id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
b7fd43b1a946-0
Source code for langchain.tools.file_management.move import shutil from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileMoveInput(BaseModel): """Input for MoveFileTool.""" source_path: str = Field(..., description="Path of the file to move") destination_path: str = Field(..., description="New path for the moved file") [docs]class MoveFileTool(BaseFileToolMixin, BaseTool): name: str = "move_file" args_schema: Type[BaseModel] = FileMoveInput description: str = "Move or rename a file from one location to another" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path_", value=destination_path_ ) if not source_path_.exists(): return f"Error: no such file or directory {source_path}" try: # shutil.move expects str args in 3.8 shutil.move(str(source_path_), destination_path_)
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
b7fd43b1a946-1
shutil.move(str(source_path_), destination_path_) return f"File moved successfully from {source_path} to {destination_path}." except Exception as e: return "Error: " + str(e) async def _arun( self, source_path: str, destination_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/move.html
943ed6f5be88-0
Source code for langchain.tools.file_management.read from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class ReadFileInput(BaseModel): """Input for ReadFileTool.""" file_path: str = Field(..., description="name of file") [docs]class ReadFileTool(BaseFileToolMixin, BaseTool): name: str = "read_file" args_schema: Type[BaseModel] = ReadFileInput description: str = "Read file from disk" def _run( self, file_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: read_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) if not read_path.exists(): return f"Error: no such file or directory: {file_path}" try: with read_path.open("r", encoding="utf-8") as f: content = f.read() return content except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/read.html
943ed6f5be88-1
# TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/read.html
9d94a844c47a-0
Source code for langchain.tools.file_management.delete import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileDeleteInput(BaseModel): """Input for DeleteFileTool.""" file_path: str = Field(..., description="Path of the file to delete") [docs]class DeleteFileTool(BaseFileToolMixin, BaseTool): name: str = "file_delete" args_schema: Type[BaseModel] = FileDeleteInput description: str = "Delete a file" def _run( self, file_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: file_path_ = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) if not file_path_.exists(): return f"Error: no such file or directory: {file_path}" try: os.remove(file_path_) return f"File deleted successfully: {file_path}." except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/delete.html
9d94a844c47a-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/delete.html
50ead273b534-0
Source code for langchain.tools.file_management.write from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class WriteFileInput(BaseModel): """Input for WriteFileTool.""" file_path: str = Field(..., description="name of file") text: str = Field(..., description="text to write to file") append: bool = Field( default=False, description="Whether to append to an existing file." ) [docs]class WriteFileTool(BaseFileToolMixin, BaseTool): name: str = "write_file" args_schema: Type[BaseModel] = WriteFileInput description: str = "Write file to disk" def _run( self, file_path: str, text: str, append: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: write_path = self.get_relative_path(file_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="file_path", value=file_path) try: write_path.parent.mkdir(exist_ok=True, parents=False) mode = "a" if append else "w" with write_path.open(mode, encoding="utf-8") as f: f.write(text) return f"File written successfully to {file_path}." except Exception as e: return "Error: " + str(e)
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
50ead273b534-1
except Exception as e: return "Error: " + str(e) async def _arun( self, file_path: str, text: str, append: bool = False, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/write.html
8854b08770a8-0
Source code for langchain.tools.file_management.list_dir import os from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class DirectoryListingInput(BaseModel): """Input for ListDirectoryTool.""" dir_path: str = Field(default=".", description="Subdirectory to list.") [docs]class ListDirectoryTool(BaseFileToolMixin, BaseTool): name: str = "list_directory" args_schema: Type[BaseModel] = DirectoryListingInput description: str = "List files and directories in a specified folder" def _run( self, dir_path: str = ".", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: dir_path_ = self.get_relative_path(dir_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format(arg_name="dir_path", value=dir_path) try: entries = os.listdir(dir_path_) if entries: return "\n".join(entries) else: return f"No files found in directory {dir_path}" except Exception as e: return "Error: " + str(e) async def _arun( self, dir_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
8854b08770a8-1
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/list_dir.html
2b9d830dc67d-0
Source code for langchain.tools.file_management.copy import shutil from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.file_management.utils import ( INVALID_PATH_TEMPLATE, BaseFileToolMixin, FileValidationError, ) class FileCopyInput(BaseModel): """Input for CopyFileTool.""" source_path: str = Field(..., description="Path of the file to copy") destination_path: str = Field(..., description="Path to save the copied file") [docs]class CopyFileTool(BaseFileToolMixin, BaseTool): name: str = "copy_file" args_schema: Type[BaseModel] = FileCopyInput description: str = "Create a copy of a file in a specified location" def _run( self, source_path: str, destination_path: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: source_path_ = self.get_relative_path(source_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="source_path", value=source_path ) try: destination_path_ = self.get_relative_path(destination_path) except FileValidationError: return INVALID_PATH_TEMPLATE.format( arg_name="destination_path", value=destination_path ) try: shutil.copy2(source_path_, destination_path_, follow_symlinks=False) return f"File copied successfully from {source_path} to {destination_path}." except Exception as e:
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
2b9d830dc67d-1
except Exception as e: return "Error: " + str(e) async def _arun( self, source_path: str, destination_path: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: # TODO: Add aiofiles method raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/file_management/copy.html
7da23ac55234-0
Source code for langchain.tools.bing_search.tool """Tool for the Bing search API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.bing_search import BingSearchAPIWrapper [docs]class BingSearchRun(BaseTool): """Tool that adds the capability to query the Bing search API.""" name = "Bing Search" description = ( "A wrapper around Bing Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: BingSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BingSearchRun does not support async") [docs]class BingSearchResults(BaseTool): """Tool that has capability to query the Bing Search API and get back json.""" name = "Bing Search Results JSON" description = ( "A wrapper around Bing Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: BingSearchAPIWrapper def _run(
https://python.langchain.com/en/latest/_modules/langchain/tools/bing_search/tool.html
7da23ac55234-1
api_wrapper: BingSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BingSearchResults does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/bing_search/tool.html
7f9a381ec91e-0
Source code for langchain.tools.metaphor_search.tool """Tool for the Metaphor search API.""" from typing import Dict, List, Optional, Union from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper [docs]class MetaphorSearchResults(BaseTool): """Tool that has capability to query the Metaphor Search API and get back json.""" name = "Metaphor Search Results JSON" description = ( "A wrapper around Metaphor Search. " "Input should be a Metaphor-optimized query. " "Output is a JSON array of the query results" ) api_wrapper: MetaphorSearchAPIWrapper def _run( self, query: str, num_results: int, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool.""" try: return self.api_wrapper.results(query, num_results) except Exception as e: return repr(e) async def _arun( self, query: str, num_results: int, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Union[List[Dict], str]: """Use the tool asynchronously.""" try: return await self.api_wrapper.results_async(query, num_results) except Exception as e: return repr(e) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/metaphor_search/tool.html
c1a35451811f-0
Source code for langchain.tools.zapier.tool """## Zapier Natural Language Actions API \ Full docs here: https://nla.zapier.com/api/v1/docs **Zapier Natural Language Actions** gives you access to the 5k+ apps, 20k+ actions on Zapier's platform through a natural language API interface. NLA supports apps like Gmail, Salesforce, Trello, Slack, Asana, HubSpot, Google Sheets, Microsoft Teams, and thousands more apps: https://zapier.com/apps Zapier NLA handles ALL the underlying API auth and translation from natural language --> underlying API call --> return simplified output for LLMs The key idea is you, or your users, expose a set of actions via an oauth-like setup window, which you can then query and execute via a REST API. NLA offers both API Key and OAuth for signing NLA API requests. 1. Server-side (API Key): for quickly getting started, testing, and production scenarios where LangChain will only use actions exposed in the developer's Zapier account (and will use the developer's connected accounts on Zapier.com) 2. User-facing (Oauth): for production scenarios where you are deploying an end-user facing application and LangChain needs access to end-user's exposed actions and connected accounts on Zapier.com This quick start will focus on the server-side use case for brevity. Review [full docs](https://nla.zapier.com/api/v1/docs) or reach out to [email protected] for user-facing oauth developer support. Typically, you'd use SequentialChain, here's a basic example: 1. Use NLA to find an email in Gmail 2. Use LLMChain to generate a draft reply to (1)
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
c1a35451811f-1
2. Use LLMChain to generate a draft reply to (1) 3. Use NLA to send the draft reply (2) to someone in Slack via direct message In code, below: ```python import os # get from https://platform.openai.com/ os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY", "") # get from https://nla.zapier.com/demo/provider/debug # (under User Information, after logging in): os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "") from langchain.llms import OpenAI from langchain.agents import initialize_agent from langchain.agents.agent_toolkits import ZapierToolkit from langchain.utilities.zapier import ZapierNLAWrapper ## step 0. expose gmail 'find email' and slack 'send channel message' actions # first go here, log in, expose (enable) the two actions: # https://nla.zapier.com/demo/start # -- for this example, can leave all fields "Have AI guess" # in an oauth scenario, you'd get your own <provider> id (instead of 'demo') # which you route your users through first llm = OpenAI(temperature=0) zapier = ZapierNLAWrapper() ## To leverage a nla_oauth_access_token you may pass the value to the ZapierNLAWrapper ## If you do this there is no need to initialize the ZAPIER_NLA_API_KEY env variable # zapier = ZapierNLAWrapper(zapier_nla_oauth_access_token="TOKEN_HERE") toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier) agent = initialize_agent( toolkit.get_tools(),
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
c1a35451811f-2
agent = initialize_agent( toolkit.get_tools(), llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run(("Summarize the last email I received regarding Silicon Valley Bank. " "Send the summary to the #test-zapier channel in slack.")) ``` """ from typing import Any, Dict, Optional from pydantic import Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.tools.zapier.prompt import BASE_ZAPIER_TOOL_PROMPT from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierNLARunAction(BaseTool): """ Args: action_id: a specific action ID (from list actions) of the action to execute (the set api_key must be associated with the action owner) instructions: a natural language instruction string for using the action (eg. "get the latest email from Mike Knoop" for "Gmail: find email" action) params: a dict, optional. Any params provided will *override* AI guesses from `instructions` (see "understanding the AI guessing flow" here: https://nla.zapier.com/api/v1/docs) """ api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) action_id: str params: Optional[dict] = None base_prompt: str = BASE_ZAPIER_TOOL_PROMPT zapier_description: str params_schema: Dict[str, str] = Field(default_factory=dict) name = "" description = "" @root_validator
