id
stringlengths
3
8
content
stringlengths
100
981k
22068
import attr import types from typing import Union from enum import Enum import numpy as np from scipy.optimize import differential_evolution import pygmo as pg class OptimizationMethod(Enum): """ Available optimization solvers. """ SCIPY_DE = 1 PYGMO_DE1220 = 2 @attr.s(auto_attribs=True) class ScipyDifferentialEvolutionSettings: """ Optional arguments to pass for SciPy's differential evolution caller. Members ---------------- :ivar str strategy: The differential evolution strategy to use. Should be one of: - 'best1bin' - 'best1exp' - 'rand1exp' - 'randtobest1exp' - 'currenttobest1exp' - 'best2exp' - 'rand2exp' - 'randtobest1bin' - 'currenttobest1bin' - 'best2bin' - 'rand2bin' - 'rand1bin' The default is 'best1bin'. :ivar float recombination: The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability. :ivar float mutation: The mutation constant. In the literature this is also known as differential weight, being denoted by F. If specified as a float it should be in the range [0, 2]. :ivar float tol: Relative tolerance for convergence, the solving stops when `np.std(pop) = atol + tol * np.abs(np.mean(population_energies))`, where and `atol` and `tol` are the absolute and relative tolerance respectively. :ivar int|numpy.random.RandomState seed: If `seed` is not specified the `np.RandomState` singleton is used. If `seed` is an int, a new `np.random.RandomState` instance is used, seeded with seed. If `seed` is already a `np.random.RandomState instance`, then that `np.random.RandomState` instance is used. Specify `seed` for repeatable minimizations. :ivar int workers: If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool`). Supply -1 to use all available CPU cores. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as `workers(func, iterable)`. :ivar bool disp: Display status messages during optimization iterations. :ivar polish: If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B` method is used to polish the best population member at the end, which can improve the minimization slightly. """ number_of_decision_variables: int strategy: str = 'best1bin' recombination: float = 0.3 mutation: float = 0.6 tol: float = 1e-5 seed: Union[np.random.RandomState, int] = np.random.RandomState() workers: int = 1 disp: bool = False polish: bool = True popsize: int = None population_size_for_each_variable: int = 15 total_population_size_limit: int = 100 def __attrs_post_init__(self): if self.popsize is None: self.popsize = self._estimate_population_size() elif self.popsize <= 0: raise ValueError('Number of individuals must be greater than 0.') if type(self.popsize) != int: raise TypeError('Population size must be an integer number.') if not 0 < self.recombination <= 1: raise ValueError('Recombination must be a value between 0 and 1.') if type(self.mutation) == tuple: mutation_dithering_array = np.array(self.mutation) if len(self.mutation) > 2: raise ValueError('Mutation can be a tuple with two numbers, not more.') if mutation_dithering_array.min() < 0 or mutation_dithering_array.max() > 2: raise ValueError('Mutation must be floats between 0 and 2.') elif mutation_dithering_array.min() == mutation_dithering_array.max(): raise ValueError("Values for mutation dithering can't be equal.") else: if type(self.mutation) != int and type(self.mutation) != float: raise TypeError('When mutation is provided as a single number, it must be a float or an int.') if not 0 < self.mutation < 2: raise ValueError('Mutation must be a number between 0 and 2.') if self.tol < 0: raise ValueError('Tolerance must be a positive float.') def _estimate_population_size(self): population_size = self.population_size_for_each_variable * self.number_of_decision_variables if population_size > self.total_population_size_limit: population_size = self.total_population_size_limit return population_size @attr.s(auto_attribs=True) class PygmoSelfAdaptiveDESettings: # TODO: docs and validations gen: int popsize: int allowed_variants: list = [2, 6, 7] variant_adptv: int = 2 ftol: float = 1e-6 xtol: float = 1e-6 memory: bool = True seed: int = int(np.random.randint(0, 2000)) polish: bool = True polish_method: str = 'tnewton_precond_restart' parallel_execution: bool = False number_of_islands: int = 2 archipelago_gen: int = 50 @attr.s(auto_attribs=True) class PygmoOptimizationProblemWrapper: # TODO: docs and validations objective_function: types.FunctionType bounds: list args: list = [] def fitness(self, x): return [self.objective_function(x, *self.args)] def get_bounds(self): return self._transform_bounds_to_pygmo_standard def gradient(self, x): return pg.estimate_gradient_h(lambda x: self.fitness(x), x) @property def _transform_bounds_to_pygmo_standard(self): bounds_numpy = np.array(self.bounds, dtype=np.float64) lower_bounds = list(bounds_numpy[:, 0]) upper_bounds = list(bounds_numpy[:, 1]) return lower_bounds, upper_bounds @attr.s(auto_attribs=True) class PygmoSolutionWrapperSerial: # TODO: docs and validations solution: pg.core.population @property def fun(self): return self.solution.champion_f @property def x(self): return self.solution.champion_x @attr.s(auto_attribs=True) class PygmoSolutionWrapperParallel: # TODO: docs and validations champion_x: np.ndarray champion_f: Union[float, np.float64, np.ndarray] @property def fun(self): return self.champion_f @property def x(self): return self.champion_x @attr.s(auto_attribs=True) class OptimizationProblem: """ This class stores and solve optimization problems with the available solvers. """ # TODO: docs and validations objective_function: types.FunctionType bounds: list optimization_method: OptimizationMethod solver_args: Union[ScipyDifferentialEvolutionSettings, PygmoSelfAdaptiveDESettings] args: list = [] def __attrs_post_init__(self): if self.optimization_method == OptimizationMethod.SCIPY_DE and self.solver_args is None: self.solver_args = ScipyDifferentialEvolutionSettings(self._number_of_decision_variables) @property def _number_of_decision_variables(self): return len(self.bounds) def solve_minimization(self): if self.optimization_method == OptimizationMethod.SCIPY_DE: result = differential_evolution( self.objective_function, bounds=self.bounds, args=self.args, strategy=self.solver_args.strategy, popsize=self.solver_args.popsize, recombination=self.solver_args.recombination, mutation=self.solver_args.mutation, tol=self.solver_args.tol, disp=self.solver_args.disp, polish=self.solver_args.polish, seed=self.solver_args.seed, workers=self.solver_args.workers ) return result elif self.optimization_method == OptimizationMethod.PYGMO_DE1220: problem_wrapper = PygmoOptimizationProblemWrapper( objective_function=self.objective_function, bounds=self.bounds, args=self.args ) pygmo_algorithm = pg.algorithm( pg.de1220( gen=self.solver_args.gen, allowed_variants=self.solver_args.allowed_variants, variant_adptv=self.solver_args.variant_adptv, ftol=self.solver_args.ftol, xtol=self.solver_args.xtol, memory=self.solver_args.memory, seed=self.solver_args.seed ) ) pygmo_problem = pg.problem(problem_wrapper) if self.solver_args.parallel_execution: solution_wrapper = self._run_pygmo_parallel( pygmo_algorithm, pygmo_problem, number_of_islands=self.solver_args.number_of_islands, archipelago_gen=self.solver_args.archipelago_gen ) else: pygmo_solution = self._run_pygmo_serial(pygmo_algorithm, pygmo_problem) if self.solver_args.polish: pygmo_solution = self._polish_pygmo_population(pygmo_solution) solution_wrapper = PygmoSolutionWrapperSerial(pygmo_solution) return solution_wrapper else: raise NotImplementedError('Unavailable optimization method.') @staticmethod def _select_best_pygmo_archipelago_solution(champions_x, champions_f): best_index = np.argmin(champions_f) return champions_x[best_index], champions_f[best_index] def _run_pygmo_parallel(self, algorithm, problem, number_of_islands=2, archipelago_gen=50): pygmo_archipelago = pg.archipelago( n=number_of_islands, algo=algorithm, prob=problem, pop_size=self.solver_args.popsize, seed=self.solver_args.seed ) pygmo_archipelago.evolve(n=archipelago_gen) pygmo_archipelago.wait() champions_x = pygmo_archipelago.get_champions_x() champions_f = pygmo_archipelago.get_champions_f() champion_x, champion_f = self._select_best_pygmo_archipelago_solution(champions_x, champions_f) return PygmoSolutionWrapperParallel(champion_x=champion_x, champion_f=champion_f) def _run_pygmo_serial(self, algorithm, problem): population = pg.population( prob=problem, size=self.solver_args.popsize, seed=self.solver_args.seed ) solution = algorithm.evolve(population) return solution def _polish_pygmo_population(self, population): pygmo_nlopt_wrapper = pg.nlopt(self.solver_args.polish_method) nlopt_algorithm = pg.algorithm(pygmo_nlopt_wrapper) solution_wrapper = nlopt_algorithm.evolve(population) return solution_wrapper
22086
vals = { "yes" : 0, "residential" : 1, "service" : 2, "unclassified" : 3, "stream" : 4, "track" : 5, "water" : 6, "footway" : 7, "tertiary" : 8, "private" : 9, "tree" : 10, "path" : 11, "forest" : 12, "secondary" : 13, "house" : 14, "no" : 15, "asphalt" : 16, "wood" : 17, "grass" : 18, "paved" : 19, "primary" : 20, "unpaved" : 21, "bus_stop" : 22, "parking" : 23, "parking_aisle" : 24, "rail" : 25, "driveway" : 26, "8" : 27, "administrative" : 28, "locality" : 29, "turning_circle" : 30, "crossing" : 31, "village" : 32, "fence" : 33, "grade2" : 34, "coastline" : 35, "grade3" : 36, "farmland" : 37, "hamlet" : 38, "hut" : 39, "meadow" : 40, "wetland" : 41, "cycleway" : 42, "river" : 43, "school" : 44, "trunk" : 45, "gravel" : 46, "place_of_worship" : 47, "farm" : 48, "grade1" : 49, "traffic_signals" : 50, "wall" : 51, "garage" : 52, "gate" : 53, "motorway" : 54, "living_street" : 55, "pitch" : 56, "grade4" : 57, "industrial" : 58, "road" : 59, "ground" : 60, "scrub" : 61, "motorway_link" : 62, "steps" : 63, "ditch" : 64, "swimming_pool" : 65, "grade5" : 66, "park" : 67, "apartments" : 68, "restaurant" : 69, "designated" : 70, "bench" : 71, "survey_point" : 72, "pedestrian" : 73, "hedge" : 74, "reservoir" : 75, "riverbank" : 76, "alley" : 77, "farmyard" : 78, "peak" : 79, "level_crossing" : 80, "roof" : 81, "dirt" : 82, "drain" : 83, "garages" : 84, "entrance" : 85, "street_lamp" : 86, "deciduous" : 87, "fuel" : 88, "trunk_link" : 89, "information" : 90, "playground" : 91, "supermarket" : 92, "primary_link" : 93, "concrete" : 94, "mixed" : 95, "permissive" : 96, "orchard" : 97, "grave_yard" : 98, "canal" : 99, "garden" : 100, "spur" : 101, "paving_stones" : 102, "rock" : 103, "bollard" : 104, "convenience" : 105, "cemetery" : 106, "post_box" : 107, "commercial" : 108, "pier" : 109, "bank" : 110, "hotel" : 111, "cliff" : 112, "retail" : 113, "construction" : 114, "-1" : 115, "fast_food" : 116, "coniferous" : 117, "cafe" : 118, "6" : 119, "kindergarten" : 120, "tower" : 121, "hospital" : 122, "yard" : 123, "sand" : 124, "public_building" : 125, "cobblestone" : 126, "destination" : 127, "island" : 128, "abandoned" : 129, "vineyard" : 130, "recycling" : 131, "agricultural" : 132, "isolated_dwelling" : 133, "pharmacy" : 134, "post_office" : 135, "motorway_junction" : 136, "pub" : 137, "allotments" : 138, "dam" : 139, "secondary_link" : 140, "lift_gate" : 141, "siding" : 142, "stop" : 143, "main" : 144, "farm_auxiliary" : 145, "quarry" : 146, "10" : 147, "station" : 148, "platform" : 149, "taxiway" : 150, "limited" : 151, "sports_centre" : 152, "cutline" : 153, "detached" : 154, "storage_tank" : 155, "basin" : 156, "bicycle_parking" : 157, "telephone" : 158, "terrace" : 159, "town" : 160, "suburb" : 161, "bus" : 162, "compacted" : 163, "toilets" : 164, "heath" : 165, "works" : 166, "tram" : 167, "beach" : 168, "culvert" : 169, "fire_station" : 170, "recreation_ground" : 171, "bakery" : 172, "police" : 173, "atm" : 174, "clothes" : 175, "tertiary_link" : 176, "waste_basket" : 177, "attraction" : 178, "viewpoint" : 179, "bicycle" : 180, "church" : 181, "shelter" : 182, "drinking_water" : 183, "marsh" : 184, "picnic_site" : 185, "hairdresser" : 186, "bridleway" : 187, "retaining_wall" : 188, "buffer_stop" : 189, "nature_reserve" : 190, "village_green" : 191, "university" : 192, "1" : 193, "bar" : 194, "townhall" : 195, "mini_roundabout" : 196, "camp_site" : 197, "aerodrome" : 198, "stile" : 199, "9" : 200, "car_repair" : 201, "parking_space" : 202, "library" : 203, "pipeline" : 204, "true" : 205, "cycle_barrier" : 206, "4" : 207, "museum" : 208, "spring" : 209, "hunting_stand" : 210, "disused" : 211, "car" : 212, "tram_stop" : 213, "land" : 214, "fountain" : 215, "hiking" : 216, "manufacture" : 217, "vending_machine" : 218, "kiosk" : 219, "swamp" : 220, "unknown" : 221, "7" : 222, "islet" : 223, "shed" : 224, "switch" : 225, "rapids" : 226, "office" : 227, "bay" : 228, "proposed" : 229, "common" : 230, "weir" : 231, "grassland" : 232, "customers" : 233, "social_facility" : 234, "hangar" : 235, "doctors" : 236, "stadium" : 237, "give_way" : 238, "greenhouse" : 239, "guest_house" : 240, "viaduct" : 241, "doityourself" : 242, "runway" : 243, "bus_station" : 244, "water_tower" : 245, "golf_course" : 246, "conservation" : 247, "block" : 248, "college" : 249, "wastewater_plant" : 250, "subway" : 251, "halt" : 252, "forestry" : 253, "florist" : 254, "butcher" : 255} def getValues(): return vals
22112
from app.models import Circuit, CircuitSchema, Provider from flask import make_response, jsonify from app import db def read_all(): """ This function responds to a request for /circuits with the complete lists of circuits :return: sorted list of circuits """ circuits = Circuit.query.all() schema = CircuitSchema(many=True) return schema.dump(circuits).data def read_one(circuit_id): circuit = Circuit.query.filter(Circuit.id == circuit_id).one_or_none() if not circuit: text = f'circuit not found for id {circuit_id}' return make_response(jsonify(error=404, message=text), 404) schema = CircuitSchema() data = schema.dump(circuit).data return data def create(circuit): """ creates a circuit! checks to see if the provider_cid is unique and that the provider exists. :return: circuit """ provider_cid = circuit.get('provider_cid') provider_id = circuit.get('provider_id') circuit_exists = Circuit.query.filter( Circuit.provider_cid == provider_cid ).one_or_none() provider_exists = Provider.query.filter(Provider.id == provider_id).one_or_none() if circuit_exists: text = f'Circuit {provider_cid} already exists' return make_response(jsonify(error=409, message=text), 409) if not provider_exists: text = f'Provider {provider_id} does not exist.' 'Unable to create circuit' return make_response(jsonify(error=403, message=text), 403) schema = CircuitSchema() new_circuit = schema.load(circuit, session=db.session).data db.session.add(new_circuit) db.session.commit() data = schema.dump(new_circuit).data return data, 201 def update(circuit_id, circuit): """ updates a circuit! :return: circuit """ c = Circuit.query.filter_by(id=circuit_id).one_or_none() if not c: text = f'Can not update a circuit that does not exist!' return make_response(jsonify(error=409, message=text), 404) schema = CircuitSchema() update = schema.load(circuit, session=db.session).data db.session.merge(update) db.session.commit() data = schema.dump(c).data return data, 201
22208
import unittest import shutil import tempfile import numpy as np # import pandas as pd # import pymc3 as pm # from pymc3 import summary # from sklearn.mixture import BayesianGaussianMixture as skBayesianGaussianMixture from sklearn.model_selection import train_test_split from pmlearn.exceptions import NotFittedError from pmlearn.mixture import DirichletProcessMixture class DirichletProcessMixtureTestCase(unittest.TestCase): def setUp(self): self.num_truncate = 3 self.num_components = 3 self.num_pred = 1 self.num_training_samples = 100 self.pi = np.array([0.35, 0.4, 0.25]) self.means = np.array([0, 5, 10]) self.sigmas = np.array([0.5, 0.5, 1.0]) self.components = np.random.randint(0, self.num_components, self.num_training_samples) X = np.random.normal(loc=self.means[self.components], scale=self.sigmas[self.components]) X.shape = (self.num_training_samples, 1) self.X_train, self.X_test = train_test_split(X, test_size=0.3) self.test_DPMM = DirichletProcessMixture() self.test_nuts_DPMM = DirichletProcessMixture() self.test_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_dir) # class DirichletProcessMixtureFitTestCase(DirichletProcessMixtureTestCase): # def test_advi_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_DPMM.fit(self.X_train) # # self.assertEqual(self.num_pred, self.test_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_DPMM.num_components) # self.assertEqual(self.num_truncate, self.test_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # def test_nuts_fit_returns_correct_model(self): # # This print statement ensures PyMC3 output won't overwrite the test name # print('') # self.test_nuts_DPMM.fit(self.X_train, # inference_type='nuts', # inference_args={'draws': 1000, # 'chains': 2}) # # self.assertEqual(self.num_pred, self.test_nuts_DPMM.num_pred) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_components) # self.assertEqual(self.num_components, self.test_nuts_DPMM.num_truncate) # # self.assertAlmostEqual(self.pi[0], # self.test_nuts_DPMM.summary['mean']['pi__0'], # 0) # self.assertAlmostEqual(self.pi[1], # self.test_nuts_DPMM.summary['mean']['pi__1'], # 0) # self.assertAlmostEqual(self.pi[2], # self.test_nuts_DPMM.summary['mean']['pi__2'], # 0) # # self.assertAlmostEqual( # self.means[0], # self.test_nuts_DPMM.summary['mean']['cluster_center_0__0'], # 0) # self.assertAlmostEqual( # self.means[1], # self.test_nuts_DPMM.summary['mean']['cluster_center_1__0'], # 0) # self.assertAlmostEqual( # self.means[2], # self.test_nuts_DPMM.summary['mean']['cluster_center_2__0'], # 0) # # self.assertAlmostEqual( # self.sigmas[0], # self.test_nuts_DPMM.summary['mean']['cluster_variance_0__0'], # 0) # self.assertAlmostEqual( # self.sigmas[1], # self.test_nuts_DPMM.summary['mean']['cluster_variance_1__0'], # 0) # self.assertAlmostEqual( # self.sigmas[2], # self.test_nuts_DPMM.summary['mean']['cluster_variance_2__0'], # 0) # # class DirichletProcessMixturePredictTestCase(DirichletProcessMixtureTestCase): # def test_predict_returns_predictions(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds = self.test_DPMM.predict(self.X_test) # self.assertEqual(self.y_test.shape, preds.shape) # def test_predict_returns_mean_predictions_and_std(self): # print('') # self.test_DPMM.fit(self.X_train, self.y_train) # preds, stds = self.test_DPMM.predict(self.X_test, return_std=True) # self.assertEqual(self.y_test.shape, preds.shape) # self.assertEqual(self.y_test.shape, stds.shape) def test_predict_raises_error_if_not_fit(self): print('') with self.assertRaises(NotFittedError) as no_fit_error: test_DPMM = DirichletProcessMixture() test_DPMM.predict(self.X_train) expected = 'Run fit on the model before predict.' self.assertEqual(str(no_fit_error.exception), expected) # class DirichletProcessMixtureScoreTestCase(DirichletProcessMixtureTestCase): # def test_score_matches_sklearn_performance(self): # print('') # skDPMM = skBayesianGaussianMixture(n_components=3) # skDPMM.fit(self.X_train) # skDPMM_score = skDPMM.score(self.X_test) # # self.test_DPMM.fit(self.X_train) # test_DPMM_score = self.test_DPMM.score(self.X_test) # # self.assertAlmostEqual(skDPMM_score, test_DPMM_score, 0) # # # class DirichletProcessMixtureSaveAndLoadTestCase(DirichletProcessMixtureTestCase): # def test_save_and_load_work_correctly(self): # print('') # self.test_DPMM.fit(self.X_train) # score1 = self.test_DPMM.score(self.X_test) # self.test_DPMM.save(self.test_dir) # # DPMM2 = DirichletProcessMixture() # DPMM2.load(self.test_dir) # # self.assertEqual(self.test_DPMM.inference_type, DPMM2.inference_type) # self.assertEqual(self.test_DPMM.num_pred, DPMM2.num_pred) # self.assertEqual(self.test_DPMM.num_training_samples, # DPMM2.num_training_samples) # self.assertEqual(self.test_DPMM.num_truncate, DPMM2.num_truncate) # # pd.testing.assert_frame_equal(summary(self.test_DPMM.trace), # summary(DPMM2.trace)) # # score2 = DPMM2.score(self.X_test) # self.assertAlmostEqual(score1, score2, 0)
22229
sm.setSpeakerID(1013000) sm.sendNext("Ugh. This isn't going to work. I need something else. No plants. No meat. What, you have no idea? But you're the master, and you're older than me, too. You must know what'd be good for me!") sm.setPlayerAsSpeaker() sm.sendSay("#bBut I don't. It's not like age has anything to do with this...") sm.setSpeakerID(1013000) if sm.sendAskAccept("Since you're older, you must be more experienced in the world, too. Makes sense that you'd know more than me. Oh, fine. I'll ask someone who's even older than you, master!"): if not sm.hasQuest(parentID): sm.startQuest(parentID) sm.setPlayerAsSpeaker() sm.sendSayOkay("#b#b(You already asked Dad once, but you don't have any better ideas. Time to ask him again!)") else: sm.sendNext("No use trying to find an answer to this on my own. I'd better look for #bsomeone older and wiser than master#k!") sm.dispose()
22239
import numpy as np from tests.test_utils import run_track_tests from mirdata import annotations from mirdata.datasets import tonas TEST_DATA_HOME = "tests/resources/mir_datasets/tonas" def test_track(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) expected_attributes = { "singer": "<NAME>", "style": "Debla", "title": "<NAME>", "tuning_frequency": 451.0654725341684, "f0_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.f0.Corrected", "notes_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.notes.Corrected", "audio_path": "tests/resources/mir_datasets/tonas/Deblas/01-D_AMairena.wav", "track_id": "01-D_AMairena", } expected_property_types = { "f0": annotations.F0Data, "f0_automatic": annotations.F0Data, "f0_corrected": annotations.F0Data, "notes": annotations.NoteData, "audio": tuple, "singer": str, "style": str, "title": str, "tuning_frequency": float, } run_track_tests(track, expected_attributes, expected_property_types) def test_to_jams(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) jam = track.to_jams() # Validate cante100 jam schema assert jam.validate() # Validate melody f0 = jam.search(namespace="pitch_contour")[0]["data"] assert [note.time for note in f0] == [0.197, 0.209, 0.221, 0.232] assert [note.duration for note in f0] == [0.0, 0.0, 0.0, 0.0] assert [note.value for note in f0] == [ {"index": 0, "frequency": 0.0, "voiced": False}, {"index": 0, "frequency": 379.299, "voiced": True}, {"index": 0, "frequency": 379.299, "voiced": True}, {"index": 0, "frequency": 379.299, "voiced": True}, ] print([note.confidence for note in f0]) assert [note.confidence for note in f0] == [3.09e-06, 2.86e-06, 7.15e-06, 1.545e-05] # Validate note transciption notes = jam.search(namespace="note_hz")[0]["data"] assert [note.time for note in notes] == [ 0.216667, 0.65, 2.183333, 2.566667, ] assert [note.duration for note in notes] == [ 0.433333, 1.016667, 0.3833329999999999, 0.3333330000000001, ] assert [note.value for note in notes] == [ 388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769, ] assert [note.confidence for note in notes] == [None, None, None, None] def test_load_melody(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) f0_path = track.f0_path f0_data_corrected = tonas.load_f0(f0_path, True) f0_data_automatic = tonas.load_f0(f0_path, False) # check types assert type(f0_data_corrected) == annotations.F0Data assert type(f0_data_corrected.times) is np.ndarray assert type(f0_data_corrected.frequencies) is np.ndarray assert type(f0_data_corrected.voicing) is np.ndarray assert type(f0_data_corrected._confidence) is np.ndarray assert type(f0_data_automatic) == annotations.F0Data assert type(f0_data_automatic.times) is np.ndarray assert type(f0_data_automatic.frequencies) is np.ndarray assert type(f0_data_corrected.voicing) is np.ndarray assert type(f0_data_automatic._confidence) is np.ndarray # check values assert np.array_equal( f0_data_corrected.times, np.array([0.197, 0.209, 0.221, 0.232]), ) assert np.array_equal( f0_data_corrected.frequencies, np.array([0.000, 379.299, 379.299, 379.299]) ) assert np.array_equal( f0_data_corrected.voicing, np.array([0.0, 1.0, 1.0, 1.0]), ) assert np.array_equal( f0_data_corrected._confidence, np.array([3.090e-06, 0.00000286, 0.00000715, 0.00001545]), ) # check values assert np.array_equal( f0_data_automatic.times, np.array([0.197, 0.209, 0.221, 0.232]), ) assert np.array_equal( f0_data_automatic.frequencies, np.array( [ 0.000, 0.000, 143.918, 143.918, ] ), ) assert np.array_equal( f0_data_automatic.voicing, np.array([0.0, 0.0, 1.0, 1.0]), ) assert np.array_equal( f0_data_automatic._confidence, np.array([3.090e-06, 2.860e-06, 0.00000715, 0.00001545]), ) def test_load_notes(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) notes_path = track.notes_path notes_data = tonas.load_notes(notes_path) tuning_frequency = tonas._load_tuning_frequency(notes_path) # check types assert type(notes_data) == annotations.NoteData assert type(notes_data.intervals) is np.ndarray assert type(notes_data.pitches) is np.ndarray assert type(notes_data.confidence) is np.ndarray assert type(tuning_frequency) is float # check tuning frequency assert tuning_frequency == 451.0654725341684 # check values assert np.array_equal( notes_data.intervals[:, 0], np.array([0.216667, 0.65, 2.183333, 2.566667]) ) assert np.array_equal( notes_data.intervals[:, 1], np.array([0.65, 1.666667, 2.566666, 2.9]) ) assert np.array_equal( notes_data.pitches, np.array( [388.8382625732775, 411.9597888711769, 388.8382625732775, 411.9597888711769] ), ) assert np.array_equal( notes_data.confidence, np.array( [ 0.018007, 0.010794, 0.00698, 0.03265, ] ), ) def test_load_audio(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) track = dataset.track(default_trackid) audio_path = track.audio_path audio, sr = tonas.load_audio(audio_path) assert sr == 44100 assert type(audio) is np.ndarray def test_metadata(): default_trackid = "01-D_AMairena" dataset = tonas.Dataset(TEST_DATA_HOME) metadata = dataset._metadata assert metadata[default_trackid] == { "title": "En el barrio de Triana", "style": "Debla", "singer": "<NAME>", }
22267
class Response(object): """ """ def __init__(self, status_code, text): self.content = text self.cached = False self.status_code = status_code self.ok = self.status_code < 400 @property def text(self): return self.content def __repr__(self): return 'HTTP {} {}'.format(self.status_code, self.content)
22272
import json class TestListRepo: def test_invalid(self, host): result = host.run('stack list repo test') assert result.rc == 255 assert result.stderr.startswith('error - ') def test_args(self, host, add_repo): # Add a second repo so we can make sure it is skipped add_repo('test2', 'test2url') # Run list repo with just the test box result = host.run('stack list repo test output-format=json') assert result.rc == 0 # Make sure we got data only for the test box repo_data = json.loads(result.stdout) assert len(repo_data) == 1 assert repo_data[0]['name'] == 'test' # now get all of them # assert both repos are in the list data result = host.run('stack list repo output-format=json') repo_data = json.loads(result.stdout) assert len(repo_data) == 2 assert {'test', 'test2'} == {repo['name'] for repo in repo_data} # now get all of them, by explicitly asking for them # assert both repos are in the list data result = host.run('stack list repo test test2 output-format=json') new_repo_data = json.loads(result.stdout) assert len(new_repo_data) == 2 assert {'test', 'test2'} == {repo['name'] for repo in new_repo_data} def test_removed_not_listed(self, host, add_repo, revert_etc): # Run list repo with just the test box result = host.run('stack list repo test output-format=json') assert result.rc == 0 # Make sure we got data only for the test box repo_data = json.loads(result.stdout) assert len(repo_data) == 1 assert repo_data[0]['name'] == 'test' result = host.run('stack remove repo test') assert result.rc == 0 # Run list repo again result = host.run('stack list repo test output-format=json') assert result.rc == 255 assert result.stderr.startswith('error - ') def test_expanded_columns(self, host, host_os, add_repo): # Run list repo with just the test box result = host.run('stack list repo test expanded=true output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { "name": "test", "alias": "test", "url": "test_url", "autorefresh": False, "assumeyes": False, "type": "rpm-md", "is_mirrorlist": False, "gpgcheck": False, "gpgkey": None, "os": host_os, "pallet name": None } ] def test_add_repo_with_pallet(self, host, host_os, add_repo, create_pallet_isos, revert_export_stack_pallets, revert_pallet_hooks, revert_etc): result = host.run(f'stack add pallet {create_pallet_isos}/minimal-1.0-sles12.x86_64.disk1.iso') #result = host.run(f'stack add pallet /root/minimal-1.0-sles12.x86_64.disk1.iso') assert result.rc == 0 result = host.run('stack list pallet minimal output-format=json') assert result.rc == 0 pallet_data = json.loads(result.stdout) assert len(pallet_data) == 1 # get pallet id, as well as the -'d name in the correct order from stack.commands import DatabaseConnection, get_mysql_connection, Command from stack.argument_processors.pallet import PalletArgProcessor from operator import attrgetter p = PalletArgProcessor() p.db = DatabaseConnection(get_mysql_connection()) minimal_pallet = p.get_pallets(args=['minimal'], params=pallet_data[0])[0] pallet_name = '-'.join(attrgetter('name', 'version', 'rel', 'os', 'arch')(minimal_pallet)) # now attach the test repo to the pallet result = host.run(f'stack set repo test pallet={minimal_pallet.id}') assert result.rc == 0 # now verify it is attached to that pallet result = host.run('stack list repo test expanded=true output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { "name": "test", "alias": "test", "url": "test_url", "autorefresh": False, "assumeyes": False, "type": "rpm-md", "is_mirrorlist": False, "gpgcheck": False, "gpgkey": None, "os": host_os, "pallet name": pallet_name } ] # now verify that removing that pallet removes the repo as well result = host.run('stack remove pallet minimal') assert result.rc == 0 result = host.run('stack list repo') assert result.rc == 0 assert result.stdout == ''
22283
import json from ..connection import get_connection class Metadata: def __init__(self, database): self.connection = get_connection(database).connection # first list is default if nothing is specified (should be extended) # list is ordered as [edge_name, node1_id, edge_node1_id, edge_node2_id, node2_id2 def get_metadata(self): self.connection.execute("SELECT metadata FROM _meta") metadata = json.loads(self.connection.fetchone()[0]) return metadata def update_metadata(self, data): self.connection.execute(f"UPDATE _meta SET metadata='{json.dumps(data)}'") def get_default_join_info(self, node1, node2): return self.get_metadata()[node1][node2][0] def get_all_join_info(self, node1, node2): return self.get_metadata()[node1][node2] # { # 'term_dict': { # 'docs': [['term_doc', 'term_id', 'term_id', 'doc_id', 'doc_id']] # }, # 'docs': { # 'term_dict': [['term_doc', 'doc_id', 'doc_id', 'term_id', 'term_id']], # 'entities': [['entity_doc', 'collection_id', 'doc_id', 'entity', 'entity']], # 'authors': [['doc_author', 'collection_id', 'doc', 'author', 'author']] # }, # 'entities': { # 'docs': [['entity_doc', 'entity', 'entity', 'doc_id', 'collection_id']] # }, # 'authors': { # 'docs': [['doc_author', 'author', 'author', 'doc', 'collection_id']] # } # }
22291
from statistics import mean import csv from aalpy.SULs import DfaSUL, MealySUL, MooreSUL from aalpy.learning_algs import run_Lstar from aalpy.oracles import RandomWalkEqOracle from aalpy.utils import generate_random_dfa, generate_random_mealy_machine, generate_random_moore_machine num_states = 1000 alph_size = 5 repeat = 10 num_increases = 20 states = ['alph_size', alph_size] times_dfa = ['dfa_pypy_rs'] times_mealy = ['mealy_pypy_rs'] times_moore = ['moore_pypyrs'] cex_processing = 'rs' for i in range(num_increases): print(i) total_time_dfa = [] total_time_mealy = [] total_time_moore = [] for _ in range(repeat): alphabet = list(range(alph_size)) dfa = generate_random_dfa(num_states, alphabet=alphabet, num_accepting_states=num_states // 2) sul = DfaSUL(dfa) # eq_oracle = StatePrefixEqOracle(alphabet, sul, walks_per_state=5, walk_len=40) eq_oracle = RandomWalkEqOracle(alphabet, sul, num_steps=10000, reset_prob=0.09) _, data = run_Lstar(alphabet, sul, eq_oracle, cex_processing=cex_processing, cache_and_non_det_check=False, return_data=True, automaton_type='dfa') total_time_dfa.append(data['learning_time']) del dfa del sul del eq_oracle mealy = generate_random_mealy_machine(num_states, input_alphabet=alphabet, output_alphabet=alphabet) sul_mealy = MealySUL(mealy) # eq_oracle = StatePrefixEqOracle(alphabet, sul_mealy, walks_per_state=5, walk_len=40) eq_oracle = RandomWalkEqOracle(alphabet, sul_mealy, num_steps=10000, reset_prob=0.09) _, data = run_Lstar(alphabet, sul_mealy, eq_oracle, cex_processing=cex_processing, cache_and_non_det_check=False, return_data=True, automaton_type='mealy') total_time_mealy.append(data['learning_time']) del mealy del sul_mealy del eq_oracle moore = generate_random_moore_machine(num_states, input_alphabet=alphabet, output_alphabet=alphabet) moore_sul = MooreSUL(moore) # eq_oracle = StatePrefixEqOracle(alphabet, moore_sul, walks_per_state=5, walk_len=40) eq_oracle = RandomWalkEqOracle(alphabet, moore_sul, num_steps=10000, reset_prob=0.09) _, data = run_Lstar(alphabet, moore_sul, eq_oracle, cex_processing=cex_processing, cache_and_non_det_check=False, return_data=True, automaton_type='moore') total_time_moore.append(data['learning_time']) alph_size += 5 states.append(alph_size) # save data and keep averages times_dfa.append(round(mean(total_time_dfa), 4)) times_mealy.append(round(mean(total_time_mealy), 4)) times_moore.append(round(mean(total_time_moore), 4)) with open('increasing_alphabet_experiments.csv', 'w') as f: wr = csv.writer(f, dialect='excel') wr.writerow(states) wr.writerow(times_dfa) wr.writerow(times_mealy) wr.writerow(times_moore)
22300
from ralph.api.serializers import RalphAPISerializer from ralph.api.viewsets import RalphAPIViewSet, RalphReadOnlyAPIViewSet from ralph.api.routers import router __all__ = [ 'RalphAPISerializer', 'RalphAPIViewSet', 'RalphReadOnlyAPIViewSet', 'router', ]
22301
from odoo import models, fields, api from odoo.exceptions import ValidationError class DemoOdooWizardTutorial(models.Model): _name = 'demo.odoo.wizard.tutorial' _description = 'Demo Odoo Wizard Tutorial' name = fields.Char('Description', required=True) partner_id = fields.Many2one('res.partner', string='Partner') @api.multi def action_context_demo(self): # if self._context.get('context_data', False): if self.env.context.get('context_data'): raise ValidationError('have context data') raise ValidationError('hello') @api.multi def action_button(self): for record in self: record.with_context(context_data=True).action_context_demo()
22322
