 * 7 * 64, 128) self.fc1_drop = nn.Dropout(0.5) self.fc2 = nn.Linear(128, 43) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = F.relu(self.conv3(x)) x = self.pool3(x) x = x.view(-1, 7 * 7 * 64) x = F.relu(self.fc1(x)) x = self.fc1_drop(x) return self.fc2(x) def get_inputs(): return [torch.rand([4, 3, 128, 128])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2032128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 15876 % 32 x0 = xindex % 15876 x4 = xindex // 15876 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 15904 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 508032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 63 x1 = xindex // 63 % 63 x2 = xindex // 3969 x3 = xindex % 3969 tmp0 = tl.load(in_ptr0 + (2 * x0 + 252 * x1 + 15904 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 252 * x1 + 15904 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (126 + 2 * x0 + 252 * x1 + 15904 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (127 + 2 * x0 + 252 * x1 + 15904 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3 + 4000 * x2), tmp6, xmask) tl.store(out_ptr1 + (x3 + 4096 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 476288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3721 % 32 x0 = xindex % 3721 x4 = xindex // 3721 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3744 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 115200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 122 * x1 + 3744 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 122 * x1 + 3744 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (61 + 2 * x0 + 122 * x1 + 3744 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (62 + 2 * x0 + 122 * x1 + 3744 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 784 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = xindex // 14 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 3, 128, 128), (49152, 16384, 128, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 3136), (3136, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (43, 128), (128, 1)) assert_size_stride(primals_11, (43,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 126, 126), (508032, 15876, 126, 1)) buf1 = empty_strided_cuda((4, 32, 126, 126), (508928, 15904, 126, 1 ), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(2032128)](buf0, primals_2, buf1, 2032128, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 32, 63, 63), (128000, 4000, 63, 1), torch.float32) buf3 = empty_strided_cuda((4, 32, 63, 63), (131072, 4096, 63, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(508032)](buf1, buf2, buf3, 508032, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 61, 61), (119072, 3721, 61, 1)) buf5 = empty_strided_cuda((4, 32, 61, 61), (119808, 3744, 61, 1), torch.float32) triton_poi_fused_convolution_relu_2[grid(476288)](buf4, primals_5, buf5, 476288, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.float32) buf7 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(115200)](buf5, buf6, buf7, 115200, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 28, 28), (50176, 784, 28, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(200704)](buf9, primals_7, 200704, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.int8) buf11 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_5[grid(50176)](buf9, buf10, buf11, 50176, XBLOCK=256, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((16, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 128), (1, 3136), 0), out=buf12) buf13 = buf12 del buf12 triton_poi_fused_relu_6[grid(2048)](buf13, primals_9, 2048, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf14 = empty_strided_cuda((16, 43), (43, 1), torch.float32) extern_kernels.addmm(primals_11, buf13, reinterpret_tensor( primals_10, (128, 43), (1, 128), 0), alpha=1, beta=1, out=buf14) del primals_11 return (buf14, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (16, 3136), (3136, 1), 0), buf13, primals_10, primals_8) class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(3, 32, (3, 3)) self.pool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(32, 32, (3, 3)) self.pool2 = nn.MaxPool2d((2, 2)) self.conv3 = nn.Conv2d(32, 64, (3, 3)) self.pool3 = nn.MaxPool2d((2, 2)) self.fc1 = nn.Linear(7 * 7 * 64, 128) self.fc1_drop = nn.Dropout(0.5) self.fc2 = nn.Linear(128, 43) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_10 = self.fc2.weight primals_11 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
wikfeldt/intro-to-dl
Net
false
16,739
[ "MIT" ]
59
7fb1fb6c520941143000c5e1b46c48c95db17ed6
https://github.com/wikfeldt/intro-to-dl/tree/7fb1fb6c520941143000c5e1b46c48c95db17ed6
Attention_Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4q/c4qdgaxzdjvxunu52qxftwh6rka5xew3btkdxlqpejtxhmo6e3xj.py # Topologically Sorted Source Nodes: [attn1, attn2], Original ATen: [aten.mul, aten._softmax] # Source node to ATen node mapping: # attn1 => mul # attn2 => exp # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, 0.5), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_mul_0 = async_compile.triton('triton_poi_fused__softmax_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp0 * tmp15 tl.store(out_ptr0 + (x2), tmp17, xmask) tl.store(out_ptr1 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py # Topologically Sorted Source Nodes: [attn2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn2 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 4), (4, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 0), out=buf2) buf3 = empty_strided_cuda((4, 1, 1, 4), (4, 16, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 1, 4), (4, 1, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attn1, attn2], Original ATen: [aten.mul, aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_mul_0.run(buf2, buf3, buf7, 16, grid=grid(16), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [attn2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf3, buf4, 16, grid=grid(16), stream=stream0) buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 4), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_6 return (reinterpret_tensor(buf7, (4, 1, 1, 4), (4, 4, 4, 1), 0), reinterpret_tensor(buf6, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 4), reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1, 4), (4, 4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._utils class Attention_Decoder(nn.Module): def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.fc_q = nn.Linear(dim, dim * 1, bias=qkv_bias) self.fc_kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, q, x): B, N, C = x.shape n_class = q.shape[1] q = self.fc_q(q).reshape(B, self.num_heads, n_class, C // self. num_heads) kv = self.fc_kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads ).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn1 = q @ k.transpose(-2, -1) * self.scale attn2 = attn1.softmax(dim=-1) attn3 = self.attn_drop(attn2) x = (attn3 @ v).reshape(B, n_class, C) x = self.proj(x) x = self.proj_drop(x) attn = attn1.permute(0, 2, 1, 3) return attn, x def get_inputs(): return [torch.rand([4, 1, 1, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_mul_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp0 * tmp15 tl.store(out_ptr0 + x2, tmp17, xmask) tl.store(out_ptr1 + x2, tmp18, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1, 4), (4, 4, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 0), out=buf2) buf3 = empty_strided_cuda((4, 1, 1, 4), (4, 16, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 1, 4), (4, 1, 16, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_mul_0[grid(16)](buf2, buf3, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 1, 1, 4), (4, 4, 4, 1), 0) del buf2 triton_poi_fused__softmax_1[grid(16)](buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0) del buf3 extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 4), out=buf5) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf6) del primals_6 return reinterpret_tensor(buf7, (4, 1, 1, 4), (4, 4, 4, 1), 0 ), reinterpret_tensor(buf6, (4, 1, 4), (4, 4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf1, (4, 4, 4), (32, 1, 8), 4 ), reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 4), (32, 8, 1), 0) class Attention_DecoderNew(nn.Module): def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.fc_q = nn.Linear(dim, dim * 1, bias=qkv_bias) self.fc_kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, input_0, input_1): primals_3 = self.fc_q.weight primals_4 = self.fc_kv.weight primals_5 = self.proj.weight primals_6 = self.proj.bias primals_2 = input_0 primals_1 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
xieenze/Trans2Seg
Attention_Decoder
false
16,740
[ "Apache-2.0" ]
149
3972916bba7f985ca1aabc047fea56bdec9e9e5d
https://github.com/xieenze/Trans2Seg/tree/3972916bba7f985ca1aabc047fea56bdec9e9e5d
_Enc
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oa/coakornhndym5lo236iulgqrlkvefskebasvbuutfqswfdylyrdz.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tmp2 + tmp2 tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_2, 128, grid=grid(128), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class _NestedEnc(torch.nn.Module): def __init__(self, f): super().__init__() self.f = f def forward(self, x): return self.f(x) class _Enc(torch.nn.Module): def __init__(self): super().__init__() self.e1 = _NestedEnc(torch.nn.Linear(4, 2)) self.e2 = _NestedEnc(self.e1.f) def forward(self, x): return self.e1(x) + self.e2(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tmp2 + tmp2 tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2, 4), (4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class _NestedEnc(torch.nn.Module): def __init__(self, f): super().__init__() self.f = f def forward(self, x): return self.f(x) class _EncNew(torch.nn.Module): def __init__(self): super().__init__() self.e1 = _NestedEnc(torch.nn.Linear(4, 2)) self.e2 = _NestedEnc(self.e1.f) def forward(self, input_0): primals_1 = self.e1.f.weight primals_2 = self.e1.f.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
xuanyuzhou98/higher
_Enc
false
16,741
[ "Apache-2.0" ]
1,401
a28b488d8d4c80b38d3a2d322258233d74a89656
https://github.com/xuanyuzhou98/higher/tree/a28b488d8d4c80b38d3a2d322258233d74a89656
MyConv3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rj/crjr3yx77lhv4c724cgccbwv4sfmp6a35s4qef7wijrapq6yopt7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.replication_pad3d] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, _unsafe_index_2 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, %clamp_max, None, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, %clamp_max_1, None]), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_1, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_replication_pad3d_0 = async_compile.triton('triton_poi_fused_replication_pad3d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad3d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_replication_pad3d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 6 x3 = (xindex // 96) x4 = xindex tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (x1)) + (x1) * ((x1) < (3)))) + (16*((3) * ((3) <= (((0) * ((0) >= ((-1) + x2)) + ((-1) + x2) * (((-1) + x2) > (0))))) + (((0) * ((0) >= ((-1) + x2)) + ((-1) + x2) * (((-1) + x2) > (0)))) * ((((0) * ((0) >= ((-1) + x2)) + ((-1) + x2) * (((-1) + x2) > (0)))) < (3)))) + (64*x3) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h2/ch2krc7h4j6kv6mewp7lzjhn53rvh5gc4gy6th3hw7cgahcbwui7.py # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_2, %primals_3, [1, 1, 1], [0, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 108 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 27) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.replication_pad3d] stream0 = get_raw_stream(0) triton_poi_fused_replication_pad3d_0.run(primals_1, buf0, 384, grid=grid(384), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 6, 4, 4), (0, 96, 16, 4, 1), 0), primals_2, stride=(1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 3, 3, 3), (108, 27, 9, 3, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 108, grid=grid(108), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 3, 3, 3), (27, 9, 3, 1), 0), primals_2, reinterpret_tensor(buf0, (1, 4, 6, 4, 4), (384, 96, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MyConv3d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super(MyConv3d, self).__init__() self.kernel_size = kernel_size self.conv = nn.Conv3d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, padding=(0, int(( kernel_size - 1) / 2), int((kernel_size - 1) / 2)), bias=bias) def forward(self, x): x = F.pad(x, pad=(0,) * 4 + (int((self.kernel_size - 1) / 2),) * 2, mode='replicate') return self.conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_replication_pad3d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 6 x3 = xindex // 96 x4 = xindex tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= x1) + x1 * (x1 < 3)) + 16 * (3 * (3 <= 0 * (0 >= -1 + x2) + (-1 + x2) * (-1 + x2 > 0)) + (0 * (0 >= -1 + x2) + (-1 + x2) * (-1 + x2 > 0)) * (0 * (0 >= -1 + x2) + (-1 + x2) * (-1 + x2 > 0) < 3)) + 64 * x3 + (3 * (3 <= x0) + x0 * (x0 < 3 ))), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 108 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 27 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_replication_pad3d_0[grid(384)](primals_1, buf0, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 6, 4, 4), (0, 96, 16, 4, 1), 0), primals_2, stride=(1, 1, 1), padding=(0, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 3, 3, 3), (108, 27, 9, 3, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(108)](buf2, primals_3, 108, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 3, 3, 3), (27, 9, 3, 1), 0 ), primals_2, reinterpret_tensor(buf0, (1, 4, 6, 4, 4), (384, 96, 16, 4, 1), 0) class MyConv3dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True): super(MyConv3dNew, self).__init__() self.kernel_size = kernel_size self.conv = nn.Conv3d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, padding=(0, int(( kernel_size - 1) / 2), int((kernel_size - 1) / 2)), bias=bias) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
xinxindefeiyu/S2VD-master_RESID
MyConv3d
false
16,742
[ "MIT" ]
48
b075d6873842d70f1d8d3215daf0565f8c0ffe9a
https://github.com/xinxindefeiyu/S2VD-master_RESID/tree/b075d6873842d70f1d8d3215daf0565f8c0ffe9a
LossFunc
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/an/cancckvrol535y4i7lhzejvgmokyi2a34pemvfwv3eibpqdxqoej.py # Topologically Sorted Source Nodes: [mse_loss, abs_1, abs_2, add, abs_3, abs_4, add_1, l1_loss, add_2, mul, pow_1, mul_1, mse_loss_1, abs_7, abs_8, add_4, l1_loss_1, add_5, loss, mse_loss_2, abs_11, abs_12, add_8, l1_loss_2, add_9, loss_1, mse_loss_3, abs_15, abs_16, add_11, l1_loss_3, add_12, loss_2, mse_loss_4, abs_19, abs_20, add_14, l1_loss_4, add_15, loss_3, loss_4, mul_2, mul_3], Original ATen: [aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean, aten.mul, aten.pow, aten.div] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_11 => abs_13 # abs_12 => abs_14 # abs_15 => abs_18 # abs_16 => abs_19 # abs_19 => abs_23 # abs_2 => abs_2 # abs_20 => abs_24 # abs_3 => abs_3 # abs_4 => abs_4 # abs_7 => abs_8 # abs_8 => abs_9 # add => add # add_1 => add_1 # add_11 => add_12 # add_12 => add_13 # add_14 => add_16 # add_15 => add_17 # add_2 => add_2 # add_4 => add_4 # add_5 => add_5 # add_8 => add_8 # add_9 => add_9 # l1_loss => abs_5, mean_1, sub_5 # l1_loss_1 => abs_10, mean_3, sub_11 # l1_loss_2 => abs_15, mean_5, sub_17 # l1_loss_3 => abs_20, mean_7, sub_23 # l1_loss_4 => abs_25, mean_9, sub_29 # loss => add_6 # loss_1 => add_10 # loss_2 => add_14 # loss_3 => add_18 # loss_4 => div # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_2, pow_2, sub_6 # mse_loss_2 => mean_4, pow_3, sub_12 # mse_loss_3 => mean_6, pow_4, sub_18 # mse_loss_4 => mean_8, pow_5, sub_24 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # pow_1 => pow_6 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_1,), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, %abs_2), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_3,), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_4,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_3, %abs_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %add_1), kwargs = {}) # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 1.0), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Scalar](args = (0.9998, %arg3_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_6, 100), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg0_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_6, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_8,), kwargs = {}) # %abs_9 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_9,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_8, %abs_9), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_1, %add_4), kwargs = {}) # %abs_10 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_11,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_10,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %mean_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, 0), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_2, %arg0_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_12, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %abs_13 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_13,), kwargs = {}) # %abs_14 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_14,), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_13, %abs_14), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_3, %add_8), kwargs = {}) # %abs_15 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_17,), kwargs = {}) # %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_15,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_4, %mean_5), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %add_9), kwargs = {}) # %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_4, %arg0_1), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_18, 2), kwargs = {}) # %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {}) # %abs_18 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_18,), kwargs = {}) # %abs_19 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_19,), kwargs = {}) # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_18, %abs_19), kwargs = {}) # %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_5, %add_12), kwargs = {}) # %abs_20 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_23,), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_20,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_6, %mean_7), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %add_13), kwargs = {}) # %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_6, %arg0_1), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_24, 2), kwargs = {}) # %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_5,), kwargs = {}) # %abs_23 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_23,), kwargs = {}) # %abs_24 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_24,), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_23, %abs_24), kwargs = {}) # %sub_29 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_7, %add_16), kwargs = {}) # %abs_25 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_29,), kwargs = {}) # %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_25,), kwargs = {}) # %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_8, %mean_9), kwargs = {}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %add_17), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_18, 4), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %div), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, 1.0), kwargs = {}) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': True, 'num_load': 31, 'num_reduction': 10, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr13, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) % 4 r4 = rindex % 4 r5 = (rindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp7 = tl.load(in_ptr2 + (r1 + (64*r2)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (16 + r1 + (64*r2)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr2 + (32 + r1 + (64*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (48 + r1 + (64*r2)), None, eviction_policy='evict_last') tmp145 = tl.load(in_ptr3 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp8 = tmp7 - tmp1 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = tmp13 - tmp1 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp26 = tmp25 - tmp1 tmp27 = tmp26 * tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tmp31 = (-1) + r4 tmp32 = tl.full([1], 0, tl.int64) tmp33 = tmp31 >= tmp32 tmp34 = tl.load(in_ptr0 + (tl.broadcast_to((-1) + r0, [RBLOCK])), tmp33, other=0.0) tmp35 = r4 tmp36 = tl.full([1], 4, tl.int64) tmp37 = tmp35 < tmp36 tmp38 = tl.load(in_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp37, other=0.0) tmp39 = tmp34 - tmp38 tmp40 = tl_math.abs(tmp39) tmp41 = (-1) + r5 tmp42 = tmp41 >= tmp32 tmp43 = tl.load(in_ptr0 + (tl.broadcast_to((-4) + r0, [RBLOCK])), tmp42, other=0.0) tmp44 = r5 tmp45 = tmp44 < tmp36 tmp46 = tl.load(in_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp45, other=0.0) tmp47 = tmp43 - tmp46 tmp48 = tl_math.abs(tmp47) tmp49 = tmp40 + tmp48 tmp50 = tl.load(in_ptr1 + (tl.broadcast_to((-1) + r0, [RBLOCK])), tmp33, other=0.0) tmp51 = tl.load(in_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp37, other=0.0) tmp52 = tmp50 - tmp51 tmp53 = tl_math.abs(tmp52) tmp54 = tl.load(in_ptr1 + (tl.broadcast_to((-4) + r0, [RBLOCK])), tmp42, other=0.0) tmp55 = tl.load(in_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp45, other=0.0) tmp56 = tmp54 - tmp55 tmp57 = tl_math.abs(tmp56) tmp58 = tmp53 + tmp57 tmp59 = tmp49 - tmp58 tmp60 = tl.load(in_ptr2 + (tl.broadcast_to((-1) + r1 + (64*r2), [RBLOCK])), tmp33, eviction_policy='evict_last', other=0.0) tmp61 = tl.load(in_ptr2 + (tl.broadcast_to(r1 + (64*r2), [RBLOCK])), tmp37, eviction_policy='evict_last', other=0.0) tmp62 = tmp60 - tmp61 tmp63 = tl_math.abs(tmp62) tmp64 = tl.load(in_ptr2 + (tl.broadcast_to((-4) + r1 + (64*r2), [RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr2 + (tl.broadcast_to(r1 + (64*r2), [RBLOCK])), tmp45, eviction_policy='evict_last', other=0.0) tmp66 = tmp64 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tmp63 + tmp67 tmp69 = tmp68 - tmp58 tmp70 = tl.load(in_ptr2 + (tl.broadcast_to(15 + r1 + (64*r2), [RBLOCK])), tmp33, eviction_policy='evict_last', other=0.0) tmp71 = tl.load(in_ptr2 + (tl.broadcast_to(16 + r1 + (64*r2), [RBLOCK])), tmp37, eviction_policy='evict_last', other=0.0) tmp72 = tmp70 - tmp71 tmp73 = tl_math.abs(tmp72) tmp74 = tl.load(in_ptr2 + (tl.broadcast_to(12 + r1 + (64*r2), [RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0) tmp75 = tl.load(in_ptr2 + (tl.broadcast_to(16 + r1 + (64*r2), [RBLOCK])), tmp45, eviction_policy='evict_last', other=0.0) tmp76 = tmp74 - tmp75 tmp77 = tl_math.abs(tmp76) tmp78 = tmp73 + tmp77 tmp79 = tmp78 - tmp58 tmp80 = tl.load(in_ptr2 + (tl.broadcast_to(31 + r1 + (64*r2), [RBLOCK])), tmp33, eviction_policy='evict_last', other=0.0) tmp81 = tl.load(in_ptr2 + (tl.broadcast_to(32 + r1 + (64*r2), [RBLOCK])), tmp37, eviction_policy='evict_last', other=0.0) tmp82 = tmp80 - tmp81 tmp83 = tl_math.abs(tmp82) tmp84 = tl.load(in_ptr2 + (tl.broadcast_to(28 + r1 + (64*r2), [RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0) tmp85 = tl.load(in_ptr2 + (tl.broadcast_to(32 + r1 + (64*r2), [RBLOCK])), tmp45, eviction_policy='evict_last', other=0.0) tmp86 = tmp84 - tmp85 tmp87 = tl_math.abs(tmp86) tmp88 = tmp83 + tmp87 tmp89 = tmp88 - tmp58 tmp90 = tl.load(in_ptr2 + (tl.broadcast_to(47 + r1 + (64*r2), [RBLOCK])), tmp33, eviction_policy='evict_last', other=0.0) tmp91 = tl.load(in_ptr2 + (tl.broadcast_to(48 + r1 + (64*r2), [RBLOCK])), tmp37, eviction_policy='evict_last', other=0.0) tmp92 = tmp90 - tmp91 tmp93 = tl_math.abs(tmp92) tmp94 = tl.load(in_ptr2 + (tl.broadcast_to(44 + r1 + (64*r2), [RBLOCK])), tmp42, eviction_policy='evict_last', other=0.0) tmp95 = tl.load(in_ptr2 + (tl.broadcast_to(48 + r1 + (64*r2), [RBLOCK])), tmp45, eviction_policy='evict_last', other=0.0) tmp96 = tmp94 - tmp95 tmp97 = tl_math.abs(tmp96) tmp98 = tmp93 + tmp97 tmp99 = tmp98 - tmp58 tmp100 = tl_math.abs(tmp59) tmp101 = tl.broadcast_to(tmp100, [RBLOCK]) tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0)) tmp104 = tl_math.abs(tmp69) tmp105 = tl.broadcast_to(tmp104, [RBLOCK]) tmp107 = triton_helpers.promote_to_tensor(tl.sum(tmp105, 0)) tmp108 = tl_math.abs(tmp79) tmp109 = tl.broadcast_to(tmp108, [RBLOCK]) tmp111 = triton_helpers.promote_to_tensor(tl.sum(tmp109, 0)) tmp112 = tl_math.abs(tmp89) tmp113 = tl.broadcast_to(tmp112, [RBLOCK]) tmp115 = triton_helpers.promote_to_tensor(tl.sum(tmp113, 0)) tmp116 = tl_math.abs(tmp99) tmp117 = tl.broadcast_to(tmp116, [RBLOCK]) tmp119 = triton_helpers.promote_to_tensor(tl.sum(tmp117, 0)) tmp120 = 256.0 tmp121 = tmp12 / tmp120 tmp122 = tmp107 / tmp120 tmp123 = tmp121 + tmp122 tmp124 = 0.0 tmp125 = tmp123 + tmp124 tmp126 = tmp18 / tmp120 tmp127 = tmp111 / tmp120 tmp128 = tmp126 + tmp127 tmp129 = tmp125 + tmp128 tmp130 = tmp24 / tmp120 tmp131 = tmp115 / tmp120 tmp132 = tmp130 + tmp131 tmp133 = tmp129 + tmp132 tmp134 = tmp30 / tmp120 tmp135 = tmp119 / tmp120 tmp136 = tmp134 + tmp135 tmp137 = tmp133 + tmp136 tmp138 = 0.25 tmp139 = tmp137 * tmp138 tmp140 = tmp6 / tmp120 tmp141 = tmp103 / tmp120 tmp142 = tmp140 + tmp141 tmp143 = 1.0 tmp144 = tmp142 * tmp143 tmp146 = 0.9998 tmp147 = libdevice.pow(tmp146, tmp145) tmp148 = 100.0 tmp149 = tmp147 * tmp148 tmp150 = tmp149 * tmp139 tmp151 = tmp150 * tmp143 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp144, None) tl.store(out_ptr13 + (tl.broadcast_to(r0, [RBLOCK])), tmp151, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf17 = buf0; del buf0 # reuse buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mse_loss, abs_1, abs_2, add, abs_3, abs_4, add_1, l1_loss, add_2, mul, pow_1, mul_1, mse_loss_1, abs_7, abs_8, add_4, l1_loss_1, add_5, loss, mse_loss_2, abs_11, abs_12, add_8, l1_loss_2, add_9, loss_1, mse_loss_3, abs_15, abs_16, add_11, l1_loss_3, add_12, loss_2, mse_loss_4, abs_19, abs_20, add_14, l1_loss_4, add_15, loss_3, loss_4, mul_2, mul_3], Original ATen: [aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean, aten.mul, aten.pow, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0.run(buf17, arg1_1, arg0_1, arg2_1, arg3_1, buf16, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf17, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasic(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasic, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, pred, ground_truth): return self.l2_loss(pred, ground_truth) + self.l1_loss(self. gradient(pred), self.gradient(ground_truth)) class LossAnneal(nn.Module): """ anneal loss function """ def __init__(self, alpha=0.9998, beta=100): super(LossAnneal, self).__init__() self.global_step = 0 self.loss_func = LossBasic(gradient_L1=True) self.alpha = alpha self.beta = beta def forward(self, global_step, pred_i, ground_truth): """ :param global_step: int :param pred_i: [batch_size, N, 3, height, width] :param ground_truth: [batch_size, 3, height, width] :return: """ loss = 0 for i in range(pred_i.size(1)): loss += self.loss_func(pred_i[:, i, ...], ground_truth) loss /= pred_i.size(1) return self.beta * self.alpha ** global_step * loss class LossFunc(nn.Module): """ loss function of KPN """ def __init__(self, coeff_basic=1.0, coeff_anneal=1.0, gradient_L1=True, alpha=0.9998, beta=100): super(LossFunc, self).