id
stringlengths
3
8
content
stringlengths
100
981k
24159
import os import shutil import pychemia import tempfile import unittest class MyTestCase(unittest.TestCase): def test_incar(self): """ Test (pychemia.code.vasp) [INCAR parsing and writing] : """ print(os.getcwd()) iv = pychemia.code.vasp.read_incar('tests/data/vasp_01/INCAR') self.assertEqual(len(iv), 12) self.assertEqual(iv.EDIFF, 1E-7) wf = tempfile.NamedTemporaryFile() iv.write(wf.name) wf.close() iv4dir = pychemia.code.vasp.read_incar('tests/data/vasp_01') self.assertEqual(iv, iv4dir) self.assertRaises(ValueError, pychemia.code.vasp.read_incar, 'tests/data') iv3 = pychemia.code.vasp.VaspInput(variables={'EDIFF': 1E-6}) self.assertEqual(iv3['EDIFF'], 1E-6) iv = pychemia.code.vasp.read_incar('tests/data/vasp_02') iv.EDIFF *= 1.3 td = tempfile.mkdtemp() pychemia.code.vasp.write_incar(iv, td) self.assertRaises(ValueError, iv.write_key, 'EDIF') shutil.rmtree(td) def test_bad_outcar(self): """ Test (pychemia.code.vasp) [corrupted VASP OUTCAR] : """ vo = pychemia.code.vasp.VaspOutput('tests/data/vasp_04/OUTCAR') self.assertTrue(vo.is_finished) def test_encut_setup(self): """ Test (pychemia.code.vasp) [ENCUT setup] : """ iv = pychemia.code.vasp.read_incar('tests/data/vasp_06') iv.set_encut(ENCUT=1.2, POTCAR='tests/data/vasp_06/POTCAR') self.assertEqual(iv.ENCUT, 307) iv.set_rough_relaxation() self.assertEqual(iv.EDIFFG, -1E-2) iv.set_mit_settings() def test_vaspjob(self): """ Test (pychemia.code.vasp) [VaspJob] : """ td = tempfile.mkdtemp() st = pychemia.code.vasp.read_poscar('tests/data/vasp_06') kp = pychemia.code.vasp.read_kpoints('tests/data/vasp_06') self.assertEqual(kp.number_of_kpoints, 693) iv = pychemia.code.vasp.read_incar('tests/data/vasp_06') vj = pychemia.code.vasp.VaspJob(workdir=td,) vj.initialize(st, kpoints=kp) vj.set_input_variables(iv) vj.write_poscar() vj.write_kpoints() vj.write_incar() shutil.rmtree(td) def test_outcar(self): """ Test (pychemia.code.vasp) [outcar] : """ vo = pychemia.code.vasp.VaspOutput('tests/data/vasp_06/OUTCAR') self.assertEqual(vo.get_memory_used()['grid'], (1028.0, 'kBytes')) self.assertAlmostEqual(vo.to_dict['energy'], -19.67192646) print(vo) self.assertTrue(vo.has_forces_stress_energy()) def test_poscar(self): """ Test (pychemia.code.vasp) [poscar] : """ # Temporal directory for outputs tmpdir = tempfile.mkdtemp() # Read a POSCAR by directory st = pychemia.code.vasp.read_poscar('tests/data/vasp_06') self.assertEqual(st.natom, 4) # Opening old format POSCAR without POTCAR with self.assertRaises(ValueError) as context: st = pychemia.code.vasp.read_poscar('tests/data/vasp_07/POSCAR') st = pychemia.code.vasp.read_poscar('tests/data/vasp_08/POSCAR_old') self.assertEqual(st.natom, 2) st = pychemia.code.vasp.read_poscar('tests/data/vasp_08/POSCAR_new') self.assertEqual(st.natom, 2) with self.assertRaises(ValueError) as context: pychemia.code.vasp.write_potcar(st, filepath=tmpdir + os.sep + 'POTCAR', basepsp='/no/existing/path') with self.assertRaises(ValueError) as context: pychemia.code.vasp.write_potcar(st, filepath=tmpdir + os.sep + 'POTCAR', basepsp='tests/data') cwd = os.getcwd() os.chdir('tests/data/vasp_07') st = pychemia.code.vasp.read_poscar('POSCAR_new') os.chdir(cwd) self.assertEqual(st.natom, 44) st = pychemia.code.vasp.read_poscar('tests/data/vasp_07/POSCAR_alt') pychemia.code.vasp.write_poscar(st, tmpdir + os.sep + 'POSCAR1') pychemia.code.vasp.write_poscar(st, tmpdir + os.sep + 'POSCAR2', direct=False) pychemia.code.vasp.write_poscar(st, tmpdir + os.sep + 'POSCAR3', newformat=False) st = pychemia.code.vasp.read_poscar(tmpdir + os.sep + 'POSCAR1') self.assertAlmostEqual(st.volume, 584.47161926043907) sym = pychemia.crystal.CrystalSymmetry(st) self.assertEqual(sym.symbol(), 'C2/c') st = pychemia.code.vasp.read_poscar(tmpdir + os.sep + 'POSCAR2') self.assertAlmostEqual(st.volume, 584.47161926043907) sym = pychemia.crystal.CrystalSymmetry(st) self.assertEqual(sym.symbol(), 'C2/c') st = pychemia.code.vasp.read_poscar(tmpdir + os.sep + 'POSCAR3') self.assertAlmostEqual(st.volume, 584.47161926043907) sym = pychemia.crystal.CrystalSymmetry(st) self.assertEqual(sym.symbol(), 'C2/c') pychemia.code.vasp.write_potcar(st, filepath=tmpdir + os.sep + 'POTCAR', basepsp='tests/data') pychemia.code.vasp.get_potcar_info(tmpdir + os.sep + 'POTCAR') shutil.rmtree(tmpdir)
24180
import copy import logging import warnings from kolibri.plugins.registry import registered_plugins logger = logging.getLogger(__name__) def __validate_config_option( section, name, base_config_spec, plugin_specs, module_path ): # Raise an error if someone tries to overwrite a base option # except for the default value. if section in base_config_spec: if name in base_config_spec[section]: raise ValueError("Cannot overwrite a core Kolibri options spec option") # Warn if a plugin tries to add an option that another plugin has already added if section in plugin_specs: if name in plugin_specs[section]: warnings.warn( "{plugin} set an option {option} in section {section} but {plugins} had already set it".format( plugin=module_path, plugins=", ".join(plugin_specs[section][name]), option=name, section=section, ) ) plugin_specs[section][name].append(module_path) else: # If not create the list for this option name # to track this and future modifications plugin_specs[section][name] = [module_path] else: # If not create the dict for the section # and the list for this option name plugin_specs[section] = {name: [module_path]} def __process_config_spec( option_spec, base_config_spec, plugin_specs, module_path, final_spec ): for section, opts in option_spec.items(): for name, attrs in opts.items(): __validate_config_option( section, name, base_config_spec, plugin_specs, module_path ) if section not in final_spec: final_spec[section] = {} final_spec[section][name] = attrs def __validate_option_default(section, name, plugin_default_overrides, module_path): # Warn if a plugin tries to add an option that another plugin has already added if section in plugin_default_overrides: if name in plugin_default_overrides[section]: warnings.warn( "{plugin} set an option default {option} in section {section} but {plugins} had already set it".format( plugin=module_path, plugins=", ".join(plugin_default_overrides[section][name]), option=name, section=section, ) ) plugin_default_overrides[section][name].append(module_path) else: # If not create the list for this option name # to track this and future modifications plugin_default_overrides[section][name] = [module_path] else: # If not create the dict for the section # and the list for this option name plugin_default_overrides[section] = {name: [module_path]} def __process_option_defaults( option_defaults, base_config_spec, plugin_default_overrides, module_path, final_spec ): for section, opts in option_defaults.items(): for name, default in opts.items(): __validate_option_default( section, name, plugin_default_overrides, module_path ) if section not in final_spec: logger.error( "Tried to set a new default in section {}, but this is not a valid section".format( section ) ) continue if name in final_spec[section]: # This is valid, so set a default # Note that we do not validation here for now, # so it is up to the user to ensure the default value # is kosher. final_spec[section][name]["default"] = default else: logger.error( "Tried to set a new default in section {}, for option {} but this is not a valid option".format( section, name ) ) def extend_config_spec(base_config_spec): plugin_specs = {} final_spec = copy.deepcopy(base_config_spec) # First process options config spec additions for plugin_instance in registered_plugins: plugin_options = plugin_instance.options_module if plugin_options and hasattr(plugin_options, "option_spec"): module_path = plugin_instance.module_path option_spec = plugin_options.option_spec __process_config_spec( option_spec, base_config_spec, plugin_specs, module_path, final_spec ) # Now process default value overrides, do this second in order to allow plugins # to override default values for other plugins! plugin_default_overrides = {} for plugin_instance in registered_plugins: plugin_options = plugin_instance.option_defaults_module if plugin_options and hasattr(plugin_options, "option_defaults"): module_path = plugin_instance.module_path option_defaults = plugin_options.option_defaults __process_option_defaults( option_defaults, base_config_spec, plugin_default_overrides, module_path, final_spec, ) return final_spec
24211
import unittest from huobi.rest.client import HuobiRestClient from huobi.rest.error import ( HuobiRestiApiError ) import os from os.path import join, dirname from dotenv import load_dotenv dotenv_path = join(dirname(dirname(dirname(dirname(__file__)))), '.env') load_dotenv(dotenv_path) class TestCommonEndpoint(unittest.TestCase): def setUp(self): access_key = os.environ['ACCESS_KEY'] secret_key = os.environ['SECRET_KEY'] self.client = HuobiRestClient( access_key=access_key, secret_key=secret_key) def tearDown(self): self.client.close() class TestCommonSymbols(TestCommonEndpoint): def test_success(self): res = self.client.symbols() self.assertEqual(res.res.status_code, 200) self.assertIn('data', res.data) self.assertIsInstance(res.data['data'], list) def test_authentication_fail(self): client = HuobiRestClient( access_key='1', secret_key='2', ) with self.assertRaises(HuobiRestiApiError): client.accounts() class TestCommonCurrencies(TestCommonEndpoint): def test_success(self): res = self.client.currencies() self.assertEqual(res.res.status_code, 200) def test_alias(self): res = self.client.currencys() self.assertEqual(res.res.status_code, 200) class TestCommonTimestamp(TestCommonEndpoint): def test_success(self): res = self.client.timestamp() self.assertEqual(res.res.status_code, 200)
24226
from django.apps import AppConfig class TextGeneratorConfig(AppConfig): name = 'text_generator'
24245
