id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
ead9d804b007-7
:rtype: List """ max_pages = kwargs.pop("max_pages") docs: List[dict] = [] while len(docs) < max_pages: get_pages = retry( reraise=True, stop=stop_after_attempt( self.number_of_retries # type: ignore[arg-type] ), wait=wait_exponential( multiplier=1, min=self.min_retry_seconds, # type: ignore[arg-type] max=self.max_retry_seconds, # type: ignore[arg-type] ), before_sleep=before_sleep_log(logger, logging.WARNING), )(retrieval_method) batch = get_pages(**kwargs, start=len(docs)) if not batch: break docs.extend(batch) return docs[:max_pages] [docs] def is_public_page(self, page: dict) -> bool: """Check if a page is publicly accessible.""" restrictions = self.confluence.get_all_restrictions_for_content(page["id"]) return ( page["status"] == "current" and not restrictions["read"]["restrictions"]["user"]["results"] and not restrictions["read"]["restrictions"]["group"]["results"] ) [docs] def process_pages( self, pages: List[dict], include_restricted_content: bool, include_attachments: bool, include_comments: bool, ) -> List[Document]: """Process a list of pages into a list of documents.""" docs = [] for page in pages: if not include_restricted_content and not self.is_public_page(page): continue doc = self.process_page(page, include_attachments, include_comments) docs.append(doc)
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
ead9d804b007-8
docs.append(doc) return docs [docs] def process_page( self, page: dict, include_attachments: bool, include_comments: bool, ) -> Document: try: from bs4 import BeautifulSoup # type: ignore except ImportError: raise ImportError( "`beautifulsoup4` package not found, please run " "`pip install beautifulsoup4`" ) if include_attachments: attachment_texts = self.process_attachment(page["id"]) else: attachment_texts = [] text = BeautifulSoup(page["body"]["storage"]["value"], "lxml").get_text( " ", strip=True ) + "".join(attachment_texts) if include_comments: comments = self.confluence.get_page_comments( page["id"], expand="body.view.value", depth="all" )["results"] comment_texts = [ BeautifulSoup(comment["body"]["view"]["value"], "lxml").get_text( " ", strip=True ) for comment in comments ] text = text + "".join(comment_texts) return Document( page_content=text, metadata={ "title": page["title"], "id": page["id"], "source": self.base_url.strip("/") + page["_links"]["webui"], }, ) [docs] def process_attachment(self, page_id: str) -> List[str]: try: from PIL import Image # noqa: F401 except ImportError: raise ImportError( "`Pillow` package not found, " "please run `pip install Pillow`" ) # depending on setup you may also need to set the correct path for
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
ead9d804b007-9
) # depending on setup you may also need to set the correct path for # poppler and tesseract attachments = self.confluence.get_attachments_from_content(page_id)["results"] texts = [] for attachment in attachments: media_type = attachment["metadata"]["mediaType"] absolute_url = self.base_url + attachment["_links"]["download"] title = attachment["title"] if media_type == "application/pdf": text = title + self.process_pdf(absolute_url) elif ( media_type == "image/png" or media_type == "image/jpg" or media_type == "image/jpeg" ): text = title + self.process_image(absolute_url) elif ( media_type == "application/vnd.openxmlformats-officedocument" ".wordprocessingml.document" ): text = title + self.process_doc(absolute_url) elif media_type == "application/vnd.ms-excel": text = title + self.process_xls(absolute_url) elif media_type == "image/svg+xml": text = title + self.process_svg(absolute_url) else: continue texts.append(text) return texts [docs] def process_pdf(self, link: str) -> str: try: import pytesseract # noqa: F401 from pdf2image import convert_from_bytes # noqa: F401 except ImportError: raise ImportError( "`pytesseract` or `pdf2image` package not found, " "please run `pip install pytesseract pdf2image`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
ead9d804b007-10
text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: images = convert_from_bytes(response.content) except ValueError: return text for i, image in enumerate(images): image_text = pytesseract.image_to_string(image) text += f"Page {i + 1}:\n{image_text}\n\n" return text [docs] def process_image(self, link: str) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 except ImportError: raise ImportError( "`pytesseract` or `Pillow` package not found, " "please run `pip install pytesseract Pillow`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text try: image = Image.open(BytesIO(response.content)) except OSError: return text return pytesseract.image_to_string(image) [docs] def process_doc(self, link: str) -> str: try: import docx2txt # noqa: F401 except ImportError: raise ImportError( "`docx2txt` package not found, please run `pip install docx2txt`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b""
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
ead9d804b007-11
if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text file_data = BytesIO(response.content) return docx2txt.process(file_data) [docs] def process_xls(self, link: str) -> str: try: import xlrd # noqa: F401 except ImportError: raise ImportError("`xlrd` package not found, please run `pip install xlrd`") response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text workbook = xlrd.open_workbook(file_contents=response.content) for sheet in workbook.sheets(): text += f"{sheet.name}:\n" for row in range(sheet.nrows): for col in range(sheet.ncols): text += f"{sheet.cell_value(row, col)}\t" text += "\n" text += "\n" return text [docs] def process_svg(self, link: str) -> str: try: import pytesseract # noqa: F401 from PIL import Image # noqa: F401 from reportlab.graphics import renderPM # noqa: F401 from svglib.svglib import svg2rlg # noqa: F401 except ImportError: raise ImportError( "`pytesseract`, `Pillow`, `reportlab` or `svglib` package not found, " "please run `pip install pytesseract Pillow reportlab svglib`" )
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
ead9d804b007-12
"please run `pip install pytesseract Pillow reportlab svglib`" ) response = self.confluence.request(path=link, absolute=True) text = "" if ( response.status_code != 200 or response.content == b"" or response.content is None ): return text drawing = svg2rlg(BytesIO(response.content)) img_data = BytesIO() renderPM.drawToFile(drawing, img_data, fmt="PNG") img_data.seek(0) image = Image.open(img_data) return pytesseract.image_to_string(image) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/confluence.html
d1a2dfa9fbd9-0
Source code for langchain.document_loaders.weather """Simple reader that reads weather data from OpenWeatherMap API""" from __future__ import annotations from datetime import datetime from typing import Iterator, List, Optional, Sequence from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper [docs]class WeatherDataLoader(BaseLoader): """Weather Reader. Reads the forecast & current weather of any location using OpenWeatherMap's free API. Checkout 'https://openweathermap.org/appid' for more on how to generate a free OpenWeatherMap API. """ def __init__( self, client: OpenWeatherMapAPIWrapper, places: Sequence[str], ) -> None: """Initialize with parameters.""" super().__init__() self.client = client self.places = places [docs] @classmethod def from_params( cls, places: Sequence[str], *, openweathermap_api_key: Optional[str] = None ) -> WeatherDataLoader: client = OpenWeatherMapAPIWrapper(openweathermap_api_key=openweathermap_api_key) return cls(client, places) [docs] def lazy_load( self, ) -> Iterator[Document]: """Lazily load weather data for the given locations.""" for place in self.places: metadata = {"queried_at": datetime.now()} content = self.client.run(place) yield Document(page_content=content, metadata=metadata) [docs] def load( self, ) -> List[Document]: """Load weather data for the given locations.""" return list(self.lazy_load()) By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/weather.html
d1a2dfa9fbd9-1
return list(self.lazy_load()) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/weather.html
70b17788c7bb-0
Source code for langchain.document_loaders.word_document """Loader that loads word documents.""" import os import tempfile from abc import ABC from typing import List from urllib.parse import urlparse import requests from langchain.docstore.document import Document from langchain.document_loaders.base import BaseLoader from langchain.document_loaders.unstructured import UnstructuredFileLoader [docs]class Docx2txtLoader(BaseLoader, ABC): """Loads a DOCX with docx2txt and chunks at character level. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion """ def __init__(self, file_path: str): """Initialize with file path.""" self.file_path = file_path if "~" in self.file_path: self.file_path = os.path.expanduser(self.file_path) # If the file is a web path, download it to a temporary file, and use that if not os.path.isfile(self.file_path) and self._is_valid_url(self.file_path): r = requests.get(self.file_path) if r.status_code != 200: raise ValueError( "Check the url of your file; returned status code %s" % r.status_code ) self.web_path = self.file_path self.temp_file = tempfile.NamedTemporaryFile() self.temp_file.write(r.content) self.file_path = self.temp_file.name elif not os.path.isfile(self.file_path): raise ValueError("File path %s is not a valid file or url" % self.file_path) def __del__(self) -> None: if hasattr(self, "temp_file"): self.temp_file.close()
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
70b17788c7bb-1
if hasattr(self, "temp_file"): self.temp_file.close() [docs] def load(self) -> List[Document]: """Load given path as single page.""" import docx2txt return [ Document( page_content=docx2txt.process(self.file_path), metadata={"source": self.file_path}, ) ] @staticmethod def _is_valid_url(url: str) -> bool: """Check if the url is valid.""" parsed = urlparse(url) return bool(parsed.netloc) and bool(parsed.scheme) [docs]class UnstructuredWordDocumentLoader(UnstructuredFileLoader): """Loader that uses unstructured to load word documents.""" def _get_elements(self) -> List: from unstructured.__version__ import __version__ as __unstructured_version__ from unstructured.file_utils.filetype import FileType, detect_filetype unstructured_version = tuple( [int(x) for x in __unstructured_version__.split(".")] ) # NOTE(MthwRobinson) - magic will raise an import error if the libmagic # system dependency isn't installed. If it's not installed, we'll just # check the file extension try: import magic # noqa: F401 is_doc = detect_filetype(self.file_path) == FileType.DOC except ImportError: _, extension = os.path.splitext(str(self.file_path)) is_doc = extension == ".doc" if is_doc and unstructured_version < (0, 4, 11): raise ValueError( f"You are on unstructured version {__unstructured_version__}. "
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
70b17788c7bb-2
f"You are on unstructured version {__unstructured_version__}. " "Partitioning .doc files is only supported in unstructured>=0.4.11. " "Please upgrade the unstructured package and try again." ) if is_doc: from unstructured.partition.doc import partition_doc return partition_doc(filename=self.file_path, **self.unstructured_kwargs) else: from unstructured.partition.docx import partition_docx return partition_docx(filename=self.file_path, **self.unstructured_kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_loaders/word_document.html