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
c1a35451811f-3
name = "" description = "" @root_validator def set_name_description(cls, values: Dict[str, Any]) -> Dict[str, Any]: zapier_description = values["zapier_description"] params_schema = values["params_schema"] if "instructions" in params_schema: del params_schema["instructions"] # Ensure base prompt (if overrided) contains necessary input fields necessary_fields = {"{zapier_description}", "{params}"} if not all(field in values["base_prompt"] for field in necessary_fields): raise ValueError( "Your custom base Zapier prompt must contain input fields for " "{zapier_description} and {params}." ) values["name"] = zapier_description values["description"] = values["base_prompt"].format( zapier_description=zapier_description, params=str(list(params_schema.keys())), ) return values def _run( self, instructions: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.run_as_str(self.action_id, instructions, self.params) async def _arun( self, _: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLARunAction.__doc__ = ( ZapierNLAWrapper.run.__doc__ + ZapierNLARunAction.__doc__ # type: ignore )
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
c1a35451811f-4
) # other useful actions [docs]class ZapierNLAListActions(BaseTool): """ Args: None """ name = "Zapier NLA: List Actions" description = BASE_ZAPIER_TOOL_PROMPT + ( "This tool returns a list of the user's exposed actions." ) api_wrapper: ZapierNLAWrapper = Field(default_factory=ZapierNLAWrapper) def _run( self, _: str = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" return self.api_wrapper.list_as_str() async def _arun( self, _: str = "", run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Zapier NLA tool to return a list of all exposed user actions.""" raise NotImplementedError("ZapierNLAListActions does not support async") ZapierNLAListActions.__doc__ = ( ZapierNLAWrapper.list.__doc__ + ZapierNLAListActions.__doc__ # type: ignore ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/zapier/tool.html
659b3f26f8f4-0
Source code for langchain.tools.google_places.tool """Tool for the Google search API.""" from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_places_api import GooglePlacesAPIWrapper class GooglePlacesSchema(BaseModel): query: str = Field(..., description="Query for google maps") [docs]class GooglePlacesTool(BaseTool): """Tool that adds the capability to query the Google places API.""" name = "Google Places" description = ( "A wrapper around Google Places. " "Useful for when you need to validate or " "discover addressed from ambiguous text. " "Input should be a search query." ) api_wrapper: GooglePlacesAPIWrapper = Field(default_factory=GooglePlacesAPIWrapper) args_schema: Type[BaseModel] = GooglePlacesSchema def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GooglePlacesRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/google_places/tool.html
5df1ed4a25be-0
Source code for langchain.tools.gmail.get_thread from typing import Dict, Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool class GetThreadSchema(BaseModel): # From https://support.google.com/mail/answer/7190?hl=en thread_id: str = Field( ..., description="The thread ID.", ) [docs]class GmailGetThread(GmailBaseTool): name: str = "get_gmail_thread" description: str = ( "Use this tool to search for email messages." " The input must be a valid Gmail query." " The output is a JSON list of messages." ) args_schema: Type[GetThreadSchema] = GetThreadSchema def _run( self, thread_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = self.api_resource.users().threads().get(userId="me", id=thread_id) thread_data = query.execute() if not isinstance(thread_data, dict): raise ValueError("The output of the query must be a list.") messages = thread_data["messages"] thread_data["messages"] = [] keys_to_keep = ["id", "snippet", "snippet"] # TODO: Parse body. for message in messages: thread_data["messages"].append( {k: message[k] for k in keys_to_keep if k in message} ) return thread_data async def _arun( self,
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_thread.html
5df1ed4a25be-1
) return thread_data async def _arun( self, thread_id: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_thread.html
7aaa359a5619-0
Source code for langchain.tools.gmail.create_draft import base64 from email.message import EmailMessage from typing import List, Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool class CreateDraftSchema(BaseModel): message: str = Field( ..., description="The message to include in the draft.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) [docs]class GmailCreateDraft(GmailBaseTool): name: str = "create_gmail_draft" description: str = ( "Use this tool to create a draft email with the provided message fields." ) args_schema: Type[CreateDraftSchema] = CreateDraftSchema def _prepare_draft_message( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, ) -> dict: draft_message = EmailMessage() draft_message.set_content(message) draft_message["To"] = ", ".join(to) draft_message["Subject"] = subject if cc is not None:
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/create_draft.html
7aaa359a5619-1
draft_message["Subject"] = subject if cc is not None: draft_message["Cc"] = ", ".join(cc) if bcc is not None: draft_message["Bcc"] = ", ".join(bcc) encoded_message = base64.urlsafe_b64encode(draft_message.as_bytes()).decode() return {"message": {"raw": encoded_message}} def _run( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: create_message = self._prepare_draft_message(message, to, subject, cc, bcc) draft = ( self.api_resource.users() .drafts() .create(userId="me", body=create_message) .execute() ) output = f'Draft created. Draft Id: {draft["id"]}' return output except Exception as e: raise Exception(f"An error occurred: {e}") async def _arun( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: raise NotImplementedError(f"The tool {self.name} does not support async yet.") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/create_draft.html
0d32928ffbd6-0
Source code for langchain.tools.gmail.send_message """Send Gmail messages.""" import base64 from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool class SendMessageSchema(BaseModel): message: str = Field( ..., description="The message to send.", ) to: List[str] = Field( ..., description="The list of recipients.", ) subject: str = Field( ..., description="The subject of the message.", ) cc: Optional[List[str]] = Field( None, description="The list of CC recipients.", ) bcc: Optional[List[str]] = Field( None, description="The list of BCC recipients.", ) [docs]class GmailSendMessage(GmailBaseTool): name: str = "send_gmail_message" description: str = ( "Use this tool to send email messages." " The input is the message, recipents" ) def _prepare_message( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, ) -> Dict[str, Any]: """Create a message for an email.""" mime_message = MIMEMultipart() mime_message.attach(MIMEText(message, "html")) mime_message["To"] = ", ".join(to)
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
0d32928ffbd6-1
mime_message["To"] = ", ".join(to) mime_message["Subject"] = subject if cc is not None: mime_message["Cc"] = ", ".join(cc) if bcc is not None: mime_message["Bcc"] = ", ".join(bcc) encoded_message = base64.urlsafe_b64encode(mime_message.as_bytes()).decode() return {"raw": encoded_message} def _run( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run the tool.""" try: create_message = self._prepare_message(message, to, subject, cc=cc, bcc=bcc) send_message = ( self.api_resource.users() .messages() .send(userId="me", body=create_message) ) sent_message = send_message.execute() return f'Message sent. Message Id: {sent_message["id"]}' except Exception as error: raise Exception(f"An error occurred: {error}") async def _arun( self, message: str, to: List[str], subject: str, cc: Optional[List[str]] = None, bcc: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Run the tool asynchronously.""" raise NotImplementedError(f"The tool {self.name} does not support async yet.") By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
0d32928ffbd6-2
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/send_message.html
9a238e07efc5-0
Source code for langchain.tools.gmail.search import base64 import email from enum import Enum from typing import Any, Dict, List, Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool from langchain.tools.gmail.utils import clean_email_body class Resource(str, Enum): THREADS = "threads" MESSAGES = "messages" class SearchArgsSchema(BaseModel): # From https://support.google.com/mail/answer/7190?hl=en query: str = Field( ..., description="The Gmail query. Example filters include from:sender," " to:recipient, subject:subject, -filtered_term," " in:folder, is:important|read|starred, after:year/mo/date, " "before:year/mo/date, label:label_name" ' "exact phrase".' " Search newer/older than using d (day), m (month), and y (year): " "newer_than:2d, older_than:1y." " Attachments with extension example: filename:pdf. Multiple term" " matching example: from:amy OR from:david.", ) resource: Resource = Field( default=Resource.MESSAGES, description="Whether to search for threads or messages.", ) max_results: int = Field( default=10, description="The maximum number of results to return.", ) [docs]class GmailSearch(GmailBaseTool): name: str = "search_gmail" description: str = (
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
9a238e07efc5-1
name: str = "search_gmail" description: str = ( "Use this tool to search for email messages or threads." " The input must be a valid Gmail query." " The output is a JSON list of the requested resource." ) args_schema: Type[SearchArgsSchema] = SearchArgsSchema def _parse_threads(self, threads: List[Dict[str, Any]]) -> List[Dict[str, Any]]: # Add the thread message snippets to the thread results results = [] for thread in threads: thread_id = thread["id"] thread_data = ( self.api_resource.users() .threads() .get(userId="me", id=thread_id) .execute() ) messages = thread_data["messages"] thread["messages"] = [] for message in messages: snippet = message["snippet"] thread["messages"].append({"snippet": snippet, "id": message["id"]}) results.append(thread) return results def _parse_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]: results = [] for message in messages: message_id = message["id"] message_data = ( self.api_resource.users() .messages() .get(userId="me", format="raw", id=message_id) .execute() ) raw_message = base64.urlsafe_b64decode(message_data["raw"]) email_msg = email.message_from_bytes(raw_message) subject = email_msg["Subject"] sender = email_msg["From"] message_body = email_msg.get_payload() body = clean_email_body(message_body) results.append( {
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
9a238e07efc5-2
body = clean_email_body(message_body) results.append( { "id": message["id"], "threadId": message_data["threadId"], "snippet": message_data["snippet"], "body": body, "subject": subject, "sender": sender, } ) return results def _run( self, query: str, resource: Resource = Resource.MESSAGES, max_results: int = 10, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> List[Dict[str, Any]]: """Run the tool.""" results = ( self.api_resource.users() .messages() .list(userId="me", q=query, maxResults=max_results) .execute() .get(resource.value, []) ) if resource == Resource.THREADS: return self._parse_threads(results) elif resource == Resource.MESSAGES: return self._parse_messages(results) else: raise NotImplementedError(f"Resource of type {resource} not implemented.") async def _arun( self, query: str, resource: Resource = Resource.MESSAGES, max_results: int = 10, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> List[Dict[str, Any]]: """Run the tool.""" raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/search.html
fdb86027bd07-0
