id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
8e06fd0430fe-2
""" embedding = self._embedding.embed_query(query) docs = self._connection.search(embedding).limit(k).to_df() return [ Document( page_content=row[self._text_key], metadata=row[docs.columns != self._text_key], ) for _, row in docs.iterrows() ] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: Any = None, vector_key: Optional[str] = "vector", id_key: Optional[str] = "id", text_key: Optional[str] = "text", **kwargs: Any, ) -> LanceDB: instance = LanceDB( connection, embedding, vector_key, id_key, text_key, ) instance.add_texts(texts, metadatas=metadatas, **kwargs) return instance By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/lancedb.html
174d08f5163d-0
Source code for langchain.vectorstores.elastic_vector_search """Wrapper around Elasticsearch vector database.""" from __future__ import annotations import uuid from abc import ABC from typing import ( TYPE_CHECKING, Any, Dict, Iterable, List, Mapping, Optional, Tuple, Union, ) from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_env from langchain.vectorstores.base import VectorStore if TYPE_CHECKING: from elasticsearch import Elasticsearch def _default_text_mapping(dim: int) -> Dict: return { "properties": { "text": {"type": "text"}, "vector": {"type": "dense_vector", "dims": dim}, } } def _default_script_query(query_vector: List[float], filter: Optional[dict]) -> Dict: if filter: ((key, value),) = filter.items() filter = {"match": {f"metadata.{key}.keyword": f"{value}"}} else: filter = {"match_all": {}} return { "script_score": { "query": filter, "script": { "source": "cosineSimilarity(params.query_vector, 'vector') + 1.0", "params": {"query_vector": query_vector}, }, } } # ElasticVectorSearch is a concrete implementation of the abstract base class # VectorStore, which defines a common interface for all vector database # implementations. By inheriting from the ABC class, ElasticVectorSearch can be # defined as an abstract base class itself, allowing the creation of subclasses with
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-1
# defined as an abstract base class itself, allowing the creation of subclasses with # their own specific implementations. If you plan to subclass ElasticVectorSearch, # you can inherit from it and define your own implementation of the necessary methods # and attributes. [docs]class ElasticVectorSearch(VectorStore, ABC): """Wrapper around Elasticsearch as a vector database. To connect to an Elasticsearch instance that does not require login credentials, pass the Elasticsearch URL and index name along with the embedding object to the constructor. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch( elasticsearch_url="http://localhost:9200", index_name="test_index", embedding=embedding ) To connect to an Elasticsearch instance that requires login credentials, including Elastic Cloud, use the Elasticsearch URL format https://username:password@es_host:9243. For example, to connect to Elastic Cloud, create the Elasticsearch URL with the required authentication details and pass it to the ElasticVectorSearch constructor as the named parameter elasticsearch_url. You can obtain your Elastic Cloud URL and login credentials by logging in to the Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and navigating to the "Deployments" page. To obtain your Elastic Cloud password for the default "elastic" user: 1. Log in to the Elastic Cloud console at https://cloud.elastic.co 2. Go to "Security" > "Users" 3. Locate the "elastic" user and click "Edit" 4. Click "Reset password"
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-2
4. Click "Reset password" 5. Follow the prompts to reset the password The format for Elastic Cloud URLs is https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embedding = OpenAIEmbeddings() elastic_host = "cluster_id.region_id.gcp.cloud.es.io" elasticsearch_url = f"https://username:password@{elastic_host}:9243" elastic_vector_search = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, index_name="test_index", embedding=embedding ) Args: elasticsearch_url (str): The URL for the Elasticsearch instance. index_name (str): The name of the Elasticsearch index for the embeddings. embedding (Embeddings): An object that provides the ability to embed text. It should be an instance of a class that subclasses the Embeddings abstract base class, such as OpenAIEmbeddings() Raises: ValueError: If the elasticsearch python package is not installed. """ def __init__( self, elasticsearch_url: str, index_name: str, embedding: Embeddings, *, ssl_verify: Optional[Dict[str, Any]] = None, ): """Initialize with necessary components.""" try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) self.embedding = embedding self.index_name = index_name _ssl_verify = ssl_verify or {}
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-3
self.index_name = index_name _ssl_verify = ssl_verify or {} try: self.client = elasticsearch.Elasticsearch(elasticsearch_url, **_ssl_verify) except ValueError as e: raise ValueError( f"Your elasticsearch client string is mis-formatted. Got error: {e} " ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, refresh_indices: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. refresh_indices: bool to refresh ElasticSearch indices Returns: List of ids from adding the texts into the vectorstore. """ try: from elasticsearch.exceptions import NotFoundError from elasticsearch.helpers import bulk except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) requests = [] ids = [] embeddings = self.embedding.embed_documents(list(texts)) dim = len(embeddings[0]) mapping = _default_text_mapping(dim) # check to see if the index already exists try: self.client.indices.get(index=self.index_name) except NotFoundError: # TODO would be nice to create index before embedding, # just to save expensive steps for last self.create_index(self.client, self.index_name, mapping) for i, text in enumerate(texts):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-4
for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} _id = str(uuid.uuid4()) request = { "_op_type": "index", "_index": self.index_name, "vector": embeddings[i], "text": text, "metadata": metadata, "_id": _id, } ids.append(_id) requests.append(request) bulk(self.client, requests) if refresh_indices: self.client.indices.refresh(index=self.index_name) return ids [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) documents = [d[0] for d in docs_and_scores] return documents [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query. """ embedding = self.embedding.embed_query(query)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-5
""" embedding = self.embedding.embed_query(query) script_query = _default_script_query(embedding, filter) response = self.client_search( self.client, self.index_name, script_query, size=k ) hits = [hit for hit in response["hits"]["hits"]] docs_and_scores = [ ( Document( page_content=hit["_source"]["text"], metadata=hit["_source"]["metadata"], ), hit["_score"], ) for hit in hits ] return docs_and_scores [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, elasticsearch_url: Optional[str] = None, index_name: Optional[str] = None, refresh_indices: bool = True, **kwargs: Any, ) -> ElasticVectorSearch: """Construct ElasticVectorSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the Elasticsearch instance. 3. Adds the documents to the newly created Elasticsearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import ElasticVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() elastic_vector_search = ElasticVectorSearch.from_texts( texts, embeddings, elasticsearch_url="http://localhost:9200" ) """ elasticsearch_url = elasticsearch_url or get_from_env(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-6
) """ elasticsearch_url = elasticsearch_url or get_from_env( "elasticsearch_url", "ELASTICSEARCH_URL" ) index_name = index_name or uuid.uuid4().hex vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs) vectorsearch.add_texts( texts, metadatas=metadatas, refresh_indices=refresh_indices ) return vectorsearch [docs] def create_index(self, client: Any, index_name: str, mapping: Dict) -> None: version_num = client.info()["version"]["number"][0] version_num = int(version_num) if version_num >= 8: client.indices.create(index=index_name, mappings=mapping) else: client.indices.create(index=index_name, body={"mappings": mapping}) [docs] def client_search( self, client: Any, index_name: str, script_query: Dict, size: int ) -> Any: version_num = client.info()["version"]["number"][0] version_num = int(version_num) if version_num >= 8: response = client.search(index=index_name, query=script_query, size=size) else: response = client.search( index=index_name, body={"query": script_query, "size": size} ) return response class ElasticKnnSearch(ElasticVectorSearch): """ A class for performing k-Nearest Neighbors (k-NN) search on an Elasticsearch index. The class is designed for a text search scenario where documents are text strings and their embeddings are vector representations of those strings. """ def __init__( self, index_name: str,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-7
""" def __init__( self, index_name: str, embedding: Embeddings, es_connection: Optional["Elasticsearch"] = None, es_cloud_id: Optional[str] = None, es_user: Optional[str] = None, es_password: Optional[str] = None, ): """ Initializes an instance of the ElasticKnnSearch class and sets up the Elasticsearch client. Args: index_name: The name of the Elasticsearch index. embedding: An instance of the Embeddings class, used to generate vector representations of text strings. es_connection: An existing Elasticsearch connection. es_cloud_id: The Cloud ID of the Elasticsearch instance. Required if creating a new connection. es_user: The username for the Elasticsearch instance. Required if creating a new connection. es_password: The password for the Elasticsearch instance. Required if creating a new connection. """ try: import elasticsearch except ImportError: raise ImportError( "Could not import elasticsearch python package. " "Please install it with `pip install elasticsearch`." ) self.embedding = embedding self.index_name = index_name # If a pre-existing Elasticsearch connection is provided, use it. if es_connection is not None: self.client = es_connection else: # If credentials for a new Elasticsearch connection are provided, # create a new connection. if es_cloud_id and es_user and es_password: self.client = elasticsearch.Elasticsearch( cloud_id=es_cloud_id, basic_auth=(es_user, es_password) ) else: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-8
) else: raise ValueError( """Either provide a pre-existing Elasticsearch connection, \ or valid credentials for creating a new connection.""" ) @staticmethod def _default_knn_mapping(dims: int) -> Dict: """Generates a default index mapping for kNN search.""" return { "properties": { "text": {"type": "text"}, "vector": { "type": "dense_vector", "dims": dims, "index": True, "similarity": "dot_product", }, } } @staticmethod def _default_knn_query( query_vector: Optional[List[float]] = None, query: Optional[str] = None, model_id: Optional[str] = None, field: Optional[str] = "vector", k: Optional[int] = 10, num_candidates: Optional[int] = 10, ) -> Dict: knn: Dict = { "field": field, "k": k, "num_candidates": num_candidates, } # Case 1: `query_vector` is provided, but not `model_id` -> use query_vector if query_vector and not model_id: knn["query_vector"] = query_vector # Case 2: `query` and `model_id` are provided, -> use query_vector_builder elif query and model_id: knn["query_vector_builder"] = { "text_embedding": { "model_id": model_id, # use 'model_id' argument "model_text": query, # use 'query' argument } } else:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-9
} } else: raise ValueError( "Either `query_vector` or `model_id` must be provided, but not both." ) return knn def knn_search( self, query: Optional[str] = None, k: Optional[int] = 10, query_vector: Optional[List[float]] = None, model_id: Optional[str] = None, size: Optional[int] = 10, source: Optional[bool] = True, fields: Optional[ Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None] ] = None, ) -> Dict: """ Performs a k-nearest neighbor (k-NN) search on the Elasticsearch index. The search can be conducted using either a raw query vector or a model ID. The method first generates the body of the search query, which can be interpreted by Elasticsearch. It then performs the k-NN search on the Elasticsearch index and returns the results. Args: query: The query or queries to be used for the search. Required if `query_vector` is not provided. k: The number of nearest neighbors to return. Defaults to 10. query_vector: The query vector to be used for the search. Required if `query` is not provided. model_id: The ID of the model to use for generating the query vector, if `query` is provided. size: The number of search hits to return. Defaults to 10. source: Whether to include the source of each hit in the results. fields: The fields to include in the source of each hit. If None, all