import re from typing import Any, Type, Tuple, Union, Iterable from nonebot.typing import overrides from nonebot.adapters import Message as BaseMessage from nonebot.adapters import MessageSegment as BaseMessageSegment from .utils import escape, unescape from .api import Message as GuildMessage from .api import MessageArk, MessageEmbed class MessageSegment(BaseMessageSegment["Message"]): @classmethod @overrides(BaseMessageSegment) def get_message_class(cls) -> Type["Message"]: return Message @staticmethod def ark(ark: MessageArk) -> "Ark": return Ark("ark", data={"ark": ark}) @staticmethod def embed(embed: MessageEmbed) -> "Embed": return Embed("embed", data={"embed": embed}) @staticmethod def emoji(id: str) -> "Emoji": return Emoji("emoji", data={"id": id}) @staticmethod def image(url: str) -> "Attachment": return Attachment("attachment", data={"url": url}) @staticmethod def mention_user(user_id: int) -> "MentionUser": return MentionUser("mention_user", {"user_id": str(user_id)}) @staticmethod def mention_channel(channel_id: int) -> "MentionChannel": return MentionChannel("mention_channel", {"channel_id": str(channel_id)}) @staticmethod def text(content: str) -> "Text": return Text("text", {"text": content}) @overrides(BaseMessageSegment) def is_text(self) -> bool: return self.type == "text" class Text(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return escape(self.data["text"]) class Emoji(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<emoji:{self.data['id']}>" class MentionUser(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<@{self.data['user_id']}>" class MentionEveryone(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return "@everyone" class MentionChannel(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<#{self.data['channel_id']}>" class Attachment(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<attachment:{self.data['url']}>" class Embed(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<embed:{self.data['embed']}>" class Ark(MessageSegment): @overrides(MessageSegment) def __str__(self) -> str: return f"<ark:{self.data['ark']}>" class Message(BaseMessage[MessageSegment]): @classmethod @overrides(BaseMessage) def get_segment_class(cls) -> Type[MessageSegment]: return MessageSegment @overrides(BaseMessage) def __add__( self, other: Union[str, MessageSegment, Iterable[MessageSegment]] ) -> "Message": return super(Message, self).__add__( MessageSegment.text(other) if isinstance(other, str) else other ) @overrides(BaseMessage) def __radd__( self, other: Union[str, MessageSegment, Iterable[MessageSegment]] ) -> "Message": return super(Message, self).__radd__( MessageSegment.text(other) if isinstance(other, str) else other ) @staticmethod @overrides(BaseMessage) def _construct(msg: str) -> Iterable[MessageSegment]: text_begin = 0 for embed in re.finditer( r"\<(?P<type>(?:@|#|emoji:))!?(?P<id>\w+?)\>", msg, ): content = msg[text_begin : embed.pos + embed.start()] if content: yield Text("text", {"text": unescape(content)}) text_begin = embed.pos + embed.end() if embed.group("type") == "@": yield MentionUser("mention_user", {"user_id": embed.group("id")}) elif embed.group("type") == "#": yield MentionChannel( "mention_channel", {"channel_id": embed.group("id")} ) else: yield Emoji("emoji", {"id": embed.group("id")}) content = msg[text_begin:] if content: yield Text("text", {"text": unescape(msg[text_begin:])}) @classmethod def from_guild_message(cls, message: GuildMessage) -> "Message": msg = Message() if message.content: msg.extend(Message(message.content)) if message.attachments: msg.extend( Attachment("attachment", data={"url": seg.url}) for seg in message.attachments if seg.url ) if message.embeds: msg.extend(Embed("embed", data={"embed": seg}) for seg in message.embeds) if message.ark: msg.append(Ark("ark", data={"ark": message.ark})) return msg def extract_content(self) -> str: return "".join( str(seg) for seg in self if seg.type in ("text", "emoji", "mention_user", "mention_everyone", "mention_channel") )
22344
from configs import cfg from src.utils.record_log import _logger import numpy as np import tensorflow as tf import scipy.stats as stats class Evaluator(object): def __init__(self, model): self.model = model self.global_step = model.global_step ## ---- summary---- self.build_summary() self.writer = tf.summary.FileWriter(cfg.summary_dir) def get_evaluation(self, sess, dataset_obj, global_step=None): _logger.add() _logger.add('getting evaluation result for %s' % dataset_obj.data_type) logits_list, loss_list = [], [] target_score_list, predicted_score_list = [], [] for sample_batch, _, _, _ in dataset_obj.generate_batch_sample_iter(): feed_dict = self.model.get_feed_dict(sample_batch, 'dev') logits, loss, predicted_score = sess.run([self.model.logits, self.model.loss, self.model.predicted_score], feed_dict) logits_list.append(np.argmax(logits, -1)) loss_list.append(loss) predicted_score_list.append(predicted_score) for sample in sample_batch: target_score_list.append(sample['relatedness_score']) logits_array = np.concatenate(logits_list, 0) loss_value = np.mean(loss_list) target_scores = np.array(target_score_list) predicted_scores = np.concatenate(predicted_score_list, 0) # pearson, spearman, mse pearson_value = stats.pearsonr(target_scores, predicted_scores)[0] spearman_value = stats.spearmanr(target_scores, predicted_scores)[0] mse_value = np.mean((target_scores - predicted_scores) ** 2) # todo: analysis # analysis_save_dir = cfg.mkdir(cfg.answer_dir, 'gs_%d' % global_step or 0) # OutputAnalysis.do_analysis(dataset_obj, logits_array, accu_array, analysis_save_dir, # cfg.fine_grained) if global_step is not None: if dataset_obj.data_type == 'train': summary_feed_dict = { self.train_loss: loss_value, self.train_pearson: pearson_value, self.train_spearman: spearman_value, self.train_mse: mse_value, } summary = sess.run(self.train_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) elif dataset_obj.data_type == 'dev': summary_feed_dict = { self.dev_loss: loss_value, self.dev_pearson: pearson_value, self.dev_spearman: spearman_value, self.dev_mse: mse_value, } summary = sess.run(self.dev_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) else: summary_feed_dict = { self.test_loss: loss_value, self.test_pearson: pearson_value, self.test_spearman: spearman_value, self.test_mse: mse_value, } summary = sess.run(self.test_summaries, summary_feed_dict) self.writer.add_summary(summary, global_step) return loss_value, (pearson_value, spearman_value, mse_value) # --- internal use ------ def build_summary(self): with tf.name_scope('train_summaries'): self.train_loss = tf.placeholder(tf.float32, [], 'train_loss') self.train_pearson = tf.placeholder(tf.float32, [], 'train_pearson') self.train_spearman = tf.placeholder(tf.float32, [], 'train_spearman') self.train_mse = tf.placeholder(tf.float32, [], 'train_mse') tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_loss', self.train_loss)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_pearson', self.train_pearson)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_spearman', self.train_spearman)) tf.add_to_collection('train_summaries_collection', tf.summary.scalar('train_mse', self.train_mse)) self.train_summaries = tf.summary.merge_all('train_summaries_collection') with tf.name_scope('dev_summaries'): self.dev_loss = tf.placeholder(tf.float32, [], 'dev_loss') self.dev_pearson = tf.placeholder(tf.float32, [], 'dev_pearson') self.dev_spearman = tf.placeholder(tf.float32, [], 'dev_spearman') self.dev_mse = tf.placeholder(tf.float32, [], 'dev_mse') tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_loss',self.dev_loss)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_pearson', self.dev_pearson)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_spearman', self.dev_spearman)) tf.add_to_collection('dev_summaries_collection', tf.summary.scalar('dev_mse', self.dev_mse)) self.dev_summaries = tf.summary.merge_all('dev_summaries_collection') with tf.name_scope('test_summaries'): self.test_loss = tf.placeholder(tf.float32, [], 'test_loss') self.test_pearson = tf.placeholder(tf.float32, [], 'test_pearson') self.test_spearman = tf.placeholder(tf.float32, [], 'test_spearman') self.test_mse = tf.placeholder(tf.float32, [], 'test_mse') tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_loss',self.test_loss)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_pearson', self.test_pearson)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_spearman', self.test_spearman)) tf.add_to_collection('test_summaries_collection', tf.summary.scalar('test_mse', self.test_mse)) self.test_summaries = tf.summary.merge_all('test_summaries_collection')
22356
from . import utils import os import scanpy as sc import scprep import tempfile URL = "https://ndownloader.figshare.com/files/25555751" @utils.loader def load_human_blood_nestorowa2016(test=False): """Download Nesterova data from Figshare.""" if test: # load full data first, cached if available adata = load_human_blood_nestorowa2016(test=False) # Subsample data adata = adata[:, :500].copy() utils.filter_genes_cells(adata) sc.pp.subsample(adata, n_obs=500) # Note: could also use 200-500 HVGs rather than 200 random genes # Ensure there are no cells or genes with 0 counts utils.filter_genes_cells(adata) return adata else: with tempfile.TemporaryDirectory() as tempdir: filepath = os.path.join(tempdir, "human_blood_nestorowa2016.h5ad") scprep.io.download.download_url(URL, filepath) adata = sc.read(filepath) # Ensure there are no cells or genes with 0 counts utils.filter_genes_cells(adata) return adata
22375
from data_process.census_process.census_data_creation_config import census_data_creation fg_feature_extractor_architecture_list = [[28, 56, 28, 14], [25, 50, 25, 12], [56, 86, 56, 18], [27, 54, 27, 13]] intr_fg_feature_extractor_for_architecture_list = [[53, 78, 53, 15], [84, 120, 84, 20], [55, 81, 55, 15], [81, 120, 81, 20], [52, 78, 52, 15], [83, 120, 83, 20]] no_fg_feature_extractor_architecture = [136, 150, 60, 20] pre_train_hyperparameters = { "using_interaction": False, "momentum": 0.99, "weight_decay": 0.00001, "lr": 5e-4, "batch_size": 128, "max_epochs": 600, "epoch_patience": 2, "valid_metric": ('ks', 'auc') } fine_tune_hyperparameters = { "using_interaction": False, "load_global_classifier": False, "momentum": 0.99, "weight_decay": 0.0, "lr": 8e-4, "batch_size": 128, "valid_metric": ('ks', 'auc') } no_adaptation_hyperparameters = { "apply_feature_group": False, "train_data_tag": 'all', # can be either 'all' or 'tgt' "momentum": 0.99, "weight_decay": 0.00001, "lr": 5e-4, "batch_size": 128, "max_epochs": 600, "epoch_patience": 2, "valid_metric": ('ks', 'auc') } data_dir = census_data_creation['processed_data_dir'] data_tag = 'all4000pos004' data_hyperparameters = { "source_ad_train_file_name": data_dir + f'undergrad_census9495_ad_{data_tag}_train.csv', "source_ad_valid_file_name": data_dir + f'undergrad_census9495_ad_{data_tag}_valid.csv', "src_tgt_train_file_name": data_dir + f'degree_src_tgt_census9495_{data_tag}_train.csv', "target_ad_train_file_name": data_dir + f'grad_census9495_ad_{data_tag}_train.csv', "target_ft_train_file_name": data_dir + f'grad_census9495_ft_{data_tag}_train.csv', "target_ft_valid_file_name": data_dir + f'grad_census9495_ft_{data_tag}_valid.csv', "target_ft_test_file_name": data_dir + f'grad_census9495_ft_{data_tag}_test.csv', "census_fg_pretrained_model_dir": "census_fg_pretrained_model", "census_fg_ft_target_model_dir": "census_fg_ft_target_model", "census_no-fg_pretrained_model_dir": "census_no-fg_pretrained_model", "census_no-fg_ft_target_model_dir": "census_no-fg_ft_target_model", "census_no-ad_model_dir": "census_no-ad_model" }
22383
from .. import global_vars as g from ..window import Window import numpy as np from ..roi import makeROI class TestSettings(): def test_random_roi_color(self): initial = g.settings['roi_color'] g.settings['roi_color'] = 'random' w1 = Window(np.random.random([10, 10, 10])) roi1 = makeROI('rectangle', [[1, 1], [3, 3]]) roi2 = makeROI('rectangle', [[2, 2], [3, 3]]) assert roi1.pen.color().name() != roi2.pen.color().name(), 'Random ROI color is the same. This could be a random chance. Run repeatedly.' g.settings['roi_color'] = '#00ff00' roi3 = makeROI('rectangle', [[3, 3], [3, 3]]) assert roi3.pen.color().name() == "#00ff00", 'ROI color set. all rois are same color' g.settings['roi_color'] = initial def test_multitrace(self): initial = g.settings['multipleTraceWindows'] g.settings['multipleTraceWindows'] = False w1 = Window(np.random.random([10, 10, 10])) roi1 = makeROI('rectangle', [[1, 1], [3, 3]]) roi1.plot() roi2 = makeROI('rectangle', [[2, 2], [3, 3]]) roi2.plot() assert roi1.traceWindow == roi2.traceWindow, 'Traces not plotted together.' g.settings['multipleTraceWindows'] = True roi3 = makeROI('rectangle', [[3, 3], [3, 3]]) roi3.plot() assert roi3.traceWindow != roi1.traceWindow, 'Multiple trace windows' g.settings['multipleTraceWindows'] = initial
22411
from time import strftime from flask_wtf import FlaskForm from wtforms import ( Form, validators, StringField, IntegerField, SubmitField, BooleanField, SelectField, TextAreaField, )
22414
import os.path import numpy as np import pickle from .common import Benchmark from refnx.analysis import CurveFitter, Objective, Parameter import refnx.reflect from refnx.reflect._creflect import abeles as c_abeles from refnx.reflect._reflect import abeles from refnx.reflect import SLD, Slab, Structure, ReflectModel, reflectivity from refnx.dataset import ReflectDataset as RD class Abeles(Benchmark): def setup(self): self.q = np.linspace(0.005, 0.5, 50000) self.layers = np.array([[0, 2.07, 0, 3], [50, 3.47, 0.0001, 4], [200, -0.5, 1e-5, 5], [50, 1, 0, 3], [0, 6.36, 0, 3]]) self.repeat = 20 self.number = 10 def time_cabeles(self): c_abeles(self.q, self.layers) def time_abeles(self): abeles(self.q, self.layers) def time_reflectivity_constant_dq_q(self): reflectivity(self.q, self.layers) def time_reflectivity_pointwise_dq(self): reflectivity(self.q, self.layers, dq=0.05 * self.q) class Reflect(Benchmark): timeout = 120. # repeat = 2 def setup(self): pth = os.path.dirname(os.path.abspath(refnx.reflect.__file__)) e361 = RD(os.path.join(pth, 'test', 'e361r.txt')) sio2 = SLD(3.47, name='SiO2') si = SLD(2.07, name='Si') d2o = SLD(6.36, name='D2O') polymer = SLD(1, name='polymer') # e361 is an older dataset, but well characterised structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3) model361 = ReflectModel(structure361, bkg=2e-5) model361.scale.vary = True model361.bkg.vary = True model361.scale.range(0.1, 2) model361.bkg.range(0, 5e-5) model361.dq = 5. # d2o structure361[-1].sld.real.vary = True structure361[-1].sld.real.range(6, 6.36) self.p = structure361[1].thick structure361[1].thick.vary = True structure361[1].thick.range(5, 20) structure361[2].thick.vary = True structure361[2].thick.range(100, 220) structure361[2].sld.real.vary = True structure361[2].sld.real.range(0.2, 1.5) self.structure361 = structure361 self.model361 = model361 # e361.x_err = None self.objective = Objective(self.model361, e361) self.fitter = CurveFitter(self.objective, nwalkers=200) self.fitter.initialise('jitter') def time_reflect_emcee(self): # test how fast the emcee sampler runs in serial mode self.fitter.sampler.run_mcmc(self.fitter._state, 30) def time_reflect_sampling_parallel(self): # discrepancies in different runs may be because of different numbers # of processors self.model361.threads = 1 self.fitter.sample(30, pool=-1) def time_pickle_objective(self): # time taken to pickle an objective s = pickle.dumps(self.objective) pickle.loads(s) def time_pickle_model(self): # time taken to pickle a model s = pickle.dumps(self.model361) pickle.loads(s) def time_pickle_model(self): # time taken to pickle a parameter s = pickle.dumps(self.p) pickle.loads(s) def time_structure_slabs(self): self.structure361.slabs()
22420
import os from abc import ABC, abstractmethod class File(ABC): """ Abstract class representing text files. """ @abstractmethod def __init__(self): pass @staticmethod def write_file(filename, text, overwrite_existing=True): """ Writes output text to a file. Args: filename (str): path to file, including name (e.g. ``path/to/input.gjf``) text (str): desired contents of file overwrite_existing (Bool): whether any existing files should be overwritten or not Returns: ``True`` if write succeeded, ``False`` otherwise """ if not isinstance(text, str): raise TypeError("cannot write non-string to file!") if not overwrite_existing and os.path.exists(filename): raise ValueError(f"{filename} already exists but not allowed to overwrite") else: try: with open(filename, "w+") as output_file: output_file.write(text) return True except OSError as e: print(e) return False @staticmethod def append_to_file(filename, text): """ Appends output text to a file. Args: filename (str): path to file, including name (e.g. ``path/to/input.gjf``) text (str): desired contents of file Returns: ``True`` if write succeeded, ``False`` otherwise """ if not isinstance(text, str): raise TypeError("cannot write non-string to file!") if os.path.exists(filename): try: with open(filename, "a+") as output_file: output_file.write(text) return True except OSError as e: print(e) return False else: raise ValueError(f"{filename} does not exist") @staticmethod def read_file(filename, lazy=False): """ Reads a file and parses into lines. Args: filename (str): The path to the file. Returns: A list containing all the lines in the file. """ with open(filename, "r") as filehandle: lines = filehandle.read().splitlines() return lines
22424
try: from DeepRTS import Engine except ImportError: import Engine try: from DeepRTS.Engine import Map, UnitManager, Constants, Player from DeepRTS.Engine import Constants except ImportError: from Engine import Map, UnitManager, Constants, Player, Constants
22478
import logging import sys from .pipeline import MWFPipeline def build(config): config["source"] = config["source"] or {} config["tweaks"] = config["tweaks"] or [] config["converter"] = config["converter"] or {} config["generator"] = config["generator"] or [] pipeline = MWFPipeline(config["source"].get("api_path")) if config["source"].get("api_path") is not None: pipeline.fetch_titles(**config["source"].get("kwargs")) if config["source"].get("file_path") is not None: title_file_path = config["source"].get("file_path") if title_file_path is None: logging.error("No api_path or file_path provided. Stop.") sys.exit(1) if isinstance(title_file_path, str): title_file_path = [title_file_path] for i in title_file_path: pipeline.load_titles_from_file(i, **config["source"].get("kwargs")) pipeline.convert_to_words(config["tweaks"]) pipeline.export_words(config["converter"].get("use"), **config["converter"].get("kwargs")) generators = config["generator"] if not isinstance(generators, list): generators = [generators] for gen in generators: pipeline.generate_dict(gen.get("use"), **gen.get("kwargs")) return pipeline.dict
22487
from .client import Client from .consts import * class FutureAPI(Client): def __init__(self, api_key, api_secret_key, passphrase, use_server_time=False, first=False): Client.__init__(self, api_key, api_secret_key, passphrase, use_server_time, first) # query position def get_position(self): return self._request_without_params(GET, FUTURE_POSITION) # query specific position def get_specific_position(self, instrument_id): return self._request_without_params(GET, FUTURE_SPECIFIC_POSITION + str(instrument_id) + '/position') # query accounts info def get_accounts(self): return self._request_without_params(GET, FUTURE_ACCOUNTS) # query coin account info def get_coin_account(self, underlying): return self._request_without_params(GET, FUTURE_COIN_ACCOUNT + str(underlying)) # query leverage def get_leverage(self, underlying): return self._request_without_params(GET, FUTURE_GET_LEVERAGE + str(underlying) + '/leverage') # set leverage def set_leverage(self, underlying, leverage, instrument_id='', direction=''): params = {'leverage': leverage} if instrument_id: params['instrument_id'] = instrument_id if direction: params['direction'] = direction return self._request_with_params(POST, FUTURE_SET_LEVERAGE + str(underlying) + '/leverage', params) # query ledger def get_ledger(self, underlying, after='', before='', limit='', type=''): params = {} if after: params['after'] = after if before: params['before'] = before if limit: params['limit'] = limit if type: params['type'] = type return self._request_with_params(GET, FUTURE_LEDGER + str(underlying) + '/ledger', params, cursor=True) # take order # def take_order(self, instrument_id, type, price, size, client_oid='', order_type='0', match_price='0'): # params = {'client_oid': client_oid, 'instrument_id': instrument_id, 'type': type, 'order_type': order_type, 'price': price, 'size': size, 'match_price': match_price} # return self._request_with_params(POST, FUTURE_ORDER, params) # take order 下单 def take_order(self, client_oid,instrument_id, otype,price, size, leverage, order_type,match_price): params = {'client_oid':client_oid,'instrument_id': instrument_id, 'type': otype, 'price': price, 'size': size, 'leverage': leverage,'order_type':order_type,'match_price':match_price} return self._request_with_params(POST, FUTURE_ORDER, params) # take orders def take_orders(self, instrument_id, orders_data): params = {'instrument_id': instrument_id, 'orders_data': orders_data} return self._request_with_params(POST, FUTURE_ORDERS, params) # revoke order def revoke_order(self, instrument_id, order_id='', client_oid=''): if order_id: return self._request_without_params(POST, FUTURE_REVOKE_ORDER + str(instrument_id) + '/' + str(order_id)) elif client_oid: return self._request_without_params(POST, FUTURE_REVOKE_ORDER + str(instrument_id) + '/' + str(client_oid)) # revoke orders def revoke_orders(self, instrument_id, order_ids='', client_oids=''): params = {} if order_ids: params = {'order_ids': order_ids} elif client_oids: params = {'client_oids': client_oids} return self._request_with_params(POST, FUTURE_REVOKE_ORDERS + str(instrument_id), params) # query order list def get_order_list(self, state, instrument_id,after='', before='', limit=''): params = {'state': state} if after: params['after'] = after if before: params['before'] = before if limit: params['limit'] = limit return self._request_with_params(GET, FUTURE_ORDERS_LIST + str(instrument_id), params, cursor=True) # query order info def get_order_info(self, instrument_id, order_id='', client_oid=''): if order_id: return self._request_without_params(GET, FUTURE_ORDER_INFO + str(instrument_id) + '/' + str(order_id)) elif client_oid: return self._request_without_params(GET, FUTURE_ORDER_INFO + str(instrument_id) + '/' + str(client_oid)) # query fills def get_fills(self, instrument_id, order_id='', after='', before='', limit=''): params = {'instrument_id': instrument_id} if order_id: params['order_id'] = order_id if after: params['after'] = after if before: params['before'] = before if limit: params['limit'] = limit return self._request_with_params(GET, FUTURE_FILLS, params, cursor=True) # set margin_mode def set_margin_mode(self, underlying, margin_mode): params = {'underlying': underlying, 'margin_mode': margin_mode} return self._request_with_params(POST, FUTURE_MARGIN_MODE, params) # close_position def close_position(self, instrument_id, direction): params = {'instrument_id': instrument_id, 'direction': direction} return self._request_with_params(POST, FUTURE_CLOSE_POSITION, params) # cancel_all def cancel_all(self, instrument_id, direction): params = {'instrument_id': instrument_id, 'direction': direction} return self._request_with_params(POST, FUTURE_CANCEL_ALL, params) # take order_algo def take_order_algo(self, instrument_id, type, order_type, size, trigger_price='', algo_price='', callback_rate='', algo_variance='', avg_amount='', price_limit='', sweep_range='', sweep_ratio='', single_limit='', time_interval=''): params = {'instrument_id': instrument_id, 'type': type, 'order_type': order_type, 'size': size} if order_type == '1': # 止盈止损参数(最多同时存在10单) params['trigger_price'] = trigger_price params['algo_price'] = algo_price elif order_type == '2': # 跟踪委托参数(最多同时存在10单) params['callback_rate'] = callback_rate params['trigger_price'] = trigger_price elif order_type == '3': # 冰山委托参数(最多同时存在6单) params['algo_variance'] = algo_variance params['avg_amount'] = avg_amount params['price_limit'] = price_limit elif order_type == '4': # 时间加权参数(最多同时存在6单) params['sweep_range'] = sweep_range params['sweep_ratio'] = sweep_ratio params['single_limit'] = single_limit params['price_limit'] = price_limit params['time_interval'] = time_interval return self._request_with_params(POST, FUTURE_ORDER_ALGO, params) # cancel_algos def cancel_algos(self, instrument_id, algo_ids, order_type): params = {'instrument_id': instrument_id, 'algo_ids': algo_ids, 'order_type': order_type} return self._request_with_params(POST, FUTURE_CANCEL_ALGOS, params) # get order_algos def get_order_algos(self, instrument_id, order_type, status='', algo_id='', before='', after='', limit=''): params = {'order_type': order_type} if status: params['status'] = status elif algo_id: params['algo_id'] = algo_id if before: params['before'] = before if after: params['after'] = after if limit: params['limit'] = limit return self._request_with_params(GET, FUTURE_GET_ORDER_ALGOS + str(instrument_id), params) def get_trade_fee(self): return self._request_without_params(GET, FUTURE_TRADE_FEE) # get products info def get_products(self): return self._request_without_params(GET, FUTURE_PRODUCTS_INFO) # get depth def get_depth(self, instrument_id, size='', depth=''): params = {'size': size, 'depth': depth} return self._request_with_params(GET, FUTURE_DEPTH + str(instrument_id) + '/book', params) # get ticker def get_ticker(self): return self._request_without_params(GET, FUTURE_TICKER) # get specific ticker def get_specific_ticker(self, instrument_id): return self._request_without_params(GET, FUTURE_SPECIFIC_TICKER + str(instrument_id) + '/ticker') # query trades def get_trades(self, instrument_id, after='', before='', limit=''): params = {} if after: params['after'] = after if before: params['before'] = before if limit: params['limit'] = limit return self._request_with_params(GET, FUTURE_TRADES + str(instrument_id) + '/trades', params, cursor=True) # query k-line def get_kline(self, instrument_id, granularity='', start='', end=''): params = {'granularity': granularity, 'start': start, 'end': end} # 按时间倒叙 即由结束时间到开始时间 return self._request_with_params(GET, FUTURE_KLINE + str(instrument_id) + '/candles', params) # 按时间正序 即由开始时间到结束时间 # data = self._request_with_params(GET, FUTURE_KLINE + str(instrument_id) + '/candles', params) # return list(reversed(data)) # query index def get_index(self, instrument_id): return self._request_without_params(GET, FUTURE_INDEX + str(instrument_id) + '/index') # query rate def get_rate(self): return self._request_without_params(GET, FUTURE_RATE) # query estimate price def get_estimated_price(self, instrument_id): return self._request_without_params(GET, FUTURE_ESTIMAT_PRICE + str(instrument_id) + '/estimated_price') # query the total platform of the platform def get_holds(self, instrument_id): return self._request_without_params(GET, FUTURE_HOLDS + str(instrument_id) + '/open_interest') # query limit price def get_limit(self, instrument_id): return self._request_without_params(GET, FUTURE_LIMIT + str(instrument_id) + '/price_limit') # query limit price def get_liquidation(self, instrument_id, status, limit='', froms='', to=''): params = {'status': status} if limit: params['limit'] = limit if froms: params['from'] = froms if to: params['to'] = to return self._request_with_params(GET, FUTURE_LIQUIDATION + str(instrument_id) + '/liquidation', params) # query holds amount def get_holds_amount(self, instrument_id): return self._request_without_params(GET, HOLD_AMOUNT + str(instrument_id) + '/holds') # query mark price def get_mark_price(self, instrument_id): return self._request_without_params(GET, FUTURE_MARK + str(instrument_id) + '/mark_price')
22518
from dataclasses import dataclass from typing import Dict from racecar_gym.bullet import load_world, load_vehicle from racecar_gym.tasks import Task, get_task from racecar_gym.core import World, Agent from .specs import ScenarioSpec, TaskSpec def task_from_spec(spec: TaskSpec) -> Task: task = get_task(spec.task_name) return task(**spec.params) @dataclass class MultiAgentScenario: world: World agents: Dict[str, Agent] @staticmethod def from_spec(path: str, rendering: bool = None) -> 'MultiAgentScenario': spec = ScenarioSpec() spec.load(path) if rendering: spec.world.rendering = rendering agents = dict([ (s.id, Agent(id=s.id, vehicle=load_vehicle(s.vehicle), task=task_from_spec(s.task))) for s in spec.agents ]) return MultiAgentScenario(world=load_world(spec.world, agents=list(agents.values())), agents=agents) @dataclass class SingleAgentScenario: world: World agent: Agent @staticmethod def from_spec(path: str, rendering: bool = None) -> 'SingleAgentScenario': spec = ScenarioSpec() spec.load(path) if rendering: spec.world.rendering = rendering agent_spec = spec.agents[0] agent = Agent(id=agent_spec.id, vehicle=load_vehicle(agent_spec.vehicle), task=task_from_spec(agent_spec.task)) return SingleAgentScenario(world=load_world(spec.world, agents=[agent]), agent=agent)
22545
import sys,os import json import logging as log import socket from collections import OrderedDict import datetime from platform import system as system_name # Returns the system/OS name from subprocess import call as system_call # Execute a shell command def ping(host): """ Returns True if host (str) responds to a ping request. Remember that a host may not respond to a ping (ICMP) request even if the host name is valid. """ # Ping command count option as function of OS param = '-n' if system_name().lower()=='windows' else '-c' # Building the command. Ex: "ping -c 1 google.com" command = ['ping', param, '1', host] # Pinging return system_call(command) == 0 # -------------------- config -------------------- def get_local_json(): """fetches the config.json file in the local directory if config_hostname.json is found it is used over the default one """ config = None dirname = os.path.dirname(sys.argv[0]) if(len(dirname) == 0): dirname = "." config_file = dirname+'/'+"config_"+socket.gethostname()+".json" if(os.path.isfile(config_file)): print("loading: ",config_file) config = json.load(open(config_file)) else: config_file = dirname+'/'+"config.json" if(os.path.isfile(config_file)): print("loading: %s",config_file) config = json.load(open(config_file)) else: print("Fatal error 'config.json' not found") return config # -------------------- config -------------------- def get_local_nodes(nodes_file): nodes = json.load(open(nodes_file),object_pairs_hook=OrderedDict) return nodes def configure_log(logger_name): global_config = get_local_json() config = global_config["log"] log_level_map = { "Debug" :10, "Info" :20, "Warning" :30, "Error" :40, "Critical" :50 } #if(os.path.isfile(config["logfile"])): for handler in log.root.handlers[:]: log.root.removeHandler(handler) log.basicConfig( filename=config["logfile"], level=log_level_map[config["level"]], format='%(asctime)s %(name)s %(levelname)-8s %(message)s', datefmt='%d %H:%M:%S' ) log.getLogger('').addHandler(log.StreamHandler()) log.info("====> '%s' started logging with level '%s' @ '%s'"%(logger_name,config["level"],str(datetime.datetime.utcnow()))) #else: # print("Log file not available : %s"%(config["logfile"])) return global_config
22611
import argparse, os import lib.config as config import lib.utils as utils def count_present_and_missing(cls, directory, metadata): """ Count present and missing videos for a class based on metadata. :param cls: The class. If None, count all videos (used for testing videos - no classes). :param directory: Directory containing the videos. :param metadata: Kinetics metadata json. :return: Tuple: number present videos, number of missing videos """ present = 0 missing = 0 for key in metadata: if cls is None or metadata[key]["annotations"]["label"] == cls: if os.path.isfile(os.path.join(directory, "{}.mp4".format(key))): present += 1 else: missing += 1 return present, missing def main(args): # load video classes classes = utils.load_json(config.CLASSES_PATH) # load lists of videos train_metadata = utils.load_json(config.TRAIN_METADATA_PATH) val_metadata = utils.load_json(config.VAL_METADATA_PATH) test_metadata = utils.load_json(config.TEST_METADATA_PATH) num_found = 0 total = 0 total_train_present = 0 total_train_missing = 0 total_val_present = 0 total_val_missing = 0 # load subset subset = None if args.subset: subset = utils.load_json(args.subset) # count train and validation videos for cls in classes: if subset is not None and cls not in subset: continue total += 1 cls_train_path = os.path.join(config.TRAIN_ROOT, cls.replace(" ", "_")) cls_valid_path = os.path.join(config.VALID_ROOT, cls.replace(" ", "_")) train_found = False valid_found = False if os.path.isdir(cls_train_path): train_present, train_missing = count_present_and_missing(cls, cls_train_path, train_metadata) train_found = True total_train_present += train_present total_train_missing += train_missing if os.path.isdir(cls_valid_path): valid_present, valid_missing = count_present_and_missing(cls, cls_valid_path, val_metadata) valid_found = True total_val_present += valid_present total_val_missing += valid_missing if train_found or valid_found: num_found += 1 if args.details: print("class {}".format(cls)) if train_found: print("train: {} / {}".format(train_present, train_present + train_missing)) if valid_found: print("valid: {} / {}".format(valid_present, valid_present + valid_missing)) print() # count test videos test_present, test_missing = count_present_and_missing(None, config.TEST_ROOT, test_metadata) # print train_percent_found = 0 if total_train_present > 0: train_percent_found = (total_train_present * 100) / (total_train_present + total_train_missing) valid_percent_found = 0 if total_val_present > 0: valid_percent_found = (total_val_present * 100) / (total_val_present + total_val_missing) test_percent_found = 0 if test_present > 0: test_percent_found = (test_present * 100) / (test_present + test_missing) print("class stats:") print("\t{:d} / {:d} classes found".format(num_found, total)) print() print("video stats (only for found classes):") print("\t{:d} / {:d} ({:.2f}%) train videos found".format( total_train_present, total_train_present + total_train_missing, train_percent_found)) print("\t{:d} / {:d} ({:.2f}%) valid videos found".format( total_val_present, total_val_present + total_val_missing, valid_percent_found)) print("\t{:d} / {:d} ({:.2f}%) test videos found".format( test_present, test_present + test_missing, test_percent_found)) if __name__ == "__main__": parser = argparse.ArgumentParser("Print statistics about downloaded videos.") parser.add_argument("-d", "--details", action="store_true", default=False, help="detailed stats for each found class") parser.add_argument("-s", "--subset", help="path to a JSON file containing a subset of Kinetics classes") parsed = parser.parse_args() main(parsed)
22617
import shutil import pathlib asset_dirs = ["artifacts/main", "artifacts/build_python_version"] pathlib.Path("distfiles").mkdir(exist_ok=True) for asset_dir in asset_dirs: for fname in list(pathlib.Path(asset_dir).glob('**/RobotRaconteur-*-MATLAB*')): print(fname) dest = pathlib.Path(fname) shutil.copy(str(fname),"distfiles/" + dest.name)
22620