Source code for langchain.tools.gmail.get_message import base64 import email from typing import Dict, Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.gmail.base import GmailBaseTool from langchain.tools.gmail.utils import clean_email_body class SearchArgsSchema(BaseModel): message_id: str = Field( ..., description="The unique ID of the email message, retrieved from a search.", ) [docs]class GmailGetMessage(GmailBaseTool): name: str = "get_gmail_message" description: str = ( "Use this tool to fetch an email by message ID." " Returns the thread ID, snipet, body, subject, and sender." ) args_schema: Type[SearchArgsSchema] = SearchArgsSchema def _run( self, message_id: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" query = ( self.api_resource.users() .messages() .get(userId="me", format="raw", id=message_id) ) message_data = query.execute() raw_message = base64.urlsafe_b64decode(message_data["raw"]) email_msg = email.message_from_bytes(raw_message) subject = email_msg["Subject"] sender = email_msg["From"] message_body = email_msg.get_payload() body = clean_email_body(message_body) return { "id": message_id, "threadId": message_data["threadId"], "snippet": message_data["snippet"],
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_message.html
fdb86027bd07-1
"snippet": message_data["snippet"], "body": body, "subject": subject, "sender": sender, } async def _arun( self, message_id: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> Dict: """Run the tool.""" raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/gmail/get_message.html
2cf639e22815-0
Source code for langchain.tools.openweathermap.tool """Tool for the OpenWeatherMap API.""" from typing import Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities import OpenWeatherMapAPIWrapper [docs]class OpenWeatherMapQueryRun(BaseTool): """Tool that adds the capability to query using the OpenWeatherMap API.""" api_wrapper: OpenWeatherMapAPIWrapper = Field( default_factory=OpenWeatherMapAPIWrapper ) name = "OpenWeatherMap" description = ( "A wrapper around OpenWeatherMap API. " "Useful for fetching current weather information for a specified location. " "Input should be a location string (e.g. London,GB)." ) def _run( self, location: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the OpenWeatherMap tool.""" return self.api_wrapper.run(location) async def _arun( self, location: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the OpenWeatherMap tool asynchronously.""" raise NotImplementedError("OpenWeatherMapQueryRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/openweathermap/tool.html
cf98fce15c20-0
Source code for langchain.tools.google_serper.tool """Tool for the Serper.dev Google Search API.""" from typing import Optional from pydantic.fields import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_serper import GoogleSerperAPIWrapper [docs]class GoogleSerperRun(BaseTool): """Tool that adds the capability to query the Serper.dev Google search API.""" name = "Google Serper" description = ( "A low-cost Google Search API." "Useful for when you need to answer questions about current events." "Input should be a search query." ) api_wrapper: GoogleSerperAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.run(query)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return (await self.api_wrapper.arun(query)).__str__() [docs]class GoogleSerperResults(BaseTool): """Tool that has capability to query the Serper.dev Google Search API and get back json.""" name = "Google Serrper Results JSON" description = ( "A low-cost Google Search API." "Useful for when you need to answer questions about current events." "Input should be a search query. Output is a JSON object of the query results" )
https://python.langchain.com/en/latest/_modules/langchain/tools/google_serper/tool.html
cf98fce15c20-1
) api_wrapper: GoogleSerperAPIWrapper = Field(default_factory=GoogleSerperAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return (await self.api_wrapper.aresults(query)).__str__() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/google_serper/tool.html
cf021c1df1fb-0
Source code for langchain.tools.brave_search.tool from __future__ import annotations from typing import Any, Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.brave_search import BraveSearchWrapper [docs]class BraveSearch(BaseTool): name = "brave-search" description = ( "a search engine. " "useful for when you need to answer questions about current events." " input should be a search query." ) search_wrapper: BraveSearchWrapper [docs] @classmethod def from_api_key( cls, api_key: str, search_kwargs: Optional[dict] = None, **kwargs: Any ) -> BraveSearch: wrapper = BraveSearchWrapper(api_key=api_key, search_kwargs=search_kwargs or {}) return cls(search_wrapper=wrapper, **kwargs) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.search_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("BraveSearch does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/brave_search/tool.html
8996c1a6fd6b-0
Source code for langchain.tools.azure_cognitive_services.form_recognizer from __future__ import annotations import logging from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import detect_file_src_type from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsFormRecognizerTool(BaseTool): """Tool that queries the Azure Cognitive Services Form Recognizer API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/quickstarts/get-started-sdks-rest-api?view=form-recog-3.0.0&pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: doc_analysis_client: Any #: :meta private: name = "Azure Cognitive Services Form Recognizer" description = ( "A wrapper around Azure Cognitive Services Form Recognizer. " "Useful for when you need to " "extract text, tables, and key-value pairs from documents. " "Input should be a url to a document." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" )
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
8996c1a6fd6b-1
) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" ) try: from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential values["doc_analysis_client"] = DocumentAnalysisClient( endpoint=azure_cogs_endpoint, credential=AzureKeyCredential(azure_cogs_key), ) except ImportError: raise ImportError( "azure-ai-formrecognizer is not installed. " "Run `pip install azure-ai-formrecognizer` to install." ) return values def _parse_tables(self, tables: List[Any]) -> List[Any]: result = [] for table in tables: rc, cc = table.row_count, table.column_count _table = [["" for _ in range(cc)] for _ in range(rc)] for cell in table.cells: _table[cell.row_index][cell.column_index] = cell.content result.append(_table) return result def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]: result = [] for kv_pair in kv_pairs: key = kv_pair.key.content if kv_pair.key else "" value = kv_pair.value.content if kv_pair.value else "" result.append((key, value)) return result def _document_analysis(self, document_path: str) -> Dict: document_src_type = detect_file_src_type(document_path) if document_src_type == "local": with open(document_path, "rb") as document: poller = self.doc_analysis_client.begin_analyze_document( "prebuilt-document", document )
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
8996c1a6fd6b-2
"prebuilt-document", document ) elif document_src_type == "remote": poller = self.doc_analysis_client.begin_analyze_document_from_url( "prebuilt-document", document_path ) else: raise ValueError(f"Invalid document path: {document_path}") result = poller.result() res_dict = {} if result.content is not None: res_dict["content"] = result.content if result.tables is not None: res_dict["tables"] = self._parse_tables(result.tables) if result.key_value_pairs is not None: res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs) return res_dict def _format_document_analysis_result(self, document_analysis_result: Dict) -> str: formatted_result = [] if "content" in document_analysis_result: formatted_result.append( f"Content: {document_analysis_result['content']}".replace("\n", " ") ) if "tables" in document_analysis_result: for i, table in enumerate(document_analysis_result["tables"]): formatted_result.append(f"Table {i}: {table}".replace("\n", " ")) if "key_value_pairs" in document_analysis_result: for kv_pair in document_analysis_result["key_value_pairs"]: formatted_result.append( f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try:
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
8996c1a6fd6b-3
) -> str: """Use the tool.""" try: document_analysis_result = self._document_analysis(query) if not document_analysis_result: return "No good document analysis result was found" return self._format_document_analysis_result(document_analysis_result) except Exception as e: raise RuntimeError(f"Error while running AzureCogsFormRecognizerTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsFormRecognizerTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/form_recognizer.html
8bc086564946-0
Source code for langchain.tools.azure_cognitive_services.image_analysis from __future__ import annotations import logging from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import detect_file_src_type from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsImageAnalysisTool(BaseTool): """Tool that queries the Azure Cognitive Services Image Analysis API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/quickstarts-sdk/image-analysis-client-library-40 """ azure_cogs_key: str = "" #: :meta private: azure_cogs_endpoint: str = "" #: :meta private: vision_service: Any #: :meta private: analysis_options: Any #: :meta private: name = "Azure Cognitive Services Image Analysis" description = ( "A wrapper around Azure Cognitive Services Image Analysis. " "Useful for when you need to analyze images. " "Input should be a url to an image." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_endpoint = get_from_dict_or_env( values, "azure_cogs_endpoint", "AZURE_COGS_ENDPOINT" )
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8bc086564946-1
) try: import azure.ai.vision as sdk values["vision_service"] = sdk.VisionServiceOptions( endpoint=azure_cogs_endpoint, key=azure_cogs_key ) values["analysis_options"] = sdk.ImageAnalysisOptions() values["analysis_options"].features = ( sdk.ImageAnalysisFeature.CAPTION | sdk.ImageAnalysisFeature.OBJECTS | sdk.ImageAnalysisFeature.TAGS | sdk.ImageAnalysisFeature.TEXT ) except ImportError: raise ImportError( "azure-ai-vision is not installed. " "Run `pip install azure-ai-vision` to install." ) return values def _image_analysis(self, image_path: str) -> Dict: try: import azure.ai.vision as sdk except ImportError: pass image_src_type = detect_file_src_type(image_path) if image_src_type == "local": vision_source = sdk.VisionSource(filename=image_path) elif image_src_type == "remote": vision_source = sdk.VisionSource(url=image_path) else: raise ValueError(f"Invalid image path: {image_path}") image_analyzer = sdk.ImageAnalyzer( self.vision_service, vision_source, self.analysis_options ) result = image_analyzer.analyze() res_dict = {} if result.reason == sdk.ImageAnalysisResultReason.ANALYZED: if result.caption is not None: res_dict["caption"] = result.caption.content if result.objects is not None: res_dict["objects"] = [obj.name for obj in result.objects] if result.tags is not None: res_dict["tags"] = [tag.name for tag in result.tags]
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8bc086564946-2
res_dict["tags"] = [tag.name for tag in result.tags] if result.text is not None: res_dict["text"] = [line.content for line in result.text.lines] else: error_details = sdk.ImageAnalysisErrorDetails.from_result(result) raise RuntimeError( f"Image analysis failed.\n" f"Reason: {error_details.reason}\n" f"Details: {error_details.message}" ) return res_dict def _format_image_analysis_result(self, image_analysis_result: Dict) -> str: formatted_result = [] if "caption" in image_analysis_result: formatted_result.append("Caption: " + image_analysis_result["caption"]) if ( "objects" in image_analysis_result and len(image_analysis_result["objects"]) > 0 ): formatted_result.append( "Objects: " + ", ".join(image_analysis_result["objects"]) ) if "tags" in image_analysis_result and len(image_analysis_result["tags"]) > 0: formatted_result.append("Tags: " + ", ".join(image_analysis_result["tags"])) if "text" in image_analysis_result and len(image_analysis_result["text"]) > 0: formatted_result.append("Text: " + ", ".join(image_analysis_result["text"])) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: image_analysis_result = self._image_analysis(query) if not image_analysis_result: return "No good image analysis result was found"
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
8bc086564946-3
if not image_analysis_result: return "No good image analysis result was found" return self._format_image_analysis_result(image_analysis_result) except Exception as e: raise RuntimeError(f"Error while running AzureCogsImageAnalysisTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsImageAnalysisTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/image_analysis.html
942a74b3baf7-0