__init__() self.coeff_basic = coeff_basic self.coeff_anneal = coeff_anneal self.loss_basic = LossBasic(gradient_L1) self.loss_anneal = LossAnneal(alpha, beta) def forward(self, pred_img_i, pred_img, ground_truth, global_step): """ forward function of loss_func :param frames: frame_1 ~ frame_N, shape: [batch, N, 3, height, width] :param core: a dict coverted by ...... :param ground_truth: shape [batch, 3, height, width] :param global_step: int :return: loss """ return self.coeff_basic * self.loss_basic(pred_img, ground_truth ), self.coeff_anneal * self.loss_anneal(global_step, pred_img_i, ground_truth) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr13, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 % 4 r4 = rindex % 4 r5 = rindex // 4 % 4 tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp7 = tl.load(in_ptr2 + (r1 + 64 * r2), None, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr2 + (16 + r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr2 + (32 + r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr2 + (48 + r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp145 = tl.load(in_ptr3 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp8 = tmp7 - tmp1 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = tmp13 - tmp1 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp26 = tmp25 - tmp1 tmp27 = tmp26 * tmp26 tmp28 = tl.broadcast_to(tmp27, [RBLOCK]) tmp30 = triton_helpers.promote_to_tensor(tl.sum(tmp28, 0)) tmp31 = -1 + r4 tmp32 = tl.full([1], 0, tl.int64) tmp33 = tmp31 >= tmp32 tmp34 = tl.load(in_ptr0 + tl.broadcast_to(-1 + r0, [RBLOCK]), tmp33, other=0.0) tmp35 = r4 tmp36 = tl.full([1], 4, tl.int64) tmp37 = tmp35 < tmp36 tmp38 = tl.load(in_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp37, other=0.0) tmp39 = tmp34 - tmp38 tmp40 = tl_math.abs(tmp39) tmp41 = -1 + r5 tmp42 = tmp41 >= tmp32 tmp43 = tl.load(in_ptr0 + tl.broadcast_to(-4 + r0, [RBLOCK]), tmp42, other=0.0) tmp44 = r5 tmp45 = tmp44 < tmp36 tmp46 = tl.load(in_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp45, other=0.0) tmp47 = tmp43 - tmp46 tmp48 = tl_math.abs(tmp47) tmp49 = tmp40 + tmp48 tmp50 = tl.load(in_ptr1 + tl.broadcast_to(-1 + r0, [RBLOCK]), tmp33, other=0.0) tmp51 = tl.load(in_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp37, other=0.0) tmp52 = tmp50 - tmp51 tmp53 = tl_math.abs(tmp52) tmp54 = tl.load(in_ptr1 + tl.broadcast_to(-4 + r0, [RBLOCK]), tmp42, other=0.0) tmp55 = tl.load(in_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp45, other=0.0) tmp56 = tmp54 - tmp55 tmp57 = tl_math.abs(tmp56) tmp58 = tmp53 + tmp57 tmp59 = tmp49 - tmp58 tmp60 = tl.load(in_ptr2 + tl.broadcast_to(-1 + r1 + 64 * r2, [RBLOCK]), tmp33, eviction_policy='evict_last', other=0.0) tmp61 = tl.load(in_ptr2 + tl.broadcast_to(r1 + 64 * r2, [RBLOCK]), tmp37, eviction_policy='evict_last', other=0.0) tmp62 = tmp60 - tmp61 tmp63 = tl_math.abs(tmp62) tmp64 = tl.load(in_ptr2 + tl.broadcast_to(-4 + r1 + 64 * r2, [RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr2 + tl.broadcast_to(r1 + 64 * r2, [RBLOCK]), tmp45, eviction_policy='evict_last', other=0.0) tmp66 = tmp64 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tmp63 + tmp67 tmp69 = tmp68 - tmp58 tmp70 = tl.load(in_ptr2 + tl.broadcast_to(15 + r1 + 64 * r2, [RBLOCK]), tmp33, eviction_policy='evict_last', other=0.0) tmp71 = tl.load(in_ptr2 + tl.broadcast_to(16 + r1 + 64 * r2, [RBLOCK]), tmp37, eviction_policy='evict_last', other=0.0) tmp72 = tmp70 - tmp71 tmp73 = tl_math.abs(tmp72) tmp74 = tl.load(in_ptr2 + tl.broadcast_to(12 + r1 + 64 * r2, [RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0) tmp75 = tl.load(in_ptr2 + tl.broadcast_to(16 + r1 + 64 * r2, [RBLOCK]), tmp45, eviction_policy='evict_last', other=0.0) tmp76 = tmp74 - tmp75 tmp77 = tl_math.abs(tmp76) tmp78 = tmp73 + tmp77 tmp79 = tmp78 - tmp58 tmp80 = tl.load(in_ptr2 + tl.broadcast_to(31 + r1 + 64 * r2, [RBLOCK]), tmp33, eviction_policy='evict_last', other=0.0) tmp81 = tl.load(in_ptr2 + tl.broadcast_to(32 + r1 + 64 * r2, [RBLOCK]), tmp37, eviction_policy='evict_last', other=0.0) tmp82 = tmp80 - tmp81 tmp83 = tl_math.abs(tmp82) tmp84 = tl.load(in_ptr2 + tl.broadcast_to(28 + r1 + 64 * r2, [RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0) tmp85 = tl.load(in_ptr2 + tl.broadcast_to(32 + r1 + 64 * r2, [RBLOCK]), tmp45, eviction_policy='evict_last', other=0.0) tmp86 = tmp84 - tmp85 tmp87 = tl_math.abs(tmp86) tmp88 = tmp83 + tmp87 tmp89 = tmp88 - tmp58 tmp90 = tl.load(in_ptr2 + tl.broadcast_to(47 + r1 + 64 * r2, [RBLOCK]), tmp33, eviction_policy='evict_last', other=0.0) tmp91 = tl.load(in_ptr2 + tl.broadcast_to(48 + r1 + 64 * r2, [RBLOCK]), tmp37, eviction_policy='evict_last', other=0.0) tmp92 = tmp90 - tmp91 tmp93 = tl_math.abs(tmp92) tmp94 = tl.load(in_ptr2 + tl.broadcast_to(44 + r1 + 64 * r2, [RBLOCK]), tmp42, eviction_policy='evict_last', other=0.0) tmp95 = tl.load(in_ptr2 + tl.broadcast_to(48 + r1 + 64 * r2, [RBLOCK]), tmp45, eviction_policy='evict_last', other=0.0) tmp96 = tmp94 - tmp95 tmp97 = tl_math.abs(tmp96) tmp98 = tmp93 + tmp97 tmp99 = tmp98 - tmp58 tmp100 = tl_math.abs(tmp59) tmp101 = tl.broadcast_to(tmp100, [RBLOCK]) tmp103 = triton_helpers.promote_to_tensor(tl.sum(tmp101, 0)) tmp104 = tl_math.abs(tmp69) tmp105 = tl.broadcast_to(tmp104, [RBLOCK]) tmp107 = triton_helpers.promote_to_tensor(tl.sum(tmp105, 0)) tmp108 = tl_math.abs(tmp79) tmp109 = tl.broadcast_to(tmp108, [RBLOCK]) tmp111 = triton_helpers.promote_to_tensor(tl.sum(tmp109, 0)) tmp112 = tl_math.abs(tmp89) tmp113 = tl.broadcast_to(tmp112, [RBLOCK]) tmp115 = triton_helpers.promote_to_tensor(tl.sum(tmp113, 0)) tmp116 = tl_math.abs(tmp99) tmp117 = tl.broadcast_to(tmp116, [RBLOCK]) tmp119 = triton_helpers.promote_to_tensor(tl.sum(tmp117, 0)) tmp120 = 256.0 tmp121 = tmp12 / tmp120 tmp122 = tmp107 / tmp120 tmp123 = tmp121 + tmp122 tmp124 = 0.0 tmp125 = tmp123 + tmp124 tmp126 = tmp18 / tmp120 tmp127 = tmp111 / tmp120 tmp128 = tmp126 + tmp127 tmp129 = tmp125 + tmp128 tmp130 = tmp24 / tmp120 tmp131 = tmp115 / tmp120 tmp132 = tmp130 + tmp131 tmp133 = tmp129 + tmp132 tmp134 = tmp30 / tmp120 tmp135 = tmp119 / tmp120 tmp136 = tmp134 + tmp135 tmp137 = tmp133 + tmp136 tmp138 = 0.25 tmp139 = tmp137 * tmp138 tmp140 = tmp6 / tmp120 tmp141 = tmp103 / tmp120 tmp142 = tmp140 + tmp141 tmp143 = 1.0 tmp144 = tmp142 * tmp143 tmp146 = 0.9998 tmp147 = libdevice.pow(tmp146, tmp145) tmp148 = 100.0 tmp149 = tmp147 * tmp148 tmp150 = tmp149 * tmp139 tmp151 = tmp150 * tmp143 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp144, None) tl.store(out_ptr13 + tl.broadcast_to(r0, [RBLOCK]), tmp151, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf17 = buf0 del buf0 buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0[grid(1)](buf17 , arg1_1, arg0_1, arg2_1, arg3_1, buf16, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf17, buf16 class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasic(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasic, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, pred, ground_truth): return self.l2_loss(pred, ground_truth) + self.l1_loss(self. gradient(pred), self.gradient(ground_truth)) class LossAnneal(nn.Module): """ anneal loss function """ def __init__(self, alpha=0.9998, beta=100): super(LossAnneal, self).__init__() self.global_step = 0 self.loss_func = LossBasic(gradient_L1=True) self.alpha = alpha self.beta = beta def forward(self, global_step, pred_i, ground_truth): """ :param global_step: int :param pred_i: [batch_size, N, 3, height, width] :param ground_truth: [batch_size, 3, height, width] :return: """ loss = 0 for i in range(pred_i.size(1)): loss += self.loss_func(pred_i[:, i, ...], ground_truth) loss /= pred_i.size(1) return self.beta * self.alpha ** global_step * loss class LossFuncNew(nn.Module): """ loss function of KPN """ def __init__(self, coeff_basic=1.0, coeff_anneal=1.0, gradient_L1=True, alpha=0.9998, beta=100): super(LossFuncNew, self).__init__() self.coeff_basic = coeff_basic self.coeff_anneal = coeff_anneal self.loss_basic = LossBasic(gradient_L1) self.loss_anneal = LossAnneal(alpha, beta) def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1]
xenbaloch/efficientderain
LossFunc
false
16,743
[ "MIT" ]
109
d5646815fd14a5a03c859102ecd2f298db7e53be
https://github.com/xenbaloch/efficientderain/tree/d5646815fd14a5a03c859102ecd2f298db7e53be
SuperpointDescriptor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qj/cqjhyqyrv26zock46qjlq4h2nadr5bpow3b3v2ak7pxem6qix4po.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yb/cyb2n4zu3ugsotcydbl7uh4e6tslj5s3eohnwnrycfcwdxuqvckj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (524288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/p5/cp5f3ywbsz6yywuzmnyc62oqasgrxyr7eslb3ehdwfuid7crjbs6.py # Topologically Sorted Source Nodes: [conv2d, feat], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # feat => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ba/cba5engkc2in7uklqu6tqqaa2mywrzp7mjbeegam7kj6362mvyfw.py # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] # Source node to ATen node mapping: # semi => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (524288*y1)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 512, 4096, grid=grid(512, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d, feat], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf3, primals_2, 4194304, grid=grid(4194304), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf5 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf4, primals_5, buf5, 512, 4096, grid=grid(512, 4096), stream=stream0) del buf4 del primals_5 return (buf5, buf0, buf1, primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SuperpointDescriptor(nn.Module): """ Descriptor decoder based on the SuperPoint arcihtecture. """ def __init__(self, input_feat_dim=128): super(SuperpointDescriptor, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size=3, stride=1, padding=1) self.convPb = torch.nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) def forward(self, input_features): feat = self.relu(self.convPa(input_features)) semi = self.convPb(feat) return semi def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 524288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 524288 * y1), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(32768, 9)](primals_1, buf0, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_1[grid(512, 4096)](primals_3, buf1, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_2[grid(4194304)](buf3, primals_2, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf5 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_3[grid(512, 4096)](buf4, primals_5, buf5, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf4 del primals_5 return buf5, buf0, buf1, primals_4, buf3 class SuperpointDescriptorNew(nn.Module): """ Descriptor decoder based on the SuperPoint arcihtecture. """ def __init__(self, input_feat_dim=128): super(SuperpointDescriptorNew, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size=3, stride=1, padding=1) self.convPb = torch.nn.Conv2d(256, 128, kernel_size=1, stride=1, padding=0) def forward(self, input_0): primals_1 = self.convPa.weight primals_2 = self.convPa.bias primals_4 = self.convPb.weight primals_5 = self.convPb.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
wx-b/SOLD2
SuperpointDescriptor
false
16,744
[ "MIT" ]
347
71c3243f9d3a695788d0a6bfd134b9849425900a
https://github.com/wx-b/SOLD2/tree/71c3243f9d3a695788d0a6bfd134b9849425900a
LossAnneal
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vt/cvtqazh4ihrhmhdp2o64chkqzoz4oyg2s5mdyjogg4su73brev5z.py # Topologically Sorted Source Nodes: [pow_1, mul, mse_loss, abs_3, abs_4, add_1, l1_loss, add_2, loss, mse_loss_1, abs_7, abs_8, add_5, l1_loss_1, add_6, loss_1, mse_loss_2, abs_11, abs_12, add_8, l1_loss_2, add_9, loss_2, mse_loss_3, abs_15, abs_16, add_11, l1_loss_3, add_12, loss_3, loss_4, mul_1], Original ATen: [aten.pow, aten.mul, aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean, aten.div] # Source node to ATen node mapping: # abs_11 => abs_13 # abs_12 => abs_14 # abs_15 => abs_18 # abs_16 => abs_19 # abs_3 => abs_3 # abs_4 => abs_4 # abs_7 => abs_8 # abs_8 => abs_9 # add_1 => add_1 # add_11 => add_13 # add_12 => add_14 # add_2 => add_2 # add_5 => add_5 # add_6 => add_6 # add_8 => add_9 # add_9 => add_10 # l1_loss => abs_5, mean_1, sub_5 # l1_loss_1 => abs_10, mean_3, sub_11 # l1_loss_2 => abs_15, mean_5, sub_17 # l1_loss_3 => abs_20, mean_7, sub_23 # loss => add_3 # loss_1 => add_7 # loss_2 => add_11 # loss_3 => add_15 # loss_4 => div # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_2, pow_2, sub_6 # mse_loss_2 => mean_4, pow_3, sub_12 # mse_loss_3 => mean_6, pow_4, sub_18 # mul => mul # mul_1 => mul_1 # pow_1 => pow_5 # Graph fragment: # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Scalar](args = (0.9998, %arg2_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_5, 100), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_4,), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_5,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_3, %abs_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_1, %add_1), kwargs = {}) # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_2, %arg1_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_6, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_9,), kwargs = {}) # %abs_9 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_10,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_8, %abs_9), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_3, %add_5), kwargs = {}) # %abs_10 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_11,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_10,), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %mean_3), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %add_6), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_4, %arg1_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_12, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %abs_13 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_14,), kwargs = {}) # %abs_14 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_15,), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_13, %abs_14), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_5, %add_9), kwargs = {}) # %abs_15 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_17,), kwargs = {}) # %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_15,), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_4, %mean_5), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %add_10), kwargs = {}) # %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_6, %arg1_1), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_18, 2), kwargs = {}) # %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {}) # %abs_18 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_19,), kwargs = {}) # %abs_19 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%slice_20,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_18, %abs_19), kwargs = {}) # %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_7, %add_13), kwargs = {}) # %abs_20 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_23,), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_20,), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_6, %mean_7), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %add_14), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_15, 4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %div), kwargs = {}) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 26, 'num_reduction': 8, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr11, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) % 4 r5 = rindex r3 = rindex % 4 r4 = (rindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r5), None) tmp7 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None, eviction_policy='evict_last') tmp120 = tl.load(in_ptr2 + (r5), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp8 = tmp7 - tmp1 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = tmp13 - tmp1 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp25 = (-1) + r3 tmp26 = tl.full([1], 0, tl.int64) tmp27 = tmp25 >= tmp26 tmp28 = tl.load(in_ptr0 + (tl.broadcast_to((-1) + r0 + (64*r1), [RBLOCK])), tmp27, eviction_policy='evict_last', other=0.0) tmp29 = r3 tmp30 = tl.full([1], 4, tl.int64) tmp31 = tmp29 < tmp30 tmp32 = tl.load(in_ptr0 + (tl.broadcast_to(r0 + (64*r1), [RBLOCK])), tmp31, eviction_policy='evict_last', other=0.0) tmp33 = tmp28 - tmp32 tmp34 = tl_math.abs(tmp33) tmp35 = (-1) + r4 tmp36 = tmp35 >= tmp26 tmp37 = tl.load(in_ptr0 + (tl.broadcast_to((-4) + r0 + (64*r1), [RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0) tmp38 = r4 tmp39 = tmp38 < tmp30 tmp40 = tl.load(in_ptr0 + (tl.broadcast_to(r0 + (64*r1), [RBLOCK])), tmp39, eviction_policy='evict_last', other=0.0) tmp41 = tmp37 - tmp40 tmp42 = tl_math.abs(tmp41) tmp43 = tmp34 + tmp42 tmp44 = tl.load(in_ptr1 + (tl.broadcast_to((-1) + r5, [RBLOCK])), tmp27, other=0.0) tmp45 = tl.load(in_ptr1 + (tl.broadcast_to(r5, [RBLOCK])), tmp31, other=0.0) tmp46 = tmp44 - tmp45 tmp47 = tl_math.abs(tmp46) tmp48 = tl.load(in_ptr1 + (tl.broadcast_to((-4) + r5, [RBLOCK])), tmp36, other=0.0) tmp49 = tl.load(in_ptr1 + (tl.broadcast_to(r5, [RBLOCK])), tmp39, other=0.0) tmp50 = tmp48 - tmp49 tmp51 = tl_math.abs(tmp50) tmp52 = tmp47 + tmp51 tmp53 = tmp43 - tmp52 tmp54 = tl.load(in_ptr0 + (tl.broadcast_to(15 + r0 + (64*r1), [RBLOCK])), tmp27, eviction_policy='evict_last', other=0.0) tmp55 = tl.load(in_ptr0 + (tl.broadcast_to(16 + r0 + (64*r1), [RBLOCK])), tmp31, eviction_policy='evict_last', other=0.0) tmp56 = tmp54 - tmp55 tmp57 = tl_math.abs(tmp56) tmp58 = tl.load(in_ptr0 + (tl.broadcast_to(12 + r0 + (64*r1), [RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0) tmp59 = tl.load(in_ptr0 + (tl.broadcast_to(16 + r0 + (64*r1), [RBLOCK])), tmp39, eviction_policy='evict_last', other=0.0) tmp60 = tmp58 - tmp59 tmp61 = tl_math.abs(tmp60) tmp62 = tmp57 + tmp61 tmp63 = tmp62 - tmp52 tmp64 = tl.load(in_ptr0 + (tl.broadcast_to(31 + r0 + (64*r1), [RBLOCK])), tmp27, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + (tl.broadcast_to(32 + r0 + (64*r1), [RBLOCK])), tmp31, eviction_policy='evict_last', other=0.0) tmp66 = tmp64 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tl.load(in_ptr0 + (tl.broadcast_to(28 + r0 + (64*r1), [RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0) tmp69 = tl.load(in_ptr0 + (tl.broadcast_to(32 + r0 + (64*r1), [RBLOCK])), tmp39, eviction_policy='evict_last', other=0.0) tmp70 = tmp68 - tmp69 tmp71 = tl_math.abs(tmp70) tmp72 = tmp67 + tmp71 tmp73 = tmp72 - tmp52 tmp74 = tl.load(in_ptr0 + (tl.broadcast_to(47 + r0 + (64*r1), [RBLOCK])), tmp27, eviction_policy='evict_last', other=0.0) tmp75 = tl.load(in_ptr0 + (tl.broadcast_to(48 + r0 + (64*r1), [RBLOCK])), tmp31, eviction_policy='evict_last', other=0.0) tmp76 = tmp74 - tmp75 tmp77 = tl_math.abs(tmp76) tmp78 = tl.load(in_ptr0 + (tl.broadcast_to(44 + r0 + (64*r1), [RBLOCK])), tmp36, eviction_policy='evict_last', other=0.0) tmp79 = tl.load(in_ptr0 + (tl.broadcast_to(48 + r0 + (64*r1), [RBLOCK])), tmp39, eviction_policy='evict_last', other=0.0) tmp80 = tmp78 - tmp79 tmp81 = tl_math.abs(tmp80) tmp82 = tmp77 + tmp81 tmp83 = tmp82 - tmp52 tmp84 = tl_math.abs(tmp53) tmp85 = tl.broadcast_to(tmp84, [RBLOCK]) tmp87 = triton_helpers.promote_to_tensor(tl.sum(tmp85, 0)) tmp88 = tl_math.abs(tmp63) tmp89 = tl.broadcast_to(tmp88, [RBLOCK]) tmp91 = triton_helpers.promote_to_tensor(tl.sum(tmp89, 0)) tmp92 = tl_math.abs(tmp73) tmp93 = tl.broadcast_to(tmp92, [RBLOCK]) tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0)) tmp96 = tl_math.abs(tmp83) tmp97 = tl.broadcast_to(tmp96, [RBLOCK]) tmp99 = triton_helpers.promote_to_tensor(tl.sum(tmp97, 0)) tmp100 = 256.0 tmp101 = tmp6 / tmp100 tmp102 = tmp87 / tmp100 tmp103 = tmp101 + tmp102 tmp104 = 0.0 tmp105 = tmp103 + tmp104 tmp106 = tmp12 / tmp100 tmp107 = tmp91 / tmp100 tmp108 = tmp106 + tmp107 tmp109 = tmp105 + tmp108 tmp110 = tmp18 / tmp100 tmp111 = tmp95 / tmp100 tmp112 = tmp110 + tmp111 tmp113 = tmp109 + tmp112 tmp114 = tmp24 / tmp100 tmp115 = tmp99 / tmp100 tmp116 = tmp114 + tmp115 tmp117 = tmp113 + tmp116 tmp118 = 0.25 tmp119 = tmp117 * tmp118 tmp121 = 0.9998 tmp122 = libdevice.pow(tmp121, tmp120) tmp123 = 100.0 tmp124 = tmp122 * tmp123 tmp125 = tmp124 * tmp119 tl.store(out_ptr11 + (tl.broadcast_to(r5, [RBLOCK])), tmp125, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, mul, mse_loss, abs_3, abs_4, add_1, l1_loss, add_2, loss, mse_loss_1, abs_7, abs_8, add_5, l1_loss_1, add_6, loss_1, mse_loss_2, abs_11, abs_12, add_8, l1_loss_2, add_9, loss_2, mse_loss_3, abs_15, abs_16, add_11, l1_loss_3, add_12, loss_3, loss_4, mul_1], Original ATen: [aten.pow, aten.mul, aten.mse_loss, aten.abs, aten.add, aten.sub, aten.mean, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0.run(arg0_1, arg1_1, arg2_1, buf13, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasic(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasic, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, pred, ground_truth): return self.l2_loss(pred, ground_truth) + self.l1_loss(self. gradient(pred), self.gradient(ground_truth)) class LossAnneal(nn.Module): """ anneal loss function """ def __init__(self, alpha=0.9998, beta=100): super(LossAnneal, self).__init__() self.global_step = 0 self.loss_func = LossBasic(gradient_L1=True) self.alpha = alpha self.beta = beta def forward(self, global_step, pred_i, ground_truth): """ :param global_step: int :param pred_i: [batch_size, N, 3, height, width] :param ground_truth: [batch_size, 3, height, width] :return: """ loss = 0 for i in range(pred_i.size(1)): loss += self.loss_func(pred_i[:, i, ...], ground_truth) loss /= pred_i.size(1) return self.beta * self.alpha ** global_step * loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr11, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 % 4 r5 = rindex r3 = rindex % 4 r4 = rindex // 4 % 4 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + r5, None) tmp7 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None, eviction_policy= 'evict_last') tmp120 = tl.load(in_ptr2 + r5, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp8 = tmp7 - tmp1 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp14 = tmp13 - tmp1 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp20 = tmp19 - tmp1 tmp21 = tmp20 * tmp20 tmp22 = tl.broadcast_to(tmp21, [RBLOCK]) tmp24 = triton_helpers.promote_to_tensor(tl.sum(tmp22, 0)) tmp25 = -1 + r3 tmp26 = tl.full([1], 0, tl.int64) tmp27 = tmp25 >= tmp26 tmp28 = tl.load(in_ptr0 + tl.broadcast_to(-1 + r0 + 64 * r1, [RBLOCK]), tmp27, eviction_policy='evict_last', other=0.0) tmp29 = r3 tmp30 = tl.full([1], 4, tl.int64) tmp31 = tmp29 < tmp30 tmp32 = tl.load(in_ptr0 + tl.broadcast_to(r0 + 64 * r1, [RBLOCK]), tmp31, eviction_policy='evict_last', other=0.0) tmp33 = tmp28 - tmp32 tmp34 = tl_math.abs(tmp33) tmp35 = -1 + r4 tmp36 = tmp35 >= tmp26 tmp37 = tl.load(in_ptr0 + tl.broadcast_to(-4 + r0 + 64 * r1, [RBLOCK]), tmp36, eviction_policy='evict_last', other=0.0) tmp38 = r4 tmp39 = tmp38 < tmp30 tmp40 = tl.load(in_ptr0 + tl.broadcast_to(r0 + 64 * r1, [RBLOCK]), tmp39, eviction_policy='evict_last', other=0.0) tmp41 = tmp37 - tmp40 tmp42 = tl_math.abs(tmp41) tmp43 = tmp34 + tmp42 tmp44 = tl.load(in_ptr1 + tl.broadcast_to(-1 + r5, [RBLOCK]), tmp27, other=0.0) tmp45 = tl.load(in_ptr1 + tl.broadcast_to(r5, [RBLOCK]), tmp31, other=0.0) tmp46 = tmp44 - tmp45 tmp47 = tl_math.abs(tmp46) tmp48 = tl.load(in_ptr1 + tl.broadcast_to(-4 + r5, [RBLOCK]), tmp36, other=0.0) tmp49 = tl.load(in_ptr1 + tl.broadcast_to(r5, [RBLOCK]), tmp39, other=0.0) tmp50 = tmp48 - tmp49 tmp51 = tl_math.abs(tmp50) tmp52 = tmp47 + tmp51 tmp53 = tmp43 - tmp52 tmp54 = tl.load(in_ptr0 + tl.broadcast_to(15 + r0 + 64 * r1, [RBLOCK]), tmp27, eviction_policy='evict_last', other=0.0) tmp55 = tl.load(in_ptr0 + tl.broadcast_to(16 + r0 + 64 * r1, [RBLOCK]), tmp31, eviction_policy='evict_last', other=0.0) tmp56 = tmp54 - tmp55 tmp57 = tl_math.abs(tmp56) tmp58 = tl.load(in_ptr0 + tl.broadcast_to(12 + r0 + 64 * r1, [RBLOCK]), tmp36, eviction_policy='evict_last', other=0.0) tmp59 = tl.load(in_ptr0 + tl.broadcast_to(16 + r0 + 64 * r1, [RBLOCK]), tmp39, eviction_policy='evict_last', other=0.0) tmp60 = tmp58 - tmp59 tmp61 = tl_math.abs(tmp60) tmp62 = tmp57 + tmp61 tmp63 = tmp62 - tmp52 tmp64 = tl.load(in_ptr0 + tl.broadcast_to(31 + r0 + 64 * r1, [RBLOCK]), tmp27, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + tl.broadcast_to(32 + r0 + 64 * r1, [RBLOCK]), tmp31, eviction_policy='evict_last', other=0.0) tmp66 = tmp64 - tmp65 tmp67 = tl_math.abs(tmp66) tmp68 = tl.load(in_ptr0 + tl.broadcast_to(28 + r0 + 64 * r1, [RBLOCK]), tmp36, eviction_policy='evict_last', other=0.0) tmp69 = tl.load(in_ptr0 + tl.broadcast_to(32 + r0 + 64 * r1, [RBLOCK]), tmp39, eviction_policy='evict_last', other=0.0) tmp70 = tmp68 - tmp69 tmp71 = tl_math.abs(tmp70) tmp72 = tmp67 + tmp71 tmp73 = tmp72 - tmp52 tmp74 = tl.load(in_ptr0 + tl.broadcast_to(47 + r0 + 64 * r1, [RBLOCK]), tmp27, eviction_policy='evict_last', other=0.0) tmp75 = tl.load(in_ptr0 + tl.broadcast_to(48 + r0 + 64 * r1, [RBLOCK]), tmp31, eviction_policy='evict_last', other=0.0) tmp76 = tmp74 - tmp75 tmp77 = tl_math.abs(tmp76) tmp78 = tl.load(in_ptr0 + tl.broadcast_to(44 + r0 + 64 * r1, [RBLOCK]), tmp36, eviction_policy='evict_last', other=0.0) tmp79 = tl.load(in_ptr0 + tl.broadcast_to(48 + r0 + 64 * r1, [RBLOCK]), tmp39, eviction_policy='evict_last', other=0.0) tmp80 = tmp78 - tmp79 tmp81 = tl_math.abs(tmp80) tmp82 = tmp77 + tmp81 tmp83 = tmp82 - tmp52 tmp84 = tl_math.abs(tmp53) tmp85 = tl.broadcast_to(tmp84, [RBLOCK]) tmp87 = triton_helpers.promote_to_tensor(tl.sum(tmp85, 0)) tmp88 = tl_math.abs(tmp63) tmp89 = tl.broadcast_to(tmp88, [RBLOCK]) tmp91 = triton_helpers.promote_to_tensor(tl.sum(tmp89, 0)) tmp92 = tl_math.abs(tmp73) tmp93 = tl.broadcast_to(tmp92, [RBLOCK]) tmp95 = triton_helpers.promote_to_tensor(tl.sum(tmp93, 0)) tmp96 = tl_math.abs(tmp83) tmp97 = tl.broadcast_to(tmp96, [RBLOCK]) tmp99 = triton_helpers.promote_to_tensor(tl.sum(tmp97, 0)) tmp100 = 256.0 tmp101 = tmp6 / tmp100 tmp102 = tmp87 / tmp100 tmp103 = tmp101 + tmp102 tmp104 = 0.0 tmp105 = tmp103 + tmp104 tmp106 = tmp12 / tmp100 tmp107 = tmp91 / tmp100 tmp108 = tmp106 + tmp107 tmp109 = tmp105 + tmp108 tmp110 = tmp18 / tmp100 tmp111 = tmp95 / tmp100 tmp112 = tmp110 + tmp111 tmp113 = tmp109 + tmp112 tmp114 = tmp24 / tmp100 tmp115 = tmp99 / tmp100 tmp116 = tmp114 + tmp115 tmp117 = tmp113 + tmp116 tmp118 = 0.25 tmp119 = tmp117 * tmp118 tmp121 = 0.9998 tmp122 = libdevice.pow(tmp121, tmp120) tmp123 = 100.0 tmp124 = tmp122 * tmp123 tmp125 = tmp124 * tmp119 tl.store(out_ptr11 + tl.broadcast_to(r5, [RBLOCK]), tmp125, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_abs_add_div_mean_mse_loss_mul_pow_sub_0[grid(1)]( arg0_1, arg1_1, arg2_1, buf13, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf13, class TensorGradient(nn.Module): """ the gradient of tensor """ def __init__(self, L1=True): super(TensorGradient, self).__init__() self.L1 = L1 def forward(self, img): w, h = img.size(-2), img.size(-1) l = F.pad(img, [1, 0, 0, 0]) r = F.pad(img, [0, 1, 0, 0]) u = F.pad(img, [0, 0, 1, 0]) d = F.pad(img, [0, 0, 0, 1]) if self.L1: return torch.abs((l - r)[..., 0:w, 0:h]) + torch.abs((u - d)[ ..., 0:w, 0:h]) else: return torch.sqrt(torch.pow((l - r)[..., 0:w, 0:h], 2) + torch. pow((u - d)[..., 0:w, 0:h], 2)) class LossBasic(nn.Module): """ Basic loss function. """ def __init__(self, gradient_L1=True): super(LossBasic, self).__init__() self.l1_loss = nn.L1Loss() self.l2_loss = nn.MSELoss() self.gradient = TensorGradient(gradient_L1) def forward(self, pred, ground_truth): return self.l2_loss(pred, ground_truth) + self.l1_loss(self. gradient(pred), self.gradient(ground_truth)) class LossAnnealNew(nn.Module): """ anneal loss function """ def __init__(self, alpha=0.9998, beta=100): super(LossAnnealNew, self).__init__() self.global_step = 0 self.loss_func = LossBasic(gradient_L1=True) self.alpha = alpha self.beta = beta def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
xenbaloch/efficientderain
LossAnneal
false
16,745
[ "MIT" ]
109
d5646815fd14a5a03c859102ecd2f298db7e53be
https://github.com/xenbaloch/efficientderain/tree/d5646815fd14a5a03c859102ecd2f298db7e53be
SuperpointDecoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qj/cqjhyqyrv26zock46qjlq4h2nadr5bpow3b3v2ak7pxem6qix4po.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yb/cyb2n4zu3ugsotcydbl7uh4e6tslj5s3eohnwnrycfcwdxuqvckj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (524288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jt/cjt6tydhquglxaofpmbzmssb2szevy3to52p3qnpihvwnwze24mk.py # Topologically Sorted Source Nodes: [conv2d, feat], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # feat => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xq/cxq3obluiyg5o7e4bbne2zqt4ef4gqcoeicdmy2yonmkrye4maym.py # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] # Source node to ATen node mapping: # semi => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 1024], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 260 xnumel = 1024 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 65 y1 = (yindex // 65) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (65*x2) + (66560*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (1024*y3)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (65, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (65, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 512, 4096, grid=grid(512, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d, feat], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf3, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 65, 32, 32), (66560, 1, 2080, 65)) buf5 = empty_strided_cuda((4, 65, 32, 32), (66560, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [semi], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf4, primals_5, buf5, 260, 1024, grid=grid(260, 1024), stream=stream0) del buf4 del primals_5 return (buf5, buf0, buf1, primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((65, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((65, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SuperpointDecoder(nn.Module): """ Junction decoder based on the SuperPoint architecture. """ def __init__(self, input_feat_dim=128, backbone_name='lcnn'): super(SuperpointDecoder, self).__init__() self.relu = torch.nn.ReLU(inplace=True) if backbone_name == 'lcnn': self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size= 3, stride=2, padding=1) elif backbone_name == 'superpoint': self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size= 3, stride=1, padding=1) else: raise ValueError('[Error] Unknown backbone option.') self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0) def forward(self, input_features): feat = self.relu(self.convPa(input_features)) semi = self.convPb(feat) return semi def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 524288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 260 xnumel = 1024 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 65 y1 = yindex // 65 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 65 * x2 + 66560 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 1024 * y3), tmp2, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_4, (65, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (65,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(32768, 9)](primals_1, buf0, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_1[grid(512, 4096)](primals_3, buf1, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_2[grid(1048576)](buf3, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 65, 32, 32), (66560, 1, 2080, 65)) buf5 = empty_strided_cuda((4, 65, 32, 32), (66560, 1024, 32, 1), torch.float32) triton_poi_fused_convolution_3[grid(260, 1024)](buf4, primals_5, buf5, 260, 1024, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf4 del primals_5 return buf5, buf0, buf1, primals_4, buf3 class SuperpointDecoderNew(nn.Module): """ Junction decoder based on the SuperPoint architecture. """ def __init__(self, input_feat_dim=128, backbone_name='lcnn'): super(SuperpointDecoderNew, self).__init__() self.relu = torch.nn.ReLU(inplace=True) if backbone_name == 'lcnn': self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size= 3, stride=2, padding=1) elif backbone_name == 'superpoint': self.convPa = torch.nn.Conv2d(input_feat_dim, 256, kernel_size= 3, stride=1, padding=1) else: raise ValueError('[Error] Unknown backbone option.') self.convPb = torch.nn.Conv2d(256, 65, kernel_size=1, stride=1, padding=0) def forward(self, input_0): primals_1 = self.convPa.weight primals_2 = self.convPa.bias primals_4 = self.convPb.weight primals_5 = self.convPb.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