c824e077f2db-0
Source code for langchain.embeddings.self_hosted """Running custom embedding models on self-hosted remote hardware.""" from typing import Any, Callable, List from pydantic import Extra from langchain.embeddings.base import Embeddings from langchain.llms import SelfHostedPipeline def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return pipeline(*args, **kwargs) [docs]class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings): """Runs custom embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example using a model load function: .. code-block:: python from langchain.embeddings import SelfHostedEmbeddings from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import runhouse as rh gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") def get_pipeline(): model_id = "facebook/bart-large" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) return pipeline("feature-extraction", model=model, tokenizer=tokenizer) embeddings = SelfHostedEmbeddings( model_load_fn=get_pipeline, hardware=gpu
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
c824e077f2db-1
model_load_fn=get_pipeline, hardware=gpu model_reqs=["./", "torch", "transformers"], ) Example passing in a pipeline path: .. code-block:: python from langchain.embeddings import SelfHostedHFEmbeddings import runhouse as rh from transformers import pipeline gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") pipeline = pipeline(model="bert-base-uncased", task="feature-extraction") rh.blob(pickle.dumps(pipeline), path="models/pipeline.pkl").save().to(gpu, path="models") embeddings = SelfHostedHFEmbeddings.from_pipeline( pipeline="models/pipeline.pkl", hardware=gpu, model_reqs=["./", "torch", "transformers"], ) """ inference_fn: Callable = _embed_documents """Inference function to extract the embeddings on the remote hardware.""" inference_kwargs: Any = None """Any kwargs to pass to the model's inference function.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed.s Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client(self.pipeline_ref, texts) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings [docs] def embed_query(self, text: str) -> List[float]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
c824e077f2db-2
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embeddings = self.client(self.pipeline_ref, text) if not isinstance(embeddings, list): return embeddings.tolist() return embeddings By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted.html
930d8628510a-0
Source code for langchain.embeddings.openai """Wrapper around OpenAI embedding models.""" from __future__ import annotations import logging from typing import ( Any, Callable, Dict, List, Literal, Optional, Sequence, Set, Tuple, Union, ) import numpy as np from pydantic import BaseModel, Extra, root_validator from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: import openai min_seconds = 4 max_seconds = 10 # Wait 2^x * 1 second between each retry starting with # 4 seconds, then up to 10 seconds, then 10 seconds afterwards return retry( reraise=True, stop=stop_after_attempt(embeddings.max_retries), wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(openai.error.Timeout) | retry_if_exception_type(openai.error.APIError) | retry_if_exception_type(openai.error.APIConnectionError) | retry_if_exception_type(openai.error.RateLimitError) | retry_if_exception_type(openai.error.ServiceUnavailableError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-1
"""Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: return embeddings.client.create(**kwargs) return _embed_with_retry(**kwargs) [docs]class OpenAIEmbeddings(BaseModel, Embeddings): """Wrapper around OpenAI embedding models. To use, you should have the ``openai`` python package installed, and the environment variable ``OPENAI_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import OpenAIEmbeddings openai = OpenAIEmbeddings(openai_api_key="my-api-key") In order to use the library with Microsoft Azure endpoints, you need to set the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. The OPENAI_API_TYPE must be set to 'azure' and the others correspond to the properties of your endpoint. In addition, the deployment name must be passed as the model parameter. Example: .. code-block:: python import os os.environ["OPENAI_API_TYPE"] = "azure" os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-2
embeddings = OpenAIEmbeddings( deployment="your-embeddings-deployment-name", model="your-embeddings-model-name", api_base="https://your-endpoint.openai.azure.com/", api_type="azure", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any #: :meta private: model: str = "text-embedding-ada-002" deployment: str = model # to support Azure OpenAI Service custom deployment names openai_api_version: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_base: Optional[str] = None # to support Azure OpenAI Service custom endpoints openai_api_type: Optional[str] = None # to support explicit proxy for OpenAI openai_proxy: Optional[str] = None embedding_ctx_length: int = 8191 openai_api_key: Optional[str] = None openai_organization: Optional[str] = None allowed_special: Union[Literal["all"], Set[str]] = set() disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" chunk_size: int = 1000 """Maximum number of texts to embed in each batch""" max_retries: int = 6 """Maximum number of retries to make when generating.""" request_timeout: Optional[Union[float, Tuple[float, float]]] = None """Timeout in seconds for the OpenAPI request.""" headers: Any = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator()
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-3
extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["openai_api_key"] = get_from_dict_or_env( values, "openai_api_key", "OPENAI_API_KEY" ) values["openai_api_base"] = get_from_dict_or_env( values, "openai_api_base", "OPENAI_API_BASE", default="", ) values["openai_api_type"] = get_from_dict_or_env( values, "openai_api_type", "OPENAI_API_TYPE", default="", ) values["openai_proxy"] = get_from_dict_or_env( values, "openai_proxy", "OPENAI_PROXY", default="", ) if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): default_api_version = "2022-12-01" else: default_api_version = "" values["openai_api_version"] = get_from_dict_or_env( values, "openai_api_version", "OPENAI_API_VERSION", default=default_api_version, ) values["openai_organization"] = get_from_dict_or_env( values, "openai_organization", "OPENAI_ORGANIZATION", default="", ) try: import openai values["client"] = openai.Embedding except ImportError: raise ImportError( "Could not import openai python package. " "Please install it with `pip install openai`." ) return values
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-4
) return values @property def _invocation_params(self) -> Dict: openai_args = { "engine": self.deployment, "request_timeout": self.request_timeout, "headers": self.headers, "api_key": self.openai_api_key, "organization": self.openai_organization, "api_base": self.openai_api_base, "api_type": self.openai_api_type, "api_version": self.openai_api_version, } if self.openai_proxy: openai_args["proxy"] = { "http": self.openai_proxy, "https": self.openai_proxy, } return openai_args # please refer to # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb def _get_len_safe_embeddings( self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None ) -> List[List[float]]: embeddings: List[List[float]] = [[] for _ in range(len(texts))] try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for OpenAIEmbeddings. " "Please install it with `pip install tiktoken`." ) tokens = [] indices = [] encoding = tiktoken.model.encoding_for_model(self.model) for i, text in enumerate(texts): if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-5
# replace newlines, which can negatively affect performance. text = text.replace("\n", " ") token = encoding.encode( text, allowed_special=self.allowed_special, disallowed_special=self.disallowed_special, ) for j in range(0, len(token), self.embedding_ctx_length): tokens += [token[j : j + self.embedding_ctx_length]] indices += [i] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size for i in range(0, len(tokens), _chunk_size): response = embed_with_retry( self, input=tokens[i : i + _chunk_size], **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] results: List[List[List[float]]] = [[] for _ in range(len(texts))] num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] for i in range(len(indices)): results[indices[i]].append(batched_embeddings[i]) num_tokens_in_batch[indices[i]].append(len(tokens[i])) for i in range(len(texts)): _result = results[i] if len(_result) == 0: average = embed_with_retry( self, input="", engine=self.deployment, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] else: average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) embeddings[i] = (average / np.linalg.norm(average)).tolist() return embeddings
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-6
return embeddings def _embedding_func(self, text: str, *, engine: str) -> List[float]: """Call out to OpenAI's embedding endpoint.""" # handle large input text if len(text) > self.embedding_ctx_length: return self._get_len_safe_embeddings([text], engine=engine)[0] else: if self.model.endswith("001"): # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 # replace newlines, which can negatively affect performance. text = text.replace("\n", " ") return embed_with_retry( self, input=[text], engine=engine, request_timeout=self.request_timeout, headers=self.headers, )["data"][0]["embedding"] [docs] def embed_documents( self, texts: List[str], chunk_size: Optional[int] = 0 ) -> List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ # NOTE: to keep things simple, we assume the list may contain texts longer # than the maximum context and use length-safe embedding function. return self._get_len_safe_embeddings(texts, engine=self.deployment) [docs] def embed_query(self, text: str) -> List[float]: """Call out to OpenAI's embedding endpoint for embedding query text. Args: text: The text to embed. Returns:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
930d8628510a-7
Args: text: The text to embed. Returns: Embedding for the text. """ embedding = self._embedding_func(text, engine=self.deployment) return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/openai.html
a736a23cdaf5-0
Source code for langchain.embeddings.huggingface """Wrapper around HuggingFace embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field from langchain.embeddings.base import Embeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) [docs]class HuggingFaceEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers`` python package installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceEmbeddings model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': False} hf = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_MODEL_NAME """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass when calling the `encode` method of the model."""