import numpy as np from cdlib.evaluation.internal import onmi from cdlib.evaluation.internal.omega import Omega from nf1 import NF1 from collections import namedtuple, defaultdict __all__ = [ "MatchingResult", "normalized_mutual_information", "overlapping_normalized_mutual_information_LFK", "overlapping_normalized_mutual_information_MGH", "omega", "f1", "nf1", "adjusted_rand_index", "adjusted_mutual_information", "variation_of_information", "partition_closeness_simple", ] # MatchingResult = namedtuple("MatchingResult", ['mean', 'std']) MatchingResult = namedtuple("MatchingResult", "score std") MatchingResult.__new__.__defaults__ = (None,) * len(MatchingResult._fields) def __check_partition_coverage(first_partition: object, second_partition: object): nodes_first = { node: None for community in first_partition.communities for node in community } nodes_second = { node: None for community in second_partition.communities for node in community } if len(set(nodes_first.keys()) ^ set(nodes_second.keys())) != 0: raise ValueError("Both partitions should cover the same node set") def __check_partition_overlap(first_partition: object, second_partition: object): if first_partition.overlap or second_partition.overlap: raise ValueError("Not defined for overlapping partitions") def normalized_mutual_information( first_partition: object, second_partition: object ) -> MatchingResult: """ Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.normalized_mutual_information(louvain_communities,leiden_communities) """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import normalized_mutual_info_score return MatchingResult( score=normalized_mutual_info_score(first_partition_c, second_partition_c) ) def overlapping_normalized_mutual_information_LFK( first_partition: object, second_partition: object ) -> MatchingResult: """ Overlapping Normalized Mutual Information between two clusterings. Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichinetti et al. (1) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.overlapping_normalized_mutual_information_LFK(louvain_communities,leiden_communities) :Reference: 1. <NAME>., <NAME>., & <NAME>. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015. """ return MatchingResult( score=onmi.onmi( [set(x) for x in first_partition.communities], [set(x) for x in second_partition.communities], ) ) def overlapping_normalized_mutual_information_MGH( first_partition: object, second_partition: object, normalization: str = "max" ) -> MatchingResult: """ Overlapping Normalized Mutual Information between two clusterings. Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :param normalization: one of "max" or "LFK". Default "max" (corresponds to the main method described in the article) :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities,leiden_communities) :Reference: 1. <NAME>., <NAME>., & <NAME>. (2011). Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago """ if normalization == "max": variant = "MGH" elif normalization == "LFK": variant = "MGH_LFK" else: raise ValueError( "Wrong 'normalization' value. Please specify one among [max, LFK]." ) return MatchingResult( score=onmi.onmi( [set(x) for x in first_partition.communities], [set(x) for x in second_partition.communities], variant=variant, ) ) def omega(first_partition: object, second_partition: object) -> MatchingResult: """ Index of resemblance for overlapping, complete coverage, network clusterings. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.omega(louvain_communities,leiden_communities) :Reference: 1. <NAME>, <NAME>, and <NAME>. 2012. `Using the omega index for evaluating abstractive algorithms detection. <https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/>`_ In Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg, PA, USA, 10-18. """ __check_partition_coverage(first_partition, second_partition) first_partition = {k: v for k, v in enumerate(first_partition.communities)} second_partition = {k: v for k, v in enumerate(second_partition.communities)} om_idx = Omega(first_partition, second_partition) return MatchingResult(score=om_idx.omega_score) def f1(first_partition: object, second_partition: object) -> MatchingResult: """ Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.f1(louvain_communities,leiden_communities) :Reference: 1. <NAME>., <NAME>., & <NAME>. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_ In Complex Networks VII (pp. 133-144). Springer, Cham. """ nf = NF1(first_partition.communities, second_partition.communities) results = nf.summary() return MatchingResult( score=results["details"]["F1 mean"][0], std=results["details"]["F1 std"][0] ) def nf1(first_partition: object, second_partition: object) -> MatchingResult: """ Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.nf1(louvain_communities,leiden_communities) :Reference: 1. <NAME>., <NAME>., & <NAME>. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_ 2. <NAME>. (2017). : `RDyn: graph benchmark handling algorithms dynamics. Journal of Complex Networks. <https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/>`_ 5(6), 893-912. """ nf = NF1(first_partition.communities, second_partition.communities) results = nf.summary() return MatchingResult(score=results["scores"].loc["NF1"][0]) def adjusted_rand_index( first_partition: object, second_partition: object ) -> MatchingResult: """Rand index adjusted for chance. The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_index(a, b) == adjusted_rand_index(b, a) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.adjusted_rand_index(louvain_communities,leiden_communities) :Reference: 1. <NAME>., & <NAME>. (1985). `Comparing partitions. <https://link.springer.com/article/10.1007/BF01908075/>`_ Journal of classification, 2(1), 193-218. """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import adjusted_rand_score return MatchingResult( score=adjusted_rand_score(first_partition_c, second_partition_c) ) def adjusted_mutual_information( first_partition: object, second_partition: object ) -> MatchingResult: """Adjusted Mutual Information between two clusterings. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.adjusted_mutual_information(louvain_communities,leiden_communities) :Reference: 1. <NAME>., <NAME>., & <NAME>. (2010). `Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/>`_ Journal of Machine Learning Research, 11(Oct), 2837-2854. """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import adjusted_mutual_info_score return MatchingResult( score=adjusted_mutual_info_score(first_partition_c, second_partition_c) ) def variation_of_information( first_partition: object, second_partition: object ) -> MatchingResult: """Variation of Information among two nodes partitions. $$ H(p)+H(q)-2MI(p, q) $$ where MI is the mutual information, H the partition entropy and p,q are the algorithms sets :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.variation_of_information(louvain_communities,leiden_communities) :Reference: 1. Meila, M. (2007). `Comparing clusterings - an information based distance. <https://www.sciencedirect.com/science/article/pii/S0047259X06002016/>`_ Journal of Multivariate Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013 """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) n = float(sum([len(c1) for c1 in first_partition.communities])) sigma = 0.0 for c1 in first_partition.communities: p = len(c1) / n for c2 in second_partition.communities: q = len(c2) / n r = len(set(c1) & set(c2)) / n if r > 0.0: sigma += r * (np.log2(r / p) + np.log2(r / q)) return MatchingResult(score=abs(sigma)) def partition_closeness_simple( first_partition: object, second_partition: object ) -> MatchingResult: """Community size density closeness. Simple implementation that does not leverage kernel density estimator. $$ S_G(A,B) = \frac{1}{2} \Sum_{i=1}^{r}\Sum_{j=1}^{s} min(\frac{n^a(x^a_i)}{N^a}, \frac{n^b_j(x^b_j)}{N^b}) \delta(x_i^a,x_j^b) $$ where: $$ N^a $$ total number of communities in A of any size; $$ x^a $$ ordered list of community sizes for A; $$ n^a $$ multiplicity of community sizes for A. (symmetrically for B) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.partition_closeness_simple(louvain_communities,leiden_communities) :Reference: 1. Dao, Vinh-Loc, <NAME>, and <NAME>. "Estimating the similarity of community detection methods based on cluster size distribution." International Conference on Complex Networks and their Applications. Springer, Cham, 2018. """ coms_a = sorted(list(set([len(c) for c in first_partition.communities]))) freq_a = defaultdict(int) for a in coms_a: freq_a[a] += 1 freq_a = [freq_a[a] for a in sorted(freq_a)] n_a = sum([coms_a[i] * freq_a[i] for i in range(0, len(coms_a))]) coms_b = sorted(list(set([len(c) for c in second_partition.communities]))) freq_b = defaultdict(int) for b in coms_b: freq_b[b] += 1 freq_b = [freq_b[b] for b in sorted(freq_b)] n_b = sum([coms_b[i] * freq_b[i] for i in range(0, len(coms_b))]) closeness = 0 for i in range(0, len(coms_a)): for j in range(0, len(coms_b)): if coms_a[i] == coms_b[j]: closeness += min( (coms_a[i] * freq_a[i]) / n_a, (coms_b[j] * freq_b[j]) / n_b ) closeness *= 0.5 return MatchingResult(score=closeness)
22622
from typing import Optional import pytest from fastapi import FastAPI, Header from fastapi.testclient import TestClient from meiga import BoolResult, Failure, isFailure, isSuccess from petisco import NotFound, assert_http from petisco.extra.fastapi import FastAPIController app = FastAPI(title="test-app") result_from_expected_behavior = { "success": isSuccess, "failure_generic": isFailure, "failure_not_found": Failure(NotFound()), } class MyController(FastAPIController): def execute(self, expected_behavior: str) -> BoolResult: return result_from_expected_behavior.get(expected_behavior, isSuccess) @app.get("/test") def entry_point(x_behavior: Optional[str] = Header("success")): return MyController().execute(x_behavior) @pytest.mark.unit @pytest.mark.parametrize( "behavior,expected_status_code", [("success", 200), ("failure_generic", 500), ("failure_not_found", 404)], ) def test_fastapi_app_with_controller_should_return_expected_values( behavior, expected_status_code ): with TestClient(app) as client: response = client.get("/test", headers={"x-behavior": behavior}) assert_http(response, expected_status_code)
22629
from Point import Point import Constant as c from GeometryMath import bisector_point class Bisector(Point): def __init__(self, item): """Construct Bisector.""" Point.__init__(self, item) self.item["sub_type"] = c.Point.Definition.BISECTOR def tikzify(self): return '\\tkzDefLine[bisector](%s,%s,%s)\\tkzGetPoint{%s}' % (self.item["definition"]["A"], self.item["definition"]["B"], self.item["definition"]["C"], self.get_id()) def recompute_canvas(self, items, window, width, height): A = items[self.depends_on()[0]].get_canvas_coordinates() B = items[self.depends_on()[1]].get_canvas_coordinates() C = items[self.depends_on()[2]].get_canvas_coordinates() self.set_canvas_coordinates(*bisector_point(A, B, C)) def __str__(self): return "Bisector point (%s) of angle %s"\ % (self.item["id"], self.item["definition"]["A"]+self.item["definition"]["B"]+self.item["definition"]["C"]) def definition_builder(self, data, items=None): if len(data) == 3: return dict(zip(["A", "B", "C"], data)) def parse_into_definition(self, arguments, items): # arguments length condition if len(arguments) != 3: return None # all arguments are members of the regular expression for argument name if not all(map(lambda x: self.name_pattern(x), arguments)): return None # all arguments are items that already exist if not all(map(lambda x: x in items, arguments)): return None # the type of all arguments is of a certain type if not all(map(lambda x: items[x].item["type"] == 'point', arguments)): return None # self-reference condition (self-reference is not permitted) if self.get_id() in arguments: return None # condition for cross reference for id in arguments: deep_depends = items[id].deep_depends_on(items) if self.get_id() in deep_depends: return None return self.definition_builder(arguments) @staticmethod def static_patterns(): return ["ppp"] def patterns(self): return ["ppp"]
22663
from ._base import * DEBUG = False WEBSITE_URL = "https://example.com" # without trailing slash MEDIA_URL = f"{WEBSITE_URL}/media/"
22689
from unittest import TestCase from regulations.generator.layers.toc_applier import * class TableOfContentsLayerTest(TestCase): def test_section(self): toc = TableOfContentsLayer(None) el = {} toc.section(el, {'index': ['1']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', '2', '3']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', 'B']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', 'Interpretations']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', '2'], 'title': '1.2 - Awesome'}) self.assertEqual(el, { 'is_section': True, 'section_id': '1-2', 'label': '1.2', 'sub_label': 'Awesome' }) toc.section(el, {'index': ['2', '1'], 'title': '2.1Sauce'}) self.assertEqual(el, { 'is_section': True, 'section_id': '2-1', 'label': '2.1', 'sub_label': 'Sauce' }) def test_appendix_supplement(self): toc = TableOfContentsLayer(None) el = {} toc.appendix_supplement(el, {'index': ['1']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', '2', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', 'B', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', 'Interp', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, { 'index': ['1', 'B'], 'title': 'Appendix B - Bologna'}) self.assertEqual(el, { 'is_appendix': True, 'is_first_appendix': True, 'label': 'Appendix B', 'sub_label': 'Bologna', 'section_id': '1-B' }) el = {} toc.appendix_supplement(el, { 'index': ['204', 'A'], 'title': 'Appendix A to Part 204 - Model Forms'}) self.assertEqual(el, { 'is_appendix': True, 'is_first_appendix': True, 'label': 'Appendix A to Part 204', 'sub_label': 'Model Forms', 'section_id': '204-A' }) el = {} toc.appendix_supplement(el, { 'index': ['1', 'Interp'], 'title': 'Supplement I to 8787 - I am Iron Man'}) self.assertEqual(el, { 'is_supplement': True, 'label': 'Supplement I to 8787', 'sub_label': 'I am Iron Man', 'section_id': '1-Interp' }) def test_apply_layer_url(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}]}) result = toc.apply_layer('100') self.assertEqual('#100-1', result[1][0]['url']) toc.sectional = True toc.version = 'verver' result = toc.apply_layer('100') self.assertTrue('100-1/verver#100-1' in result[1][0]['url']) def test_apply_layer_compatibility(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Sec2', 'index': ['100', '2']}, {'title': '100.3 Sec3', 'index': ['100', '3']}] }) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) self.assertEqual(3, len(result[0]['sub_toc'])) def test_apply_layer_first_appendix(self): toc = TableOfContentsLayer({'100': [ {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix B', 'index': ['100', 'B']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(4, len(result)) aA, aB, aC, sI = result self.assertTrue(aA['is_first_appendix']) self.assertFalse(aB['is_first_appendix']) self.assertFalse(aC['is_first_appendix']) self.assertFalse(sI.get('is_first_appendix', False)) toc = TableOfContentsLayer({'100': [ {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(1, len(result)) self.assertFalse(result[0].get('is_first_appendix', False)) def test_apply_layer_interp_emptysubpart(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) s1, s2, interp = result self.assertEqual(1, len(interp['sub_toc'])) nosubpart = interp['sub_toc'][0] self.assertEqual('Regulation Text', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'Interp'], nosubpart['index']) toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(5, len(result)) s1, s2, appA, appC, interp = result self.assertEqual(2, len(interp['sub_toc'])) nosubpart, appendices = interp['sub_toc'] self.assertEqual('Regulation Text', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'Interp'], nosubpart['index']) self.assertEqual('Appendices', appendices['label']) self.assertEqual(['100', 'Appendices', 'Interp'], appendices['index']) def test_apply_layer_interp_subparts(self): toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}]}) _, result = toc.apply_layer('100') self.assertEqual(2, len(result)) subpartA, interp = result self.assertEqual(2, len(subpartA['sub_toc'])) self.assertEqual(1, len(interp['sub_toc'])) nosubpart = interp['sub_toc'][0] self.assertEqual('Subpart A', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'A', 'Interp'], nosubpart['index']) toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}]}) _, result = toc.apply_layer('100') self.assertEqual(4, len(result)) subpartA, appA, appC, interp = result self.assertEqual(2, len(interp['sub_toc'])) nosubpart, appendices = interp['sub_toc'] self.assertEqual('Subpart A', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'A', 'Interp'], nosubpart['index']) self.assertEqual('Appendices', appendices['label']) self.assertEqual(['100', 'Appendices', 'Interp'], appendices['index'])
22741
import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.utils.model_utils import reset_model_threshold def test_reset_threshold(): """ Test the model threshold can be reset. Performance metric should be recalculated and also predictions should be changed based on the new threshold. """ # import data airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/airlines/modified_airlines.csv")) # convert columns to factors airlines["Year"] = airlines["Year"].asfactor() airlines["Month"] = airlines["Month"].asfactor() airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() airlines["Cancelled"] = airlines["Cancelled"].asfactor() airlines['FlightNum'] = airlines['FlightNum'].asfactor() # set the predictor names and the response column name predictors = ["Origin", "Dest", "Year", "UniqueCarrier", "DayOfWeek", "Month", "Distance", "FlightNum"] response = "IsDepDelayed" # split into train and validation sets train, valid = airlines.split_frame(ratios = [.8], seed = 1234) # initialize the estimator model = H2OGradientBoostingEstimator(seed = 1234, ntrees=5) # train the model model.train(x=predictors, y=response, training_frame=train) old_threshold = model._model_json['output']['default_threshold'] # predict preds = model.predict(airlines) # reset the threshold and get the old one new_threshold = 0.6917189903082518 old_returned = reset_model_threshold(model, new_threshold) reset_model = h2o.get_model(model.model_id) reset_threshold = reset_model._model_json['output']['default_threshold'] # predict with reset model preds_reset = reset_model.predict(airlines) # compare thresholds assert old_threshold == old_returned assert new_threshold == reset_threshold assert reset_threshold != old_threshold # compare predictions preds_local = preds.as_data_frame() preds_reset_local = preds_reset.as_data_frame() print("old threshold:", old_threshold, "new_threshold:", new_threshold) for i in range(airlines.nrow): if old_threshold <= preds_local.iloc[i, 2] < new_threshold: assert preds_local.iloc[i, 0] != preds_reset_local.iloc[i, 0] else: assert preds_local.iloc[i, 0] == preds_reset_local.iloc[i, 0] if __name__ == "__main__": pyunit_utils.standalone_test(test_reset_threshold) else: test_reset_threshold()
22758
import pytest import sqlalchemy as sa class ThreeLevelDeepOneToOne(object): @pytest.fixture def Catalog(self, Base, Category): class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) category = sa.orm.relationship( Category, uselist=False, backref='catalog' ) return Catalog @pytest.fixture def Category(self, Base, SubCategory): class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) catalog_id = sa.Column( '_catalog_id', sa.Integer, sa.ForeignKey('catalog._id') ) sub_category = sa.orm.relationship( SubCategory, uselist=False, backref='category' ) return Category @pytest.fixture def SubCategory(self, Base, Product): class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) category_id = sa.Column( '_category_id', sa.Integer, sa.ForeignKey('category._id') ) product = sa.orm.relationship( Product, uselist=False, backref='sub_category' ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Integer) sub_category_id = sa.Column( '_sub_category_id', sa.Integer, sa.ForeignKey('sub_category._id') ) return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass class ThreeLevelDeepOneToMany(object): @pytest.fixture def Catalog(self, Base, Category): class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) categories = sa.orm.relationship(Category, backref='catalog') return Catalog @pytest.fixture def Category(self, Base, SubCategory): class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) catalog_id = sa.Column( '_catalog_id', sa.Integer, sa.ForeignKey('catalog._id') ) sub_categories = sa.orm.relationship( SubCategory, backref='category' ) return Category @pytest.fixture def SubCategory(self, Base, Product): class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) category_id = sa.Column( '_category_id', sa.Integer, sa.ForeignKey('category._id') ) products = sa.orm.relationship( Product, backref='sub_category' ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Numeric) sub_category_id = sa.Column( '_sub_category_id', sa.Integer, sa.ForeignKey('sub_category._id') ) def __repr__(self): return '<Product id=%r>' % self.id return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass class ThreeLevelDeepManyToMany(object): @pytest.fixture def Catalog(self, Base, Category): catalog_category = sa.Table( 'catalog_category', Base.metadata, sa.Column('catalog_id', sa.Integer, sa.ForeignKey('catalog._id')), sa.Column('category_id', sa.Integer, sa.ForeignKey('category._id')) ) class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) categories = sa.orm.relationship( Category, backref='catalogs', secondary=catalog_category ) return Catalog @pytest.fixture def Category(self, Base, SubCategory): category_subcategory = sa.Table( 'category_subcategory', Base.metadata, sa.Column( 'category_id', sa.Integer, sa.ForeignKey('category._id') ), sa.Column( 'subcategory_id', sa.Integer, sa.ForeignKey('sub_category._id') ) ) class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) sub_categories = sa.orm.relationship( SubCategory, backref='categories', secondary=category_subcategory ) return Category @pytest.fixture def SubCategory(self, Base, Product): subcategory_product = sa.Table( 'subcategory_product', Base.metadata, sa.Column( 'subcategory_id', sa.Integer, sa.ForeignKey('sub_category._id') ), sa.Column( 'product_id', sa.Integer, sa.ForeignKey('product._id') ) ) class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) products = sa.orm.relationship( Product, backref='sub_categories', secondary=subcategory_product ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Numeric) return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass
22777
from triage.experiments import ExperimentBase class SingleThreadedExperiment(ExperimentBase): def process_query_tasks(self, query_tasks): self.feature_generator.process_table_tasks(query_tasks) def process_matrix_build_tasks(self, matrix_build_tasks): self.matrix_builder.build_all_matrices(matrix_build_tasks) def process_train_test_batches(self, batches): self.model_train_tester.process_all_batches(batches) def process_subset_tasks(self, subset_tasks): self.subsetter.process_all_tasks(subset_tasks)
22799
from .backend import Backend from .circuitbyqiskit import CircuitByQiskit from .circuitbyprojectq import CircuitByProjectq from .circuitbycirq import CircuitByCirq from .circuitbyqulacs import CircuitByQulacs # from .circuitbytket import CircuitByTket from .circuitbytensor import CircuitByTensor from .circuitbyqton import CircuitByQton import warnings warnings.filterwarnings("ignore") __all__ = [ 'Backend', 'CircuitByCirq', 'CircuitByQiskit', 'CircuitByProjectq', 'CircuitByTensor', 'CircuitByQulacs', 'CircuitByQton' ]
22855
import os import pygame import random trigger = False x = 0 y = 0 height = 720 width = 1280 linelength = 50 lineAmt = 20 displace = 10 xpos = [random.randrange(-200,1280) for i in range(0, lineAmt + 2)] xpos1 = [(xpos[i]+displace) for i in range(0, lineAmt + 2)] xr = 360 yr = 240 def setup(screen, etc): global trigger, x, y, height, width, xpos, lineAmt, xpos1, linelength, displace, xr, yr xr = etc.xres yr = etc.yres height = yr width = xr linelength = ((50*xr)/1280) lineAmt = ((20*xr)/1280) displace = ((10*xr)/1280) xpos = [random.randrange(int((-200*xr)/1280),xr) for i in range(0, lineAmt + 2)] xpos1 = [(xpos[i]+displace) for i in range(0, lineAmt + 2)] pass def draw(screen, etc): global trigger, x, y, height, width, xpos, lineAmt, xpos1, linelength, displace, xr, yr etc.color_picker_bg(etc.knob5) displace = ((10*xr)/1280) linewidth = (height / lineAmt) linelength = int(etc.knob2*((300*xr)/1280)+1) color = etc.color_picker(etc.knob4) minus = (etc.knob3*0.5)+0.5 shadowColor = (etc.bg_color[0]*minus, etc.bg_color[1]*minus, etc.bg_color[2]*minus) if etc.audio_trig or etc.midi_note_new : trigger = True if trigger == True : lineAmt = int(etc.knob1*((100*yr)/720) + 2) xpos = [random.randrange(int((-200*xr)/1280),xr) for i in range(0, lineAmt + 2)] xpos1 = [(xpos[i]+displace) for i in range(0, lineAmt + 2)] for k in range(0, lineAmt + 2) : x = xpos1[k] + linelength y = (k * linewidth) + int(linewidth/2)- 1 pygame.draw.line(screen, shadowColor, (xpos1[k], y+displace), (x, y+displace), linewidth) for j in range(0, lineAmt + 2) : x = xpos[j] + linelength y = (j * linewidth) + int(linewidth/2)- 1 pygame.draw.line(screen, color, (xpos[j], y), (x, y), linewidth) trigger = False
22869
import tensorflow as tf from tensorflow.contrib import slim def head(endpoints, embedding_dim, is_training, weights_regularizer=None): predict_var = 0 input = endpoints['model_output'] endpoints['head_output'] = slim.fully_connected( input, 1024, normalizer_fn=slim.batch_norm, normalizer_params={ 'decay': 0.9, 'epsilon': 1e-5, 'scale': True, 'is_training': is_training, 'updates_collections': tf.GraphKeys.UPDATE_OPS, }, weights_regularizer=weights_regularizer ) input_1 = endpoints['head_output'] endpoints['emb_raw'] = slim.fully_connected( input_1, embedding_dim + predict_var, activation_fn=None,weights_regularizer=weights_regularizer, weights_initializer=tf.orthogonal_initializer(), scope='emb') endpoints['emb'] = tf.nn.l2_normalize(endpoints['emb_raw'], -1) # endpoints['data_sigma'] = None print('Normalize batch embedding') return endpoints
22870
from topbeat import BaseTest import os import shutil import time """ Contains tests for base config """ class Test(BaseTest): def test_invalid_config(self): """ Checks stop when input and topbeat defined """ shutil.copy("./config/topbeat-input-invalid.yml", os.path.join(self.working_dir, "invalid.yml")) exit_code = self.run_beat(config="invalid.yml", extra_args=["-N"]) assert exit_code == 1 assert self.log_contains( "'topbeat' and 'input' are both set in config.") is True def test_old_config(self): """ Test that old config still works with deprecation warning """ shutil.copy("./config/topbeat-old.yml", os.path.join(self.working_dir, "topbeat-old.yml")) topbeat = self.start_beat(config="topbeat-old.yml", extra_args=["-N"]) time.sleep(1) topbeat.check_kill_and_wait() assert self.log_contains( "Using 'input' in configuration is deprecated and is scheduled to " "be removed in Topbeat 6.0. Use 'topbeat' instead.") is True
22909
from __future__ import division import numpy as np __all__ = ['subtract_CAR', 'subtract_common_median_reference'] def subtract_CAR(X, b_size=16): """ Compute and subtract common average reference in 16 channel blocks. """ channels, time_points = X.shape s = channels // b_size r = channels % b_size X_1 = X[:channels-r].copy() X_1 = X_1.reshape((s, b_size, time_points)) X_1 -= np.nanmean(X_1, axis=1, keepdims=True) if r > 0: X_2 = X[channels-r:].copy() X_2 -= np.nanmean(X_2, axis=0, keepdims=True) X = np.vstack([X_1.reshape((s*b_size, time_points)), X_2]) return X else: return X_1.reshape((s*b_size, time_points)) def subtract_common_median_reference(X, channel_axis=-2): """ Compute and subtract common median reference for the entire grid. Parameters ---------- X : ndarray (..., n_channels, n_time) Data to common median reference. Returns ------- Xp : ndarray (..., n_channels, n_time) Common median referenced data. """ median = np.nanmedian(X, axis=channel_axis, keepdims=True) Xp = X - median return Xp
22916
from oauthlib.oauth2 import InvalidClientError, MissingTokenError import pytest from test import configure_mendeley, cassette def test_should_get_authenticated_session(): mendeley = configure_mendeley() auth = mendeley.start_client_credentials_flow() with cassette('fixtures/auth/client_credentials/get_authenticated_session.yaml'): session = auth.authenticate() assert session.token['access_token'] assert session.host == 'https://api.mendeley.com' def test_should_throw_exception_on_incorrect_credentials(): mendeley = configure_mendeley() mendeley.client_secret += '-invalid' auth = mendeley.start_client_credentials_flow() # We should never get an access token back # and the OAuth library should be unhappy about that with cassette('fixtures/auth/client_credentials/incorrect_credentials.yaml'), pytest.raises(MissingTokenError): auth.authenticate()
22973
import tensorflow as tf """Class for KDD10 percent GAN architecture. Generator and discriminator. """ learning_rate = 0.00001 batch_size = 50 layer = 1 latent_dim = 32 dis_inter_layer_dim = 128 init_kernel = tf.contrib.layers.xavier_initializer() def generator(z_inp, is_training=False, getter=None, reuse=False): """ Generator architecture in tensorflow Generates data from the latent space Args: z_inp (tensor): variable in the latent space reuse (bool): sharing variables or not Returns: (tensor): last activation layer of the generator """ with tf.variable_scope('generator', reuse=reuse, custom_getter=getter): name_net = 'layer_1' with tf.variable_scope(name_net): net = tf.layers.dense(z_inp, units=64, kernel_initializer=init_kernel, name='fc') net = tf.nn.relu(net, name='relu') name_net = 'layer_2' with tf.variable_scope(name_net): net = tf.layers.dense(net, units=128, kernel_initializer=init_kernel, name='fc') net = tf.nn.relu(net, name='relu') name_net = 'layer_4' with tf.variable_scope(name_net): net = tf.layers.dense(net, units=121, kernel_initializer=init_kernel, name='fc') return net def discriminator(x_inp, is_training=False, getter=None, reuse=False): """ Discriminator architecture in tensorflow Discriminates between real data and generated data Args: x_inp (tensor): input data for the encoder. reuse (bool): sharing variables or not Returns: logits (tensor): last activation layer of the discriminator (shape 1) intermediate_layer (tensor): intermediate layer for feature matching """ with tf.variable_scope('discriminator', reuse=reuse, custom_getter=getter): name_net = 'layer_1' with tf.variable_scope(name_net): net = tf.layers.dense(x_inp, units=256, kernel_initializer=init_kernel, name='fc') net = leakyReLu(net) net = tf.layers.dropout(net, rate=0.2, name='dropout', training=is_training) name_net = 'layer_2' with tf.variable_scope(name_net): net = tf.layers.dense(net, units=128, kernel_initializer=init_kernel, name='fc') net = leakyReLu(net) net = tf.layers.dropout(net, rate=0.2, name='dropout', training=is_training) name_net = 'layer_3' with tf.variable_scope(name_net): net = tf.layers.dense(net, units=dis_inter_layer_dim, kernel_initializer=init_kernel, name='fc') net = leakyReLu(net) net = tf.layers.dropout(net, rate=0.2, name='dropout', training=is_training) intermediate_layer = net name_net = 'layer_4' with tf.variable_scope(name_net): net = tf.layers.dense(net, units=1, kernel_initializer=init_kernel, name='fc') net = tf.squeeze(net) return net, intermediate_layer def leakyReLu(x, alpha=0.1, name=None): if name: with tf.variable_scope(name): return _leakyReLu_impl(x, alpha) else: return _leakyReLu_impl(x, alpha) def _leakyReLu_impl(x, alpha): return tf.nn.relu(x) - (alpha * tf.nn.relu(-x))
23001
import math import torch import torch.nn as nn from torch.nn import functional as F class KLRegression(nn.Module): """KL-divergence loss for probabilistic regression. It is computed using Monte Carlo (MC) samples from an arbitrary distribution.""" def __init__(self, eps=0.0): super().__init__() self.eps = eps def forward(self, scores, sample_density, gt_density, mc_dim=-1): """Args: scores: predicted score values sample_density: probability density of the sample distribution gt_density: probability density of the ground truth distribution mc_dim: dimension of the MC samples""" exp_val = scores - torch.log(sample_density + self.eps) L = torch.logsumexp(exp_val, dim=mc_dim) - math.log(scores.shape[mc_dim]) - \ torch.mean(scores * (gt_density / (sample_density + self.eps)), dim=mc_dim) return L.mean() class MLRegression(nn.Module): """Maximum likelihood loss for probabilistic regression. It is computed using Monte Carlo (MC) samples from an arbitrary distribution.""" def __init__(self, eps=0.0): super().__init__() self.eps = eps def forward(self, scores, sample_density, gt_density=None, mc_dim=-1): """Args: scores: predicted score values. First sample must be ground-truth sample_density: probability density of the sample distribution gt_density: not used mc_dim: dimension of the MC samples. Only mc_dim=1 supported""" assert mc_dim == 1 assert (sample_density[:,0,...] == -1).all() exp_val = scores[:, 1:, ...] - torch.log(sample_density[:, 1:, ...] + self.eps) L = torch.logsumexp(exp_val, dim=mc_dim) - math.log(scores.shape[mc_dim] - 1) - scores[:, 0, ...] loss = L.mean() return loss class KLRegressionGrid(nn.Module): """KL-divergence loss for probabilistic regression. It is computed using the grid integration strategy.""" def forward(self, scores, gt_density, grid_dim=-1, grid_scale=1.0): """Args: scores: predicted score values gt_density: probability density of the ground truth distribution grid_dim: dimension(s) of the grid grid_scale: area of one grid cell""" score_corr = grid_scale * torch.sum(scores * gt_density, dim=grid_dim) L = torch.logsumexp(scores, dim=grid_dim) + math.log(grid_scale) - score_corr return L.mean()
23047
import boto3 from botocore.exceptions import ClientError import datetime import pytest from moto import mock_sagemaker from moto.sts.models import ACCOUNT_ID FAKE_ROLE_ARN = "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID) TEST_REGION_NAME = "us-east-1" class MyProcessingJobModel(object): def __init__( self, processing_job_name, role_arn, container=None, bucket=None, prefix=None, app_specification=None, network_config=None, processing_inputs=None, processing_output_config=None, processing_resources=None, stopping_condition=None, ): self.processing_job_name = processing_job_name self.role_arn = role_arn self.container = ( container or "683313688378.dkr.ecr.us-east-1.amazonaws.com/sagemaker-scikit-learn:0.23-1-cpu-py3" ) self.bucket = bucket or "my-bucket" self.prefix = prefix or "sagemaker" self.app_specification = app_specification or { "ImageUri": self.container, "ContainerEntrypoint": ["python3",], } self.network_config = network_config or { "EnableInterContainerTrafficEncryption": False, "EnableNetworkIsolation": False, } self.processing_inputs = processing_inputs or [ { "InputName": "input", "AppManaged": False, "S3Input": { "S3Uri": "s3://{}/{}/processing/".format(self.bucket, self.prefix), "LocalPath": "/opt/ml/processing/input", "S3DataType": "S3Prefix", "S3InputMode": "File", "S3DataDistributionType": "FullyReplicated", "S3CompressionType": "None", }, } ] self.processing_output_config = processing_output_config or { "Outputs": [ { "OutputName": "output", "S3Output": { "S3Uri": "s3://{}/{}/processing/".format( self.bucket, self.prefix ), "LocalPath": "/opt/ml/processing/output", "S3UploadMode": "EndOfJob", }, "AppManaged": False, } ] } self.processing_resources = processing_resources or { "ClusterConfig": { "InstanceCount": 1, "InstanceType": "ml.m5.large", "VolumeSizeInGB": 10, }, } self.stopping_condition = stopping_condition or { "MaxRuntimeInSeconds": 3600, } def save(self): sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME) params = { "AppSpecification": self.app_specification, "NetworkConfig": self.network_config, "ProcessingInputs": self.processing_inputs, "ProcessingJobName": self.processing_job_name, "ProcessingOutputConfig": self.processing_output_config, "ProcessingResources": self.processing_resources, "RoleArn": self.role_arn, "StoppingCondition": self.stopping_condition, } return sagemaker.create_processing_job(**params) @mock_sagemaker def test_create_processing_job(): sagemaker = boto3.client("sagemaker", region_name=TEST_REGION_NAME) processing_job_name = "MyProcessingJob" role_arn = "arn:aws:iam::{}:role/FakeRole".format(ACCOUNT_ID) container = "382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:1" bucket = "my-bucket" prefix = "my-prefix" app_specification = { "ImageUri": container, "ContainerEntrypoint": ["python3", "app.py"], } processing_resources = { "ClusterConfig": { "InstanceCount": 2, "InstanceType": "ml.m5.xlarge", "VolumeSizeInGB": 20, }, } stopping_condition = {"MaxRuntimeInSeconds": 60 * 60} job = MyProcessingJobModel( processing_job_name, role_arn, container=container, bucket=bucket, prefix=prefix, app_specification=app_specification, processing_resources=processing_resources, stopping_condition=stopping_condition, ) resp = job.save() resp["ProcessingJobArn"].should.match( r"^arn:aws:sagemaker:.*:.*:processing-job/{}$".format(processing_job_name) ) resp = sagemaker.describe_processing_job(ProcessingJobName=processing_job_name) resp["ProcessingJobName"].should.equal(processing_job_name) resp["ProcessingJobArn"].should.match( r"^arn:aws:sagemaker:.*:.*:processing-job/{}$".format(processing_job_name) ) assert "python3" in resp["AppSpecification"]["ContainerEntrypoint"] assert "app.py" in resp["AppSpecification"]["ContainerEntrypoint"] assert resp["RoleArn"] == role_arn assert resp["ProcessingJobStatus"] == "Completed" assert isinstance(resp["CreationTime"], datetime.datetime) assert isinstance(resp["LastModifiedTime"], datetime.datetime) @mock_sagemaker def test_list_processing_jobs(): client = boto3.client("sagemaker", region_name="us-east-1") name = "blah" arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar" test_processing_job = MyProcessingJobModel(processing_job_name=name, role_arn=arn) test_processing_job.save() processing_jobs = client.list_processing_jobs() assert len(processing_jobs["ProcessingJobSummaries"]).should.equal(1) assert processing_jobs["ProcessingJobSummaries"][0][ "ProcessingJobName" ].should.equal(name) assert processing_jobs["ProcessingJobSummaries"][0][ "ProcessingJobArn" ].should.match(r"^arn:aws:sagemaker:.*:.*:processing-job/{}$".format(name)) assert processing_jobs.get("NextToken") is None @mock_sagemaker def test_list_processing_jobs_multiple(): client = boto3.client("sagemaker", region_name="us-east-1") name_job_1 = "blah" arn_job_1 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar" test_processing_job_1 = MyProcessingJobModel( processing_job_name=name_job_1, role_arn=arn_job_1 ) test_processing_job_1.save() name_job_2 = "blah2" arn_job_2 = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar2" test_processing_job_2 = MyProcessingJobModel( processing_job_name=name_job_2, role_arn=arn_job_2 ) test_processing_job_2.save() processing_jobs_limit = client.list_processing_jobs(MaxResults=1) assert len(processing_jobs_limit["ProcessingJobSummaries"]).should.equal(1) processing_jobs = client.list_processing_jobs() assert len(processing_jobs["ProcessingJobSummaries"]).should.equal(2) assert processing_jobs.get("NextToken").should.be.none @mock_sagemaker def test_list_processing_jobs_none(): client = boto3.client("sagemaker", region_name="us-east-1") processing_jobs = client.list_processing_jobs() assert len(processing_jobs["ProcessingJobSummaries"]).should.equal(0) @mock_sagemaker def test_list_processing_jobs_should_validate_input(): client = boto3.client("sagemaker", region_name="us-east-1") junk_status_equals = "blah" with pytest.raises(ClientError) as ex: client.list_processing_jobs(StatusEquals=junk_status_equals) expected_error = f"1 validation errors detected: Value '{junk_status_equals}' at 'statusEquals' failed to satisfy constraint: Member must satisfy enum value set: ['Completed', 'Stopped', 'InProgress', 'Stopping', 'Failed']" assert ex.value.response["Error"]["Code"] == "ValidationException" assert ex.value.response["Error"]["Message"] == expected_error junk_next_token = "<PASSWORD>" with pytest.raises(ClientError) as ex: client.list_processing_jobs(NextToken=junk_next_token) assert ex.value.response["Error"]["Code"] == "ValidationException" assert ( ex.value.response["Error"]["Message"] == 'Invalid pagination token because "{0}".' ) @mock_sagemaker def test_list_processing_jobs_with_name_filters(): client = boto3.client("sagemaker", region_name="us-east-1") for i in range(5): name = "xgboost-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() for i in range(5): name = "vgg-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() xgboost_processing_jobs = client.list_processing_jobs(NameContains="xgboost") assert len(xgboost_processing_jobs["ProcessingJobSummaries"]).should.equal(5) processing_jobs_with_2 = client.list_processing_jobs(NameContains="2") assert len(processing_jobs_with_2["ProcessingJobSummaries"]).should.equal(2) @mock_sagemaker def test_list_processing_jobs_paginated(): client = boto3.client("sagemaker", region_name="us-east-1") for i in range(5): name = "xgboost-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() xgboost_processing_job_1 = client.list_processing_jobs( NameContains="xgboost", MaxResults=1 ) assert len(xgboost_processing_job_1["ProcessingJobSummaries"]).should.equal(1) assert xgboost_processing_job_1["ProcessingJobSummaries"][0][ "ProcessingJobName" ].should.equal("xgboost-0") assert xgboost_processing_job_1.get("NextToken").should_not.be.none xgboost_processing_job_next = client.list_processing_jobs( NameContains="xgboost", MaxResults=1, NextToken=xgboost_processing_job_1.get("NextToken"), ) assert len(xgboost_processing_job_next["ProcessingJobSummaries"]).should.equal(1) assert xgboost_processing_job_next["ProcessingJobSummaries"][0][ "ProcessingJobName" ].should.equal("xgboost-1") assert xgboost_processing_job_next.get("NextToken").should_not.be.none @mock_sagemaker def test_list_processing_jobs_paginated_with_target_in_middle(): client = boto3.client("sagemaker", region_name="us-east-1") for i in range(5): name = "xgboost-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() for i in range(5): name = "vgg-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() vgg_processing_job_1 = client.list_processing_jobs(NameContains="vgg", MaxResults=1) assert len(vgg_processing_job_1["ProcessingJobSummaries"]).should.equal(0) assert vgg_processing_job_1.get("NextToken").should_not.be.none vgg_processing_job_6 = client.list_processing_jobs(NameContains="vgg", MaxResults=6) assert len(vgg_processing_job_6["ProcessingJobSummaries"]).should.equal(1) assert vgg_processing_job_6["ProcessingJobSummaries"][0][ "ProcessingJobName" ].should.equal("vgg-0") assert vgg_processing_job_6.get("NextToken").should_not.be.none vgg_processing_job_10 = client.list_processing_jobs( NameContains="vgg", MaxResults=10 ) assert len(vgg_processing_job_10["ProcessingJobSummaries"]).should.equal(5) assert vgg_processing_job_10["ProcessingJobSummaries"][-1][ "ProcessingJobName" ].should.equal("vgg-4") assert vgg_processing_job_10.get("NextToken").should.be.none @mock_sagemaker def test_list_processing_jobs_paginated_with_fragmented_targets(): client = boto3.client("sagemaker", region_name="us-east-1") for i in range(5): name = "xgboost-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/foobar-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() for i in range(5): name = "vgg-{}".format(i) arn = "arn:aws:sagemaker:us-east-1:000000000000:x-x/barfoo-{}".format(i) MyProcessingJobModel(processing_job_name=name, role_arn=arn).save() processing_jobs_with_2 = client.list_processing_jobs(NameContains="2", MaxResults=8) assert len(processing_jobs_with_2["ProcessingJobSummaries"]).should.equal(2) assert processing_jobs_with_2.get("NextToken").should_not.be.none processing_jobs_with_2_next = client.list_processing_jobs( NameContains="2", MaxResults=1, NextToken=processing_jobs_with_2.get("NextToken"), ) assert len(processing_jobs_with_2_next["ProcessingJobSummaries"]).should.equal(0) assert processing_jobs_with_2_next.get("NextToken").should_not.be.none processing_jobs_with_2_next_next = client.list_processing_jobs( NameContains="2", MaxResults=1, NextToken=processing_jobs_with_2_next.get("NextToken"), ) assert len(processing_jobs_with_2_next_next["ProcessingJobSummaries"]).should.equal( 0 ) assert processing_jobs_with_2_next_next.get("NextToken").should.be.none