Source code for langchain.tools.azure_cognitive_services.text2speech from __future__ import annotations import logging import tempfile from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsText2SpeechTool(BaseTool): """Tool that queries the Azure Cognitive Services Text2Speech API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-text-to-speech?pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name = "Azure Cognitive Services Text2Speech" description = ( "A wrapper around Azure Cognitive Services Text2Speech. " "Useful for when you need to convert text to speech. " ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" ) azure_cogs_region = get_from_dict_or_env( values, "azure_cogs_region", "AZURE_COGS_REGION" ) try:
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
942a74b3baf7-1
) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_cogs_key, region=azure_cogs_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _text2speech(self, text: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass self.speech_config.speech_synthesis_language = speech_language speech_synthesizer = speechsdk.SpeechSynthesizer( speech_config=self.speech_config, audio_config=None ) result = speech_synthesizer.speak_text(text) if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: stream = speechsdk.AudioDataStream(result) with tempfile.NamedTemporaryFile( mode="wb", suffix=".wav", delete=False ) as f: stream.save_to_wav_file(f.name) return f.name elif result.reason == speechsdk.ResultReason.Canceled: cancellation_details = result.cancellation_details logger.debug(f"Speech synthesis canceled: {cancellation_details.reason}") if cancellation_details.reason == speechsdk.CancellationReason.Error: raise RuntimeError( f"Speech synthesis error: {cancellation_details.error_details}" ) return "Speech synthesis canceled." else: return f"Speech synthesis failed: {result.reason}" def _run( self, query: str,
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
942a74b3baf7-2
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: speech_file = self._text2speech(query, self.speech_language) return speech_file except Exception as e: raise RuntimeError(f"Error while running AzureCogsText2SpeechTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsText2SpeechTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/text2speech.html
99bb621af4dc-0
Source code for langchain.tools.azure_cognitive_services.speech2text from __future__ import annotations import logging import time from typing import Any, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.azure_cognitive_services.utils import ( detect_file_src_type, download_audio_from_url, ) from langchain.tools.base import BaseTool from langchain.utils import get_from_dict_or_env logger = logging.getLogger(__name__) [docs]class AzureCogsSpeech2TextTool(BaseTool): """Tool that queries the Azure Cognitive Services Speech2Text API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text?pivots=programming-language-python """ azure_cogs_key: str = "" #: :meta private: azure_cogs_region: str = "" #: :meta private: speech_language: str = "en-US" #: :meta private: speech_config: Any #: :meta private: name = "Azure Cognitive Services Speech2Text" description = ( "A wrapper around Azure Cognitive Services Speech2Text. " "Useful for when you need to transcribe audio to text. " "Input should be a url to an audio file." ) @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and endpoint exists in environment.""" azure_cogs_key = get_from_dict_or_env( values, "azure_cogs_key", "AZURE_COGS_KEY" )
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
99bb621af4dc-1
) azure_cogs_region = get_from_dict_or_env( values, "azure_cogs_region", "AZURE_COGS_REGION" ) try: import azure.cognitiveservices.speech as speechsdk values["speech_config"] = speechsdk.SpeechConfig( subscription=azure_cogs_key, region=azure_cogs_region ) except ImportError: raise ImportError( "azure-cognitiveservices-speech is not installed. " "Run `pip install azure-cognitiveservices-speech` to install." ) return values def _continuous_recognize(self, speech_recognizer: Any) -> str: done = False text = "" def stop_cb(evt: Any) -> None: """callback that stop continuous recognition""" speech_recognizer.stop_continuous_recognition_async() nonlocal done done = True def retrieve_cb(evt: Any) -> None: """callback that retrieves the intermediate recognition results""" nonlocal text text += evt.result.text # retrieve text on recognized events speech_recognizer.recognized.connect(retrieve_cb) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition_async() while not done: time.sleep(0.5) return text def _speech2text(self, audio_path: str, speech_language: str) -> str: try: import azure.cognitiveservices.speech as speechsdk except ImportError: pass
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
99bb621af4dc-2
except ImportError: pass audio_src_type = detect_file_src_type(audio_path) if audio_src_type == "local": audio_config = speechsdk.AudioConfig(filename=audio_path) elif audio_src_type == "remote": tmp_audio_path = download_audio_from_url(audio_path) audio_config = speechsdk.AudioConfig(filename=tmp_audio_path) else: raise ValueError(f"Invalid audio path: {audio_path}") self.speech_config.speech_recognition_language = speech_language speech_recognizer = speechsdk.SpeechRecognizer(self.speech_config, audio_config) return self._continuous_recognize(speech_recognizer) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: text = self._speech2text(query, self.speech_language) return text except Exception as e: raise RuntimeError(f"Error while running AzureCogsSpeech2TextTool: {e}") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("AzureCogsSpeech2TextTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/azure_cognitive_services/speech2text.html
1cb0fb9e354f-0
Source code for langchain.tools.playwright.click from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) class ClickToolInput(BaseModel): """Input for ClickTool.""" selector: str = Field(..., description="CSS selector for the element to click") [docs]class ClickTool(BaseBrowserTool): name: str = "click_element" description: str = "Click on an element with the given CSS selector" args_schema: Type[BaseModel] = ClickToolInput visible_only: bool = True """Whether to consider only visible elements.""" playwright_strict: bool = False """Whether to employ Playwright's strict mode when clicking on elements.""" playwright_timeout: float = 1_000 """Timeout (in ms) for Playwright to wait for element to be ready.""" def _selector_effective(self, selector: str) -> str: if not self.visible_only: return selector return f"{selector} >> visible=1" def _run( self, selector: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
1cb0fb9e354f-1
# Navigate to the desired webpage before using this tool selector_effective = self._selector_effective(selector=selector) from playwright.sync_api import TimeoutError as PlaywrightTimeoutError try: page.click( selector_effective, strict=self.playwright_strict, timeout=self.playwright_timeout, ) except PlaywrightTimeoutError: return f"Unable to click on element '{selector}'" return f"Clicked element '{selector}'" async def _arun( self, selector: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool selector_effective = self._selector_effective(selector=selector) from playwright.async_api import TimeoutError as PlaywrightTimeoutError try: await page.click( selector_effective, strict=self.playwright_strict, timeout=self.playwright_timeout, ) except PlaywrightTimeoutError: return f"Unable to click on element '{selector}'" return f"Clicked element '{selector}'" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/click.html
3c9c3c2b25be-0
Source code for langchain.tools.playwright.extract_hyperlinks from __future__ import annotations import json from typing import TYPE_CHECKING, Any, Optional, Type from pydantic import BaseModel, Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page if TYPE_CHECKING: pass class ExtractHyperlinksToolInput(BaseModel): """Input for ExtractHyperlinksTool.""" absolute_urls: bool = Field( default=False, description="Return absolute URLs instead of relative URLs", ) [docs]class ExtractHyperlinksTool(BaseBrowserTool): """Extract all hyperlinks on the page.""" name: str = "extract_hyperlinks" description: str = "Extract all hyperlinks on the current webpage" args_schema: Type[BaseModel] = ExtractHyperlinksToolInput @root_validator def check_bs_import(cls, values: dict) -> dict: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "The 'beautifulsoup4' package is required to use this tool." " Please install it with 'pip install beautifulsoup4'." ) return values [docs] @staticmethod def scrape_page(page: Any, html_content: str, absolute_urls: bool) -> str: from urllib.parse import urljoin from bs4 import BeautifulSoup # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") # Find all the anchor elements and extract their href attributes
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
3c9c3c2b25be-1
# Find all the anchor elements and extract their href attributes anchors = soup.find_all("a") if absolute_urls: base_url = page.url links = [urljoin(base_url, anchor.get("href", "")) for anchor in anchors] else: links = [anchor.get("href", "") for anchor in anchors] # Return the list of links as a JSON string return json.dumps(links) def _run( self, absolute_urls: bool = False, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) html_content = page.content() return self.scrape_page(page, html_content, absolute_urls) async def _arun( self, absolute_urls: bool = False, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) html_content = await page.content() return self.scrape_page(page, html_content, absolute_urls) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_hyperlinks.html
4e645e2404eb-0
Source code for langchain.tools.playwright.extract_text from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page [docs]class ExtractTextTool(BaseBrowserTool): name: str = "extract_text" description: str = "Extract all the text on the current webpage" args_schema: Type[BaseModel] = BaseModel @root_validator def check_acheck_bs_importrgs(cls, values: dict) -> dict: """Check that the arguments are valid.""" try: from bs4 import BeautifulSoup # noqa: F401 except ImportError: raise ValueError( "The 'beautifulsoup4' package is required to use this tool." " Please install it with 'pip install beautifulsoup4'." ) return values def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: """Use the tool.""" # Use Beautiful Soup since it's faster than looping through the elements from bs4 import BeautifulSoup if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) html_content = page.content() # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") return " ".join(text for text in soup.stripped_strings) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
4e645e2404eb-1
self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") # Use Beautiful Soup since it's faster than looping through the elements from bs4 import BeautifulSoup page = await aget_current_page(self.async_browser) html_content = await page.content() # Parse the HTML content with BeautifulSoup soup = BeautifulSoup(html_content, "lxml") return " ".join(text for text in soup.stripped_strings) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/extract_text.html
a7b44ddf0195-0
Source code for langchain.tools.playwright.current_page from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page [docs]class CurrentWebPageTool(BaseBrowserTool): name: str = "current_webpage" description: str = "Returns the URL of the current page" args_schema: Type[BaseModel] = BaseModel def _run( self, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) return str(page.url) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) return str(page.url) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/current_page.html
e81ab029a5cf-0
Source code for langchain.tools.playwright.get_elements from __future__ import annotations import json from typing import TYPE_CHECKING, List, Optional, Sequence, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import aget_current_page, get_current_page if TYPE_CHECKING: from playwright.async_api import Page as AsyncPage from playwright.sync_api import Page as SyncPage class GetElementsToolInput(BaseModel): """Input for GetElementsTool.""" selector: str = Field( ..., description="CSS selector, such as '*', 'div', 'p', 'a', #id, .classname", ) attributes: List[str] = Field( default_factory=lambda: ["innerText"], description="Set of attributes to retrieve for each element", ) async def _aget_elements( page: AsyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]: """Get elements matching the given CSS selector.""" elements = await page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = await element.inner_text() else: val = await element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results def _get_elements( page: SyncPage, selector: str, attributes: Sequence[str] ) -> List[dict]:
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
e81ab029a5cf-1
) -> List[dict]: """Get elements matching the given CSS selector.""" elements = page.query_selector_all(selector) results = [] for element in elements: result = {} for attribute in attributes: if attribute == "innerText": val: Optional[str] = element.inner_text() else: val = element.get_attribute(attribute) if val is not None and val.strip() != "": result[attribute] = val if result: results.append(result) return results [docs]class GetElementsTool(BaseBrowserTool): name: str = "get_elements" description: str = ( "Retrieve elements in the current web page matching the given CSS selector" ) args_schema: Type[BaseModel] = GetElementsToolInput def _run( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) # Navigate to the desired webpage before using this tool results = _get_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False) async def _arun( self, selector: str, attributes: Sequence[str] = ["innerText"], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}")
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
e81ab029a5cf-2
raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) # Navigate to the desired webpage before using this tool results = await _aget_elements(page, selector, attributes) return json.dumps(results, ensure_ascii=False) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/get_elements.html
55ce5421534a-0
Source code for langchain.tools.playwright.navigate from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel, Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) class NavigateToolInput(BaseModel): """Input for NavigateToolInput.""" url: str = Field(..., description="url to navigate to") [docs]class NavigateTool(BaseBrowserTool): name: str = "navigate_browser" description: str = "Navigate a browser to the specified URL" args_schema: Type[BaseModel] = NavigateToolInput def _run( self, url: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) response = page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}" async def _arun( self, url: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) response = await page.goto(url)
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
55ce5421534a-1
response = await page.goto(url) status = response.status if response else "unknown" return f"Navigating to {url} returned status code {status}" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate.html
ecf420815cea-0
Source code for langchain.tools.playwright.navigate_back from __future__ import annotations from typing import Optional, Type from pydantic import BaseModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.playwright.base import BaseBrowserTool from langchain.tools.playwright.utils import ( aget_current_page, get_current_page, ) [docs]class NavigateBackTool(BaseBrowserTool): """Navigate back to the previous page in the browser history.""" name: str = "previous_webpage" description: str = "Navigate back to the previous page in the browser history" args_schema: Type[BaseModel] = BaseModel def _run(self, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) response = page.go_back() if response: return ( f"Navigated back to the previous page with URL '{response.url}'." f" Status code {response.status}" ) else: return "Unable to navigate back; no previous page in the history" async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) response = await page.go_back() if response: return (
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
ecf420815cea-1
response = await page.go_back() if response: return ( f"Navigated back to the previous page with URL '{response.url}'." f" Status code {response.status}" ) else: return "Unable to navigate back; no previous page in the history" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/playwright/navigate_back.html
6703f7cafb5e-0
Source code for langchain.tools.google_search.tool """Tool for the Google search API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.google_search import GoogleSearchAPIWrapper [docs]class GoogleSearchRun(BaseTool): """Tool that adds the capability to query the Google search API.""" name = "Google Search" description = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GoogleSearchRun does not support async") [docs]class GoogleSearchResults(BaseTool): """Tool that has capability to query the Google Search API and get back json.""" name = "Google Search Results JSON" description = ( "A wrapper around Google Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: GoogleSearchAPIWrapper def _run( self,
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
6703f7cafb5e-1
api_wrapper: GoogleSearchAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GoogleSearchRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/google_search/tool.html
fab255e3c877-0
Source code for langchain.tools.vectorstore.tool """Tools for interacting with vectorstores.""" import json from typing import Any, Dict, Optional from pydantic import BaseModel, Field from langchain.base_language import BaseLanguageModel from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.chains import RetrievalQA, RetrievalQAWithSourcesChain from langchain.llms.openai import OpenAI from langchain.tools.base import BaseTool from langchain.vectorstores.base import VectorStore class BaseVectorStoreTool(BaseModel): """Base class for tools that use a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config(BaseTool.Config): """Configuration for this pydantic object.""" arbitrary_types_allowed = True def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: values["description"] = values["template"].format(name=values["name"]) return values [docs]class VectorStoreQATool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQA chain. To be initialized with name and chain.""" [docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name}. " "Whenever you need information about {description} " "you should ALWAYS use this. " "Input should be a fully formed question." ) return template.format(name=name, description=description) def _run( self, query: str,
https://python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
fab255e3c877-1
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return chain.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("VectorStoreQATool does not support async") [docs]class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): """Tool for the VectorDBQAWithSources chain.""" [docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name} and the sources " "used to construct the answer. " "Whenever you need information about {description} " "you should ALWAYS use this. " " Input should be a fully formed question. " "Output is a json serialized dictionary with keys `answer` and `sources`. " "Only use this tool if the user explicitly asks for sources." ) return template.format(name=name, description=description) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() )
https://python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
fab255e3c877-2
self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps(chain({chain.question_key: query}, return_only_outputs=True)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("VectorStoreQAWithSourcesTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/vectorstore/tool.html
65c94d470f8c-0
Source code for langchain.tools.human.tool """Tool for asking human input.""" from typing import Callable, Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool def _print_func(text: str) -> None: print("\n") print(text) [docs]class HumanInputRun(BaseTool): """Tool that adds the capability to ask user for input.""" name = "Human" description = ( "You can ask a human for guidance when you think you " "got stuck or you are not sure what to do next. " "The input should be a question for the human." ) prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func) input_func: Callable = Field(default_factory=lambda: input) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Human input tool.""" self.prompt_func(query) return self.input_func() async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the Human tool asynchronously.""" raise NotImplementedError("Human tool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/human/tool.html
79ab24921d41-0
Source code for langchain.tools.shell.tool import asyncio import platform import warnings from typing import List, Optional, Type, Union from pydantic import BaseModel, Field, root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.bash import BashProcess class ShellInput(BaseModel): """Commands for the Bash Shell tool.""" commands: Union[str, List[str]] = Field( ..., description="List of shell commands to run. Deserialized using json.loads", ) """List of shell commands to run.""" @root_validator def _validate_commands(cls, values: dict) -> dict: """Validate commands.""" # TODO: Add real validators commands = values.get("commands") if not isinstance(commands, list): values["commands"] = [commands] # Warn that the bash tool is not safe warnings.warn( "The shell tool has no safeguards by default. Use at your own risk." ) return values def _get_default_bash_processs() -> BashProcess: """Get file path from string.""" return BashProcess(return_err_output=True) def _get_platform() -> str: """Get platform.""" system = platform.system() if system == "Darwin": return "MacOS" return system [docs]class ShellTool(BaseTool): """Tool to run shell commands.""" process: BashProcess = Field(default_factory=_get_default_bash_processs) """Bash process to run commands.""" name: str = "terminal" """Name of tool."""
https://python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
79ab24921d41-1
name: str = "terminal" """Name of tool.""" description: str = f"Run shell commands on this {_get_platform()} machine." """Description of tool.""" args_schema: Type[BaseModel] = ShellInput """Schema for input arguments.""" def _run( self, commands: Union[str, List[str]], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Run commands and return final output.""" return self.process.run(commands) async def _arun( self, commands: Union[str, List[str]], run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Run commands asynchronously and return final output.""" return await asyncio.get_event_loop().run_in_executor( None, self.process.run, commands ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/shell/tool.html
ee7980f5d849-0
Source code for langchain.tools.wolfram_alpha.tool """Tool for the Wolfram Alpha API.""" from typing import Optional from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper [docs]class WolframAlphaQueryRun(BaseTool): """Tool that adds the capability to query using the Wolfram Alpha SDK.""" name = "Wolfram Alpha" description = ( "A wrapper around Wolfram Alpha. " "Useful for when you need to answer questions about Math, " "Science, Technology, Culture, Society and Everyday Life. " "Input should be a search query." ) api_wrapper: WolframAlphaAPIWrapper def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the WolframAlpha tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the WolframAlpha tool asynchronously.""" raise NotImplementedError("WolframAlphaQueryRun does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/wolfram_alpha/tool.html
30eaf65a626f-0
Source code for langchain.tools.steamship_image_generation.tool """This tool allows agents to generate images using Steamship. Steamship offers access to different third party image generation APIs using a single API key. Today the following models are supported: - Dall-E - Stable Diffusion To use this tool, you must first set as environment variables: STEAMSHIP_API_KEY ``` """ from __future__ import annotations from enum import Enum from typing import TYPE_CHECKING, Dict, Optional from pydantic import root_validator from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools import BaseTool from langchain.tools.steamship_image_generation.utils import make_image_public from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: pass class ModelName(str, Enum): """Supported Image Models for generation.""" DALL_E = "dall-e" STABLE_DIFFUSION = "stable-diffusion" SUPPORTED_IMAGE_SIZES = { ModelName.DALL_E: ("256x256", "512x512", "1024x1024"), ModelName.STABLE_DIFFUSION: ("512x512", "768x768"), } [docs]class SteamshipImageGenerationTool(BaseTool): try: from steamship import Steamship except ImportError: pass """Tool used to generate images from a text-prompt.""" model_name: ModelName size: Optional[str] = "512x512" steamship: Steamship return_urls: Optional[bool] = False name = "GenerateImage" description = ( "Useful for when you need to generate an image."