from uncertainties import ufloat from utilities import min_value, max_value def main(): print 'Plate motion rate parallel to section' print plate_motion() print 'Shortening (including ductile) from bed-length' print bed_length_shortening() print 'Estimated total shortening accomodated by OOSTS' print oost_shortening() print 'Shortening accommodated by seaward branch of OOSTS' print seaward_shortening() print 'Percentage of OOST shortening' print total_oost_percentage() print 'Landward Percentage' print landward_percentage() print 'Seaward Percentage' print seaward_percentage() def bed_length_balancing(): """Summed fault heaves from bed-length balancing.""" present_length = 32 # 2km error from range in restored pin lines + 10% interpretation error restored_length = ufloat(82, 10) shortening = restored_length - present_length return shortening def bed_length_shortening(): """Shortening estimate including volume loss.""" alpha = ufloat(0.35, 0.1) heaves = bed_length_balancing() return heaves * (1 + alpha) def age(): """ Age of the oldest in-sequence structures from Strasser, 2009. Returns: -------- avg_age : A ufloat with an assumed 2 sigma uncertainty min_age : The "hard" minimum from Strasser, et al, 2009 max_age : The "hard" maximum from Strasser, et al, 2009 """ min_age = 1.95 # Ma max_age = 2.512 # Ma # Strasser perfers an older age within this range, so we model this as # 2.3 +/- 0.2, but provide mins and maxs avg_age = ufloat(2.3, 0.2) # Ma return avg_age, min_age, max_age def plate_motion(): """ Plate motion rate (forearc relative to oceanic plate) _parallel_ _to_ _section_ (Not full plate vector!) based on elastic block modeling (Loveless&Meade, 2010). Returns: -------- rate : A ufloat in mm/yr with a 2 sigma error """ # See /data/MyCode/VariousJunk/loveless_meade_block_model_slip_vector.py # for details of derivation... Uses block segment nearest study area instead # of derived euler pole. # I'm assuming that Loveless's reported errors are 2 sigma... section_parallel_rate = ufloat(42.9, 2.1) return section_parallel_rate def total_convergence(): """ Total shortening parallel to section from plate motion and ages. Returns: -------- shortening : A ufloat representing the plate motion integrated over the age of deformation with a 2 sigma confidence interal. min_shortening : A "hard" minimum using the uncertainty in the plate motion and minimum constraints on the age. max_shortening : A "hard" maximum using the uncertainty in the plate motion and maximum constraints on the age. """ avg_age, min_age, max_age = age() rate = plate_motion() shortening = rate * avg_age min_shortening = min_value(min_age * rate) max_shortening = max_value(max_age * rate) return shortening, min_shortening, max_shortening def oost_shortening(): """ Shortening on the out-of-sequence thrust system based on integrated plate convergence minus the shortening predicted in the outer wedge from line balancing results. Returns: -------- shortening : A ufloat with a 2 sigma error estimate """ total_shortening, min_total, max_total = total_convergence() return total_shortening - bed_length_shortening() def seaward_shortening(): """Shortening accomodated on the seaward branch of the OOSTS based on comparing the total (`oost_shortening()`) shortening with the shortening predicted on the landward branch from forearc uplift. Returns: -------- shortening : a ufloat with 2 sigma error in kilometers. """ from process_bootstrap_results import shortening_parallel_to_section landward_shortening = shortening_parallel_to_section() / 1000 return oost_shortening() - landward_shortening def total_oost_percentage(): """ Percentage of shortening accommdated by out-of-sequence thrusting during the development of the present-day outer wedge. Returns: -------- percentage : A ufloat with a 2 sigma error representing a unitless ratio (e.g. multiply by 100 to get percentage). """ total_shortening, min_total, max_total = total_convergence() return oost_shortening() / total_shortening def seaward_percentage(): """ Percentage of total plate convergence accomodated by the seaward branch of the OOSTS during its period of activity. Returns: -------- percentage : A ufloat with a 2 sigma error representing a unitless ratio (e.g. multiply by 100 to get percentage). """ # Duration in myr from Strasser, 2009 duration = 1.95 - 1.24 rate = plate_motion() total = duration * rate return seaward_shortening() / total def landward_percentage(): """ Maximum percentage of total plate convergence accomodated by the landward branch of the OOSTS during its period of activity. Returns: -------- percentage : A ufloat with a 2 sigma error representing a unitless ratio (e.g. multiply by 100 to get percentage). """ from process_bootstrap_results import shortening_parallel_to_section landward_shortening = shortening_parallel_to_section() / 1000 duration = ufloat(0.97, 0.07) - ufloat(0.25, 0.25) rate = plate_motion() total = duration * rate return landward_shortening / total if __name__ == '__main__': main()
24251