23057
import pytest import datetime import json import functools from urllib.parse import urlencode, parse_qs from descarteslabs.common.graft import client as graft_client from ... import types from .. import tile_url def test_url(): base = "foo" base_q = base + "?" url = functools.partial(tile_url.tile_url, base, types.Image.from_id("")) assert url() == base assert url(session_id="foo") == base_q + urlencode({"session_id": "foo"}) assert url(colormap="foo") == base_q + urlencode({"colormap": "foo"}) assert url(colormap="") == base_q + urlencode({"colormap": ""}) assert url(reduction="mean") == base_q + urlencode({"reduction": "mean"}) assert url(checkerboard=True) == base_q + urlencode({"checkerboard": "true"}) assert url(checkerboard=False) == base_q + urlencode({"checkerboard": "false"}) assert url(bands=["red"]) == base_q + urlencode({"band": "red"}) assert url(bands=["red", "green"]) == base_q + urlencode( {"band": ["red", "green"]}, doseq=True ) with pytest.raises(ValueError, match="Up to 3 bands may be specified, not 4"): url(bands=["a", "b", "c", "d"]) # 1-band scales are normalized assert url(scales=[0, 1]) == base_q + urlencode({"scales": "[[0.0, 1.0]]"}) # If all none scales, not included assert url(scales=[None, None]) == base_q + urlencode({"scales": "null"}) # test everything gets added together correctly got_base, params = url( session_id="foo", colormap="bar", bands=["red", "green"] ).split("?") assert got_base == base query = parse_qs(params, strict_parsing=True, keep_blank_values=True) assert query == { # `parse_qs` returns all values wrapped in lists "session_id": ["foo"], "colormap": ["bar"], "band": ["red", "green"], } @pytest.mark.parametrize( "args", [ { "p1": "2021-01-20", "p2": 2.2, "p3": 1, }, { "p1": datetime.datetime(2020, 1, 20), "p2": types.Float(1.1) + 1, "p3": 1, }, { "p1": types.Datetime(2021, 1, 20), "p2": types.Float(1.1) + 1, "p3": types.Int(1), }, ], ) def test_url_arguments(args): func = types.Function[ dict(p1=types.Datetime, p2=types.Float, p3=types.Int), types.Image ]("x") base = "http://base.net" url = functools.partial(tile_url.tile_url, base, func) with pytest.raises(TypeError, match="missing a required argument"): url() with pytest.raises(TypeError, match="got an unexpected keyword argument 'blah'"): url(**args, blah="bad") with graft_client.consistent_guid(): got_base, params = url(**args).split("?") assert got_base == base query = parse_qs(params, strict_parsing=True, keep_blank_values=True) assert query.keys() == args.keys() with graft_client.consistent_guid(): p1_graft = types.Datetime._promote(args["p1"]).graft assert query["p1"] == [json.dumps(p1_graft)] if isinstance(args["p2"], float): assert query["p2"] == ["2.2"] else: assert query["p2"] == [json.dumps(args["p2"].graft)] assert query["p3"] == ["1"] def test_no_url_for_positional_only_function(): with pytest.raises( TypeError, match="cannot use Functions with positional-only arguments" ): tile_url.tile_url("", types.Function[types.Int, {}, types.Image]("x")) def test_validate_scales(): assert tile_url.validate_scales([[0.0, 1.0], [0.0, 2.0], [-1.0, 1.0]]) == [ [0.0, 1.0], [0.0, 2.0], [-1.0, 1.0], ] assert tile_url.validate_scales([[0.0, 1.0]]) == [[0.0, 1.0]] # ints -> floats assert tile_url.validate_scales([[0, 1]]) == [[0.0, 1.0]] # 1-band convenience assert tile_url.validate_scales([0, 1]) == [[0.0, 1.0]] # no scalings assert tile_url.validate_scales(None) == [] assert tile_url.validate_scales([]) == [] with pytest.raises(TypeError, match="Expected a list or tuple of scales"): tile_url.validate_scales(0) with pytest.raises(TypeError, match="Expected a list or tuple of scales"): tile_url.validate_scales("foo") with pytest.raises(TypeError, match="Scaling 0: expected a 2-item list or tuple"): tile_url.validate_scales([1, 2, 3]) with pytest.raises(TypeError, match="Scaling 0: items in scaling must be numbers"): tile_url.validate_scales([1, "foo"]) with pytest.raises(ValueError, match="expected up to 3 scales, but got 4"): tile_url.validate_scales([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0], [0.0, 1.0]]) with pytest.raises(ValueError, match="but length was 3"): tile_url.validate_scales([[0.0, 1.0, 2.0]]) with pytest.raises(ValueError, match="but length was 1"): tile_url.validate_scales([[0.0]]) with pytest.raises(ValueError, match="one number and one None in scales"): tile_url.validate_scales([[None, 1.0]])
23097
import os import time import random import scipy.sparse as sp import numpy as np import tensorflow as tf import argparse from models import SpHGAT from utils import process parser = argparse.ArgumentParser() parser.add_argument('--dataset', help='Dataset.', default='imdb', type=str) parser.add_argument('--epochs', help='Epochs.', default=100000, type=int) parser.add_argument('--patience', help='Patience for early stopping.', default=100, type=int) parser.add_argument('--lr', help='Learning rate.', default=0.005, type=float) parser.add_argument('--l2_coef', help='Weight decay.', default=0.0005, type=float) parser.add_argument('--dropout', help='Dropout.', default=0.6, type=float) parser.add_argument('--train_rate', help='Label rate for training.', default=0.1, type=float) parser.add_argument('--seed', help='Random seed for data splitting.', default=None, type=int) parser.add_argument('--layers', help='Number of layers.', default=2, type=int) parser.add_argument('--hid', help='Number of hidden units per head in each layer.', nargs='*', default=[8, 8], type=int) parser.add_argument('--heads', help='Number of attention heads in each layer.', nargs='*', default=[8, 1], type=int) parser.add_argument('--residue', help='Using residue.', action='store_true') parser.add_argument('--repeat', help='Repeat.', default=10, type=int) parser.add_argument('--random_feature', help='Random features', action='store_true') parser.add_argument('--target_node', help='index of target nodes for classification.', nargs='*', default=[0, 1], type=int) parser.add_argument('--target_is_multilabels', help='each type of target node for classification is multi-labels or not.(0 means not else means yes)', nargs='*', default=[0, 1], type=int) parser.add_argument('--saved_model_suffix', help='to splite checkpoint by suffix', default="", type=str) parser.add_argument('--no_attn_reg', help='Do not use edge direction regularization', action='store_true') parser.add_argument('--simple_inner', help='Use original inner product', action='store_true') parser.add_argument('--loop_coef', help='Coefficient for regularization.', default=1e-3, type=float) parser.add_argument('--inv_coef', help='Coefficient for regularization.', default=1e-3, type=float) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True args= parser.parse_args() dataset = args.dataset checkpt_file = 'pre_trained/{}/{}/{}.ckpt'.format(dataset, args.saved_model_suffix, dataset) checkpt_file = checkpt_file.replace('//', '/') process.mkdir(os.path.split(checkpt_file)[0]) # training params batch_size = 1 train_rate = args.train_rate seed = args.seed nb_epochs = args.epochs patience = args.patience lr = args.lr # learning rate l2_coef = args.l2_coef # weight decay dropout = args.dropout repeat = args.repeat random_feature = args.random_feature target_node = args.target_node is_multilabel = [False if t==0 else True for t in args.target_is_multilabels] loop_coef = args.loop_coef inv_coef = args.inv_coef layers = args.layers hid = args.hid if len(hid) == 1: hid_units = hid * layers elif len(hid) == layers: hid_units = hid heads = args.heads if len(heads) == 1: n_heads = heads * layers elif len(heads) == 2: n_heads = [heads[0]] * (layers - 1) + [heads[1]] elif len(heads) == layers: n_heads = heads residual = args.residue # False nonlinearity = tf.nn.elu model = SpHGAT no_attn_reg = args.no_attn_reg simple_inner = args.simple_inner random.seed(seed) # random seed for random data split only print('Dataset: ' + dataset) print('Train rate: ' + str(train_rate)) print('----- Opt. hyperparams -----') print('lr: ' + str(lr)) print('l2_coef: ' + str(l2_coef)) print('----- Archi. hyperparams -----') print('nb. layers: ' + str(len(hid_units))) print('nb. units per layer: ' + str(hid_units)) print('nb. attention heads: ' + str(n_heads)) print('residual: ' + str(residual)) print('nonlinearity: ' + str(nonlinearity)) print('model: ' + str(model)) print('target nodes: ', target_node) print('is_multilabel: ', is_multilabel) print('loop_coef:', loop_coef) print('inv_coef:', inv_coef) sparse = True metr_num = 2 total_vl_acc = np.array([0.]*(len(target_node)*metr_num)) # should be array total_ts_acc = np.array([0.]*(len(target_node)*metr_num)) # should be array def get_loss_acc(logits, labels, msk, is_multilabel=False): global model class_num = labels.shape[-1] log_resh = tf.reshape(logits, [-1, class_num]) lab_resh = tf.reshape(labels, [-1, class_num]) msk_resh = tf.reshape(msk, [-1]) if is_multilabel: loss = model.masked_sigmoid_cross_entropy(log_resh, lab_resh, msk_resh) accuracy = [model.micro_f1(log_resh, lab_resh, msk_resh), model.macro_f1(log_resh, lab_resh, msk_resh)] acc_name = ['if1', 'af1'] acc_full_name = ['micro f1', 'macro f1'] else: loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh) accuracy = [model.micro_f1_onelabel(log_resh, lab_resh, msk_resh), model.macro_f1_onelabel(log_resh, lab_resh, msk_resh)] acc_name = ['if1', 'af1'] acc_full_name = ['micro f1', 'macro f1'] return loss, accuracy, acc_name, acc_full_name def print_eachclass_info(train_loss_each, train_acc_each, val_loss_each, val_acc_each, acc_name): tl_average = np.mean(np.array(train_loss_each), axis=0) ta_average = np.mean(np.array(train_acc_each), axis=0) vl_average = np.mean(np.array(val_loss_each), axis=0) va_average = np.mean(np.array(val_acc_each), axis=0) metric_num = int(len(ta_average)/len(tl_average)) for i in range(len(tl_average)): line = '\t\t target %s: loss = %.3f, ' % (i, tl_average[i]) for j in range(metric_num): line += '%s = %.5f, ' % (acc_name[i*metric_num+j], ta_average[i*metric_num+j]) line += '| Val: loss = %.3f, ' % (vl_average[i]) for j in range(metric_num): line += '%s = %.5f, ' % (acc_name[i*metric_num+j], va_average[i*metric_num+j]) print(line) for repeat_i in range(repeat): print('Run #' + str(repeat_i) + ':') adj, adj_type, edge_list, features, y_train, y_val, y_test,\ train_mask, val_mask, test_mask = process.load_heterogeneous_data(dataset, train_rate=train_rate, target_node=target_node) features = [process.preprocess_features(feature)[0] for feature in features] nb_nodes = [feature.shape[0] for feature in features] ft_size = [feature.shape[1] for feature in features] nb_classes = [y.shape[1] for y in y_train] features = [feature[np.newaxis] for feature in features] y_train = [y[np.newaxis] for y in y_train] y_val = [y[np.newaxis] for y in y_val] y_test = [y[np.newaxis] for y in y_test] train_mask = [m[np.newaxis] for m in train_mask] val_mask = [m[np.newaxis] for m in val_mask] test_mask = [m[np.newaxis] for m in test_mask] if random_feature: features[0] = np.random.standard_normal(features[0].shape) if sparse: biases = [process.preprocess_adj_hete(a) for a in adj] # transposed here else: biases = [] for a in adj: a = a.todense() a = a[np.newaxis] if no_attn_reg: edge_list = [(i,) for i in range(len(adj_type))] if simple_inner: edge_list = [] with tf.Graph().as_default(): with tf.name_scope('input'): ftr_in = [tf.placeholder(dtype=tf.float32, shape=(batch_size, nb, ft)) for nb, ft in zip(nb_nodes, ft_size)] if sparse: bias_in = [tf.sparse_placeholder(dtype=tf.float32) for _ in biases] else: bias_in = None lbl_in = [tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]], nb_classes[i])) for i in range(len(nb_classes))] msk_in = [tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes[target_node[i]])) for i in range(len(nb_classes))] attn_drop = tf.placeholder(dtype=tf.float32, shape=()) ffd_drop = tf.placeholder(dtype=tf.float32, shape=()) is_train = tf.placeholder(dtype=tf.bool, shape=()) logits = model.inference(ftr_in, nb_classes, nb_nodes, is_train, attn_drop, ffd_drop, target_nodes=target_node, bias_mat=bias_in, adj_type=adj_type, edge_list=edge_list, hid_units=hid_units, n_heads=n_heads, residual=residual, activation=nonlinearity) with tf.name_scope('loss_acc'): loss, accuracy, acc_name, acc_full_name = [], [], [], [] all_class_loss = 0.0 for tn in range(len(target_node)): tn_logits = logits[tn] tn_labels = lbl_in[tn] tn_masks = msk_in[tn] tn_is_multilabel = is_multilabel[tn] tn_loss, tn_accuracy, tn_acc_name, tn_acc_full_name = get_loss_acc(tn_logits, tn_labels, tn_masks, is_multilabel=tn_is_multilabel) loss.append(tn_loss) accuracy.extend(tn_accuracy) acc_name.extend(tn_acc_name) acc_full_name.extend(tn_acc_full_name) all_class_loss += tn_loss loss_loop = tf.add_n(tf.get_collection('loss_loop')) * loop_coef loss_inv= tf.add_n(tf.get_collection('loss_inv')) * inv_coef train_op = model.training(all_class_loss + loss_loop + loss_inv, lr, l2_coef) saver = tf.train.Saver() init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) vlss_mn = np.inf vacc_mx = 0.0 curr_step = 0 with tf.Session(config=config) as sess: sess.run(init_op) vacc_early_model = 0.0 vlss_early_model = 0.0 vacc_each_early_model = np.array([0.]*(len(target_node)*metr_num)) for epoch in range(nb_epochs): # summary information train_loss_avg = 0 train_acc_avg = 0 val_loss_avg = 0 val_acc_avg = 0 # for each class information train_loss_each = [] train_acc_each = [] val_loss_each = [] val_acc_each = [] tr_step = 0 tr_size = features[0].shape[0] while tr_step * batch_size < tr_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[tr_step * batch_size:(tr_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[tr_step * batch_size:(tr_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[tr_step*batch_size:(tr_step+1)*batch_size] for i, d in zip(lbl_in, y_train)}) fd.update({i:d[tr_step*batch_size:(tr_step+1)*batch_size] for i, d in zip(msk_in, train_mask)}) fd.update({is_train: True}) fd.update({attn_drop: dropout, ffd_drop:dropout}) _, loss_list_tr, acc_list_tr, loss_loop_tr, loss_inv_tr = sess.run([train_op, loss, accuracy, loss_loop, loss_inv], feed_dict=fd) train_loss_each.append(np.array(loss_list_tr)) train_acc_each.append(np.array(acc_list_tr)) train_loss_avg += np.sum(np.array(loss_list_tr)) train_acc_avg += np.sum(np.array(acc_list_tr)) tr_step += 1 vl_step = 0 vl_size = features[0].shape[0] while vl_step * batch_size < vl_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[vl_step * batch_size:(vl_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[vl_step * batch_size:(vl_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[vl_step*batch_size:(vl_step+1)*batch_size] for i, d in zip(lbl_in, y_val)}) fd.update({i:d[vl_step*batch_size:(vl_step+1)*batch_size] for i, d in zip(msk_in, val_mask)}) fd.update({is_train: False}) fd.update({attn_drop: 0.0, ffd_drop:0.0}) loss_list_vl, acc_list_vl = sess.run([loss, accuracy], feed_dict=fd) acc_list_vl = [0. if np.isnan(acc_vl) else acc_vl for acc_vl in acc_list_vl] val_loss_each.append(np.array(loss_list_vl)) val_acc_each.append(np.array(acc_list_vl)) val_loss_avg += np.sum(np.array(loss_list_vl)) val_acc_avg += np.sum(np.array(acc_list_vl)) vl_step += 1 print('Training %s: loss = %.5f, %s = %.5f, loss_loop = %.5f, loss_inv = %.5f | Val: loss = %.5f, %s = %.5f' % (epoch, train_loss_avg/tr_step, 'acc/F1', train_acc_avg/tr_step, loss_loop_tr, loss_inv_tr, val_loss_avg/vl_step, 'acc/F1', val_acc_avg/vl_step)) print_eachclass_info(train_loss_each, train_acc_each, val_loss_each, val_acc_each, acc_name) if val_acc_avg/vl_step > vacc_mx or val_loss_avg/vl_step < vlss_mn: if val_acc_avg/vl_step > vacc_mx and val_loss_avg/vl_step < vlss_mn: vacc_early_model = val_acc_avg/vl_step vlss_early_model = val_loss_avg/vl_step vacc_each_early_model = np.mean(np.array(val_acc_each), axis=0) saver.save(sess, checkpt_file) print("saved model as %s"%checkpt_file) vacc_mx = np.max((val_acc_avg/vl_step, vacc_mx)) vlss_mn = np.min((val_loss_avg/vl_step, vlss_mn)) curr_step = 0 else: curr_step += 1 if curr_step == patience: print('Early stop! Min loss: ', vlss_mn, ', Max', 'acc/F1', ': ', vacc_mx) print('Early stop model validation loss: ', vlss_early_model, ', ', 'acc/F1', ': ', vacc_early_model) total_vl_acc += vacc_each_early_model break if curr_step < patience: print('Min loss: ', vlss_mn, ', Max', 'acc/F1', ': ', vacc_mx) print('model validation loss: ', vlss_early_model, ', ', 'acc/F1', ': ', vacc_early_model) total_vl_acc += vacc_each_early_model saver.restore(sess, checkpt_file) ts_size = features[0].shape[0] ts_step = 0 test_loss_each = [] test_acc_each = [] while ts_step * batch_size < ts_size: if sparse: fd = {i: d for i, d in zip(ftr_in, features)} fd.update({i: d for i, d in zip(bias_in, biases)}) else: fd = {i: d[ts_step * batch_size:(ts_step + 1) * batch_size] for i, d in zip(ftr_in, features)} fd.update({i: d[ts_step * batch_size:(ts_step + 1) * batch_size] for i, d in zip(bias_in, biases)}) fd.update({i:d[ts_step*batch_size:(ts_step+1)*batch_size] for i, d in zip(lbl_in, y_test)}) fd.update({i:d[ts_step*batch_size:(ts_step+1)*batch_size] for i, d in zip(msk_in, test_mask)}) fd.update({is_train: False}) fd.update({attn_drop: 0.0, ffd_drop:0.0}) loss_list_ts, acc_list_ts = sess.run([loss, accuracy], feed_dict=fd) test_loss_each.append(np.array(loss_list_ts)) test_acc_each.append(np.array(acc_list_ts)) ts_step += 1 test_loss_each = np.mean(np.array(test_loss_each), axis=0) test_acc_each = np.mean(np.array(test_acc_each), axis=0) print('*'*10,'Test information:', '*'*10) for e in range(len(target_node)): print('target %s: loss: %.3f, %s:%.5f, %s:%.5f' % (e, test_loss_each[e], acc_full_name[e*metr_num], test_acc_each[e*metr_num], acc_full_name[e*metr_num+1], test_acc_each[e*metr_num+1])) total_ts_acc += test_acc_each sess.close() print('Validation:', total_vl_acc/repeat, 'Test:', total_ts_acc/repeat)
23147
def test(): assert "spacy.load" in __solution__, "Rufst du spacy.load auf?" assert nlp.meta["lang"] == "de", "Lädst du das korrekte Modell?" assert nlp.meta["name"] == "core_news_sm", "Lädst du das korrekte Modell?" assert "nlp(text)" in __solution__, "Verarbeitest du den Text korrekt?" assert "print(doc.text)" in __solution__, "Druckst du den Text des Doc?" __msg__.good( "Gut gemacht! Jetzt wo du das Laden von Modellen geübt hast, lass uns " "mal ein paar ihrer Vorhersagen anschauen." )
23148
import pycxsimulator from pylab import * import copy as cp nr = 500. # carrying capacity of rabbits r_init = 100 # initial rabbit population mr = 0.03 # magnitude of movement of rabbits dr = 1.0 # death rate of rabbits when it faces foxes rr = 0.1 # reproduction rate of rabbits f_init = 30 # initial fox population mf = 0.05 # magnitude of movement of foxes df = 0.1 # death rate of foxes when there is no food rf = 0.5 # reproduction rate of foxes cd = 0.02 # radius for collision detection cdsq = cd ** 2 class agent: pass def initialize(): global agents agents = [] for i in range(r_init + f_init): ag = agent() ag.type = 'r' if i < r_init else 'f' ag.x = random() ag.y = random() agents.append(ag) def observe(): global agents cla() rabbits = [ag for ag in agents if ag.type == 'r'] if len(rabbits) > 0: x = [ag.x for ag in rabbits] y = [ag.y for ag in rabbits] plot(x, y, 'b.') foxes = [ag for ag in agents if ag.type == 'f'] if len(foxes) > 0: x = [ag.x for ag in foxes] y = [ag.y for ag in foxes] plot(x, y, 'ro') axis('image') axis([0, 1, 0, 1]) def update_one_agent(): global agents if agents == []: return ag = choice(agents) # simulating random movement m = mr if ag.type == 'r' else mf ag.x += uniform(-m, m) ag.y += uniform(-m, m) ag.x = 1 if ag.x > 1 else 0 if ag.x < 0 else ag.x ag.y = 1 if ag.y > 1 else 0 if ag.y < 0 else ag.y # detecting collision and simulating death or birth neighbors = [nb for nb in agents if nb.type != ag.type and (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < cdsq] if ag.type == 'r': if len(neighbors) > 0: # if there are foxes nearby if random() < dr: agents.remove(ag) return if random() < rr*(1-sum([1 for x in agents if x.type == 'r'])/nr): agents.append(cp.copy(ag)) else: if len(neighbors) == 0: # if there are no rabbits nearby if random() < df: agents.remove(ag) return else: # if there are rabbits nearby if random() < rf: agents.append(cp.copy(ag)) def update(): global agents t = 0. while t < 1. and len(agents) > 0: t += 1. / len(agents) update_one_agent() pycxsimulator.GUI().start(func=[initialize, observe, update])
23164
import pybullet_data import pybullet as p import time import numpy as np from src.utils_geom import * from src.utils_depth import * from src.panda import Panda def full_jacob_pb(jac_t, jac_r): return np.vstack((jac_t[0], jac_t[1], jac_t[2], jac_r[0], jac_r[1], jac_r[2])) class pandaEnv(): def __init__(self, urdfRoot=pybullet_data.getDataPath(), mu=0.3, sigma=0.01, timestep=1./240., long_finger=False, ): self._urdfRoot = urdfRoot self._timeStep = timestep self._pandaId = None self._planeId = None self._tableId = None self._mu = mu self._sigma = sigma self.long_finger = long_finger def reset_env(self): p.resetSimulation() p.setPhysicsEngineParameter(numSolverIterations=150, enableConeFriction=1, contactBreakingThreshold=1e-3) p.setTimeStep(self._timeStep) # Set gravity p.setGravity(0, 0, -9.81) # Load plane and table self._planeId = p.loadURDF(self._urdfRoot+'/plane.urdf', basePosition=[0, 0, -1], useFixedBase=1) self._tableId = p.loadURDF(self._urdfRoot+'/table/table.urdf', basePosition=[0.4000000, 0.00000, -0.63+0.005], baseOrientation=[0, 0, 0, 1.0], useFixedBase=1) # Load arm, no need to settle (joint angle set instantly) self._panda = Panda(self.long_finger) self._pandaId = self._panda.load() # Set friction coefficients of arm and table self.change_friction_coeffs(self._mu, self._sigma) # Create a constraint to keep the fingers centered (upper links) fingerGear = p.createConstraint(self._pandaId, 9, self._pandaId, 11, jointType=p.JOINT_GEAR, jointAxis=[1, 0, 0], parentFramePosition=[0, 0, 0], childFramePosition=[0, 0, 0]) p.changeConstraint(fingerGear, gearRatio=-1, erp=0.1, maxForce=2*self._panda.maxFingerForce) # Disable damping for all links for i in range(self._panda.numJoints): p.changeDynamics(self._pandaId, i, linearDamping=0, angularDamping=0) def change_friction_coeffs(self, mu, sigma): p.changeDynamics(self._pandaId, self._panda.pandaLeftFingerLinkIndex, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) p.changeDynamics(self._pandaId, self._panda.pandaRightFingerLinkIndex, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) p.changeDynamics(self._tableId, -1, lateralFriction=mu, spinningFriction=sigma, frictionAnchor=1, ) def reset_arm_joints_ik(self, pos, orn, fingerPos=0.0): jointPoses = list(p.calculateInverseKinematics(self._pandaId, self._panda.pandaEndEffectorLinkIndex, pos, orn, jointDamping=self._panda.jd, lowerLimits=self._panda.jointLowerLimit, upperLimits=self._panda.jointUpperLimit, jointRanges=self._panda.jointRange, restPoses=self._panda.jointRestPose, residualThreshold=1e-4)) # , maxNumIterations=1e5)) jointPoses = jointPoses[:7] + [0, -np.pi/4, fingerPos, 0.00, fingerPos, 0.00] self._panda.reset(jointPoses) def reset_arm_joints(self, joints): jointPoses = joints + [0, -np.pi/4, self._panda.fingerOpenPos, 0.00, self._panda.fingerOpenPos, 0.00] self._panda.reset(jointPoses) ########################* Arm control *####################### def move_pos(self, absolute_pos=None, relative_pos=None, absolute_global_euler=None, # preferred relative_global_euler=None, # preferred relative_local_euler=None, # not using absolute_global_quat=None, # preferred relative_azi=None, # for arm # relative_quat=None, # never use relative quat numSteps=50, maxJointVel=0.20, relativePos=True, globalOrn=True, checkContact=False, checkPalmContact=False, objId=None, gripper_target_pos=None, timeStep=0): # Get trajectory eePosNow, eeQuatNow = self._panda.get_ee() # Determine target pos if absolute_pos is not None: targetPos = absolute_pos elif relative_pos is not None: targetPos = eePosNow + relative_pos else: targetPos = eePosNow # Determine target orn if absolute_global_euler is not None: targetOrn = euler2quat(absolute_global_euler) elif relative_global_euler is not None: targetOrn = quatMult(euler2quat(relative_global_euler), eeQuatNow) elif relative_local_euler is not None: targetOrn = quatMult(eeQuatNow, euler2quat(relative_local_euler)) elif absolute_global_quat is not None: targetOrn = absolute_global_quat elif relative_azi is not None: # Extrinsic yaw targetOrn = quatMult(euler2quat([relative_azi[0],0,0]), eeQuatNow) # Intrinsic pitch targetOrn = quatMult(targetOrn, euler2quat([0,relative_azi[1],0])) # elif relative_quat is not None: # targetOrn = quatMult(eeQuatNow, relative_quat) else: targetOrn = array([1.0, 0., 0., 0.]) # Get trajectory trajPos = self.traj_time_scaling(startPos=eePosNow, endPos=targetPos, numSteps=numSteps) # Run steps numSteps = len(trajPos) for step in range(numSteps): # Get joint velocities from error tracking control jointDot = self.traj_tracking_vel(targetPos=trajPos[step], targetQuat=targetOrn) # Send velocity commands to joints for i in range(self._panda.numJointsArm): p.setJointMotorControl2(self._pandaId, i, p.VELOCITY_CONTROL, targetVelocity=jointDot[i], force=self._panda.maxJointForce[i], maxVelocity=maxJointVel) if gripper_target_pos is None: # Keep gripper current velocity p.setJointMotorControl2(self._pandaId, self._panda.pandaLeftFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self._panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04) p.setJointMotorControl2(self._pandaId, self._panda.pandaRightFingerJointIndex, p.VELOCITY_CONTROL, targetVelocity=self._panda.fingerCurVel, force=self._panda.maxJointForce[i], maxVelocity=0.04) else: p.setJointMotorControl2(self._pandaId, self._panda.pandaLeftFingerJointIndex, p.POSITION_CONTROL, targetPosition=gripper_target_pos, maxVelocity=0.04) p.setJointMotorControl2(self._pandaId, self._panda.pandaRightFingerJointIndex, p.POSITION_CONTROL, targetPosition=gripper_target_pos, maxVelocity=0.04) # Quit if contact at either finger or palm if checkContact: contact = self.check_contact(objId, both=False) if contact: return timeStep, False if checkPalmContact: contact = self.check_palm_contact(objId) if contact: return timeStep, False # Step simulation p.stepSimulation() timeStep += 1 return timeStep, True def grasp(self, targetVel=0): # Change gripper velocity direction if targetVel > 1e-2 or targetVel < -1e-2: # Use specified velocity if available self._panda.fingerCurVel = targetVel else: if self._panda.fingerCurVel > 0.0: self._panda.fingerCurVel = -0.05 else: self._panda.fingerCurVel = 0.05 return def traj_time_scaling(self, startPos, endPos, numSteps): trajPos = np.zeros((numSteps, 3)) for step in range(numSteps): s = 3 * (1.0 * step / numSteps) ** 2 - 2 * (1.0 * step / numSteps) ** 3 trajPos[step] = (endPos-startPos)*s+startPos return trajPos def traj_tracking_vel(self, targetPos, targetQuat, posGain=20, velGain=5): eePos, eeQuat = self._panda.get_ee() eePosError = targetPos - eePos eeOrnError = log_rot(quat2rot(targetQuat).dot((quat2rot(eeQuat).T))) # in spatial frame jointPoses = self._panda.get_arm_joints() + [0,0,0] # add fingers eeState = p.getLinkState(self._pandaId, self._panda.pandaEndEffectorLinkIndex, computeLinkVelocity=1, computeForwardKinematics=1) # Get the Jacobians for the CoM of the end-effector link. Note that in this example com_rot = identity, and we would need to use com_rot.T * com_trn. The localPosition is always defined in terms of the link frame coordinates. zero_vec = [0.0] * len(jointPoses) jac_t, jac_r = p.calculateJacobian(self._pandaId, self._panda.pandaEndEffectorLinkIndex, eeState[2], jointPoses, zero_vec, zero_vec) # use localInertialFrameOrientation jac_sp = full_jacob_pb(jac_t, jac_r)[:, :7] # 6x10 -> 6x7, ignore last three columns try: jointDot = np.linalg.pinv(jac_sp).dot((np.hstack((posGain*eePosError, velGain*eeOrnError)).reshape(6,1))) # pseudo-inverse except np.linalg.LinAlgError: jointDot = np.zeros((7,1)) return jointDot ############################### Contact ################################## def get_contact(self, objId, minForceThres=1e-1): left_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaLeftFingerLinkIndex, linkIndexB=-1) right_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaRightFingerLinkIndex, linkIndexB=-1) left_contacts = [i for i in left_contacts if i[9] > minForceThres] right_contacts = [i for i in right_contacts if i[9] > minForceThres] return left_contacts, right_contacts def get_finger_force(self, objId): left_contacts, right_contacts = self.get_contact(objId) left_force = np.zeros((3)) right_force = np.zeros((3)) for i in left_contacts: left_force += i[9]*np.array(i[7])+i[10]*np.array(i[11])+i[12]*np.array(i[13]) for i in right_contacts: right_force += i[9]*np.array(i[7])+i[10]*np.array(i[11])+i[12]*np.array(i[13]) leftNormalMag = sum([i[9] for i in left_contacts]) rightNormalMag = sum([i[9] for i in right_contacts]) numLeftContact = len(left_contacts) numRightContact = len(right_contacts) if numLeftContact < 1 or numRightContact < 1: return None else: return left_force, right_force, \ np.array(left_contacts[0][6]), np.array(right_contacts[0][6]), \ leftNormalMag, rightNormalMag def check_hold_object(self, objId, minForceThres=10.0): left_contacts, right_contacts = self.get_contact(objId) leftNormalMag = sum([i[9] for i in left_contacts]) rightNormalMag = sum([i[9] for i in right_contacts]) return leftNormalMag > minForceThres and rightNormalMag > minForceThres def check_contact(self, objId, both=False): leftContacts, rightContacts = self.get_contact(objId) if both: if len(leftContacts) > 0 and len(rightContacts) > 0: return 1 else: if len(leftContacts) > 0 or len(rightContacts) > 0: return 1 return 0 def check_palm_contact(self, objId, minForceThres=1e-1): palm_contacts = p.getContactPoints(self._pandaId, objId, linkIndexA=self._panda.pandaHandLinkIndex, linkIndexB=-1) palm_contacts = [i for i in palm_contacts if i[9] > minForceThres] return len(palm_contacts) > 0 ############################### Info ################################## def get_ee(self): return self._panda.get_ee() def get_gripper_tip_long(self): return self._panda.get_gripper_tip_long() def get_arm_joints(self): return self._panda.get_arm_joints() def get_gripper_joint(self): return self._panda.get_gripper_joint() def get_left_finger(self): return self._panda.get_left_finger() def get_right_finger(self): return self._panda.get_right_finger() def get_obs(self): return self._panda.get_obs()
23198