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-10
fields: The fields to include in the source of each hit. If None, all fields are included. Returns: The search results. Raises: ValueError: If neither `query_vector` nor `model_id` is provided, or if both are provided. """ knn_query_body = self._default_knn_query( query_vector=query_vector, query=query, model_id=model_id, k=k ) # Perform the kNN search on the Elasticsearch index and return the results. res = self.client.search( index=self.index_name, knn=knn_query_body, size=size, source=source, fields=fields, ) return dict(res) def knn_hybrid_search( self, query: Optional[str] = None, k: Optional[int] = 10, query_vector: Optional[List[float]] = None, model_id: Optional[str] = None, size: Optional[int] = 10, source: Optional[bool] = True, knn_boost: Optional[float] = 0.9, query_boost: Optional[float] = 0.1, fields: Optional[ Union[List[Mapping[str, Any]], Tuple[Mapping[str, Any], ...], None] ] = None, ) -> Dict[Any, Any]: """Performs a hybrid k-nearest neighbor (k-NN) and text-based search on the Elasticsearch index. The search can be conducted using either a raw query vector or a model ID. The method first generates the body of the k-NN search query and the text-based query, which can be interpreted by Elasticsearch.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-11
interpreted by Elasticsearch. It then performs the hybrid search on the Elasticsearch index and returns the results. Args: query: The query or queries to be used for the search. Required if `query_vector` is not provided. k: The number of nearest neighbors to return. Defaults to 10. query_vector: The query vector to be used for the search. Required if `query` is not provided. model_id: The ID of the model to use for generating the query vector, if `query` is provided. size: The number of search hits to return. Defaults to 10. source: Whether to include the source of each hit in the results. knn_boost: The boost factor for the k-NN part of the search. query_boost: The boost factor for the text-based part of the search. fields The fields to include in the source of each hit. If None, all fields are included. Defaults to None. Returns: The search results. Raises: ValueError: If neither `query_vector` nor `model_id` is provided, or if both are provided. """ knn_query_body = self._default_knn_query( query_vector=query_vector, query=query, model_id=model_id, k=k ) # Modify the knn_query_body to add a "boost" parameter knn_query_body["boost"] = knn_boost # Generate the body of the standard Elasticsearch query match_query_body = {"match": {"text": {"query": query, "boost": query_boost}}} # Perform the hybrid search on the Elasticsearch index and return the results. res = self.client.search( index=self.index_name,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
174d08f5163d-12
res = self.client.search( index=self.index_name, query=match_query_body, knn=knn_query_body, fields=fields, size=size, source=source, ) return dict(res) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
e1a269b5278f-0
Source code for langchain.vectorstores.zilliz from __future__ import annotations import logging from typing import Any, List, Optional from langchain.embeddings.base import Embeddings from langchain.vectorstores.milvus import Milvus logger = logging.getLogger(__name__) [docs]class Zilliz(Milvus): def _create_index(self) -> None: """Create a index on the collection""" from pymilvus import Collection, MilvusException if isinstance(self.col, Collection) and self._get_index() is None: try: # If no index params, use a default AutoIndex based one if self.index_params is None: self.index_params = { "metric_type": "L2", "index_type": "AUTOINDEX", "params": {}, } try: self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) # If default did not work, most likely Milvus self-hosted except MilvusException: # Use HNSW based index self.index_params = { "metric_type": "L2", "index_type": "HNSW", "params": {"M": 8, "efConstruction": 64}, } self.col.create_index( self._vector_field, index_params=self.index_params, using=self.alias, ) logger.debug( "Successfully created an index on collection: %s", self.collection_name, ) except MilvusException as e: logger.error( "Failed to create an index on collection: %s", self.collection_name
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/zilliz.html
e1a269b5278f-1
"Failed to create an index on collection: %s", self.collection_name ) raise e [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = "LangChainCollection", connection_args: dict[str, Any] = {}, consistency_level: str = "Session", index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any, ) -> Zilliz: """Create a Zilliz collection, indexes it with HNSW, and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[dict]]): Metadata for each text if it exists. Defaults to None. collection_name (str, optional): Collection name to use. Defaults to "LangChainCollection". connection_args (dict[str, Any], optional): Connection args to use. Defaults to DEFAULT_MILVUS_CONNECTION. consistency_level (str, optional): Which consistency level to use. Defaults to "Session". index_params (Optional[dict], optional): Which index_params to use. Defaults to None. search_params (Optional[dict], optional): Which search params to use. Defaults to None. drop_old (Optional[bool], optional): Whether to drop the collection with that name if it exists. Defaults to False. Returns: Zilliz: Zilliz Vector Store """ vector_db = cls(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/zilliz.html
e1a269b5278f-2
""" vector_db = cls( embedding_function=embedding, collection_name=collection_name, connection_args=connection_args, consistency_level=consistency_level, index_params=index_params, search_params=search_params, drop_old=drop_old, **kwargs, ) vector_db.add_texts(texts=texts, metadatas=metadatas) return vector_db By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/zilliz.html
6a3b1344c4da-0
Source code for langchain.vectorstores.base """Interface for vector stores.""" from __future__ import annotations import asyncio import warnings from abc import ABC, abstractmethod from functools import partial from typing import Any, Dict, Iterable, List, Optional, Tuple, Type, TypeVar from pydantic import BaseModel, Field, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.schema import BaseRetriever VST = TypeVar("VST", bound="VectorStore") [docs]class VectorStore(ABC): """Interface for vector stores.""" [docs] @abstractmethod def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ [docs] async def aadd_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore.""" raise NotImplementedError [docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-1
Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ # TODO: Handle the case where the user doesn't provide ids on the Collection texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs) [docs] async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return await self.aadd_texts(texts, metadatas, **kwargs) [docs] def search(self, query: str, search_type: str, **kwargs: Any) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return self.similarity_search(query, **kwargs) elif search_type == "mmr": return self.max_marginal_relevance_search(query, **kwargs) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." ) [docs] async def asearch( self, query: str, search_type: str, **kwargs: Any
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-2
self, query: str, search_type: str, **kwargs: Any ) -> List[Document]: """Return docs most similar to query using specified search type.""" if search_type == "similarity": return await self.asimilarity_search(query, **kwargs) elif search_type == "mmr": return await self.amax_marginal_relevance_search(query, **kwargs) else: raise ValueError( f"search_type of {search_type} not allowed. Expected " "search_type to be 'similarity' or 'mmr'." ) [docs] @abstractmethod def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Args: query: input text k: Number of Documents to return. Defaults to 4. **kwargs: kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns: List of Tuples of (doc, similarity_score) """ docs_and_similarities = self._similarity_search_with_relevance_scores( query, k=k, **kwargs ) if any(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-3
query, k=k, **kwargs ) if any( similarity < 0.0 or similarity > 1.0 for _, similarity in docs_and_similarities ): warnings.warn( "Relevance scores must be between" f" 0 and 1, got {docs_and_similarities}" ) score_threshold = kwargs.get("score_threshold") if score_threshold is not None: docs_and_similarities = [ (doc, similarity) for doc, similarity in docs_and_similarities if similarity >= score_threshold ] if len(docs_and_similarities) == 0: warnings.warn( f"No relevant docs were retrieved using the relevance score\ threshold {score_threshold}" ) return docs_and_similarities def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ raise NotImplementedError [docs] async def asimilarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any ) -> List[Tuple[Document, float]]: """Return docs most similar to query.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search_with_relevance_scores, query, k, **kwargs)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-4
return await asyncio.get_event_loop().run_in_executor(None, func) [docs] async def asimilarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search, query, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ raise NotImplementedError [docs] async def asimilarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial(self.similarity_search_by_vector, embedding, k, **kwargs) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search( self, query: str, k: int = 4,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-5
self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" # This is a temporary workaround to make the similarity search # asynchronous. The proper solution is to make the similarity search # asynchronous in the vector store implementations. func = partial( self.max_marginal_relevance_search, query, k, fetch_k, lambda_mult, **kwargs ) return await asyncio.get_event_loop().run_in_executor(None, func) [docs] def max_marginal_relevance_search_by_vector( self,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-6
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ raise NotImplementedError [docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" raise NotImplementedError [docs] @classmethod def from_documents( cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-7
texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod async def afrom_documents( cls: Type[VST], documents: List[Document], embedding: Embeddings, **kwargs: Any, ) -> VST: """Return VectorStore initialized from documents and embeddings.""" texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] return await cls.afrom_texts(texts, embedding, metadatas=metadatas, **kwargs) [docs] @classmethod @abstractmethod def from_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" [docs] @classmethod async def afrom_texts( cls: Type[VST], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> VST: """Return VectorStore initialized from texts and embeddings.""" raise NotImplementedError [docs] def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever: return VectorStoreRetriever(vectorstore=self, **kwargs) class VectorStoreRetriever(BaseRetriever, BaseModel): vectorstore: VectorStore search_type: str = "similarity"
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-8
vectorstore: VectorStore search_type: str = "similarity" search_kwargs: dict = Field(default_factory=dict) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "similarity_score_threshold", "mmr"): raise ValueError(f"search_type of {search_type} not allowed.") if search_type == "similarity_score_threshold": score_threshold = values["search_kwargs"].get("score_threshold") if (score_threshold is None) or ( not isinstance(score_threshold, float) ): raise ValueError( "`score_threshold` is not specified with a float value(0~1) " "in `search_kwargs`." ) return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **self.search_kwargs) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.")