from unittest.mock import ANY, Mock, patch import pytest from streamlit_server_state.server_state_item import ServerStateItem @pytest.fixture def patch_is_rerunnable(): with patch( "streamlit_server_state.server_state_item.is_rerunnable" ) as mock_is_rerunnable: mock_is_rerunnable.return_value = True yield def test_bound_sessions_are_requested_to_rerun_when_value_is_set_or_update( patch_is_rerunnable, ): session = Mock() item = ServerStateItem() item.bind_session(session) session.request_rerun.assert_not_called() item.set_value(42) session.request_rerun.assert_has_calls([ANY]) item.set_value(100) session.request_rerun.assert_has_calls([ANY, ANY]) def test_all_bound_sessions_are_requested_to_rerun(patch_is_rerunnable): session1 = Mock() session2 = Mock() item = ServerStateItem() item.bind_session(session1) item.bind_session(session2) session1.request_rerun.assert_not_called() session2.request_rerun.assert_not_called() item.set_value(42) session1.request_rerun.assert_has_calls([ANY]) session2.request_rerun.assert_has_calls([ANY]) item.set_value(100) session1.request_rerun.assert_has_calls([ANY, ANY]) session2.request_rerun.assert_has_calls([ANY, ANY]) def test_bound_sessions_are_not_duplicate(patch_is_rerunnable): session = Mock() item = ServerStateItem() item.bind_session(session) item.bind_session(session) # Bind the sessoin twice session.request_rerun.assert_not_called() item.set_value(42) session.request_rerun.assert_called_once() def test_bound_sessions_are_not_requested_to_rerun_when_the_set_value_is_not_changed( patch_is_rerunnable, ): session = Mock() item = ServerStateItem() item.bind_session(session) session.request_rerun.assert_not_called() item.set_value(42) session.request_rerun.assert_called_once() item.set_value(42) session.request_rerun.assert_called_once() # No new calls def test_bound_sessions_are_requested_to_rerun_when_a_same_but_mutated_object_is_set( patch_is_rerunnable, ): session = Mock() item = ServerStateItem() item.bind_session(session) session.request_rerun.assert_not_called() item.set_value({}) session.request_rerun.assert_has_calls([ANY]) value = item.get_value() value["foo"] = 42 item.set_value(value) session.request_rerun.assert_has_calls([ANY, ANY])
24269
import dns import dns.resolver import dns.rdatatype def dns_resolve(domain: str) -> list: addrs = [] resolver = dns.resolver.Resolver(configure=False) # Default to Google DNS resolver.nameservers = ['8.8.8.8', '8.8.4.4'] try: for answer in resolver.resolve(domain, 'A').response.answer: for item in answer: if item.rdtype == dns.rdatatype.A: addrs.append(item.address) except dns.resolver.NoAnswer: pass try: for answer in resolver.resolve(domain, 'AAAA').response.answer: for item in answer: if item.rdtype == dns.rdatatype.AAAA: addrs.append(item.address) except dns.resolver.NoAnswer: pass return addrs
24271
import numpy as np def pline(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py u = ((x - x1) * px + (y - y1) * py) / max(1e-9, float(dd)) dx = x1 + u * px - x dy = y1 + u * py - y return dx * dx + dy * dy def psegment(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py u = max(min(((x - x1) * px + (y - y1) * py) / float(dd), 1), 0) dx = x1 + u * px - x dy = y1 + u * py - y return dx * dx + dy * dy def plambda(x1, y1, x2, y2, x, y): px = x2 - x1 py = y2 - y1 dd = px * px + py * py return ((x - x1) * px + (y - y1) * py) / max(1e-9, float(dd)) def postprocess(lines, scores, threshold=0.01, tol=1e9, do_clip=False): nlines, nscores = [], [] for (p, q), score in zip(lines, scores): start, end = 0, 1 for a, b in nlines: # nlines: Selected lines. if ( min( max(pline(*p, *q, *a), pline(*p, *q, *b)), max(pline(*a, *b, *p), pline(*a, *b, *q)), ) > threshold ** 2 ): continue lambda_a = plambda(*p, *q, *a) lambda_b = plambda(*p, *q, *b) if lambda_a > lambda_b: lambda_a, lambda_b = lambda_b, lambda_a lambda_a -= tol lambda_b += tol # case 1: skip (if not do_clip) if start < lambda_a and lambda_b < end: continue # not intersect if lambda_b < start or lambda_a > end: continue # cover if lambda_a <= start and end <= lambda_b: start = 10 break # case 2 & 3: if lambda_a <= start and start <= lambda_b: start = lambda_b if lambda_a <= end and end <= lambda_b: end = lambda_a if start >= end: break if start >= end: continue nlines.append(np.array([p + (q - p) * start, p + (q - p) * end])) nscores.append(score) return np.array(nlines), np.array(nscores)
24277
import os from typing import List, Optional import pickle import numpy as np from utilities import augment_long_text, tokenize, tokenize_long_text, to_chars, align from config import Config as cf PAD = 0 # TODO: choose appropriate index for these special chars UNK = 1 DEFAULT = {'PAD': PAD, 'UNK': UNK} DEFAULT_C = {'': PAD, 'UNK': UNK} def word_lookup(w: str, table: dict, default=None): """ Translate a word into a value by looking up from a dict. First priority is case-sensitive, then the next priority is case-insensitive. In case the word does not exist in the dict, a KeyError exception is raised or a default value is returned. Args: w: word to translate table: a dict to translate the word by looking up default: If not None, this is the value to return in case the word does not exist in the table. Returns: Translated value for the word by looking up the word into table. """ if w in table: # Match word in case-sentitive mode is the first priority return table[w] elif w.lower() in table: # Then, case-insensitive return table[w.lower()] else: if default is not None: return default else: raise KeyError('Key `{}` not found'.format(w)) def char_lookup(c: str, table: dict, default=None): """ Translate a char into a value by looking up from a dict. Args: c: char to translate table: a dict to translate the char by looking up default: If not None, this is the value to return