wx-b/SOLD2
SuperpointDecoder
false
16,746
[ "MIT" ]
347
71c3243f9d3a695788d0a6bfd134b9849425900a
https://github.com/wx-b/SOLD2/tree/71c3243f9d3a695788d0a6bfd134b9849425900a
WingLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6t/c6tey2qyqjl7szzv3x4tq6iz36hrxpmcqlxi2eedqkbseqjpx6zc.py # Topologically Sorted Source Nodes: [sub, diff_abs, idx_smaller, loss, idx_bigger], Original ATen: [aten.sub, aten.abs, aten.lt, aten.clone, aten.ge] # Source node to ATen node mapping: # diff_abs => abs_1 # idx_bigger => ge # idx_smaller => lt # loss => clone # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=4] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 10), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%abs_1,), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_1, 10), kwargs = {}) triton_poi_fused_abs_clone_ge_lt_sub_0 = async_compile.triton('triton_poi_fused_abs_clone_ge_lt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_clone_ge_lt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_clone_ge_lt_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 10.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 >= tmp4 tl.store(out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) tl.store(out_ptr2 + (x0), tmp3, xmask) tl.store(out_ptr3 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [sub, diff_abs, idx_smaller, loss, idx_bigger], Original ATen: [aten.sub, aten.abs, aten.lt, aten.clone, aten.ge] stream0 = get_raw_stream(0) triton_poi_fused_abs_clone_ge_lt_sub_0.run(arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.onnx from torch.nn.modules.loss import _Loss class WingLoss(_Loss): def __init__(self, width=10, curvature=2.0, reduction='mean'): super(WingLoss, self).__init__(reduction=reduction) self.width = width self.curvature = curvature def forward(self, prediction, target): return self.wing_loss(prediction, target, self.width, self. curvature, self.reduction) def wing_loss(self, prediction, target, width=10, curvature=2.0, reduction='mean'): diff_abs = (target - prediction).abs() loss = diff_abs.clone() idx_smaller = diff_abs < width idx_bigger = diff_abs >= width loss_smaller = width * torch.log(1 + diff_abs[idx_smaller] / curvature) C = width - width * math.log(1 + width / curvature) loss_biger = loss[idx_bigger] - C loss = torch.cat((loss_smaller, loss_biger), 0) if reduction == 'sum': loss = loss.sum() if reduction == 'mean': loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.onnx from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_clone_ge_lt_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 10.0 tmp5 = tmp3 < tmp4 tmp6 = tmp3 >= tmp4 tl.store(out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) tl.store(out_ptr2 + x0, tmp3, xmask) tl.store(out_ptr3 + x0, tmp6, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_abs_clone_ge_lt_sub_0[grid(256)](arg0_1, arg1_1, buf0, buf1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1, buf2, buf3 class WingLossNew(_Loss): def __init__(self, width=10, curvature=2.0, reduction='mean'): super(WingLossNew, self).__init__(reduction=reduction) self.width = width self.curvature = curvature def wing_loss(self, prediction, target, width=10, curvature=2.0, reduction='mean'): diff_abs = (target - prediction).abs() loss = diff_abs.clone() idx_smaller = diff_abs < width idx_bigger = diff_abs >= width loss_smaller = width * torch.log(1 + diff_abs[idx_smaller] / curvature) C = width - width * math.log(1 + width / curvature) loss_biger = loss[idx_bigger] - C loss = torch.cat((loss_smaller, loss_biger), 0) if reduction == 'sum': loss = loss.sum() if reduction == 'mean': loss = loss.mean() return loss def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
xuguozhi/Peppa-Facial-Landmark-PyTorch
WingLoss
false
16,747
[ "Apache-2.0" ]
163
238063317fd31c4c21c5c43692e6a5d769970370
https://github.com/xuguozhi/Peppa-Facial-Landmark-PyTorch/tree/238063317fd31c4c21c5c43692e6a5d769970370
FC_Q
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # q => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bg/cbg32drchyezvbfwshguvyopixmzwi2llws7xkhvpdruis76tr2t.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_9, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_9, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oo/coo5rivaroinv27r7to5gs4jb7ce7itar6epfsastoa2ig6tj65k.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 4), (4, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256), (256, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (4, 256), (256, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 256), (256, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf15 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 256), (1, 4), 0), out=buf3) del primals_6 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf3 # reuse buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [i], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf4, primals_7, buf13, 16384, grid=grid(16384), stream=stream0) del primals_7 buf5 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (64, 256), (256, 1), 0), reinterpret_tensor(primals_8, (256, 256), (1, 256), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf5 # reuse buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [i_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf6, primals_9, buf12, 16384, grid=grid(16384), stream=stream0) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [i_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 256), (256, 1), 0), reinterpret_tensor(primals_10, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf7) del primals_11 buf8 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf8, primals_5, buf14, 16384, grid=grid(16384), stream=stream0) del primals_5 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf7, buf10, 256, grid=grid(256), stream=stream0) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf10, buf11, 256, grid=grid(256), stream=stream0) del buf10 return (reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf11, reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf4, (64, 256), (256, 1), 0), reinterpret_tensor(buf6, (64, 256), (256, 1), 0), reinterpret_tensor(buf8, (64, 256), (256, 1), 0), buf11, primals_12, primals_10, buf12, primals_8, buf13, buf14, primals_4, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class FC_Q(nn.Module): def __init__(self, state_dim, num_actions): super(FC_Q, self).__init__() self.q1 = nn.Linear(state_dim, 256) self.q2 = nn.Linear(256, 256) self.q3 = nn.Linear(256, num_actions) self.i1 = nn.Linear(state_dim, 256) self.i2 = nn.Linear(256, 256) self.i3 = nn.Linear(256, num_actions) def forward(self, state): q = F.relu(self.q1(state)) q = F.relu(self.q2(q)) i = F.relu(self.i1(state)) i = F.relu(self.i2(i)) i = self.i3(i) return self.q3(q), F.log_softmax(i, dim=1), i def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'num_actions': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 4), (4, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256), (256, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (4, 256), (256, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 256), (256, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf15 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf15, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 256), (1, 4), 0), out=buf3) del primals_6 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf3 buf13 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf4, primals_7, buf13, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf5 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 256), (256, 1), 0), reinterpret_tensor(primals_8, (256, 256), (1, 256), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf5 buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf6, primals_9, buf12, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 256), (256, 1), 0), reinterpret_tensor(primals_10, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf7) del primals_11 buf8 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf14 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf8, primals_5, buf14, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, reinterpret_tensor(buf8, (64, 256), (256, 1), 0), reinterpret_tensor(primals_12, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf9) del primals_13 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(256)](buf7, buf10, 256, XBLOCK =256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_2[grid(256)](buf10, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf10 return (reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf11, reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf4, (64, 256), (256, 1), 0), reinterpret_tensor(buf6, (64, 256), (256, 1), 0), reinterpret_tensor(buf8, (64, 256), (256, 1), 0), buf11, primals_12, primals_10, buf12, primals_8, buf13, buf14, primals_4, buf15) class FC_QNew(nn.Module): def __init__(self, state_dim, num_actions): super(FC_QNew, self).__init__() self.q1 = nn.Linear(state_dim, 256) self.q2 = nn.Linear(256, 256) self.q3 = nn.Linear(256, num_actions) self.i1 = nn.Linear(state_dim, 256) self.i2 = nn.Linear(256, 256) self.i3 = nn.Linear(256, num_actions) def forward(self, input_0): primals_1 = self.q1.weight primals_2 = self.q1.bias primals_4 = self.q2.weight primals_5 = self.q2.bias primals_10 = self.q3.weight primals_11 = self.q3.bias primals_6 = self.i1.weight primals_7 = self.i1.bias primals_8 = self.i2.weight primals_9 = self.i2.bias primals_12 = self.i3.weight primals_13 = self.i3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1], output[2]
xtwentian3/BCQ
FC_Q
false
16,748
[ "MIT" ]
402
e114f8c474c57a36d9af78c42a06f612831afda2
https://github.com/xtwentian3/BCQ/tree/e114f8c474c57a36d9af78c42a06f612831afda2
EDCNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/cv/ccvygdy6dxez3nq653bziqlzbutjokkq5lhjgkz3v3duwo3kob2f.py # Topologically Sorted Source Nodes: [sobel_weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # sobel_weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 9) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xb/cxb5tuqn3lmc7revw7qhr2x2bqq7aqiztcirrbzhtoscnqhterab.py # Topologically Sorted Source Nodes: [out_0], Original ATen: [aten.cat] # Source node to ATen node mapping: # out_0 => cat # Graph fragment: # %cat : [num_users=9] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %convolution], -3), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 540672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 33 x0 = xindex % 4096 x2 = (xindex // 135168) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x2)), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 33, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-1) + x1)) + (131072*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-1) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + (x3), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/js/cjswvtpii4qhgnrlanq3hmfsabnu2vbomf3qk6ssaivdsf7647gv.py # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # out_1 => gt, mul_1, where # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_5, %primals_6, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ds/cdsxlec3yzmjxqwlsp6oz7osevypjs5dmegcttg7mxl4v65zphz4.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => gt_1 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_7, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/am/camskg5tulclkz6ubhxxzjldh6aauctr2xykdf3be4boma5zlyz4.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # out_3 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%cat, %where_1], -3), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1064960 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 65 x0 = xindex % 4096 x2 = (xindex // 266240) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 33, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (135168*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 65, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-33) + x1)) + (131072*x2)), tmp6, other=0.0).to(tl.int1) tmp10 = tl.load(in_ptr2 + (x0 + (4096*((-33) + x1)) + (131072*x2)), tmp6, other=0.0) tmp11 = tl.load(in_ptr3 + ((-33) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.01 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp6, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp5, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zi/czicu3b4ubwmilz3xiti5phmndq3t7mt4bdd6zt6izpykab3vuh3.py # Topologically Sorted Source Nodes: [out_23, add, out_24], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # add => add # out_23 => convolution_16 # out_24 => gt_15, mul_16, where_15 # Graph fragment: # %convolution_16 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_14, %primals_35, %primals_36, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %convolution_16), kwargs = {}) # %gt_15 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.01), kwargs = {}) # %where_15 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %add, %mul_16), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = tl.load(in_ptr1 + (x0), None) tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.01 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tl.store(out_ptr0 + (x0), tmp7, None) tl.store(out_ptr1 + (x0), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36 = args args.clear() assert_size_stride(primals_1, (32, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_4, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_5, (32, 33, 1, 1), (33, 1, 1, 1)) assert_size_stride(primals_6, (32, ), (1, )) assert_size_stride(primals_7, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_8, (32, ), (1, )) assert_size_stride(primals_9, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_10, (32, ), (1, )) assert_size_stride(primals_11, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_12, (32, ), (1, )) assert_size_stride(primals_13, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_14, (32, ), (1, )) assert_size_stride(primals_15, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_16, (32, ), (1, )) assert_size_stride(primals_17, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_18, (32, ), (1, )) assert_size_stride(primals_19, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_20, (32, ), (1, )) assert_size_stride(primals_21, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_22, (32, ), (1, )) assert_size_stride(primals_23, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_24, (32, ), (1, )) assert_size_stride(primals_25, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_26, (32, ), (1, )) assert_size_stride(primals_27, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_28, (32, ), (1, )) assert_size_stride(primals_29, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_30, (32, ), (1, )) assert_size_stride(primals_31, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_32, (32, ), (1, )) assert_size_stride(primals_33, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_34, (32, ), (1, )) assert_size_stride(primals_35, (1, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_36, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 1, 3, 3), (9, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [sobel_weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_3, primals_1, buf0, 288, grid=grid(288), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 33, 64, 64), (135168, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_0], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_4, buf1, primals_2, buf2, 540672, grid=grid(540672), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf3, primals_6, buf4, buf5, 524288, grid=grid(524288), stream=stream0) del buf3 del primals_6 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf6, primals_8, buf7, 524288, grid=grid(524288), stream=stream0) buf8 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf7, buf6, primals_8, buf8, 1064960, grid=grid(1064960), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf11 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d_3, out_4], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf9, primals_10, buf10, buf11, 524288, grid=grid(524288), stream=stream0) del buf9 del primals_10 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, out_5], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf12, primals_12, buf13, 524288, grid=grid(524288), stream=stream0) buf14 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf13, buf12, primals_12, buf14, 1064960, grid=grid(1064960), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf16 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf17 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_5, out_7], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf15, primals_14, buf16, buf17, 524288, grid=grid(524288), stream=stream0) del buf15 del primals_14 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_6, out_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf18, primals_16, buf19, 524288, grid=grid(524288), stream=stream0) buf20 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf19, buf18, primals_16, buf20, 1064960, grid=grid(1064960), stream=stream0) del primals_16 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_17, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf22 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf23 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf21, primals_18, buf22, buf23, 524288, grid=grid(524288), stream=stream0) del buf21 del primals_18 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf25 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_8, out_11], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf24, primals_20, buf25, 524288, grid=grid(524288), stream=stream0) buf26 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf25, buf24, primals_20, buf26, 1064960, grid=grid(1064960), stream=stream0) del primals_20 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf28 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf29 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv2d_9, out_13], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf27, primals_22, buf28, buf29, 524288, grid=grid(524288), stream=stream0) del buf27 del primals_22 # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf31 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf30, primals_24, buf31, 524288, grid=grid(524288), stream=stream0) buf32 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf31, buf30, primals_24, buf32, 1064960, grid=grid(1064960), stream=stream0) del primals_24 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_25, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf34 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf35 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_11, out_16], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf33, primals_26, buf34, buf35, 524288, grid=grid(524288), stream=stream0) del buf33 del primals_26 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf37 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, out_17], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf36, primals_28, buf37, 524288, grid=grid(524288), stream=stream0) buf38 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf37, buf36, primals_28, buf38, 1064960, grid=grid(1064960), stream=stream0) del primals_28 # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf39 = extern_kernels.convolution(buf38, primals_29, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf40 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf41 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_13, out_19], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf39, primals_30, buf40, buf41, 524288, grid=grid(524288), stream=stream0) del buf39 del primals_30 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf42 = extern_kernels.convolution(buf41, primals_31, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf43 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, out_20], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf42, primals_32, buf43, 524288, grid=grid(524288), stream=stream0) buf44 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf2, buf43, buf42, primals_32, buf44, 1064960, grid=grid(1064960), stream=stream0) del primals_32 # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf46 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf47 = buf42; del buf42 # reuse # Topologically Sorted Source Nodes: [conv2d_15, out_22], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf45, primals_34, buf46, buf47, 524288, grid=grid(524288), stream=stream0) del buf45 del primals_34 # Topologically Sorted Source Nodes: [out_23], Original ATen: [aten.convolution] buf48 = extern_kernels.convolution(buf47, primals_35, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf49 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) buf50 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_23, add, out_24], Original ATen: [aten.convolution, aten.add, aten.leaky_relu] triton_poi_fused_add_convolution_leaky_relu_5.run(primals_4, buf48, primals_36, buf49, buf50, 16384, grid=grid(16384), stream=stream0) del buf48 del primals_36 return (buf50, primals_3, primals_4, primals_5, primals_7, primals_9, primals_11, primals_13, primals_15, primals_17, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29, primals_31, primals_33, primals_35, buf0, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35, buf37, buf38, buf40, buf41, buf43, buf44, buf46, buf47, buf49, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, 33, 1, 1), (33, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((32, 65, 1, 1), (65, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((1, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SobelConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=True, requires_grad=True): assert kernel_size % 2 == 1, "SobelConv2d's kernel_size must be odd." assert out_channels % 4 == 0, "SobelConv2d's out_channels must be a multiple of 4." assert out_channels % groups == 0, "SobelConv2d's out_channels must be a multiple of groups." super(SobelConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias if requires_grad else False if self.bias: self.bias = nn.Parameter(torch.zeros(size=(out_channels,), dtype=torch.float32), requires_grad=True) else: self.bias = None self.sobel_weight = nn.Parameter(torch.zeros(size=(out_channels, int(in_channels / groups), kernel_size, kernel_size)), requires_grad=False) kernel_mid = kernel_size // 2 for idx in range(out_channels): if idx % 4 == 0: self.sobel_weight[idx, :, 0, :] = -1 self.sobel_weight[idx, :, 0, kernel_mid] = -2 self.sobel_weight[idx, :, -1, :] = 1 self.sobel_weight[idx, :, -1, kernel_mid] = 2 elif idx % 4 == 1: self.sobel_weight[idx, :, :, 0] = -1 self.sobel_weight[idx, :, kernel_mid, 0] = -2 self.sobel_weight[idx, :, :, -1] = 1 self.sobel_weight[idx, :, kernel_mid, -1] = 2 elif idx % 4 == 2: self.sobel_weight[idx, :, 0, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid - i, i] = -1 self.sobel_weight[idx, :, kernel_size - 1 - i, kernel_mid + i] = 1 self.sobel_weight[idx, :, -1, -1] = 2 else: self.sobel_weight[idx, :, -1, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid + i, i] = -1 self.sobel_weight[idx, :, i, kernel_mid + i] = 1 self.sobel_weight[idx, :, 0, -1] = 2 if requires_grad: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=True) else: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=False) def forward(self, x): if torch.cuda.is_available(): self.sobel_factor = self.sobel_factor if isinstance(self.bias, nn.Parameter): self.bias = self.bias sobel_weight = self.sobel_weight * self.sobel_factor if torch.cuda.is_available(): sobel_weight = sobel_weight out = F.conv2d(x, sobel_weight, self.bias, self.stride, self. padding, self.dilation, self.groups) return out class EDCNN(nn.Module): def __init__(self, in_ch=1, out_ch=32, sobel_ch=32): super(EDCNN, self).