from qunetsim.backends.rw_lock import RWLock from qunetsim.objects.logger import Logger import queue class QuantumStorage(object): """ An object which stores qubits. """ STORAGE_LIMIT_ALL = 1 STORAGE_LIMIT_PER_HOST = 2 STORAGE_LIMIT_INDIVIDUALLY_PER_HOST = 3 def __init__(self): # _host_dict stores host_id -> array with qubits of the host. self._host_dict = {} # _qubit_dict stores qubit_id -> dict Host_id -> Qubit objects with this id. self._qubit_dict = {} # _purpose_dict stores qubit_id -> dict Host_id -> Purpose belonging to # the Qubit with the same Host and ID. self._purpose_dict = {} self._storage_mode = QuantumStorage.STORAGE_LIMIT_INDIVIDUALLY_PER_HOST self._storage_limits_per_host = {} self._amount_qubits_stored_per_host = {} self._default_storage_limit_per_host = -1 self._storage_limit = -1 self._amount_qubit_stored = 0 # read write lock, for threaded access self.lock = RWLock() self.logger = Logger.get_instance() # for tracking pending requests # dictionary tracks the request made by a pending request. self._pending_request_dict = {} # Determines a unique ID for a pending request. self._request_id = 0 # Amount of pending requests self._amount_pending_requests = 0 def __str__(self): out = "" out += "Quantum storage with the properties:\nstorage mode: %d\nstorage limit: %d\n" % ( self._storage_mode, self._storage_limit) out += "Host dictionary is:\n" out += "; ".join([str(key) + ":" + str([v.id for v in value]) for key, value in self._host_dict.items()]) out += "\n" out += "Qubit dictionary is:\n" out += "; ".join([str(key) + ":" + str(value) for key, value in self._qubit_dict.items()]) out += "\n" out += "Purpose dictionary is:\n" out += "; ".join([str(key) + ":" + str(value) for key, value in self._purpose_dict.items()]) out += "\n" return out @property def storage_limit(self): return self._storage_limit @storage_limit.setter def storage_limit(self, new_limit): """ Set a new storage limit for the storage. The implementations depends on the storage mode. Args: new_limit (int): The new max amount of qubit. """ if self._storage_mode == QuantumStorage.STORAGE_LIMIT_ALL: self._storage_limit = new_limit elif self._storage_mode == QuantumStorage.STORAGE_LIMIT_PER_HOST: self._storage_limit = new_limit elif self._storage_mode == QuantumStorage.STORAGE_LIMIT_INDIVIDUALLY_PER_HOST: self._default_storage_limit_per_host = new_limit for id_ in list(self._storage_limits_per_host): self._storage_limits_per_host[id_] = new_limit else: raise ValueError( "Internal Value Error, this storage mode does not exist.") @property def storage_limit_mode(self): return self._storage_mode @storage_limit_mode.setter def storage_limit_mode(self, new_mode): self._storage_mode = new_mode @property def amount_qubits_stored(self): return self._amount_qubit_stored def amount_qubits_stored_with_host(self, host_id): return self._amount_qubits_stored_per_host[host_id] def set_storage_limit_with_host(self, new_limit, host_id): """ Set a new storage limit for the storage. The implementations depends on the storage mode. Args: new_limit (int): The new max amount of qubit. host_id (str): optional, if given, and the storage mode is STORAGE_LIMIT_INDIVIDUALLY_PER_HOST, the limit is only set for this specific host. """ if self._storage_mode == QuantumStorage.STORAGE_LIMIT_INDIVIDUALLY_PER_HOST: if host_id is None: raise ValueError( "Host ID must be given in this storage mode") else: self._storage_limits_per_host[host_id] = new_limit else: raise ValueError( "Internal Value Error, this storage mode does not exist.") def reset_storage(self): """ Reset the quantum storage. """ for host in self._host_dict: self.reset_qubits_from_host(host) def release_storage(self): """ Releases all qubits in this storage. The storage is not usable anymore after this function has been called. """ self.lock.acquire_write() for q in self._qubit_dict.values(): for ele in q.values(): ele.release() # do not release write, storage not usable anymore def check_qubit_from_host_exists(self, from_host_id, purpose=None): """ Check if a qubit from a host exists in this quantum storage. Args: from_host_id (str): The host id of the host from which the qubit is from. purpose (int): Optional, purpose of the qubit which should exist. Returns: (bool): True, if such a qubit is in the storage, false if not. """ self.lock.acquire_write() if from_host_id not in self._host_dict: self.lock.release_write() return False for q in self._host_dict[from_host_id]: if self._check_qubit_in_system(q, from_host_id, purpose): self.lock.release_write() return True self.lock.release_write() return False def get_qubit_by_id(self, q_id): """ Return the qubit that has the id *q_id* Args: q_id (str): The ID of the qubit Returns: (Qubit): The qubit with the id *q_id* or None if it does not exist """ if q_id in self._qubit_dict: return list(self._qubit_dict[q_id].values())[0] return None def change_qubit_id(self, from_host_id, new_id, old_id=None): """ Changes the ID of a qubit. If the ID is not given, a random qubit which is from a host is changed to the new id. Args: from_host_id (str): The ID of the owner new_id (str): The ID to change to old_id (str): The old ID Returns: (str): The new ID """ new_id = str(new_id) self.lock.acquire_write() if old_id is not None: old_id = str(old_id) qubit, purpose = self._pop_qubit_with_id_and_host_from_qubit_dict( old_id, from_host_id) if qubit is not None: qubit.id = new_id self._add_qubit_to_qubit_dict(qubit, purpose, from_host_id) else: if from_host_id in self._host_dict and self._host_dict[from_host_id]: qubit = self._host_dict[from_host_id][0] old_id = qubit.id _, purpose = self._pop_qubit_with_id_and_host_from_qubit_dict( old_id, from_host_id) qubit.id = new_id self._add_qubit_to_qubit_dict(qubit, purpose, from_host_id) self.lock.release_write() return old_id def add_qubit_from_host(self, qubit, purpose, from_host_id): """ Adds a qubit which has been received from a host. Args: qubit (Qubit): qubit which should be stored. from_host_id (str): Id of the Host from whom the qubit has been received. purpose (str): Purpose of the Qubit, for example EPR or data. """ self.lock.acquire_write() if self._check_qubit_in_system(qubit, from_host_id, purpose=purpose): self.logger.log("Qubit with id %s, purpose %s and from host %s" " already in storage" % (qubit.id, purpose, from_host_id)) raise ValueError("Qubit with these parameters already in storage!") if from_host_id not in self._host_dict: self._add_new_host(from_host_id) if not self._increase_qubit_counter(from_host_id): qubit.release() self.lock.release_write() return self._host_dict[from_host_id].append(qubit) self._add_qubit_to_qubit_dict(qubit, purpose, from_host_id) # Check if a Qubit of one of the callbacks has arrived self._check_all_requests() self.lock.release_write() def get_all_qubits_from_host(self, from_host_id, purpose=None, remove=False): """ Get all Qubits from a specific host id. These qubits are not removed from storage! Args: from_host_id (str): The host who the qubits are from purpose (int): The purpose of the qubits remove (bool): Also remove from storage Returns: (list): The list of qubits """ if from_host_id in self._host_dict: out = [] self.lock.acquire_write() flag = False for q in self._host_dict[from_host_id]: if self._check_qubit_in_system(q, from_host_id, purpose): if not remove: out.append(q) else: flag = True if remove: break if not flag and remove: num_qubits = len(self._host_dict[from_host_id]) for _ in range(num_qubits): out.append(self._get_qubit_from_host(from_host_id, purpose=purpose)) self.lock.release_write() return out return [] def reset_qubits_from_host(self, from_host_id, purpose=None): """ Remove all stored qubits from the host *from_host_id*. Args: from_host_id (str): The host who the qubits are from purpose (int): """ self.lock.acquire_write() if from_host_id in self._host_dict: for q in self._host_dict[from_host_id]: if self._check_qubit_in_system(q, from_host_id, purpose): self._get_qubit_from_host(from_host_id, purpose=purpose) self.lock.release_write() def _check_all_requests(self): """ Checks if any of the pending requests is now fulfilled. Returns: If a request is fulfilled, the request is handled and the function returns the qubit of this request. """ for req_id, args in self._pending_request_dict.items(): ret = self._get_qubit_from_host(args[1], args[2], args[3]) if ret is not None: args[0].put(ret) self._remove_request(req_id) return ret def _add_request(self, args): """ Adds a new request to the quantum storage. If a new qubit arrives, it is checked if the request for the qubit is satisfied. Args: args (list): [Queue, from_host_id, q_id, purpose] """ self._pending_request_dict[self._request_id] = args self._request_id += 1 self._amount_pending_requests += 1 return self._request_id def _remove_request(self, req_id): """ Removes a pending request from the request dict. Args: req_id (int): The id of the request to remove. """ if req_id in self._pending_request_dict: del self._pending_request_dict[req_id] self._amount_pending_requests -= 1 def get_qubit_from_host(self, from_host_id, q_id=None, purpose=None, wait=0): """ Returns next qubit which has been received from a host. If the qubit has not been receives yet, the thread is blocked for a maxiumum of the wait time, till the qubit arrives (The default is 0). If the id is given, the exact qubit with the id is returned, or None if it does not exist. The qubit is removed from the quantum storage. Args: from_host_id (str): Host id from who the qubit has been received. q_id (str): Optional Id, to return the exact qubit with the Id. purpose (str): Optional, purpose of the Qubit. wait (int): Default is 0. The maximum blocking time. -1 if blocking forever. Returns: (bool): If such a qubit exists, it returns the qubit. Otherwise, None is returned. """ # Block forever if wait is -1 if wait == -1: wait = None self.lock.acquire_write() ret = self._get_qubit_from_host(from_host_id, q_id, purpose) if ret is not None or wait == 0: self.lock.release_write() return ret q = queue.Queue() args = [q, from_host_id, q_id, purpose] req_id = self._add_request(args) self.lock.release_write() ret = None try: ret = q.get(timeout=wait) except queue.Empty: pass if ret is None: self.lock.acquire_write() self._remove_request(req_id) self.lock.release_write() return ret def _get_qubit_from_host(self, from_host_id, q_id=None, purpose=None): if q_id is not None: qubit = self._pop_qubit_with_id_and_host_from_qubit_dict( q_id, from_host_id, purpose=purpose) if qubit is not None: qubit, purp = qubit if from_host_id not in self._host_dict or \ qubit not in self._host_dict[from_host_id]: # Qubit with the ID exists, but does not belong to the host requested self._add_qubit_to_qubit_dict(qubit, purp, from_host_id) return None self._host_dict[from_host_id].remove(qubit) self._decrease_qubit_counter(from_host_id) return qubit if from_host_id not in self._host_dict: return None if self._host_dict[from_host_id]: # check purposes of all qubits for _ in range(len(self._host_dict[from_host_id])): qubit = self._host_dict[from_host_id].pop(0) out = self._pop_qubit_with_id_and_host_from_qubit_dict( qubit.id, from_host_id, purpose=purpose) if out is not None: self._decrease_qubit_counter(from_host_id) return out[0] self._host_dict[from_host_id].append(qubit) return None def _pop_qubit_with_id_and_host_from_qubit_dict(self, q_id, from_host_id, purpose=None): def _pop_purpose_from_purpose_dict(): nonlocal q_id, from_host_id if q_id not in self._purpose_dict: return None pur = self._purpose_dict[q_id].pop(from_host_id, None) if pur is not None: if not self._purpose_dict[q_id]: del self._purpose_dict[q_id] return pur return None purp = _pop_purpose_from_purpose_dict() if purp is not None: if purpose is None or purpose == purp: qubit = self._qubit_dict[q_id].pop(from_host_id, None) if qubit is not None: if not self._qubit_dict[q_id]: del self._qubit_dict[q_id] return qubit, purp else: if q_id not in self._purpose_dict: self._purpose_dict[q_id] = {} self._purpose_dict[q_id][from_host_id] = purp return None def _add_qubit_to_qubit_dict(self, qubit, purpose, from_host_id): def _add_purpose_to_purpose_dict(q_id): nonlocal purpose, from_host_id if q_id not in self._purpose_dict: self._purpose_dict[q_id] = {} self._purpose_dict[q_id][from_host_id] = purpose if qubit.id not in self._qubit_dict: self._qubit_dict[qubit.id] = {} self._qubit_dict[qubit.id][from_host_id] = qubit _add_purpose_to_purpose_dict(qubit.id) def _add_new_host(self, host_id): if host_id not in self._host_dict: self._host_dict[host_id] = [] if host_id not in self._storage_limits_per_host: self._storage_limits_per_host[host_id] = self._default_storage_limit_per_host self._amount_qubits_stored_per_host[host_id] = 0 def _check_qubit_in_system(self, qubit, from_host_id, purpose=None): """ True if qubit with same parameters already in the systems Args: qubit (Qubit): The qubit in question from_host_id (str): The ID of the sending host purpose (int): Qubit's purpose Returns: (bool): If the qubit is in the system. """ if qubit.id in self._qubit_dict and \ from_host_id in self._qubit_dict[qubit.id]: if purpose is None or (purpose == self._purpose_dict[qubit.id][from_host_id]): return True return False def _check_memory_limits(self, host_id): """ Checks if another qubit can be added to the storage. Args: host_id (str): The host_id the qubit should be added to. Returns: True if no storage limit has been reached, False if a memory limit has occurred. """ if self._storage_mode == QuantumStorage.STORAGE_LIMIT_ALL: if self._storage_limit == -1: return True if self._storage_limit <= self._amount_qubit_stored: return False else: return True elif self._storage_mode == QuantumStorage.STORAGE_LIMIT_PER_HOST: if self._storage_limit == -1: return True if self._storage_limit <= self._amount_qubits_stored_per_host[host_id]: return False else: return True elif self._storage_mode == QuantumStorage.STORAGE_LIMIT_INDIVIDUALLY_PER_HOST: if self._storage_limits_per_host[host_id] == -1: return True if self._storage_limits_per_host[host_id] <= self._amount_qubits_stored_per_host[host_id]: return False else: return True else: raise ValueError( "Internal Value Error, this storage mode does not exist.") def _increase_qubit_counter(self, host_id): """ Checks if the qubit counter can be increased, because of memory limits, and increases the counter. Args: host_id (str): From who the qubit comes from. Returns: True, if the counter could be increased, False if not. """ if not self._check_memory_limits(host_id): return False self._amount_qubits_stored_per_host[host_id] += 1 self._amount_qubit_stored += 1 return True def _reset_qubit_counter(self, host_id): """ Args: host_id (str): Returns: (bool): True, if the counter could be decreased, False if not. """ if self._amount_qubits_stored_per_host[host_id] <= 0 or \ self._amount_qubit_stored <= 0: return False num_qubits = self._amount_qubits_stored_per_host[host_id] self._amount_qubits_stored_per_host[host_id] = 0 self._amount_qubit_stored -= num_qubits def _decrease_qubit_counter(self, host_id): """ Checks if the qubit counter can be decreased and decreases the counter. Args: host_id (str): From who the qubit comes from. Returns: (bool): True, if the counter could be decreased, False if not. """ if self._amount_qubits_stored_per_host[host_id] <= 0 or \ self._amount_qubit_stored <= 0: return False self._amount_qubits_stored_per_host[host_id] -= 1 self._amount_qubit_stored -= 1
23220
import os def check(cmd, mf): m = mf.findNode('matplotlib') if m is None or m.filename is None: return None if cmd.matplotlib_backends: backends = {} for backend in cmd.matplotlib_backends: if backend == '-': pass elif backend == '*': mf.import_hook('matplotlib.backends', m, ['*']) else: mf.import_hook('matplotlib.backends.backend_%s' % ( backend,), m) else: backends = {'packages': ['matplotlib']} return dict( prescripts=['py2app.recipes.matplotlib_prescript'], resources=[os.path.join(os.path.dirname(m.filename), 'mpl-data')], **backends )
23271
import os import nibabel as nb import numpy as np from django.test import TestCase from neurovault.apps.statmaps.models import BaseStatisticMap from neurovault.apps.statmaps.utils import is_thresholded, infer_map_type class QATest(TestCase): def setUp(self): this_path = os.path.abspath(os.path.dirname(__file__)) self.brain = nb.load(os.path.join(this_path, "../static", "anatomical", "MNI152.nii.gz")) self.roi_map = nb.load(os.path.join(this_path, "test_data", "statmaps", "WA3.nii.gz")) self.parcellation = nb.load(os.path.join(this_path, "test_data", "TTatlas.nii.gz")) # We will fill in brain mask with this percentage of randomly placed values self.ratios = [0.0,0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.6,0.96, 0.98] self.thresholded = [False,False,False,False,False,False,False,False,False,True,True] def testThresholded(self): for p,t in zip(self.ratios, self.thresholded): empty_data = np.ones(self.brain.shape) if p != 0.0: number_voxels = int(np.floor(p * empty_data.size)) random_idx = np.random.choice(range(empty_data.size), number_voxels, replace=False) empty_data[np.unravel_index(random_idx, empty_data.shape)] = 0 empty_nii = nb.Nifti1Image(empty_data,affine=self.brain.get_affine(),header=self.brain.get_header()) is_thr, ratio_bad = is_thresholded(nii_obj=empty_nii) print "Zeroed %s of values, is_thresholded returns [%s:%s]" %(p,is_thr,ratio_bad) self.assertAlmostEqual(p, ratio_bad, delta=0.001) self.assertEquals(t, is_thr) def testInferMapType(self): self.assertEquals(infer_map_type(self.roi_map), BaseStatisticMap.R) self.assertEquals(infer_map_type(self.parcellation), BaseStatisticMap.Pa) self.assertEquals(infer_map_type(self.brain), BaseStatisticMap.OTHER)
23273
from typing import Any, Optional import pyarrow as pa from fugue.column.expressions import ( ColumnExpr, _FuncExpr, _to_col, function, ) from triad import Schema def coalesce(*args: Any) -> ColumnExpr: """SQL ``COALESCE`` function :param args: If a value is not :class:`~fugue.column.expressions.ColumnExpr` then it's converted to a literal column by :func:`~fugue.column.expressions.col` .. note:: this function can infer neither type nor alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f f.coalesce(col("a"), col("b")+col("c"), 1) """ return function("COALESCE", *[_to_col(x) for x in args]) def min(col: ColumnExpr) -> ColumnExpr: # pylint: disable=redefined-builtin """SQL ``MIN`` function (aggregation) :param col: the column to find min .. note:: * this function can infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f # assume col a has type double f.min(col("a")) # CAST(MIN(a) AS double) AS a f.min(-col("a")) # CAST(MIN(-a) AS double) AS a # neither type nor alias can be inferred in the following cases f.min(col("a")+1) f.min(col("a")+col("b")) # you can specify explicitly # CAST(MIN(a+b) AS int) AS x f.min(col("a")+col("b")).cast(int).alias("x") """ assert isinstance(col, ColumnExpr) return _SameTypeUnaryAggFuncExpr("MIN", col) def max(col: ColumnExpr) -> ColumnExpr: # pylint: disable=redefined-builtin """SQL ``MAX`` function (aggregation) :param col: the column to find max .. note:: * this function can infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f # assume col a has type double f.max(col("a")) # CAST(MAX(a) AS double) AS a f.max(-col("a")) # CAST(MAX(-a) AS double) AS a # neither type nor alias can be inferred in the following cases f.max(col("a")+1) f.max(col("a")+col("b")) # you can specify explicitly # CAST(MAX(a+b) AS int) AS x f.max(col("a")+col("b")).cast(int).alias("x") """ assert isinstance(col, ColumnExpr) return _SameTypeUnaryAggFuncExpr("MAX", col) def count(col: ColumnExpr) -> ColumnExpr: """SQL ``COUNT`` function (aggregation) :param col: the column to find count .. note:: * this function cannot infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f f.count(col("*")) # COUNT(*) f.count(col("a")) # COUNT(a) AS a # you can specify explicitly # CAST(COUNT(a) AS double) AS a f.count(col("a")).cast(float) """ assert isinstance(col, ColumnExpr) return _UnaryAggFuncExpr("COUNT", col) def count_distinct(col: ColumnExpr) -> ColumnExpr: """SQL ``COUNT DISTINCT`` function (aggregation) :param col: the column to find distinct element count .. note:: * this function cannot infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f f.count_distinct(col("*")) # COUNT(DISTINCT *) f.count_distinct(col("a")) # COUNT(DISTINCT a) AS a # you can specify explicitly # CAST(COUNT(DISTINCT a) AS double) AS a f.count_distinct(col("a")).cast(float) """ assert isinstance(col, ColumnExpr) return _UnaryAggFuncExpr("COUNT", col, arg_distinct=True) def avg(col: ColumnExpr) -> ColumnExpr: """SQL ``AVG`` function (aggregation) :param col: the column to find average .. note:: * this function cannot infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f f.avg(col("a")) # AVG(a) AS a # you can specify explicitly # CAST(AVG(a) AS double) AS a f.avg(col("a")).cast(float) """ assert isinstance(col, ColumnExpr) return _UnaryAggFuncExpr("AVG", col) def sum(col: ColumnExpr) -> ColumnExpr: # pylint: disable=redefined-builtin """SQL ``SUM`` function (aggregation) :param col: the column to find sum .. note:: * this function cannot infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f f.sum(col("a")) # SUM(a) AS a # you can specify explicitly # CAST(SUM(a) AS double) AS a f.sum(col("a")).cast(float) """ assert isinstance(col, ColumnExpr) return _UnaryAggFuncExpr("SUM", col) def first(col: ColumnExpr) -> ColumnExpr: """SQL ``FIRST`` function (aggregation) :param col: the column to find first .. note:: * this function can infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f # assume col a has type double f.first(col("a")) # CAST(FIRST(a) AS double) AS a f.first(-col("a")) # CAST(FIRST(-a) AS double) AS a # neither type nor alias can be inferred in the following cases f.first(col("a")+1) f.first(col("a")+col("b")) # you can specify explicitly # CAST(FIRST(a+b) AS int) AS x f.first(col("a")+col("b")).cast(int).alias("x") """ assert isinstance(col, ColumnExpr) return _SameTypeUnaryAggFuncExpr("FIRST", col) def last(col: ColumnExpr) -> ColumnExpr: """SQL ``LAST`` function (aggregation) :param col: the column to find last .. note:: * this function can infer type from ``col`` type * this function can infer alias from ``col``'s inferred alias .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f # assume col a has type double f.last(col("a")) # CAST(LAST(a) AS double) AS a f.last(-col("a")) # CAST(LAST(-a) AS double) AS a # neither type nor alias can be inferred in the following cases f.last(col("a")+1) f.last(col("a")+col("b")) # you can specify explicitly # CAST(LAST(a+b) AS int) AS x f.last(col("a")+col("b")).cast(int).alias("x") """ assert isinstance(col, ColumnExpr) return _SameTypeUnaryAggFuncExpr("LAST", col) def is_agg(column: Any) -> bool: """Check if a column contains aggregation operation :param col: the column to check :return: whether the column is :class:`~fugue.column.expressions.ColumnExpr` and contains aggregation operations .. admonition:: New Since :class: hint **0.6.0** .. admonition:: Examples .. code-block:: python import fugue.column.functions as f assert not f.is_agg(1) assert not f.is_agg(col("a")) assert not f.is_agg(col("a")+lit(1)) assert f.is_agg(f.max(col("a"))) assert f.is_agg(-f.max(col("a"))) assert f.is_agg(f.max(col("a")+1)) assert f.is_agg(f.max(col("a"))+f.min(col("a")))) """ if isinstance(column, _UnaryAggFuncExpr): return True if isinstance(column, _FuncExpr): return any(is_agg(x) for x in column.args) or any( is_agg(x) for x in column.kwargs.values() ) return False class _UnaryAggFuncExpr(_FuncExpr): def __init__(self, func: str, col: ColumnExpr, arg_distinct: bool = False): super().__init__(func, col, arg_distinct=arg_distinct) def infer_alias(self) -> ColumnExpr: return ( self if self.output_name != "" else self.alias(self.args[0].infer_alias().output_name) ) def _copy(self) -> _FuncExpr: return _UnaryAggFuncExpr(self.func, *self.args, **self.kwargs) class _SameTypeUnaryAggFuncExpr(_UnaryAggFuncExpr): def _copy(self) -> _FuncExpr: return _SameTypeUnaryAggFuncExpr(self.func, *self.args, **self.kwargs) def infer_type(self, schema: Schema) -> Optional[pa.DataType]: return self.as_type or self.args[0].infer_type(schema)
23285
import unittest from minos.common import ( MinosException, ) from minos.networks import ( MinosNetworkException, ) class TestExceptions(unittest.TestCase): def test_type(self): self.assertTrue(issubclass(MinosNetworkException, MinosException)) if __name__ == "__main__": unittest.main()
23288
import os import numpy as np import tensorflow as tf from models.config import Config from models.memory_gan import MemoryGAN from models.test_generation import test_generation from models.train import train from utils import pp, visualize, to_json os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' flags = tf.app.flags flags.DEFINE_integer("epoch", 1500, "Max epoch to train") flags.DEFINE_string("exp", 0, "Experiment number") flags.DEFINE_string("load_cp_dir", '', "cp path") flags.DEFINE_string("dataset", "fashion", "[fashion, affmnist, cifar10]") flags.DEFINE_string("loss", "jsd", "[jsd, alternative, reverse_kl, updown]") flags.DEFINE_boolean("lr_decay", False, "") flags.DEFINE_boolean("use_augmentation", False, "") flags.DEFINE_boolean("is_train", True, "True for training, False for testing [False]") flags.DEFINE_string("model", 'MemoryGAN', '') flags.DEFINE_string("generator", 'base_g', '') flags.DEFINE_string("discriminator", 'memory_d', '') FLAGS = flags.FLAGS def main(_): pp.pprint(flags.FLAGS.__flags) config = Config(FLAGS) config.print_config() config.make_dirs() config_proto = tf.ConfigProto(allow_soft_placement=FLAGS.is_train, log_device_placement=False) config_proto.gpu_options.allow_growth = True with tf.Session(config=config_proto) as sess: model = globals()[FLAGS.model](config) if not FLAGS.is_train: test_generation(model, sess) else: train(model, sess) if __name__ == '__main__': tf.app.run()
23304
from recipe_compiler.recipe import Recipe from recipe_compiler.recipe_category import RecipeCategory def test_recipe_slug(): # Given name = "<NAME>" residence = "Seattle, WA" category = RecipeCategory("dessert") recipe_name = '"Pie" Shell Script' quote = "Hello, World" ingredients = [""] instructions = [""] expected = "pie-shell-script" # When recipe = Recipe( name, residence, category, recipe_name, quote, ingredients, instructions ) # Then assert expected == recipe.slug
23315
import requests text = "0123456789abcdefghijklmnopqrstuvwxyz_}" flag = "hsctf{" for _ in range(30): time = [0.1 for _ in range(38)] for _ in range(5): for i in range(38): payload = {"password": flag + text[i]} r = requests.post( "https://networked-password.web.chal.hsctf.com", data=payload ) response_time = r.elapsed.total_seconds() time[i] += response_time print(payload, " response time : ", response_time) flag += text[time.index(max(time))] print("flag is ", flag)
23327
from __future__ import absolute_import import argparse import logging import multiprocessing import os import sys import uuid from os.path import join, exists import yaml from phigaro.context import Context from phigaro.batch.runner import run_tasks_chain from phigaro.batch.task.path import sample_name from phigaro.batch.task.prodigal import ProdigalTask from phigaro.batch.task.hmmer import HmmerTask from phigaro.batch.task.dummy import DummyTask from phigaro.batch.task.preprocess import PreprocessTask from phigaro.batch.task.run_phigaro import RunPhigaroTask from phigaro._version import __version__ def parse_substitute_output(subs): subs = subs or [] res = {} for sub in subs: task_name, output = sub.split(":") res[task_name] = DummyTask(output, task_name) return res def create_task(substitutions, task_class, *args, **kwargs): # TODO: refactor to class Application task = task_class(*args, **kwargs) if task.task_name in substitutions: print( 'Substituting output for {}: {}'.format( task.task_name, substitutions[task.task_name].output() ) ) return substitutions[task.task_name] return task def clean_fold(): is_empty = True for root, dirs, files in os.walk('proc', topdown=False): for name in files: is_empty = False break if is_empty: for name in dirs: os.rmdir(os.path.join(root, name)) if is_empty: os.rmdir('proc') def main(): default_config_path = join(os.getenv('HOME'), '.phigaro', 'config.yml') parser = argparse.ArgumentParser( prog='phigaro', description='Phigaro is a scalable command-line tool for predictions phages and prophages ' 'from nucleid acid sequences', ) parser.add_argument( '-V', '--version', action='version', version='%(prog)s {version}'.format(version=__version__), ) parser.add_argument( '-f', '--fasta-file', help='Assembly scaffolds/contigs or full genomes, required', required=True, ) parser.add_argument( '-c', '--config', default=default_config_path, help='Path to the config file, not required. The deafult is %s'%default_config_path, ) parser.add_argument( '-v', '--verbose', action='store_true', help=argparse.SUPPRESS ) parser.add_argument( '-p', '--print-vogs', help='Print phage vogs for each region', action='store_true', ) parser.add_argument( '-e', '--extension', default=['html'], nargs='+', help='Type of the output: html, tsv, gff, bed or stdout. Default is html. You can specify several file formats with a space as a separator. Example: -e tsv html stdout.', ) parser.add_argument( '-o', '--output', default='', help='Output filename for html and txt outputs. Required by default, but not required for stdout only output.', ) parser.add_argument( '--not-open', help='Do not open html file automatically, if html output type is specified.', action='store_true', ) parser.add_argument( '-t', '--threads', type=int, default=multiprocessing.cpu_count(), help='Num of threads (' 'default is num of CPUs={})'.format(multiprocessing.cpu_count()), ) parser.add_argument( '--no-cleanup', action='store_true', help="Do not delete any temporary files that was generated by Phigaro (HMMER & Prodigal outputs and some others)." ) parser.add_argument( '-S', '--substitute-output', action='append', help='If you have precomputed prodigal and/or hmmer data you can provide paths to the files in the following format: program:address/to/the/file. In place of program you should write hmmer or prodigal. If you need to provide both files you should pass them separetely as two parametres.', ) parser.add_argument( '--save-fasta', action='store_true', help='Save all phage fasta sequences in a fasta file.', ) parser.add_argument( '-d', '--delete-shorts', action='store_true', help='Exclude sequences with length < 20000 automatically.', ) parser.add_argument( '-m', '--mode', default='basic', help='You can launch Phigaro at one of 3 modes: basic, abs, without_gc. Default is basic. Read more about modes at https://github.com/bobeobibo/phigaro/', ) parser.add_argument( '--wtp', action='store_true', help=argparse.SUPPRESS ) args = parser.parse_args() logging.basicConfig(level=logging.INFO if args.verbose else logging.WARN) logging.getLogger('sh.command').setLevel(logging.WARN) logger = logging.getLogger(__name__) if not exists(args.config): # TODO: pretty message print('Please, create config file using phigaro-setup script') exit(1) args.extension = [atype.lower() for atype in args.extension] for ext in args.extension: if ext not in ['html', 'gff', 'bed', 'tsv', 'stdout']: print( 'Error! The unknown output format in -e/--extensionn parameter: %s. Please, choose one or several from the list: html, gff, bed, tsv, stdout'%ext ) exit(1) if (args.output == '') and (args.extension != ['stdout']): print( 'Error! Argument -o/--output is required or change the type of the output to stdout.' ) exit(1) with open(args.config) as f: logger.info('Using config file: {}'.format(args.config)) config = yaml.load(f, Loader=yaml.FullLoader) config['phigaro']['wtp'] = args.wtp config['phigaro']['print_vogs'] = args.print_vogs config['phigaro']['filename'] = args.fasta_file config['phigaro']['no_html'] = ( True if 'html' not in args.extension else False ) config['phigaro']['not_open'] = args.not_open config['phigaro']['output'] = (args.output+'/'+os.path.splitext(os.path.basename(args.fasta_file))[0]+'.phigaro').replace('//', '/') config['phigaro']['uuid'] = uuid.uuid4().hex config['phigaro']['delete_shorts'] = args.delete_shorts config['phigaro']['gff'] = True if ('gff' in args.extension) else False config['phigaro']['bed'] = True if ('bed' in args.extension) else False config['phigaro']['mode'] = args.mode config['phigaro']['save_fasta'] = args.save_fasta filename = args.fasta_file sample = '{}-{}'.format(sample_name(filename), config['phigaro']['uuid']) if args.wtp: config['phigaro']['not_open'] = True config['phigaro']['gff'] = True config['phigaro']['bed'] = True args.extension.append('tsv') config['phigaro']['delete_shorts'] = True config['phigaro']['print_vogs'] = True config['phigaro']['output_wtp'] = args.output + '/phigaro.txt' config['phigaro']['output'] = args.output +'/phigaro/phigaro' config['phigaro']['save_fasta'] = True if config['phigaro']['output'] != '': fold = os.path.dirname(config['phigaro']['output']) if fold and not os.path.isdir(fold): os.makedirs(fold) if args.wtp: fold = os.path.dirname(config['phigaro']['output_wtp']) if fold and not os.path.isdir(fold): os.makedirs(fold) Context.initialize( sample=sample, config=config, threads=args.threads, ) substitutions = parse_substitute_output(args.substitute_output) preprocess_task = create_task(substitutions, PreprocessTask, filename) prodigal_task = create_task( substitutions, ProdigalTask, preprocess_task=preprocess_task ) hmmer_task = create_task( substitutions, HmmerTask, prodigal_task=prodigal_task ) run_phigaro_task = create_task( substitutions, RunPhigaroTask, prodigal_task=prodigal_task, hmmer_task=hmmer_task, ) tasks = [preprocess_task, prodigal_task, hmmer_task, run_phigaro_task] task_output_file = run_tasks_chain(tasks) if ('tsv' in args.extension) or ('stdout' in args.extension): with open(task_output_file) as f: f = list(f) if 'tsv' in args.extension: out_f = open(config['phigaro']['output'] + '.tsv', 'w') for line in f: out_f.write(line) if 'stdout' in args.extension: out_f = sys.stdout for line in f: out_f.write(line) out_f.close() if not args.no_cleanup: for t in tasks: t.clean() clean_fold() if __name__ == '__main__': main()
23374
import unittest import uuid from memory.client import MemoryClient from hailtop.aiocloud.aiogoogle import GoogleStorageAsyncFS from hailtop.config import get_user_config from hailtop.utils import async_to_blocking from gear.cloud_config import get_gcp_config PROJECT = get_gcp_config().project class BlockingMemoryClient: def __init__(self, gcs_project=None, fs=None, deploy_config=None, session=None, headers=None, _token=None): self._client = MemoryClient(gcs_project, fs, deploy_config, session, headers, _token) async_to_blocking(self._client.async_init()) def _get_file_if_exists(self, filename): return async_to_blocking(self._client._get_file_if_exists(filename)) def read_file(self, filename): return async_to_blocking(self._client.read_file(filename)) def write_file(self, filename, data): return async_to_blocking(self._client.write_file(filename, data)) def close(self): return async_to_blocking(self._client.close()) class Tests(unittest.TestCase): def setUp(self): bucket_name = get_user_config().get('batch', 'bucket') token = uuid.uuid4() self.test_path = f'gs://{bucket_name}/memory-tests/{token}' self.fs = GoogleStorageAsyncFS(project=PROJECT) self.client = BlockingMemoryClient(fs=self.fs) self.temp_files = set() def tearDown(self): async_to_blocking(self.fs.rmtree(None, self.test_path)) self.client.close() async def add_temp_file_from_string(self, name: str, str_value: bytes): handle = f'{self.test_path}/{name}' async with await self.fs.create(handle) as f: await f.write(str_value) return handle def test_non_existent(self): for _ in range(3): self.assertIsNone(self.client._get_file_if_exists(f'{self.test_path}/nonexistent')) def test_small_write_around(self): async def read(url): async with await self.fs.open(url) as f: return await f.read() cases = [('empty_file', b''), ('null', b'\0'), ('small', b'hello world')] for file, data in cases: handle = async_to_blocking(self.add_temp_file_from_string(file, data)) expected = async_to_blocking(read(handle)) self.assertEqual(expected, data) i = 0 cached = self.client._get_file_if_exists(handle) while cached is None and i < 10: cached = self.client._get_file_if_exists(handle) i += 1 self.assertEqual(cached, expected) def test_small_write_through(self): cases = [('empty_file2', b''), ('null2', b'\0'), ('small2', b'hello world')] for file, data in cases: filename = f'{self.test_path}/{file}' self.client.write_file(filename, data) cached = self.client._get_file_if_exists(filename) self.assertEqual(cached, data)
23377
import librosa import numpy as np from . import base from . import spectral class OnsetStrength(base.Computation): """ Compute a spectral flux onset strength envelope. Based on http://librosa.github.io/librosa/generated/librosa.onset.onset_strength.html Args: n_mels (int): Number of mel bands to generate. """ def __init__(self, n_mels=128, parent=None, name=None): super(OnsetStrength, self).__init__(left_context=1, right_context=0, parent=parent, name=name) self.n_mels = n_mels def compute(self, chunk, sampling_rate, corpus=None, utterance=None): # Compute mel-spetrogram power_spec = np.abs(spectral.stft_from_frames(chunk.data.T)) ** 2 mel = np.abs(librosa.feature.melspectrogram(S=power_spec, n_mels=self.n_mels, sr=sampling_rate)) mel_power = librosa.power_to_db(mel) # Compute onset strengths oenv = librosa.onset.onset_strength(S=mel_power, center=False) # Switch dimensions and add dimension to have frames oenv = oenv.T.reshape(oenv.shape[0], -1) # Remove context oenv = oenv[chunk.left_context:oenv.shape[0] - chunk.right_context] return oenv
23381