in case the char does not exist in the table. Returns: Translated value for the char by looking up the char into table. """ if c in table: # Match word in case-sentitive mode is the first priority return table[c] else: if default is not None: return default else: raise KeyError('Key `{}` not found'.format(c)) class Vocabulary(object): def __init__(self, wv: dict, char_vocab: set): offset = len(DEFAULT) w2id = {w: idx+offset for idx, w in enumerate(wv.keys())} w2id.update(DEFAULT) id2w = {i:w for w, i in w2id.items()} c2id = {c: idx+offset for idx, c in enumerate(list(char_vocab))} c2id.update(DEFAULT_C) id2c = {i:c for c, i in c2id.items()} self.wv = wv self.emb_size = len(wv['the']) # most common word that absolutely appears in the dict self.w2id = w2id # mapping word to index self.id2w = id2w # mapping index to word self.c2id = c2id # mapping char to index self.id2c = id2c # mapping index to char def vectorize(self, tokens: List[str], length: int): """ Convert list of text tokens into list of indices """ vect = [word_lookup(t, self.w2id, default=UNK) for t in tokens] vect = vect[:length] if len(vect) < length: vect.extend([PAD]*(length-len(vect))) return vect def vectorize_c(self, chars_list: List[List[str]], length: int, w_length: int): """ Convert list of list of chars into list of index-based representation """ vects = [] PAD_VECT = [PAD]*w_length for chars in chars_list: vects.append([char_lookup(c, self.c2id, default=UNK) for c in chars]) vects = vects[:length] while len(vects) < length: vects.append(PAD_VECT) return vects def get_embed_weights(self): """ Build weights for a word embedding layer. Note that pre-trained word embedding is used, so no need to parameterize embed_size. Args: emb_size: Dim of the vectors Returns: [N, emb_size] matrix, where N is number of VOCAB + 1 (for pad) """ emb_size = len(self.wv[list(self.wv.keys())[0]]) weights = np.zeros((len(self.id2w), emb_size)) for i, tok in self.id2w.items(): if tok in self.wv: weights[i] = self.wv[tok] else: weights[i] = np.random.uniform(0.0, 1.0, [emb_size]) return weights def get_char_embed_weights(self, emb_size=64): """ Initialize weights for char embedding layer. Args: emb_size: Dim of the vectors Returns: [len(id2c), emb_size] matrix """ weights = emb = np.random.uniform(0.0, 1.0, size=(len(self.id2c), emb_size)) return weights @property def vocab_size(self): return len(self.w2id) def __getitem__(self, idx): """ Get vector for a word. """ if not isinstance(idx, str): raise ValueError('Index must be a string') return word_lookup(idx, self.wv, default=None) def __contains__(self, idx): if not isinstance(idx, str): raise ValueError('Index must be a string') return idx in self.wv or idx.lower() in self.wv class Span(object): def __init__(self, start_idx: int, end_idx: int): self.start = start_idx # index of the start token in context self.end = end_idx # index of the end token in context @classmethod def allocate(cls, anchors: List[int], start_char: int, end_char: int): start_idx = 0 while anchors[start_idx] < start_char: start_idx += 1 if anchors[start_idx] > start_char: start_idx -= 1 end_idx = start_idx while end_idx < len(anchors) and anchors[end_idx] <= end_char: end_idx += 1 end_idx -= 1 return Span(start_idx, end_idx) def __str__(self): return "({}, {})".format(self.start, self.end) class Answer(object): def __init__(self, answer_text: str, answer_toks: List[str], span: Span, answer_start: int): self.answer_text = answer_text # original answer text in JSON self.answer_toks = answer_toks # tokens of the original answer text self.answer_chars = to_chars(answer_toks, cf.WORD_LEN, cf.PAD_CHAR) # list of chars of the answer text self.span = span # The span (token-based index) of the answer in context self.answer_start = answer_start # start character in original answer text def vectorize(self, vocab: Vocabulary): self.answer: List[int] = vocab.vectorize(self.answer_toks, cf.ANSWER_LEN) self.answer_c: List[List[int]] = vocab.vectorize_c(self.answer_chars, cf.ANSWER_LEN, cf.WORD_LEN) @classmethod def parse_json(cls, answers_js: List[dict], context: str, context_toks: List[str], anchors: List[int]): answers = [] for ans in answers_js: ans_text = ans['text'] ans_start = ans['answer_start'] ans_toks = tokenize(ans_text) # Identify the span from context, ans_text & start index span = Span.allocate(anchors, ans_start, ans_start+len(ans_text)-1) answers.append(Answer(ans_text, ans_toks, span, ans_start)) return answers class Question(object): def __init__(self, question_text: str, ques_id: str, question: List[str], answers: List[Answer], plausible_answers: List[Answer]): self.question_text = question_text # original question text in JSON self.question_toks = question # tokens of the original question text self.question_chars = to_chars(question, cf.WORD_LEN, cf.PAD_CHAR) # list of chars of the question text self.answers = answers # list of Answer object of the question self.ques_id = ques_id # id of the question in JSON self.plausible_answers = plausible_answers self.paragraph = None # handle to the parent paragraph def set_paragraph(self, paragraph): self.paragraph = paragraph def vectorize(self, vocab: Vocabulary): self.question: List[int] = vocab.vectorize(self.question_toks, cf.QUERY_LEN) self.question_c: List[List[int]] = vocab.vectorize_c(self.question_chars, cf.QUERY_LEN, cf.WORD_LEN) for answer in self.answers: answer.vectorize(vocab) class Paragraph(object): def __init__(self, raw_context: str, context_text: str, context_toks: List[str], questions: List[Question], para_idx: int, anchors: List[int]): self.raw_context = raw_context # original context text in JSON self.context_text = context_text # augmented from original context text with SPACES to guide the tokenization self.context_toks = context_toks # tokens of the context text self.context_chars = to_chars(context_toks, cf.WORD_LEN, cf.PAD_CHAR) # chars of the context self.questions = questions # list of Question objects self.local_word_vocab = self._build_local_word_vocab() self.local_char_vocab = self._build_local_char_vocab() self.para_idx = para_idx # Just for management & debug. Not used in experiment. self.anchors = anchors def _build_local_word_vocab(self): local_vocab = set() local_vocab = local_vocab.union(set(self.context_toks)) for question in self.questions: local_vocab = local_vocab.union(set(question.question_toks)) for answer in question.answers + question.plausible_answers: local_vocab = local_vocab.union(set(answer.answer_toks)) return local_vocab def _build_local_char_vocab(self): def char_set(tokens): chars = set() for tok in tokens: chars = chars.union(set(tok)) return chars char_vocab = set() char_vocab = char_vocab.union(char_set(self.context_chars)) for question in self.questions: char_vocab = char_vocab.union(char_set(question.question_chars)) for answer in question.answers + question.plausible_answers: char_vocab = char_vocab.union(char_set(answer.answer_chars)) return char_vocab @classmethod def parse_json(cls, para_js: dict, para_idx: int): # Accumulate all answers' tokens first all_para_answers = [] for q in para_js['qas']: if 'answers' in q: all_para_answers.extend([ans for ans in q['answers']]) if 'plausible_answers' in q: all_para_answers.extend([ans for ans in q['plausible_answers']]) # Improve the context for better tokenization raw_context = para_js['context'] # context = augment_long_text(para_js['context'], all_para_answers) context = raw_context context_toks = tokenize_long_text(context) context_toks = [t.strip(' ') for t in context_toks] anchors = align(raw_context, context_toks) questions = [] for q in para_js['qas']: question_text = q['question'] q_toks = tokenize(question_text) ques_id = q['id'] answers = Answer.parse_json(q['answers'], raw_context, context_toks, anchors) if 'answers' in q else [] plausible_answers = Answer.parse_json(q['plausible_answers'], raw_context, context_toks, anchors) if 'plausible_answers' in q else [] questions.append(Question(question_text, ques_id, q_toks, answers, plausible_answers)) para = Paragraph(raw_context, context, context_toks, questions, para_idx, anchors) for ques in questions: ques.set_paragraph(para) return para def vectorize(self, vocab): """ Vectorize pargraph context, question text & answer text based on given vocab. """ self.context: List[int] = vocab.vectorize(self.context_toks, cf.CONTEXT_LEN) self.context_c: List[List[int]] = vocab.vectorize_c(self.context_chars, cf.CONTEXT_LEN, cf.WORD_LEN) for question in self.questions: question.vectorize(vocab) def exact_match(gt_s, gt_e, pr_s, pr_e): """ Evaluate exact match of a predicted span over a ground truth span. Args: gt_s: index of the ground truth start position gt_e: index of the ground truth end position pr_s: index of the predicted start position pr_e: index of the predicted end position """ return gt_s == pr_s and gt_e == pr_e def f1(gt_s, gt_e, pr_s, pr_e): """ Evaluate F1 score of a predicted span over a ground truth span. Args: gt_s: index of the ground truth start position gt_e: index of the ground truth end position pr_s: index of the predicted start position pr_e: index of the predicted end position """ gt = {idx for idx in range(gt_s, gt_e+1)} pr = {idx for idx in range(pr_s, pr_e+1)} intersection = gt.intersection(pr) prec = 1. * len(intersection) / len(pr) rec = 1. * len(intersection) / len(gt) f1_score = (2. * prec * rec) / (prec+rec) if prec+rec != 0. else 0. return f1_score def get_score(metric, gt_starts, gt_ends, pred_start, pred_end): """ Args: metric: a metric function to calculate the score (exact_match or f1_score) gt_starts: (list) an array of start indices of the available answers gt_ends: (list) an array of end indices of the available answers pred_start: (int) predicted start index returned by a model pred_end: (int) predicted end index returned by a model Returns: The best score of the metric evaluated on multiple answer spans. """ scores = [] for gt_s, gt_e in zip(gt_starts, gt_ends): scores.append(metric(gt_s, gt_e, pred_start, pred_end)) return 1.0 * np.max(scores) class SquadData(object): """ To save the whole object to pickle file: ```python data.save('data/squad_processed.pkl') ``` To load the whole object from pickle file, and extract train & validation data ```python data = SquadData.load('data/squad_processed.pkl') ques_ids_train, X_train, y_train = data.train_data() ques_ids_valid, X_valid, y_valid = data.validation_data() ``` To save structured data to binary files for fast loading: ```python data.save(np_path='data/numpy') ``` To load numpy data from binary files: ```python word_vectors, char_vectors, ques_ids_train, X_train, y_train, ques_ids_valid, X_valid, y_valid = SquadData.load(np_path='data/numpy') ``` """ def __init__(self, train_paragraphs: List[Paragraph], dev_paragraphs: List[Paragraph], vocab: Vocabulary, squad_words: set, squad_chars: set): """ Initializer. Args: train_paragraphs: list of Paragraph objects from train data dev_paragraphs: list of Paragraph objects from dev data vocab: Vocabulary object which store vectors of words appearing in Squad data squad_words: set of all tokens appearing in Squad data (context, question text, answer text). Note that some tokens may not appear in vocab. They are treated as unknown words. Note that this is a set of words, so it must not be used to map words to indices. Use Vocabulary.w2id instead. squad_chars: set of all characters appearing in Squad data (context, question text, answer text). """ self.train_paragraphs = train_paragraphs self.dev_paragraphs = dev_paragraphs self.vocab = vocab self.squad_words = squad_words self.squad_chars = squad_chars def summary(self): print('Num of train paragraphs: {}'.format(len(self.train_paragraphs))) print('Num of dev paragraphs: {}'.format(len(self.dev_paragraphs))) print('Num words in vocab: {}'.format(self.vocab.vocab_size)) print('Num unique words: {}'.format(len(self.squad_words))) print('Num unique chars: {}'.format(len(self.squad_chars))) unknown_words = [w for w in self.squad_words if w not in self.vocab] print('Num of unknown words: {}'.format(len(unknown_words))) def _generate_data(self, paragraphs, dataset: str ='train'): ques_ids = [] contextw_inp, queryw_inp, contextc_inp, queryc_inp = [], [], [], [] p1, p2, start, end = [], [], [], [] long_count = 0 for para in paragraphs: for ques in para.questions: if dataset == 'train': for ans in ques.answers: if ans.span.start >= cf.CONTEXT_LEN or ans.span.end >= cf.CONTEXT_LEN: # print('ques.ques_id:', ques.ques_id, ',', 'ans.span.start, end:', ans.span.start, ',', ans.span.end) long_count += 1 continue ques_ids.append(ques.ques_id) contextw_inp.append(para.context) queryw_inp.append(ques.question) contextc_inp.append(para.context_c) queryc_inp.append(ques.question_c) vect = np.zeros(cf.CONTEXT_LEN, dtype=np.float16) vect[ans.span.start] = 1. p1.append(vect) vect = np.zeros(cf.CONTEXT_LEN, dtype=np.float16) vect[ans.span.end] = 1. p2.append(vect) start.append(ans.span.start) end.append(ans.span.end) else: # dev dataset ques_ids.append(ques.ques_id) contextw_inp.append(para.context) queryw_inp.append(ques.question) contextc_inp.append(para.context_c) queryc_inp.append(ques.question_c) start_list = [] end_list = [] for ans in ques.answers: if ans.span.start >= cf.CONTEXT_LEN or ans.span.end >= cf.CONTEXT_LEN: long_count += 1 continue start_list.append(ans.span.start) end_list.append(ans.span.end) # p1, p2 are ignored in dev set start.append(start_list) end.append(end_list) print('There are {} long answers'.format(long_count)) ques_ids = np.array(ques_ids) contextw_inp, queryw_inp, contextc_inp, queryc_inp = np.array(contextw_inp), np.array(queryw_inp), np.array(contextc_inp), np.array(queryc_inp) p1, p2, start, end = np.array(p1), np.array(p2), np.array(start), np.array(end) return (ques_ids, [contextw_inp, queryw_inp, contextc_inp, queryc_inp], [p1, p2, start, end]) def train_data(self): return self._generate_data(self.train_paragraphs) def validation_data(self): return self._generate_data(self.dev_paragraphs, dataset='dev') def search_paragraph(self, para_idx: int, dataset: str ='train'): """ Search for paragraph by index. This function is used for debug only. """ paragraphs = self.train_paragraphs if dataset == 'train' else self.dev_paragraphs for para in paragraphs: if para.para_idx == para_idx: return para return None def search_question(self, ques_id: str, dataset: str ='train'): """ Search for question by ques_id. This function is used for debug only. """ paragraphs = self.train_paragraphs if dataset == 'train' else self.dev_paragraphs for para in paragraphs: for ques in para.questions: if ques.ques_id == ques_id: return ques return None @classmethod def evaluate(cls, gt_start_list, gt_end_list, pred_starts, pred_ends): """ Evaluate ExactMatch score & F1 score of predictions on a validation set. Args: gt_start_list: list of start indices of multiple ground-truth answer spans gt_start_list: list of end indices of multiple ground-truth answer spans pred_starts: list of predicted start indices pred_ends: list of predicted end indices Returns: A hash with 2 keys: 'exact_match' & 'f1' """ em_score = 0 f1_score = 0 total = 0 for gt_starts, gt_ends, pred_start, pred_end in zip(gt_start_list, gt_end_list, pred_starts, pred_ends): if len(gt_starts) > 0: em_score += get_score(exact_match, gt_starts, gt_ends, pred_start, pred_end) f1_score += get_score(f1, gt_starts, gt_ends, pred_start, pred_end) # If gt_starts is empty, the ground-truth answer is over the limit length of the input text. # We give