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
6a3b1344c4da-9
raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **self.search_kwargs ) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **self.search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **self.search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore.""" return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" return await self.vectorstore.aadd_documents(documents, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/base.html
e2ffefd49b99-0
Source code for langchain.vectorstores.clickhouse """Wrapper around open source ClickHouse VectorSearch capability.""" from __future__ import annotations import json import logging from hashlib import sha1 from threading import Thread from typing import Any, Dict, Iterable, List, Optional, Tuple, Union from pydantic import BaseSettings from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger() def has_mul_sub_str(s: str, *args: Any) -> bool: for a in args: if a not in s: return False return True [docs]class ClickhouseSettings(BaseSettings): """ClickHouse Client Configuration Attribute: clickhouse_host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. clickhouse_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. metric (str) : Metric to compute distance, supported are ('angular', 'euclidean', 'manhattan', 'hamming', 'dot'). Defaults to 'angular'. https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-1
column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python { 'id': 'text_id', 'uuid': 'global_unique_id' 'embedding': 'text_embedding', 'document': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 8123 username: Optional[str] = None password: Optional[str] = None index_type: str = "annoy" # Annoy supports L2Distance and cosineDistance. index_param: Optional[Union[List, Dict]] = [100, "'L2Distance'"] index_query_params: Dict[str, str] = {} column_map: Dict[str, str] = { "id": "id", "uuid": "uuid", "document": "document", "embedding": "embedding", "metadata": "metadata", } database: str = "default" table: str = "langchain" metric: str = "angular" def __getitem__(self, item: str) -> Any: return getattr(self, item) class Config: env_file = ".env" env_prefix = "clickhouse_" env_file_encoding = "utf-8" [docs]class Clickhouse(VectorStore): """Wrapper around ClickHouse vector database You need a `clickhouse-connect` python package, and a valid account to connect to ClickHouse.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-2
to connect to ClickHouse. ClickHouse can not only search with simple vector indexes, it also supports complex query with multiple conditions, constraints and even sub-queries. For more information, please visit [ClickHouse official site](https://clickhouse.com/clickhouse) """ def __init__( self, embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any, ) -> None: """ClickHouse Wrapper to LangChain embedding_function (Embeddings): config (ClickHouseSettings): Configuration to ClickHouse Client Other keyword arguments will pass into [clickhouse-connect](https://docs.clickhouse.com/) """ try: from clickhouse_connect import get_client except ImportError: raise ValueError( "Could not import clickhouse connect python package. " "Please install it with `pip install clickhouse-connect`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x, **kwargs: x super().__init__() if config is not None: self.config = config else: self.config = ClickhouseSettings() assert self.config assert self.config.host and self.config.port assert ( self.config.column_map and self.config.database and self.config.table and self.config.metric ) for k in ["id", "embedding", "document", "metadata", "uuid"]: assert k in self.config.column_map assert self.config.metric in [ "angular", "euclidean", "manhattan",
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-3
"angular", "euclidean", "manhattan", "hamming", "dot", ] # initialize the schema dim = len(embedding.embed_query("test")) index_params = ( ( ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()]) if self.config.index_param else "" ) if isinstance(self.config.index_param, Dict) else ",".join([str(p) for p in self.config.index_param]) if isinstance(self.config.index_param, List) else self.config.index_param ) self.schema = f"""\ CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} Nullable(String), {self.config.column_map['document']} Nullable(String), {self.config.column_map['embedding']} Array(Float32), {self.config.column_map['metadata']} JSON, {self.config.column_map['uuid']} UUID DEFAULT generateUUIDv4(), CONSTRAINT cons_vec_len CHECK length({self.config.column_map['embedding']}) = {dim}, INDEX vec_idx {self.config.column_map['embedding']} TYPE \ {self.config.index_type}({index_params}) GRANULARITY 1000 ) ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\ """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self.embedding_function = embedding self.dist_order = "ASC" # Only support ConsingDistance and L2Distance # Create a connection to clickhouse self.client = get_client( host=self.config.host, port=self.config.port,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-4
host=self.config.host, port=self.config.port, username=self.config.username, password=self.config.password, **kwargs, ) # Enable JSON type self.client.command("SET allow_experimental_object_type=1") # Enable Annoy index self.client.command("SET allow_experimental_annoy_index=1") self.client.command(self.schema) [docs] def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value) def _build_insert_sql(self, transac: Iterable, column_names: Iterable[str]) -> str: ks = ",".join(column_names) _data = [] for n in transac: n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n]) _data.append(f"({n})") i_str = f""" INSERT INTO TABLE {self.config.database}.{self.config.table}({ks}) VALUES {','.join(_data)} """ return i_str def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None: _insert_query = self._build_insert_sql(transac, column_names) self.client.command(_insert_query) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any, ) -> List[str]: """Insert more texts through the embeddings and add to the VectorStore. Args:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-5
"""Insert more texts through the embeddings and add to the VectorStore. Args: texts: Iterable of strings to add to the VectorStore. ids: Optional list of ids to associate with the texts. batch_size: Batch size of insertion metadata: Optional column data to be inserted Returns: List of ids from adding the texts into the VectorStore. """ # Embed and create the documents ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts] colmap_ = self.config.column_map transac = [] column_names = { colmap_["id"]: ids, colmap_["document"]: texts, colmap_["embedding"]: self.embedding_function.embed_documents(list(texts)), } metadatas = metadatas or [{} for _ in texts] column_names[colmap_["metadata"]] = map(json.dumps, metadatas) assert len(set(colmap_) - set(column_names)) >= 0 keys, values = zip(*column_names.items()) try: t = None for v in self.pgbar( zip(*values), desc="Inserting data...", total=len(metadatas) ): assert ( len(v[keys.index(self.config.column_map["embedding"])]) == self.dim ) transac.append(v) if len(transac) == batch_size: if t: t.join() t = Thread(target=self._insert, args=[transac, keys]) t.start() transac = [] if len(transac) > 0: if t: t.join() self._insert(transac, keys)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-6
if t: t.join() self._insert(transac, keys) return [i for i in ids] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> Clickhouse: """Create ClickHouse wrapper with existing texts Args: embedding_function (Embeddings): Function to extract text embedding texts (Iterable[str]): List or tuple of strings to be added config (ClickHouseSettings, Optional): ClickHouse configuration text_ids (Optional[Iterable], optional): IDs for the texts. Defaults to None. batch_size (int, optional): Batchsize when transmitting data to ClickHouse. Defaults to 32. metadata (List[dict], optional): metadata to texts. Defaults to None. Other keyword arguments will pass into [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns: ClickHouse Index """ ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas) return ctx def __repr__(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-7
return ctx def __repr__(self) -> str: """Text representation for ClickHouse Vector Store, prints backends, username and schemas. Easy to use with `str(ClickHouse())` Returns: repr: string to show connection info and data schema """ _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ " _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n" _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n" _repr += "-" * 51 + "\n" for r in self.client.query( f"DESC {self.config.database}.{self.config.table}" ).named_results(): _repr += ( f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n" ) _repr += "-" * 51 + "\n" return _repr def _build_query_sql( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" settings_strs = [] if self.config.index_query_params: for k in self.config.index_query_params: settings_strs.append(f"SETTING {k}={self.config.index_query_params[k]}") q_str = f"""
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-8
q_str = f""" SELECT {self.config.column_map['document']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY L2Distance({self.config.column_map['embedding']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} {' '.join(settings_strs)} """ return q_str [docs] def similarity_search( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Document]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of Documents """ return self.similarity_search_by_vector( self.embedding_function.embed_query(query), k, where_str, **kwargs ) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with ClickHouse by vectors Args: query (str): query string
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-9
Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_query_sql(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with ClickHouse Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
e2ffefd49b99-10
NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents """ q_str = self._build_query_sql( self.embedding_function.embed_query(query), k, where_str ) try: return [ ( Document( page_content=r[self.config.column_map["document"]], metadata=r[self.config.column_map["metadata"]], ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return [] [docs] def drop(self) -> None: """ Helper function: Drop data """ self.client.command( f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}" ) @property def metadata_column(self) -> str: return self.config.column_map["metadata"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/clickhouse.html
83aa31d12b9b-0
Source code for langchain.vectorstores.deeplake """Wrapper around Activeloop Deep Lake.""" from __future__ import annotations import logging import uuid from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance logger = logging.getLogger(__name__) distance_metric_map = { "l2": lambda a, b: np.linalg.norm(a - b, axis=1, ord=2), "l1": lambda a, b: np.linalg.norm(a - b, axis=1, ord=1), "max": lambda a, b: np.linalg.norm(a - b, axis=1, ord=np.inf), "cos": lambda a, b: np.dot(a, b.T) / (np.linalg.norm(a) * np.linalg.norm(b, axis=1)), "dot": lambda a, b: np.dot(a, b.T), } def vector_search( query_embedding: np.ndarray, data_vectors: np.ndarray, distance_metric: str = "L2", k: Optional[int] = 4, ) -> Tuple[List, List]: """Naive search for nearest neighbors args: query_embedding: np.ndarray data_vectors: np.ndarray k (int): number of nearest neighbors distance_metric: distance function 'L2' for Euclidean, 'L1' for Nuclear, 'Max' l-infinity distnace, 'cos' for cosine similarity, 'dot' for dot product returns:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-1
returns: nearest_indices: List, indices of nearest neighbors """ if data_vectors.shape[0] == 0: return [], [] # Calculate the distance between the query_vector and all data_vectors distances = distance_metric_map[distance_metric](query_embedding, data_vectors) nearest_indices = np.argsort(distances) nearest_indices = ( nearest_indices[::-1][:k] if distance_metric in ["cos"] else nearest_indices[:k] ) return nearest_indices.tolist(), distances[nearest_indices].tolist() def dp_filter(x: dict, filter: Dict[str, str]) -> bool: """Filter helper function for Deep Lake""" metadata = x["metadata"].data()["value"] return all(k in metadata and v == metadata[k] for k, v in filter.items()) [docs]class DeepLake(VectorStore): """Wrapper around Deep Lake, a data lake for deep learning applications. We implement naive similarity search and filtering for fast prototyping, but it can be extended with Tensor Query Language (TQL) for production use cases over billion rows. Why Deep Lake? - Not only stores embeddings, but also the original data with version control. - Serverless, doesn't require another service and can be used with major cloud providers (S3, GCS, etc.) - More than just a multi-modal vector store. You can use the dataset to fine-tune your own LLM models. To use, you should have the ``deeplake`` python package installed. Example: .. code-block:: python from langchain.vectorstores import DeepLake from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings()