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
a736a23cdaf5-1
"""Key word arguments to pass when calling the `encode` method of the model.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: import sentence_transformers except ImportError as exc: raise ImportError( "Could not import sentence_transformers python package. " "Please install it with `pip install sentence_transformers`." ) from exc self.client = sentence_transformers.SentenceTransformer( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace transformer model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.client.encode(texts, **self.encode_kwargs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace transformer model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.client.encode(text, **self.encode_kwargs) return embedding.tolist() [docs]class HuggingFaceInstructEmbeddings(BaseModel, Embeddings): """Wrapper around sentence_transformers embedding models. To use, you should have the ``sentence_transformers``
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
a736a23cdaf5-2
To use, you should have the ``sentence_transformers`` and ``InstructorEmbedding`` python packages installed. Example: .. code-block:: python from langchain.embeddings import HuggingFaceInstructEmbeddings model_name = "hkunlp/instructor-large" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} hf = HuggingFaceInstructEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) """ client: Any #: :meta private: model_name: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" cache_folder: Optional[str] = None """Path to store models. Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass to the model.""" encode_kwargs: Dict[str, Any] = Field(default_factory=dict) """Key word arguments to pass when calling the `encode` method of the model.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" def __init__(self, **kwargs: Any): """Initialize the sentence_transformer.""" super().__init__(**kwargs) try: from InstructorEmbedding import INSTRUCTOR self.client = INSTRUCTOR( self.model_name, cache_folder=self.cache_folder, **self.model_kwargs ) except ImportError as e: raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
a736a23cdaf5-3
raise ValueError("Dependencies for InstructorEmbedding not found.") from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [[self.embed_instruction, text] for text in texts] embeddings = self.client.encode(instruction_pairs, **self.encode_kwargs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client.encode([instruction_pair], **self.encode_kwargs)[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface.html
d7ead0f5b50a-0
Source code for langchain.embeddings.mosaicml """Wrapper around MosaicML APIs.""" from typing import Any, Dict, List, Mapping, Optional, Tuple import requests from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class MosaicMLInstructorEmbeddings(BaseModel, Embeddings): """Wrapper around MosaicML's embedding inference service. To use, you should have the environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.llms import MosaicMLInstructorEmbeddings endpoint_url = ( "https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict" ) mosaic_llm = MosaicMLInstructorEmbeddings( endpoint_url=endpoint_url, mosaicml_api_token="my-api-key" ) """ endpoint_url: str = ( "https://models.hosted-on.mosaicml.hosting/instructor-large/v1/predict" ) """Endpoint URL to use.""" embed_instruction: str = "Represent the document for retrieval: " """Instruction used to embed documents.""" query_instruction: str = ( "Represent the question for retrieving supporting documents: " ) """Instruction used to embed the query.""" retry_sleep: float = 1.0 """How long to try sleeping for if a rate limit is encountered""" mosaicml_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid
https://python.langchain.com/en/latest/_modules/langchain/embeddings/mosaicml.html
d7ead0f5b50a-1
"""Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" mosaicml_api_token = get_from_dict_or_env( values, "mosaicml_api_token", "MOSAICML_API_TOKEN" ) values["mosaicml_api_token"] = mosaicml_api_token return values @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {"endpoint_url": self.endpoint_url} def _embed( self, input: List[Tuple[str, str]], is_retry: bool = False ) -> List[List[float]]: payload = {"input_strings": input} # HTTP headers for authorization headers = { "Authorization": f"{self.mosaicml_api_token}", "Content-Type": "application/json", } # send request try: response = requests.post(self.endpoint_url, headers=headers, json=payload) except requests.exceptions.RequestException as e: raise ValueError(f"Error raised by inference endpoint: {e}") try: parsed_response = response.json() if "error" in parsed_response: # if we get rate limited, try sleeping for 1 second if ( not is_retry and "rate limit exceeded" in parsed_response["error"].lower() ): import time time.sleep(self.retry_sleep) return self._embed(input, is_retry=True) raise ValueError( f"Error raised by inference API: {parsed_response['error']}" )
https://python.langchain.com/en/latest/_modules/langchain/embeddings/mosaicml.html
d7ead0f5b50a-2
f"Error raised by inference API: {parsed_response['error']}" ) if "data" not in parsed_response: raise ValueError( f"Error raised by inference API, no key data: {parsed_response}" ) embeddings = parsed_response["data"] except requests.exceptions.JSONDecodeError as e: raise ValueError( f"Error raised by inference API: {e}.\nResponse: {response.text}" ) return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a MosaicML deployed instructor embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [(self.embed_instruction, text) for text in texts] embeddings = self._embed(instruction_pairs) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a MosaicML deployed instructor embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ instruction_pair = (self.query_instruction, text) embedding = self._embed([instruction_pair])[0] return embedding By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/mosaicml.html
be91ef5cf2d0-0
Source code for langchain.embeddings.sagemaker_endpoint """Wrapper around Sagemaker InvokeEndpoint API.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.llms.sagemaker_endpoint import ContentHandlerBase class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]]): """Content handler for LLM class.""" [docs]class SagemakerEndpointEmbeddings(BaseModel, Embeddings): """Wrapper around custom Sagemaker Inference Endpoints. To use, you must supply the endpoint name from your deployed Sagemaker model & the region where it is deployed. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Sagemaker endpoint. See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html """ """ Example: .. code-block:: python from langchain.embeddings import SagemakerEndpointEmbeddings endpoint_name = ( "my-endpoint-name" ) region_name = ( "us-west-2" ) credentials_profile_name = ( "default" ) se = SagemakerEndpointEmbeddings( endpoint_name=endpoint_name, region_name=region_name, credentials_profile_name=credentials_profile_name ) """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
be91ef5cf2d0-1
credentials_profile_name=credentials_profile_name ) """ client: Any #: :meta private: endpoint_name: str = "" """The name of the endpoint from the deployed Sagemaker model. Must be unique within an AWS Region.""" region_name: str = "" """The aws region where the Sagemaker model is deployed, eg. `us-west-2`.""" credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ content_handler: EmbeddingsContentHandler """The content handler class that provides an input and output transform functions to handle formats between LLM and the endpoint. """ """ Example: .. code-block:: python from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompts: List[str], model_kwargs: Dict) -> bytes: input_str = json.dumps({prompts: prompts, **model_kwargs}) return input_str.encode('utf-8') def transform_output(self, output: bytes) -> List[List[float]]: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"] """ # noqa: E501 model_kwargs: Optional[Dict] = None
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
be91ef5cf2d0-2
""" # noqa: E501 model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" endpoint_kwargs: Optional[Dict] = None """Optional attributes passed to the invoke_endpoint function. See `boto3`_. docs for more info. .. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html> """ class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" try: import boto3 try: if values["credentials_profile_name"] is not None: session = boto3.Session( profile_name=values["credentials_profile_name"] ) else: # use default credentials session = boto3.Session() values["client"] = session.client( "sagemaker-runtime", region_name=values["region_name"] ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e except ImportError: raise ValueError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) return values def _embedding_func(self, texts: List[str]) -> List[List[float]]: """Call out to SageMaker Inference embedding endpoint.""" # replace newlines, which can negatively affect performance.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
be91ef5cf2d0-3
# replace newlines, which can negatively affect performance. texts = list(map(lambda x: x.replace("\n", " "), texts)) _model_kwargs = self.model_kwargs or {} _endpoint_kwargs = self.endpoint_kwargs or {} body = self.content_handler.transform_input(texts, _model_kwargs) content_type = self.content_handler.content_type accepts = self.content_handler.accepts # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return self.content_handler.transform_output(response["Body"]) [docs] def embed_documents( self, texts: List[str], chunk_size: int = 64 ) -> List[List[float]]: """Compute doc embeddings using a SageMaker Inference Endpoint. Args: texts: The list of texts to embed. chunk_size: The chunk size defines how many input texts will be grouped together as request. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ results = [] _chunk_size = len(texts) if chunk_size > len(texts) else chunk_size for i in range(0, len(texts), _chunk_size): response = self._embedding_func(texts[i : i + _chunk_size]) results.extend(response) return results [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a SageMaker inference endpoint.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
be91ef5cf2d0-4
"""Compute query embeddings using a SageMaker inference endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func([text])[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html
6f72172ec058-0
Source code for langchain.embeddings.tensorflow_hub """Wrapper around TensorflowHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" [docs]class TensorflowHubEmbeddings(BaseModel, Embeddings): """Wrapper around tensorflow_hub embedding models. To use, you should have the ``tensorflow_text`` python package installed. Example: .. code-block:: python from langchain.embeddings import TensorflowHubEmbeddings url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3" tf = TensorflowHubEmbeddings(model_url=url) """ embed: Any #: :meta private: model_url: str = DEFAULT_MODEL_URL """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the tensorflow_hub and tensorflow_text.""" super().__init__(**kwargs) try: import tensorflow_hub except ImportError: raise ImportError( "Could not import tensorflow-hub python package. " "Please install it with `pip install tensorflow-hub``." ) try: import tensorflow_text # noqa except ImportError: raise ImportError( "Could not import tensorflow_text python package. " "Please install it with `pip install tensorflow_text``." ) self.embed = tensorflow_hub.load(self.model_url) class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
6f72172ec058-1
"""Compute doc embeddings using a TensorflowHub embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts)) embeddings = self.embed(texts).numpy() return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a TensorflowHub embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") embedding = self.embed([text]).numpy()[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/tensorflow_hub.html
c238ec8237d9-0
Source code for langchain.embeddings.minimax """Wrapper around MiniMax APIs.""" from __future__ import annotations import logging from typing import Any, Callable, Dict, List, Optional import requests from pydantic import BaseModel, Extra, root_validator from tenacity import ( before_sleep_log, retry, stop_after_attempt, wait_exponential, ) from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) def _create_retry_decorator() -> Callable[[Any], Any]: """Returns a tenacity retry decorator.""" multiplier = 1 min_seconds = 1 max_seconds = 4 max_retries = 6 return retry( reraise=True, stop=stop_after_attempt(max_retries), wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), before_sleep=before_sleep_log(logger, logging.WARNING), ) def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: return embeddings.embed(*args, **kwargs) return _embed_with_retry(*args, **kwargs) [docs]class MiniMaxEmbeddings(BaseModel, Embeddings): """Wrapper around MiniMax's embedding inference service. To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and ``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to the constructor.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/minimax.html
c238ec8237d9-1
the constructor. Example: .. code-block:: python from langchain.embeddings import MiniMaxEmbeddings embeddings = MiniMaxEmbeddings() query_text = "This is a test query." query_result = embeddings.embed_query(query_text) document_text = "This is a test document." document_result = embeddings.embed_documents([document_text]) """ endpoint_url: str = "https://api.minimax.chat/v1/embeddings" """Endpoint URL to use.""" model: str = "embo-01" """Embeddings model name to use.""" embed_type_db: str = "db" """For embed_documents""" embed_type_query: str = "query" """For embed_query""" minimax_group_id: Optional[str] = None """Group ID for MiniMax API.""" minimax_api_key: Optional[str] = None """API Key for MiniMax API.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that group id and api key exists in environment.""" minimax_group_id = get_from_dict_or_env( values, "minimax_group_id", "MINIMAX_GROUP_ID" ) minimax_api_key = get_from_dict_or_env( values, "minimax_api_key", "MINIMAX_API_KEY" ) values["minimax_group_id"] = minimax_group_id values["minimax_api_key"] = minimax_api_key return values def embed( self, texts: List[str], embed_type: str,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/minimax.html