__init__() self.conv_sobel = SobelConv2d(in_ch, sobel_ch, kernel_size=3, stride=1, padding=1, bias=True) self.conv_p1 = nn.Conv2d(in_ch + sobel_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f1 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p2 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f2 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p3 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f3 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p4 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f4 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p5 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f5 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p6 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f6 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p7 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f7 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p8 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f8 = nn.Conv2d(out_ch, in_ch, kernel_size=3, stride=1, padding=1) self.relu = nn.LeakyReLU() def forward(self, x): out_0 = self.conv_sobel(x) out_0 = torch.cat((x, out_0), dim=-3) out_1 = self.relu(self.conv_p1(out_0)) out_1 = self.relu(self.conv_f1(out_1)) out_1 = torch.cat((out_0, out_1), dim=-3) out_2 = self.relu(self.conv_p2(out_1)) out_2 = self.relu(self.conv_f2(out_2)) out_2 = torch.cat((out_0, out_2), dim=-3) out_3 = self.relu(self.conv_p3(out_2)) out_3 = self.relu(self.conv_f3(out_3)) out_3 = torch.cat((out_0, out_3), dim=-3) out_4 = self.relu(self.conv_p4(out_3)) out_4 = self.relu(self.conv_f4(out_4)) out_4 = torch.cat((out_0, out_4), dim=-3) out_5 = self.relu(self.conv_p5(out_4)) out_5 = self.relu(self.conv_f5(out_5)) out_5 = torch.cat((out_0, out_5), dim=-3) out_6 = self.relu(self.conv_p6(out_5)) out_6 = self.relu(self.conv_f6(out_6)) out_6 = torch.cat((out_0, out_6), dim=-3) out_7 = self.relu(self.conv_p7(out_6)) out_7 = self.relu(self.conv_f7(out_7)) out_7 = torch.cat((out_0, out_7), dim=-3) out_8 = self.relu(self.conv_p8(out_7)) out_8 = self.conv_f8(out_8) out = self.relu(x + out_8) return out def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 9 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 33 x0 = xindex % 4096 x2 = xindex // 135168 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x2), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 33, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-1 + x1) + 131072 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-1 + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp6, tmp11, tmp12) tmp14 = tl.where(tmp4, tmp5, tmp13) tl.store(out_ptr0 + x3, tmp14, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 65 x0 = xindex % 4096 x2 = xindex // 266240 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 33, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 135168 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 65, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-33 + x1) + 131072 * x2), tmp6, other=0.0).to(tl.int1) tmp10 = tl.load(in_ptr2 + (x0 + 4096 * (-33 + x1) + 131072 * x2), tmp6, other=0.0) tmp11 = tl.load(in_ptr3 + (-33 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.01 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp6, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp5, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = tl.load(in_ptr1 + x0, None) tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 0.01 tmp9 = tmp5 * tmp8 tmp10 = tl.where(tmp7, tmp5, tmp9) tl.store(out_ptr0 + x0, tmp7, None) tl.store(out_ptr1 + x0, tmp10, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36) = args args.clear() assert_size_stride(primals_1, (32, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_4, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_5, (32, 33, 1, 1), (33, 1, 1, 1)) assert_size_stride(primals_6, (32,), (1,)) assert_size_stride(primals_7, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_8, (32,), (1,)) assert_size_stride(primals_9, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_10, (32,), (1,)) assert_size_stride(primals_11, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_12, (32,), (1,)) assert_size_stride(primals_13, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_14, (32,), (1,)) assert_size_stride(primals_15, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_16, (32,), (1,)) assert_size_stride(primals_17, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_18, (32,), (1,)) assert_size_stride(primals_19, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_20, (32,), (1,)) assert_size_stride(primals_21, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_22, (32,), (1,)) assert_size_stride(primals_23, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_24, (32,), (1,)) assert_size_stride(primals_25, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_26, (32,), (1,)) assert_size_stride(primals_27, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_28, (32,), (1,)) assert_size_stride(primals_29, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_30, (32,), (1,)) assert_size_stride(primals_31, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_32, (32,), (1,)) assert_size_stride(primals_33, (32, 65, 1, 1), (65, 1, 1, 1)) assert_size_stride(primals_34, (32,), (1,)) assert_size_stride(primals_35, (1, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_36, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 1, 3, 3), (9, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(288)](primals_3, primals_1, buf0, 288, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(primals_4, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf2 = empty_strided_cuda((4, 33, 64, 64), (135168, 4096, 64, 1), torch.float32) triton_poi_fused_cat_1[grid(540672)](primals_4, buf1, primals_2, buf2, 540672, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf1 del buf1 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf3, primals_6, buf4, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf3 del primals_6 buf6 = extern_kernels.convolution(buf5, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf6, primals_8, buf7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf7, buf6, primals_8, buf8, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_8 buf9 = extern_kernels.convolution(buf8, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf11 = buf6 del buf6 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf9, primals_10, buf10, buf11, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf9 del primals_10 buf12 = extern_kernels.convolution(buf11, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf12, primals_12, buf13, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf14 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf13, buf12, primals_12, buf14, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_12 buf15 = extern_kernels.convolution(buf14, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf16 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf17 = buf12 del buf12 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf15, primals_14, buf16, buf17, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf15 del primals_14 buf18 = extern_kernels.convolution(buf17, primals_15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf18, primals_16, buf19, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf20 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf19, buf18, primals_16, buf20, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_16 buf21 = extern_kernels.convolution(buf20, primals_17, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf22 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf23 = buf18 del buf18 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf21, primals_18, buf22, buf23, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf21 del primals_18 buf24 = extern_kernels.convolution(buf23, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf25 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf24, primals_20, buf25, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf26 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf25, buf24, primals_20, buf26, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_20 buf27 = extern_kernels.convolution(buf26, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf28 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf29 = buf24 del buf24 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf27, primals_22, buf28, buf29, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf27 del primals_22 buf30 = extern_kernels.convolution(buf29, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf31 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf30, primals_24, buf31, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf32 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf31, buf30, primals_24, buf32, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_24 buf33 = extern_kernels.convolution(buf32, primals_25, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf34 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf35 = buf30 del buf30 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf33, primals_26, buf34, buf35, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf33 del primals_26 buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf37 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf36, primals_28, buf37, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf38 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf37, buf36, primals_28, buf38, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_28 buf39 = extern_kernels.convolution(buf38, primals_29, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf39, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf40 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf41 = buf36 del buf36 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf39, primals_30, buf40, buf41, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf39 del primals_30 buf42 = extern_kernels.convolution(buf41, primals_31, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf43 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_3[grid(524288)](buf42, primals_32, buf43, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf44 = empty_strided_cuda((4, 65, 64, 64), (266240, 4096, 64, 1), torch.float32) triton_poi_fused_cat_4[grid(1064960)](buf2, buf43, buf42, primals_32, buf44, 1064960, XBLOCK=1024, num_warps=4, num_stages=1) del primals_32 buf45 = extern_kernels.convolution(buf44, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf46 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf47 = buf42 del buf42 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf45, primals_34, buf46, buf47, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf45 del primals_34 buf48 = extern_kernels.convolution(buf47, primals_35, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf49 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.bool) buf50 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1), torch.float32) triton_poi_fused_add_convolution_leaky_relu_5[grid(16384)](primals_4, buf48, primals_36, buf49, buf50, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf48 del primals_36 return (buf50, primals_3, primals_4, primals_5, primals_7, primals_9, primals_11, primals_13, primals_15, primals_17, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29, primals_31, primals_33, primals_35, buf0, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, buf25, buf26, buf28, buf29, buf31, buf32, buf34, buf35, buf37, buf38, buf40, buf41, buf43, buf44, buf46, buf47, buf49) class SobelConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, dilation=1, groups=1, bias=True, requires_grad=True): assert kernel_size % 2 == 1, "SobelConv2d's kernel_size must be odd." assert out_channels % 4 == 0, "SobelConv2d's out_channels must be a multiple of 4." assert out_channels % groups == 0, "SobelConv2d's out_channels must be a multiple of groups." super(SobelConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias if requires_grad else False if self.bias: self.bias = nn.Parameter(torch.zeros(size=(out_channels,), dtype=torch.float32), requires_grad=True) else: self.bias = None self.sobel_weight = nn.Parameter(torch.zeros(size=(out_channels, int(in_channels / groups), kernel_size, kernel_size)), requires_grad=False) kernel_mid = kernel_size // 2 for idx in range(out_channels): if idx % 4 == 0: self.sobel_weight[idx, :, 0, :] = -1 self.sobel_weight[idx, :, 0, kernel_mid] = -2 self.sobel_weight[idx, :, -1, :] = 1 self.sobel_weight[idx, :, -1, kernel_mid] = 2 elif idx % 4 == 1: self.sobel_weight[idx, :, :, 0] = -1 self.sobel_weight[idx, :, kernel_mid, 0] = -2 self.sobel_weight[idx, :, :, -1] = 1 self.sobel_weight[idx, :, kernel_mid, -1] = 2 elif idx % 4 == 2: self.sobel_weight[idx, :, 0, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid - i, i] = -1 self.sobel_weight[idx, :, kernel_size - 1 - i, kernel_mid + i] = 1 self.sobel_weight[idx, :, -1, -1] = 2 else: self.sobel_weight[idx, :, -1, 0] = -2 for i in range(0, kernel_mid + 1): self.sobel_weight[idx, :, kernel_mid + i, i] = -1 self.sobel_weight[idx, :, i, kernel_mid + i] = 1 self.sobel_weight[idx, :, 0, -1] = 2 if requires_grad: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=True) else: self.sobel_factor = nn.Parameter(torch.ones(size=(out_channels, 1, 1, 1), dtype=torch.float32), requires_grad=False) def forward(self, x): if torch.cuda.is_available(): self.sobel_factor = self.sobel_factor if isinstance(self.bias, nn.Parameter): self.bias = self.bias sobel_weight = self.sobel_weight * self.sobel_factor if torch.cuda.is_available(): sobel_weight = sobel_weight out = F.conv2d(x, sobel_weight, self.bias, self.stride, self. padding, self.dilation, self.groups) return out class EDCNNNew(nn.Module): def __init__(self, in_ch=1, out_ch=32, sobel_ch=32): super(EDCNNNew, self).__init__() self.conv_sobel = SobelConv2d(in_ch, sobel_ch, kernel_size=3, stride=1, padding=1, bias=True) self.conv_p1 = nn.Conv2d(in_ch + sobel_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f1 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p2 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f2 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p3 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f3 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p4 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f4 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p5 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f5 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p6 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f6 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p7 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f7 = nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1) self.conv_p8 = nn.Conv2d(in_ch + sobel_ch + out_ch, out_ch, kernel_size=1, stride=1, padding=0) self.conv_f8 = nn.Conv2d(out_ch, in_ch, kernel_size=3, stride=1, padding=1) self.relu = nn.LeakyReLU() def forward(self, input_0): primals_2 = self.conv_sobel.bias primals_3 = self.conv_sobel.sobel_weight primals_1 = self.conv_sobel.sobel_factor primals_5 = self.conv_p1.weight primals_6 = self.conv_p1.bias primals_7 = self.conv_f1.weight primals_8 = self.conv_f1.bias primals_9 = self.conv_p2.weight primals_10 = self.conv_p2.bias primals_11 = self.conv_f2.weight primals_12 = self.conv_f2.bias primals_13 = self.conv_p3.weight primals_14 = self.conv_p3.bias primals_15 = self.conv_f3.weight primals_16 = self.conv_f3.bias primals_17 = self.conv_p4.weight primals_18 = self.conv_p4.bias primals_19 = self.conv_f4.weight primals_20 = self.conv_f4.bias primals_21 = self.conv_p5.weight primals_22 = self.conv_p5.bias primals_23 = self.conv_f5.weight primals_24 = self.conv_f5.bias primals_25 = self.conv_p6.weight primals_26 = self.conv_p6.bias primals_27 = self.conv_f6.weight primals_28 = self.conv_f6.bias primals_29 = self.conv_p7.weight primals_30 = self.conv_p7.bias primals_31 = self.conv_f7.weight primals_32 = self.conv_f7.bias primals_33 = self.conv_p8.weight primals_34 = self.conv_p8.bias primals_35 = self.conv_f8.weight primals_36 = self.conv_f8.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36]) return output[0]
workingcoder/EDCNN
EDCNN
false
16,749
[ "Apache-2.0" ]
117
68305f465d2b731b60ce78bd0c95c7742d9f52d1
https://github.com/workingcoder/EDCNN/tree/68305f465d2b731b60ce78bd0c95c7742d9f52d1
Whitening2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pz/cpz2ab5bxm2jrtozlay24l6x3u34xfoykzic62oanlphvhbhsmqq.py # Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub] # Source node to ATen node mapping: # xn => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_1, %view_1), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = 1.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tl.store(out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/26/c26zwauaaytxanohrf6qcchljjpi4s5jhwcytcndqna5l35tfj5a.py # Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # T => view_2 # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view_2 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hp/chpqt2szom5jgqscppfvmprzb6esy645vi4ngfkax5vxbvcpriac.py # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # eye_1 => device_put # f_cov => div # f_cov_shrinked => add # mul => mul # mul_1 => mul_1 # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mm, 3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1.0), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%device_put, 0.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused__to_copy_add_div_eye_mul_2 = async_compile.triton('triton_poi_fused__to_copy_add_div_eye_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_eye_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = 0.3333333333333333 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = x1 tmp6 = x0 tmp7 = tmp5 == tmp6 tmp8 = 0.0 tmp9 = tl.where(tmp7, tmp3, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp4 + tmp10 tl.store(in_out_ptr0 + (x2), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/am/camagq7vaatmgdqo7yb5xw5letqk3v3jhganlmizmzy3sx2xi7gu.py # Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy] # Source node to ATen node mapping: # eye => eq, full_default, full_default_1, iota_1, where # eye_1 => device_put # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cpu, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze_2, %iota_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %full_default_1), kwargs = {}) # %device_put : [num_users=2] = call_function[target=torch.ops.prims.device_put.default](args = (%where, cuda:0), kwargs = {}) triton_poi_fused__to_copy_eye_3 = async_compile.triton('triton_poi_fused__to_copy_eye_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_eye_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [xn], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous, T], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf0, buf1, 4, 4, grid=grid(4, 4), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add] triton_poi_fused__to_copy_add_div_eye_mul_2.run(buf3, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [f_cov, mul, eye, eye_1, mul_1, f_cov_shrinked, cholesky], Original ATen: [aten.div, aten.mul, aten.eye, aten._to_copy, aten.add, aten.cholesky] buf4 = torch.ops.aten.cholesky.default(buf3) buf5 = buf4 del buf4 buf6 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [eye, eye_1], Original ATen: [aten.eye, aten._to_copy] triton_poi_fused__to_copy_eye_3.run(buf6, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [eye, eye_1, triangular_solve], Original ATen: [aten.eye, aten._to_copy, aten.triangular_solve] buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False) del buf5 buf8 = buf7[0] del buf7 buf10 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_view_1.run(buf8, buf10, 4, 4, grid=grid(4, 4), stream=stream0) del buf8 # Topologically Sorted Source Nodes: [decorrelated], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1)) del buf0 del buf10 return (reinterpret_tensor(buf11, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.cuda.amp import custom_fwd from torch.nn.functional import conv2d class Whitening2d(nn.Module): def __init__(self, output_dim: 'int', eps: 'float'=0.0): """Layer that computes hard whitening for W-MSE using the Cholesky decomposition. Args: output_dim (int): number of dimension of projected features. eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults to 0.0. """ super(Whitening2d, self).__init__() self.output_dim = output_dim self.eps = eps @custom_fwd(cast_inputs=torch.float32) def forward(self, x: 'torch.Tensor') ->torch.Tensor: """Performs whitening using the Cholesky decomposition. Args: x (torch.Tensor): a batch or slice of projected features. Returns: torch.Tensor: a batch or slice of whitened features. """ x = x.unsqueeze(2).unsqueeze(3) m = x.mean(0).view(self.output_dim, -1).mean(-1).view(1, -1, 1, 1) xn = x - m T = xn.permute(1, 0, 2, 3).contiguous().view(self.output_dim, -1) f_cov = torch.mm(T, T.permute(1, 0)) / (T.shape[-1] - 1) eye = torch.eye(self.output_dim).type(f_cov.type()) f_cov_shrinked = (1 - self.eps) * f_cov + self.eps * eye inv_sqrt = torch.triangular_solve(eye, torch.cholesky( f_cov_shrinked), upper=False)[0] inv_sqrt = inv_sqrt.contiguous().view(self.output_dim, self. output_dim, 1, 1) decorrelated = conv2d(xn, inv_sqrt) return decorrelated.squeeze(2).squeeze(2) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = 1.0 tmp11 = tmp9 / tmp10 tmp12 = tmp0 - tmp11 tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_clone_view_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__to_copy_add_div_eye_mul_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = 0.3333333333333333 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = x1 tmp6 = x0 tmp7 = tmp5 == tmp6 tmp8 = 0.0 tmp9 = tl.where(tmp7, tmp3, tmp8) tmp10 = tmp9 * tmp8 tmp11 = tmp4 + tmp10 tl.store(in_out_ptr0 + x2, tmp11, xmask) @triton.jit def triton_poi_fused__to_copy_eye_3(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_clone_view_1[grid(4, 4)](buf0, buf1, 4, 4, XBLOCK= 4, YBLOCK=4, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = buf2 del buf2 triton_poi_fused__to_copy_add_div_eye_mul_2[grid(16)](buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = torch.ops.aten.cholesky.default(buf3) buf5 = buf4 del buf4 buf6 = buf3 del buf3 triton_poi_fused__to_copy_eye_3[grid(16)](buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = torch.ops.aten.triangular_solve.default(buf6, buf5, False) del buf5 buf8 = buf7[0] del buf7 buf10 = buf6 del buf6 triton_poi_fused_clone_view_1[grid(4, 4)](buf8, buf10, 4, 4, XBLOCK =4, YBLOCK=4, num_warps=1, num_stages=1) del buf8 buf11 = extern_kernels.convolution(buf0, reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 1, 1), (4, 1, 1, 1)) del buf0 del buf10 return reinterpret_tensor(buf11, (4, 4), (4, 1), 0), class Whitening2dNew(nn.Module): def __init__(self, output_dim: 'int', eps: 'float'=0.0): """Layer that computes hard whitening for W-MSE using the Cholesky decomposition. Args: output_dim (int): number of dimension of projected features. eps (float, optional): eps for numerical stability in Cholesky decomposition. Defaults to 0.0. """ super(Whitening2dNew, self).__init__() self.output_dim = output_dim self.eps = eps def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
xwyzsn/solo-learn
Whitening2d
false
16,750
[ "MIT" ]
693
16d021d8053439a3de205337ab2a11d191500b09
https://github.com/xwyzsn/solo-learn/tree/16d021d8053439a3de205337ab2a11d191500b09
SkipConnection
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/xm/cxmk2kod6zgjturywionsuihaxqils4fvzrd7bziqpvptc3rgw43.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 4, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (16*((-1) + x1)) + (48*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 return (buf2, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn def _init_weights(layer): """ Init weights of the layer :param layer: :return: """ nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: nn.init.zeros_(layer.bias) class SkipConnection(nn.Module): """ Connects the two given inputs with concatenation :param in1: earlier input tensor of shape N x d1 x m x m :param in2: later input tensor of shape N x d2 x m x m :param in_features: d1+d2 :param out_features: output num of features :return: Tensor of shape N x output_depth x m x m """ def __init__(self, in_features, out_features): super().__init__() self.conv = nn.Conv2d(in_features, out_features, kernel_size=1, padding=0, bias=True) _init_weights(self.conv) def forward(self, in1, in2): out = torch.cat((in1, in2), dim=1) out = self.conv(out) return out def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-1 + x1) + 48 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 return buf2, primals_3, buf0 def _init_weights(layer): """ Init weights of the layer :param layer: :return: """ nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: nn.init.zeros_(layer.bias) class SkipConnectionNew(nn.Module): """ Connects the two given inputs with concatenation :param in1: earlier input tensor of shape N x d1 x m x m :param in2: later input tensor of shape N x d2 x m x m :param in_features: d1+d2 :param out_features: output num of features :return: Tensor of shape N x output_depth x m x m """ def __init__(self, in_features, out_features): super().__init__() self.conv = nn.Conv2d(in_features, out_features, kernel_size=1, padding=0, bias=True) _init_weights(self.conv) def forward(self, input_0, input_1): primals_3 = self.conv.weight primals_4 = self.conv.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
xyc1207/benchmarking-gnns
SkipConnection
false
16,751
[ "MIT" ]
1,809
9ba25a2825e8c155a93730d6e8f8752090292942
https://github.com/xyc1207/benchmarking-gnns/tree/9ba25a2825e8c155a93730d6e8f8752090292942
SuperpointBackbone
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pn/cpng7gl7lqxvqafyqlu5mbr4lc7m2sgi4l5ulbiv46djlkgyencv.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ne/cnepmjd66uu3laeexeusfxab3aayptiri2wp2knrgtgmx52tvzxj.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ba/cbayuw2by4w6xwduhs5qdriinmydiep6bpw7fyi37s377up7lrcm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xl/cxlvod372o4kymlxqprfmw3jd5k5m6j5zrm7ruqswxzppl4ph3wz.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp4, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zu/czujyeh6berilhiu2stefm2ocudpbpz4ptbucgvruy4n2bojr6yo.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4n/c4nvbv6wuwhpecoh6xlo345mtpiwmfzv6cuokdou7iqbz6yksish.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/na/cnaiponhu6kavyqptxmbfaxdb2osqwlqk74kcqgtnst5s3wwic5o.py # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4x/c4xqpnjemnncshp3uobexba3gggcnvtfyqm77kedjl5hqdw3frxf.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 16 x2 = (xindex // 1024) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (4096*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (4096*x2)), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + (128*x1) + (4096*x2)), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + (128*x1) + (4096*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sl/csldasgiybuk75pltndkezbj76bkzandkkdq65rbg7u7qjxpoaag.py # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j5/cj5twwxzxidjam7phdmpydrj7nkbuww72oy2rdefkqr25b37ownf.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_8 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 8 x2 = (xindex // 1024) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (4096*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (4096*x2)), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + (256*x1) + (4096*x2)), None) tmp5 = tl.load(in_ptr0 + (2176 + x0 + (256*x1) + (4096*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fv/cfvwxek5nzx5x7ubaubhqhgotsybztgplez6iq5eybz3hee6qw4s.py # Topologically Sorted Source Nodes: [conv2d_6, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_9 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yk/cyksiujy3425b5e7h4pbi5msbjyt4a5avbutklyuofudcns5mswm.py # Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # x_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = (yindex // 128) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (128*x2) + (8192*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (64*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + (128*x2) + (8192*y1)), tmp6, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_4 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_6, buf1, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_6 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_8, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_8 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_10, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_12, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_12 buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_14, buf5, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_14 buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_16, buf6, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_16 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf7, primals_2, buf8, 256, 4096, grid=grid(256, 4096), stream=stream0) del buf7 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf10, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf12 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf10, buf11, buf12, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf11, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf14, primals_7, 262144, grid=grid(262144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf16, primals_9, 262144, grid=grid(262144), stream=stream0) del primals_9 buf17 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf18 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf16, buf17, buf18, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf20, primals_11, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf22, primals_13, 131072, grid=grid(131072), stream=stream0) del primals_13 buf23 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.float32) buf24 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.int8) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_9.run(buf22, buf23, buf24, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf23, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [conv2d_6, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf26, primals_15, 32768, grid=grid(32768), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf28 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32) buf29 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, x_10], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf27, primals_17, buf28, buf29, 512, 64, grid=grid(512, 64), stream=stream0) del buf27 del primals_17 return (buf28, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf8, buf10, buf11, buf12, buf14, buf16, buf17, buf18, buf20, buf22, buf23, buf24, buf26, buf29, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SuperpointBackbone(nn.Module): """ SuperPoint backbone. """ def __init__(self): super(SuperpointBackbone, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4 = 64, 64, 128, 128 self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1 ) self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) def forward(self, input_images): x = self.relu(self.conv1a(input_images)) x = self.relu(self.conv1b(x)) x = self.pool(x) x = self.relu(self.conv2a(x)) x = self.relu(self.conv2b(x)) x = self.pool(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp4, ymask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 16 x2 = xindex // 1024 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 4096 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 4096 * x2), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + 128 * x1 + 4096 * x2), None) tmp5 = tl.load(in_ptr0 + (2112 + x0 + 128 * x1 + 4096 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 8 x2 = xindex // 1024 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 4096 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 4096 * x2), None) tmp3 = tl.load(in_ptr0 + (2048 + x0 + 256 * x1 + 4096 * x2), None) tmp5 = tl.load(in_ptr0 + (2176 + x0 + 256 * x1 + 4096 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 8192 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 64 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 8192 * y1), tmp6, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (64, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(4096, 9)](primals_4, buf0, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_0[grid(4096, 9)](primals_6, buf1, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_0[grid(4096, 9)](primals_8, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(8192, 9)](primals_10, buf3, 8192, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_12, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_14, buf5, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf6 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(16384, 9)](primals_16, buf6, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf7 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused_convolution_relu_3[grid(256, 4096)](buf7, primals_2, buf8, 256, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf7 del primals_2 buf9 = extern_kernels.convolution(buf8, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_4[grid(1048576)](buf10, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf12 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(262144)](buf10, buf11, buf12, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf11, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf14 = buf13 del buf13 triton_poi_fused_convolution_relu_6[grid(262144)](buf14, primals_7, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf15 = extern_kernels.convolution(buf14, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 32, 32), (65536, 1, 2048, 64)) buf16 = buf15 del buf15 triton_poi_fused_convolution_relu_6[grid(262144)](buf16, primals_9, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf17 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.float32) buf18 = empty_strided_cuda((4, 64, 16, 16), (16384, 1, 1024, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(65536)](buf16, buf17, buf18, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf20 = buf19 del buf19 triton_poi_fused_convolution_relu_8[grid(131072)](buf20, primals_11, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf21 = extern_kernels.convolution(buf20, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 16, 16), (32768, 1, 2048, 128)) buf22 = buf21 del buf21 triton_poi_fused_convolution_relu_8[grid(131072)](buf22, primals_13, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf23 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.float32) buf24 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_9[grid(32768)](buf22, buf23, buf24, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf25 = extern_kernels.convolution(buf23, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf26 = buf25 del buf25 triton_poi_fused_convolution_relu_10[grid(32768)](buf26, primals_15, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf27 = extern_kernels.convolution(buf26, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf28 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch. float32) buf29 = empty_strided_cuda((4, 128, 8, 8), (8192, 1, 1024, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_11[grid(512, 64)]( buf27, primals_17, buf28, buf29, 512, 64, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf27 del primals_17 return (buf28, primals_1, primals_3, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf8, buf10, buf11, buf12, buf14, buf16, buf17, buf18, buf20, buf22, buf23, buf24, buf26, buf29) class SuperpointBackboneNew(nn.Module): """ SuperPoint backbone. """ def __init__(self): super(SuperpointBackboneNew, self).__init__() self.relu = torch.nn.ReLU(inplace=True) self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2) c1, c2, c3, c4 = 64, 64, 128, 128 self.conv1a = torch.nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1 ) self.conv1b = torch.nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) self.conv2a = torch.nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) self.conv2b = torch.nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) self.conv3a = torch.nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) self.conv3b = torch.nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) self.conv4a = torch.nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) self.conv4b = torch.nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) def forward(self, input_0): primals_1 = self.conv1a.weight primals_2 = self.conv1a.bias primals_4 = self.conv1b.weight primals_5 = self.conv1b.bias primals_6 = self.conv2a.weight primals_7 = self.conv2a.bias primals_8 = self.conv2b.weight primals_9 = self.conv2b.bias primals_10 = self.conv3a.weight primals_11 = self.conv3a.bias primals_12 = self.conv3b.weight primals_13 = self.conv3b.bias primals_14 = self.conv4a.weight primals_15 = self.conv4a.bias primals_16 = self.conv4b.weight primals_17 = self.conv4b.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