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-2
embeddings = OpenAIEmbeddings() vectorstore = DeepLake("langchain_store", embeddings.embed_query) """ _LANGCHAIN_DEFAULT_DEEPLAKE_PATH = "./deeplake/" def __init__( self, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, token: Optional[str] = None, embedding_function: Optional[Embeddings] = None, read_only: Optional[bool] = False, ingestion_batch_size: int = 1024, num_workers: int = 0, verbose: bool = True, **kwargs: Any, ) -> None: """Initialize with Deep Lake client.""" self.ingestion_batch_size = ingestion_batch_size self.num_workers = num_workers self.verbose = verbose try: import deeplake from deeplake.constants import MB except ImportError: raise ValueError( "Could not import deeplake python package. " "Please install it with `pip install deeplake`." ) self._deeplake = deeplake self.dataset_path = dataset_path creds_args = {"creds": kwargs["creds"]} if "creds" in kwargs else {} if deeplake.exists(dataset_path, token=token, **creds_args) and not kwargs.get( "overwrite", False ): if "overwrite" in kwargs: del kwargs["overwrite"] self.ds = deeplake.load( dataset_path, token=token, read_only=read_only, verbose=self.verbose, **kwargs, ) logger.info(f"Loading deeplake {dataset_path} from storage.") if self.verbose:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-3
if self.verbose: print( f"Deep Lake Dataset in {dataset_path} already exists, " f"loading from the storage" ) self.ds.summary() else: if "overwrite" in kwargs: del kwargs["overwrite"] self.ds = deeplake.empty( dataset_path, token=token, overwrite=True, verbose=self.verbose, **kwargs, ) with self.ds: self.ds.create_tensor( "text", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self.ds.create_tensor( "metadata", htype="json", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self.ds.create_tensor( "embedding", htype="generic", dtype=np.float32, create_id_tensor=False, create_sample_info_tensor=False, max_chunk_size=64 * MB, create_shape_tensor=True, ) self.ds.create_tensor( "ids", htype="text", create_id_tensor=False, create_sample_info_tensor=False, create_shape_tensor=False, chunk_compression="lz4", ) self._embedding_function = embedding_function [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-4
**kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]], optional): Optional list of IDs. Returns: List[str]: List of IDs of the added texts. """ if ids is None: ids = [str(uuid.uuid1()) for _ in texts] text_list = list(texts) if metadatas is None: metadatas = [{}] * len(text_list) elements = list(zip(text_list, metadatas, ids)) @self._deeplake.compute def ingest(sample_in: list, sample_out: list) -> None: text_list = [s[0] for s in sample_in] embeds: Sequence[Optional[np.ndarray]] = [] if self._embedding_function is not None: embeddings = self._embedding_function.embed_documents(text_list) embeds = [np.array(e, dtype=np.float32) for e in embeddings] else: embeds = [None] * len(text_list) for s, e in zip(sample_in, embeds): sample_out.append( { "text": s[0], "metadata": s[1], "ids": s[2], "embedding": e, } ) batch_size = min(self.ingestion_batch_size, len(elements)) if batch_size == 0: return [] batched = [
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-5
if batch_size == 0: return [] batched = [ elements[i : i + batch_size] for i in range(0, len(elements), batch_size) ] ingest().eval( batched, self.ds, num_workers=min(self.num_workers, len(batched) // max(self.num_workers, 1)), **kwargs, ) self.ds.commit(allow_empty=True) if self.verbose: self.ds.summary() return ids def _search_helper( self, query: Any[str, None] = None, embedding: Any[float, None] = None, k: int = 4, distance_metric: str = "L2", use_maximal_marginal_relevance: Optional[bool] = False, fetch_k: Optional[int] = 20, filter: Optional[Any[Dict[str, str], Callable, str]] = None, return_score: Optional[bool] = False, **kwargs: Any, ) -> Any[List[Document], List[Tuple[Document, float]]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. It can also take [Deep Lake filter]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-6
take [Deep Lake filter] (https://docs.deeplake.ai/en/latest/deeplake.core.dataset.html#deeplake.core.dataset.Dataset.filter) Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents selected by the specified distance metric, if return_score True, return a tuple of (Document, score) """ view = self.ds # attribute based filtering if filter is not None: if isinstance(filter, dict): filter = partial(dp_filter, filter=filter) view = view.filter(filter) if len(view) == 0: return [] if self._embedding_function is None: view = view.filter(lambda x: query in x["text"].data()["value"]) scores = [1.0] * len(view) if use_maximal_marginal_relevance: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) else: emb = embedding or self._embedding_function.embed_query( query ) # type: ignore query_emb = np.array(emb, dtype=np.float32) embeddings = view.embedding.numpy(fetch_chunks=True) k_search = fetch_k if use_maximal_marginal_relevance else k indices, scores = vector_search( query_emb, embeddings, k=k_search, distance_metric=distance_metric.lower(), ) view = view[indices]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-7
distance_metric=distance_metric.lower(), ) view = view[indices] if use_maximal_marginal_relevance: lambda_mult = kwargs.get("lambda_mult", 0.5) indices = maximal_marginal_relevance( query_emb, embeddings[indices], k=min(k, len(indices)), lambda_mult=lambda_mult, ) view = view[indices] scores = [scores[i] for i in indices] docs = [ Document( page_content=el["text"].data()["value"], metadata=el["metadata"].data()["value"], ) for el in view ] if return_score: return [(doc, score) for doc, score in zip(docs, scores)] return docs [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: text to embed and run the query on. k: Number of Documents to return. Defaults to 4. query: Text to look up documents similar to. embedding: Embedding function to use. Defaults to None. k: Number of Documents to return. Defaults to 4. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product Defaults to `L2`. filter: Attribute filter by metadata example {'key': 'value'}. Defaults to None. maximal_marginal_relevance: Whether to use maximal marginal relevance.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-8
maximal_marginal_relevance: Whether to use maximal marginal relevance. Defaults to False. fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. return_score: Whether to return the score. Defaults to False. Returns: List of Documents most similar to the query vector. """ return self._search_helper(query=query, k=k, **kwargs) [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query vector. """ return self._search_helper(embedding=embedding, k=k, **kwargs) [docs] def similarity_search_with_score( self, query: str, distance_metric: str = "L2", k: int = 4, filter: Optional[Dict[str, str]] = None, ) -> List[Tuple[Document, float]]: """Run similarity search with Deep Lake with distance returned. Args: query (str): Query text to search for. distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity distance, `cos` for cosine similarity, 'dot' for dot product. Defaults to `L2`. k (int): Number of results to return. Defaults to 4.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-9
k (int): Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. Returns: List[Tuple[Document, float]]: List of documents most similar to the query text with distance in float. """ return self._search_helper( query=query, k=k, filter=filter, return_score=True, distance_metric=distance_metric, ) [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ return self._search_helper( embedding=embedding, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True, lambda_mult=lambda_mult, **kwargs, ) [docs] def max_marginal_relevance_search(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-10
) [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ if self._embedding_function is None: raise ValueError( "For MMR search, you must specify an embedding function on" "creation." ) return self._search_helper( query=query, k=k, fetch_k=fetch_k, use_maximal_marginal_relevance=True, lambda_mult=lambda_mult, **kwargs, ) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH, **kwargs: Any,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-11
**kwargs: Any, ) -> DeepLake: """Create a Deep Lake dataset from a raw documents. If a dataset_path is specified, the dataset will be persisted in that location, otherwise by default at `./deeplake` Args: path (str, pathlib.Path): - The full path to the dataset. Can be: - Deep Lake cloud path of the form ``hub://username/dataset_name``. To write to Deep Lake cloud datasets, ensure that you are logged in to Deep Lake (use 'activeloop login' from command line) - AWS S3 path of the form ``s3://bucketname/path/to/dataset``. Credentials are required in either the environment - Google Cloud Storage path of the form ``gcs://bucketname/path/to/dataset`` Credentials are required in either the environment - Local file system path of the form ``./path/to/dataset`` or ``~/path/to/dataset`` or ``path/to/dataset``. - In-memory path of the form ``mem://path/to/dataset`` which doesn't save the dataset, but keeps it in memory instead. Should be used only for testing as it does not persist. documents (List[Document]): List of documents to add. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. ids (Optional[List[str]]): List of document IDs. Defaults to None. Returns: DeepLake: Deep Lake dataset. """ deeplake_dataset = cls( dataset_path=dataset_path, embedding_function=embedding, **kwargs )
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-12
dataset_path=dataset_path, embedding_function=embedding, **kwargs ) deeplake_dataset.add_texts(texts=texts, metadatas=metadatas, ids=ids) return deeplake_dataset [docs] def delete( self, ids: Any[List[str], None] = None, filter: Any[Dict[str, str], None] = None, delete_all: Any[bool, None] = None, ) -> bool: """Delete the entities in the dataset Args: ids (Optional[List[str]], optional): The document_ids to delete. Defaults to None. filter (Optional[Dict[str, str]], optional): The filter to delete by. Defaults to None. delete_all (Optional[bool], optional): Whether to drop the dataset. Defaults to None. """ if delete_all: self.ds.delete(large_ok=True) return True view = None if ids: view = self.ds.filter(lambda x: x["ids"].data()["value"] in ids) ids = list(view.sample_indices) if filter: if view is None: view = self.ds view = view.filter(partial(dp_filter, filter=filter)) ids = list(view.sample_indices) with self.ds: for id in sorted(ids)[::-1]: self.ds.pop(id) self.ds.commit(f"deleted {len(ids)} samples", allow_empty=True) return True [docs] @classmethod def force_delete_by_path(cls, path: str) -> None: """Force delete dataset by path""" try: import deeplake except ImportError: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
83aa31d12b9b-13
try: import deeplake except ImportError: raise ValueError( "Could not import deeplake python package. " "Please install it with `pip install deeplake`." ) deeplake.delete(path, large_ok=True, force=True) [docs] def delete_dataset(self) -> None: """Delete the collection.""" self.delete(delete_all=True) [docs] def persist(self) -> None: """Persist the collection.""" self.ds.flush() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
1f2c71d0dd84-0
Source code for langchain.vectorstores.pinecone """Wrapper around Pinecone vector database.""" from __future__ import annotations import logging import uuid from typing import Any, Callable, Iterable, List, Optional, Tuple from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger(__name__) [docs]class Pinecone(VectorStore): """Wrapper around Pinecone vector database. To use, you should have the ``pinecone-client`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") """ def __init__( self, index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None, ): """Initialize with Pinecone client.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) if not isinstance(index, pinecone.index.Index): raise ValueError( f"client should be an instance of pinecone.index.Index, " f"got {type(index)}" ) self._index = index
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