c238ec8237d9-2
self, texts: List[str], embed_type: str, ) -> List[List[float]]: payload = { "model": self.model, "type": embed_type, "texts": texts, } # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.minimax_api_key}", "Content-Type": "application/json", } params = { "GroupId": self.minimax_group_id, } # send request response = requests.post( self.endpoint_url, params=params, headers=headers, json=payload ) parsed_response = response.json() # check for errors if parsed_response["base_resp"]["status_code"] != 0: raise ValueError( f"MiniMax API returned an error: {parsed_response['base_resp']}" ) embeddings = parsed_response["vectors"] return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a MiniMax embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db) return embeddings [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a MiniMax embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embeddings = embed_with_retry( self, texts=[text], embed_type=self.embed_type_query ) return embeddings[0]
https://python.langchain.com/en/latest/_modules/langchain/embeddings/minimax.html
c238ec8237d9-3
) return embeddings[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/minimax.html
fec2c2730fd1-0
Source code for langchain.embeddings.self_hosted_hugging_face """Wrapper around HuggingFace embedding models for self-hosted remote hardware.""" import importlib import logging from typing import Any, Callable, List, Optional from langchain.embeddings.self_hosted import SelfHostedEmbeddings DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2" DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large" DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: " DEFAULT_QUERY_INSTRUCTION = ( "Represent the question for retrieving supporting documents: " ) logger = logging.getLogger(__name__) def _embed_documents(client: Any, *args: Any, **kwargs: Any) -> List[List[float]]: """Inference function to send to the remote hardware. Accepts a sentence_transformer model_id and returns a list of embeddings for each document in the batch. """ return client.encode(*args, **kwargs) def load_embedding_model(model_id: str, instruct: bool = False, device: int = 0) -> Any: """Load the embedding model.""" if not instruct: import sentence_transformers client = sentence_transformers.SentenceTransformer(model_id) else: from InstructorEmbedding import INSTRUCTOR client = INSTRUCTOR(model_id) if importlib.util.find_spec("torch") is not None: import torch cuda_device_count = torch.cuda.device_count() if device < -1 or (device >= cuda_device_count): raise ValueError( f"Got device=={device}, " f"device is required to be within [-1, {cuda_device_count})" ) if device < 0 and cuda_device_count > 0: logger.warning(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
fec2c2730fd1-1
if device < 0 and cuda_device_count > 0: logger.warning( "Device has %d GPUs available. " "Provide device={deviceId} to `from_model_id` to use available" "GPUs for execution. deviceId is -1 for CPU and " "can be a positive integer associated with CUDA device id.", cuda_device_count, ) client = client.to(device) return client [docs]class SelfHostedHuggingFaceEmbeddings(SelfHostedEmbeddings): """Runs sentence_transformers embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceEmbeddings import runhouse as rh model_name = "sentence-transformers/all-mpnet-base-v2" gpu = rh.cluster(name="rh-a10x", instance_type="A100:1") hf = SelfHostedHuggingFaceEmbeddings(model_name=model_name, hardware=gpu) """ client: Any #: :meta private: model_id: str = DEFAULT_MODEL_NAME """Model name to use.""" model_reqs: List[str] = ["./", "sentence_transformers", "torch"] """Requirements to install on hardware to inference the model.""" hardware: Any """Remote hardware to send the inference function to.""" model_load_fn: Callable = load_embedding_model
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
fec2c2730fd1-2
model_load_fn: Callable = load_embedding_model """Function to load the model remotely on the server.""" load_fn_kwargs: Optional[dict] = None """Key word arguments to pass to the model load function.""" inference_fn: Callable = _embed_documents """Inference function to extract the embeddings.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get("model_id", DEFAULT_MODEL_NAME) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", False) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs]class SelfHostedHuggingFaceInstructEmbeddings(SelfHostedHuggingFaceEmbeddings): """Runs InstructorEmbedding embedding models on self-hosted remote hardware. Supported hardware includes auto-launched instances on AWS, GCP, Azure, and Lambda, as well as servers specified by IP address and SSH credentials (such as on-prem, or another cloud like Paperspace, Coreweave, etc.). To use, you should have the ``runhouse`` python package installed. Example: .. code-block:: python from langchain.embeddings import SelfHostedHuggingFaceInstructEmbeddings import runhouse as rh model_name = "hkunlp/instructor-large" gpu = rh.cluster(name='rh-a10x', instance_type='A100:1') hf = SelfHostedHuggingFaceInstructEmbeddings( model_name=model_name, hardware=gpu) """
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
fec2c2730fd1-3
model_name=model_name, hardware=gpu) """ model_id: str = DEFAULT_INSTRUCT_MODEL """Model name to use.""" embed_instruction: str = DEFAULT_EMBED_INSTRUCTION """Instruction to use for embedding documents.""" query_instruction: str = DEFAULT_QUERY_INSTRUCTION """Instruction to use for embedding query.""" model_reqs: List[str] = ["./", "InstructorEmbedding", "torch"] """Requirements to install on hardware to inference the model.""" def __init__(self, **kwargs: Any): """Initialize the remote inference function.""" load_fn_kwargs = kwargs.pop("load_fn_kwargs", {}) load_fn_kwargs["model_id"] = load_fn_kwargs.get( "model_id", DEFAULT_INSTRUCT_MODEL ) load_fn_kwargs["instruct"] = load_fn_kwargs.get("instruct", True) load_fn_kwargs["device"] = load_fn_kwargs.get("device", 0) super().__init__(load_fn_kwargs=load_fn_kwargs, **kwargs) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a HuggingFace instruct model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ instruction_pairs = [] for text in texts: instruction_pairs.append([self.embed_instruction, text]) embeddings = self.client(self.pipeline_ref, instruction_pairs) return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a HuggingFace instruct model. Args: text: The text to embed. Returns: Embeddings for the text.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
fec2c2730fd1-4
Returns: Embeddings for the text. """ instruction_pair = [self.query_instruction, text] embedding = self.client(self.pipeline_ref, [instruction_pair])[0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/self_hosted_hugging_face.html
ff959b2b8751-0
Source code for langchain.embeddings.fake from typing import List import numpy as np from pydantic import BaseModel from langchain.embeddings.base import Embeddings [docs]class FakeEmbeddings(Embeddings, BaseModel): size: int def _get_embedding(self) -> List[float]: return list(np.random.normal(size=self.size)) [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: return [self._get_embedding() for _ in texts] [docs] def embed_query(self, text: str) -> List[float]: return self._get_embedding() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/fake.html
acd0e33ae1ad-0
Source code for langchain.embeddings.huggingface_hub """Wrapper around HuggingFace Hub embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env DEFAULT_REPO_ID = "sentence-transformers/all-mpnet-base-v2" VALID_TASKS = ("feature-extraction",) [docs]class HuggingFaceHubEmbeddings(BaseModel, Embeddings): """Wrapper around HuggingFaceHub embedding models. To use, you should have the ``huggingface_hub`` python package installed, and the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import HuggingFaceHubEmbeddings repo_id = "sentence-transformers/all-mpnet-base-v2" hf = HuggingFaceHubEmbeddings( repo_id=repo_id, task="feature-extraction", huggingfacehub_api_token="my-api-key", ) """ client: Any #: :meta private: repo_id: str = DEFAULT_REPO_ID """Model name to use.""" task: Optional[str] = "feature-extraction" """Task to call the model with.""" model_kwargs: Optional[dict] = None """Key word arguments to pass to the model.""" huggingfacehub_api_token: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
acd0e33ae1ad-1
@root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingfacehub_api_token = get_from_dict_or_env( values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN" ) try: from huggingface_hub.inference_api import InferenceApi repo_id = values["repo_id"] if not repo_id.startswith("sentence-transformers"): raise ValueError( "Currently only 'sentence-transformers' embedding models " f"are supported. Got invalid 'repo_id' {repo_id}." ) client = InferenceApi( repo_id=repo_id, token=huggingfacehub_api_token, task=values.get("task"), ) if client.task not in VALID_TASKS: raise ValueError( f"Got invalid task {client.task}, " f"currently only {VALID_TASKS} are supported" ) values["client"] = client except ImportError: raise ValueError( "Could not import huggingface_hub python package. " "Please install it with `pip install huggingface_hub`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to HuggingFaceHub's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ # replace newlines, which can negatively affect performance. texts = [text.replace("\n", " ") for text in texts]
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
acd0e33ae1ad-2
texts = [text.replace("\n", " ") for text in texts] _model_kwargs = self.model_kwargs or {} responses = self.client(inputs=texts, params=_model_kwargs) return responses [docs] def embed_query(self, text: str) -> List[float]: """Call out to HuggingFaceHub's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embeddings for the text. """ response = self.embed_documents([text])[0] return response By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/huggingface_hub.html
67523d7fa832-0
Source code for langchain.embeddings.aleph_alpha from typing import Any, Dict, List, Optional from pydantic import BaseModel, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class AlephAlphaAsymmetricSemanticEmbedding(BaseModel, Embeddings): """ Wrapper for Aleph Alpha's Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example: .. code-block:: python from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) """ client: Any #: :meta private: model: Optional[str] = "luminous-base" """Model name to use.""" hosting: Optional[str] = "https://api.aleph-alpha.com" """Optional parameter that specifies which datacenters may process the request.""" normalize: Optional[bool] = True """Should returned embeddings be normalized""" compress_to_size: Optional[int] = 128 """Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim.""" contextual_control_threshold: Optional[int] = None """Attention control parameters only apply to those tokens that have
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
67523d7fa832-1
"""Attention control parameters only apply to those tokens that have explicitly been set in the request.""" control_log_additive: Optional[bool] = True """Apply controls on prompt items by adding the log(control_factor) to attention scores.""" aleph_alpha_api_key: Optional[str] = None """API key for Aleph Alpha API.""" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" aleph_alpha_api_key = get_from_dict_or_env( values, "aleph_alpha_api_key", "ALEPH_ALPHA_API_KEY" ) try: from aleph_alpha_client import Client except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) values["client"] = Client(token=aleph_alpha_api_key) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's asymmetric Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) document_embeddings = [] for text in texts: document_params = { "prompt": Prompt.from_text(text),
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
67523d7fa832-2
document_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Document, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } document_request = SemanticEmbeddingRequest(**document_params) document_response = self.client.semantic_embed( request=document_request, model=self.model ) document_embeddings.append(document_response.embedding) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) symmetric_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Query, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } symmetric_request = SemanticEmbeddingRequest(**symmetric_params) symmetric_response = self.client.semantic_embed( request=symmetric_request, model=self.model ) return symmetric_response.embedding
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
67523d7fa832-3
request=symmetric_request, model=self.model ) return symmetric_response.embedding [docs]class AlephAlphaSymmetricSemanticEmbedding(AlephAlphaAsymmetricSemanticEmbedding): """The symmetric version of the Aleph Alpha's semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric Example: .. code-block:: python from aleph_alpha import AlephAlphaSymmetricSemanticEmbedding embeddings = AlephAlphaAsymmetricSemanticEmbedding() text = "This is a test text" doc_result = embeddings.embed_documents([text]) query_result = embeddings.embed_query(text) """ def _embed(self, text: str) -> List[float]: try: from aleph_alpha_client import ( Prompt, SemanticEmbeddingRequest, SemanticRepresentation, ) except ImportError: raise ValueError( "Could not import aleph_alpha_client python package. " "Please install it with `pip install aleph_alpha_client`." ) query_params = { "prompt": Prompt.from_text(text), "representation": SemanticRepresentation.Symmetric, "compress_to_size": self.compress_to_size, "normalize": self.normalize, "contextual_control_threshold": self.contextual_control_threshold, "control_log_additive": self.control_log_additive, } query_request = SemanticEmbeddingRequest(**query_params) query_response = self.client.semantic_embed( request=query_request, model=self.model ) return query_response.embedding [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Aleph Alpha's Document endpoint.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