wx-b/SOLD2
SuperpointBackbone
false
16,752
[ "MIT" ]
347
71c3243f9d3a695788d0a6bfd134b9849425900a
https://github.com/wx-b/SOLD2/tree/71c3243f9d3a695788d0a6bfd134b9849425900a
GateLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7y/c7yuy4tn4ugjmwcevd6xufulrm2kty4crymptkbfwtcfommugknz.py # Topologically Sorted Source Nodes: [conv1d, gate, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv1d => convolution # gate => sigmoid # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %permute), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0), ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) tl.store(out_ptr0 + (x2 + (4*y3)), tmp5, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d, gate, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] triton_poi_fused_convolution_mul_sigmoid_1.run(buf2, primals_3, primals_1, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 return (reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim.lr_scheduler import * class GateLayer(nn.Module): def __init__(self, dim, target_dim=None, dropout=None): super(GateLayer, self).__init__() if target_dim is None: target_dim = dim self.linear_transform = False else: self.target_dim = target_dim self.linear_transform = True self.gate = nn.Conv1d(dim, target_dim, 1) if self.linear_transform: self.linear = nn.Conv1d(dim, target_dim, 1) self.dropout = dropout def forward(self, x): tx = x.transpose(1, 2) gate = F.sigmoid(self.gate(tx)) if self.linear_transform: linear = self.linear(tx) else: linear = tx res = (gate * linear).transpose(2, 1) if self.dropout: res = self.dropout(res) return res def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.optim.lr_scheduler import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + y0, ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) tl.store(out_ptr0 + (x2 + 4 * y3), tmp5, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 buf3 = buf0 del buf0 triton_poi_fused_convolution_mul_sigmoid_1[grid(16, 4)](buf2, primals_3, primals_1, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0 ), buf2 class GateLayerNew(nn.Module): def __init__(self, dim, target_dim=None, dropout=None): super(GateLayerNew, self).__init__() if target_dim is None: target_dim = dim self.linear_transform = False else: self.target_dim = target_dim self.linear_transform = True self.gate = nn.Conv1d(dim, target_dim, 1) if self.linear_transform: self.linear = nn.Conv1d(dim, target_dim, 1) self.dropout = dropout def forward(self, input_0): primals_2 = self.gate.weight primals_3 = self.gate.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
xycforgithub/MultiTask-MRC
GateLayer
false
16,753
[ "BSD-3-Clause" ]
105
6e5fe8b3cbc40058784cecad73219390e3c2a922
https://github.com/xycforgithub/MultiTask-MRC/tree/6e5fe8b3cbc40058784cecad73219390e3c2a922
C3D_td5
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2q/c2qsph7yuvd4qrjdx7qhitc2tkim3pjng4rqgufiypesenwycnhv.py # Topologically Sorted Source Nodes: [conv3d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1, 1], [2, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[67108864], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 67108864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 262144) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/eu/ceuil3ionjy5idiy2xjrrzjxcgrg2fvxv4ss4ir6tq6ujzy4reaj.py # Topologically Sorted Source Nodes: [conv3d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1, 1], [2, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[33554432], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 33554432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 65536) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nn/cnn7hqqmtvi4uqysugefq7m5ihityrhrm67vilpt5jxdaxwfcfpi.py # Topologically Sorted Source Nodes: [conv3d_2, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d_2 => convolution_2 # x_4 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1, 1], [2, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 8192) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ak/cako5owywlvsqzbhtqdpp4mnk6y5rgiwicwor2sud27i4p2v7h4b.py # Topologically Sorted Source Nodes: [conv3d_4, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d_4 => convolution_4 # x_7 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_10, %primals_11, [1, 1, 1], [2, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2m/c2mlcrdzpklk4uu7woynsfes6p6r456zqy544wvawz5m7bdynwhk.py # Topologically Sorted Source Nodes: [conv3d_6, x_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv3d_6 => convolution_6 # x_10 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_14, %primals_15, [1, 1, 1], [2, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 128) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2y/c2yrfzmazizqaafieruzcicbdatfnw3qjxezrfanmygl6gc37xfn.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %cat_default : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %full_default_10],), kwargs = {}) triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 98304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8192) x0 = xindex % 8192 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 9, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (8192*x1)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 12, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = 0.0 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp6, tmp9, tmp10) tmp12 = tl.where(tmp4, tmp5, tmp11) tl.store(out_ptr0 + (x2), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ai/caizewsmbhwero6msj22mzenamj7qrinkie3jf45zmmawjykte5e.py # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_14 => relu_8 # Graph fragment: # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%slice_tensor,), kwargs = {}) triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzkhkdcks62kigojdthfpnm5caybgmesrgqfmpiaqoppgxyf2c6.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_16 => relu_9 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_21), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 = args args.clear() assert_size_stride(primals_1, (64, 3, 5, 3, 3), (135, 45, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 5, 3, 3), (2880, 45, 9, 3, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (256, 128, 5, 3, 3), (5760, 45, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 5, 3, 3), (11520, 45, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (512, 256, 5, 3, 3), (11520, 45, 9, 3, 1)) assert_size_stride(primals_11, (512, ), (1, )) assert_size_stride(primals_12, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_13, (512, ), (1, )) assert_size_stride(primals_14, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_15, (512, ), (1, )) assert_size_stride(primals_16, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (4096, 8192), (8192, 1)) assert_size_stride(primals_19, (4096, ), (1, )) assert_size_stride(primals_20, (4096, 4096), (4096, 1)) assert_size_stride(primals_21, (4096, ), (1, )) assert_size_stride(primals_22, (4, 4096), (4096, 1)) assert_size_stride(primals_23, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64, 64), (16777216, 262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv3d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 67108864, grid=grid(67108864), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool3d_with_indices] buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [1, 2, 2], [1, 2, 2]) buf3 = buf2[0] buf4 = buf2[1] del buf2 # Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 64, 32, 32), (8388608, 65536, 1024, 32, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv3d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf6, primals_5, 33554432, grid=grid(33554432), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool3d_with_indices] buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2, 2], [2, 2, 2]) buf8 = buf7[0] buf9 = buf7[1] del buf7 # Topologically Sorted Source Nodes: [conv3d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv3d_2, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf11, primals_7, 8388608, grid=grid(8388608), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv3d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_8, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv3d_3, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf13, primals_9, 8388608, grid=grid(8388608), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.max_pool3d_with_indices] buf14 = torch.ops.aten.max_pool3d_with_indices.default(buf13, [2, 2, 2], [2, 2, 2]) buf15 = buf14[0] buf16 = buf14[1] del buf14 # Topologically Sorted Source Nodes: [conv3d_4], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv3d_4, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf18, primals_11, 2097152, grid=grid(2097152), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv3d_5], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv3d_5, x_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf20, primals_13, 2097152, grid=grid(2097152), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.max_pool3d_with_indices] buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [2, 2, 2], [2, 2, 2]) buf22 = buf21[0] buf23 = buf21[1] del buf21 # Topologically Sorted Source Nodes: [conv3d_6], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [conv3d_6, x_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf25, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv3d_7], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [conv3d_7, x_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf27, primals_17, 262144, grid=grid(262144), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.max_pool3d_with_indices] buf28 = torch.ops.aten.max_pool3d_with_indices.default(buf27, [2, 2, 2], [2, 2, 2], [0, 1, 1]) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = empty_strided_cuda((12, 8192), (8192, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(buf29, buf31, 98304, grid=grid(98304), stream=stream0) buf32 = empty_strided_cuda((12, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf31, reinterpret_tensor(primals_18, (8192, 4096), (1, 8192), 0), out=buf32) del buf31 buf33 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.relu] triton_poi_fused_relu_6.run(buf32, primals_19, buf33, 36864, grid=grid(36864), stream=stream0) del buf32 del primals_19 buf34 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf33, reinterpret_tensor(primals_20, (4096, 4096), (1, 4096), 0), out=buf34) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.relu] triton_poi_fused_relu_7.run(buf35, primals_21, 36864, grid=grid(36864), stream=stream0) del primals_21 buf36 = empty_strided_cuda((9, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm] extern_kernels.addmm(primals_23, buf35, reinterpret_tensor(primals_22, (4096, 4), (1, 4096), 0), alpha=1, beta=1, out=buf36) del primals_23 return (buf36, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, buf1, buf3, buf4, buf6, buf8, buf9, buf11, buf13, buf15, buf16, buf18, buf20, buf22, buf23, buf25, buf27, buf30, reinterpret_tensor(buf29, (9, 8192), (8192, 1), 0), buf33, buf35, primals_22, primals_20, primals_18, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 5, 3, 3), (135, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 5, 3, 3), (2880, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 128, 5, 3, 3), (5760, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 5, 3, 3), (11520, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 256, 5, 3, 3), (11520, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((512, 512, 5, 3, 3), (23040, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((512, 512, 5, 3, 3), (23040, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 512, 5, 3, 3), (23040, 45, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4096, 8192), (8192, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4096, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Path(object): @staticmethod def db_dir(database): if database == 'ucf101': root_dir = ( '/Users/pingaowang/Google Drive/study/video_classification_research/datasets/UCF-101' ) output_dir = DATA_PATH return root_dir, output_dir elif database == 'hmdb51': root_dir = '/Path/to/hmdb-51' output_dir = '/path/to/VAR/hmdb51' return root_dir, output_dir elif database == 'ucf_motion': root_dir = ( '/Users/pingaowang/Google Drive/study/video_classification_research/datasets/UCF-101' ) output_dir = DATA_PATH return root_dir, output_dir else: None raise NotImplementedError @staticmethod def model_dir(): return '/path/to/Models/c3d-pretrained.pth' class C3D_td5(nn.Module): """ The C3D network. """ def __init__(self, num_classes, pretrained=False): super(C3D_td5, self).__init__() self.conv1 = nn.Conv3d(3, 64, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)) self.conv2 = nn.Conv3d(64, 128, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv3a = nn.Conv3d(128, 256, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv3b = nn.Conv3d(256, 256, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv4a = nn.Conv3d(256, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv4b = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv5a = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv5b = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1)) self.fc6 = nn.Linear(8192, 4096) self.fc7 = nn.Linear(4096, 4096) self.fc8 = nn.Linear(4096, num_classes) self.dropout = nn.Dropout(p=0.5) self.relu = nn.ReLU() self.__init_weight() if pretrained: self.__load_pretrained_weights() def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool1(x) x = self.relu(self.conv2(x)) x = self.pool2(x) x = self.relu(self.conv3a(x)) x = self.relu(self.conv3b(x)) x = self.pool3(x) x = self.relu(self.conv4a(x)) x = self.relu(self.conv4b(x)) x = self.pool4(x) x = self.relu(self.conv5a(x)) x = self.relu(self.conv5b(x)) x = self.pool5(x) x = x.view(-1, 8192) x = self.relu(self.fc6(x)) x = self.dropout(x) x = self.relu(self.fc7(x)) x = self.dropout(x) logits = self.fc8(x) return logits def __load_pretrained_weights(self): """Initialiaze network.""" corresp_name = {'features.0.weight': 'conv1.weight', 'features.0.bias': 'conv1.bias', 'features.3.weight': 'conv2.weight', 'features.3.bias': 'conv2.bias', 'features.6.weight': 'conv3a.weight', 'features.6.bias': 'conv3a.bias', 'features.8.weight': 'conv3b.weight', 'features.8.bias': 'conv3b.bias', 'features.11.weight': 'conv4a.weight', 'features.11.bias': 'conv4a.bias', 'features.13.weight': 'conv4b.weight', 'features.13.bias': 'conv4b.bias', 'features.16.weight': 'conv5a.weight', 'features.16.bias': 'conv5a.bias', 'features.18.weight': 'conv5b.weight', 'features.18.bias': 'conv5b.bias', 'classifier.0.weight': 'fc6.weight', 'classifier.0.bias': 'fc6.bias', 'classifier.3.weight': 'fc7.weight', 'classifier.3.bias': 'fc7.bias'} p_dict = torch.load(Path.model_dir()) s_dict = self.state_dict() for name in p_dict: if name not in corresp_name: continue s_dict[corresp_name[name]] = p_dict[name] self.load_state_dict(s_dict) def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() def get_inputs(): return [torch.rand([4, 3, 64, 64, 64])] def get_init_inputs(): return [[], {'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 262144 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 65536 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 8192 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 128 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8192 x0 = xindex % 8192 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 9, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 8192 * x1), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 12, tl.int64) tmp9 = 0.0 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp6, tmp9, tmp10) tmp12 = tl.where(tmp4, tmp5, tmp11) tl.store(out_ptr0 + x2, tmp12, None) @triton.jit def triton_poi_fused_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23 ) = args args.clear() assert_size_stride(primals_1, (64, 3, 5, 3, 3), (135, 45, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 5, 3, 3), (2880, 45, 9, 3, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 5, 3, 3), (5760, 45, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 5, 3, 3), (11520, 45, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (512, 256, 5, 3, 3), (11520, 45, 9, 3, 1)) assert_size_stride(primals_11, (512,), (1,)) assert_size_stride(primals_12, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_13, (512,), (1,)) assert_size_stride(primals_14, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_15, (512,), (1,)) assert_size_stride(primals_16, (512, 512, 5, 3, 3), (23040, 45, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (4096, 8192), (8192, 1)) assert_size_stride(primals_19, (4096,), (1,)) assert_size_stride(primals_20, (4096, 4096), (4096, 1)) assert_size_stride(primals_21, (4096,), (1,)) assert_size_stride(primals_22, (4, 4096), (4096, 1)) assert_size_stride(primals_23, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64, 64), (16777216, 262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(67108864)](buf1, primals_2, 67108864, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = torch.ops.aten.max_pool3d_with_indices.default(buf1, [1, 2, 2], [1, 2, 2]) buf3 = buf2[0] buf4 = buf2[1] del buf2 buf5 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 64, 32, 32), (8388608, 65536, 1024, 32, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_1[grid(33554432)](buf6, primals_5, 33554432, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf7 = torch.ops.aten.max_pool3d_with_indices.default(buf6, [2, 2, 2], [2, 2, 2]) buf8 = buf7[0] buf9 = buf7[1] del buf7 buf10 = extern_kernels.convolution(buf8, primals_6, stride=(1, 1, 1 ), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_2[grid(8388608)](buf11, primals_7, 8388608, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, primals_8, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 32, 16, 16), (2097152, 8192, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_2[grid(8388608)](buf13, primals_9, 8388608, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf14 = torch.ops.aten.max_pool3d_with_indices.default(buf13, [2, 2, 2], [2, 2, 2]) buf15 = buf14[0] buf16 = buf14[1] del buf14 buf17 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_3[grid(2097152)](buf18, primals_11, 2097152, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf19 = extern_kernels.convolution(buf18, primals_12, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 512, 16, 8, 8), (524288, 1024, 64, 8, 1)) buf20 = buf19 del buf19 triton_poi_fused_convolution_relu_3[grid(2097152)](buf20, primals_13, 2097152, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf21 = torch.ops.aten.max_pool3d_with_indices.default(buf20, [2, 2, 2], [2, 2, 2]) buf22 = buf21[0] buf23 = buf21[1] del buf21 buf24 = extern_kernels.convolution(buf22, primals_14, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_4[grid(262144)](buf25, primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf26 = extern_kernels.convolution(buf25, primals_16, stride=(1, 1, 1), padding=(2, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 512, 8, 4, 4), (65536, 128, 16, 4, 1)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_4[grid(262144)](buf27, primals_17, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf28 = torch.ops.aten.max_pool3d_with_indices.default(buf27, [2, 2, 2], [2, 2, 2], [0, 1, 1]) buf29 = buf28[0] buf30 = buf28[1] del buf28 buf31 = empty_strided_cuda((12, 8192), (8192, 1), torch.float32) triton_poi_fused_5[grid(98304)](buf29, buf31, 98304, XBLOCK=512, num_warps=8, num_stages=1) buf32 = empty_strided_cuda((12, 4096), (4096, 1), torch.float32) extern_kernels.mm(buf31, reinterpret_tensor(primals_18, (8192, 4096 ), (1, 8192), 0), out=buf32) del buf31 buf33 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32) triton_poi_fused_relu_6[grid(36864)](buf32, primals_19, buf33, 36864, XBLOCK=512, num_warps=4, num_stages=1) del buf32 del primals_19 buf34 = empty_strided_cuda((9, 4096), (4096, 1), torch.float32) extern_kernels.mm(buf33, reinterpret_tensor(primals_20, (4096, 4096 ), (1, 4096), 0), out=buf34) buf35 = buf34 del buf34 triton_poi_fused_relu_7[grid(36864)](buf35, primals_21, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_21 buf36 = empty_strided_cuda((9, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_23, buf35, reinterpret_tensor( primals_22, (4096, 4), (1, 4096), 0), alpha=1, beta=1, out=buf36) del primals_23 return (buf36, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, buf1, buf3, buf4, buf6, buf8, buf9, buf11, buf13, buf15, buf16, buf18, buf20, buf22, buf23, buf25, buf27, buf30, reinterpret_tensor(buf29, (9, 8192), ( 8192, 1), 0), buf33, buf35, primals_22, primals_20, primals_18) class Path(object): @staticmethod def db_dir(database): if database == 'ucf101': root_dir = ( '/Users/pingaowang/Google Drive/study/video_classification_research/datasets/UCF-101' ) output_dir = DATA_PATH return root_dir, output_dir elif database == 'hmdb51': root_dir = '/Path/to/hmdb-51' output_dir = '/path/to/VAR/hmdb51' return root_dir, output_dir elif database == 'ucf_motion': root_dir = ( '/Users/pingaowang/Google Drive/study/video_classification_research/datasets/UCF-101' ) output_dir = DATA_PATH return root_dir, output_dir else: None raise NotImplementedError @staticmethod def model_dir(): return '/path/to/Models/c3d-pretrained.pth' class C3D_td5New(nn.Module): """ The C3D network. """ def __init__(self, num_classes, pretrained=False): super(C3D_td5New, self).__init__() self.conv1 = nn.Conv3d(3, 64, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool1 = nn.MaxPool3d(kernel_size=(1, 2, 2), stride=(1, 2, 2)) self.conv2 = nn.Conv3d(64, 128, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool2 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv3a = nn.Conv3d(128, 256, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv3b = nn.Conv3d(256, 256, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool3 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv4a = nn.Conv3d(256, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv4b = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool4 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2)) self.conv5a = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.conv5b = nn.Conv3d(512, 512, kernel_size=(5, 3, 3), padding=(2, 1, 1)) self.pool5 = nn.MaxPool3d(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding=(0, 1, 1)) self.fc6 = nn.Linear(8192, 4096) self.fc7 = nn.Linear(4096, 4096) self.fc8 = nn.Linear(4096, num_classes) self.dropout = nn.Dropout(p=0.5) self.relu = nn.ReLU() self.__init_weight() if pretrained: self.__load_pretrained_weights() def __load_pretrained_weights(self): """Initialiaze network.""" corresp_name = {'features.0.weight': 'conv1.weight', 'features.0.bias': 'conv1.bias', 'features.3.weight': 'conv2.weight', 'features.3.bias': 'conv2.bias', 'features.6.weight': 'conv3a.weight', 'features.6.bias': 'conv3a.bias', 'features.8.weight': 'conv3b.weight', 'features.8.bias': 'conv3b.bias', 'features.11.weight': 'conv4a.weight', 'features.11.bias': 'conv4a.bias', 'features.13.weight': 'conv4b.weight', 'features.13.bias': 'conv4b.bias', 'features.16.weight': 'conv5a.weight', 'features.16.bias': 'conv5a.bias', 'features.18.weight': 'conv5b.weight', 'features.18.bias': 'conv5b.bias', 'classifier.0.weight': 'fc6.weight', 'classifier.0.bias': 'fc6.bias', 'classifier.3.weight': 'fc7.weight', 'classifier.3.bias': 'fc7.bias'} p_dict = torch.load(Path.model_dir()) s_dict = self.state_dict() for name in p_dict: if name not in corresp_name: continue s_dict[corresp_name[name]] = p_dict[name] self.load_state_dict(s_dict) def __init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv3d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm3d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3a.weight primals_7 = self.conv3a.bias primals_8 = self.conv3b.weight primals_9 = self.conv3b.bias primals_10 = self.conv4a.weight primals_11 = self.conv4a.bias primals_12 = self.conv4b.weight primals_13 = self.conv4b.bias primals_14 = self.conv5a.weight primals_15 = self.conv5a.bias primals_16 = self.conv5b.weight primals_17 = self.conv5b.bias primals_18 = self.fc6.weight primals_19 = self.fc6.bias primals_20 = self.fc7.weight primals_21 = self.fc7.bias primals_22 = self.fc8.weight primals_23 = self.fc8.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23]) return output[0]
pingaowang/pytorch-video-recognition
C3D_td5
false
16,754
[ "MIT" ]
946
096267f88d96a77a74ff743fb0115d997e2cdafd
https://github.com/pingaowang/pytorch-video-recognition/tree/096267f88d96a77a74ff743fb0115d997e2cdafd