1f2c71d0dd84-1
f"got {type(index)}" ) self._index = index self._embedding_function = embedding_function self._text_key = text_key self._namespace = namespace [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. namespace: Optional pinecone namespace to add the texts to. Returns: List of ids from adding the texts into the vectorstore. """ if namespace is None: namespace = self._namespace # Embed and create the documents docs = [] ids = ids or [str(uuid.uuid4()) for _ in texts] for i, text in enumerate(texts): embedding = self._embedding_function(text) metadata = metadatas[i] if metadatas else {} metadata[self._text_key] = text docs.append((ids[i], embedding, metadata)) # upsert to Pinecone self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size) return ids [docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[dict] = None,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
1f2c71d0dd84-2
k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, ) -> List[Tuple[Document, float]]: """Return pinecone documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ if namespace is None: namespace = self._namespace query_obj = self._embedding_function(query) docs = [] results = self._index.query( [query_obj], top_k=k, include_metadata=True, namespace=namespace, filter=filter, ) for res in results["matches"]: metadata = res["metadata"] if self._text_key in metadata: text = metadata.pop(self._text_key) score = res["score"] docs.append((Document(page_content=text, metadata=metadata), score)) else: logger.warning( f"Found document with no `{self._text_key}` key. Skipping." ) return docs [docs] def similarity_search( self, query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return pinecone documents most similar to query. Args: query: Text to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
1f2c71d0dd84-3
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Dictionary of argument(s) to filter on metadata namespace: Namespace to search in. Default will search in '' namespace. Returns: List of Documents most similar to the query and score for each """ docs_and_scores = self.similarity_search_with_score( query, k=k, filter=filter, namespace=namespace, **kwargs ) return [doc for doc, _ in docs_and_scores] [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = "text", index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any, ) -> Pinecone: """Construct Pinecone wrapper from raw documents. This is a user friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
1f2c71d0dd84-4
pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) """ try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) indexes = pinecone.list_indexes() # checks if provided index exists if index_name in indexes: index = pinecone.Index(index_name) elif len(indexes) == 0: raise ValueError( "No active indexes found in your Pinecone project, " "are you sure you're using the right API key and environment?" ) else: raise ValueError( f"Index '{index_name}' not found in your Pinecone project. " f"Did you mean one of the following indexes: {', '.join(indexes)}" ) for i in range(0, len(texts), batch_size): # set end position of batch i_end = min(i + batch_size, len(texts)) # get batch of texts and ids lines_batch = texts[i:i_end] # create ids if not provided if ids: ids_batch = ids[i:i_end] else: ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)] # create embeddings embeds = embedding.embed_documents(lines_batch) # prep metadata and upsert batch if metadatas: metadata = metadatas[i:i_end] else: metadata = [{} for _ in range(i, i_end)] for j, line in enumerate(lines_batch):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
1f2c71d0dd84-5
for j, line in enumerate(lines_batch): metadata[j][text_key] = line to_upsert = zip(ids_batch, embeds, metadata) # upsert to Pinecone index.upsert(vectors=list(to_upsert), namespace=namespace) return cls(index, embedding.embed_query, text_key, namespace) [docs] @classmethod def from_existing_index( cls, index_name: str, embedding: Embeddings, text_key: str = "text", namespace: Optional[str] = None, ) -> Pinecone: """Load pinecone vectorstore from index name.""" try: import pinecone except ImportError: raise ValueError( "Could not import pinecone python package. " "Please install it with `pip install pinecone-client`." ) return cls( pinecone.Index(index_name), embedding.embed_query, text_key, namespace ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
d8ba251cee4c-0
Source code for langchain.vectorstores.vectara """Wrapper around Vectara vector database.""" from __future__ import annotations import json import logging import os from hashlib import md5 from typing import Any, Iterable, List, Optional, Tuple, Type import requests from pydantic import Field from langchain.embeddings.base import Embeddings from langchain.schema import Document from langchain.vectorstores.base import VectorStore, VectorStoreRetriever [docs]class Vectara(VectorStore): """Implementation of Vector Store using Vectara (https://vectara.com). Example: .. code-block:: python from langchain.vectorstores import Vectara vectorstore = Vectara( vectara_customer_id=vectara_customer_id, vectara_corpus_id=vectara_corpus_id, vectara_api_key=vectara_api_key ) """ def __init__( self, vectara_customer_id: Optional[str] = None, vectara_corpus_id: Optional[str] = None, vectara_api_key: Optional[str] = None, ): """Initialize with Vectara API.""" self._vectara_customer_id = vectara_customer_id or os.environ.get( "VECTARA_CUSTOMER_ID" ) self._vectara_corpus_id = vectara_corpus_id or os.environ.get( "VECTARA_CORPUS_ID" ) self._vectara_api_key = vectara_api_key or os.environ.get("VECTARA_API_KEY") if ( self._vectara_customer_id is None or self._vectara_corpus_id is None or self._vectara_api_key is None ): logging.warning(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-1
or self._vectara_api_key is None ): logging.warning( "Cant find Vectara credentials, customer_id or corpus_id in " "environment." ) else: logging.debug(f"Using corpus id {self._vectara_corpus_id}") self._session = requests.Session() # to reuse connections def _get_post_headers(self) -> dict: """Returns headers that should be attached to each post request.""" return { "x-api-key": self._vectara_api_key, "customer-id": self._vectara_customer_id, "Content-Type": "application/json", } def _delete_doc(self, doc_id: str) -> bool: """ Delete a document from the Vectara corpus. Args: url (str): URL of the page to delete. doc_id (str): ID of the document to delete. Returns: bool: True if deletion was successful, False otherwise. """ body = { "customer_id": self._vectara_customer_id, "corpus_id": self._vectara_corpus_id, "document_id": doc_id, } response = self._session.post( "https://api.vectara.io/v1/delete-doc", data=json.dumps(body), verify=True, headers=self._get_post_headers(), ) if response.status_code != 200: logging.error( f"Delete request failed for doc_id = {doc_id} with status code " f"{response.status_code}, reason {response.reason}, text " f"{response.text}" ) return False return True
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-2
f"{response.text}" ) return False return True def _index_doc(self, doc_id: str, text: str, metadata: dict) -> bool: request: dict[str, Any] = {} request["customer_id"] = self._vectara_customer_id request["corpus_id"] = self._vectara_corpus_id request["document"] = { "document_id": doc_id, "metadataJson": json.dumps(metadata), "section": [{"text": text, "metadataJson": json.dumps(metadata)}], } response = self._session.post( headers=self._get_post_headers(), url="https://api.vectara.io/v1/index", data=json.dumps(request), timeout=30, verify=True, ) status_code = response.status_code result = response.json() status_str = result["status"]["code"] if "status" in result else None if status_code == 409 or (status_str and status_str == "ALREADY_EXISTS"): return False else: return True [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. Returns: List of ids from adding the texts into the vectorstore. """ ids = [md5(text.encode("utf-8")).hexdigest() for text in texts]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-3
for i, doc in enumerate(texts): doc_id = ids[i] metadata = metadatas[i] if metadatas else {} succeeded = self._index_doc(doc_id, doc, metadata) if not succeeded: self._delete_doc(doc_id) self._index_doc(doc_id, doc, metadata) return ids [docs] def similarity_search_with_score( self, query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 5. alpha: parameter for hybrid search (called "lambda" in Vectara documentation). filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns: List of Documents most similar to the query and score for each. """ response = self._session.post( headers=self._get_post_headers(), url="https://api.vectara.io/v1/query", data=json.dumps( { "query": [ { "query": query, "start": 0, "num_results": k, "context_config": { "sentences_before": 3,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-4
"context_config": { "sentences_before": 3, "sentences_after": 3, }, "corpus_key": [ { "customer_id": self._vectara_customer_id, "corpus_id": self._vectara_corpus_id, "metadataFilter": filter, "lexical_interpolation_config": {"lambda": alpha}, } ], } ] } ), timeout=10, ) if response.status_code != 200: logging.error( "Query failed %s", f"(code {response.status_code}, reason {response.reason}, details " f"{response.text})", ) return [] result = response.json() responses = result["responseSet"][0]["response"] vectara_default_metadata = ["lang", "len", "offset"] docs = [ ( Document( page_content=x["text"], metadata={ m["name"]: m["value"] for m in x["metadata"] if m["name"] not in vectara_default_metadata }, ), x["score"], ) for x in responses ] return docs [docs] def similarity_search( self, query: str, k: int = 5, alpha: float = 0.025, filter: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return Vectara documents most similar to query, along with scores. Args: query: Text to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-5
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 5. filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. Returns: List of Documents most similar to the query """ docs_and_scores = self.similarity_search_with_score( query, k=k, alpha=alpha, filter=filter, **kwargs ) return [doc for doc, _ in docs_and_scores] [docs] @classmethod def from_texts( cls: Type[Vectara], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> Vectara: """Construct Vectara wrapper from raw documents. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Vectara vectara = Vectara.from_texts( texts, vectara_customer_id=customer_id, vectara_corpus_id=corpus_id, vectara_api_key=api_key, ) """ # Note: Vectara generates its own embeddings, so we ignore the provided # embeddings (required by interface) vectara = cls(**kwargs) vectara.add_texts(texts, metadatas) return vectara [docs] def as_retriever(self, **kwargs: Any) -> VectaraRetriever:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
d8ba251cee4c-6
return VectaraRetriever(vectorstore=self, **kwargs) class VectaraRetriever(VectorStoreRetriever): vectorstore: Vectara search_kwargs: dict = Field(default_factory=lambda: {"alpha": 0.025, "k": 5}) """Search params. k: Number of Documents to return. Defaults to 5. alpha: parameter for hybrid search (called "lambda" in Vectara documentation). filter: Dictionary of argument(s) to filter on metadata. For example a filter can be "doc.rating > 3.0 and part.lang = 'deu'"} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. """ def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Vectara vectorstore. Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.vectorstore.add_texts(texts, metadatas) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
5127d041563d-0
Source code for langchain.vectorstores.redis """Wrapper around Redis vector database.""" from __future__ import annotations import json import logging import uuid from typing import ( TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Literal, Mapping, Optional, Tuple, Type, ) import numpy as np from pydantic import BaseModel, root_validator from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore, VectorStoreRetriever logger = logging.getLogger(__name__) if TYPE_CHECKING: from redis.client import Redis as RedisType from redis.commands.search.query import Query # required modules REDIS_REQUIRED_MODULES = [ {"name": "search", "ver": 20400}, {"name": "searchlight", "ver": 20400}, ] # distance mmetrics REDIS_DISTANCE_METRICS = Literal["COSINE", "IP", "L2"] def _check_redis_module_exist(client: RedisType, required_modules: List[dict]) -> None: """Check if the correct Redis modules are installed.""" installed_modules = client.module_list() installed_modules = { module[b"name"].decode("utf-8"): module for module in installed_modules } for module in required_modules: if module["name"] in installed_modules and int( installed_modules[module["name"]][b"ver"] ) >= int(module["ver"]): return # otherwise raise error error_message = ( "Redis cannot be used as a vector database without RediSearch >=2.4"