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
30eaf65a626f-1
description = ( "Useful for when you need to generate an image." "Input: A detailed text-2-image prompt describing an image" "Output: the UUID of a generated image" ) @root_validator(pre=True) def validate_size(cls, values: Dict) -> Dict: if "size" in values: size = values["size"] model_name = values["model_name"] if size not in SUPPORTED_IMAGE_SIZES[model_name]: raise RuntimeError(f"size {size} is not supported by {model_name}") return values @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" steamship_api_key = get_from_dict_or_env( values, "steamship_api_key", "STEAMSHIP_API_KEY" ) try: from steamship import Steamship except ImportError: raise ImportError( "steamship is not installed. " "Please install it with `pip install steamship`" ) steamship = Steamship( api_key=steamship_api_key, ) values["steamship"] = steamship if "steamship_api_key" in values: del values["steamship_api_key"] return values def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" image_generator = self.steamship.use_plugin( plugin_handle=self.model_name.value, config={"n": 1, "size": self.size} )
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
30eaf65a626f-2
) task = image_generator.generate(text=query, append_output_to_file=True) task.wait() blocks = task.output.blocks if len(blocks) > 0: if self.return_urls: return make_image_public(self.steamship, blocks[0]) else: return blocks[0].id raise RuntimeError(f"[{self.name}] Tool unable to generate image!") async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("GenerateImageTool does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/steamship_image_generation/tool.html
0171929a8aa2-0
Source code for langchain.tools.ddg_search.tool """Tool for the DuckDuckGo search API.""" import warnings from typing import Any, Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper [docs]class DuckDuckGoSearchRun(BaseTool): """Tool that adds the capability to query the DuckDuckGo search API.""" name = "DuckDuckGo Search" description = ( "A wrapper around DuckDuckGo Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query." ) api_wrapper: DuckDuckGoSearchAPIWrapper = Field( default_factory=DuckDuckGoSearchAPIWrapper ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("DuckDuckGoSearch does not support async") [docs]class DuckDuckGoSearchResults(BaseTool): """Tool that queries the Duck Duck Go Search API and get back json.""" name = "DuckDuckGo Results JSON" description = ( "A wrapper around Duck Duck Go Search. "
https://python.langchain.com/en/latest/_modules/langchain/tools/ddg_search/tool.html
0171929a8aa2-1
description = ( "A wrapper around Duck Duck Go Search. " "Useful for when you need to answer questions about current events. " "Input should be a search query. Output is a JSON array of the query results" ) num_results: int = 4 api_wrapper: DuckDuckGoSearchAPIWrapper = Field( default_factory=DuckDuckGoSearchAPIWrapper ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.api_wrapper.results(query, self.num_results)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("DuckDuckGoSearchResults does not support async") def DuckDuckGoSearchTool(*args: Any, **kwargs: Any) -> DuckDuckGoSearchRun: warnings.warn( "DuckDuckGoSearchTool will be deprecated in the future. " "Please use DuckDuckGoSearchRun instead.", DeprecationWarning, ) return DuckDuckGoSearchRun(*args, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/ddg_search/tool.html
afff2aef8b33-0
Source code for langchain.tools.openapi.utils.openapi_utils """Utility functions for parsing an OpenAPI spec.""" import copy import json import logging import re from enum import Enum from pathlib import Path from typing import Dict, List, Optional, Union import requests import yaml from openapi_schema_pydantic import ( Components, OpenAPI, Operation, Parameter, PathItem, Paths, Reference, RequestBody, Schema, ) from pydantic import ValidationError logger = logging.getLogger(__name__) class HTTPVerb(str, Enum): """HTTP verbs.""" GET = "get" PUT = "put" POST = "post" DELETE = "delete" OPTIONS = "options" HEAD = "head" PATCH = "patch" TRACE = "trace" @classmethod def from_str(cls, verb: str) -> "HTTPVerb": """Parse an HTTP verb.""" try: return cls(verb) except ValueError: raise ValueError(f"Invalid HTTP verb. Valid values are {cls.__members__}") [docs]class OpenAPISpec(OpenAPI): """OpenAPI Model that removes misformatted parts of the spec.""" @property def _paths_strict(self) -> Paths: if not self.paths: raise ValueError("No paths found in spec") return self.paths def _get_path_strict(self, path: str) -> PathItem: path_item = self._paths_strict.get(path) if not path_item: raise ValueError(f"No path found for {path}") return path_item @property def _components_strict(self) -> Components:
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-1
@property def _components_strict(self) -> Components: """Get components or err.""" if self.components is None: raise ValueError("No components found in spec. ") return self.components @property def _parameters_strict(self) -> Dict[str, Union[Parameter, Reference]]: """Get parameters or err.""" parameters = self._components_strict.parameters if parameters is None: raise ValueError("No parameters found in spec. ") return parameters @property def _schemas_strict(self) -> Dict[str, Schema]: """Get the dictionary of schemas or err.""" schemas = self._components_strict.schemas if schemas is None: raise ValueError("No schemas found in spec. ") return schemas @property def _request_bodies_strict(self) -> Dict[str, Union[RequestBody, Reference]]: """Get the request body or err.""" request_bodies = self._components_strict.requestBodies if request_bodies is None: raise ValueError("No request body found in spec. ") return request_bodies def _get_referenced_parameter(self, ref: Reference) -> Union[Parameter, Reference]: """Get a parameter (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] parameters = self._parameters_strict if ref_name not in parameters: raise ValueError(f"No parameter found for {ref_name}") return parameters[ref_name] def _get_root_referenced_parameter(self, ref: Reference) -> Parameter: """Get the root reference or err.""" parameter = self._get_referenced_parameter(ref) while isinstance(parameter, Reference):
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-2
parameter = self._get_referenced_parameter(ref) while isinstance(parameter, Reference): parameter = self._get_referenced_parameter(parameter) return parameter [docs] def get_referenced_schema(self, ref: Reference) -> Schema: """Get a schema (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] schemas = self._schemas_strict if ref_name not in schemas: raise ValueError(f"No schema found for {ref_name}") return schemas[ref_name] def _get_root_referenced_schema(self, ref: Reference) -> Schema: """Get the root reference or err.""" schema = self.get_referenced_schema(ref) while isinstance(schema, Reference): schema = self.get_referenced_schema(schema) return schema def _get_referenced_request_body( self, ref: Reference ) -> Optional[Union[Reference, RequestBody]]: """Get a request body (or nested reference) or err.""" ref_name = ref.ref.split("/")[-1] request_bodies = self._request_bodies_strict if ref_name not in request_bodies: raise ValueError(f"No request body found for {ref_name}") return request_bodies[ref_name] def _get_root_referenced_request_body( self, ref: Reference ) -> Optional[RequestBody]: """Get the root request Body or err.""" request_body = self._get_referenced_request_body(ref) while isinstance(request_body, Reference): request_body = self._get_referenced_request_body(request_body) return request_body @staticmethod def _alert_unsupported_spec(obj: dict) -> None: """Alert if the spec is not supported."""