import numpy as np from graph_tiger.graphs import o4_graph, p4_graph, c4_graph, k4_1_graph, k4_2_graph from graph_tiger.graphs import two_c4_0_bridge, two_c4_1_bridge, two_c4_2_bridge, two_c4_3_bridge from graph_tiger.measures import run_measure def test_measures(): measure_ground_truth = { # graph order: o4, p4, c4, k4_1, c4_0, c4_1, c4_2, c4_3 'node_connectivity': [0, 1, 2, 2, 3, 0, 1, 1, 1], 'edge_connectivity': [0, 1, 2, 2, 3, 0, 1, 1, 1], 'diameter': [None, 3, 2, 2, 1, None, 5, 5, 5], 'average_distance': [None, 1.67, 1.33, 1.17, 1, None, 2.29, 2.29, 2.29], 'average_inverse_distance': [0, 0.72, 0.83, 0.92, 1.0, 0.36, 0.58, 0.58, 0.58], 'average_vertex_betweenness': [0, 4, 3.5, 3.25, 3, 3.5, 11.5, None, None], 'average_edge_betweenness': [0, 3.33, 2.0, 1.4, 1, 2, 7.11, 7.11, 7.11], 'average_clustering_coefficient': [0, 0, 0, 0.83, 1, 0, 0, None, None], 'largest_connected_component': [1, 4, 4, 4, 4, 4, 8, 8, 8], 'spectral_radius': [0, 1.62, 2, 2.56, 3, 2, 2.34, 2.9, 3.65], 'spectral_gap': [0, 1, 2, 2.56, 4, 0, 0.53, 1.19, 2], 'natural_connectivity': [0, 0.65, 0.87, 1.29, 1.67, 0.87, 0.97, 1.28, 1.81], 'spectral_scaling': [None, 7.18, 7.28, 0.17, 0.09, None, None, 7.04, 6.93], 'generalized_robustness_index': [None, 7.18, 7.28, 0.17, 0.09, None, None, 7.04, 6.93], 'algebraic_connectivity': [0, 0.59, 2, 2, 4, 0, 0.29, 0.4, 0.45], 'number_spanning_trees': [0, 1, 4, 8, 16, 0, 16, 32, 48], 'effective_resistance': [np.inf, 10, 5, 4, 3, np.inf, 46, 38, 35.33] } graphs = [o4_graph(), p4_graph(), c4_graph(), k4_1_graph(), k4_2_graph(), two_c4_0_bridge(), two_c4_1_bridge(), two_c4_2_bridge(), two_c4_3_bridge()] for measure_name, graph_values in measure_ground_truth.items(): for idx, graph in enumerate(graphs): value = run_measure(graph, measure_name) if value is not None: value = round(value, 2) # print(idx, measure_name, value) assert (value, graph_values[idx]) def main(): test_measures() if __name__ == '__main__': main()
23385
import spidev columns = [0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8] LEDOn = [0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF] LEDOff = [0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0] LEDEmoteSmile = [0x0,0x0,0x24,0x0,0x42,0x3C,0x0,0x0] LEDEmoteSad = [0x0,0x0,0x24,0x0,0x0,0x3C,0x42,0x0] LEDEmoteTongue = [0x0,0x0,0x24,0x0,0x42,0x3C,0xC,0x0] LEDEmoteSurprise = [0x0,0x0,0x24,0x0,0x18,0x24,0x24,0x18] spi = None def setup(robot_config): global LEDEmoteSmile global LEDEmoteSad global LEDEmoteTongue global LEDEmoteSuprise global module global spi #LED controlling spi = spidev.SpiDev() spi.open(0,0) #VCC -> RPi Pin 2 #GND -> RPi Pin 6 #DIN -> RPi Pin 19 #CLK -> RPi Pin 23 #CS -> RPi Pin 24 # decoding:BCD spi.writebytes([0x09]) spi.writebytes([0x00]) # Start with low brightness spi.writebytes([0x0a]) spi.writebytes([0x03]) # scanlimit; 8 LEDs spi.writebytes([0x0b]) spi.writebytes([0x07]) # Enter normal power-mode spi.writebytes([0x0c]) spi.writebytes([0x01]) # Activate display spi.writebytes([0x0f]) spi.writebytes([0x00]) rotate = robot_config.getint('max7219', 'ledrotate') if rotate == 180: LEDEmoteSmile = LEDEmoteSmile[::-1] LEDEmoteSad = LEDEmoteSad[::-1] LEDEmoteTongue = LEDEmoteTongue[::-1] LEDEmoteSurprise = LEDEmoteSurprise[::-1] SetLED_Off() def SetLED_On(): for i in range(len(columns)): spi.xfer([columns[i],LEDOn[i]]) def SetLED_Off(): for i in range(len(columns)): spi.xfer([columns[i],LEDOff[i]]) def SetLED_E_Smiley(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSmile[i]]) def SetLED_E_Sad(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSad[i]]) def SetLED_E_Tongue(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteTongue[i]]) def SetLED_E_Surprised(): for i in range(len(columns)): spi.xfer([columns[i],LEDEmoteSurprise[i]]) def SetLED_Low(): # brightness MIN spi.writebytes([0x0a]) spi.writebytes([0x00]) def SetLED_Med(): #brightness MED spi.writebytes([0x0a]) spi.writebytes([0x06]) def SetLED_Full(): # brightness MAX spi.writebytes([0x0a]) spi.writebytes([0x0F]) def move(args): command = args['command'] if command == 'LED_OFF': SetLED_Off() if command == 'LED_FULL': SetLED_On() SetLED_Full() if command == 'LED_MED': SetLED_On() SetLED_Med() if command == 'LED_LOW': SetLED_On() SetLED_Low() if command == 'LED_E_SMILEY': SetLED_On() SetLED_E_Smiley() if command == 'LED_E_SAD': SetLED_On() SetLED_E_Sad() if command == 'LED_E_TONGUE': SetLED_On() SetLED_E_Tongue() if command == 'LED_E_SURPRISED': SetLED_On() SetLED_E_Suprised()
23457
import operator from amino.either import Left, Right from amino import Empty, Just, Maybe, List, Either, _ from amino.test.spec_spec import Spec from amino.list import Lists class EitherSpec(Spec): def map(self) -> None: a = 'a' b = 'b' Right(a).map(_ + b).value.should.equal(a + b) Left(a).map(_ + b).value.should.equal(a) def optional(self) -> None: a = 'a' b = 'b' Right(a).to_maybe.should.just_contain(a) Left(a).to_maybe.should.be.a(Empty) Right(a).to_either(b).should.equal(Right(a)) Left(a).to_either(b).should.equal(Left(a)) def ap2(self) -> None: a = 'a' b = 'b' Right(a).ap2(Right(b), operator.add).should.equal(Right(a + b)) def traverse(self) -> None: a = 'a' Right(Just(a)).sequence(Maybe).should.equal(Just(Right(a))) Left(Just(a)).sequence(Maybe).should.equal(Just(Left(Just(a)))) List(Right(a)).sequence(Either).should.equal(Right(List(a))) List(Right(a), Left(a)).sequence(Either).should.equal(Left(a)) def fold_m(self) -> None: def f(z: int, a: int) -> Either[str, int]: return Right(z + a) if a < 5 else Left('too large') Lists.range(5).fold_m(Right(8))(f).should.contain(18) Lists.range(6).fold_m(Right(8))(f).should.be.left def list_flat_map(self) -> None: (List(Right(1), Left(2), Right(3)).join).should.equal(List(1, 3)) __all__ = ('EitherSpec',)
23471
import os client_id = os.environ['BOT_CLIENT_ID'] client_secret = os.environ['BOT_CLIENT_SECRET'] user_agent = os.environ['BOT_USER_AGENT'] username = os.environ['BOT_USERNAME'] password = os.environ['BOT_PASSWORD'] num_subs = int(os.environ['BOT_SUB_COUNT']) sub_settings = [[ os.environ['BOT_SUBREDDIT' + i], int(os.environ['BOT_TOP_DAYS' + i]) if 'BOT_TOP_DAYS' + i in os.environ else None, int(os.environ['BOT_HOT_DAYS' + i]) if 'BOT_HOT_DAYS' + i in os.environ else None, int(os.environ['BOT_NEW_DAYS' + i]) if 'BOT_NEW_DAYS' + i in os.environ else None, int(os.environ['BOT_TOP_NUM_POSTS' + i]) if 'BOT_TOP_NUM_POSTS' + i in os.environ else 1000, int(os.environ['BOT_HOT_NUM_POSTS' + i]) if 'BOT_HOT_NUM_POSTS' + i in os.environ else 1000, int(os.environ['BOT_NEW_NUM_POSTS' + i]) if 'BOT_NEW_NUM_POSTS' + i in os.environ else 1000, int(os.environ['BOT_THRESH' +i]) if 'BOT_THRESH' + i in os.environ else 5, bool(os.environ['BOT_TEXT_IN_IMAGE' + i]) if 'BOT_TEXT_IN_IMAGE' + i in os.environ else False, ] for i in [str(x) for x in range(num_subs)]]
23485
from __future__ import annotations import re from typing import Union import warp.yul.ast as ast from warp.yul.AstVisitor import AstVisitor from warp.yul.WarpException import WarpException class AstParser: def __init__(self, text: str): self.lines = text.splitlines() if len(self.lines) == 0: raise WarpException("Text should not be empty") self.pos = 0 def parse_typed_name(self) -> ast.TypedName: tabs = self.get_tabs() node_type_name = self.get_word(tabs) assert node_type_name == "TypedName:", "This node should be of type TypedNode" self.pos += 1 assert self.get_tabs() == tabs + 1, "Wrong indentation" node_name, node_type = self.get_word(tabs + 1).split(":") self.pos += 1 return ast.TypedName(name=node_name, type=node_type) def parse_literal(self) -> ast.Literal: tabs = self.get_tabs() assert self.get_word(tabs).startswith( "Literal:" ), "This node should be of type Literal" value = self.get_word(tabs + 8) self.pos += 1 try: value = int(value) except ValueError: pass return ast.Literal(value=value) def parse_identifier(self) -> ast.Identifier: tabs = self.get_tabs() assert self.get_word(tabs).startswith( "Identifier:" ), "This node should be of type Identifier" name = self.get_word(tabs + 11) self.pos += 1 return ast.Identifier(name=name) def parse_assignment(self) -> ast.Assignment: tabs = self.get_tabs() assert ( self.get_word(tabs) == "Assignment:" ), "This node should be of type Assignment" self.pos += 1 assert self.get_word(tabs + 1) == "Variables:" self.pos += 1 variables_list = self.parse_list(tabs + 1, self.parse_identifier) assert self.get_word(tabs + 1) == "Value:" self.pos += 1 return ast.Assignment( variable_names=variables_list, value=self.parse_expression() ) def parse_function_call(self) -> ast.FunctionCall: tabs = self.get_tabs() assert ( self.get_word(tabs) == "FunctionCall:" ), "This node should be of type FunctionCall" self.pos += 1 return ast.FunctionCall( function_name=self.parse_identifier(), arguments=self.parse_list(tabs, self.parse_expression), ) def parse_expression_statement(self) -> ast.Statement: tabs = self.get_tabs() assert ( self.get_word(tabs) == "ExpressionStatement:" ), "This node should be of type ExpressionStatement" self.pos += 1 return ast.ExpressionStatement(expression=self.parse_expression()) def parse_variable_declaration(self) -> ast.VariableDeclaration: tabs = self.get_tabs() assert ( self.get_word(tabs) == "VariableDeclaration:" ), "This node should be of type VariableDeclaration" self.pos += 1 assert self.get_tabs() == tabs + 1 assert self.get_word(tabs + 1) == "Variables:" self.pos += 1 variables = self.parse_list(tabs + 1, self.parse_typed_name) assert self.get_tabs() == tabs + 1 word = self.get_word(tabs + 1) self.pos += 1 assert word.startswith("Value") if word.endswith("None"): value = None else: value = self.parse_expression() return ast.VariableDeclaration(variables=variables, value=value) def parse_block(self) -> ast.Block: tabs = self.get_tabs() assert self.get_word(tabs) == "Block:", "This node should be of type Block" self.pos += 1 return ast.Block(statements=tuple(self.parse_list(tabs, self.parse_statement))) def parse_function_definition(self) -> ast.FunctionDefinition: tabs = self.get_tabs() assert ( self.get_word(tabs) == "FunctionDefinition:" ), "This node should be of type FunctionDefinition" self.pos += 1 assert self.get_tabs() == tabs + 1 and self.get_word(tabs + 1).startswith( "Name:" ) fun_name = self.get_word(tabs + 7) self.pos += 1 assert self.get_tabs() == tabs + 1 and self.get_word(tabs + 1) == "Parameters:" self.pos += 1 params = self.parse_list(tabs + 1, self.parse_typed_name) assert ( self.get_tabs() == tabs + 1 and self.get_word(tabs + 1) == "Return Variables:" ) self.pos += 1 returns = self.parse_list(tabs + 1, self.parse_typed_name) assert self.get_tabs() == tabs + 1 and self.get_word(tabs + 1) == "Body:" self.pos += 1 body = self.parse_block() return ast.FunctionDefinition( name=fun_name, parameters=params, return_variables=returns, body=body ) def parse_if(self) -> ast.If: tabs = self.get_tabs() assert self.get_word(tabs) == "If:", "This node should be of type If" self.pos += 1 condition = self.parse_expression() body = self.parse_block() else_body = None if self.get_tabs() > tabs: else_body = self.parse_block() return ast.If(condition=condition, body=body, else_body=else_body) def parse_case(self) -> ast.Case: tabs = self.get_tabs() assert self.get_word(tabs) == "Case:", "This node should be of type Case" self.pos += 1 try: value = self.parse_literal() except AssertionError: assert ( self.get_tabs() == tabs + 1 and self.get_word(tabs + 1) == "Default" ), "The value must be a literal or None (when it's the default case)" value = None self.pos += 1 return ast.Case(value=value, body=self.parse_block()) def parse_switch(self) -> ast.Switch: tabs = self.get_tabs() assert self.get_word(tabs) == "Switch:", "This node should be of type Switch" self.pos += 1 return ast.Switch( expression=self.parse_expression(), cases=self.parse_list(tabs, self.parse_case), ) def parse_for_loop(self) -> ast.ForLoop: tabs = self.get_tabs() assert self.get_word(tabs) == "ForLoop:", "This node should be of type ForLoop" self.pos += 1 return ast.ForLoop( pre=self.parse_block(), condition=self.parse_expression(), post=self.parse_block(), body=self.parse_block(), ) def parse_break(self) -> ast.Break: tabs = self.get_tabs() assert self.get_word(tabs) == "Break", "This node should be of type Break" self.pos += 1 return ast.Break() def parse_continue(self) -> ast.Continue: tabs = self.get_tabs() assert self.get_word(tabs) == "Continue", "This node should be of type Continue" self.pos += 1 return ast.Continue() def parse_leave(self) -> ast.Leave: tabs = self.get_tabs() assert self.get_word(tabs) == "Leave", "This node should be of type Leave" self.pos += 1 return ast.LEAVE def parse_node(self) -> ast.Node: tabs = self.get_tabs() node_type_name = self.get_word(tabs).split(":")[0] parser_name = f"parse_{self.get_name(node_type_name)}" parser = getattr(self, parser_name, None) if parser is None: raise WarpException("Wrong node type name!") return parser() def parse_statement(self) -> ast.Statement: statements = [ "ExpressionStatement", "Assignment", "VariableDeclaration", "FunctionDefinition", "If", "Switch", "ForLoop", "Break", "Continue", "Leave", "Block", ] tabs = self.get_tabs() node_type_name = self.get_word(tabs).split(":")[0] assert node_type_name in statements, "Not a valid statement" return ast.assert_statement(self.parse_node()) def parse_expression(self) -> ast.Expression: tabs = self.get_tabs() node_type_name = self.get_word(tabs).split(":")[0] assert node_type_name in [ "Literal", "Identifier", "FunctionCall", ], "Node type must be an expression" return ast.assert_expression(self.parse_node()) def parse_list(self, tabs, parser): items = [] while self.pos < len(self.lines) and self.get_tabs() > tabs: item = parser() items.append(item) return items def get_tabs(self): tabs = 0 if self.pos < len(self.lines): for c in self.lines[self.pos]: if not c == "\t": break tabs += 1 else: raise WarpException( "Lines are not supposed to be filled only with tabs" ) return tabs def get_word(self, start: int) -> str: return self.lines[self.pos][start:] def get_name(self, name): name = "_".join(re.findall("[A-Z][^A-Z]*", name)) return name.lower() class YulPrinter(AstVisitor): def format(self, node: ast.Node, tabs: int = 0) -> str: return self.visit(node, tabs) def visit_typed_name(self, node: ast.TypedName, tabs: int = 0) -> str: return f"{node.name}" def visit_literal(self, node: ast.Literal, tabs: int = 0) -> str: return f"{node.value}" def visit_identifier(self, node: ast.Identifier, tabs: int = 0) -> str: return f"{node.name}" def visit_assignment(self, node: ast.Assignment, tabs: int = 0) -> str: variables = ", ".join(self.visit_list(node.variable_names)) value = self.visit(node.value, 0) return f"{variables} := {value}" def visit_function_call(self, node: ast.FunctionCall, tabs: int = 0) -> str: name = self.visit(node.function_name) args = ", ".join(self.visit_list(node.arguments)) return f"{name}({args})" def visit_expression_statement( self, node: ast.ExpressionStatement, tabs: int = 0 ) -> str: return self.visit(node.expression, tabs) def visit_variable_declaration( self, node: ast.VariableDeclaration, tabs: int = 0 ) -> str: variables = ", ".join(self.visit_list(node.variables)) value = "" if node.value is not None: value = f" := {self.visit(node.value)}" return f"let {variables}{value}" def visit_block(self, node: ast.Block, tabs: int = 0) -> str: open_block = "{" close_block = "}" if self.is_short(node.statements): statements = "".join(self.visit_list(node.statements)) return " ".join([open_block, statements, close_block]) statements = self.visit_list(node.statements, tabs + 1) statements = ["\t" * (tabs + 1) + stmt for stmt in statements] statements = "\n".join(statements) close_block = "\t" * tabs + close_block res = "\n".join([open_block, statements, close_block]) return res def visit_function_definition( self, node: ast.FunctionDefinition, tabs: int = 0 ) -> str: parameters = ", ".join(self.visit_list(node.parameters, 0)) ret_vars = ", ".join(self.visit_list(node.return_variables, 0)) body = self.visit(node.body, tabs) res = f"function {node.name}({parameters})" if len(node.return_variables) > 0: res += f" -> {ret_vars}" res += f" {body}" return res def visit_if(self, node: ast.If, tabs: int = 0) -> str: res = f"if {self.visit(node.condition)} " res += self.visit(node.body, tabs) if node.else_body is not None: res += "\n" + "\t" * tabs + "else " res += self.visit(node.else_body, tabs) return res def visit_case(self, node: ast.Case, tabs: int = 0) -> str: res = "\t" * tabs if node.value is not None: res += f"case {self.visit(node.value)} " else: res += "default " res += self.visit(node.body, tabs) return res def visit_switch(self, node: ast.Switch, tabs: int = 0) -> str: res = f"switch {self.visit(node.expression)}\n" res += "\n".join(self.visit_list(node.cases, tabs)) return res def visit_for_loop(self, node: ast.ForLoop, tabs: int = 0) -> str: res = "for " res += self.visit(node.pre, tabs) res += f" {self.visit(node.condition)} " res += self.visit(node.post, tabs) res += f"\n{self.visit(node.body, tabs)}" return res def visit_break(self, node: ast.Break, tabs: int = 0) -> str: return "break" def visit_continue(self, node: ast.Continue, tabs: int = 0) -> str: return "continue" def visit_leave(self, node: ast.Leave, tabs: int = 0) -> str: return "leave" def is_short(self, stmts: tuple) -> bool: if len(stmts) == 0: return True return len(stmts) == 1 and type(stmts[0]).__name__ not in [ "Block", "FunctionDefinition", "If", "Switch", "ForLoop", ]
23495
import theano import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams from theano.tensor.nnet.conv import conv2d from theano.tensor.signal.downsample import max_pool_2d from theano.tensor.shared_randomstreams import RandomStreams import numpy as np from toolbox import * from modelbase import * import itertools class FFN_ace(ModelSLBase): """ Auto-classifier-encoder (Georgiev, 2015) """ def save(self): if not os.path.exists('savedmodels\\'): os.makedirs('savedmodels\\') self.params.save(self.filename) def __init__(self, data, hp): super(FFN_ace, self).__init__(self.__class__.__name__, data, hp) # batch_size: 10000; learning_rate = 0.0015; lr_halflife = 200, 500 self.epsilon = 0.0001 self.params = Parameters() self.shared_vars = Parameters() n_x = self.data['n_x'] n_y = self.data['n_y'] n_h1 = 1200 n_h2 = 1000 n_h3 = 800 n_h4 = 800 scale = hp.init_scale if hp.load_model and os.path.isfile(self.filename): self.params.load(self.filename) else: with self.params: w_h = shared_normal((n_x, n_h1), scale=scale) b_h = shared_zeros((n_h1,)) w_h2 = shared_normal((n_h1, n_h2), scale=scale) b_h2 = shared_zeros((n_h2,)) w_h3 = shared_normal((n_h2, n_h3), scale=scale) b_h3 = shared_zeros((n_h3,)) w_h4 = shared_normal((n_h3, n_h4), scale=scale) b_h4 = shared_zeros((n_h4,)) w_o = shared_normal((n_h4, n_y), scale=scale) def batch_norm(h): m = T.mean(h, axis=0, keepdims=True) std = T.sqrt(T.var(h, axis=0, keepdims=True) + self.epsilon) h = (h - m) / std return h def model(X, params, p_drop_input, p_drop_hidden): X_noise = X + gaussian(X.shape, p_drop_input) h = batch_norm(dropout(rectify(T.dot(X_noise, params.w_h) + params.b_h), p_drop_hidden)) # Dual reconstruction error phx = T.nnet.sigmoid(T.dot(h, T.dot(h.T, X_noise)) / self.hp.batch_size) log_phx = T.nnet.binary_crossentropy(phx, X_noise).sum() h2 = dropout(rectify(T.dot(h, params.w_h2) + params.b_h2), p_drop_hidden) h3 = batch_norm(dropout(rectify(T.dot(h2, params.w_h3) + params.b_h3), p_drop_hidden)) h4 = dropout(rectify(T.dot(h3, params.w_h4) + params.b_h4), p_drop_hidden) py_x = softmax(T.dot(h4, params.w_o)) return [py_x, log_phx] noise_py_x, cost_recon = model(self.X, self.params, 0.2, 0.5) cost_y2 = -T.sum(self.Y * T.log(noise_py_x)) cost = cost_y2 + cost_recon pyx, _ = model(self.X, self.params, 0., 0.) map_pyx = T.argmax(pyx, axis=1) error_map_pyx = T.sum(T.neq(map_pyx, T.argmax(self.Y, axis=1))) self.compile(cost, error_map_pyx)
23499
class AveragingBucketUpkeep: def __init__(self): self.numer = 0.0 self.denom = 0 def add_cost(self, cost): self.numer += cost self.denom += 1 return self.numer / self.denom def rem_cost(self, cost): self.numer -= cost self.denom -= 1 if self.denom == 0: return 0 return self.numer / self.denom
23570
from ...app.models import App from ...webhook.event_types import WebhookEventType def test_qs_for_event_type(payment_app): qs = App.objects.for_event_type(WebhookEventType.PAYMENT_AUTHORIZE) assert len(qs) == 1 assert qs[0] == payment_app def test_qs_for_event_type_no_payment_permissions(payment_app): payment_app.permissions.first().delete() qs = App.objects.for_event_type(WebhookEventType.PAYMENT_AUTHORIZE) assert len(qs) == 0 def test_qs_for_event_type_inactive_app(payment_app): payment_app.is_active = False payment_app.save() qs = App.objects.for_event_type(WebhookEventType.PAYMENT_AUTHORIZE) assert len(qs) == 0 def test_qs_for_event_type_no_webhook_event(payment_app): webhook = payment_app.webhooks.first() event = webhook.events.filter(event_type=WebhookEventType.PAYMENT_AUTHORIZE).first() event.delete() qs = App.objects.for_event_type(WebhookEventType.PAYMENT_AUTHORIZE) assert len(qs) == 0 def test_qs_for_event_type_inactive_webhook(payment_app): webhook = payment_app.webhooks.first() webhook.is_active = False webhook.save() qs = App.objects.for_event_type(WebhookEventType.PAYMENT_AUTHORIZE) assert len(qs) == 0
23605
from typing import List from parser import parse_bytes, split_bytes_from_lines, get_bytes, parse_instruction_set, wrap_parsed_set from reader import dump_file_hex_with_locs class Translator: """ Class handling file translations from *.mpy to hex dumps and opcodes """ def __init__(self, file: str): """ Create new translator :param file: location of the file """ self.file = file def get_file_hex(self): """ Get a full hex dump of the file :return: """ return dump_file_hex_with_locs(self.file) def get_file_hex_at(self, _from: str, _to: str): """ Get a byte dump at a specified location :param _from: from address :param _to: to address :return: bytes from address {_from} to address {_to} """ return parse_bytes(self.get_file_hex(), _from, _to) def get_file(self): """ Get the file name :return: """ return self.file def get_magic(self) -> str: """ Get the magic number :return: """ return "".join(self.get_all_bytes()[0][:8]) def get_all_bytes(self): """ Get all of the bytes :return: all of the bytes """ return get_bytes(self.get_file_hex().split("\n")) def get_split_bytes(self) -> List[List[str]]: """ Get all of the bytes per line :return: bytes in list form """ split = split_bytes_from_lines(self.get_all_bytes()) split[0] = split[0][4:] return split def get_bytes_at(self, _from: str, _to: str) -> List[List[str]]: """ Get the bytes between the specified locations :param _from: start address :param _to: end address :return: bytes """ return split_bytes_from_lines(self.get_file_hex_at(_from, _to)) def get_instruction_set(self) -> List[str]: """ Get the file's instruction set :return: set """ bl = self.get_split_bytes() # offset of 8, start at first BC_BASE_RESERVED list_with_offset = bl[0][4:] _bytes = self.__flatten([list_with_offset, bl[1]]) _set = parse_instruction_set(_bytes) return wrap_parsed_set(_set) def get_instructions_at(self, _from: str, _to: str) -> List[str]: """ Get the instructions between addresses :param _from: start address :param _to: end address :return: instructions """ _bytes = self.__flatten(self.get_bytes_at(_from, _to)) _set = parse_instruction_set(_bytes) return wrap_parsed_set(_set) def __flatten(self, _list): # Lambda replaced by def flatten due to E731 return [item for sublist in _list for item in sublist]
23607
import sys from ctypes import * def test_getattr(): class Stuff(Union): _fields_ = [('x', c_char), ('y', c_int)] stuff = Stuff() stuff.y = ord('x') | (ord('z') << 24) if sys.byteorder == 'little': assert stuff.x == b'x' else: assert stuff.x == b'z' def test_union_of_structures(): class Stuff(Structure): _fields_ = [('x', c_int)] class Stuff2(Structure): _fields_ = [('x', c_int)] class UnionofStuff(Union): _fields_ = [('one', Stuff), ('two', Stuff2)] u = UnionofStuff() u.one.x = 3 assert u.two.x == 3
23609
import json import boto3 # Amazon S3 client library s3 = boto3.resource('s3') dynamodb = boto3.resource('dynamodb') problems_table = dynamodb.Table('codebreaker-problems') bucket = s3.Bucket('codebreaker-testdata') def lambda_handler(event, context): problemName = event['problemName'] testcaseCount = 0 for obj in bucket.objects.filter(Prefix="{0}/".format(problemName)): testcaseCount += 1 print(testcaseCount) problems_table.update_item( Key = {'problemName':problemName}, UpdateExpression = f'set #b=:a', ExpressionAttributeValues={':a':int(testcaseCount/2)}, ExpressionAttributeNames={'#b':'testcaseCount'} ) return { 'statusCode': 200, 'testcaseCount':testcaseCount }
23614
import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence as pack from torch.nn.utils.rnn import pad_packed_sequence as unpack from torch.autograd import Variable class EncoderCNN(nn.Module): def __init__(self, embed_size): """Load the pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() resnet = models.resnet152(pretrained=True) modules = list(resnet.children())[:-1] # delete the last fc layer. self.resnet = nn.Sequential(*modules) self.linear = nn.Linear(resnet.fc.in_features, embed_size) self.bn = nn.BatchNorm1d(embed_size, momentum=0.01) self.init_weights() def init_weights(self): """Initialize the weights.""" self.linear.weight.data.normal_(0.0, 0.02) self.linear.bias.data.fill_(0) def forward(self, images): """Extract the image feature vectors.""" features = self.resnet(images) features = Variable(features.data) features = features.view(features.size(0), -1) features = self.bn(self.linear(features)) return features class LayoutEncoder(nn.Module): def __init__(self, layout_encoding_size, hidden_size, vocab_size, num_layers): """Set the hyper-parameters and build the layers.""" super(LayoutEncoder, self).__init__() self.label_encoder = nn.Embedding(vocab_size, layout_encoding_size) self.location_encoder = nn.Linear(4, layout_encoding_size) self.lstm = nn.LSTM(layout_encoding_size, hidden_size, num_layers, batch_first=True) self.init_weights() def init_weights(self): """Initialize weights.""" self.label_encoder.weight.data.uniform_(-0.1, 0.1) self.location_encoder.weight.data.uniform_(-0.1, 0.1) self.location_encoder.bias.data.fill_(0) def forward(self, label_seqs, location_seqs, lengths): # sort label sequences and location sequences in batch dimension according to length batch_idx = sorted(range(len(lengths)), key=lambda k: lengths[k], reverse=True) reverse_batch_idx = torch.LongTensor([batch_idx.index(i) for i in range(len(batch_idx))]) lens_sorted = sorted(lengths, reverse=True) label_seqs_sorted = torch.index_select(label_seqs, 0, torch.LongTensor(batch_idx)) location_seqs_sorted = torch.index_select(location_seqs, 0, torch.LongTensor(batch_idx)) # assert torch.equal(torch.index_select(label_seqs_sorted, 0, reverse_batch_idx), label_seqs) # assert torch.equal(torch.index_select(location_seqs_sorted, 0, reverse_batch_idx), location_seqs) if torch.cuda.is_available(): reverse_batch_idx = reverse_batch_idx.cuda() label_seqs_sorted = label_seqs_sorted.cuda() location_seqs_sorted = location_seqs_sorted.cuda() # create Variables label_seqs_sorted_var = Variable(label_seqs_sorted, requires_grad=False) location_seqs_sorted_var = Variable(location_seqs_sorted, requires_grad=False) # encode label sequences label_encoding = self.label_encoder(label_seqs_sorted_var) # encode location sequences location_seqs_sorted_var = location_seqs_sorted_var.view(-1, 4) location_encoding = self.location_encoder(location_seqs_sorted_var) location_encoding = location_encoding.view(label_encoding.size(0), -1, location_encoding.size(1)) # layout encoding - batch_size x max_seq_len x embed_size layout_encoding = label_encoding + location_encoding packed = pack(layout_encoding, lens_sorted, batch_first=True) hiddens, _ = self.lstm(packed) # unpack hiddens and get last hidden vector hiddens_unpack = unpack(hiddens, batch_first=True)[0] # batch_size x max_seq_len x embed_size last_hidden_idx = torch.zeros(hiddens_unpack.size(0), 1, hiddens_unpack.size(2)).long() for i in range(hiddens_unpack.size(0)): last_hidden_idx[i, 0, :] = lens_sorted[i] - 1 if torch.cuda.is_available(): last_hidden_idx = last_hidden_idx.cuda() last_hidden = torch.gather(hiddens_unpack, 1, Variable(last_hidden_idx, requires_grad=False)) # batch_size x 1 x embed_size last_hidden = torch.squeeze(last_hidden, 1) # batch_size x embed_size # convert back to original batch order last_hidden = torch.index_select(last_hidden, 0, Variable(reverse_batch_idx, requires_grad=False)) return last_hidden class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): """Set the hyper-parameters and build the layers.""" super(DecoderRNN, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) self.init_weights() def init_weights(self): """Initialize weights.""" self.embed.weight.data.uniform_(-0.1, 0.1) self.linear.weight.data.uniform_(-0.1, 0.1) self.linear.bias.data.fill_(0) def forward(self, features, captions, lengths): """Decode image feature vectors and generates captions.""" embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1), embeddings), 1) packed = pack(embeddings, lengths, batch_first=True) hiddens, _ = self.lstm(packed) outputs = self.linear(hiddens[0]) return outputs def sample(self, features, states=None): """Samples captions for given image features (Greedy search).""" sampled_ids = [] inputs = features.unsqueeze(1) for i in range(20): # maximum sampling length hiddens, states = self.lstm(inputs, states) # (batch_size, 1, hidden_size), outputs = self.linear(hiddens.squeeze(1)) # (batch_size, vocab_size) predicted = outputs.max(1)[1] sampled_ids.append(predicted) inputs = self.embed(predicted) sampled_ids = torch.cat(sampled_ids, 1) # (batch_size, 20) return sampled_ids.squeeze()
23625
from torch import nn, optim import torch import model import torch.nn.utils import utils import argparse device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') parser = argparse.ArgumentParser(description='training parameters') parser.add_argument('--n_hid', type=int, default=128, help='hidden size of recurrent net') parser.add_argument('--T', type=int, default=100, help='length of sequences') parser.add_argument('--max_steps', type=int, default=60000, help='max learning steps') parser.add_argument('--log_interval', type=int, default=100, help='log interval') parser.add_argument('--batch', type=int, default=50, help='batch size') parser.add_argument('--batch_test', type=int, default=1000, help='size of test set') parser.add_argument('--lr', type=float, default=2e-2, help='learning rate') parser.add_argument('--dt',type=float, default=6e-2, help='step size <dt> of the coRNN') parser.add_argument('--gamma',type=float, default=66, help='y controle parameter <gamma> of the coRNN') parser.add_argument('--epsilon',type=float, default = 15, help='z controle parameter <epsilon> of the coRNN') args = parser.parse_args() n_inp = 2 n_out = 1 model = model.coRNN(n_inp, args.n_hid, n_out, args.dt, args.gamma, args.epsilon).to(device) objective = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=args.lr) def test(): model.eval() with torch.no_grad(): data, label = utils.get_batch(args.T, args.batch_test) label = label.unsqueeze(1) out = model(data.to(device)) loss = objective(out, label.to(device)) return loss.item() def train(): test_mse = [] for i in range(args.max_steps): data, label = utils.get_batch(args.T,args.batch) label = label.unsqueeze(1) optimizer.zero_grad() out = model(data.to(device)) loss = objective(out, label.to(device)) loss.backward() optimizer.step() if(i%100==0 and i!=0): mse_error = test() print('Test MSE: {:.6f}'.format(mse_error)) test_mse.append(mse_error) model.train() if __name__ == '__main__': train()
23634
import json import datetime import requests from nameko.web.handlers import http from nameko.timer import timer from statsd import StatsClient from circuitbreaker import circuit class DemoChassisService: name = "demo_chassis_service" statsd = StatsClient('localhost', 8125, prefix='simplebank-demo') @http('GET', '/health') @statsd.timer('health') def health(self, _request): return json.dumps({'ok': datetime.datetime.utcnow().__str__()}) @http('GET', '/external') @circuit(failure_threshold=5, expected_exception=ConnectionError) @statsd.timer('external') def external_request(self, _request): response = requests.get('https://jsonplaceholder.typicode.com/posts/1') return json.dumps({'code': response.status_code, 'body': response.text}) @http('GET', '/error') @circuit(failure_threshold=5, expected_exception=ZeroDivisionError) @statsd.timer('http_error') def error_http_request(self): return json.dumps({1 / 0}) class HealthCheckService: name = "health_check_service" statsd = StatsClient('localhost', 8125, prefix='simplebank-demo') @timer(interval=10) @statsd.timer('check_demo_service') def check_demo_service(self): response = requests.get('http://0.0.0.0:8000/health') print("DemoChassisService HEALTH CHECK: status_code {}, response: {}".format( response.status_code, response.text))
23639
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt map = Basemap(projection='cyl') map.drawmapboundary(fill_color='aqua') map.fillcontinents(color='coral',lake_color='aqua') map.drawcoastlines() plt.show()
23646
import logging import ibmsecurity.utilities.tools import time logger = logging.getLogger(__name__) requires_model = "Appliance" def get(isamAppliance, check_mode=False, force=False): """ Retrieving the current FIPS Mode configuration """ return isamAppliance.invoke_get("Retrieving the current FIPS Mode configuration", "/fips_cfg", requires_model=requires_model) def set(isamAppliance, fipsEnabled=True, tlsv10Enabled=True, tlsv11Enabled=False, check_mode=False, force=False): """ Updating the FIPS Mode configuration """ obj = _check(isamAppliance, fipsEnabled, tlsv10Enabled, tlsv11Enabled) if force is True or obj['value'] is False: if check_mode is True: return isamAppliance.create_return_object(changed=True, warnings=obj['warnings']) else: return isamAppliance.invoke_put( "Updating the FIPS Mode configuration", "/fips_cfg", { "fipsEnabled": fipsEnabled, "tlsv10Enabled": tlsv10Enabled, "tlsv11Enabled": tlsv11Enabled }, requires_model=requires_model ) return isamAppliance.create_return_object(warnings=obj['warnings']) def restart(isamAppliance, check_mode=False, force=False): """ Rebooting and enabling the FIPS Mode configuration :param isamAppliance: :param check_mode: :param force: :return: """ if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_put( "Rebooting and enabling the FIPS Mode configuration", "/fips_cfg/restart", {}, requires_model=requires_model ) def restart_and_wait(isamAppliance, wait_time=300, check_freq=5, check_mode=False, force=False): """ Restart after FIPS configuration changes :param isamAppliance: :param wait_time: :param check_freq: :param check_mode: :param force: :return: """ if isamAppliance.facts['model'] != "Appliance": return isamAppliance.create_return_object( warnings="API invoked requires model: {0}, appliance is of deployment model: {1}.".format( requires_model, isamAppliance.facts['model'])) warnings = [] if check_mode is True: return isamAppliance.create_return_object(changed=True) else: firmware = ibmsecurity.isam.base.firmware.get(isamAppliance, check_mode=check_mode, force=force) ret_obj = restart(isamAppliance) if ret_obj['rc'] == 0: sec = 0 # Now check if it is up and running while 1: ret_obj = ibmsecurity.isam.base.firmware.get(isamAppliance, check_mode=check_mode, force=force, ignore_error=True) # check partition last_boot time if ret_obj['rc'] == 0 and isinstance(ret_obj['data'], list) and len(ret_obj['data']) > 0 and \ (('last_boot' in ret_obj['data'][0] and ret_obj['data'][0]['last_boot'] != firmware['data'][0][ 'last_boot'] and ret_obj['data'][0]['active'] == True) or ( 'last_boot' in ret_obj['data'][1] and ret_obj['data'][1]['last_boot'] != firmware['data'][1]['last_boot'] and ret_obj['data'][1]['active'] == True)): logger.info("Server is responding and has a different boot time!") return isamAppliance.create_return_object(warnings=warnings) else: time.sleep(check_freq) sec += check_freq logger.debug( "Server is not responding yet. Waited for {0} secs, next check in {1} secs.".format(sec, check_freq)) if sec >= wait_time: warnings.append( "The FIPS restart not detected or completed, exiting... after {0} seconds".format(sec)) break return isamAppliance.create_return_object(warnings=warnings) def _check(isamAppliance, fipsEnabled, tlsv10Enabled, tlsv11Enabled): obj = {'value': True, 'warnings': ""} ret_obj = get(isamAppliance) obj['warnings'] = ret_obj['warnings'] if ret_obj['data']['fipsEnabled'] != fipsEnabled: logger.info("fipsEnabled change to {0}".format(fipsEnabled)) obj['value'] = False return obj if ret_obj['data']['tlsv10Enabled'] != tlsv10Enabled: logger.info("TLS v1.0 change to {0}".format(tlsv10Enabled)) obj['value'] = False return obj if ret_obj['data']['tlsv11Enabled'] != tlsv11Enabled: logger.info("TLS v1.1 change to {0}".format(tlsv11Enabled)) obj['value'] = False return obj return obj def compare(isamAppliance1, isamAppliance2): ret_obj1 = get(isamAppliance1) ret_obj2 = get(isamAppliance2) return ibmsecurity.utilities.tools.json_compare(ret_obj1, ret_obj2, deleted_keys=[])