67523d7fa832-4
"""Call out to Aleph Alpha's Document endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ document_embeddings = [] for text in texts: document_embeddings.append(self._embed(text)) return document_embeddings [docs] def embed_query(self, text: str) -> List[float]: """Call out to Aleph Alpha's asymmetric, query embedding endpoint Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embed(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/aleph_alpha.html
e5b881c2a5f2-0
Source code for langchain.embeddings.elasticsearch from __future__ import annotations from typing import TYPE_CHECKING, List, Optional from langchain.utils import get_from_env if TYPE_CHECKING: from elasticsearch import Elasticsearch from elasticsearch.client import MlClient from langchain.embeddings.base import Embeddings [docs]class ElasticsearchEmbeddings(Embeddings): """ Wrapper around Elasticsearch embedding models. This class provides an interface to generate embeddings using a model deployed in an Elasticsearch cluster. It requires an Elasticsearch connection object and the model_id of the model deployed in the cluster. In Elasticsearch you need to have an embedding model loaded and deployed. - https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html - https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html """ # noqa: E501 def __init__( self, client: MlClient, model_id: str, *, input_field: str = "text_field", ): """ Initialize the ElasticsearchEmbeddings instance. Args: client (MlClient): An Elasticsearch ML client object. model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. """ self.client = client self.model_id = model_id self.input_field = input_field [docs] @classmethod def from_credentials( cls, model_id: str, *, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
e5b881c2a5f2-1
es_user: Optional[str] = None, es_password: Optional[str] = None, input_field: str = "text_field", ) -> ElasticsearchEmbeddings: """Instantiate embeddings from Elasticsearch credentials. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. input_field (str): The name of the key for the input text field in the document. Defaults to 'text_field'. es_cloud_id: (str, optional): The Elasticsearch cloud ID to connect to. es_user: (str, optional): Elasticsearch username. es_password: (str, optional): Elasticsearch password. Example: .. code-block:: python from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Credentials can be passed in two ways. Either set the env vars # ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically # pulled in, or pass them in directly as kwargs. embeddings = ElasticsearchEmbeddings.from_credentials( model_id, input_field=input_field, # es_cloud_id="foo", # es_user="bar", # es_password="baz", ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """ try: from elasticsearch import Elasticsearch from elasticsearch.client import MlClient except ImportError: raise ImportError(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
e5b881c2a5f2-2
from elasticsearch.client import MlClient except ImportError: raise ImportError( "elasticsearch package not found, please install with 'pip install " "elasticsearch'" ) es_cloud_id = es_cloud_id or get_from_env("es_cloud_id", "ES_CLOUD_ID") es_user = es_user or get_from_env("es_user", "ES_USER") es_password = es_password or get_from_env("es_password", "ES_PASSWORD") # Connect to Elasticsearch es_connection = Elasticsearch( cloud_id=es_cloud_id, basic_auth=(es_user, es_password) ) client = MlClient(es_connection) return cls(client, model_id, input_field=input_field) [docs] @classmethod def from_es_connection( cls, model_id: str, es_connection: Elasticsearch, input_field: str = "text_field", ) -> ElasticsearchEmbeddings: """ Instantiate embeddings from an existing Elasticsearch connection. This method provides a way to create an instance of the ElasticsearchEmbeddings class using an existing Elasticsearch connection. The connection object is used to create an MlClient, which is then used to initialize the ElasticsearchEmbeddings instance. Args: model_id (str): The model_id of the model deployed in the Elasticsearch cluster. es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch connection object. input_field (str, optional): The name of the key for the input text field in the document. Defaults to 'text_field'. Returns: ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class. Example: .. code-block:: python from elasticsearch import Elasticsearch
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
e5b881c2a5f2-3
Example: .. code-block:: python from elasticsearch import Elasticsearch from langchain.embeddings import ElasticsearchEmbeddings # Define the model ID and input field name (if different from default) model_id = "your_model_id" # Optional, only if different from 'text_field' input_field = "your_input_field" # Create Elasticsearch connection es_connection = Elasticsearch( hosts=["localhost:9200"], http_auth=("user", "password") ) # Instantiate ElasticsearchEmbeddings using the existing connection embeddings = ElasticsearchEmbeddings.from_es_connection( model_id, es_connection, input_field=input_field, ) documents = [ "This is an example document.", "Another example document to generate embeddings for.", ] embeddings_generator.embed_documents(documents) """ # Importing MlClient from elasticsearch.client within the method to # avoid unnecessary import if the method is not used from elasticsearch.client import MlClient # Create an MlClient from the given Elasticsearch connection client = MlClient(es_connection) # Return a new instance of the ElasticsearchEmbeddings class with # the MlClient, model_id, and input_field return cls(client, model_id, input_field=input_field) def _embedding_func(self, texts: List[str]) -> List[List[float]]: """ Generate embeddings for the given texts using the Elasticsearch model. Args: texts (List[str]): A list of text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each text in the input list. """ response = self.client.infer_trained_model(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
e5b881c2a5f2-4
list. """ response = self.client.infer_trained_model( model_id=self.model_id, docs=[{self.input_field: text} for text in texts] ) embeddings = [doc["predicted_value"] for doc in response["inference_results"]] return embeddings [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """ Generate embeddings for a list of documents. Args: texts (List[str]): A list of document text strings to generate embeddings for. Returns: List[List[float]]: A list of embeddings, one for each document in the input list. """ return self._embedding_func(texts) [docs] def embed_query(self, text: str) -> List[float]: """ Generate an embedding for a single query text. Args: text (str): The query text to generate an embedding for. Returns: List[float]: The embedding for the input query text. """ return self._embedding_func([text])[0] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/elasticsearch.html
5207196d33f9-0
Source code for langchain.embeddings.cohere """Wrapper around Cohere embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env [docs]class CohereEmbeddings(BaseModel, Embeddings): """Wrapper around Cohere embedding models. To use, you should have the ``cohere`` python package installed, and the environment variable ``COHERE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings( model="embed-english-light-v2.0", cohere_api_key="my-api-key" ) """ client: Any #: :meta private: model: str = "embed-english-v2.0" """Model name to use.""" truncate: Optional[str] = None """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")""" cohere_api_key: Optional[str] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) try: import cohere values["client"] = cohere.Client(cohere_api_key) except ImportError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
5207196d33f9-1
except ImportError: raise ValueError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to Cohere's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = self.client.embed( model=self.model, texts=texts, truncate=self.truncate ).embeddings return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Call out to Cohere's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed( model=self.model, texts=[text], truncate=self.truncate ).embeddings[0] return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/cohere.html
77368f105380-0
Source code for langchain.embeddings.bedrock import json import os from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, root_validator from langchain.embeddings.base import Embeddings [docs]class BedrockEmbeddings(BaseModel, Embeddings): """Embeddings provider to invoke Bedrock embedding models. To authenticate, the AWS client uses the following methods to automatically load credentials: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html If a specific credential profile should be used, you must pass the name of the profile from the ~/.aws/credentials file that is to be used. Make sure the credentials / roles used have the required policies to access the Bedrock service. """ """ Example: .. code-block:: python from langchain.bedrock_embeddings import BedrockEmbeddings region_name ="us-east-1" credentials_profile_name = "default" model_id = "amazon.titan-e1t-medium" be = BedrockEmbeddings( credentials_profile_name=credentials_profile_name, region_name=region_name, model_id=model_id ) """ client: Any #: :meta private: region_name: Optional[str] = None """The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable or region specified in ~/.aws/config in case it is not provided here. """ credentials_profile_name: Optional[str] = None """The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which has either access keys or role information specified. If not specified, the default credential profile or, if on an EC2 instance,
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
77368f105380-1
If not specified, the default credential profile or, if on an EC2 instance, credentials from IMDS will be used. See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html """ model_id: str = "amazon.titan-e1t-medium" """Id of the model to call, e.g., amazon.titan-e1t-medium, this is equivalent to the modelId property in the list-foundation-models api""" model_kwargs: Optional[Dict] = None """Key word arguments to pass to the model.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values try: import boto3 if values["credentials_profile_name"] is not None: session = boto3.Session(profile_name=values["credentials_profile_name"]) else: # use default credentials session = boto3.Session() client_params = {} if values["region_name"]: client_params["region_name"] = values["region_name"] values["client"] = session.client("bedrock", **client_params) except ImportError: raise ModuleNotFoundError( "Could not import boto3 python package. " "Please install it with `pip install boto3`." ) except Exception as e: raise ValueError( "Could not load credentials to authenticate with AWS client. " "Please check that credentials in the specified " "profile name are valid." ) from e return values
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
77368f105380-2
"profile name are valid." ) from e return values def _embedding_func(self, text: str) -> List[float]: """Call out to Bedrock embedding endpoint.""" # replace newlines, which can negatively affect performance. text = text.replace(os.linesep, " ") _model_kwargs = self.model_kwargs or {} input_body = {**_model_kwargs} input_body["inputText"] = text body = json.dumps(input_body) content_type = "application/json" accepts = "application/json" embeddings = [] try: response = self.client.invoke_model( body=body, modelId=self.model_id, accept=accepts, contentType=content_type, ) response_body = json.loads(response.get("body").read()) embeddings = response_body.get("embedding") except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") return embeddings [docs] def embed_documents( self, texts: List[str], chunk_size: int = 1 ) -> List[List[float]]: """Compute doc embeddings using a Bedrock model. Args: texts: The list of texts to embed. chunk_size: Bedrock currently only allows single string inputs, so chunk size is always 1. This input is here only for compatibility with the embeddings interface. Returns: List of embeddings, one for each text. """ results = [] for text in texts: response = self._embedding_func(text) results.append(response) return results [docs] def embed_query(self, text: str) -> List[float]:
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
77368f105380-3
[docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a Bedrock model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._embedding_func(text) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html
bde5793ea9a7-0
Source code for langchain.embeddings.modelscope_hub """Wrapper around ModelScopeHub embedding models.""" from typing import Any, List from pydantic import BaseModel, Extra from langchain.embeddings.base import Embeddings [docs]class ModelScopeEmbeddings(BaseModel, Embeddings): """Wrapper around modelscope_hub embedding models. To use, you should have the ``modelscope`` python package installed. Example: .. code-block:: python from langchain.embeddings import ModelScopeEmbeddings model_id = "damo/nlp_corom_sentence-embedding_english-base" embed = ModelScopeEmbeddings(model_id=model_id) """ embed: Any model_id: str = "damo/nlp_corom_sentence-embedding_english-base" """Model name to use.""" def __init__(self, **kwargs: Any): """Initialize the modelscope""" super().__init__(**kwargs) try: from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id) except ImportError as e: raise ImportError( "Could not import some python packages." "Please install it with `pip install modelscope`." ) from e class Config: """Configuration for this pydantic object.""" extra = Extra.forbid [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Compute doc embeddings using a modelscope embedding model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ texts = list(map(lambda x: x.replace("\n", " "), texts))