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oh/cohq46gttdcyxdmtlmo72ewca32fmayfkfldbc7vs7dtnr4xjyoy.py # Topologically Sorted Source Nodes: [mean, var, add, sqrt], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # mean => mean # sqrt => sqrt # var => var # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [0, 1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0, 1]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-06), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) triton_per_fused_add_mean_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_sqrt_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_sqrt_var_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*r1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = tmp18 / tmp19 tmp22 = 1e-06 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bx/cbxh7gf7fephxa5jsta2lxxqrtxqcskhc24dijme7fvn5im7kvd2.py # Topologically Sorted Source Nodes: [sub, mul, truediv, x], Original ATen: [aten.sub, aten.mul, aten.div, aten.add] # Source node to ATen node mapping: # mul => mul # sub => sub # truediv => div # x => add_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %sqrt), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {}) triton_poi_fused_add_div_mul_sub_1 = async_compile.triton('triton_poi_fused_add_div_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex x4 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp6 = tmp4 / tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [mean, var, add, sqrt], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] stream0 = get_raw_stream(0) triton_per_fused_add_mean_sqrt_var_0.run(buf1, buf5, primals_1, 16, 16, grid=grid(16), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, truediv, x], Original ATen: [aten.sub, aten.mul, aten.div, aten.add] triton_poi_fused_add_div_mul_sub_1.run(primals_2, primals_1, buf1, buf5, primals_3, buf6, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf6, primals_1, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class LayerNorm(nn.Module): def __init__(self, d): super().__init__() self.a = nn.Parameter(torch.ones(d).unsqueeze(0).unsqueeze(0)) self.b = nn.Parameter(torch.zeros(d).unsqueeze(0).unsqueeze(0)) def forward(self, x): mean = x.mean(dim=(0, 1), keepdim=True) var = x.var(dim=(0, 1), keepdim=True, unbiased=False) x = self.a * (x - mean) / torch.sqrt(var + 1e-06) + self.b return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * r1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = tmp18 / tmp19 tmp22 = 1e-06 tmp23 = tmp21 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp24, xmask) @triton.jit def triton_poi_fused_add_div_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex x4 = xindex % 16 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tmp0 * tmp3 tmp6 = tmp4 / tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf1 = buf0 del buf0 buf5 = buf3 del buf3 get_raw_stream(0) triton_per_fused_add_mean_sqrt_var_0[grid(16)](buf1, buf5, primals_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_sub_1[grid(256)](primals_2, primals_1, buf1, buf5, primals_3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf6, primals_1, buf1, buf5 class LayerNormNew(nn.Module): def __init__(self, d): super().__init__() self.a = nn.Parameter(torch.ones(d).unsqueeze(0).unsqueeze(0)) self.b = nn.Parameter(torch.zeros(d).unsqueeze(0).unsqueeze(0)) def forward(self, input_0): primals_2 = self.a primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
xyc1207/benchmarking-gnns
LayerNorm
false
16,755
[ "MIT" ]
1,809
9ba25a2825e8c155a93730d6e8f8752090292942
https://github.com/xyc1207/benchmarking-gnns/tree/9ba25a2825e8c155a93730d6e8f8752090292942
PSA_p
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l2/cl2ne4geqkszldz224l7hhcrcj4fumq5pt3lxp454c46zva5qjqs.py # Topologically Sorted Source Nodes: [context_mask_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # context_mask_2 => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mj/cmjkp7ajowfgqys7puj4r62dapqlmqnxd75735zspl5ujhk6wbu5.py # Topologically Sorted Source Nodes: [avg_x], Original ATen: [aten.mean] # Source node to ATen node mapping: # avg_x => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_3, [-1, -2], True), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[8, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 8 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/i7/ci7umzuzokfj7fo6e5444gnobrg3hrcxwbinehhhgwglrqvzgzui.py # Topologically Sorted Source Nodes: [context_4], Original ATen: [aten._softmax] # Source node to ATen node mapping: # context_4 => amax_1, exp_1, sub_1, sum_2 # Graph fragment: # %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%bmm_1, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [2], True), kwargs = {}) triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/my/cmypyznookobb2k7gii75erk7jiic2ciobkgdpi4gamceyy2d2jq.py # Topologically Sorted Source Nodes: [mask_ch, out, mask_sp, out_1, out_2], Original ATen: [aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # mask_ch => sigmoid # mask_sp => sigmoid_1 # out => mul # out_1 => mul_1 # out_2 => add # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_10,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul), kwargs = {}) triton_poi_fused_add_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) x4 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x4), xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = tmp0 * tmp7 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 + tmp11 tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) # Topologically Sorted Source Nodes: [context_mask], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [context_mask_2], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(buf1, buf4, 4, 16, grid=grid(4), stream=stream0) buf5 = empty_strided_cuda((4, 2, 1), (2, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf4, (4, 16, 1), (16, 1, 16), 0), out=buf5) # Topologically Sorted Source Nodes: [context_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [g_x], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1)) buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf10 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [avg_x], Original ATen: [aten.mean] triton_per_fused_mean_1.run(buf10, buf7, 8, 16, grid=grid(8), stream=stream0) del buf7 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(primals_2, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 2, 4, 4), (32, 16, 4, 1)) buf11 = reinterpret_tensor(buf1, (4, 1, 16), (16, 16, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [context_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf10, (4, 1, 2), (2, 0, 1), 0), reinterpret_tensor(buf9, (4, 2, 16), (32, 16, 1), 0), out=buf11) buf12 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_4], Original ATen: [aten._softmax] triton_per_fused__softmax_2.run(buf11, buf12, buf13, 4, 16, grid=grid(4), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mask_ch, out, mask_sp, out_1, out_2], Original ATen: [aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_mul_sigmoid_3.run(primals_2, buf11, buf12, buf13, buf6, buf14, 256, grid=grid(256), stream=stream0) return (buf14, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf4, reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1), 0), buf6, buf11, buf12, buf13, reinterpret_tensor(buf10, (4, 2, 1), (2, 1, 1), 0), reinterpret_tensor(buf9, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf0, (4, 16, 2), (32, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 1, 1), (2, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch._utils def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.kaiming_uniform_(module.weight, a=a, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity =nonlinearity) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) class PSA_p(nn.Module): def __init__(self, inplanes, planes, kernel_size=1, stride=1): super(PSA_p, self).__init__() self.inplanes = inplanes self.inter_planes = planes // 2 self.planes = planes self.kernel_size = kernel_size self.stride = stride self.padding = (kernel_size - 1) // 2 self.conv_q_right = nn.Conv2d(self.inplanes, 1, kernel_size=1, stride=stride, padding=0, bias=False) self.conv_v_right = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.conv_up = nn.Conv2d(self.inter_planes, self.planes, kernel_size=1, stride=1, padding=0, bias=False) self.softmax_right = nn.Softmax(dim=2) self.sigmoid = nn.Sigmoid() self.conv_q_left = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv_v_left = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.softmax_left = nn.Softmax(dim=2) self.reset_parameters() def reset_parameters(self): kaiming_init(self.conv_q_right, mode='fan_in') kaiming_init(self.conv_v_right, mode='fan_in') kaiming_init(self.conv_q_left, mode='fan_in') kaiming_init(self.conv_v_left, mode='fan_in') self.conv_q_right.inited = True self.conv_v_right.inited = True self.conv_q_left.inited = True self.conv_v_left.inited = True def spatial_pool(self, x): input_x = self.conv_v_right(x) batch, channel, height, width = input_x.size() input_x = input_x.view(batch, channel, height * width) context_mask = self.conv_q_right(x) context_mask = context_mask.view(batch, 1, height * width) context_mask = self.softmax_right(context_mask) context = torch.matmul(input_x, context_mask.transpose(1, 2)) context = context.unsqueeze(-1) context = self.conv_up(context) mask_ch = self.sigmoid(context) out = x * mask_ch return out def channel_pool(self, x): g_x = self.conv_q_left(x) batch, channel, height, width = g_x.size() avg_x = self.avg_pool(g_x) batch, channel, avg_x_h, avg_x_w = avg_x.size() avg_x = avg_x.view(batch, channel, avg_x_h * avg_x_w).permute(0, 2, 1) theta_x = self.conv_v_left(x).view(batch, self.inter_planes, height * width) context = torch.matmul(avg_x, theta_x) context = self.softmax_left(context) context = context.view(batch, 1, height, width) mask_sp = self.sigmoid(context) out = x * mask_sp return out def forward(self, x): context_channel = self.spatial_pool(x) context_spatial = self.channel_pool(x) out = context_spatial + context_channel return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inplanes': 4, 'planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 8 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 x4 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x4, xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = tmp0 * tmp7 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp0 * tmp10 tmp12 = tmp8 + tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(4)](buf1, buf4, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf5 = empty_strided_cuda((4, 2, 1), (2, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 2, 16), (32, 16, 1), 0), reinterpret_tensor(buf4, (4, 16, 1), (16, 1, 16), 0), out=buf5) buf6 = extern_kernels.convolution(reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1)) buf7 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 2, 4, 4), (32, 16, 4, 1)) buf8 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 8, 8), torch.float32) buf10 = buf8 del buf8 triton_per_fused_mean_1[grid(8)](buf10, buf7, 8, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf7 buf9 = extern_kernels.convolution(primals_2, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 2, 4, 4), (32, 16, 4, 1)) buf11 = reinterpret_tensor(buf1, (4, 1, 16), (16, 16, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf10, (4, 1, 2), (2, 0, 1), 0), reinterpret_tensor(buf9, (4, 2, 16), (32, 16, 1), 0), out=buf11 ) buf12 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) triton_per_fused__softmax_2[grid(4)](buf11, buf12, buf13, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_3[grid(256)](primals_2, buf11, buf12, buf13, buf6, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1) return (buf14, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf4, reinterpret_tensor(buf5, (4, 2, 1, 1), (2, 1, 1, 1 ), 0), buf6, buf11, buf12, buf13, reinterpret_tensor(buf10, (4, 2, 1), (2, 1, 1), 0), reinterpret_tensor(buf9, (4, 16, 2), (32, 1, 16), 0), reinterpret_tensor(buf0, (4, 16, 2), (32, 1, 16), 0)) def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.kaiming_uniform_(module.weight, a=a, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_(module.weight, a=a, mode=mode, nonlinearity =nonlinearity) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) class PSA_pNew(nn.Module): def __init__(self, inplanes, planes, kernel_size=1, stride=1): super(PSA_pNew, self).__init__() self.inplanes = inplanes self.inter_planes = planes // 2 self.planes = planes self.kernel_size = kernel_size self.stride = stride self.padding = (kernel_size - 1) // 2 self.conv_q_right = nn.Conv2d(self.inplanes, 1, kernel_size=1, stride=stride, padding=0, bias=False) self.conv_v_right = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.conv_up = nn.Conv2d(self.inter_planes, self.planes, kernel_size=1, stride=1, padding=0, bias=False) self.softmax_right = nn.Softmax(dim=2) self.sigmoid = nn.Sigmoid() self.conv_q_left = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv_v_left = nn.Conv2d(self.inplanes, self.inter_planes, kernel_size=1, stride=stride, padding=0, bias=False) self.softmax_left = nn.Softmax(dim=2) self.reset_parameters() def reset_parameters(self): kaiming_init(self.conv_q_right, mode='fan_in') kaiming_init(self.conv_v_right, mode='fan_in') kaiming_init(self.conv_q_left, mode='fan_in') kaiming_init(self.conv_v_left, mode='fan_in') self.conv_q_right.inited = True self.conv_v_right.inited = True self.conv_q_left.inited = True self.conv_v_left.inited = True def spatial_pool(self, x): input_x = self.conv_v_right(x) batch, channel, height, width = input_x.size() input_x = input_x.view(batch, channel, height * width) context_mask = self.conv_q_right(x) context_mask = context_mask.view(batch, 1, height * width) context_mask = self.softmax_right(context_mask) context = torch.matmul(input_x, context_mask.transpose(1, 2)) context = context.unsqueeze(-1) context = self.conv_up(context) mask_ch = self.sigmoid(context) out = x * mask_ch return out def channel_pool(self, x): g_x = self.conv_q_left(x) batch, channel, height, width = g_x.size() avg_x = self.avg_pool(g_x) batch, channel, avg_x_h, avg_x_w = avg_x.size() avg_x = avg_x.view(batch, channel, avg_x_h * avg_x_w).permute(0, 2, 1) theta_x = self.conv_v_left(x).view(batch, self.inter_planes, height * width) context = torch.matmul(avg_x, theta_x) context = self.softmax_left(context) context = context.view(batch, 1, height, width) mask_sp = self.sigmoid(context) out = x * mask_sp return out def forward(self, input_0): primals_3 = self.conv_q_right.weight primals_1 = self.conv_v_right.weight primals_4 = self.conv_up.weight primals_5 = self.conv_q_left.weight primals_6 = self.conv_v_left.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
xuewengeophysics/PSA
PSA_p
false
16,756
[ "Apache-2.0" ]
175
06ee556de4e88ecc2a162bd89f9dd494407e3051
https://github.com/xuewengeophysics/PSA/tree/06ee556de4e88ecc2a162bd89f9dd494407e3051
ZeroConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/zv/czvhqogqibwnm23q44xn6gzvpm2ac5f4wseb2e7zgfnmpvynwgoy.py # Topologically Sorted Source Nodes: [out, mul, exp, out_1], Original ATen: [aten.convolution, aten.mul, aten.exp] # Source node to ATen node mapping: # exp => exp # mul => mul # out => convolution # out_1 => mul_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {}) triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul, exp, out_1], Original ATen: [aten.convolution, aten.mul, aten.exp] stream0 = get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf2, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data from torch.nn import init class ZeroConv2d(nn.Module): def __init__(self, in_channel, out_channel): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 1, padding=0) init.uniform_(self.conv.weight, -0.001, 0.001) init.uniform_(self.conv.bias, -0.001, 0.001) self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, x): out = self.conv(x) out = out * torch.exp(self.scale * 3) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0[grid(256)](buf1, primals_2, primals_4, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf2, primals_1, primals_3, primals_4, buf1 class ZeroConv2dNew(nn.Module): def __init__(self, in_channel, out_channel): super().__init__() self.conv = nn.Conv2d(in_channel, out_channel, 1, padding=0) init.uniform_(self.conv.weight, -0.001, 0.001) init.uniform_(self.conv.bias, -0.001, 0.001) self.scale = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) def forward(self, input_0): primals_4 = self.scale primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
yhgon/NanoFlow
ZeroConv2d
false
16,757
[ "BSD-3-Clause" ]
62
73b24dfd4d607e73d6167897b83e9f61fcaaca3b
https://github.com/yhgon/NanoFlow/tree/73b24dfd4d607e73d6167897b83e9f61fcaaca3b
ManifoldPropagation
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.convolution] # Source node to ATen node mapping: # q => convolution_1 # Graph fragment: # %convolution_1 : [num_users=5] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mg/cmg4on6yrpk2x54qi5jp7nrlnuyckzbab36acvqgocrrsswure7q.py # Topologically Sorted Source Nodes: [k, pad, pad_1, pad_2, pad_3], Original ATen: [aten.convolution, aten.constant_pad_nd] # Source node to ATen node mapping: # k => convolution # pad => constant_pad_nd # pad_1 => constant_pad_nd_1 # pad_2 => constant_pad_nd_2 # pad_3 => constant_pad_nd_3 # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [1, 0, 0, 0, 0, 0, 0, 0], 0.0), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 1, 0, 0, 0, 0, 0, 0], 0.0), kwargs = {}) # %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 0, 1, 0, 0, 0, 0, 0], 0.0), kwargs = {}) # %constant_pad_nd_3 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution, [0, 0, 0, 1, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_convolution_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x6 = (xindex // 5) x2 = (xindex // 20) % 4 x7 = xindex x5 = (xindex // 4) % 5 x8 = (xindex // 20) x9 = xindex % 20 tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-1) + x0 + (4*x6)), tmp2 & xmask, other=0.0) tmp4 = tl.load(in_ptr1 + (x2), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype) tmp7 = tl.where(tmp2, tmp5, tmp6) tmp8 = x0 tmp9 = tl.full([1], 4, tl.int64) tmp10 = tmp8 < tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (4*x6)), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + (x2), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp10, tmp13, tmp14) tmp16 = (-1) + x5 tmp17 = tmp16 >= tmp1 tmp18 = tl.load(in_ptr0 + ((-4) + x9 + (16*x8)), tmp17 & xmask, other=0.0) tmp19 = tl.load(in_ptr1 + (x2), tmp17 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp18 + tmp19 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp17, tmp20, tmp21) tmp23 = x5 tmp24 = tmp23 < tmp9 tmp25 = tl.load(in_ptr0 + (x9 + (16*x8)), tmp24 & xmask, other=0.0) tmp26 = tl.load(in_ptr1 + (x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tl.store(out_ptr0 + (x7), tmp7, xmask) tl.store(out_ptr1 + (x7), tmp15, xmask) tl.store(out_ptr2 + (x7), tmp22, xmask) tl.store(out_ptr3 + (x7), tmp29, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6w/c6w5hytaicgcntic45uwtfjjgabpe35x5nrzaxbk5bqmmeaox2r6.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%sum_1, %sum_2, %sum_3, %sum_4, %full_default], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) % 5 x3 = (xindex // 80) x4 = xindex % 16 x0 = xindex % 4 x1 = (xindex // 4) % 4 x5 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + (5*x1) + (80*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 * tmp6 tmp8 = tl.load(in_ptr0 + (16 + x4 + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + (20 + x0 + (5*x1) + (80*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.load(in_ptr0 + (32 + x4 + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.load(in_ptr1 + (40 + x0 + (5*x1) + (80*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tl.load(in_ptr0 + (48 + x4 + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr1 + (60 + x0 + (5*x1) + (80*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tmp15 + tmp18 tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = tmp0 >= tmp3 tmp23 = tl.full([1], 2, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr0 + (x4 + (64*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr2 + (1 + x0 + (5*x1) + (80*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 * tmp27 tmp29 = tl.load(in_ptr0 + (16 + x4 + (64*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr2 + (21 + x0 + (5*x1) + (80*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 * tmp30 tmp32 = tmp28 + tmp31 tmp33 = tl.load(in_ptr0 + (32 + x4 + (64*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tl.load(in_ptr2 + (41 + x0 + (5*x1) + (80*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = tl.load(in_ptr0 + (48 + x4 + (64*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr2 + (61 + x0 + (5*x1) + (80*x3)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp37 * tmp38 tmp40 = tmp36 + tmp39 tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp25, tmp40, tmp41) tmp43 = tmp0 >= tmp23 tmp44 = tl.full([1], 3, tl.int64) tmp45 = tmp0 < tmp44 tmp46 = tmp43 & tmp45 tmp47 = tl.load(in_ptr0 + (x4 + (64*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr3 + (x4 + (80*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 * tmp48 tmp50 = tl.load(in_ptr0 + (16 + x4 + (64*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tl.load(in_ptr3 + (20 + x4 + (80*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tl.load(in_ptr0 + (32 + x4 + (64*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tl.load(in_ptr3 + (40 + x4 + (80*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tmp54 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tl.load(in_ptr0 + (48 + x4 + (64*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp59 = tl.load(in_ptr3 + (60 + x4 + (80*x3)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tmp58 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp46, tmp61, tmp62) tmp64 = tmp0 >= tmp44 tmp65 = tl.full([1], 4, tl.int64) tmp66 = tmp0 < tmp65 tmp67 = tmp64 & tmp66 tmp68 = tl.load(in_ptr0 + (x4 + (64*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp69 = tl.load(in_ptr4 + (4 + x4 + (80*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp68 * tmp69 tmp71 = tl.load(in_ptr0 + (16 + x4 + (64*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tl.load(in_ptr4 + (24 + x4 + (80*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp73 = tmp71 * tmp72 tmp74 = tmp70 + tmp73 tmp75 = tl.load(in_ptr0 + (32 + x4 + (64*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tl.load(in_ptr4 + (44 + x4 + (80*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp77 = tmp75 * tmp76 tmp78 = tmp74 + tmp77 tmp79 = tl.load(in_ptr0 + (48 + x4 + (64*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp80 = tl.load(in_ptr4 + (64 + x4 + (80*x3)), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp79 * tmp80 tmp82 = tmp78 + tmp81 tmp83 = tl.full(tmp82.shape, 0.0, tmp82.dtype) tmp84 = tl.where(tmp67, tmp82, tmp83) tmp85 = tmp0 >= tmp65 tmp86 = tl.full([1], 5, tl.int64) tmp87 = tmp0 < tmp86 tmp88 = 1.0 tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tl.where(tmp67, tmp84, tmp90) tmp92 = tl.where(tmp46, tmp63, tmp91) tmp93 = tl.where(tmp25, tmp42, tmp92) tmp94 = tl.where(tmp4, tmp21, tmp93) tl.store(out_ptr0 + (x5), tmp94, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4o/c4oexldigwfhgm7uorvp4qr4um6spll4digv2rk5qxvn7jfhyg5a.py # Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax] # Source node to ATen node mapping: # A => amax, exp, sub, sum_5 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (80*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (80*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (80*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (80*x1)), xmask) tmp7 = tl.load(in_ptr0 + (64 + x0 + (80*x1)), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fe/cfebo27r35e5r3v67lbmcwemhc3a3ctbnnszd24zycsnmhma64ta.py # Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax] # Source node to ATen node mapping: # A => amax, div, exp, sub, sum_5 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=6] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_5), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 80) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cemooka46hszi6vv3apmkpqonfjnjzib4dng7cdnadcb2wmztlab.py # Topologically Sorted Source Nodes: [pad_4], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad_4 => constant_pad_nd_4 # Graph fragment: # %constant_pad_nd_4 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution_2, [0, 1, 0, 0, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_5 = async_compile.triton('triton_poi_fused_constant_pad_nd_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/d7/cd7czfsygfpbrf4azeuqnyffzffdguulzv5eh7rpxme6elcpolp3.py # Topologically Sorted Source Nodes: [pad_5], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad_5 => constant_pad_nd_5 # Graph fragment: # %constant_pad_nd_5 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution_2, [1, 0, 0, 0, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_6 = async_compile.triton('triton_poi_fused_constant_pad_nd_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k7/ck7mfjhfrgtnmfpxzrycrunhrogwn2mm4spxflbtqtortlhsekfe.py # Topologically Sorted Source Nodes: [pad_6], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad_6 => constant_pad_nd_6 # Graph fragment: # %constant_pad_nd_6 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution_2, [0, 0, 0, 1, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_7 = async_compile.triton('triton_poi_fused_constant_pad_nd_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x2 = (xindex // 20) x3 = xindex % 20 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j4/cj44awra5ghtv2lczwfhkbtkgrm267d7pjkvssijh4pqamazcysm.py # Topologically Sorted Source Nodes: [pad_7], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad_7 => constant_pad_nd_7 # Graph fragment: # %constant_pad_nd_7 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%convolution_2, [0, 0, 1, 0, 0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_8 = async_compile.triton('triton_poi_fused_constant_pad_nd_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x2 = (xindex // 20) x3 = xindex % 20 x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + x3 + (16*x2)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zc/czcbjfmlgvbhisf3xchdv2nieasna2pfwxpukvjxhjrbacsy5hbk.py # Topologically Sorted Source Nodes: [mul_4, mul_5, add, mul_6, add_1, mul_7, add_2, mul_8, p], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # p => add_3 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_18, %slice_30), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_20, %slice_34), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_22, %slice_37), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_6), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_24, %slice_41), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_7), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_26, %convolution_2), kwargs = {}) # %add_3 : [num_users=5] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_8), kwargs = {}) triton_poi_fused_add_mul_9 = async_compile.triton('triton_poi_fused_add_mul_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 16 x0 = xindex % 4 x5 = (xindex // 4) x6 = (xindex // 16) x7 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (1 + x0 + (5*x5)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0 + (5*x5)), xmask) tmp7 = tl.load(in_ptr0 + (32 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (4 + x4 + (20*x6)), xmask) tmp11 = tl.load(in_ptr0 + (48 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x4 + (20*x6)), xmask) tmp15 = tl.load(in_ptr0 + (64 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x7), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tl.store(out_ptr0 + (x7), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vw/cvw7ehyz4axyy5s5gh62zguohsrwguurxxjzhq66cezj5hfagka7.py # Topologically Sorted Source Nodes: [mul_9, mul_10, add_4, mul_11, add_5, mul_12, add_6, mul_13, p_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # mul_10 => mul_10 # mul_11 => mul_11 # mul_12 => mul_12 # mul_13 => mul_13 # mul_9 => mul_9 # p_1 => add_7 # Graph fragment: # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_18, %slice_46), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_20, %slice_50), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %mul_10), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_22, %slice_53), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_11), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_24, %slice_57), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_12), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_26, %add_3), kwargs = {}) # %add_7 : [num_users=6] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_13), kwargs = {}) triton_poi_fused_add_mul_10 = async_compile.triton('triton_poi_fused_add_mul_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 16 x0 = xindex % 4 x5 = (xindex // 4) x6 = (xindex // 16) x7 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (1 + x0 + (5*x5)), xmask) tmp3 = tl.load(in_ptr0 + (16 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x0 + (5*x5)), xmask) tmp7 = tl.load(in_ptr0 + (32 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (4 + x4 + (20*x6)), xmask) tmp11 = tl.load(in_ptr0 + (48 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x4 + (20*x6)), xmask) tmp15 = tl.load(in_ptr0 + (64 + x4 + (80*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_out_ptr0 + (x7), xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tl.store(in_out_ptr0 + (x7), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [q], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf2, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [v], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf4, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [k, pad, pad_1, pad_2, pad_3], Original ATen: [aten.convolution, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_1.run(buf0, primals_2, buf5, buf6, buf7, buf8, 320, grid=grid(320), stream=stream0) del primals_2 buf9 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf2, buf5, buf6, buf7, buf8, buf9, 320, grid=grid(320), stream=stream0) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf9, buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [A], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf12, buf10, buf11, 320, grid=grid(320), stream=stream0) del buf10 del buf11 buf13 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_4], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_5.run(buf4, buf13, 320, grid=grid(320), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_5], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_6.run(buf4, buf14, 320, grid=grid(320), stream=stream0) buf15 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_6], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_7.run(buf4, buf15, 320, grid=grid(320), stream=stream0) buf16 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_7], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_8.run(buf4, buf16, 320, grid=grid(320), stream=stream0) buf17 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul_4, mul_5, add, mul_6, add_1, mul_7, add_2, mul_8, p], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_9.run(buf12, buf13, buf14, buf15, buf16, buf4, buf17, 256, grid=grid(256), stream=stream0) buf18 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_8], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_5.run(buf17, buf18, 320, grid=grid(320), stream=stream0) buf19 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_9], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_6.run(buf17, buf19, 320, grid=grid(320), stream=stream0) buf20 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_10], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_7.run(buf17, buf20, 320, grid=grid(320), stream=stream0) buf21 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_11], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_8.run(buf17, buf21, 320, grid=grid(320), stream=stream0) buf22 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [mul_9, mul_10, add_4, mul_11, add_5, mul_12, add_6, mul_13, p_1], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_10.run(buf22, buf12, buf18, buf19, buf20, buf21, 256, grid=grid(256), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_12], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_5.run(buf22, buf23, 320, grid=grid(320), stream=stream0) buf24 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_13], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_6.run(buf22, buf24, 320, grid=grid(320), stream=stream0) buf25 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_14], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_7.run(buf22, buf25, 320, grid=grid(320), stream=stream0) buf26 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_15], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_8.run(buf22, buf26, 320, grid=grid(320), stream=stream0) buf27 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_14, mul_15, add_8, mul_16, add_9, mul_17, add_10, mul_18, p_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_9.run(buf12, buf23, buf24, buf25, buf26, buf22, buf27, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 4, 4, 4), (64, 16, 4, 1)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf29, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8, buf2, buf4, buf5, buf6, buf7, buf8, buf12, buf13, buf14, buf15, buf16, buf18, buf19, buf20, buf21, buf22, buf23, buf24, buf25, buf26, buf27, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def shift(x, direction, amount): if direction == 'left': ret = F.pad(x, (amount, 0, 0, 0, 0, 0, 0, 0))[:, :, :, :-amount] elif direction == 'right': ret = F.pad(x, (0, amount, 0, 0, 0, 0, 0, 0))[:, :, :, amount:] elif direction == 'top': ret = F.pad(x, (0, 0, amount, 0, 0, 0, 0, 0))[:, :, :-amount, :] elif direction == 'bottom': ret = F.pad(x, (0, 0, 0, amount, 0, 0, 0, 0))[:, :, amount:, :] else: raise return ret class ManifoldPropagation(nn.Module): def __init__(self, ic, k_hop=3, stride=1): super().