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-3
"""Alert if the spec is not supported.""" warning_message = ( " This may result in degraded performance." + " Convert your OpenAPI spec to 3.1.* spec" + " for better support." ) swagger_version = obj.get("swagger") openapi_version = obj.get("openapi") if isinstance(openapi_version, str): if openapi_version != "3.1.0": logger.warning( f"Attempting to load an OpenAPI {openapi_version}" f" spec. {warning_message}" ) else: pass elif isinstance(swagger_version, str): logger.warning( f"Attempting to load a Swagger {swagger_version}" f" spec. {warning_message}" ) else: raise ValueError( "Attempting to load an unsupported spec:" f"\n\n{obj}\n{warning_message}" ) [docs] @classmethod def parse_obj(cls, obj: dict) -> "OpenAPISpec": try: cls._alert_unsupported_spec(obj) return super().parse_obj(obj) except ValidationError as e: # We are handling possibly misconfigured specs and want to do a best-effort # job to get a reasonable interface out of it. new_obj = copy.deepcopy(obj) for error in e.errors(): keys = error["loc"] item = new_obj for key in keys[:-1]: item = item[key] item.pop(keys[-1], None) return cls.parse_obj(new_obj) [docs] @classmethod def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec":
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-4
def from_spec_dict(cls, spec_dict: dict) -> "OpenAPISpec": """Get an OpenAPI spec from a dict.""" return cls.parse_obj(spec_dict) [docs] @classmethod def from_text(cls, text: str) -> "OpenAPISpec": """Get an OpenAPI spec from a text.""" try: spec_dict = json.loads(text) except json.JSONDecodeError: spec_dict = yaml.safe_load(text) return cls.from_spec_dict(spec_dict) [docs] @classmethod def from_file(cls, path: Union[str, Path]) -> "OpenAPISpec": """Get an OpenAPI spec from a file path.""" path_ = path if isinstance(path, Path) else Path(path) if not path_.exists(): raise FileNotFoundError(f"{path} does not exist") with path_.open("r") as f: return cls.from_text(f.read()) [docs] @classmethod def from_url(cls, url: str) -> "OpenAPISpec": """Get an OpenAPI spec from a URL.""" response = requests.get(url) return cls.from_text(response.text) @property def base_url(self) -> str: """Get the base url.""" return self.servers[0].url [docs] def get_methods_for_path(self, path: str) -> List[str]: """Return a list of valid methods for the specified path.""" path_item = self._get_path_strict(path) results = [] for method in HTTPVerb: operation = getattr(path_item, method.value, None) if isinstance(operation, Operation): results.append(method.value) return results
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-5
if isinstance(operation, Operation): results.append(method.value) return results [docs] def get_operation(self, path: str, method: str) -> Operation: """Get the operation object for a given path and HTTP method.""" path_item = self._get_path_strict(path) operation_obj = getattr(path_item, method, None) if not isinstance(operation_obj, Operation): raise ValueError(f"No {method} method found for {path}") return operation_obj [docs] def get_parameters_for_operation(self, operation: Operation) -> List[Parameter]: """Get the components for a given operation.""" parameters = [] if operation.parameters: for parameter in operation.parameters: if isinstance(parameter, Reference): parameter = self._get_root_referenced_parameter(parameter) parameters.append(parameter) return parameters [docs] def get_request_body_for_operation( self, operation: Operation ) -> Optional[RequestBody]: """Get the request body for a given operation.""" request_body = operation.requestBody if isinstance(request_body, Reference): request_body = self._get_root_referenced_request_body(request_body) return request_body [docs] @staticmethod def get_cleaned_operation_id(operation: Operation, path: str, method: str) -> str: """Get a cleaned operation id from an operation id.""" operation_id = operation.operationId if operation_id is None: # Replace all punctuation of any kind with underscore path = re.sub(r"[^a-zA-Z0-9]", "_", path.lstrip("/")) operation_id = f"{path}_{method}" return operation_id.replace("-", "_").replace(".", "_").replace("/", "_") By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
afff2aef8b33-6
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/openapi_utils.html
67a1f780c66e-0
Source code for langchain.tools.openapi.utils.api_models """Pydantic models for parsing an OpenAPI spec.""" import logging from enum import Enum from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union from openapi_schema_pydantic import MediaType, Parameter, Reference, RequestBody, Schema from pydantic import BaseModel, Field from langchain.tools.openapi.utils.openapi_utils import HTTPVerb, OpenAPISpec logger = logging.getLogger(__name__) PRIMITIVE_TYPES = { "integer": int, "number": float, "string": str, "boolean": bool, "array": List, "object": Dict, "null": None, } # See https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.1.0.md#parameterIn # for more info. class APIPropertyLocation(Enum): """The location of the property.""" QUERY = "query" PATH = "path" HEADER = "header" COOKIE = "cookie" # Not yet supported @classmethod def from_str(cls, location: str) -> "APIPropertyLocation": """Parse an APIPropertyLocation.""" try: return cls(location) except ValueError: raise ValueError( f"Invalid APIPropertyLocation. Valid values are {cls.__members__}" ) _SUPPORTED_MEDIA_TYPES = ("application/json",) SUPPORTED_LOCATIONS = { APIPropertyLocation.QUERY, APIPropertyLocation.PATH, } INVALID_LOCATION_TEMPL = ( 'Unsupported APIPropertyLocation "{location}"' " for parameter {name}. " + f"Valid values are {[loc.value for loc in SUPPORTED_LOCATIONS]}" )
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-1
) SCHEMA_TYPE = Union[str, Type, tuple, None, Enum] class APIPropertyBase(BaseModel): """Base model for an API property.""" # The name of the parameter is required and is case sensitive. # If "in" is "path", the "name" field must correspond to a template expression # within the path field in the Paths Object. # If "in" is "header" and the "name" field is "Accept", "Content-Type", # or "Authorization", the parameter definition is ignored. # For all other cases, the "name" corresponds to the parameter # name used by the "in" property. name: str = Field(alias="name") """The name of the property.""" required: bool = Field(alias="required") """Whether the property is required.""" type: SCHEMA_TYPE = Field(alias="type") """The type of the property. Either a primitive type, a component/parameter type, or an array or 'object' (dict) of the above.""" default: Optional[Any] = Field(alias="default", default=None) """The default value of the property.""" description: Optional[str] = Field(alias="description", default=None) """The description of the property.""" class APIProperty(APIPropertyBase): """A model for a property in the query, path, header, or cookie params.""" location: APIPropertyLocation = Field(alias="location") """The path/how it's being passed to the endpoint.""" @staticmethod def _cast_schema_list_type(schema: Schema) -> Optional[Union[str, Tuple[str, ...]]]: type_ = schema.type if not isinstance(type_, list): return type_
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-2
if not isinstance(type_, list): return type_ else: return tuple(type_) @staticmethod def _get_schema_type_for_enum(parameter: Parameter, schema: Schema) -> Enum: """Get the schema type when the parameter is an enum.""" param_name = f"{parameter.name}Enum" return Enum(param_name, {str(v): v for v in schema.enum}) @staticmethod def _get_schema_type_for_array( schema: Schema, ) -> Optional[Union[str, Tuple[str, ...]]]: items = schema.items if isinstance(items, Schema): schema_type = APIProperty._cast_schema_list_type(items) elif isinstance(items, Reference): ref_name = items.ref.split("/")[-1] schema_type = ref_name # TODO: Add ref definitions to make his valid else: raise ValueError(f"Unsupported array items: {items}") if isinstance(schema_type, str): # TODO: recurse schema_type = (schema_type,) return schema_type @staticmethod def _get_schema_type(parameter: Parameter, schema: Optional[Schema]) -> SCHEMA_TYPE: if schema is None: return None schema_type: SCHEMA_TYPE = APIProperty._cast_schema_list_type(schema) if schema_type == "array": schema_type = APIProperty._get_schema_type_for_array(schema) elif schema_type == "object": # TODO: Resolve array and object types to components. raise NotImplementedError("Objects not yet supported") elif schema_type in PRIMITIVE_TYPES: if schema.enum: schema_type = APIProperty._get_schema_type_for_enum(parameter, schema) else: # Directly use the primitive type pass
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-3
else: # Directly use the primitive type pass else: raise NotImplementedError(f"Unsupported type: {schema_type}") return schema_type @staticmethod def _validate_location(location: APIPropertyLocation, name: str) -> None: if location not in SUPPORTED_LOCATIONS: raise NotImplementedError( INVALID_LOCATION_TEMPL.format(location=location, name=name) ) @staticmethod def _validate_content(content: Optional[Dict[str, MediaType]]) -> None: if content: raise ValueError( "API Properties with media content not supported. " "Media content only supported within APIRequestBodyProperty's" ) @staticmethod def _get_schema(parameter: Parameter, spec: OpenAPISpec) -> Optional[Schema]: schema = parameter.param_schema if isinstance(schema, Reference): schema = spec.get_referenced_schema(schema) elif schema is None: return None elif not isinstance(schema, Schema): raise ValueError(f"Error dereferencing schema: {schema}") return schema @staticmethod def is_supported_location(location: str) -> bool: """Return whether the provided location is supported.""" try: return APIPropertyLocation.from_str(location) in SUPPORTED_LOCATIONS except ValueError: return False @classmethod def from_parameter(cls, parameter: Parameter, spec: OpenAPISpec) -> "APIProperty": """Instantiate from an OpenAPI Parameter.""" location = APIPropertyLocation.from_str(parameter.param_in) cls._validate_location( location, parameter.name, ) cls._validate_content(parameter.content) schema = cls._get_schema(parameter, spec)
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-4
schema = cls._get_schema(parameter, spec) schema_type = cls._get_schema_type(parameter, schema) default_val = schema.default if schema is not None else None return cls( name=parameter.name, location=location, default=default_val, description=parameter.description, required=parameter.required, type=schema_type, ) class APIRequestBodyProperty(APIPropertyBase): """A model for a request body property.""" properties: List["APIRequestBodyProperty"] = Field(alias="properties") """The sub-properties of the property.""" # This is useful for handling nested property cycles. # We can define separate types in that case. references_used: List[str] = Field(alias="references_used") """The references used by the property.""" @classmethod def _process_object_schema( cls, schema: Schema, spec: OpenAPISpec, references_used: List[str] ) -> Tuple[Union[str, List[str], None], List["APIRequestBodyProperty"]]: properties = [] required_props = schema.required or [] if schema.properties is None: raise ValueError( f"No properties found when processing object schema: {schema}" ) for prop_name, prop_schema in schema.properties.items(): if isinstance(prop_schema, Reference): ref_name = prop_schema.ref.split("/")[-1] if ref_name not in references_used: references_used.append(ref_name) prop_schema = spec.get_referenced_schema(prop_schema) else: continue properties.append( cls.from_schema( schema=prop_schema, name=prop_name, required=prop_name in required_props, spec=spec,
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-5