https://python.langchain.com/en/latest/_modules/langchain/embeddings/modelscope_hub.html
bde5793ea9a7-1
texts = list(map(lambda x: x.replace("\n", " "), texts)) inputs = {"source_sentence": texts} embeddings = self.embed(input=inputs)["text_embedding"] return embeddings.tolist() [docs] def embed_query(self, text: str) -> List[float]: """Compute query embeddings using a modelscope embedding model. Args: text: The text to embed. Returns: Embeddings for the text. """ text = text.replace("\n", " ") inputs = {"source_sentence": [text]} embedding = self.embed(input=inputs)["text_embedding"][0] return embedding.tolist() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/modelscope_hub.html
342af7e0e752-0
Source code for langchain.embeddings.llamacpp """Wrapper around llama.cpp embedding models.""" from typing import Any, Dict, List, Optional from pydantic import BaseModel, Extra, Field, root_validator from langchain.embeddings.base import Embeddings [docs]class LlamaCppEmbeddings(BaseModel, Embeddings): """Wrapper around llama.cpp embedding models. To use, you should have the llama-cpp-python library installed, and provide the path to the Llama model as a named parameter to the constructor. Check out: https://github.com/abetlen/llama-cpp-python Example: .. code-block:: python from langchain.embeddings import LlamaCppEmbeddings llama = LlamaCppEmbeddings(model_path="/path/to/model.bin") """ client: Any #: :meta private: model_path: str n_ctx: int = Field(512, alias="n_ctx") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(-1, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock")
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
342af7e0e752-1
use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" n_threads: Optional[int] = Field(None, alias="n_threads") """Number of threads to use. If None, the number of threads is automatically determined.""" n_batch: Optional[int] = Field(8, alias="n_batch") """Number of tokens to process in parallel. Should be a number between 1 and n_ctx.""" n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers") """Number of layers to be loaded into gpu memory. Default None.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that llama-cpp-python library is installed.""" model_path = values["model_path"] model_param_names = [ "n_ctx", "n_parts", "seed", "f16_kv", "logits_all", "vocab_only", "use_mlock", "n_threads", "n_batch", ] model_params = {k: values[k] for k in model_param_names} # For backwards compatibility, only include if non-null. if values["n_gpu_layers"] is not None: model_params["n_gpu_layers"] = values["n_gpu_layers"] try: from llama_cpp import Llama values["client"] = Llama(model_path, embedding=True, **model_params) except ImportError: raise ModuleNotFoundError( "Could not import llama-cpp-python library. "
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
342af7e0e752-2
raise ModuleNotFoundError( "Could not import llama-cpp-python library. " "Please install the llama-cpp-python library to " "use this embedding model: pip install llama-cpp-python" ) except Exception as e: raise ValueError( f"Could not load Llama model from path: {model_path}. " f"Received error {e}" ) return values [docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed a list of documents using the Llama model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = [self.client.embed(text) for text in texts] return [list(map(float, e)) for e in embeddings] [docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the Llama model. Args: text: The text to embed. Returns: Embeddings for the text. """ embedding = self.client.embed(text) return list(map(float, embedding)) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/embeddings/llamacpp.html
7549a1babef6-0
Source code for langchain.tools.base """Base implementation for tools or skills.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from inspect import signature from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union from pydantic import ( BaseModel, Extra, Field, create_model, root_validator, validate_arguments, ) from pydantic.main import ModelMetaclass from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForToolRun, CallbackManager, CallbackManagerForToolRun, Callbacks, ) class SchemaAnnotationError(TypeError): """Raised when 'args_schema' is missing or has an incorrect type annotation.""" class ToolMetaclass(ModelMetaclass): """Metaclass for BaseTool to ensure the provided args_schema doesn't silently ignored.""" def __new__( cls: Type[ToolMetaclass], name: str, bases: Tuple[Type, ...], dct: dict ) -> ToolMetaclass: """Create the definition of the new tool class.""" schema_type: Optional[Type[BaseModel]] = dct.get("args_schema") if schema_type is not None: schema_annotations = dct.get("__annotations__", {}) args_schema_type = schema_annotations.get("args_schema", None) if args_schema_type is None or args_schema_type == BaseModel: # Throw errors for common mis-annotations. # TODO: Use get_args / get_origin and fully # specify valid annotations. typehint_mandate = """ class ChildTool(BaseTool): ... args_schema: Type[BaseModel] = SchemaClass ..."""
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-1
... args_schema: Type[BaseModel] = SchemaClass ...""" raise SchemaAnnotationError( f"Tool definition for {name} must include valid type annotations" f" for argument 'args_schema' to behave as expected.\n" f"Expected annotation of 'Type[BaseModel]'" f" but got '{args_schema_type}'.\n" f"Expected class looks like:\n" f"{typehint_mandate}" ) # Pass through to Pydantic's metaclass return super().__new__(cls, name, bases, dct) def _create_subset_model( name: str, model: BaseModel, field_names: list ) -> Type[BaseModel]: """Create a pydantic model with only a subset of model's fields.""" fields = { field_name: ( model.__fields__[field_name].type_, model.__fields__[field_name].default, ) for field_name in field_names if field_name in model.__fields__ } return create_model(name, **fields) # type: ignore def get_filtered_args( inferred_model: Type[BaseModel], func: Callable, ) -> dict: """Get the arguments from a function's signature.""" schema = inferred_model.schema()["properties"] valid_keys = signature(func).parameters return {k: schema[k] for k in valid_keys if k != "run_manager"} class _SchemaConfig: """Configuration for the pydantic model.""" extra = Extra.forbid arbitrary_types_allowed = True def create_schema_from_function( model_name: str, func: Callable, ) -> Type[BaseModel]:
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-2
func: Callable, ) -> Type[BaseModel]: """Create a pydantic schema from a function's signature.""" validated = validate_arguments(func, config=_SchemaConfig) # type: ignore inferred_model = validated.model # type: ignore if "run_manager" in inferred_model.__fields__: del inferred_model.__fields__["run_manager"] # Pydantic adds placeholder virtual fields we need to strip filtered_args = get_filtered_args(inferred_model, func) return _create_subset_model( f"{model_name}Schema", inferred_model, list(filtered_args) ) class ToolException(Exception): """An optional exception that tool throws when execution error occurs. When this exception is thrown, the agent will not stop working, but will handle the exception according to the handle_tool_error variable of the tool, and the processing result will be returned to the agent as observation, and printed in red on the console. """ pass [docs]class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass): """Interface LangChain tools must implement.""" name: str """The unique name of the tool that clearly communicates its purpose.""" description: str """Used to tell the model how/when/why to use the tool. You can provide few-shot examples as a part of the description. """ args_schema: Optional[Type[BaseModel]] = None """Pydantic model class to validate and parse the tool's input arguments.""" return_direct: bool = False """Whether to return the tool's output directly. Setting this to True means that after the tool is called, the AgentExecutor will stop looping. """ verbose: bool = False
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-3
""" verbose: bool = False """Whether to log the tool's progress.""" callbacks: Callbacks = Field(default=None, exclude=True) """Callbacks to be called during tool execution.""" callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True) """Deprecated. Please use callbacks instead.""" handle_tool_error: Optional[ Union[bool, str, Callable[[ToolException], str]] ] = False """Handle the content of the ToolException thrown.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def is_single_input(self) -> bool: """Whether the tool only accepts a single input.""" keys = {k for k in self.args if k != "kwargs"} return len(keys) == 1 @property def args(self) -> dict: if self.args_schema is not None: return self.args_schema.schema()["properties"] else: schema = create_schema_from_function(self.name, self._run) return schema.schema()["properties"] def _parse_input( self, tool_input: Union[str, Dict], ) -> Union[str, Dict[str, Any]]: """Convert tool input to pydantic model.""" input_args = self.args_schema if isinstance(tool_input, str): if input_args is not None: key_ = next(iter(input_args.__fields__.keys())) input_args.validate({key_: tool_input}) return tool_input else: if input_args is not None: result = input_args.parse_obj(tool_input)
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-4
if input_args is not None: result = input_args.parse_obj(tool_input) return {k: v for k, v in result.dict().items() if k in tool_input} return tool_input @root_validator() def raise_deprecation(cls, values: Dict) -> Dict: """Raise deprecation warning if callback_manager is used.""" if values.get("callback_manager") is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) values["callbacks"] = values.pop("callback_manager", None) return values @abstractmethod def _run( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool. Add run_manager: Optional[CallbackManagerForToolRun] = None to child implementations to enable tracing, """ @abstractmethod async def _arun( self, *args: Any, **kwargs: Any, ) -> Any: """Use the tool asynchronously. Add run_manager: Optional[AsyncCallbackManagerForToolRun] = None to child implementations to enable tracing, """ def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: # For backwards compatibility, if run_input is a string, # pass as a positional argument. if isinstance(tool_input, str): return (tool_input,), {} else: return (), tool_input [docs] def run( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-5
verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = CallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) # TODO: maybe also pass through run_manager is _run supports kwargs new_arg_supported = signature(self._run).parameters.get("run_manager") run_manager = callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( self._run(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else self._run(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-6
observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) run_manager.on_tool_end( str(observation), color="red", name=self.name, **kwargs ) return observation except (Exception, KeyboardInterrupt) as e: run_manager.on_tool_error(e) raise e else: run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation [docs] async def arun( self, tool_input: Union[str, Dict], verbose: Optional[bool] = None, start_color: Optional[str] = "green", color: Optional[str] = "green", callbacks: Callbacks = None, **kwargs: Any, ) -> Any: """Run the tool asynchronously.""" parsed_input = self._parse_input(tool_input) if not self.verbose and verbose is not None: verbose_ = verbose else: verbose_ = self.verbose callback_manager = AsyncCallbackManager.configure( callbacks, self.callbacks, verbose=verbose_ ) new_arg_supported = signature(self._arun).parameters.get("run_manager") run_manager = await callback_manager.on_tool_start( {"name": self.name, "description": self.description}, tool_input if isinstance(tool_input, str) else str(tool_input), color=start_color, **kwargs, ) try: # We then call the tool on the tool input to get an observation
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-7
try: # We then call the tool on the tool input to get an observation tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) observation = ( await self._arun(*tool_args, run_manager=run_manager, **tool_kwargs) if new_arg_supported else await self._arun(*tool_args, **tool_kwargs) ) except ToolException as e: if not self.handle_tool_error: await run_manager.on_tool_error(e) raise e elif isinstance(self.handle_tool_error, bool): if e.args: observation = e.args[0] else: observation = "Tool execution error" elif isinstance(self.handle_tool_error, str): observation = self.handle_tool_error elif callable(self.handle_tool_error): observation = self.handle_tool_error(e) else: raise ValueError( f"Got unexpected type of `handle_tool_error`. Expected bool, str " f"or callable. Received: {self.handle_tool_error}" ) await run_manager.on_tool_end( str(observation), color="red", name=self.name, **kwargs ) return observation except (Exception, KeyboardInterrupt) as e: await run_manager.on_tool_error(e) raise e else: await run_manager.on_tool_end( str(observation), color=color, name=self.name, **kwargs ) return observation def __call__(self, tool_input: str, callbacks: Callbacks = None) -> str: """Make tool callable.""" return self.run(tool_input, callbacks=callbacks) [docs]class Tool(BaseTool): """Tool that takes in function or coroutine directly."""