__init__() self.k = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.q = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.v = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.k_hop = k_hop self.stride = stride self.normalize = nn.Softmax(dim=1) self.aggregate = nn.Conv2d(ic, ic, kernel_size=1) def forward(self, x): k = self.k(x) q = self.q(x) v = self.v(x) _batch_size, _channel, _h, _w = x.shape xl = shift(k, 'left', self.stride) xr = shift(k, 'right', self.stride) xt = shift(k, 'top', self.stride) xb = shift(k, 'bottom', self.stride) l = (q * xl).sum(1, keepdim=True) r = (q * xr).sum(1, keepdim=True) t = (q * xt).sum(1, keepdim=True) b = (q * xb).sum(1, keepdim=True) m = torch.ones_like(l) A = self.normalize(torch.cat((l, r, t, b, m), dim=1)) l = A[:, 0:1] r = A[:, 1:2] t = A[:, 2:3] b = A[:, 3:4] m = A[:, 4:5] for _ in range(self.k_hop): v = self.propagation(v, l, r, t, b, m) v = self.aggregate(v) return v def propagation(self, x, l, r, t, b, m): p = l * shift(x, 'right', self.stride) + r * shift(x, 'left', self. stride) + t * shift(x, 'bottom', self.stride) + b * shift(x, 'top', self.stride) + m * x return p def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'ic': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x6 = xindex // 5 x2 = xindex // 20 % 4 x7 = xindex x5 = xindex // 4 % 5 x8 = xindex // 20 x9 = xindex % 20 tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-1 + x0 + 4 * x6), tmp2 & xmask, other=0.0) tmp4 = tl.load(in_ptr1 + x2, tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tmp3 + tmp4 tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype) tmp7 = tl.where(tmp2, tmp5, tmp6) tmp8 = x0 tmp9 = tl.full([1], 4, tl.int64) tmp10 = tmp8 < tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 4 * x6), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + x2, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp10, tmp13, tmp14) tmp16 = -1 + x5 tmp17 = tmp16 >= tmp1 tmp18 = tl.load(in_ptr0 + (-4 + x9 + 16 * x8), tmp17 & xmask, other=0.0) tmp19 = tl.load(in_ptr1 + x2, tmp17 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tmp18 + tmp19 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp17, tmp20, tmp21) tmp23 = x5 tmp24 = tmp23 < tmp9 tmp25 = tl.load(in_ptr0 + (x9 + 16 * x8), tmp24 & xmask, other=0.0) tmp26 = tl.load(in_ptr1 + x2, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tl.store(out_ptr0 + x7, tmp7, xmask) tl.store(out_ptr1 + x7, tmp15, xmask) tl.store(out_ptr2 + x7, tmp22, xmask) tl.store(out_ptr3 + x7, tmp29, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 % 5 x3 = xindex // 80 x4 = xindex % 16 x0 = xindex % 4 x1 = xindex // 4 % 4 x5 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 64 * x3), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + 5 * x1 + 80 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 * tmp6 tmp8 = tl.load(in_ptr0 + (16 + x4 + 64 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + (20 + x0 + 5 * x1 + 80 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 * tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.load(in_ptr0 + (32 + x4 + 64 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.load(in_ptr1 + (40 + x0 + 5 * x1 + 80 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp12 * tmp13 tmp15 = tmp11 + tmp14 tmp16 = tl.load(in_ptr0 + (48 + x4 + 64 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr1 + (60 + x0 + 5 * x1 + 80 * x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 * tmp17 tmp19 = tmp15 + tmp18 tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp4, tmp19, tmp20) tmp22 = tmp0 >= tmp3 tmp23 = tl.full([1], 2, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr0 + (x4 + 64 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr2 + (1 + x0 + 5 * x1 + 80 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 * tmp27 tmp29 = tl.load(in_ptr0 + (16 + x4 + 64 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr2 + (21 + x0 + 5 * x1 + 80 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 * tmp30 tmp32 = tmp28 + tmp31 tmp33 = tl.load(in_ptr0 + (32 + x4 + 64 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tl.load(in_ptr2 + (41 + x0 + 5 * x1 + 80 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 * tmp34 tmp36 = tmp32 + tmp35 tmp37 = tl.load(in_ptr0 + (48 + x4 + 64 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr2 + (61 + x0 + 5 * x1 + 80 * x3), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp37 * tmp38 tmp40 = tmp36 + tmp39 tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp25, tmp40, tmp41) tmp43 = tmp0 >= tmp23 tmp44 = tl.full([1], 3, tl.int64) tmp45 = tmp0 < tmp44 tmp46 = tmp43 & tmp45 tmp47 = tl.load(in_ptr0 + (x4 + 64 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr3 + (x4 + 80 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 * tmp48 tmp50 = tl.load(in_ptr0 + (16 + x4 + 64 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tl.load(in_ptr3 + (20 + x4 + 80 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tl.load(in_ptr0 + (32 + x4 + 64 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tl.load(in_ptr3 + (40 + x4 + 80 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tmp54 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tl.load(in_ptr0 + (48 + x4 + 64 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp59 = tl.load(in_ptr3 + (60 + x4 + 80 * x3), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tmp58 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tl.full(tmp61.shape, 0.0, tmp61.dtype) tmp63 = tl.where(tmp46, tmp61, tmp62) tmp64 = tmp0 >= tmp44 tmp65 = tl.full([1], 4, tl.int64) tmp66 = tmp0 < tmp65 tmp67 = tmp64 & tmp66 tmp68 = tl.load(in_ptr0 + (x4 + 64 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp69 = tl.load(in_ptr4 + (4 + x4 + 80 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp68 * tmp69 tmp71 = tl.load(in_ptr0 + (16 + x4 + 64 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tl.load(in_ptr4 + (24 + x4 + 80 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp73 = tmp71 * tmp72 tmp74 = tmp70 + tmp73 tmp75 = tl.load(in_ptr0 + (32 + x4 + 64 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tl.load(in_ptr4 + (44 + x4 + 80 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp77 = tmp75 * tmp76 tmp78 = tmp74 + tmp77 tmp79 = tl.load(in_ptr0 + (48 + x4 + 64 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp80 = tl.load(in_ptr4 + (64 + x4 + 80 * x3), tmp67 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp79 * tmp80 tmp82 = tmp78 + tmp81 tmp83 = tl.full(tmp82.shape, 0.0, tmp82.dtype) tmp84 = tl.where(tmp67, tmp82, tmp83) tmp85 = tmp0 >= tmp65 tl.full([1], 5, tl.int64) tmp88 = 1.0 tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tl.where(tmp67, tmp84, tmp90) tmp92 = tl.where(tmp46, tmp63, tmp91) tmp93 = tl.where(tmp25, tmp42, tmp92) tmp94 = tl.where(tmp4, tmp21, tmp93) tl.store(out_ptr0 + x5, tmp94, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 80 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 80 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 80 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 80 * x1), xmask) tmp7 = tl.load(in_ptr0 + (64 + x0 + 80 * x1), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 80 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + x3, tmp5, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x2 = xindex // 20 x3 = xindex % 20 x4 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp3, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x2 = xindex // 20 x3 = xindex % 20 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + x3 + 16 * x2), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp3, xmask) @triton.jit def triton_poi_fused_add_mul_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 16 x0 = xindex % 4 x5 = xindex // 4 x6 = xindex // 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (1 + x0 + 5 * x5), xmask) tmp3 = tl.load(in_ptr0 + (16 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr2 + (x0 + 5 * x5), xmask) tmp7 = tl.load(in_ptr0 + (32 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr3 + (4 + x4 + 20 * x6), xmask) tmp11 = tl.load(in_ptr0 + (48 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr4 + (x4 + 20 * x6), xmask) tmp15 = tl.load(in_ptr0 + (64 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr5 + x7, xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tl.store(out_ptr0 + x7, tmp18, xmask) @triton.jit def triton_poi_fused_add_mul_10(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 16 x0 = xindex % 4 x5 = xindex // 4 x6 = xindex // 16 x7 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (1 + x0 + 5 * x5), xmask) tmp3 = tl.load(in_ptr0 + (16 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr2 + (x0 + 5 * x5), xmask) tmp7 = tl.load(in_ptr0 + (32 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr3 + (4 + x4 + 20 * x6), xmask) tmp11 = tl.load(in_ptr0 + (48 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr4 + (x4 + 20 * x6), xmask) tmp15 = tl.load(in_ptr0 + (64 + x4 + 80 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_out_ptr0 + x7, xmask) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tl.store(in_out_ptr0 + x7, tmp18, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf2, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf3 = extern_kernels.convolution(primals_3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_0[grid(256)](buf4, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_convolution_1[grid(320)](buf0, primals_2, buf5, buf6, buf7, buf8, 320, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf9 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) triton_poi_fused_cat_2[grid(320)](buf2, buf5, buf6, buf7, buf8, buf9, 320, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](buf9, buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = buf9 del buf9 triton_poi_fused__softmax_4[grid(320)](buf12, buf10, buf11, 320, XBLOCK=256, num_warps=4, num_stages=1) del buf10 del buf11 buf13 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_5[grid(320)](buf4, buf13, 320, XBLOCK=128, num_warps=4, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_6[grid(320)](buf4, buf14, 320, XBLOCK=128, num_warps=4, num_stages=1) buf15 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_7[grid(320)](buf4, buf15, 320, XBLOCK=256, num_warps=4, num_stages=1) buf16 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_8[grid(320)](buf4, buf16, 320, XBLOCK=128, num_warps=4, num_stages=1) buf17 = buf0 del buf0 triton_poi_fused_add_mul_9[grid(256)](buf12, buf13, buf14, buf15, buf16, buf4, buf17, 256, XBLOCK=256, num_warps=4, num_stages=1) buf18 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_5[grid(320)](buf17, buf18, 320, XBLOCK=128, num_warps=4, num_stages=1) buf19 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_6[grid(320)](buf17, buf19, 320, XBLOCK=128, num_warps=4, num_stages=1) buf20 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_7[grid(320)](buf17, buf20, 320, XBLOCK=256, num_warps=4, num_stages=1) buf21 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_8[grid(320)](buf17, buf21, 320, XBLOCK=128, num_warps=4, num_stages=1) buf22 = buf17 del buf17 triton_poi_fused_add_mul_10[grid(256)](buf22, buf12, buf18, buf19, buf20, buf21, 256, XBLOCK=256, num_warps=4, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_5[grid(320)](buf22, buf23, 320, XBLOCK=128, num_warps=4, num_stages=1) buf24 = empty_strided_cuda((4, 4, 4, 5), (80, 20, 5, 1), torch.float32) triton_poi_fused_constant_pad_nd_6[grid(320)](buf22, buf24, 320, XBLOCK=128, num_warps=4, num_stages=1) buf25 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_7[grid(320)](buf22, buf25, 320, XBLOCK=256, num_warps=4, num_stages=1) buf26 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_8[grid(320)](buf22, buf26, 320, XBLOCK=128, num_warps=4, num_stages=1) buf27 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_9[grid(256)](buf12, buf23, buf24, buf25, buf26, buf22, buf27, 256, XBLOCK=256, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 4, 4, 4), (64, 16, 4, 1)) buf29 = buf28 del buf28 triton_poi_fused_convolution_0[grid(256)](buf29, primals_9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return (buf29, primals_1, primals_3, primals_4, primals_6, primals_8, buf2, buf4, buf5, buf6, buf7, buf8, buf12, buf13, buf14, buf15, buf16, buf18, buf19, buf20, buf21, buf22, buf23, buf24, buf25, buf26, buf27) def shift(x, direction, amount): if direction == 'left': ret = F.pad(x, (amount, 0, 0, 0, 0, 0, 0, 0))[:, :, :, :-amount] elif direction == 'right': ret = F.pad(x, (0, amount, 0, 0, 0, 0, 0, 0))[:, :, :, amount:] elif direction == 'top': ret = F.pad(x, (0, 0, amount, 0, 0, 0, 0, 0))[:, :, :-amount, :] elif direction == 'bottom': ret = F.pad(x, (0, 0, 0, amount, 0, 0, 0, 0))[:, :, amount:, :] else: raise return ret class ManifoldPropagationNew(nn.Module): def __init__(self, ic, k_hop=3, stride=1): super().__init__() self.k = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.q = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.v = nn.Conv2d(ic, ic, kernel_size=1, padding=0) self.k_hop = k_hop self.stride = stride self.normalize = nn.Softmax(dim=1) self.aggregate = nn.Conv2d(ic, ic, kernel_size=1) def propagation(self, x, l, r, t, b, m): p = l * shift(x, 'right', self.stride) + r * shift(x, 'left', self. stride) + t * shift(x, 'bottom', self.stride) + b * shift(x, 'top', self.stride) + m * x return p def forward(self, input_0): primals_1 = self.k.weight primals_2 = self.k.bias primals_4 = self.q.weight primals_5 = self.q.bias primals_6 = self.v.weight primals_7 = self.v.bias primals_8 = self.aggregate.weight primals_9 = self.aggregate.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
wonkyunglee/MPNet
ManifoldPropagation
false
16,758
[ "MIT" ]
1,280
3a6821a88a5e3db5bd97121761dbb361d9518bc2
https://github.com/wonkyunglee/MPNet/tree/3a6821a88a5e3db5bd97121761dbb361d9518bc2
Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/bg/cbgse6huxiz3z3nj62gjowaky5xqc2ixg2z47qxe6shy2qxm6db7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/km/ckmkumedmjim6hmfncqjtznzta27lgu5fdevyhmvobxljhwyghlt.py # Topologically Sorted Source Nodes: [sigma_sq], Original ATen: [aten.exp] # Source node to ATen node mapping: # sigma_sq => exp # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_8,), kwargs = {}) triton_poi_fused_exp_1 = async_compile.triton('triton_poi_fused_exp_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.exp(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ut/cut5wsfmo7ccommltl4dktytl3vusvje2xx5ifuor7iwqrqipumk.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_2 => tanh_2 # Graph fragment: # %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_7,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 500 x2 = (xindex // 2000) x4 = xindex % 2000 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(out_ptr0 + (x4 + (2016*x2)), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/te/ctecbncr77saou3tnuoyrhn6jahwz46ovfj5d52zjirmzxxdkfxp.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mm_default : [num_users=1] = call_function[target=torch.ops.aten.mm.default](args = (%view_8, %permute_4), kwargs = {}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 500 x1 = (xindex // 500) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (500*(x1 % 4)) + (2016*(x1 // 4))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (100, 4), (4, 1)) assert_size_stride(primals_2, (100, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (100, 100), (100, 1)) assert_size_stride(primals_5, (100, ), (1, )) assert_size_stride(primals_6, (4, 100), (100, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (500, 4), (4, 1)) assert_size_stride(primals_10, (500, ), (1, )) assert_size_stride(primals_11, (100, 500), (500, 1)) assert_size_stride(primals_12, (100, ), (1, )) assert_size_stride(primals_13, (1, 100), (100, 1)) assert_size_stride(primals_14, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 6400, grid=grid(6400), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigma_sq], Original ATen: [aten.exp] triton_poi_fused_exp_1.run(primals_8, buf5, 4, grid=grid(4), stream=stream0) del primals_8 buf6 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 500), (1, 4), 0), out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf6, primals_10, buf7, 32000, grid=grid(32000), stream=stream0) del primals_10 buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf7, buf8, 32000, grid=grid(32000), stream=stream0) buf9 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (500, 100), (1, 500), 0), out=buf9) del buf8 buf10 = reinterpret_tensor(buf9, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf10, primals_12, 6400, grid=grid(6400), stream=stream0) del primals_12 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, reinterpret_tensor(buf10, (64, 100), (100, 1), 0), reinterpret_tensor(primals_13, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf12) del primals_14 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf5, reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, buf10, primals_13, primals_11, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((100, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((100, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, num_inputs, num_outputs): super(Model, self).__init__() h_size_1 = 100 h_size_2 = 100 self.p_fc1 = nn.Linear(num_inputs, h_size_1) self.p_fc2 = nn.Linear(h_size_1, h_size_2) self.v_fc1 = nn.Linear(num_inputs, h_size_1 * 5) self.v_fc2 = nn.Linear(h_size_1 * 5, h_size_2) self.mu = nn.Linear(h_size_2, num_outputs) self.log_std = nn.Parameter(torch.zeros(1, num_outputs)) self.v = nn.Linear(h_size_2, 1) for name, p in self.named_parameters(): if 'bias' in name: p.data.fill_(0) """ if 'mu.weight' in name: p.data.normal_() p.data /= torch.sum(p.data**2,0).expand_as(p.data)""" self.train() def forward(self, inputs): x = F.tanh(self.p_fc1(inputs)) x = F.tanh(self.p_fc2(x)) mu = self.mu(x) sigma_sq = torch.exp(self.log_std) x = F.tanh(self.v_fc1(inputs)) x = F.tanh(self.v_fc2(x)) v = self.v(x) return mu, sigma_sq, v def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_inputs': 4, 'num_outputs': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_exp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.exp(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 500 x2 = xindex // 2000 x4 = xindex % 2000 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(out_ptr0 + (x4 + 2016 * x2), tmp3, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 500 x1 = xindex // 500 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 500 * (x1 % 4) + 2016 * (x1 // 4)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (100, 4), (4, 1)) assert_size_stride(primals_2, (100,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (100, 100), (100, 1)) assert_size_stride(primals_5, (100,), (1,)) assert_size_stride(primals_6, (4, 100), (100, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (500, 4), (4, 1)) assert_size_stride(primals_10, (500,), (1,)) assert_size_stride(primals_11, (100, 500), (500, 1)) assert_size_stride(primals_12, (100,), (1,)) assert_size_stride(primals_13, (1, 100), (100, 1)) assert_size_stride(primals_14, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(6400)](buf1, primals_2, 6400, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(6400)](buf3, primals_5, 6400, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((1, 4), (4, 1), torch.float32) triton_poi_fused_exp_1[grid(4)](primals_8, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_8 buf6 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 500), (1, 4), 0), out=buf6) del primals_9 buf7 = empty_strided_cuda((4, 4, 4, 500), (8064, 2016, 500, 1), torch.float32) triton_poi_fused_tanh_2[grid(32000)](buf6, primals_10, buf7, 32000, XBLOCK=128, num_warps=4, num_stages=1) del primals_10 buf8 = buf6 del buf6 triton_poi_fused_3[grid(32000)](buf7, buf8, 32000, XBLOCK=256, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (500, 100), (1, 500), 0), out=buf9) del buf8 buf10 = reinterpret_tensor(buf9, (4, 4, 4, 100), (1600, 400, 100, 1), 0 ) del buf9 triton_poi_fused_tanh_0[grid(6400)](buf10, primals_12, 6400, XBLOCK =256, num_warps=4, num_stages=1) del primals_12 buf12 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_14, reinterpret_tensor(buf10, (64, 100 ), (100, 1), 0), reinterpret_tensor(primals_13, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf12) del primals_14 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf5, reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, buf10, primals_13, primals_11, primals_6, primals_4) class ModelNew(nn.Module): def __init__(self, num_inputs, num_outputs): super(ModelNew, self).__init__() h_size_1 = 100 h_size_2 = 100 self.p_fc1 = nn.Linear(num_inputs, h_size_1) self.p_fc2 = nn.Linear(h_size_1, h_size_2) self.v_fc1 = nn.Linear(num_inputs, h_size_1 * 5) self.v_fc2 = nn.Linear(h_size_1 * 5, h_size_2) self.mu = nn.Linear(h_size_2, num_outputs) self.log_std = nn.Parameter(torch.zeros(1, num_outputs)) self.v = nn.Linear(h_size_2, 1) for name, p in self.named_parameters(): if 'bias' in name: p.data.fill_(0) """ if 'mu.weight' in name: p.data.normal_() p.data /= torch.sum(p.data**2,0).expand_as(p.data)""" self.train() def forward(self, input_0): primals_8 = self.log_std primals_1 = self.p_fc1.weight primals_2 = self.p_fc1.bias primals_4 = self.p_fc2.weight primals_5 = self.p_fc2.bias primals_9 = self.v_fc1.weight primals_10 = self.v_fc1.bias primals_11 = self.v_fc2.weight primals_12 = self.v_fc2.bias primals_6 = self.mu.weight primals_7 = self.mu.bias primals_13 = self.v.weight primals_14 = self.v.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0], output[1], output[2]
yanjiajia-september/Pytorch-DPPO
Model
false
16,759
[ "MIT" ]
179
5e1a75b6dfc6a170270253a35d10109718240e97
https://github.com/yanjiajia-september/Pytorch-DPPO/tree/5e1a75b6dfc6a170270253a35d10109718240e97
PoolFormerBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dr/cdrbbq25gaacwdmuqqn76ytppvbzlwbqwo7aazovogwtjetsi3kf.py # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # group_norm => add, add_1, mul_1, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_7), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_4), kwargs = {}) triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask) tl.store(out_ptr3 + (x0), tmp22, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ou/coupyg345piz42etl5al6lwpef5kkccwwnxo3krwbluktyaryaxz.py # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # group_norm_1 => add_3, add_4, mul_4, rsqrt_1, var_mean_1 # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%add_1, [3, 3], [1, 1], [1, 1], False, False), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_15), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_12), kwargs = {}) triton_per_fused_avg_pool2d_native_group_norm_1 = async_compile.triton('triton_per_fused_avg_pool2d_native_group_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_avg_pool2d_native_group_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 14, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 4) % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = (rindex // 16) tmp54 = tl.load(in_ptr1 + (r6 + (64*x0)), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + (64*x0)), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + (r3), None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + (r3), None, eviction_policy='evict_last') tmp0 = (-1) + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + r6 + (64*x0)), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + r6 + (64*x0)), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + r6 + (64*x0)), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + r6 + (64*x0)), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + (64*x0)), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + (64*x0)), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + (64*x0)), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + (64*x0)), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + (64*x0)), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))) + (((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r1)) + ((-1) + r1) * (((-1) + r1) > (0)))*((4) * ((4) <= (2 + r2)) + (2 + r2) * ((2 + r2) < (4)))) + ((-1)*((0) * ((0) >= ((-1) + r2)) + ((-1) + r2) * (((-1) + r2) > (0)))*((4) * ((4) <= (2 + r1)) + (2 + r1) * ((2 + r1) < (4)))) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tmp62 = tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + (64*x0)), tmp53, xmask) tl.store(out_ptr3 + (r6 + (64*x0)), tmp86, xmask) tl.store(out_ptr4 + (x0), tmp81, xmask) tl.store(out_ptr1 + (x0), tmp69, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gd/cgdslzbvz4m7vmsmypc7vpzz4mhpkezpihgu3s34qnd5bo5vg7h5.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => add_5, erf, mul_5, mul_6, mul_7 # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_6,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_7 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %add_5), kwargs = {}) triton_poi_fused_convolution_gelu_2 = async_compile.triton('triton_poi_fused_convolution_gelu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2s/c2sr6yssngw5ceeda7lntygiwg4bblf5mrmsznbnzvcgr3mzmwrc.py # Topologically Sorted Source Nodes: [sub, mul, x, x_4, mul_1, x_6], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] # Source node to ATen node mapping: # mul => mul_2 # mul_1 => mul_8 # sub => sub_1 # x => add_2 # x_4 => convolution_1 # x_6 => add_6 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %add_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %sub_1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_2), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_7, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_9, %convolution_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_8), kwargs = {}) triton_poi_fused_add_convolution_mul_sub_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x3), xmask) tmp6 = tl.load(in_ptr4 + (x3), xmask) tmp10 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm] stream0 = get_raw_stream(0) triton_per_fused_native_group_norm_0.run(primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d, group_norm_1], Original ATen: [aten.avg_pool2d, aten.native_group_norm] triton_per_fused_avg_pool2d_native_group_norm_1.run(buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, grid=grid(4), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = buf10; del buf10 # reuse buf12 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.gelu] triton_poi_fused_convolution_gelu_2.run(buf11, primals_9, buf12, 1024, grid=grid(1024), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 16, 4, 1)) buf14 = buf13; del buf13 # reuse buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, mul, x, x_4, mul_1, x_6], Original ATen: [aten.sub, aten.mul, aten.add, aten.convolution] triton_poi_fused_add_convolution_mul_sub_3.run(buf14, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf15, 256, grid=grid(256), stream=stream0) del primals_11 return (buf15, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf12, buf14, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import warnings import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PoolFormerBlock(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=GroupNorm, drop=0.0, drop_path=0.0, use_layer_scale=True, layer_scale_init_value=1e-05): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) def forward(self, x): if self.use_layer_scale: x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1). unsqueeze(-1) * self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1). unsqueeze(-1) * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import warnings import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex r3 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 64.