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-1
"Redis cannot be used as a vector database without RediSearch >=2.4" "Please head to https://redis.io/docs/stack/search/quick_start/" "to know more about installing the RediSearch module within Redis Stack." ) logging.error(error_message) raise ValueError(error_message) def _check_index_exists(client: RedisType, index_name: str) -> bool: """Check if Redis index exists.""" try: client.ft(index_name).info() except: # noqa: E722 logger.info("Index does not exist") return False logger.info("Index already exists") return True def _redis_key(prefix: str) -> str: """Redis key schema for a given prefix.""" return f"{prefix}:{uuid.uuid4().hex}" def _redis_prefix(index_name: str) -> str: """Redis key prefix for a given index.""" return f"doc:{index_name}" def _default_relevance_score(val: float) -> float: return 1 - val [docs]class Redis(VectorStore): """Wrapper around Redis vector database. To use, you should have the ``redis`` python package installed. Example: .. code-block:: python from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = Redis( redis_url="redis://username:password@localhost:6379" index_name="my-index", embedding_function=embeddings.embed_query, ) """ def __init__( self, redis_url: str, index_name: str, embedding_function: Callable,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-2
index_name: str, embedding_function: Callable, content_key: str = "content", metadata_key: str = "metadata", vector_key: str = "content_vector", relevance_score_fn: Optional[ Callable[[float], float] ] = _default_relevance_score, **kwargs: Any, ): """Initialize with necessary components.""" try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis>=4.1.0`." ) self.embedding_function = embedding_function self.index_name = index_name try: # connect to redis from url redis_client = redis.from_url(redis_url, **kwargs) # check if redis has redisearch module installed _check_redis_module_exist(redis_client, REDIS_REQUIRED_MODULES) except ValueError as e: raise ValueError(f"Redis failed to connect: {e}") self.client = redis_client self.content_key = content_key self.metadata_key = metadata_key self.vector_key = vector_key self.relevance_score_fn = relevance_score_fn def _create_index( self, dim: int = 1536, distance_metric: REDIS_DISTANCE_METRICS = "COSINE" ) -> None: try: from redis.commands.search.field import TextField, VectorField from redis.commands.search.indexDefinition import IndexDefinition, IndexType except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) # Check if index exists if not _check_index_exists(self.client, self.index_name):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-3
if not _check_index_exists(self.client, self.index_name): # Define schema schema = ( TextField(name=self.content_key), TextField(name=self.metadata_key), VectorField( self.vector_key, "FLAT", { "TYPE": "FLOAT32", "DIM": dim, "DISTANCE_METRIC": distance_metric, }, ), ) prefix = _redis_prefix(self.index_name) # Create Redis Index self.client.ft(self.index_name).create_index( fields=schema, definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH), ) [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, keys: Optional[List[str]] = None, batch_size: int = 1000, **kwargs: Any, ) -> List[str]: """Add more texts to the vectorstore. Args: texts (Iterable[str]): Iterable of strings/text to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas. Defaults to None. embeddings (Optional[List[List[float]]], optional): Optional pre-generated embeddings. Defaults to None. keys (Optional[List[str]], optional): Optional key values to use as ids. Defaults to None. batch_size (int, optional): Batch size to use for writes. Defaults to 1000. Returns: List[str]: List of ids added to the vectorstore """ ids = [] prefix = _redis_prefix(self.index_name)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-4
""" ids = [] prefix = _redis_prefix(self.index_name) # Write data to redis pipeline = self.client.pipeline(transaction=False) for i, text in enumerate(texts): # Use provided values by default or fallback key = keys[i] if keys else _redis_key(prefix) metadata = metadatas[i] if metadatas else {} embedding = embeddings[i] if embeddings else self.embedding_function(text) pipeline.hset( key, mapping={ self.content_key: text, self.vector_key: np.array(embedding, dtype=np.float32).tobytes(), self.metadata_key: json.dumps(metadata), }, ) ids.append(key) # Write batch if i % batch_size == 0: pipeline.execute() # Cleanup final batch pipeline.execute() return ids [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: """ Returns the most similar indexed documents to the query text. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. Returns: List[Document]: A list of documents that are most similar to the query text. """ docs_and_scores = self.similarity_search_with_score(query, k=k) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_limit_score( self, query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any ) -> List[Document]: """
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-5
) -> List[Document]: """ Returns the most similar indexed documents to the query text within the score_threshold range. Args: query (str): The query text for which to find similar documents. k (int): The number of documents to return. Default is 4. score_threshold (float): The minimum matching score required for a document to be considered a match. Defaults to 0.2. Because the similarity calculation algorithm is based on cosine similarity, the smaller the angle, the higher the similarity. Returns: List[Document]: A list of documents that are most similar to the query text, including the match score for each document. Note: If there are no documents that satisfy the score_threshold value, an empty list is returned. """ docs_and_scores = self.similarity_search_with_score(query, k=k) return [doc for doc, score in docs_and_scores if score < score_threshold] def _prepare_query(self, k: int) -> Query: try: from redis.commands.search.query import Query except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) # Prepare the Query hybrid_fields = "*" base_query = ( f"{hybrid_fields}=>[KNN {k} @{self.vector_key} $vector AS vector_score]" ) return_fields = [self.metadata_key, self.content_key, "vector_score"] return ( Query(base_query) .return_fields(*return_fields) .sort_by("vector_score") .paging(0, k) .dialect(2) )
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-6
.paging(0, k) .dialect(2) ) [docs] def similarity_search_with_score( self, query: str, k: int = 4 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. Returns: List of Documents most similar to the query and score for each """ # Creates embedding vector from user query embedding = self.embedding_function(query) # Creates Redis query redis_query = self._prepare_query(k) params_dict: Mapping[str, str] = { "vector": np.array(embedding) # type: ignore .astype(dtype=np.float32) .tobytes() } # Perform vector search results = self.client.ft(self.index_name).search(redis_query, params_dict) # Prepare document results docs = [ ( Document( page_content=result.content, metadata=json.loads(result.metadata) ), float(result.vector_score), ) for result in results.docs ] return docs def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs and relevance scores, normalized on a scale from 0 to 1. 0 is dissimilar, 1 is most similar. """ if self.relevance_score_fn is None: raise ValueError( "relevance_score_fn must be provided to"
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-7
raise ValueError( "relevance_score_fn must be provided to" " Redis constructor to normalize scores" ) docs_and_scores = self.similarity_search_with_score(query, k=k) return [(doc, self.relevance_score_fn(score)) for doc, score in docs_and_scores] [docs] @classmethod def from_texts_return_keys( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = "content", metadata_key: str = "metadata", vector_key: str = "content_vector", distance_metric: REDIS_DISTANCE_METRICS = "COSINE", **kwargs: Any, ) -> Tuple[Redis, List[str]]: """Create a Redis vectorstore from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in Redis. 3. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") if "redis_url" in kwargs: kwargs.pop("redis_url") # Name of the search index if not given
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-8
kwargs.pop("redis_url") # Name of the search index if not given if not index_name: index_name = uuid.uuid4().hex # Create instance instance = cls( redis_url, index_name, embedding.embed_query, content_key=content_key, metadata_key=metadata_key, vector_key=vector_key, **kwargs, ) # Create embeddings over documents embeddings = embedding.embed_documents(texts) # Create the search index instance._create_index(dim=len(embeddings[0]), distance_metric=distance_metric) # Add data to Redis keys = instance.add_texts(texts, metadatas, embeddings) return instance, keys [docs] @classmethod def from_texts( cls: Type[Redis], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = "content", metadata_key: str = "metadata", vector_key: str = "content_vector", **kwargs: Any, ) -> Redis: """Create a Redis vectorstore from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in Redis. 3. Adds the documents to the newly created Redis index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain.vectorstores import Redis from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-9
embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) """ instance, _ = cls.from_texts_return_keys( texts, embedding, metadatas=metadatas, index_name=index_name, content_key=content_key, metadata_key=metadata_key, vector_key=vector_key, **kwargs, ) return instance [docs] @staticmethod def drop_index( index_name: str, delete_documents: bool, **kwargs: Any, ) -> bool: """ Drop a Redis search index. Args: index_name (str): Name of the index to drop. delete_documents (bool): Whether to drop the associated documents. Returns: bool: Whether or not the drop was successful. """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. if "redis_url" in kwargs: kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # Check if index exists try: client.ft(index_name).dropindex(delete_documents)
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-10
try: client.ft(index_name).dropindex(delete_documents) logger.info("Drop index") return True except: # noqa: E722 # Index not exist return False [docs] @classmethod def from_existing_index( cls, embedding: Embeddings, index_name: str, content_key: str = "content", metadata_key: str = "metadata", vector_key: str = "content_vector", **kwargs: Any, ) -> Redis: """Connect to an existing Redis index.""" redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. if "redis_url" in kwargs: kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) # check if redis has redisearch module installed _check_redis_module_exist(client, REDIS_REQUIRED_MODULES) # ensure that the index already exists assert _check_index_exists( client, index_name ), f"Index {index_name} does not exist" except Exception as e: raise ValueError(f"Redis failed to connect: {e}") return cls( redis_url, index_name, embedding.embed_query, content_key=content_key, metadata_key=metadata_key, vector_key=vector_key, **kwargs, )
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-11
vector_key=vector_key, **kwargs, ) [docs] def as_retriever(self, **kwargs: Any) -> RedisVectorStoreRetriever: return RedisVectorStoreRetriever(vectorstore=self, **kwargs) class RedisVectorStoreRetriever(VectorStoreRetriever, BaseModel): vectorstore: Redis search_type: str = "similarity" k: int = 4 score_threshold: float = 0.4 class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True @root_validator() def validate_search_type(cls, values: Dict) -> Dict: """Validate search type.""" if "search_type" in values: search_type = values["search_type"] if search_type not in ("similarity", "similarity_limit"): raise ValueError(f"search_type of {search_type} not allowed.") return values def get_relevant_documents(self, query: str) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, k=self.k) elif self.search_type == "similarity_limit": docs = self.vectorstore.similarity_search_limit_score( query, k=self.k, score_threshold=self.score_threshold ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def aget_relevant_documents(self, query: str) -> List[Document]: raise NotImplementedError("RedisVectorStoreRetriever does not support async") def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Add documents to vectorstore."""