23680
from django.contrib import admin class ChildrenInline(admin.TabularInline): sortable_field_name = "order" class GipsyMenu(admin.ModelAdmin): inlines = [ChildrenInline] exclude = ('parent',) list_display = ['name', 'order'] ordering = ['order'] def get_queryset(self, request): """Overrides default queryset to only display parent items""" query = super(GipsyMenu, self).get_queryset(request) return query.filter(parent__isnull=True)
23714
class PaginatorOptions: def __init__( self, page_number: int, page_size: int, sort_column: str = None, sort_descending: bool = None ): self.sort_column = sort_column self.sort_descending = sort_descending self.page_number = page_number self.page_size = page_size assert (page_number is not None and page_size) \ or (page_number is not None and not page_size), \ 'Specify both page_number and page_size' if not sort_column: self.sort_column = 'id' self.sort_descending = True __all__ = ['PaginatorOptions']
23722
from typedpy import * class Person(Structure): first_name = String() last_name = String() age = Integer(minimum=1) _required = ['first_name', 'last_name'] class Groups(Structure): groups = Array(items=Person) _required = ['groups'] # ******************** class Example1(Structure): people = Array(items=Person) id = Integer() i = Integer() s = String() m = Map(items=[String(), Person]) groups = Groups _required = ['groups', 'id', 'm', 'people']
23729
import textwrap from contextlib import ExitStack as does_not_raise # noqa: N813 import pytest from _pytask.mark import Mark from _pytask.outcomes import Skipped from _pytask.outcomes import SkippedAncestorFailed from _pytask.outcomes import SkippedUnchanged from _pytask.skipping import pytask_execute_task_setup from pytask import cli from pytask import main class DummyClass: pass @pytest.mark.end_to_end def test_skip_unchanged(tmp_path): source = """ def task_dummy(): pass """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) assert session.execution_reports[0].success session = main({"paths": tmp_path}) assert isinstance(session.execution_reports[0].exc_info[1], SkippedUnchanged) @pytest.mark.end_to_end def test_skip_unchanged_w_dependencies_and_products(tmp_path): source = """ import pytask @pytask.mark.depends_on("in.txt") @pytask.mark.produces("out.txt") def task_dummy(depends_on, produces): produces.write_text(depends_on.read_text()) """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) tmp_path.joinpath("in.txt").write_text("Original content of in.txt.") session = main({"paths": tmp_path}) assert session.execution_reports[0].success assert tmp_path.joinpath("out.txt").read_text() == "Original content of in.txt." session = main({"paths": tmp_path}) assert isinstance(session.execution_reports[0].exc_info[1], SkippedUnchanged) assert tmp_path.joinpath("out.txt").read_text() == "Original content of in.txt." @pytest.mark.end_to_end def test_skipif_ancestor_failed(tmp_path): source = """ import pytask @pytask.mark.produces("out.txt") def task_first(): assert 0 @pytask.mark.depends_on("out.txt") def task_second(): pass """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) assert not session.execution_reports[0].success assert isinstance(session.execution_reports[0].exc_info[1], Exception) assert not session.execution_reports[1].success assert isinstance(session.execution_reports[1].exc_info[1], SkippedAncestorFailed) @pytest.mark.end_to_end def test_if_skip_decorator_is_applied_to_following_tasks(tmp_path): source = """ import pytask @pytask.mark.skip @pytask.mark.produces("out.txt") def task_first(): assert 0 @pytask.mark.depends_on("out.txt") def task_second(): pass """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) assert session.execution_reports[0].success assert isinstance(session.execution_reports[0].exc_info[1], Skipped) assert session.execution_reports[1].success assert isinstance(session.execution_reports[1].exc_info[1], Skipped) @pytest.mark.end_to_end @pytest.mark.parametrize( "mark_string", ["@pytask.mark.skip", "@pytask.mark.skipif(True, reason='bla')"] ) def test_skip_if_dependency_is_missing(tmp_path, mark_string): source = f""" import pytask {mark_string} @pytask.mark.depends_on("in.txt") def task_first(): assert 0 """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) assert session.execution_reports[0].success assert isinstance(session.execution_reports[0].exc_info[1], Skipped) @pytest.mark.end_to_end @pytest.mark.parametrize( "mark_string", ["@pytask.mark.skip", "@pytask.mark.skipif(True, reason='bla')"] ) def test_skip_if_dependency_is_missing_only_for_one_task(runner, tmp_path, mark_string): source = f""" import pytask {mark_string} @pytask.mark.depends_on("in.txt") def task_first(): assert 0 @pytask.mark.depends_on("in.txt") def task_second(): assert 0 """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) result = runner.invoke(cli, [tmp_path.as_posix()]) assert result.exit_code == 4 assert "in.txt" in result.output assert "task_first" not in result.output assert "task_second" in result.output @pytest.mark.end_to_end def test_if_skipif_decorator_is_applied_skipping(tmp_path): source = """ import pytask @pytask.mark.skipif(condition=True, reason="bla") @pytask.mark.produces("out.txt") def task_first(): assert False @pytask.mark.depends_on("out.txt") def task_second(): assert False """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) node = session.collection_reports[0].node assert len(node.markers) == 1 assert node.markers[0].name == "skipif" assert node.markers[0].args == () assert node.markers[0].kwargs == {"condition": True, "reason": "bla"} assert session.execution_reports[0].success assert isinstance(session.execution_reports[0].exc_info[1], Skipped) assert session.execution_reports[1].success assert isinstance(session.execution_reports[1].exc_info[1], Skipped) assert session.execution_reports[0].exc_info[1].args[0] == "bla" @pytest.mark.end_to_end def test_if_skipif_decorator_is_applied_execute(tmp_path): source = """ import pytask @pytask.mark.skipif(False, reason="bla") @pytask.mark.produces("out.txt") def task_first(produces): with open(produces, "w") as f: f.write("hello world.") @pytask.mark.depends_on("out.txt") def task_second(): pass """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) node = session.collection_reports[0].node assert len(node.markers) == 1 assert node.markers[0].name == "skipif" assert node.markers[0].args == (False,) assert node.markers[0].kwargs == {"reason": "bla"} assert session.execution_reports[0].success assert session.execution_reports[0].exc_info is None assert session.execution_reports[1].success assert session.execution_reports[1].exc_info is None @pytest.mark.end_to_end def test_if_skipif_decorator_is_applied_any_condition_matches(tmp_path): """Any condition of skipif has to be True and only their message is shown.""" source = """ import pytask @pytask.mark.skipif(condition=False, reason="I am fine") @pytask.mark.skipif(condition=True, reason="No, I am not.") @pytask.mark.produces("out.txt") def task_first(): assert False @pytask.mark.depends_on("out.txt") def task_second(): assert False """ tmp_path.joinpath("task_dummy.py").write_text(textwrap.dedent(source)) session = main({"paths": tmp_path}) node = session.collection_reports[0].node assert len(node.markers) == 2 assert node.markers[0].name == "skipif" assert node.markers[0].args == () assert node.markers[0].kwargs == {"condition": True, "reason": "No, I am not."} assert node.markers[1].name == "skipif" assert node.markers[1].args == () assert node.markers[1].kwargs == {"condition": False, "reason": "I am fine"} assert session.execution_reports[0].success assert isinstance(session.execution_reports[0].exc_info[1], Skipped) assert session.execution_reports[1].success assert isinstance(session.execution_reports[1].exc_info[1], Skipped) assert session.execution_reports[0].exc_info[1].args[0] == "No, I am not." @pytest.mark.unit @pytest.mark.parametrize( ("marker_name", "expectation"), [ ("skip_unchanged", pytest.raises(SkippedUnchanged)), ("skip_ancestor_failed", pytest.raises(SkippedAncestorFailed)), ("skip", pytest.raises(Skipped)), ("", does_not_raise()), ], ) def test_pytask_execute_task_setup(marker_name, expectation): class Task: pass task = Task() kwargs = {"reason": ""} if marker_name == "skip_ancestor_failed" else {} task.markers = [Mark(marker_name, (), kwargs)] with expectation: pytask_execute_task_setup(task)
23731
from django.apps import AppConfig from django.core.checks import Tags, register from django_version_checks import checks class DjangoVersionChecksAppConfig(AppConfig): name = "django_version_checks" verbose_name = "django-version-checks" def ready(self) -> None: register(Tags.compatibility)(checks.check_config) register(Tags.compatibility)(checks.check_python_version) register(Tags.database)(checks.check_postgresql_version) register(Tags.database)(checks.check_mysql_version) register(Tags.database)(checks.check_sqlite_version)
23758
from poketype import PokemonTypeIdentifier from flask import Flask, request, make_response,jsonify import os id = PokemonTypeIdentifier() app = Flask(__name__,static_url_path='/static') @app.route('/findtype',methods=['GET']) def classify(): poke_name=request.args.get('pokename') results = id.predict_type(poke_name) return jsonify({'results':results}) @app.route('/',methods=['GET']) def root(): return app.send_static_file('index.html') if __name__ == '__main__': port = int(os.environ.get('PORT', 8001)) app.run(debug=True,host='0.0.0.0',port=port,use_reloader=False)
23771
import xml.sax import re import os import json import time current_milli_time = lambda: int(round(time.time() * 1000)) RE_LINKS = re.compile(r'\[{2}(.*?)\]{2}', re.DOTALL | re.UNICODE) IGNORED_NAMESPACES = [ 'wikipedia', 'category', 'file', 'portal', 'template', 'mediaWiki', 'user', 'help', 'book', 'draft', 'wikiProject', 'special', 'talk', 'image','module' ] """MediaWiki namespaces that ought to be ignored.""" class WikiHandler(xml.sax.ContentHandler): def __init__(self,title2Id,id2Title,redirects): self.tag = "" self.content = '' self.title = '' self.id = -1 self.title2Id = title2Id self.id2Title = id2Title self.redirects = redirects self.counter_all = 0 self.attributes = {} self.n = 0 self.start = current_milli_time() # Call when an element starts def startElement(self, tag, attributes): self.tag = tag self.attributes = attributes # Call when an elements ends def endElement(self, tag): if tag == 'title': self.title = self.content.strip() elif tag == 'id': self.id = int(self.content) if self.title not in self.title2Id: self.title2Id[self.title] = self.id self.id2Title[self.id] = self.title self.counter_all += 1 if self.counter_all % 1000 == 0: diff = current_milli_time() - self.start print('Pages processed: ' + str(self.counter_all) + ', avg t: ' + str(diff / self.counter_all), end='\r') elif tag == 'text': self.n += 1 if not any(self.title.lower().startswith(ignore + ':') for ignore in IGNORED_NAMESPACES) and not self.title.lower().startswith('list of'): self.processArticle() elif tag == 'redirect' and 'title' in self.attributes: redirect = self.attributes['title'] if not any(self.title.lower().startswith(ignore + ':') for ignore in IGNORED_NAMESPACES) \ and not any(redirect.lower().startswith(ignore + ':') for ignore in IGNORED_NAMESPACES) \ and not redirect.lower().startswith('list of') \ and not self.title.lower().startswith('list of'): self.redirects[self.title] = redirect self.content = "" # Call when a character is read def characters(self, content): self.content += content def processArticle(self): text = self.content.strip() #self.title2Id[self.title] = self.id if text.lower().startswith('#redirect'): match = re.search(RE_LINKS,text) if match: redirect = match.group(1).strip() pos_bar = redirect.find('|') if pos_bar > -1: redirect = redirect[:pos_bar] redirect = redirect.replace('_',' ') if not any(redirect.lower().startswith(ignore + ':') for ignore in IGNORED_NAMESPACES) and not redirect.lower().startswith('list of'): self.redirects[self.title] = redirect else: lines = text.split('\n') for line in lines: if not line.startswith('{{redirect|'): break else: line = line[11:] line = line[:line.find('|')] if len(line) > 0: if not any(line.lower().startswith(ignore + ':') for ignore in IGNORED_NAMESPACES) and not line.lower().startswith('list of'): self.redirects[line] = self.title if (__name__ == "__main__"): title2Id = {} id2Title = {} redirects = {} config = json.load(open('config/config.json')) wikipath = config['wikipath'] outputpath = config['outputpath'] dictionarypath = outputpath + 'dictionaries/' mode = 0o755 os.mkdir(outputpath, mode) os.mkdir(dictionarypath, mode) parser = xml.sax.make_parser() parser.setFeature(xml.sax.handler.feature_namespaces, 0) Handler = WikiHandler(title2Id,id2Title,redirects) parser.setContentHandler(Handler) parser.parse(wikipath) print('done') with open(dictionarypath + 'title2Id.json', 'w') as f: json.dump(title2Id, f) with open(dictionarypath + 'id2Title.json', 'w') as f: json.dump(id2Title, f) with open(dictionarypath + 'redirects.json', 'w') as f: json.dump(redirects, f)
23778
from datetime import datetime, timedelta from enum import Enum, auto from dateutil.relativedelta import relativedelta from .baseclasses import Constant, MethodEnum from .formulars import days_feb, eastern_calc, thanksgiving_calc, year_start class ConstantOption(Enum): TIME_VARIABLE = auto() DATE_VARIABLE = auto() YEAR_VARIABLE = auto() class Constants: CHRISTMAS = Constant('christmas', ['xmas'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=25)) HOLY_EVE = Constant('holy eve', options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=24)) SILVESTER = Constant('silvester', ['new years eve'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=31)) EASTERN = Constant('eastern', ['easter'], options=[ConstantOption.YEAR_VARIABLE], time_value=eastern_calc) NICHOLAS = Constant('nicholas', ['nicholas day'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=6)) HALLOWEEN = Constant('halloween', options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=10, day=31)) APRIL_FOOLS_DAY = Constant('april fools day', ['april fool day'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=4, day=1)) THANKSGIVING = Constant('thanksgiving', options=[ConstantOption.YEAR_VARIABLE], time_value=thanksgiving_calc) SAINT_PATRICKS_DAY = Constant('saint patrick\'s day', ['saint patricks day', 'st. patrick\'s day', 'saint pt. day', 'st patrick\'s day', 'st patricks day'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=3, day=17)) VALENTINES_DAY = Constant('valentines day', ['valentine', 'valentine day'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=2, day=14)) PI_DAY = Constant("pi day", ["piday", "pi-day"], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=3, day=14)) TAU_DAY = Constant("tau day", ["tauday", "tau-day"], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=6, day=28)) SUMMER_BEGIN = Constant('summer begin', ['summer', 'begin of summer', 'begin of the summer'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=6, day=1)) WINTER_BEGIN = Constant('winter begin', ['winter', 'begin of winter', 'begin of the winter'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=1)) SPRING_BEGIN = Constant('spring begin', ['spring', 'begin of spring', 'begin of the spring'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=3, day=1)) FALL_BEGIN = Constant('fall begin', ['fall', 'begin of fall', 'begin of the fall', 'autumn begin', 'autumn', 'begin of autumn', 'begin of the autumn'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=9, day=1)) SUMMER_END = Constant('summer end', ['end of summer', 'end of the summer'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=8, day=31, hour=23, minute=59, second=59)) WINTER_END = Constant('winter end', ['end of winter', 'end of the winter'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=2, day=days_feb(year_time), hour=23, minute=59, second=59)) SPRING_END = Constant('spring end', ['end of spring', 'end of the spring'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=5, day=31, hour=23, minute=59, second=59)) FALL_END = Constant('fall end', ['end of fall', 'end of the fall', 'autumn end', 'end of autumn', 'end of the autumn'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=11, day=30, hour=23, minute=59, second=59)) MORNING = Constant('morning', ['at morning'], options=[ConstantOption.YEAR_VARIABLE, ConstantOption.DATE_VARIABLE]) EVENING = Constant('evening', ['at evening'], options=[ConstantOption.YEAR_VARIABLE, ConstantOption.DATE_VARIABLE]) LUNCHTIME = Constant('lunchtime', ['lunch'], options=[ConstantOption.YEAR_VARIABLE, ConstantOption.DATE_VARIABLE]) # advent of code always starts at midnight 1st december in SET (5 hours negative UTC offset) BEGIN_AOC = Constant('aoc begin', ['aoc', 'begin of aoc', 'begin of the aoc', 'advent of code begin', 'advent of code', 'begin of advent of code', 'begin of the advent of code'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=1, hour=0), offset=-5) END_AOC = Constant('aoc end', ['end of aoc', 'end of the aoc', 'advent of code end', 'end of advent of code', 'end of the advent of code'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=26, hour=0), offset=-5) END_OF_YEAR = Constant('end of year', ['the end of year', 'the end of the year', 'end of the year'], options=[ConstantOption.YEAR_VARIABLE], time_value=lambda year_time: datetime(year=year_time, month=12, day=31, hour=23, minute=59, second=59)) BEGIN_OF_YEAR = Constant('begin of year', ['the begin of year', 'the begin of the year', 'begin of the year'], options=[ConstantOption.YEAR_VARIABLE], time_value=year_start) INFINITY = Constant('infinity', ['inf'], value=None) TODAY = Constant('today', options=[ConstantOption.TIME_VARIABLE], time_value=lambda _: datetime(datetime.today().year, datetime.today().month, datetime.today().day)) TOMORROW = Constant('tomorrow', options=[ConstantOption.TIME_VARIABLE], time_value=lambda _: datetime(datetime.today().year, datetime.today().month, datetime.today().day) + relativedelta( days=1)) YESTERDAY = Constant('yesterday', options=[ConstantOption.TIME_VARIABLE], time_value=lambda _: datetime(datetime.today().year, datetime.today().month, datetime.today().day) - relativedelta( days=1)) NOW = Constant('now', ['at the moment', 'current time', 'current time now'], time_value=lambda _: datetime.now()) ALL = [ CHRISTMAS, HOLY_EVE, SILVESTER, EASTERN, NICHOLAS, HALLOWEEN, APRIL_FOOLS_DAY, THANKSGIVING, SAINT_PATRICKS_DAY, VALENTINES_DAY, PI_DAY, TAU_DAY, SUMMER_END, WINTER_END, SPRING_END, FALL_END, SUMMER_BEGIN, WINTER_BEGIN, SPRING_BEGIN, FALL_BEGIN, MORNING, EVENING, LUNCHTIME, BEGIN_AOC, END_AOC, END_OF_YEAR, BEGIN_OF_YEAR, INFINITY, TODAY, TOMORROW, YESTERDAY, NOW ] ALL_RELATIVE_CONSTANTS = [TODAY, TOMORROW, YESTERDAY, NOW] class DatetimeDeltaConstants: # time_value is a tuple containing (hours, minutes, seconds) MIDNIGHT = Constant('midnight', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (0, 0, 0)) NIGHT = Constant('night', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (21, 0, 0)) MORNING_NIGHT = Constant('morning night', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (3, 0, 0)) DAYLIGHT_CHANGE = Constant('daylight change', ['daylight saving', 'daylight saving time'], value=0, options=[ConstantOption.YEAR_VARIABLE, ConstantOption.DATE_VARIABLE], time_value=lambda _: (6, 0, 0)) SUNRISE = Constant('sunrise', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (7, 0, 0)) MORNING = Constant('morning', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (6, 0, 0)) BREAKFAST = Constant('breakfast', value=0, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (8, 0, 0)) MIDDAY = Constant('midday', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (12, 0, 0)) LUNCH = Constant('lunch', ['lunchtime'], value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (12, 0, 0)) AFTERNOON = Constant('afternoon', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (15, 0, 0)) EVENING = Constant('evening', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (18, 0, 0)) DINNER = Constant('dinner', ['dinnertime'], value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (19, 0, 0)) DAWN = Constant('dawn', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (6, 0, 0)) DUSK = Constant('dusk', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (20, 0, 0)) SUNSET = Constant('sunset', value=12, options=[ConstantOption.DATE_VARIABLE], time_value=lambda _: (18, 30, 0)) ALL = [ MORNING, AFTERNOON, EVENING, NIGHT, MORNING_NIGHT, DAYLIGHT_CHANGE, MIDNIGHT, MIDDAY, DAWN, DUSK, SUNRISE, SUNSET, LUNCH, DINNER, BREAKFAST ] class NumberConstants: # Presented to you by github copilot ONE = Constant('one', value=1) TWO = Constant('two', value=2) THREE = Constant('three', value=3) FOUR = Constant('four', value=4) FIVE = Constant('five', value=5) SIX = Constant('six', value=6) SEVEN = Constant('seven', value=7) EIGHT = Constant('eight', value=8) NINE = Constant('nine', value=9) TEN = Constant('ten', value=10) ELEVEN = Constant('eleven', value=11) TWELVE = Constant('twelve', value=12) THIRTEEN = Constant('thirteen', value=13) FOURTEEN = Constant('fourteen', value=14) FIFTEEN = Constant('fifteen', value=15) SIXTEEN = Constant('sixteen', value=16) SEVENTEEN = Constant('seventeen', value=17) EIGHTEEN = Constant('eighteen', value=18) NINETEEN = Constant('nineteen', value=19) TWENTY = Constant('twenty', value=20) TWENTY_ONE = Constant('twenty one', alias=["twentyone", "twenty-one"], value=21) TWENTY_TWO = Constant('twenty two', alias=["twentytwo", "twenty-two"], value=22) TWENTY_THREE = Constant('twenty three', alias=["twentythree", "twenty-three"], value=23) TWENTY_FOUR = Constant('twenty four', alias=["twentyfour", "twenty-four"], value=24) TWENTY_FIVE = Constant('twenty five', alias=["twentyfive", "twenty-five"], value=25) TWENTY_SIX = Constant('twenty six', alias=["twentysix", "twenty-six"], value=26) TWENTY_SEVEN = Constant('twenty seven', alias=["twentyseven", "twenty-seven"], value=27) TWENTY_EIGHT = Constant('twenty eight', alias=["twentyeight", "twenty-eight"], value=28) TWENTY_NINE = Constant('twenty nine', alias=["twentynine", "twenty-nine"], value=29) THIRTY = Constant('thirty', value=30) THIRTY_ONE = Constant('thirty one', alias=["thirtyone", "thirty-one"], value=31) # Reversed to avoid conflicts with other constants (one is included in twenty one) ALL = [ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, TWELVE, THIRTEEN, FOURTEEN, FIFTEEN, SIXTEEN, SEVENTEEN, EIGHTEEN, NINETEEN, TWENTY, TWENTY_ONE, TWENTY_TWO, TWENTY_THREE, TWENTY_FOUR, TWENTY_FIVE, TWENTY_SIX, TWENTY_SEVEN, TWENTY_EIGHT, TWENTY_NINE, THIRTY, THIRTY_ONE][::-1] class NumberCountConstants: # Presented to you by github copilot FIRST = Constant('first', alias=['1st', '1.'], value=1) SECOND = Constant('second', alias=['2nd', '2.'], value=2) THIRD = Constant('third', alias=['3rd', '3.'], value=3) FOURTH = Constant('fourth', alias=['4th', '4.'], value=4) FIFTH = Constant('fifth', alias=['5th', '5.'], value=5) SIXTH = Constant('sixth', alias=['6th', '6.'], value=6) SEVENTH = Constant('seventh', alias=['7th', '7.'], value=7) EIGHTH = Constant('eighth', alias=['8th', '8.'], value=8) NINTH = Constant('ninth', alias=['9th', '9.'], value=9) TENTH = Constant('tenth', alias=['10th', '10.'], value=10) ELEVENTH = Constant('eleventh', alias=['11th', '11.'], value=11) TWELFTH = Constant('twelfth', alias=['12th', '12.'], value=12) THIRTEENTH = Constant('thirteenth', alias=['13th', '13.'], value=13) FOURTEENTH = Constant('fourteenth', alias=['14th', '14.'], value=14) FIFTEENTH = Constant('fifteenth', alias=['15th', '15.'], value=15) SIXTEENTH = Constant('sixteenth', alias=['16th', '16.'], value=16) SEVENTEENTH = Constant('seventeenth', alias=['17th', '17.'], value=17) EIGHTEENTH = Constant('eighteenth', alias=['18th', '18.'], value=18) NINETEENTH = Constant('nineteenth', alias=['19th', '19.'], value=19) TWENTIETH = Constant('twentieth', alias=['20th', '20.'], value=20) TWENTY_FIRST = Constant('twenty first', alias=['21st', '21.', 'twentyfirst', 'twenty-first'], value=21) TWENTY_SECOND = Constant('twenty second', alias=['22nd', '22.', 'twentysecond', 'twenty-second'], value=22) TWENTY_THIRD = Constant('twenty third', alias=['23rd', '23.', 'twentythird', 'twenty-third'], value=23) TWENTY_FOURTH = Constant('twenty fourth', alias=['24th', '24.', 'twentyfourth', 'twenty-fourth'], value=24) TWENTY_FIFTH = Constant('twenty fifth', alias=['25th', '25.', 'twentyfifth', 'twenty-fifth'], value=25) TWENTY_SIXTH = Constant('twenty sixth', alias=['26th', '26.', 'twentysixth', 'twenty-sixth'], value=26) TWENTY_SEVENTH = Constant('twenty seventh', alias=['27th', '27.', 'twentyseventh', 'twenty-seventh'], value=27) TWENTY_EIGHTH = Constant('twenty eighth', alias=['28th', '28.', 'twentyeighth', 'twenty-eighth'], value=28) TWENTY_NINTH = Constant('twenty ninth', alias=['29th', '29.', 'twentyninth', 'twenty-ninth'], value=29) THIRTIETH = Constant('thirtieth', alias=['30th', '30.'], value=30) THIRTY_FIRST = Constant('thirty first', alias=['31st', '31.', 'thirthyfirst', "thirty-first"], value=31) # Reversed to avoid conflicts with other constants ALL = [FIRST, SECOND, THIRD, FOURTH, FIFTH, SIXTH, SEVENTH, EIGHTH, NINTH, TENTH, ELEVENTH, TWELFTH, THIRTEENTH, FOURTEENTH, FIFTEENTH, SIXTEENTH, SEVENTEENTH, EIGHTEENTH, NINETEENTH, TWENTIETH, TWENTY_FIRST, TWENTY_SECOND, TWENTY_THIRD, TWENTY_FOURTH, TWENTY_FIFTH, TWENTY_SIXTH, TWENTY_SEVENTH, TWENTY_EIGHTH, TWENTY_NINTH, THIRTIETH, THIRTY_FIRST][::-1] class DatetimeConstants: SECONDS = Constant('seconds', ['second', 'sec', 'secs']) MINUTES = Constant('minutes', ['minute', 'min', 'mins']) QUARTERS = Constant('quarters', ['quarter', 'qtr', 'qtrs']) HOURS = Constant('hours', ['hour']) DAYS = Constant('days', ['day']) WEEKS = Constant('weeks', ['week']) MONTHS = Constant('months', ['month']) YEARS = Constant('years', ['year']) OLYMPIADS = Constant('olympiads', ['olympiad']) # 4 years DECADES = Constant('decades', ['decade']) # 10 years CENTURIES = Constant('centuries', ['century']) # 100 years MILLENNIUMS = Constant('millenniums', ['millennium']) # 1,000 years MEGAANNUMS = Constant('megaannuums', ['megaannuum']) # 1,000,000 years GIGAANNUMS = Constant('gigaannuums', ['gigaannuum']) # 1,000,000,000 years TIME = [SECONDS, MINUTES, QUARTERS, HOURS] DATE = [DAYS, WEEKS, MONTHS, YEARS, DECADES, CENTURIES, MILLENNIUMS, MEGAANNUMS, GIGAANNUMS] ALL = [*DATE, *TIME] @classmethod def convert_from_mini_date(cls, md): if md.lower() == "s": return cls.SECONDS elif md.lower() == "m": return cls.MINUTES elif md.lower() == "h": return cls.HOURS elif md.lower() == "w": return cls.WEEKS elif md.lower() == "d": return cls.DAYS elif md.lower() == "y": return cls.YEARS class WeekdayConstants: MONDAY = Constant('monday', time_value=lambda date: f"{date + timedelta((0 - date.weekday()) % 7)}") TUESDAY = Constant('tuesday', time_value=lambda date: f"{date + timedelta((1 - date.weekday()) % 7)}") WEDNESDAY = Constant('wednesday', time_value=lambda date: f"{date + timedelta((2 - date.weekday()) % 7)}") THURSDAY = Constant('thursday', time_value=lambda date: f"{date + timedelta((3 - date.weekday()) % 7)}") FRIDAY = Constant('friday', time_value=lambda date: f"{date + timedelta((4 - date.weekday()) % 7)}") SATURDAY = Constant('saturday', time_value=lambda date: f"{date + timedelta((5 - date.weekday()) % 7)}") SUNDAY = Constant('sunday', time_value=lambda date: f"{date + timedelta((6 - date.weekday()) % 7)}") ALL = [MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY] class MonthConstants: JANUARY = Constant('january', ['jan'], time_value=lambda year_time: datetime(year=year_time, month=1, day=1)) FEBRUARY = Constant('february', ['feb'], time_value=lambda year_time: datetime(year=year_time, month=2, day=1)) MARCH = Constant('march', ['mar'], time_value=lambda year_time: datetime(year=year_time, month=3, day=1)) APRIL = Constant('april', ['apr'], time_value=lambda year_time: datetime(year=year_time, month=4, day=1)) MAY = Constant('may', time_value=lambda year_time: datetime(year=year_time, month=5, day=1)) JUNE = Constant('june', ['jun'], time_value=lambda year_time: datetime(year=year_time, month=6, day=1)) JULY = Constant('july', ['jul'], time_value=lambda year_time: datetime(year=year_time, month=7, day=1)) AUGUST = Constant('august', ['aug'], time_value=lambda year_time: datetime(year=year_time, month=8, day=1)) SEPTEMBER = Constant('september', ['sep'], time_value=lambda year_time: datetime(year=year_time, month=9, day=1)) OCTOBER = Constant('october', ['oct'], time_value=lambda year_time: datetime(year=year_time, month=10, day=1)) NOVEMBER = Constant('november', ['nov'], time_value=lambda year_time: datetime(year=year_time, month=11, day=1)) DECEMBER = Constant('december', ['dec'], time_value=lambda year_time: datetime(year=year_time, month=12, day=1)) ALL = [JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER] class Keywords: OF = Constant('of') AFTER = Constant('after') BEFORE = Constant('before') NEXT = Constant('next') IN = Constant('in') FOR = Constant('for') PAST = Constant('past') ALL = [OF, AFTER, BEFORE, NEXT, IN, FOR, PAST] class Method: ABSOLUTE_PREPOSITIONS = MethodEnum('absolute_prepositions') ABSOLUTE_DATE_FORMATS = MethodEnum('absolute_date_formats') CONSTANTS = MethodEnum('constants') CONSTANTS_RELATIVE_EXTENSIONS = MethodEnum('constants_relative_extensions') DATETIME_DELTA_CONSTANTS = MethodEnum('datetime_delta_constants') RELATIVE_DATETIMES = MethodEnum('relative_datetimes')
23808
import torch import random from torch.utils.data import Dataset, DataLoader from abc import ABC from models.base_model import Model from torch.utils.tensorboard import SummaryWriter from typing import List class BaseDataset(Dataset, ABC): name = 'base' def __init__(self, config: dict, mode: str = 'train'): self.config = config self.mode = mode self.device = config['device'] self.data_dim = config['data_dim'] self.summary_name = self.name ''' Note that dataset's __getitem__() returns (x_coord, x_feat, y_coord, y_feat, name) But the collated batch returns type of (SparseTensorWrapper, SparseTensorWrapper) ''' def __getitem__(self, idx) \ -> (torch.tensor, torch.tensor, torch.tensor, torch.tensor, List[str]): # sparse tensor and tensor should have equal size raise NotImplemented def __iter__(self): while True: idx = random.randint(0, len(self) - 1) yield self[idx] def collate_fn(self, batch: List) -> dict: # convert list of dict to dict of list batch = {k: [d[k] for d in batch] for k in batch[0]} return batch def evaluate(self, model: Model, writer: SummaryWriter, step): training = model.training model.eval() data_loader = DataLoader( self, batch_size=self.config['eval_batch_size'], num_workers=self.config['num_workers'], collate_fn=self.collate_fn, drop_last=False, ) print('') eval_losses = [] for eval_step, data in enumerate(data_loader): mode = self.mode if len(self.config['eval_datasets']) != 1: mode += '_' + self.summary_name eval_loss = model.evaluate(data, step, mode) eval_losses.append(eval_loss) print('\r[Evaluating, Step {:7}, Loss {:5}]'.format( eval_step, '%.3f' % eval_loss), end='' ) print('') model.write_dict_summaries(step) model.train(training) def test(self, model: Model, writer: SummaryWriter, step): raise NotImplementedError() def visualize(self, model: Model, options: List, step): training = model.training model.eval() # fix vis_indices vis_indices = self.config['vis']['indices'] if isinstance(vis_indices, int): # sample data points from n data points with equal interval n = len(self) vis_indices = torch.linspace(0, n - 1, vis_indices).int().tolist() # override to the index when in overfitting debug mode if isinstance(self.config['overfit_one_ex'], int): vis_indices = torch.tensor([self.config['overfit_one_ex']]) for option in options: # calls the visualizing function if hasattr(model, option): getattr(model, option)(self, vis_indices, step) else: raise ValueError( 'model {} has no method {}'.format( model.__class__.__name__, option ) ) model.train(training) def visualize_test(self, model: Model, writer: SummaryWriter, step): training = model.training model.eval() # fix vis_indices vis_indices = self.config['vis']['indices'] if isinstance(vis_indices, int): # sample data points from n data points with equal interval vis_indices = torch.linspace(0, len(self) - 1, vis_indices).int().tolist() # override to the index when in overfitting debug mode if isinstance(self.config['overfit_one_ex'], int): vis_indices = torch.tensor([self.config['overfit_one_ex']]) model.visualize_test(self, vis_indices, step) model.train(training)
23819
import random from qlazy import QState def classical_strategy(trials=1000): win_cnt = 0 for _ in range(trials): # random bits by Charlie (x,y) x = random.randint(0,1) y = random.randint(0,1) # response by Alice (a) a = 0 # response by Bob (b) b = 0 # count up if win if (x and y) == (a+b)%2: win_cnt += 1 print("== result of classical strategy (trials:{0:d}) ==".format(trials)) print("* win prob. = ", win_cnt/trials) def quantum_strategy(trials=1000): win_cnt = 0 for _ in range(trials): # random bits by Charlie (x,y) x = random.randint(0,1) y = random.randint(0,1) # make entangled 2 qubits (one for Alice and another for Bob) qs = QState(2).h(0).cx(0,1) # response by Alice (a) if x == 0: # measurement of Z-basis (= Ry(0.0)-basis) sa = qs.m([0], shots=1, angle=0.0, phase=0.0).lst if sa == 0: a = 0 else: a = 1 else: # measurement of X-basis (or Ry(0.5*PI)-basis) sa = qs.mx([0], shots=1).lst # sa = qs.m([0], shots=1, angle=0.5, phase=0.0).lst if sa == 0: a = 0 else: a = 1 # response by Bob (b) if y == 0: # measurement of Ry(0.25*PI)-basis sb = qs.m([1], shots=1, angle=0.25, phase=0.0).lst if sb == 0: b = 0 else: b = 1 else: # measurement of Ry(-0.25*PI)-basis sb = qs.m([1], shots=1, angle=-0.25, phase=0.0).lst if sb == 0: b = 0 else: b = 1 # count up if win if (x and y) == (a+b)%2: win_cnt += 1 print("== result of quantum strategy (trials:{0:d}) ==".format(trials)) print("* win prob. = ", win_cnt/trials) if __name__ == '__main__': classical_strategy() quantum_strategy()
23822
from decimal import Decimal def ensure_decimal(value): return value if isinstance(value, Decimal) else Decimal(value)
23855
class Solution: def bitwiseComplement(self, N: int, M = 0, m = 0) -> int: return N ^ M if M and M >= N else self.bitwiseComplement(N, M + 2 ** m, m + 1)
23859
from .gradient_reversal import GradientReversal from .noise import Noise, AdditiveNoise, MultiplicativeNoise
23884
import tensorflow as tf import numpy as np import math # Parameter order_num=2; class Program: def __init__(self,sess,state_dim,obj_num,fea_size,Theta,program_order,postfix): self.sess = sess; self.state_dim = state_dim; self.fea_size=fea_size; self.obj_num=obj_num; self.order_num=order_num; self.Theta=Theta; self.program_order=program_order; self.postfix=postfix; self.p = self.compile_order(); def compile_order(self): self.Theta=tf.reshape(self.Theta,[-1,self.obj_num,6]); self.Theta=tf.transpose(self.Theta,perm=[0,2,1]); self.Theta=tf.unstack(self.Theta,6,1); # temporary ordering p_1=tf.multiply(self.Theta[0],self.Theta[3]); p_1=p_1+self.Theta[5]; p_2=tf.multiply(self.Theta[1],self.Theta[3]); p_2=p_2+self.Theta[5]; p_3=tf.multiply(self.Theta[0],self.Theta[4]); p_3=p_3+self.Theta[5]; p_4=tf.multiply(self.Theta[1],self.Theta[4]); p_4=p_4+self.Theta[5]; program_order2=tf.unstack(self.program_order,(self.obj_num-1),1); p=tf.multiply(tf.stack([program_order2[0]]*(self.obj_num),1),p_1)+tf.multiply(tf.stack([program_order2[1]]*(self.obj_num),1),p_2)+tf.multiply(tf.stack([program_order2[2]]*(self.obj_num),1),p_3)+tf.multiply(tf.stack([program_order2[3]]*(self.obj_num),1),p_4); # Currently tf.cond makes problems """ program_order2=tf.unstack(self.program_order,self.order_num,1); for i in range(self.order_num): program_order2[i]=tf.unstack(program_order2[i],3,1); for i in range(self.order_num): for k in range(9): for l in range(k+1,9): # not=1, and=2, or=3 p=tf.cond(tf.equal(program_order2[i][0],1)&tf.equal(program_order2[i][1],k),lambda:1-self.Theta[k],lambda:p); p=tf.cond(tf.equal(program_order2[i][0],1)&tf.equal(program_order2[i][1],-1),lambda:1-p,lambda:p); p=tf.cond(tf.equal(program_order2[i][0],2)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:tf.multiply(self.Theta[k],self.Theta[l]),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],2)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],-1),lambda:tf.multiply(self.Theta[k],p),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],3)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:self.Theta[k]+self.Theta[l]-tf.multiply(self.Theta[k],self.Theta[l]),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],3)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:self.Theta[k]+p-tf.multiply(self.Theta[k],p),lambda:p); """ return p; def run_target_nets(self,Theta,program_order): Theta=tf.reshape(Theta,[-1,self.obj_num,6]); Theta=tf.transpose(Theta,perm=[0,2,1]); Theta=tf.unstack(Theta,6,1); # temporary ordering p_1=tf.multiply(Theta[0],Theta[3]); p_1=p_1+Theta[5]; p_2=tf.multiply(Theta[1],Theta[3]); p_2=p_2+Theta[5]; p_3=tf.multiply(Theta[0],Theta[4]); p_3=p_3+Theta[5]; p_4=tf.multiply(Theta[1],Theta[4]); p_4=p_4+Theta[5]; program_order2=tf.unstack(program_order,(self.obj_num-1),1); p=tf.multiply(tf.stack([program_order2[0]]*(self.obj_num),1),p_1)+tf.multiply(tf.stack([program_order2[1]]*(self.obj_num),1),p_2)+tf.multiply(tf.stack([program_order2[2]]*(self.obj_num),1),p_3)+tf.multiply(tf.stack([program_order2[3]]*(self.obj_num),1),p_4); # Currently tf.cond makes problems """ # Currently tf.cond makes problems program_order2=tf.unstack(program_order,self.order_num,1); for i in range(self.order_num): program_order2[i]=tf.unstack(program_order2[i],3,1); for i in range(self.order_num): for k in range(9): for l in range(k+1,9): # not=1, and=2, or=3 p=tf.cond(tf.equal(program_order2[i][0],1)&tf.equal(program_order2[i][1],k),lambda:1-Theta[k],lambda:p); p=tf.cond(tf.equal(program_order2[i][0],1)&tf.equal(program_order2[i][1],-1),lambda:1-p,lambda:p); p=tf.cond(tf.equal(program_order2[i][0],2)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:tf.multiply(Theta[k],Theta[l]),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],2)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],-1),lambda:tf.multiply(Theta[k],p),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],3)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:Theta[k]+Theta[l]-tf.multiply(Theta[k],Theta[l]),lambda:p); p=tf.cond(tf.equal(program_order2[i][0],3)&tf.equal(program_order2[i][1],k)&tf.equal(program_order2[i][2],l),lambda:Theta[k]+p-tf.multiply(Theta[k],p),lambda:p); """ return p;