required=prop_name in required_props, spec=spec, references_used=references_used, ) ) return schema.type, properties @classmethod def _process_array_schema( cls, schema: Schema, name: str, spec: OpenAPISpec, references_used: List[str] ) -> str: items = schema.items if items is not None: if isinstance(items, Reference): ref_name = items.ref.split("/")[-1] if ref_name not in references_used: references_used.append(ref_name) items = spec.get_referenced_schema(items) else: pass return f"Array<{ref_name}>" else: pass if isinstance(items, Schema): array_type = cls.from_schema( schema=items, name=f"{name}Item", required=True, # TODO: Add required spec=spec, references_used=references_used, ) return f"Array<{array_type.type}>" return "array" @classmethod def from_schema( cls, schema: Schema, name: str, required: bool, spec: OpenAPISpec, references_used: Optional[List[str]] = None, ) -> "APIRequestBodyProperty": """Recursively populate from an OpenAPI Schema.""" if references_used is None: references_used = [] schema_type = schema.type properties: List[APIRequestBodyProperty] = [] if schema_type == "object" and schema.properties: schema_type, properties = cls._process_object_schema( schema, spec, references_used ) elif schema_type == "array":
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-6
schema, spec, references_used ) elif schema_type == "array": schema_type = cls._process_array_schema(schema, name, spec, references_used) elif schema_type in PRIMITIVE_TYPES: # Use the primitive type directly pass elif schema_type is None: # No typing specified/parsed. WIll map to 'any' pass else: raise ValueError(f"Unsupported type: {schema_type}") return cls( name=name, required=required, type=schema_type, default=schema.default, description=schema.description, properties=properties, references_used=references_used, ) class APIRequestBody(BaseModel): """A model for a request body.""" description: Optional[str] = Field(alias="description") """The description of the request body.""" properties: List[APIRequestBodyProperty] = Field(alias="properties") # E.g., application/json - we only support JSON at the moment. media_type: str = Field(alias="media_type") """The media type of the request body.""" @classmethod def _process_supported_media_type( cls, media_type_obj: MediaType, spec: OpenAPISpec, ) -> List[APIRequestBodyProperty]: """Process the media type of the request body.""" references_used = [] schema = media_type_obj.media_type_schema if isinstance(schema, Reference): references_used.append(schema.ref.split("/")[-1]) schema = spec.get_referenced_schema(schema) if schema is None: raise ValueError( f"Could not resolve schema for media type: {media_type_obj}" ) api_request_body_properties = []
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-7
) api_request_body_properties = [] required_properties = schema.required or [] if schema.type == "object" and schema.properties: for prop_name, prop_schema in schema.properties.items(): if isinstance(prop_schema, Reference): prop_schema = spec.get_referenced_schema(prop_schema) api_request_body_properties.append( APIRequestBodyProperty.from_schema( schema=prop_schema, name=prop_name, required=prop_name in required_properties, spec=spec, ) ) else: api_request_body_properties.append( APIRequestBodyProperty( name="body", required=True, type=schema.type, default=schema.default, description=schema.description, properties=[], references_used=references_used, ) ) return api_request_body_properties @classmethod def from_request_body( cls, request_body: RequestBody, spec: OpenAPISpec ) -> "APIRequestBody": """Instantiate from an OpenAPI RequestBody.""" properties = [] for media_type, media_type_obj in request_body.content.items(): if media_type not in _SUPPORTED_MEDIA_TYPES: continue api_request_body_properties = cls._process_supported_media_type( media_type_obj, spec, ) properties.extend(api_request_body_properties) return cls( description=request_body.description, properties=properties, media_type=media_type, ) [docs]class APIOperation(BaseModel): """A model for a single API operation.""" operation_id: str = Field(alias="operation_id") """The unique identifier of the operation.""" description: Optional[str] = Field(alias="description")
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-8
description: Optional[str] = Field(alias="description") """The description of the operation.""" base_url: str = Field(alias="base_url") """The base URL of the operation.""" path: str = Field(alias="path") """The path of the operation.""" method: HTTPVerb = Field(alias="method") """The HTTP method of the operation.""" properties: Sequence[APIProperty] = Field(alias="properties") # TODO: Add parse in used components to be able to specify what type of # referenced object it is. # """The properties of the operation.""" # components: Dict[str, BaseModel] = Field(alias="components") request_body: Optional[APIRequestBody] = Field(alias="request_body") """The request body of the operation.""" @staticmethod def _get_properties_from_parameters( parameters: List[Parameter], spec: OpenAPISpec ) -> List[APIProperty]: """Get the properties of the operation.""" properties = [] for param in parameters: if APIProperty.is_supported_location(param.param_in): properties.append(APIProperty.from_parameter(param, spec)) elif param.required: raise ValueError( INVALID_LOCATION_TEMPL.format( location=param.param_in, name=param.name ) ) else: logger.warning( INVALID_LOCATION_TEMPL.format( location=param.param_in, name=param.name ) + " Ignoring optional parameter" ) pass return properties [docs] @classmethod def from_openapi_url( cls, spec_url: str, path: str, method: str, ) -> "APIOperation":
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-9
path: str, method: str, ) -> "APIOperation": """Create an APIOperation from an OpenAPI URL.""" spec = OpenAPISpec.from_url(spec_url) return cls.from_openapi_spec(spec, path, method) [docs] @classmethod def from_openapi_spec( cls, spec: OpenAPISpec, path: str, method: str, ) -> "APIOperation": """Create an APIOperation from an OpenAPI spec.""" operation = spec.get_operation(path, method) parameters = spec.get_parameters_for_operation(operation) properties = cls._get_properties_from_parameters(parameters, spec) operation_id = OpenAPISpec.get_cleaned_operation_id(operation, path, method) request_body = spec.get_request_body_for_operation(operation) api_request_body = ( APIRequestBody.from_request_body(request_body, spec) if request_body is not None else None ) description = operation.description or operation.summary if not description and spec.paths is not None: description = spec.paths[path].description or spec.paths[path].summary return cls( operation_id=operation_id, description=description, base_url=spec.base_url, path=path, method=method, properties=properties, request_body=api_request_body, ) [docs] @staticmethod def ts_type_from_python(type_: SCHEMA_TYPE) -> str: if type_ is None: # TODO: Handle Nones better. These often result when # parsing specs that are < v3 return "any" elif isinstance(type_, str): return { "str": "string",
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-10
elif isinstance(type_, str): return { "str": "string", "integer": "number", "float": "number", "date-time": "string", }.get(type_, type_) elif isinstance(type_, tuple): return f"Array<{APIOperation.ts_type_from_python(type_[0])}>" elif isinstance(type_, type) and issubclass(type_, Enum): return " | ".join([f"'{e.value}'" for e in type_]) else: return str(type_) def _format_nested_properties( self, properties: List[APIRequestBodyProperty], indent: int = 2 ) -> str: """Format nested properties.""" formatted_props = [] for prop in properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = "" if prop.required else "?" prop_desc = f"/* {prop.description} */" if prop.description else "" if prop.properties: nested_props = self._format_nested_properties( prop.properties, indent + 2 ) prop_type = f"{{\n{nested_props}\n{' ' * indent}}}" formatted_props.append( f"{prop_desc}\n{' ' * indent}{prop_name}{prop_required}: {prop_type}," ) return "\n".join(formatted_props) [docs] def to_typescript(self) -> str: """Get typescript string representation of the operation.""" operation_name = self.operation_id params = [] if self.request_body: formatted_request_body_props = self._format_nested_properties( self.request_body.properties ) params.append(formatted_request_body_props)
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
67a1f780c66e-11
self.request_body.properties ) params.append(formatted_request_body_props) for prop in self.properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = "" if prop.required else "?" prop_desc = f"/* {prop.description} */" if prop.description else "" params.append(f"{prop_desc}\n\t\t{prop_name}{prop_required}: {prop_type},") formatted_params = "\n".join(params).strip() description_str = f"/* {self.description} */" if self.description else "" typescript_definition = f""" {description_str} type {operation_name} = (_: {{ {formatted_params} }}) => any; """ return typescript_definition.strip() @property def query_params(self) -> List[str]: return [ property.name for property in self.properties if property.location == APIPropertyLocation.QUERY ] @property def path_params(self) -> List[str]: return [ property.name for property in self.properties if property.location == APIPropertyLocation.PATH ] @property def body_params(self) -> List[str]: if self.request_body is None: return [] return [prop.name for prop in self.request_body.properties] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/openapi/utils/api_models.html
fdf1838bf74e-0
Source code for langchain.tools.pubmed.tool """Tool for the Pubmed API.""" from typing import Optional from pydantic import Field from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from langchain.tools.base import BaseTool from langchain.utilities.pupmed import PubMedAPIWrapper [docs]class PubmedQueryRun(BaseTool): """Tool that adds the capability to search using the PubMed API.""" name = "PubMed" description = ( "A wrapper around PubMed.org " "Useful for when you need to answer questions about Physics, Mathematics, " "Computer Science, Quantitative Biology, Quantitative Finance, Statistics, " "Electrical Engineering, and Economics " "from scientific articles on PubMed.org. " "Input should be a search query." ) api_wrapper: PubMedAPIWrapper = Field(default_factory=PubMedAPIWrapper) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Arxiv tool.""" return self.api_wrapper.run(query) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the PubMed tool asynchronously.""" raise NotImplementedError("PubMedAPIWrapper does not support async") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/tools/pubmed/tool.html
eb6bd44f366a-0
Source code for langchain.output_parsers.fix from __future__ import annotations from typing import TypeVar from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseOutputParser, OutputParserException T = TypeVar("T") [docs]class OutputFixingParser(BaseOutputParser[T]): """Wraps a parser and tries to fix parsing errors.""" parser: BaseOutputParser[T] retry_chain: LLMChain [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, parser: BaseOutputParser[T], prompt: BasePromptTemplate = NAIVE_FIX_PROMPT, ) -> OutputFixingParser[T]: chain = LLMChain(llm=llm, prompt=prompt) return cls(parser=parser, retry_chain=chain) [docs] def parse(self, completion: str) -> T: try: parsed_completion = self.parser.parse(completion) except OutputParserException as e: new_completion = self.retry_chain.run( instructions=self.parser.get_format_instructions(), completion=completion, error=repr(e), ) parsed_completion = self.parser.parse(new_completion) return parsed_completion [docs] def get_format_instructions(self) -> str: return self.parser.get_format_instructions() @property def _type(self) -> str: return "output_fixing" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html