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-8
"""Tool that takes in function or coroutine directly.""" description: str = "" func: Callable[..., str] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[str]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" if self.args_schema is not None: return self.args_schema.schema()["properties"] # For backwards compatibility, if the function signature is ambiguous, # assume it takes a single string input. return {"tool_input": {"type": "string"}} def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]: """Convert tool input to pydantic model.""" args, kwargs = super()._to_args_and_kwargs(tool_input) # For backwards compatibility. The tool must be run with a single input all_args = list(args) + list(kwargs.values()) if len(all_args) != 1: raise ValueError( f"Too many arguments to single-input tool {self.name}." f" Args: {all_args}" ) return tuple(all_args), {} def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-9
**kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") # TODO: this is for backwards compatibility, remove in future def __init__( self, name: str, func: Callable, description: str, **kwargs: Any ) -> None: """Initialize tool.""" super(Tool, self).__init__( name=name, func=func, description=description, **kwargs ) [docs] @classmethod def from_function( cls, func: Callable, name: str, # We keep these required to support backwards compatibility description: str, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, **kwargs: Any, ) -> Tool: """Initialize tool from a function.""" return cls( name=name, func=func, description=description, return_direct=return_direct, args_schema=args_schema, **kwargs,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-10
return_direct=return_direct, args_schema=args_schema, **kwargs, ) [docs]class StructuredTool(BaseTool): """Tool that can operate on any number of inputs.""" description: str = "" args_schema: Type[BaseModel] = Field(..., description="The tool schema.") """The input arguments' schema.""" func: Callable[..., Any] """The function to run when the tool is called.""" coroutine: Optional[Callable[..., Awaitable[Any]]] = None """The asynchronous version of the function.""" @property def args(self) -> dict: """The tool's input arguments.""" return self.args_schema.schema()["properties"] def _run( self, *args: Any, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> Any: """Use the tool.""" new_argument_supported = signature(self.func).parameters.get("callbacks") return ( self.func( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else self.func(*args, **kwargs) ) async def _arun( self, *args: Any, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the tool asynchronously.""" if self.coroutine: new_argument_supported = signature(self.coroutine).parameters.get( "callbacks" ) return ( await self.coroutine( *args,
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-11
) return ( await self.coroutine( *args, callbacks=run_manager.get_child() if run_manager else None, **kwargs, ) if new_argument_supported else await self.coroutine(*args, **kwargs) ) raise NotImplementedError("Tool does not support async") [docs] @classmethod def from_function( cls, func: Callable, name: Optional[str] = None, description: Optional[str] = None, return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, **kwargs: Any, ) -> StructuredTool: name = name or func.__name__ description = description or func.__doc__ assert ( description is not None ), "Function must have a docstring if description not provided." # Description example: # search_api(query: str) - Searches the API for the query. description = f"{name}{signature(func)} - {description.strip()}" _args_schema = args_schema if _args_schema is None and infer_schema: _args_schema = create_schema_from_function(f"{name}Schema", func) return cls( name=name, func=func, args_schema=_args_schema, description=description, return_direct=return_direct, **kwargs, ) [docs]def tool( *args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[BaseModel]] = None, infer_schema: bool = True, ) -> Callable:
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-12
infer_schema: bool = True, ) -> Callable: """Make tools out of functions, can be used with or without arguments. Args: *args: The arguments to the tool. return_direct: Whether to return directly from the tool rather than continuing the agent loop. args_schema: optional argument schema for user to specify infer_schema: Whether to infer the schema of the arguments from the function's signature. This also makes the resultant tool accept a dictionary input to its `run()` function. Requires: - Function must be of type (str) -> str - Function must have a docstring Examples: .. code-block:: python @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return """ def _make_with_name(tool_name: str) -> Callable: def _make_tool(func: Callable) -> BaseTool: if infer_schema or args_schema is not None: return StructuredTool.from_function( func, name=tool_name, return_direct=return_direct, args_schema=args_schema, infer_schema=infer_schema, ) # If someone doesn't want a schema applied, we must treat it as # a simple string->string function assert func.__doc__ is not None, "Function must have a docstring" return Tool( name=tool_name, func=func, description=f"{tool_name} tool", return_direct=return_direct, )
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
7549a1babef6-13
return_direct=return_direct, ) return _make_tool if len(args) == 1 and isinstance(args[0], str): # if the argument is a string, then we use the string as the tool name # Example usage: @tool("search", return_direct=True) return _make_with_name(args[0]) elif len(args) == 1 and callable(args[0]): # if the argument is a function, then we use the function name as the tool name # Example usage: @tool return _make_with_name(args[0].__name__)(args[0]) elif len(args) == 0: # if there are no arguments, then we use the function name as the tool name # Example usage: @tool(return_direct=True) def _partial(func: Callable[[str], str]) -> BaseTool: return _make_with_name(func.__name__)(func) return _partial else: raise ValueError("Too many arguments for tool decorator") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/base.html
f187e605d22b-0
Source code for langchain.tools.plugin from __future__ import annotations import json from typing import Optional, Type import requests import yaml from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool class ApiConfig(BaseModel): type: str url: str has_user_authentication: Optional[bool] = False class AIPlugin(BaseModel): """AI Plugin Definition.""" schema_version: str name_for_model: str name_for_human: str description_for_model: str description_for_human: str auth: Optional[dict] = None api: ApiConfig logo_url: Optional[str] contact_email: Optional[str] legal_info_url: Optional[str] @classmethod def from_url(cls, url: str) -> AIPlugin: """Instantiate AIPlugin from a URL.""" response = requests.get(url).json() return cls(**response) def marshal_spec(txt: str) -> dict: """Convert the yaml or json serialized spec to a dict.""" try: return json.loads(txt) except json.JSONDecodeError: return yaml.safe_load(txt) class AIPluginToolSchema(BaseModel): """AIPLuginToolSchema.""" tool_input: Optional[str] = "" [docs]class AIPluginTool(BaseTool): plugin: AIPlugin api_spec: str args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema [docs] @classmethod def from_plugin_url(cls, url: str) -> AIPluginTool: plugin = AIPlugin.from_url(url) description = (
https://python.langchain.com/en/latest/_modules/langchain/tools/plugin.html
f187e605d22b-1
plugin = AIPlugin.from_url(url) description = ( f"Call this tool to get the OpenAPI spec (and usage guide) " f"for interacting with the {plugin.name_for_human} API. " f"You should only call this ONCE! What is the " f"{plugin.name_for_human} API useful for? " ) + plugin.description_for_human open_api_spec_str = requests.get(plugin.api.url).text open_api_spec = marshal_spec(open_api_spec_str) api_spec = ( f"Usage Guide: {plugin.description_for_model}\n\n" f"OpenAPI Spec: {open_api_spec}" ) return cls( name=plugin.name_for_model, description=description, plugin=plugin, api_spec=api_spec, ) def _run( self, tool_input: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_spec async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return self.api_spec By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/plugin.html
d95ab1acfc16-0
Source code for langchain.tools.ifttt """From https://github.com/SidU/teams-langchain-js/wiki/Connecting-IFTTT-Services. # Creating a webhook - Go to https://ifttt.com/create # Configuring the "If This" - Click on the "If This" button in the IFTTT interface. - Search for "Webhooks" in the search bar. - Choose the first option for "Receive a web request with a JSON payload." - Choose an Event Name that is specific to the service you plan to connect to. This will make it easier for you to manage the webhook URL. For example, if you're connecting to Spotify, you could use "Spotify" as your Event Name. - Click the "Create Trigger" button to save your settings and create your webhook. # Configuring the "Then That" - Tap on the "Then That" button in the IFTTT interface. - Search for the service you want to connect, such as Spotify. - Choose an action from the service, such as "Add track to a playlist". - Configure the action by specifying the necessary details, such as the playlist name, e.g., "Songs from AI". - Reference the JSON Payload received by the Webhook in your action. For the Spotify scenario, choose "{{JsonPayload}}" as your search query. - Tap the "Create Action" button to save your action settings. - Once you have finished configuring your action, click the "Finish" button to complete the setup. - Congratulations! You have successfully connected the Webhook to the desired service, and you're ready to start receiving data and triggering actions 🎉 # Finishing up - To get your webhook URL go to https://ifttt.com/maker_webhooks/settings
https://python.langchain.com/en/latest/_modules/langchain/tools/ifttt.html
d95ab1acfc16-1
- To get your webhook URL go to https://ifttt.com/maker_webhooks/settings - Copy the IFTTT key value from there. The URL is of the form https://maker.ifttt.com/use/YOUR_IFTTT_KEY. Grab the YOUR_IFTTT_KEY value. """ from typing import Optional import requests from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool [docs]class IFTTTWebhook(BaseTool): """IFTTT Webhook. Args: name: name of the tool description: description of the tool url: url to hit with the json event. """ url: str def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: body = {"this": tool_input} response = requests.post(self.url, data=body) return response.text async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: raise NotImplementedError("Not implemented.") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/ifttt.html
02443121ad86-0