23908
from numpy import exp, pi, cos, sin, tan from ....Functions.Geometry.inter_line_circle import inter_line_circle def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : HoleM51 A HoleM51 object Returns ------- point_dict: dict A dict of the slot coordinates """ Rext = self.get_Rext() # comp point coordinate (in complex) alpha = self.comp_alpha() Wslot = 2 * sin(self.W1 / 2) * (Rext - self.H1) L = 0.5 * (Wslot - self.W0) / cos(alpha) # ||P2,P5|| # Center of the hole Z0 = Rext - self.H0 Z2 = Z0 + 1j * self.W0 / 2 Z25 = Z0 - 1j * self.W0 / 2 Z15 = Z25 - self.H2 Z1 = Z2 - 1j * self.W2 Z26 = Z1 - 1j * self.W3 Z12 = Z2 - self.H2 Z13 = Z12 - 1j * self.W2 Z14 = Z13 - 1j * self.W3 Z11 = Z12 + 1j * tan(alpha / 2) * self.H2 Z16 = Z15 - 1j * tan(alpha / 2) * self.H2 # Draw the left side with center P2, and X axis =(P2,P5), Y axis=(P2,P10) Z3 = self.W4 * exp(1j * (pi / 2 - alpha)) + Z2 Z4 = (self.W4 + self.W5) * exp(1j * (pi / 2 - alpha)) + Z2 Z5 = (Rext - self.H1) * exp(1j * self.W1 / 2) Z10 = (1j * self.H2) * exp(1j * (pi / 2 - alpha)) + Z2 Z9 = (1j * self.H2 + self.W4) * exp(1j * (pi / 2 - alpha)) + Z2 Z8 = (1j * self.H2 + self.W4 + self.W5) * exp(1j * (pi / 2 - alpha)) + Z2 Z7 = (1j * self.H2 + L) * exp(1j * (pi / 2 - alpha)) + Z2 # Draw the right side with center P25, X axis (P25,P23), Y axis(P25,P17) Z24 = self.W6 * exp(-1j * (pi / 2 - alpha)) + Z25 Z23 = (self.W6 + self.W7) * exp(-1j * (pi / 2 - alpha)) + Z25 Z22 = (Rext - self.H1) * exp(-1j * self.W1 / 2) Z17 = (-1j * self.H2) * exp(-1j * (pi / 2 - alpha)) + Z25 Z18 = (-1j * self.H2 + self.W6) * exp(-1j * (pi / 2 - alpha)) + Z25 Z19 = (-1j * self.H2 + self.W6 + self.W7) * exp(-1j * (pi / 2 - alpha)) + Z25 Z20 = (-1j * self.H2 + L) * exp(-1j * (pi / 2 - alpha)) + Z25 # Z6 is the intersection of the line [Z7,Z10] and Circle centre # (0,0) radius Rext - H1 Zint = inter_line_circle(Z7, Z10, Rext - self.H1) # Select the point with Re(Z) > 0 if Zint[0].real > 0: Z6 = Zint[0] else: Z6 = Zint[1] Z21 = Z6.conjugate() point_dict = dict() point_dict["Z1"] = Z1 point_dict["Z2"] = Z2 point_dict["Z3"] = Z3 point_dict["Z4"] = Z4 point_dict["Z5"] = Z5 point_dict["Z6"] = Z6 point_dict["Z7"] = Z7 point_dict["Z8"] = Z8 point_dict["Z9"] = Z9 point_dict["Z10"] = Z10 point_dict["Z11"] = Z11 point_dict["Z12"] = Z12 point_dict["Z13"] = Z13 point_dict["Z14"] = Z14 point_dict["Z15"] = Z15 point_dict["Z16"] = Z16 point_dict["Z17"] = Z17 point_dict["Z18"] = Z18 point_dict["Z19"] = Z19 point_dict["Z20"] = Z20 point_dict["Z21"] = Z21 point_dict["Z22"] = Z22 point_dict["Z23"] = Z23 point_dict["Z24"] = Z24 point_dict["Z25"] = Z25 point_dict["Z26"] = Z26 return point_dict
23944
import FWCore.ParameterSet.Config as cms HEBRecHitGPUtoSoAProd = cms.EDProducer('HEBRecHitGPUtoSoA', HEBRecHitGPUTok = cms.InputTag('HEBRecHitGPUProd'))
23966
import os import sys from collections import defaultdict import datetime import pickle import re import time import json from selenium import webdriver def main(): driver = webdriver.Chrome() # Optional argument, if not specified will search path. #load login cookie driver.get('https://www.messenger.com') cookies=pickle.load(open('data/logincookies.pkl','rb')) for c in cookies: driver.add_cookie(c) driver.get('https://www.messenger.com') #get page source source=(driver.page_source).encode('utf8','replace') #get last active times and add them to database v=re.compile("lastActiveTimes\":(.*),\"chatNotif") lolo=json.loads(v.findall(source)[0]) d=defaultdict(lambda:[0],json.load(open("data/lastActiveTimes.json",'r'))) for k in lolo: if lolo[k]!=d[k][-1]: d[k].append(lolo[k]) json.dump(d,open("data/lastActiveTimes.json",'w')) #maintain up to date database of friends profiles v=re.compile("shortProfiles\":(.*),\"nearby") lala=json.loads(v.findall(source)[0]) d=json.load(open('data/shortProfiles.json','r')) d.update(lala) json.dump(d,open('data/shortProfiles.json','w')) driver.quit() if not os.path.exists('data/logincookies.pkl'): print ('missing cookie. Have you run init.py?') sys.exit() while True: main() with open('data/lastScrapeTime.txt','a') as f: f.write(str(datetime.datetime.now())+'\n') time.sleep(600)
24008
from app.classes.bot import Bot from . import base_commands, base_events def setup(bot: Bot): base_commands.setup(bot) base_events.setup(bot)
24009
import model from model import whole_foods_sale from model import aldis_au_sale from model import aldis_us_sale from model import aldis_uk_sale def go(inputs, store_name): if store_name == 'WholeFoods': final_df = whole_foods_sale.items_on_sale() elif store_name == 'Aldi AU': final_df = aldis_au_sale.items_on_sale() elif store_name == 'Aldi US': final_df = aldis_us_sale.items_on_sale() elif store_name == 'Aldi UK': final_df = aldis_uk_sale.items_on_sale() return final_df.to_html()
24030
from blueqat import Circuit, ParametrizedCircuit def compare_circuit(c1: Circuit, c2: Circuit) -> bool: return repr(c1) == repr(c2) def test_parametrized1(): assert compare_circuit( ParametrizedCircuit().ry('a')[0].rz('b')[0].subs([1.2, 3.4]), Circuit().ry(1.2)[0].rz(3.4)[0]) def test_parametrized2(): assert compare_circuit( ParametrizedCircuit().ry('a')[0].rz('b')[0].subs({'a': 1.2, 'b': 3.4}), Circuit().ry(1.2)[0].rz(3.4)[0]) def test_parametrized3(): assert compare_circuit( ParametrizedCircuit().subs([]), Circuit() )
24093
from encoder import Encoder from decoder import Decoder from parser import Parser from baseline import * from language_model import LanguageModel from util import Reader import dynet as dy from misc import compute_eval_score, compute_perplexity import os initializers = {'glorot': dy.GlorotInitializer(), 'constant': dy.ConstInitializer(0.01), 'uniform': dy.UniformInitializer(0.1), 'normal': dy.NormalInitializer(mean = 0, var = 1) } optimizers = { "sgd": dy.SimpleSGDTrainer, "adam": dy.AdamTrainer, "adadelta": dy.AdadeltaTrainer, "adagrad": dy.AdagradTrainer } class Session(object): def __init__(self, options): self.reader = Reader(options.data_dir, options.data_augment) self.options = options def supervised_enc(self): encoder = self.create_encoder() if os.path.exists(self.options.result_dir + 'model_enc'): self.load_encoder(encoder) enc_trainer = optimizers[self.options.optimizer](encoder.model) lr = self.options.lr #used only for sgd i = 0 best_f1 = 0 print ('supervised training for encoder...') for epoch in range(self.options.epochs): sents = 0 total_loss = 0.0 train = self.reader.next_example(0) train_size = len(self.reader.data[0]) for data in train: s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] loss = encoder.train(s1, s2, s3, pos, act, self.options.enc_dropout) sents += 1 if loss is not None: total_loss += loss.scalar_value() loss.backward() if self.options.optimizer == 'sgd': enc_trainer.update(lr) else: enc_trainer.update() e = float(i) / train_size if i % self.options.print_every == 0: print('epoch {}: loss per sentence: {}'.format(e, total_loss / sents)) sents = 0 total_loss = 0.0 if i!=0 and i % self.options.save_every == 0: print('computing loss on validation set...') valid = self.reader.next_example(2) #fix this valid_size = len(self.reader.data[2]) rf = open(self.options.result_dir+'result', 'w') for vdata in valid: s1, s2, s3, pos, act = vdata[0], vdata[1], vdata[2], vdata[3], vdata[4] _, output, _ = encoder.parse(s1, s2, s3, pos) rf.write(output + '\n') rf.close() f1 = compute_eval_score(self.options.result_dir) if f1 > best_f1: best_f1 = f1 print ('highest f1: {}'.format(f1)) print ('saving model...') encoder.Save(self.options.result_dir + 'model_enc') else: lr = lr * self.options.decay i += 1 def supervised_dec(self): decoder = self.create_decoder() if os.path.exists(self.options.result_dir + 'model_dec'): self.load_decoder(decoder) dec_trainer = optimizers[self.options.optimizer](decoder.model) lr = self.options.lr #used only for sgd i = 0 lowest_valid_loss = 9999 print ('supervised training for decoder...') for epoch in range(self.options.epochs): sents = 0 total_loss = 0.0 train = self.reader.next_example(0) train_size = len(self.reader.data[0]) for data in train: s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] loss, loss_act, loss_word = decoder.compute_loss(s3, act, self.options.dec_dropout) sents += 1 if loss is not None: total_loss += loss.scalar_value() loss.backward() if self.options.optimizer == 'sgd': dec_trainer.update(lr) else: dec_trainer.update() e = float(i) / train_size if i % self.options.print_every == 0: print('epoch {}: loss per sentence: {}'.format(e, total_loss / sents)) sents = 0 total_loss = 0.0 if i!=0 and i % self.options.save_every == 0: print('computing loss on validation set...') total_valid_loss = 0 valid = self.reader.next_example(1) valid_size = len(self.reader.data[1]) for vdata in valid: s1, s2, s3, pos, act = vdata[0], vdata[1], vdata[2], vdata[3], vdata[4] valid_loss, _, _ = decoder.compute_loss(s3, act) if valid_loss is not None: total_valid_loss += valid_loss.scalar_value() total_valid_loss = total_valid_loss * 1.0 / valid_size if total_valid_loss < lowest_valid_loss: lowest_valid_loss = total_valid_loss print ('saving model...') decoder.Save(self.options.result_dir + 'model_dec') else: lr = lr * self.options.decay i += 1 def unsupervised_with_baseline(self): decoder = self.create_decoder() assert(os.path.exists(self.options.result_dir + 'model_dec')) self.load_decoder(decoder) encoder = self.create_encoder() assert(os.path.exists(self.options.result_dir + 'model_enc')) self.load_encoder(encoder) baseline = self.create_baseline() if os.path.exists(self.options.result_dir + 'baseline'): self.load_baseline(baseline) enc_trainer = optimizers[self.options.optimizer](encoder.model) dec_trainer = optimizers[self.options.optimizer](decoder.model) baseline_trainer = optimizers[self.options.optimizer](baseline.model) lr = self.options.lr #used only for sgd i = 0 lowest_valid_loss = 9999 print ('unsupervised training...') for epoch in range(self.options.epochs): sents = 0 total_loss = 0.0 train = self.reader.next_example(0) train_size = len(self.reader.data[0]) for data in train: s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] sents += 1 # random sample enc_loss_act, _, act = encoder.parse(s1, s2, s3, pos, sample=True) _, dec_loss_act, dec_loss_word = decoder.compute_loss(s3, act) # save reward logpx = -dec_loss_word.scalar_value() total_loss -= logpx # reconstruction and regularization loss backprop to theta_d dec_loss_total = dec_loss_word + dec_loss_act * dy.scalarInput(self.options.dec_reg) dec_loss_total = dec_loss_total * dy.scalarInput(1.0 / self.options.mcsamples) dec_loss_total.scalar_value() dec_loss_total.backward() # update decoder if self.options.optimizer == 'sgd': dec_trainer.update(lr) else: dec_trainer.update() if self.options.enc_update > 0: # compute baseline and backprop to theta_b b = baseline(s3) logpxb = b.scalar_value() b_loss = dy.squared_distance(b, dy.scalarInput(logpx)) b_loss.value() b_loss.backward() # update baseline if self.options.optimizer == 'sgd': baseline_trainer.update(lr) else: baseline_trainer.update() # policy and and regularization loss backprop to theta_e enc_loss_act = encoder.train(s1, s2, s3, pos, act) enc_loss_policy = enc_loss_act * dy.scalarInput((logpx - logpxb) / len(s1)) enc_loss_total = enc_loss_policy * dy.scalarInput(self.options.enc_update) - enc_loss_act * dy.scalarInput(self.options.enc_reg) enc_loss_total = enc_loss_total * dy.scalarInput(1.0 / self.options.mcsamples) enc_loss_total.value() enc_loss_total.backward() # update encoder if self.options.optimizer == 'sgd': enc_trainer.update(lr) else: enc_trainer.update() e = float(i) / train_size if i % self.options.print_every == 0: print('epoch {}: loss per sentence: {}'.format(e, total_loss / sents)) sents = 0 total_loss = 0.0 if i!=0 and i % self.options.save_every == 0: print('computing loss on validation set...') total_valid_loss = 0 valid = self.reader.next_example(1) valid_size = len(self.reader.data[1]) for vdata in valid: s1, s2, s3, pos, act = vdata[0], vdata[1], vdata[2], vdata[3], vdata[4] _, _, valid_word_loss = decoder.compute_loss(s3, act) if valid_word_loss is not None: total_valid_loss += valid_word_loss.scalar_value() total_valid_loss = total_valid_loss * 1.0 / valid_size if total_valid_loss < lowest_valid_loss: lowest_valid_loss = total_valid_loss print ('saving model...') encoder.Save(self.options.result_dir + 'model_enc') decoder.Save(self.options.result_dir + 'model_dec') baseline.Save(self.options.result_dir + 'baseline') else: lr = lr * self.options.decay i += 1 def unsupervised_without_baseline(self): decoder = self.create_decoder() assert(os.path.exists(self.options.result_dir + 'model_dec')) self.load_decoder(decoder) encoder = self.create_encoder() assert(os.path.exists(self.options.result_dir + 'model_enc')) self.load_encoder(encoder) enc_trainer = optimizers[self.options.optimizer](encoder.model) dec_trainer = optimizers[self.options.optimizer](decoder.model) lr = self.options.lr #used only for sgd i = 0 lowest_valid_loss = 9999 print ('unsupervised training...') for epoch in range(self.options.epochs): sents = 0 total_loss = 0.0 train = self.reader.next_example(0) train_size = len(self.reader.data[0]) for data in train: s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] sents += 1 # max sample enc_loss_act, _, act = encoder.parse(s1, s2, s3, pos, sample=False) _, dec_loss_act, dec_loss_word = decoder.compute_loss(s3, act) logpxb = -dec_loss_word.scalar_value() total_loss -= logpxb # random sample enc_loss_act, _, act = encoder.parse(s1, s2, s3, pos, sample=True) _, dec_loss_act, dec_loss_word = decoder.compute_loss(s3, act) # save reward logpx = -dec_loss_word.scalar_value() # reconstruction and regularization loss backprop to theta_d dec_loss_total = dec_loss_word + dec_loss_act * dy.scalarInput(self.options.dec_reg) dec_loss_total = dec_loss_total * dy.scalarInput(1.0 / self.options.mcsamples) dec_loss_total.scalar_value() dec_loss_total.backward() # update decoder if self.options.optimizer == 'sgd': dec_trainer.update(lr) else: dec_trainer.update() if self.options.enc_update > 0: # policy and and regularization loss backprop to theta_e enc_loss_act = encoder.train(s1, s2, s3, pos, act) enc_loss_policy = enc_loss_act * dy.scalarInput((logpx - logpxb) / len(s1)) enc_loss_total = enc_loss_policy * dy.scalarInput(self.options.enc_update) - enc_loss_act * dy.scalarInput(self.options.enc_reg) enc_loss_total = enc_loss_total * dy.scalarInput(1.0 / self.options.mcsamples) enc_loss_total.value() enc_loss_total.backward() if self.options.optimizer == 'sgd': enc_trainer.update(lr) else: enc_trainer.update() e = float(i) / train_size if i % self.options.print_every == 0: print('epoch {}: loss per sentence: {}'.format(e, total_loss / sents)) sents = 0 total_loss = 0.0 if i!=0 and i % self.options.save_every == 0: print('computing loss on validation set...') total_valid_loss = 0 valid = self.reader.next_example(1) valid_size = len(self.reader.data[1]) for vdata in valid: s1, s2, s3, pos, act = vdata[0], vdata[1], vdata[2], vdata[3], vdata[4] _, _, valid_word_loss = decoder.compute_loss(s3, act) if valid_word_loss is not None: total_valid_loss += valid_word_loss.scalar_value() total_valid_loss = total_valid_loss * 1.0 / valid_size if total_valid_loss < lowest_valid_loss: lowest_valid_loss = total_valid_loss print ('saving model...') encoder.Save(self.options.result_dir + 'model_enc') decoder.Save(self.options.result_dir + 'model_dec') else: lr = lr * self.options.decay i += 1 def pretrain_baseline(self): baseline = self.create_baseline() if os.path.exists(self.options.result_dir + 'baseline'): self.load_baseline(baseline) baseline_trainer = optimizers[self.options.optimizer](baseline.model) lr = self.options.lr #used only for sgd i = 0 lowest_valid_loss = 9999 print ('train baseline, for simplicity use the same data here') for epoch in range(self.options.epochs): sents = 0 total_loss = 0.0 train = self.reader.next_example(0) train_size = len(self.reader.data[0]) for data in train: s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] sents += 1 loss = -baseline(s3) if loss is not None: total_loss += loss.scalar_value() loss.backward() if self.options.optimizer == 'sgd': baseline_trainer.update(lr) else: baseline_trainer.update() e = float(i) / train_size if i % self.options.print_every == 0: print('epoch {}: loss per sentence: {}'.format(e, total_loss / sents)) sents = 0 total_loss = 0.0 if i!=0 and i % self.options.save_every == 0: print('computing loss on validation set...') total_valid_loss = 0 valid = self.reader.next_example(1) valid_size = len(self.reader.data[1]) for vdata in valid: s1, s2, s3, pos, act = vdata[0], vdata[1], vdata[2], vdata[3], vdata[4] valid_loss = -baseline(s3) if valid_loss is not None: total_valid_loss += valid_loss.scalar_value() total_valid_loss = total_valid_loss * 1.0 / valid_size if total_valid_loss < lowest_valid_loss: lowest_valid_loss = total_valid_loss print ('saving model...') baseline.Save(self.options.result_dir + 'baseline') else: lr = lr * self.options.decay i += 1 def parsing(self): decoder = self.create_decoder() assert(os.path.exists(self.options.result_dir + 'model_dec')) self.load_decoder(decoder) encoder = self.create_encoder() assert(os.path.exists(self.options.result_dir + 'model_enc')) self.load_encoder(encoder) print('parsing...') rf = open(os.path.join(self.options.result_dir, 'result'), 'w') test = self.reader.next_example(2) p = Parser(encoder, decoder) for dataid, data in enumerate(test): s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] output = p(s1, s2, s3, pos, self.options.nsamples) rf.write(output + '\n') rf.close() f1 = compute_eval_score(self.options.result_dir) print('bracket F1 score is {}'.format(f1)) def language_modeling(self): decoder = self.create_decoder() assert(os.path.exists(self.options.result_dir + 'model_dec')) self.load_decoder(decoder) encoder = self.create_encoder() assert(os.path.exists(self.options.result_dir + 'model_enc')) self.load_encoder(encoder) print('computing language model score...') test = self.reader.next_example(2) lm = LanguageModel(encoder, decoder) total_ll = 0 total_tokens = 0 for dataid, data in enumerate(test): s1, s2, s3, pos, act = data[0], data[1], data[2], data[3], data[4] if len(s1) <= 1: continue total_ll += lm(s1, s2, s3, pos, self.options.nsamples) total_tokens += len(s1) perp = compute_perplexity(total_ll, total_tokens) print('perplexity: {}'.format(perp)) def create_decoder(self): return Decoder(self.reader, self.options.nlayers, self.options.word_dim, self.options.pretrained_dim, self.options.action_dim, self.options.dec_lstm_dim, self.options.embedding_file) def create_encoder(self): return Encoder(self.reader, self.options.nlayers, self.options.word_dim, self.options.pretrained_dim, self.options.pos_dim, self.options.action_dim, self.options.enc_lstm_dim, self.options.embedding_file) def create_baseline(self): baseline = None if self.options.baseline == 'rnnlm': baseline = LanguageModelBaseline(self.reader, self.options.word_dim, self.options.pretrained_dim, self.options.dec_lstm_dim, self.options.embedding_file) elif self.options.baseline == 'rnnauto': baseline = RNNAutoencBaseline(self.reader, self.options.word_dim, self.options.pretrained_dim, self.options.dec_lstm_dim, self.options.embedding_file) elif self.options.baseline == 'mlp': baseline = MLPAutoencBaseline(self.reader, self.options.word_dim, self.options.pretrained_dim, self.options.embedding_file) else: raise NotImplementedError("Baseline Not Implmented") return baseline def load_decoder(self, decoder): decoder.Load(self.options.result_dir + 'model_dec') def load_encoder(self, encoder): encoder.Load(self.options.result_dir + 'model_enc') def load_baseline(self, baseline): baseline.Load(self.options.result_dir + 'baseline')
24106
import sys from collections import defaultdict import torch from varclr.utils.infer import MockArgs from varclr.data.preprocessor import CodePreprocessor if __name__ == "__main__": ret = torch.load(sys.argv[2]) vars, embs = ret["vars"], ret["embs"] embs /= embs.norm(dim=1, keepdim=True) embs = embs.cuda() var2idx = dict([(var, idx) for idx, var in enumerate(vars)]) processor = CodePreprocessor(MockArgs()) Ks = [1, 5, 10, 25, 50, 100, 250, 500, 1000] topk_succ = defaultdict(int) tot = 0 with open(sys.argv[1], "r") as f: for line in f: try: var1, var2 = line.strip().split() except ValueError: print("skpped: ", line) def canon(var): return "".join( [ word.capitalize() if idx > 0 else word for idx, word in enumerate(processor(var).split()) ] ) var1, var2 = canon(var1), canon(var2) if var1 not in var2idx or var2 not in var2idx: print(f"variable {var1} or {var2} not found") continue tot += 1 for k in Ks: result = torch.topk(embs @ embs[var2idx[var1]], k=k + 1) topk_succ[k] += var2 in [vars[idx] for idx in result.indices][1:] print(f"Total {tot} variable pairs") for k in Ks: print(f"Recall@{k} = {100 * topk_succ[k] / tot:.1f}")
24107
import os import numpy as np from . import imtools, datprops from .datfile import DatFile from .chiptype import ChipType moduleDir = os.path.abspath( os.path.dirname( __file__ ) ) class FlowCorr: def __init__( self, chiptype, xblock=None, yblock=None, rootdir='.', method='' ): ''' Initialize a flowcorr object chiptype: a ChipType object xblock: The full-chip column origin; setting to None returns a full chip yblock: The full-chip row origin; setting to None returns a full chip rootdir: root directory to look for flowcorr files. search will also look up a level, within the module directory, and in the dats directory method: if specified, automaticaly loads the corresponding flowcorr 'buffer' 'file' if advanced options need to be passed into the load functions, they should be called separatly with method being left empty ''' self.chiptype = ChipType(chiptype) self.xblock = xblock self.yblock = yblock self.searchpath = [ rootdir, os.path.join( rootdir, '..' ), os.path.join( moduleDir, '../dats' ), moduleDir, os.path.join( moduleDir, 'dats' ) ] if method.lower() == 'buffer': self.frombuffer() elif method.lower() == 'file': self.fromfile() elif not method: pass else: raise ValueError( 'Flowcorr method "%s" is undefined' % method ) def frombuffer(self, flow_file='C2_step.dat', force=False, framerate=15): ''' Returns the flow correction measured from a buffered flow flowfile: measurement file used to calculate the flowcorr force: calculate the data from raw, even if an existing analysis is present framerate: fps ''' try: if force: raise IOError self.filename = os.path.join( self.searchpath[0], 'flowcorr_slopes.dat' ) self.flowcorr = datprops.read_dat( self.filename, 'flowcorr', chiptype=self.chiptype ) except IOError: # Read the dat file found = False for dirname in self.searchpath: self.filename = os.path.join( dirname, flow_file ) if os.path.exists( self.filename ): found = True break if not found: raise IOError( '%s was not found' % self.filename ) data = DatFile( self.filename, chiptype=self.chiptype ) # Calculate properties self.flowcorr = data.measure_slope( method='maxslope' ) self.time_offset = np.min(data.measure_t0( method='maxslope' )) #TODO: This is not very robust. should just shift t0 here and record the offest instead of trying to do things later with it self.pinned = data.measure_pinned() # remove pins self.flowcorr[ self.pinned ] = 1 # Save a few more variables self.t0 = data.measure_t0( meathod='maxslope' ) self.actpix = data.measure_actpix self.phpoint = data.measure_plateau() return self.flowcorr def fromfile( self, fc_type ): ''' Loads the flow correction from file based on the chip type and scales up from miniblocks to full chips or analysis blocks. This method only differentiates based on thumbnail or full chip/analysis block. All other differences are rolled into ChipType. fc_type: can be 'ecc' or 'wt'. flowcorr file is defined by self.chiptype.flowcorr_<fc_type> ''' # Thumbnails are enough different to have their own function if self.chiptype.tn == 'self': return self.tn_fromfile( fc_type ) # Spatial thumbnails are just subsampled data. We don't need special loading # Calculate the size of the flowcorr files xMiniBlocks = self.chiptype.chipC / self.chiptype.miniC yMiniBlocks = self.chiptype.chipR / self.chiptype.miniR # Set the flowcorr path starting local before using the default for path in self.searchpath: filename = os.path.join( path, '%s.dat' % getattr( self.chiptype, 'flowcorr_%s' % fc_type ) ) try: flowcorr = datprops.read_dat( filename , metric='flowcorr' ) break except IOError: continue raise IOError( 'Could not find a flowcorr file' ) # Scale the flowcorr data to the entire well sizes = [ ( 96, 168 ), # This is an unscaled P1-sized flowcorr file. This is the most likely size when reading fc_flowcorr.dat ( yMiniBlocks, xMiniBlocks ), # This is the historical per-chip file. This is ( 96, 168 ) for a P1/540 chip ( self.chiptype.chipR, self.chiptype.chipC ) ] # This is the pre-compiled value try: fc_xMiniBlocks = self.chiptype.fullchip.chipC / self.chiptype.fullchip.miniC fc_yMiniBlocks = self.chiptype.fullchip.chipR / self.chiptype.fullchip.miniR sizes.append( ( fc_yMiniBlocks, fc_xMiniBlocks ) ) sizes.append( ( self.chiptype.fullchip.chipR, self.chiptype.fullchip.chipC ) ) except AttributeError: pass for size in sizes: try: flowcorr = flowcorr.reshape( size ) break except ValueError: # Keep going until you itterate through all possible sizes. If you still get an error, then die if size == sizes[-1]: print 'Possible Sizes' print sizes print 'Elements' print flowcorr.shape raise ValueError( 'Could not determine flowcorr size' ) continue # Resize the image to the current size if self.chiptype.burger is None: # This is a standard resize operation flowcorr = imtools.imresize( flowcorr, ( self.chiptype.chipR, self.chiptype.chipC ) ) elif self.chiptype.spatn != 'self': # This is burger mode on a full size chip flowcorr = imtools.imresize( flowcorr, ( self.chiptype.burger.chipR, self.chiptype.burger.chipC ) ) # Clip off the top and bottom first = ( flowcorr.shape[0] - self.chiptype.chipR ) / 2 last = first + self.chiptype.chipR flowcorr = flowcorr[ first:last, : ] else: # This is burger mode on a spatial thumbnail # This has the effect of adding more rows beyond the 800 typically used for a spatial thumbnail rows = self.chiptype.chipR * self.chiptype.burger.chipR / self.chiptype.fullchip.chipR flowcorr = imtools.imresize( flowcorr, ( rows, self.chiptype.chipC ) ) # Clip off the top and bottom first = ( flowcorr.shape[0] - self.chiptype.chipR ) / 2 last = first + self.chiptype.chipR flowcorr = flowcorr[ first:last, : ] # Reduce to a single analysis block if ( self.xblock is not None and self.yblock is not None and self.xblock != -1 and self.yblock != -1 ): flowcorr = flowcorr[ self.yblock: self.chiptype.blockR + self.yblock, self.xblock: self.chiptype.blockC + self.xblock ] self.flowcorr = flowcorr return flowcorr def tn_fromfile( self, fc_type ): ''' Gets the per-well flowcorrection for a STANDARD (not spatial) thumbnail ''' # Calculate the size of the flowcorr files xMiniBlocks = self.chiptype.chipC / self.chiptype.miniC yMiniBlocks = self.chiptype.chipR / self.chiptype.miniR # Set the flowcorr path starting local before using the default for path in self.searchpath: filename = os.path.join( path, '%s.dat' % getattr( self.chiptype, 'flowcorr_%s' % fc_type ) ) try: flowcorr = datprops.read_dat( filename , metric='flowcorr' ) break except IOError: continue raise IOError( 'Could not find a flowcorr file' ) # Scale the flowcorr data to the entire well sizes = ( ( 96, 168 ), # This is an unscaled P1-sized flowcorr file. ( 48, 96 ) , # This is an unscaled P0-sized flowcorr file. ( yMiniBlocks, xMiniBlocks ), # This is the historical thumbnail flowcorr (swapped x & y - STP 7/13/2015) ( self.chiptype.fullchip.chipR, self.chiptype.fullchip.chipC ) ) # This is the pre-compiled value for size in sizes: try: flowcorr = flowcorr.reshape( size ) break except ValueError: # Keep going until you itterate through all possible sizes. If you still get an error, then die if size == sizes[-1]: raise ValueError( 'Could not determine flowcorr size' ) continue # Resize the image to the full chip size if self.chiptype.burger is None: # This is a standard resize operation based on the full chip flowcorr = imtools.imresize( flowcorr, ( self.chiptype.fullchip.chipR, self.chiptype.fullchip.chipC ) ) else: # This is burger mode on a regular thumbnail. Full chip is actually specified by burger and then we have to clip flowcorr = imtools.imresize( flowcorr, ( self.chiptype.burger.chipR, self.chiptype.burger.chipC ) ) # Clip off the top and bottom first = ( flowcorr.shape[0] - self.chiptype.fullchip.chipR ) / 2 last = first + self.chiptype.fullchip.chipR flowcorr = flowcorr[ first:last, : ] # Reduce to thumbnail data tnflowcorr = np.zeros( ( self.chiptype.chipR, self.chiptype.chipC ) ) for r in range( self.chiptype.yBlocks ): tn_rstart = r*self.chiptype.blockR tn_rend = tn_rstart + self.chiptype.blockR #fc_rstart = int( (r+0.5)*self.chiptype.fullchip.blockR ) - self.chiptype.blockR/2 # middle of block in case the thumbnail different yBlocks center within the block fc_rstart = int( (r+0.5)*(self.chiptype.fullchip.chipR/self.chiptype.yBlocks) ) - self.chiptype.blockR/2 fc_rend = fc_rstart + self.chiptype.blockR for c in range( self.chiptype.xBlocks ): tn_cstart = c*self.chiptype.blockC tn_cend = tn_cstart + self.chiptype.blockC fc_cstart = int( (c+0.5)*self.chiptype.fullchip.blockC ) - self.chiptype.blockC/2 fc_cend = fc_cstart + self.chiptype.blockC tnflowcorr[ tn_rstart:tn_rend, tn_cstart:tn_cend ] = flowcorr[ fc_rstart:fc_rend, fc_cstart:fc_cend ] self.flowcorr = tnflowcorr return self.flowcorr
24147
import math import tensorflow as tf from mayo.log import log from mayo.util import ( Percent, memoize_method, memoize_property, object_from_params) from mayo.session.base import SessionBase class Train(SessionBase): mode = 'train' def __init__(self, config): super().__init__(config) self._run_train_ops = True self._setup_train_operation() self._init() self._checkpoint_epoch = '' @memoize_property def learning_rate(self): params = self.config.train.learning_rate lr_class, params = object_from_params(params) if lr_class is tf.train.piecewise_constant: # `tf.train.piecewise_constant` uses argument name 'x' instead # just to make life more difficult step_name = 'x' else: step_name = 'global_step' params[step_name] = self.num_epochs log.debug( 'Using learning rate {!r} with params {}.' .format(lr_class.__name__, params)) return lr_class(**params) @memoize_property def optimizer(self): params = self.config.train.optimizer optimizer_class, params = object_from_params(params) log.debug('Using optimizer {!r}.'.format(optimizer_class.__name__)) return optimizer_class(self.learning_rate, **params) @staticmethod def _average_gradients(tower_grads): tower_grads = list(tower_grads) if len(tower_grads) == 1: return tower_grads[0] average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g, v in grad_and_vars: # add 0 dimension to the gradients to represent the tower if g is None: raise ValueError( 'Gradient for variable {} is None, please check ' 'connection.'.format(v)) g = tf.expand_dims(g, 0) grads.append(g) # average over the 'tower' dimension. grad = tf.concat(axis=0, values=grads) grad = tf.reduce_mean(grad, 0) # simply return the first tower's pointer to the Variable v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads @staticmethod def _loss_formatter(key, name): def formatter(estimator): loss_mean, loss_std = estimator.get_mean_std(key) if math.isnan(loss_mean): raise ValueError('Model diverged with a nan-valued loss.') loss_std = '±{}'.format(Percent(loss_std / loss_mean)) return '{}: {:10f}{:5}'.format(name, loss_mean, loss_std) return formatter @memoize_method def _losses_and_gradients(self): formatter = self._loss_formatter('regularization', 'regu') regularization = self.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES, first_gpu=True) if regularization: self.estimator.register( tf.add_n(regularization), 'regularization', formatter=formatter) def gradient(net, prediction, truth): loss = [self.task.train(net, prediction, truth)] + regularization loss = tf.add_n(loss) return loss, self.optimizer.compute_gradients(loss) tower_losses, tower_grads = zip(*self.task.map(gradient)) return tower_losses, self._average_gradients(tower_grads) def _setup_train_operation(self): ops = {} self._losses, gradients = self._losses_and_gradients() self._mean_loss = tf.reduce_mean(self._losses) ops['app_grad'] = self.optimizer.apply_gradients(gradients) # update ops update_ops = list(self.get_collection(tf.GraphKeys.UPDATE_OPS)) ops['update'] = tf.group(*update_ops, name='update') log.debug('Using update operations: {}'.format(update_ops)) log.debug('Using training operations: {}'.format(ops)) if self.extra_train_ops: ops['extra'] = self.extra_train_ops self._train_op = ops def _init(self): self.load_checkpoint(self.config.system.checkpoint.load) formatter = self._loss_formatter('loss', 'loss') self.estimator.register(self._mean_loss, 'loss', formatter=formatter) def reset_num_epochs(self): log.info('Reseting number of training epochs of the model...') self.run(self.imgs_seen.initializer) self.change.reset('checkpoint.epoch') self.change.reset('step') def once(self): train_op = self._train_op if self._run_train_ops else [] tasks = [train_op, self.num_epochs] _, num_epochs = self.run(tasks, batch=True) return num_epochs def overriders_assign(self): log.info('Assigning overridden values of parameters to parameters...') self._overriders_call('assign') def overriders_update(self): log.info('Updating overrider internal variables...') self._overriders_call('update') def overriders_reset(self): log.info('Resetting overriders internal variables...') self._overriders_call('reset') def _iteration(self, max_epochs=None): system = self.config.system epoch = self.once() floor_epoch = math.floor(epoch) cp_interval = system.checkpoint.get('save.interval', 0) if self.change.every('checkpoint.epoch', floor_epoch, cp_interval): log.info( 'Saving checkpoint at epoch {}...'.format(epoch), update=True) with log.demote(): self.save_checkpoint(floor_epoch) self._checkpoint_epoch = floor_epoch max_epochs = max_epochs or system.max_epochs if max_epochs and epoch >= max_epochs: log.info( 'Maximum epoch count {} reached.'.format(max_epochs)) if self._checkpoint_epoch and floor_epoch > self._checkpoint_epoch: log.info('Saving final checkpoint...') self.save_checkpoint(floor_epoch) return False return True def train(self, max_epochs=None): # final debug outputs lr = self.run(self.learning_rate) log.info('Training start with a learning rate {}.'.format(lr)) try: # train iterations while self._iteration(max_epochs=max_epochs): pass except KeyboardInterrupt: log.info('Stopped.') save = self.config.system.checkpoint.get('save', {}) if save: countdown = save.get('countdown', 0) if log.countdown('Saving checkpoint', countdown): self.save_checkpoint('latest')