|
import numpy as np |
|
from sklearn import metrics |
|
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from tqdm import tqdm |
|
|
|
import time |
|
import json |
|
import copy |
|
from src.datasets import get_time_dif, to_tensor, convert_onehot |
|
from src.Models import * |
|
|
|
|
|
|
|
from ray import tune |
|
|
|
|
|
def train(config, train_iter, dev_iter, test_iter, task=1): |
|
embed_model = Bert_Layer(config).to(config.device) |
|
model = TwoLayerFFNNLayer(config).to(config.device) |
|
model_name = '{}-NN_ML-{}_D-{}_B-{}_E-{}_Lr-{}_aplha-{}'.format(config.model_name, config.pad_size, config.dropout, |
|
config.batch_size, config.num_epochs, config.learning_rate, config.alpha1) |
|
embed_optimizer = optim.AdamW(embed_model.parameters(), lr=config.learning_rate) |
|
model_optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate) |
|
|
|
loss_fn = nn.BCEWithLogitsLoss() |
|
|
|
max_score = 0 |
|
|
|
for epoch in range(config.num_epochs): |
|
embed_model.train() |
|
model.train() |
|
start_time = time.time() |
|
print("Model is training in epoch {}".format(epoch)) |
|
loss_all = 0. |
|
preds = [] |
|
labels = [] |
|
|
|
for batch in tqdm(train_iter, desc='Training', colour = 'MAGENTA'): |
|
embed_model.zero_grad() |
|
model.zero_grad() |
|
args = to_tensor(batch) |
|
att_input, pooled_emb = embed_model(**args) |
|
|
|
logit = model(att_input, pooled_emb).cpu() |
|
|
|
label = args['toxic'] |
|
|
|
|
|
|
|
loss = loss_fn(logit, label.float()) |
|
pred = get_preds(config, logit) |
|
|
|
|
|
preds.extend(pred) |
|
labels.extend(label.detach().numpy()) |
|
|
|
loss_all += loss.item() |
|
embed_optimizer.zero_grad() |
|
model_optimizer.zero_grad() |
|
loss.backward() |
|
|
|
embed_optimizer.step() |
|
model_optimizer.step() |
|
|
|
end_time = time.time() |
|
print(" took: {:.1f} min".format((end_time - start_time)/60.)) |
|
print("TRAINED for {} epochs".format(epoch)) |
|
|
|
|
|
if epoch >= config.num_warm: |
|
|
|
trn_scores = get_scores(preds, labels, loss_all, len(train_iter), data_name="TRAIN") |
|
dev_scores, _ = eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV') |
|
f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a') |
|
f.write(' ================================================== Epoch: {} ==================================================\n'.format(epoch)) |
|
f.write('TrainScore: \n{}\nEvalScore: \n{}\n'.format(json.dumps(trn_scores), json.dumps(dev_scores))) |
|
max_score = save_best(config, epoch, model_name, embed_model, model, dev_scores, max_score) |
|
print("ALLTRAINED for {} epochs".format(epoch)) |
|
|
|
path = '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST') |
|
checkpoint = torch.load(path) |
|
embed_model.load_state_dict(checkpoint['embed_model_state_dict']) |
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
test_scores, _ = eval(config, embed_model, model, loss_fn, test_iter, data_name='DEV') |
|
f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a') |
|
f.write('Test: \n{}\n'.format(json.dumps(test_scores))) |
|
|
|
|
|
def eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV'): |
|
loss_all = 0. |
|
preds = [] |
|
labels = [] |
|
for batch in tqdm(dev_iter, desc='Evaling', colour = 'CYAN'): |
|
with torch.no_grad(): |
|
args = to_tensor(batch) |
|
att_input, pooled_emb = embed_model(**args) |
|
logit = model(att_input, pooled_emb) |
|
|
|
logit = logit.cpu() |
|
label = args['toxic'] |
|
|
|
|
|
|
|
loss = loss_fn(logit, label.float()) |
|
pred = get_preds(config, logit) |
|
|
|
|
|
preds.extend(pred) |
|
labels.extend(label.detach().numpy()) |
|
loss_all += loss.item() |
|
|
|
dev_scores = get_scores(preds, labels, loss_all, len(dev_iter), data_name=data_name) |
|
|
|
|
|
|
|
return dev_scores, preds |
|
|
|
|
|
|
|
def get_preds(config, logit): |
|
results = torch.max(logit.data, 1)[1].cpu().numpy() |
|
new_results = [] |
|
for result in results: |
|
result = convert_onehot(config, result) |
|
new_results.append(result) |
|
return new_results |
|
|
|
|
|
def get_preds_task2_4(config, logit): |
|
all_results = [] |
|
logit_ = torch.sigmoid(logit) |
|
results_pred = torch.max(logit_.data, 1)[0].cpu().numpy() |
|
results = torch.max(logit_.data, 1)[1].cpu().numpy() |
|
for i in range(len(results)): |
|
if results_pred[i] < 0.5: |
|
result = [0 for i in range(config.num_classes)] |
|
else: |
|
result = convert_onehot(config, results[i]) |
|
all_results.append(result) |
|
return all_results |
|
|
|
|
|
def get_preds_task3(config, logit): |
|
all_results = [] |
|
logit_ = torch.sigmoid(logit) |
|
results_pred = torch.max(logit_.data, 1)[0].cpu().numpy() |
|
results = torch.max(logit_.data, 1)[1].cpu().numpy() |
|
logit_ = logit_.detach().cpu().numpy() |
|
for i in range(len(results)): |
|
if results_pred[i] < 0.5: |
|
result = [0 for i in range(config.num_classes)] |
|
else: |
|
result = get_pred_task3(logit_[i]) |
|
all_results.append(result) |
|
return all_results |
|
|
|
def get_pred_task3(logit): |
|
result = [0 for i in range(len(logit))] |
|
for i in range(len(logit)): |
|
if logit[i] >= 0.5: |
|
result[i] = 1 |
|
return result |
|
|
|
def get_scores(all_preds, all_lebels, loss_all, len, data_name): |
|
score_dict = dict() |
|
f1 = f1_score(all_preds, all_lebels, average='weighted') |
|
|
|
all_f1 = f1_score(all_preds, all_lebels, average=None) |
|
pre = precision_score(all_preds, all_lebels, average='weighted') |
|
recall = recall_score(all_preds, all_lebels, average='weighted') |
|
|
|
score_dict['F1'] = f1 |
|
|
|
score_dict['all_f1'] = all_f1.tolist() |
|
score_dict['precision'] = pre |
|
score_dict['recall'] = recall |
|
|
|
score_dict['all_loss'] = loss_all/len |
|
print("Evaling on \"{}\" data".format(data_name)) |
|
for s_name, s_val in score_dict.items(): |
|
print("{}: {}".format(s_name, s_val)) |
|
return score_dict |
|
|
|
def save_best(config, epoch, model_name, embed_model, model, score, max_score): |
|
score_key = config.score_key |
|
curr_score = score[score_key] |
|
print('The epoch_{} {}: {}\nCurrent max {}: {}'.format(epoch, score_key, curr_score, score_key, max_score)) |
|
|
|
if curr_score > max_score or epoch == 0: |
|
torch.save({ |
|
'epoch': config.num_epochs, |
|
'embed_model_state_dict': embed_model.state_dict(), |
|
'model_state_dict': model.state_dict(), |
|
}, '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST')) |
|
return curr_score |
|
else: |
|
return max_score |
|
|