Source code for langchain.tools.scenexplain.tool """Tool for the SceneXplain API.""" from typing import Optional from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.scenexplain import SceneXplainAPIWrapper class SceneXplainInput(BaseModel): """Input for SceneXplain.""" query: str = Field(..., description="The link to the image to explain") [docs]class SceneXplainTool(BaseTool): """Tool that adds the capability to explain images.""" name = "Image Explainer" description = ( "An Image Captioning Tool: Use this tool to generate a detailed caption " "for an image. The input can be an image file of any format, and " "the output will be a text description that covers every detail of the image." ) api_wrapper: SceneXplainAPIWrapper = Field(default_factory=SceneXplainAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("SceneXplainTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/scenexplain/tool.html
39d8bb6a5405-0
Source code for langchain.tools.youtube.search """ Adapted from https://github.com/venuv/langchain_yt_tools CustomYTSearchTool searches YouTube videos related to a person and returns a specified number of video URLs. Input to this tool should be a comma separated list, - the first part contains a person name - and the second(optional) a number that is the maximum number of video results to return """ import json from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools import BaseTool [docs]class YouTubeSearchTool(BaseTool): name = "YouTubeSearch" description = ( "search for youtube videos associated with a person. " "the input to this tool should be a comma separated list, " "the first part contains a person name and the second a " "number that is the maximum number of video results " "to return aka num_results. the second part is optional" ) def _search(self, person: str, num_results: int) -> str: from youtube_search import YoutubeSearch results = YoutubeSearch(person, num_results).to_json() data = json.loads(results) url_suffix_list = [video["url_suffix"] for video in data["videos"]] return str(url_suffix_list) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" values = query.split(",") person = values[0] if len(values) > 1: num_results = int(values[1]) else:
https://python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
39d8bb6a5405-1
num_results = int(values[1]) else: num_results = 2 return self._search(person, num_results) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("YouTubeSearchTool does not yet support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/youtube/search.html
88dcadb91f83-0
Source code for langchain.tools.powerbi.tool """Tools for interacting with a Power BI dataset.""" from typing import Any, Dict, Optional, Tuple from pydantic import Field, validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.chains.llm import LLMChain from langchain.tools.base import BaseTool from langchain.tools.powerbi.prompt import ( BAD_REQUEST_RESPONSE, DEFAULT_FEWSHOT_EXAMPLES, QUESTION_TO_QUERY, RETRY_RESPONSE, ) from langchain.utilities.powerbi import PowerBIDataset, json_to_md [docs]class QueryPowerBITool(BaseTool): """Tool for querying a Power BI Dataset.""" name = "query_powerbi" description = """ Input to this tool is a detailed question about the dataset, output is a result from the dataset. It will try to answer the question using the dataset, and if it cannot, it will ask for clarification. Example Input: "How many rows are in table1?" """ # noqa: E501 llm_chain: LLMChain powerbi: PowerBIDataset = Field(exclude=True) template: Optional[str] = QUESTION_TO_QUERY examples: Optional[str] = DEFAULT_FEWSHOT_EXAMPLES session_cache: Dict[str, Any] = Field(default_factory=dict, exclude=True) max_iterations: int = 5 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @validator("llm_chain") def validate_llm_chain_input_variables( # pylint: disable=E0213 cls, llm_chain: LLMChain ) -> LLMChain:
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
88dcadb91f83-1
cls, llm_chain: LLMChain ) -> LLMChain: """Make sure the LLM chain has the correct input variables.""" if llm_chain.prompt.input_variables != [ "tool_input", "tables", "schemas", "examples", ]: raise ValueError( "LLM chain for QueryPowerBITool must have input variables ['tool_input', 'tables', 'schemas', 'examples'], found %s", # noqa: C0301 E501 # pylint: disable=C0301 llm_chain.prompt.input_variables, ) return llm_chain def _check_cache(self, tool_input: str) -> Optional[str]: """Check if the input is present in the cache. If the value is a bad request, overwrite with the escalated version, if not present return None.""" if tool_input not in self.session_cache: return None return self.session_cache[tool_input] def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Execute the query, return the results or an error message.""" if cache := self._check_cache(tool_input): return cache try: query = self.llm_chain.predict( tool_input=tool_input, tables=self.powerbi.get_table_names(), schemas=self.powerbi.get_schemas(), examples=self.examples, ) except Exception as exc: # pylint: disable=broad-except self.session_cache[tool_input] = f"Error on call to LLM: {exc}" return self.session_cache[tool_input]
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
88dcadb91f83-2
return self.session_cache[tool_input] if query == "I cannot answer this": self.session_cache[tool_input] = query return self.session_cache[tool_input] pbi_result = self.powerbi.run(command=query) result, error = self._parse_output(pbi_result) iterations = kwargs.get("iterations", 0) if error and iterations < self.max_iterations: return self._run( tool_input=RETRY_RESPONSE.format( tool_input=tool_input, query=query, error=error ), run_manager=run_manager, iterations=iterations + 1, ) self.session_cache[tool_input] = ( result if result else BAD_REQUEST_RESPONSE.format(error=error) ) return self.session_cache[tool_input] async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Execute the query, return the results or an error message.""" if cache := self._check_cache(tool_input): return cache try: query = await self.llm_chain.apredict( tool_input=tool_input, tables=self.powerbi.get_table_names(), schemas=self.powerbi.get_schemas(), examples=self.examples, ) except Exception as exc: # pylint: disable=broad-except self.session_cache[tool_input] = f"Error on call to LLM: {exc}" return self.session_cache[tool_input] if query == "I cannot answer this": self.session_cache[tool_input] = query return self.session_cache[tool_input]
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
88dcadb91f83-3
return self.session_cache[tool_input] pbi_result = await self.powerbi.arun(command=query) result, error = self._parse_output(pbi_result) iterations = kwargs.get("iterations", 0) if error and iterations < self.max_iterations: return await self._arun( tool_input=RETRY_RESPONSE.format( tool_input=tool_input, query=query, error=error ), run_manager=run_manager, iterations=iterations + 1, ) self.session_cache[tool_input] = ( result if result else BAD_REQUEST_RESPONSE.format(error=error) ) return self.session_cache[tool_input] def _parse_output( self, pbi_result: Dict[str, Any] ) -> Tuple[Optional[str], Optional[str]]: """Parse the output of the query to a markdown table.""" if "results" in pbi_result: return json_to_md(pbi_result["results"][0]["tables"][0]["rows"]), None if "error" in pbi_result: if ( "pbi.error" in pbi_result["error"] and "details" in pbi_result["error"]["pbi.error"] ): return None, pbi_result["error"]["pbi.error"]["details"][0]["detail"] return None, pbi_result["error"] return None, "Unknown error" [docs]class InfoPowerBITool(BaseTool): """Tool for getting metadata about a PowerBI Dataset.""" name = "schema_powerbi" description = """ Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
88dcadb91f83-4
Be sure that the tables actually exist by calling list_tables_powerbi first! Example Input: "table1, table2, table3" """ # noqa: E501 powerbi: PowerBIDataset = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _run( self, tool_input: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Get the schema for tables in a comma-separated list.""" return self.powerbi.get_table_info(tool_input.split(", ")) async def _arun( self, tool_input: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return await self.powerbi.aget_table_info(tool_input.split(", ")) [docs]class ListPowerBITool(BaseTool): """Tool for getting tables names.""" name = "list_tables_powerbi" description = "Input is an empty string, output is a comma separated list of tables in the database." # noqa: E501 # pylint: disable=C0301 powerbi: PowerBIDataset = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _run( self, tool_input: Optional[str] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Get the names of the tables.""" return ", ".join(self.powerbi.get_table_names()) async def _arun( self, tool_input: Optional[str] = None,
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
88dcadb91f83-5
self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Get the names of the tables.""" return ", ".join(self.powerbi.get_table_names()) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/powerbi/tool.html
542afd294a69-0
Source code for langchain.tools.wikipedia.tool """Tool for the Wikipedia API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.wikipedia import WikipediaAPIWrapper [docs]class WikipediaQueryRun(BaseTool): """Tool that adds the capability to search using the Wikipedia API.""" name = "Wikipedia" description = ( "A wrapper around Wikipedia. " "Useful for when you need to answer general questions about " "people, places, companies, facts, historical events, or other subjects. " "Input should be a search query." ) api_wrapper: WikipediaAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Wikipedia tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Wikipedia tool asynchronously.""" raise NotImplementedError("WikipediaQueryRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/wikipedia/tool.html
0e8fee3d3f54-0
Source code for langchain.tools.file_management.file_search import fnmatch import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileSearchInput(BaseModel): """Input for FileSearchTool.""" dir_path: str = Field( default=".", description="Subdirectory to search in.", ) pattern: str = Field( ..., description="Unix shell regex, where * matches everything.", ) [docs]class FileSearchTool(BaseFileToolMixin, BaseTool): name: str = "file_search" args_schema: Type[BaseModel] = FileSearchInput description: str = ( "Recursively search for files in a subdirectory that match the regex pattern" ) def _run( self, pattern: str, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) matches = [] try: for root, _, filenames in os.walk(dir_path_): for filename in fnmatch.filter(filenames, pattern): absolute_path = os.path.join(root, filename) relative_path = os.path.relpath(absolute_path, dir_path_) matches.append(relative_path) if matches:
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html
0e8fee3d3f54-1
matches.append(relative_path) if matches: return "\n".join(matches) else: return f"No files found for pattern {pattern} in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, pattern: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/file_search.html