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
5127d041563d-12
"""Add documents to vectorstore.""" return self.vectorstore.add_documents(documents, **kwargs) async def aadd_documents( self, documents: List[Document], **kwargs: Any ) -> List[str]: """Add documents to vectorstore.""" return await self.vectorstore.aadd_documents(documents, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/redis.html
09f68754ccee-0
Source code for langchain.vectorstores.atlas """Wrapper around Atlas by Nomic.""" from __future__ import annotations import logging import uuid from typing import Any, Iterable, List, Optional, Type import numpy as np from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore logger = logging.getLogger(__name__) [docs]class AtlasDB(VectorStore): """Wrapper around Atlas: Nomic's neural database and rhizomatic instrument. To use, you should have the ``nomic`` python package installed. Example: .. code-block:: python from langchain.vectorstores import AtlasDB from langchain.embeddings.openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vectorstore = AtlasDB("my_project", embeddings.embed_query) """ _ATLAS_DEFAULT_ID_FIELD = "atlas_id" def __init__( self, name: str, embedding_function: Optional[Embeddings] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, ) -> None: """ Initialize the Atlas Client Args: name (str): The name of your project. If the project already exists, it will be loaded. embedding_function (Optional[Callable]): An optional function used for embedding your data. If None, data will be embedded with Nomic's embed model. api_key (str): Your nomic API key description (str): A description for your project. is_public (bool): Whether your project is publicly accessible.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-1
is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. """ try: import nomic from nomic import AtlasProject except ImportError: raise ValueError( "Could not import nomic python package. " "Please install it with `pip install nomic`." ) if api_key is None: raise ValueError("No API key provided. Sign up at atlas.nomic.ai!") nomic.login(api_key) self._embedding_function = embedding_function modality = "text" if self._embedding_function is not None: modality = "embedding" # Check if the project exists, create it if not self.project = AtlasProject( name=name, description=description, modality=modality, is_public=is_public, reset_project_if_exists=reset_project_if_exists, unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, ) self.project._latest_project_state() [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, refresh: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts (Iterable[str]): Texts to add to the vectorstore. metadatas (Optional[List[dict]], optional): Optional list of metadatas.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-2
metadatas (Optional[List[dict]], optional): Optional list of metadatas. ids (Optional[List[str]]): An optional list of ids. refresh(bool): Whether or not to refresh indices with the updated data. Default True. Returns: List[str]: List of IDs of the added texts. """ if ( metadatas is not None and len(metadatas) > 0 and "text" in metadatas[0].keys() ): raise ValueError("Cannot accept key text in metadata!") texts = list(texts) if ids is None: ids = [str(uuid.uuid1()) for _ in texts] # Embedding upload case if self._embedding_function is not None: _embeddings = self._embedding_function.embed_documents(texts) embeddings = np.stack(_embeddings) if metadatas is None: data = [ {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]} for i, _ in enumerate(texts) ] else: for i in range(len(metadatas)): metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] metadatas[i]["text"] = texts[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_embeddings(embeddings=embeddings, data=data) # Text upload case else: if metadatas is None: data = [
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-3
else: if metadatas is None: data = [ {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]} for i, text in enumerate(texts) ] else: for i, text in enumerate(texts): metadatas[i]["text"] = texts metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i] data = metadatas self.project._validate_map_data_inputs( [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data ) with self.project.wait_for_project_lock(): self.project.add_text(data) if refresh: if len(self.project.indices) > 0: with self.project.wait_for_project_lock(): self.project.rebuild_maps() return ids [docs] def create_index(self, **kwargs: Any) -> Any: """Creates an index in your project. See https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index for full detail. """ with self.project.wait_for_project_lock(): return self.project.create_index(**kwargs) [docs] def similarity_search( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Document]: """Run similarity search with AtlasDB Args: query (str): Query text to search for. k (int): Number of results to return. Defaults to 4. Returns: List[Document]: List of documents most similar to the query text. """ if self._embedding_function is None: raise NotImplementedError(
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-4
""" if self._embedding_function is None: raise NotImplementedError( "AtlasDB requires an embedding_function for text similarity search!" ) _embedding = self._embedding_function.embed_documents([query])[0] embedding = np.array(_embedding).reshape(1, -1) with self.project.wait_for_project_lock(): neighbors, _ = self.project.projections[0].vector_search( queries=embedding, k=k ) datas = self.project.get_data(ids=neighbors[0]) docs = [ Document(page_content=datas[i]["text"], metadata=datas[i]) for i, neighbor in enumerate(neighbors) ] return docs [docs] @classmethod def from_texts( cls: Type[AtlasDB], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a raw documents. Args: texts (List[str]): The list of texts to ingest. name (str): Name of the project to create. api_key (str): Your nomic API key, embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-5
ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") # Inject relevant kwargs all_index_kwargs = {"name": name + "_index", "indexed_field": "text"} if index_kwargs is not None: for k, v in index_kwargs.items(): all_index_kwargs[k] = v # Build project atlasDB = cls( name, embedding_function=embedding, api_key=api_key, description="A description for your project", is_public=is_public, reset_project_if_exists=reset_project_if_exists, ) with atlasDB.project.wait_for_project_lock(): atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids) atlasDB.create_index(**all_index_kwargs) return atlasDB [docs] @classmethod def from_documents( cls: Type[AtlasDB], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-6
ids: Optional[List[str]] = None, name: Optional[str] = None, api_key: Optional[str] = None, persist_directory: Optional[str] = None, description: str = "A description for your project", is_public: bool = True, reset_project_if_exists: bool = False, index_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AtlasDB: """Create an AtlasDB vectorstore from a list of documents. Args: name (str): Name of the collection to create. api_key (str): Your nomic API key, documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. ids (Optional[List[str]]): Optional list of document IDs. If None, ids will be auto created description (str): A description for your project. is_public (bool): Whether your project is publicly accessible. True by default. reset_project_if_exists (bool): Whether to reset this project if it already exists. Default False. Generally userful during development and testing. index_kwargs (Optional[dict]): Dict of kwargs for index creation. See https://docs.nomic.ai/atlas_api.html Returns: AtlasDB: Nomic's neural database and finest rhizomatic instrument """ if name is None or api_key is None: raise ValueError("`name` and `api_key` cannot be None.") texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( name=name, api_key=api_key,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
09f68754ccee-7
return cls.from_texts( name=name, api_key=api_key, texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, description=description, is_public=is_public, reset_project_if_exists=reset_project_if_exists, index_kwargs=index_kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
fc352cb8aedb-0
Source code for langchain.vectorstores.annoy """Wrapper around Annoy vector database.""" from __future__ import annotations import os import pickle import uuid from configparser import ConfigParser from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance INDEX_METRICS = frozenset(["angular", "euclidean", "manhattan", "hamming", "dot"]) DEFAULT_METRIC = "angular" def dependable_annoy_import() -> Any: """Import annoy if available, otherwise raise error.""" try: import annoy except ImportError: raise ValueError( "Could not import annoy python package. " "Please install it with `pip install --user annoy` " ) return annoy [docs]class Annoy(VectorStore): """Wrapper around Annoy vector database. To use, you should have the ``annoy`` python package installed. Example: .. code-block:: python from langchain import Annoy db = Annoy(embedding_function, index, docstore, index_to_docstore_id) """ def __init__( self, embedding_function: Callable, index: Any, metric: str, docstore: Docstore, index_to_docstore_id: Dict[int, str], ): """Initialize with necessary components.""" self.embedding_function = embedding_function
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-1
): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index = index self.metric = metric self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id [docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: raise NotImplementedError( "Annoy does not allow to add new data once the index is build." ) [docs] def process_index_results( self, idxs: List[int], dists: List[float] ) -> List[Tuple[Document, float]]: """Turns annoy results into a list of documents and scores. Args: idxs: List of indices of the documents in the index. dists: List of distances of the documents in the index. Returns: List of Documents and scores. """ docs = [] for idx, dist in zip(idxs, dists): _id = self.index_to_docstore_id[idx] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append((doc, dist)) return docs [docs] def similarity_search_with_score_by_vector( self, embedding: List[float], k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-2
Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ idxs, dists = self.index.get_nns_by_vector( embedding, k, search_k=search_k, include_distances=True ) return self.process_index_results(idxs, dists) [docs] def similarity_search_with_score_by_index( self, docstore_index: int, k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ idxs, dists = self.index.get_nns_by_item( docstore_index, k, search_k=search_k, include_distances=True ) return self.process_index_results(idxs, dists) [docs] def similarity_search_with_score( self, query: str, k: int = 4, search_k: int = -1 ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-3