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp25 = tmp23 * tmp24 tmp27 = tmp25 + tmp26 tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask) tl.store(out_ptr3 + x0, tmp22, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_per_fused_avg_pool2d_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 4 % 4 r1 = rindex % 4 r6 = rindex x0 = xindex r3 = rindex // 16 tmp54 = tl.load(in_ptr1 + (r6 + 64 * x0), xmask, other=0.0) tmp55 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr0 + (r6 + 64 * x0), xmask, other=0.0) tmp83 = tl.load(in_ptr3 + r3, None, eviction_policy='evict_last') tmp85 = tl.load(in_ptr4 + r3, None, eviction_policy='evict_last') tmp0 = -1 + r2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + r1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + r6 + 64 * x0), tmp10 & xmask, other=0.0) tmp12 = r1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + r6 + 64 * x0), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + r1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + r6 + 64 * x0), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = r2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + r6 + 64 * x0), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (r6 + 64 * x0), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + r6 + 64 * x0), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + r2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + r6 + 64 * x0), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + r6 + 64 * x0), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + r6 + 64 * x0), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (0 * (0 >= - 1 + r2) + (-1 + r2) * (-1 + r2 > 0)) + (4 * (4 <= 2 + r1) + (2 + r1 ) * (2 + r1 < 4)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4) ) + -1 * (0 * (0 >= -1 + r1) + (-1 + r1) * (-1 + r1 > 0)) * (4 * (4 <= 2 + r2) + (2 + r2) * (2 + r2 < 4)) + -1 * (0 * (0 >= -1 + r2) + (-1 + r2) * (-1 + r2 > 0)) * (4 * (4 <= 2 + r1) + (2 + r1) * (2 + r1 < 4)) tmp53 = tmp51 / tmp52 tmp57 = tmp53 - tmp56 tmp58 = tmp55 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tl.where(xmask, tmp60, 0) tmp63 = tl.broadcast_to(tmp60, [XBLOCK, RBLOCK]) tmp65 = tl.where(xmask, tmp63, 0) tmp66 = tl.sum(tmp65, 1)[:, None] tmp67 = tl.full([XBLOCK, 1], 64, tl.int32) tmp68 = tmp67.to(tl.float32) tmp69 = tmp66 / tmp68 tmp70 = tmp60 - tmp69 tmp71 = tmp70 * tmp70 tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK]) tmp74 = tl.where(xmask, tmp72, 0) tmp75 = tl.sum(tmp74, 1)[:, None] tmp76 = tmp59 - tmp69 tmp77 = 64.0 tmp78 = tmp75 / tmp77 tmp79 = 1e-05 tmp80 = tmp78 + tmp79 tmp81 = libdevice.rsqrt(tmp80) tmp82 = tmp76 * tmp81 tmp84 = tmp82 * tmp83 tmp86 = tmp84 + tmp85 tl.store(out_ptr0 + (r6 + 64 * x0), tmp53, xmask) tl.store(out_ptr3 + (r6 + 64 * x0), tmp86, xmask) tl.store(out_ptr4 + x0, tmp81, xmask) tl.store(out_ptr1 + x0, tmp69, xmask) @triton.jit def triton_poi_fused_convolution_gelu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_sub_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x3, xmask) tmp6 = tl.load(in_ptr4 + x3, xmask) tmp10 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp7 = tmp5 - tmp6 tmp8 = tmp4 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_native_group_norm_0[grid(4)](primals_4, primals_2, primals_3, buf0, buf3, buf16, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) triton_per_fused_avg_pool2d_native_group_norm_1[grid(4)](buf3, primals_4, primals_1, primals_6, primals_7, buf4, buf5, buf8, buf9, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 4, 4), (256, 16, 4, 1)) buf11 = buf10 del buf10 buf12 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch. float32) triton_poi_fused_convolution_gelu_2[grid(1024)](buf11, primals_9, buf12, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 16, 4, 1)) buf14 = buf13 del buf13 buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_mul_sub_3[grid(256)](buf14, primals_11, primals_4, primals_1, buf4, buf3, primals_5, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (buf15, primals_1, primals_4, primals_5, primals_6, primals_8, primals_10, buf3, buf4, buf8, reinterpret_tensor(buf5, (4, 1), (1, 1), 0), reinterpret_tensor(buf9, (4, 1), (1, 1), 0), buf11, buf12, buf14, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf16, (4, 1, 1), (1, 1, 1), 0)) def _no_grad_trunc_normal_(tensor, mean, std, a, b): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ def norm_cdf(x): """Computes standard normal cumulative distribution function""" return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn( 'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.' , stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Copy & paste from PyTorch official master until it's in a few official releases - RW Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class GroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class Pooling(nn.Module): """ Implementation of pooling for PoolFormer --pool_size: pooling size """ def __init__(self, pool_size=3): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, x): return self.pool(x) - x class Mlp(nn.Module): """ Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W] """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PoolFormerBlockNew(nn.Module): """ Implementation of one PoolFormer block. --dim: embedding dim --pool_size: pooling size --mlp_ratio: mlp expansion ratio --act_layer: activation --norm_layer: normalization --drop: dropout rate --drop path: Stochastic Depth, refer to https://arxiv.org/abs/1603.09382 --use_layer_scale, --layer_scale_init_value: LayerScale, refer to https://arxiv.org/abs/2103.17239 """ def __init__(self, dim, pool_size=3, mlp_ratio=4.0, act_layer=nn.GELU, norm_layer=GroupNorm, drop=0.0, drop_path=0.0, use_layer_scale=True, layer_scale_init_value=1e-05): super().__init__() self.norm1 = norm_layer(dim) self.token_mixer = Pooling(pool_size=pool_size) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.drop_path = DropPath(drop_path ) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = use_layer_scale if use_layer_scale: self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) def forward(self, input_0): primals_1 = self.layer_scale_1 primals_2 = self.layer_scale_2 primals_3 = self.norm1.weight primals_5 = self.norm1.bias primals_6 = self.norm2.weight primals_7 = self.norm2.bias primals_8 = self.mlp.fc1.weight primals_9 = self.mlp.fc1.bias primals_10 = self.mlp.fc2.weight primals_11 = self.mlp.fc2.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
xwyzsn/solo-learn
PoolFormerBlock
false
16,760
[ "MIT" ]
693
16d021d8053439a3de205337ab2a11d191500b09
https://github.com/xwyzsn/solo-learn/tree/16d021d8053439a3de205337ab2a11d191500b09
EqualLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fl/cflw6zjzdk2wqtau7m6nsei5vavjfijzxhb37zaa3xp4yxpw5yb2.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, linear], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, lr_mul=1, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim)) self.lr_mul = lr_mul def forward(self, input): return F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), ( 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class EqualLinearNew(nn.Module): def __init__(self, in_dim, out_dim, lr_mul=1, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim)) self.lr_mul = lr_mul def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
yoona-ai/stylegan2-pytorch
EqualLinear
false
16,761
[ "MIT" ]
2,954
eceb8aacb669f19b79cc74c7160a85252b1086d6
https://github.com/yoona-ai/stylegan2-pytorch/tree/eceb8aacb669f19b79cc74c7160a85252b1086d6
KeypointsMSESmoothLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/tx/ctxi53be27yb5kysncbnhqz3iqnburlmiyew6pla3tqswdf4gdys.py # Topologically Sorted Source Nodes: [sub, pow_1, diff, gt], Original ATen: [aten.sub, aten.pow, aten.mul, aten.gt] # Source node to ATen node mapping: # diff => mul # gt => gt # pow_1 => pow_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %view), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %unsqueeze), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul, 400), kwargs = {}) triton_poi_fused_gt_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_gt_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex % 256 x5 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x4), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = 400.0 tmp7 = tmp5 > tmp6 tl.store(out_ptr0 + (x3), tmp5, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [sub, pow_1, diff, gt], Original ATen: [aten.sub, aten.pow, aten.mul, aten.gt] stream0 = get_raw_stream(0) triton_poi_fused_gt_mul_pow_sub_0.run(arg1_1, arg0_1, arg2_1, buf0, buf1, 4096, grid=grid(4096), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class KeypointsMSESmoothLoss(nn.Module): def __init__(self, threshold=400): super().__init__() self.threshold = threshold def forward(self, output, target, target_weight): batch_size = output.size(0) num_joints = output.size(1) heatmaps_pred = output.reshape((batch_size, num_joints, -1)) heatmaps_gt = target.reshape((batch_size, num_joints, -1)) dimension = heatmaps_pred.shape[-1] diff = (heatmaps_gt - heatmaps_pred) ** 2 * target_weight[..., None] diff[diff > self.threshold] = torch.pow(diff[diff > self.threshold], 0.1) * self.threshold ** 0.9 loss = torch.sum(diff) / (dimension * max(1, torch.sum(target_weight))) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_gt_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex % 256 x5 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + x4, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = 400.0 tmp7 = tmp5 > tmp6 tl.store(out_ptr0 + x3, tmp5, None) tl.store(out_ptr1 + x3, tmp7, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4, 16), (1024, 256, 64, 16, 1), torch.bool) get_raw_stream(0) triton_poi_fused_gt_mul_pow_sub_0[grid(4096)](arg1_1, arg0_1, arg2_1, buf0, buf1, 4096, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, buf1 class KeypointsMSESmoothLossNew(nn.Module): def __init__(self, threshold=400): super().__init__() self.threshold = threshold def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
yihui-he2020/epipolar-transformers
KeypointsMSESmoothLoss
false
16,762
[ "MIT" ]
360
6824f4345b2998500fbacd0f4e30f67f8e3da7b8
https://github.com/yihui-he2020/epipolar-transformers/tree/6824f4345b2998500fbacd0f4e30f67f8e3da7b8
Conv2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/p7/cp7mjs4cvfmmk3xanldfhbfyw3iz6jtioejhqhvyiw5cvteee5uz.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 36 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (36*x0)), rmask & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask & xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr0 + (r1 + (36*x0)), tmp9, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h2/ch223zuljhn75rysuab2kx2nyfzb7yd5ct6zxjgqzxfphvadnkv4.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_3, [1, 1], [2, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 24) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 4, 36, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(2, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 6, 4), (96, 24, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_3, 384, grid=grid(384), stream=stream0) del primals_3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (96, 24, 4, 1), 0), buf2, primals_1, primals_2, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Conv2D(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, dilation_h =1, dilation_w=1, causal=True, use_wn_bias=True): super(Conv2D, self).__init__() self.causal = causal self.use_wn_bias = use_wn_bias self.dilation_h, self.dilation_w = dilation_h, dilation_w if self.causal: self.padding_h = dilation_h * (kernel_size - 1) else: self.padding_h = dilation_h * (kernel_size - 1) // 2 self.padding_w = dilation_w * (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, dilation=(dilation_h, dilation_w), padding=(self.padding_h, self.padding_w), bias=use_wn_bias) self.conv = nn.utils.weight_norm(self.conv) nn.init.kaiming_normal_(self.conv.weight) def forward(self, tensor): out = self.conv(tensor) if self.causal and self.padding_h != 0: out = out[:, :, :-self.padding_h, :] return out def reverse_fast(self, tensor): self.conv.padding = 0, self.padding_w out = self.conv(tensor) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 36 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 36 * x0), rmask & xmask, other=0.0) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask & xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr0 + (r1 + 36 * x0), tmp9, rmask & xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 24 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2, primals_1, buf2, 4, 36, XBLOCK=1, num_warps=2, num_stages=1) buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(2, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 6, 4), (96, 24, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(384)](buf4, primals_3, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (96, 24, 4, 1), 0 ), buf2, primals_1, primals_2, primals_4, buf1, buf2 class Conv2DNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, dilation_h =1, dilation_w=1, causal=True, use_wn_bias=True): super(Conv2DNew, self).__init__() self.causal = causal self.use_wn_bias = use_wn_bias self.dilation_h, self.dilation_w = dilation_h, dilation_w if self.causal: self.padding_h = dilation_h * (kernel_size - 1) else: self.padding_h = dilation_h * (kernel_size - 1) // 2 self.padding_w = dilation_w * (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, dilation=(dilation_h, dilation_w), padding=(self.padding_h, self.padding_w), bias=use_wn_bias) self.conv = nn.utils.weight_norm(self.conv) nn.init.kaiming_normal_(self.conv.weight) def reverse_fast(self, tensor): self.conv.padding = 0, self.padding_w out = self.conv(tensor) return out def forward(self, input_0): primals_3 = self.conv.bias primals_1 = self.conv.weight_g primals_2 = self.conv.weight_v primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
yhgon/NanoFlow
Conv2D
false
16,763
[ "BSD-3-Clause" ]
62
73b24dfd4d607e73d6167897b83e9f61fcaaca3b
https://github.com/yhgon/NanoFlow/tree/73b24dfd4d607e73d6167897b83e9f61fcaaca3b
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/47/c47epvmnrf66qk2lz2lb4nh7av5rzrkbuvqedjjjzhlamsphmh7b.py # Topologically Sorted Source Nodes: [mu, res_x], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # mu => mean # res_x => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7t/c7twbveuqjrawrpgbwn4ppj5zi4v2ol3xaxcw73wn4k253zpay45.py # Topologically Sorted Source Nodes: [pow_1, sigma, add, sqrt, out, out_1, out_2], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # out => div # out_1 => mul # out_2 => add_1 # pow_1 => pow_1 # sigma => mean_1 # sqrt => sqrt # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x3), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, res_x], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sigma, add, sqrt, out, out_1, out_2], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(buf0, primals_2, primals_3, buf1, 64, grid=grid(64), stream=stream0) del buf0 del primals_2 del primals_3 return (buf1, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class LayerNorm(nn.Module): """ LayerNorm that supports inputs of size B, C, T """ def __init__(self, num_channels, eps=1e-05, affine=True, device=None, dtype=None): super().__init__() factory_kwargs = {'device': device, 'dtype': dtype} self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones([1, num_channels, 1], ** factory_kwargs)) self.bias = nn.Parameter(torch.zeros([1, num_channels, 1], ** factory_kwargs)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, x): assert x.dim() == 3 assert x.shape[1] == self.num_channels mu = torch.mean(x, dim=1, keepdim=True) res_x = x - mu sigma = torch.mean(res_x ** 2, dim=1, keepdim=True) out = res_x / torch.sqrt(sigma + self.eps) if self.affine: out *= self.weight out += self.bias return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = libdevice.sqrt(tmp15) tmp17 = tmp0 / tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x3, tmp21, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1, 4, 1), (4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(64)](primals_1, buf0, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(64)](buf0, primals_2, primals_3, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_2 del primals_3 return buf1, primals_1 class LayerNormNew(nn.Module): """ LayerNorm that supports inputs of size B, C, T """ def __init__(self, num_channels, eps=1e-05, affine=True, device=None, dtype=None): super().__init__() factory_kwargs = {'device': device, 'dtype': dtype} self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter(torch.ones([1, num_channels, 1], ** factory_kwargs)) self.bias = nn.Parameter(torch.zeros([1, num_channels, 1], ** factory_kwargs)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
yjh0410/actionformer_release
LayerNorm
false
16,764
[ "MIT" ]
61
7a97422111d3e29c8d2e14088c850c6975855ea7
https://github.com/yjh0410/actionformer_release/tree/7a97422111d3e29c8d2e14088c850c6975855ea7
AffineDropPath
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/n3/cn35ktybwif7rqmutznvx4tpvoabmd7tz7tkzr4iou2t3kvpzivg.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data def drop_path(x, drop_prob=0.0, training=False): """ Stochastic Depth per sample. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) mask.floor_() output = x.div(keep_prob) * mask return output class AffineDropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks) with a per channel scaling factor (and zero init) See: https://arxiv.org/pdf/2103.17239.pdf """ def __init__(self, num_dim, drop_prob=0.0, init_scale_value=0.0001): super().__init__() self.scale = nn.Parameter(init_scale_value * torch.ones((1, num_dim, 1)), requires_grad=True) self.drop_prob = drop_prob def forward(self, x): return drop_path(self.scale * x, self.drop_prob, self.training) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 def drop_path(x, drop_prob=0.0, training=False): """ Stochastic Depth per sample. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) mask.floor_() output = x.div(keep_prob) * mask return output class AffineDropPathNew(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks) with a per channel scaling factor (and zero init) See: https://arxiv.org/pdf/2103.17239.pdf """ def __init__(self, num_dim, drop_prob=0.0, init_scale_value=0.0001): super().__init__() self.scale = nn.Parameter(init_scale_value * torch.ones((1, num_dim, 1)), requires_grad=True) self.drop_prob = drop_prob def forward(self, input_0): primals_1 = self.scale primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
yjh0410/actionformer_release
AffineDropPath
false
16,765
[ "MIT" ]
61
7a97422111d3e29c8d2e14088c850c6975855ea7
https://github.com/yjh0410/actionformer_release/tree/7a97422111d3e29c8d2e14088c850c6975855ea7
IA_gate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wt/cwtdijbiacyxk63gj3jzdaisb2mebdlxtfx3oswf3s3prqzcaqh7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_1, %primals_4), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = (xindex // 16) x4 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last') tmp1 = libdevice.tanh(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x5), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf0, primals_4, buf1, 4096, grid=grid(4096), stream=stream0) return (buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class IA_gate(nn.Module): def __init__(self, in_dim, out_dim): super(IA_gate, self).__init__() self.IA = nn.Linear(in_dim, out_dim) def forward(self, x, IA_head): a = self.IA(IA_head) a = 1.0 + torch.tanh(a) a = a.unsqueeze(-1).unsqueeze(-1) x = a * x return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex // 16 x4 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last') tmp1 = libdevice.tanh(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x5, tmp5, None) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(4096)](buf0, primals_4, buf1, 4096, XBLOCK=128, num_warps=4, num_stages=1) return buf1, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0 class IA_gateNew(nn.Module): def __init__(self, in_dim, out_dim): super(IA_gateNew, self).__init__() self.IA = nn.Linear(in_dim, out_dim) def forward(self, input_0, input_1): primals_1 = self.IA.weight primals_2 = self.IA.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
yoxu515/CFBI
IA_gate
false
16,766
[ "BSD-3-Clause" ]
312
0bab1e3c9fc3e3ba0629f716d60221e8f8d9d586
https://github.com/yoxu515/CFBI/tree/0bab1e3c9fc3e3ba0629f716d60221e8f8d9d586
FocalLossSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ak/cakffh7idoxpmxh2nhqvvucwtlcfiw6xz2glv2m3gdqiwknc7a4g.py # Topologically Sorted Source Nodes: [P, pow_2, mul_5, sub_1, log_1, mul_6, sub_2, mul_7, alpha_mask, sub_3, loss_neg, sub, pow_1, mul_1, log, mul_2, mul_3, loss_pos, batch_loss, loss], Original ATen: [aten.sigmoid, aten.pow, aten.mul, aten.rsub, aten.log, aten.add, aten.sum] # Source node to ATen node mapping: # P => sigmoid # alpha_mask => mul # batch_loss => add # log => log # log_1 => log_1 # loss => sum_1 # loss_neg => mul_8 # loss_pos => mul_4 # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # Graph fragment: # %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, -1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_1,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %log_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %sub_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %sub_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -1.0), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg1_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, %mul_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {}) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp2 = tmp1 * tmp1 tmp3 = -1.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp1 tmp7 = tl_math.log(tmp6) tmp8 = tmp4 * tmp7 tmp10 = tmp5 - tmp9 tmp11 = tmp8 * tmp10 tmp12 = 0.25 tmp13 = tmp9 * tmp12 tmp14 = tmp5 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp6 * tmp6 tmp17 = tmp16 * tmp3 tmp18 = tl_math.log(tmp1) tmp19 = tmp17 * tmp18 tmp20 = tmp19 * tmp9 tmp21 = tmp20 * tmp13 tmp22 = tmp15 + tmp21 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp25, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [P, pow_2, mul_5, sub_1, log_1, mul_6, sub_2, mul_7, alpha_mask, sub_3, loss_neg, sub, pow_1, mul_1, log, mul_2, mul_3, loss_pos, batch_loss, loss], Original ATen: [aten.sigmoid, aten.pow, aten.mul, aten.rsub, aten.log, aten.add, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from math import sqrt as sqrt from itertools import product as product class FocalLossSigmoid(nn.Module): """ sigmoid version focal loss """ def __init__(self, alpha=0.25, gamma=2, size_average=False): super(FocalLossSigmoid, self).__init__() self.alpha = alpha self.gamma = gamma self.size_average = size_average def forward(self, inputs, targets): inputs.size(0) inputs.size(1) P = torch.sigmoid(inputs) alpha_mask = self.alpha * targets loss_pos = -1.0 * torch.pow(1 - P, self.gamma) * torch.log(P ) * targets * alpha_mask loss_neg = -1.0 * torch.pow(P, self.gamma) * torch.log(1 - P) * (1 - targets) * (1 - alpha_mask) batch_loss = loss_neg + loss_pos if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from math import sqrt as sqrt from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp2 = tmp1 * tmp1 tmp3 = -1.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp1 tmp7 = tl_math.log(tmp6) tmp8 = tmp4 * tmp7 tmp10 = tmp5 - tmp9 tmp11 = tmp8 * tmp10 tmp12 = 0.25 tmp13 = tmp9 * tmp12 tmp14 = tmp5 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tmp6 * tmp6 tmp17 = tmp16 * tmp3 tmp18 = tl_math.log(tmp1) tmp19 = tmp17 * tmp18 tmp20 = tmp19 * tmp9 tmp21 = tmp20 * tmp13 tmp22 = tmp15 + tmp21 tmp23 = tl.broadcast_to(tmp22, [RBLOCK]) tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp25, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class FocalLossSigmoidNew(nn.Module): """ sigmoid version focal loss """ def __init__(self, alpha=0.25, gamma=2, size_average=False): super(FocalLossSigmoidNew, self).__init__() self.alpha = alpha self.gamma = gamma self.size_average = size_average def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
yqyao/SSD_Pytorch
FocalLossSigmoid
false
16,767
[ "MIT" ]
163
6060bbb650e7a1df7c12d7c9650a38eaba4ab6a8
https://github.com/yqyao/SSD_Pytorch/tree/6060bbb650e7a1df7c12d7c9650a38eaba4ab6a8
WeightMseLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vs/cvsjqspva4km4rdhy5ng6qglqbpfeuelmpq5654vxkjg3rc5p6z7.py # Topologically Sorted Source Nodes: [out, pow_1, out_1, loss, loss_1], Original ATen: [aten.sub, aten.pow, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # loss => sum_1 # loss_1 => div # out => sub # out_1 => mul # pow_1 => pow_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 16), kwargs = {}) triton_per_fused_div_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_div_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tl.load(in_ptr2 + (r0), None) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 0.0625 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, pow_1, out_1, loss, loss_1], Original ATen: [aten.sub, aten.pow, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mul_pow_sub_sum_0.run(buf1, arg2_1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WeightMseLoss(nn.Module): def __init__(self, size_average=True): super(WeightMseLoss, self).__init__() self.size_average = size_average def forward(self, inputs, targets, weights): """ inputs is N * C targets is N * C weights is N * C """ N = inputs.size(0) C = inputs.size(1) out = targets - inputs out = weights * torch.pow(out, 2) loss = out.sum() if self.size_average: loss = loss / (N * C) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tl.load(in_ptr2 + r0, None) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 0.0625 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_pow_sub_sum_0[grid(1)](buf1, arg2_1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class WeightMseLossNew(nn.Module): def __init__(self, size_average=True): super(WeightMseLossNew, self).__init__() self.size_average = size_average def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
yqyao/YOLOv3_Pytorch
WeightMseLoss
false
16,768
[ "MIT" ]
55
ea392f7d418be94605f86ba2b5d167ec30611def
https://github.com/yqyao/YOLOv3_Pytorch/tree/ea392f7d418be94605f86ba2b5d167ec30611def
DownsampleA
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vf/cvf54psoc5ej4xifjauw77d2umddtaztuqdh3tlgztddwnr2q36i.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%avg_pool2d, %mul], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 8 x0 = xindex % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = 1.0 tmp7 = tmp5 * tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 8, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr0 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp10 & xmask, other=0.0) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tl.store(out_ptr0 + (x3), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.init class DownsampleA(nn.Module): def __init__(self, nIn, nOut, stride): super(DownsampleA, self).__init__() self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, x): return torch.cat((self.avg(x), x.mul(0)), 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nIn': 4, 'nOut': 4, 'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = 1.0 tmp7 = tmp5 * tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp13 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp10 & xmask, other=0.0) tmp14 = 0.0 tmp15 = tmp13 * tmp14 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp9, tmp17) tl.store(out_ptr0 + x3, tmp18, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class DownsampleANew(nn.Module): def __init__(self, nIn, nOut, stride): super(DownsampleANew, self).__init__() self.avg = nn.AvgPool2d(kernel_size=1, stride=stride) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
yuanjef/imagenet-fast
DownsampleA
false
16,769
[ "Apache-2.0" ]
298
4c1cb1ec11c3444982913fc6526720a0d29b97c5
https://github.com/yuanjef/imagenet-fast/tree/4c1cb1ec11c3444982913fc6526720a0d29b97c5