k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query and score for each """ embedding = self.embedding_function(query) docs = self.similarity_search_with_score_by_vector(embedding, k, search_k) return docs [docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_vector( embedding, k, search_k ) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search_by_index( self, docstore_index: int, k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to docstore_index. Args: docstore_index: Index of document in docstore k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the embedding. """
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-4
Returns: List of Documents most similar to the embedding. """ docs_and_scores = self.similarity_search_with_score_by_index( docstore_index, k, search_k ) return [doc for doc, _ in docs_and_scores] [docs] def similarity_search( self, query: str, k: int = 4, search_k: int = -1, **kwargs: Any ) -> List[Document]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. search_k: inspect up to search_k nodes which defaults to n_trees * n if not provided Returns: List of Documents most similar to the query. """ docs_and_scores = self.similarity_search_with_score(query, k, search_k) return [doc for doc, _ in docs_and_scores] [docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. fetch_k: Number of Documents to fetch to pass to MMR algorithm. k: Number of Documents to return. Defaults to 4. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-5
of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ idxs = self.index.get_nns_by_vector( embedding, fetch_k, search_k=-1, include_distances=False ) embeddings = [self.index.get_item_vector(i) for i in idxs] mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), embeddings, k=k, lambda_mult=lambda_mult, ) # ignore the -1's if not enough docs are returned/indexed selected_indices = [idxs[i] for i in mmr_selected if i != -1] docs = [] for i in selected_indices: _id = self.index_to_docstore_id[i] doc = self.docstore.search(_id) if not isinstance(doc, Document): raise ValueError(f"Could not find document for id {_id}, got {doc}") docs.append(doc) return docs [docs] def max_marginal_relevance_search( self, query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-6
k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns: List of Documents selected by maximal marginal relevance. """ embedding = self.embedding_function(query) docs = self.max_marginal_relevance_search_by_vector( embedding, k, fetch_k, lambda_mult=lambda_mult ) return docs @classmethod def __from( cls, texts: List[str], embeddings: List[List[float]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: if metric not in INDEX_METRICS: raise ValueError( ( f"Unsupported distance metric: {metric}. " f"Expected one of {list(INDEX_METRICS)}" ) ) annoy = dependable_annoy_import() if not embeddings: raise ValueError("embeddings must be provided to build AnnoyIndex") f = len(embeddings[0]) index = annoy.AnnoyIndex(f, metric=metric) for i, emb in enumerate(embeddings): index.add_item(i, emb) index.build(trees, n_jobs=n_jobs) documents = [] for i, text in enumerate(texts):
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-7
documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) index_to_id = {i: str(uuid.uuid4()) for i in range(len(documents))} docstore = InMemoryDocstore( {index_to_id[i]: doc for i, doc in enumerate(documents)} ) return cls(embedding.embed_query, index, metric, docstore, index_to_id) [docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: """Construct Annoy wrapper from raw documents. Args: texts: List of documents to index. embedding: Embedding function to use. metadatas: List of metadata dictionaries to associate with documents. metric: Metric to use for indexing. Defaults to "angular". trees: Number of trees to use for indexing. Defaults to 100. n_jobs: Number of jobs to use for indexing. Defaults to -1. This is a user friendly interface that: 1. Embeds documents. 2. Creates an in memory docstore 3. Initializes the Annoy database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-8
from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() index = Annoy.from_texts(texts, embeddings) """ embeddings = embedding.embed_documents(texts) return cls.__from( texts, embeddings, embedding, metadatas, metric, trees, n_jobs, **kwargs ) [docs] @classmethod def from_embeddings( cls, text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, metric: str = DEFAULT_METRIC, trees: int = 100, n_jobs: int = -1, **kwargs: Any, ) -> Annoy: """Construct Annoy wrapper from embeddings. Args: text_embeddings: List of tuples of (text, embedding) embedding: Embedding function to use. metadatas: List of metadata dictionaries to associate with documents. metric: Metric to use for indexing. Defaults to "angular". trees: Number of trees to use for indexing. Defaults to 100. n_jobs: Number of jobs to use for indexing. Defaults to -1 This is a user friendly interface that: 1. Creates an in memory docstore with provided embeddings 2. Initializes the Annoy database This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import Annoy from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings))
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-9
text_embedding_pairs = list(zip(texts, text_embeddings)) db = Annoy.from_embeddings(text_embedding_pairs, embeddings) """ texts = [t[0] for t in text_embeddings] embeddings = [t[1] for t in text_embeddings] return cls.__from( texts, embeddings, embedding, metadatas, metric, trees, n_jobs, **kwargs ) [docs] def save_local(self, folder_path: str, prefault: bool = False) -> None: """Save Annoy index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to save index, docstore, and index_to_docstore_id to. prefault: Whether to pre-load the index into memory. """ path = Path(folder_path) os.makedirs(path, exist_ok=True) # save index, index config, docstore and index_to_docstore_id config_object = ConfigParser() config_object["ANNOY"] = { "f": self.index.f, "metric": self.metric, } self.index.save(str(path / "index.annoy"), prefault=prefault) with open(path / "index.pkl", "wb") as file: pickle.dump((self.docstore, self.index_to_docstore_id, config_object), file) [docs] @classmethod def load_local( cls, folder_path: str, embeddings: Embeddings, ) -> Annoy: """Load Annoy index, docstore, and index_to_docstore_id to disk. Args: folder_path: folder path to load index, docstore,
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
fc352cb8aedb-10
Args: folder_path: folder path to load index, docstore, and index_to_docstore_id from. embeddings: Embeddings to use when generating queries. """ path = Path(folder_path) # load index separately since it is not picklable annoy = dependable_annoy_import() # load docstore and index_to_docstore_id with open(path / "index.pkl", "rb") as file: docstore, index_to_docstore_id, config_object = pickle.load(file) f = int(config_object["ANNOY"]["f"]) metric = config_object["ANNOY"]["metric"] index = annoy.AnnoyIndex(f, metric=metric) index.load(str(path / "index.annoy")) return cls( embeddings.embed_query, index, metric, docstore, index_to_docstore_id ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Jun 07, 2023.
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/annoy.html
6325cef2d3e1-0
Source code for langchain.vectorstores.faiss """Wrapper around FAISS vector database.""" from __future__ import annotations import math import os import pickle import uuid from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple import numpy as np from langchain.docstore.base import AddableMixin, Docstore from langchain.docstore.document import Document from langchain.docstore.in_memory import InMemoryDocstore from langchain.embeddings.base import Embeddings from langchain.vectorstores.base import VectorStore from langchain.vectorstores.utils import maximal_marginal_relevance def dependable_faiss_import(no_avx2: Optional[bool] = None) -> Any: """ Import faiss if available, otherwise raise error. If FAISS_NO_AVX2 environment variable is set, it will be considered to load FAISS with no AVX2 optimization. Args: no_avx2: Load FAISS strictly with no AVX2 optimization so that the vectorstore is portable and compatible with other devices. """ if no_avx2 is None and "FAISS_NO_AVX2" in os.environ: no_avx2 = bool(os.getenv("FAISS_NO_AVX2")) try: if no_avx2: from faiss import swigfaiss as faiss else: import faiss except ImportError: raise ValueError( "Could not import faiss python package. " "Please install it with `pip install faiss` " "or `pip install faiss-cpu` (depending on Python version)." ) return faiss def _default_relevance_score_fn(score: float) -> float:
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
6325cef2d3e1-1
return faiss def _default_relevance_score_fn(score: float) -> float: """Return a similarity score on a scale [0, 1].""" # The 'correct' relevance function # may differ depending on a few things, including: # - the distance / similarity metric used by the VectorStore # - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) # - embedding dimensionality # - etc. # This function converts the euclidean norm of normalized embeddings # (0 is most similar, sqrt(2) most dissimilar) # to a similarity function (0 to 1) return 1.0 - score / math.sqrt(2) [docs]class FAISS(VectorStore): """Wrapper around FAISS vector database. To use, you should have the ``faiss`` python package installed. Example: .. code-block:: python from langchain import FAISS faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id) """ def __init__( self, embedding_function: Callable, index: Any, docstore: Docstore, index_to_docstore_id: Dict[int, str], relevance_score_fn: Optional[ Callable[[float], float] ] = _default_relevance_score_fn, normalize_L2: bool = False, ): """Initialize with necessary components.""" self.embedding_function = embedding_function self.index = index self.docstore = docstore self.index_to_docstore_id = index_to_docstore_id self.relevance_score_fn = relevance_score_fn self._normalize_L2 = normalize_L2
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
6325cef2d3e1-2
self._normalize_L2 = normalize_L2 def __add( self, texts: Iterable[str], embeddings: Iterable[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: if not isinstance(self.docstore, AddableMixin): raise ValueError( "If trying to add texts, the underlying docstore should support " f"adding items, which {self.docstore} does not" ) documents = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} documents.append(Document(page_content=text, metadata=metadata)) if ids is None: ids = [str(uuid.uuid4()) for _ in texts] # Add to the index, the index_to_id mapping, and the docstore. starting_len = len(self.index_to_docstore_id) faiss = dependable_faiss_import() vector = np.array(embeddings, dtype=np.float32) if self._normalize_L2: faiss.normalize_L2(vector) self.index.add(vector) # Get list of index, id, and docs. full_info = [(starting_len + i, ids[i], doc) for i, doc in enumerate(documents)] # Add information to docstore and index. self.docstore.add({_id: doc for _, _id, doc in full_info}) index_to_id = {index: _id for index, _id, _ in full_info} self.index_to_docstore_id.update(index_to_id) return [_id for _, _id, _ in full_info]
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html