penalty for that case, that means we give 0 to EM & F1 while we increase the total. total += 1 em_score = 100. * em_score / total f1_score = 100. * f1_score / total em_score, f1_score return { 'exact_match': em_score, 'f1': f1_score } def save(self, filepath=None, np_path=None): def save_data(prefix, ques_ids, contextw, queryw, contextc, queryc, p1, p2, start, end): np.save(np_path + '/%s_ques_ids.npy' % prefix, ques_ids) np.save(np_path + '/%s_contextw.npy' % prefix, contextw) np.save(np_path + '/%s_queryw.npy' % prefix, queryw) np.save(np_path + '/%s_contextc.npy' % prefix, contextc) np.save(np_path + '/%s_queryc.npy' % prefix, queryc) np.save(np_path + '/%s_p1.npy' % prefix, p1) np.save(np_path + '/%s_p2.npy' % prefix, p2) np.save(np_path + '/%s_start.npy' % prefix, start) np.save(np_path + '/%s_end.npy' % prefix, end) if filepath: # Save the SquadData object to pickle file (slow) print('Saving squad data to {}...'.format(filepath)) with open(filepath, 'wb') as f: pickle.dump(self, f) else: # Save the binary data to *.npy files (fast) print('Accumulating train & validation arrays from the structure...') t_ques_ids, X_train, y_train = self.train_data() v_ques_ids, X_valid, y_valid = self.validation_data() t_contextw, t_queryw, t_contextc, t_queryc = X_train t_p1, t_p2, t_start, t_end = y_train v_contextw, v_queryw, v_contextc, v_queryc = X_valid v_p1, v_p2, v_start, v_end = y_valid if not os.path.exists(np_path): os.makedirs(np_path) print('Saving word vectors into numpy files...') word_vectors = self.vocab.get_embed_weights() char_vectors = self.vocab.get_char_embed_weights() np.save(np_path + '/word_vectors.npy', word_vectors) np.save(np_path + '/char_vectors.npy', char_vectors) print('Saving train arrays into numpy files...') save_data( 'train', t_ques_ids, t_contextw, t_queryw, t_contextc, t_queryc, t_p1, t_p2, t_start, t_end) print('Saving validation arrays into numpy files...') save_data( 'val', v_ques_ids, v_contextw, v_queryw, v_contextc, v_queryc, v_p1, v_p2, v_start, v_end) @classmethod def load(cls, filepath=None, np_path=None): def load_data(prefix): ques_ids = np.load(np_path + '/%s_ques_ids.npy' % prefix) contextw = np.load(np_path + '/%s_contextw.npy' % prefix) queryw = np.load(np_path + '/%s_queryw.npy' % prefix) contextc = np.load(np_path + '/%s_contextc.npy' % prefix) queryc = np.load(np_path + '/%s_queryc.npy' % prefix) p1 = np.load(np_path + '/%s_p1.npy' % prefix) p2 = np.load(np_path + '/%s_p2.npy' % prefix) start = np.load(np_path + '/%s_start.npy' % prefix) end = np.load(np_path + '/%s_end.npy' % prefix) return ques_ids, contextw, queryw, contextc, queryc, p1, p2, start, end if filepath: # Load SquadData object from pickle file (slow) print('Loading squad data from pickle file {}...'.format(filepath)) with open(filepath, 'rb') as f: return pickle.load(f) else: # Load binary data from *.npy files (fast) print('Loading word vectors from numpy files...') word_vectors = np.load(np_path + '/word_vectors.npy') char_vectors = np.load(np_path + '/char_vectors.npy') print('Loading train arrays from numpy files...') t_ques_ids, t_contextw, t_queryw, t_contextc, t_queryc, t_p1, t_p2, t_start, t_end = load_data('train') print('Loading validation arrays from numpy files...') v_ques_ids, v_contextw, v_queryw, v_contextc, v_queryc, v_p1, v_p2, v_start, v_end = load_data('val') return [ word_vectors, char_vectors, t_ques_ids, [t_contextw, t_queryw, t_contextc, t_queryc], [t_p1, t_p2, t_start, t_end], v_ques_ids, [v_contextw, v_queryw, v_contextc, v_queryc], [v_p1, v_p2, v_start, v_end] ]
24284
import configparser as parser import random class config: # load the configuration file def __init__(self, config_filename): self.load_config(config_filename) def load_config(self, config_filename): # create a config parser config = parser.ConfigParser() config.optionxform = str # read the file config.read(config_filename) # read the values dictionary = {} for section in config.sections(): print('Found section: ' + section) dictionary[section] = {} for option in config.options(section): dictionary[section][option] = config.get(section, option).splitlines() self.phrases = dictionary['phrases'] if 'defaults' in dictionary and 'subjects' in dictionary: self.has_subjects = True self.defaults = dictionary['defaults'] self.subjects = dictionary['subjects'] for subject in self.subjects: self.subjects[subject] = self.subjects[subject][0].split(',') print('loaded defaults and subjects') else: self.has_subjects = False def create_subjects(self, number = 0): if number == 0: number = int(self.defaults['num_subjects'][0]) if self.has_subjects: first_subject = random.choice(list(self.subjects)) subjects = [first_subject] for i in range(1,number): subjects.append(self.get_adjacent_subject(subjects[i-1])) self.current_subjects = subjects else: pass def get_adjacent_subject(self, subject): node = self.subjects[subject] return random.choice(node) def get_subject(self): return random.choice(self.current_subjects) def get_phrase(self, key): try: string_to_return = random.choice(self.phrases[key]) if string_to_return == 'none': return '' else: return string_to_return except: print('Could not find phrases with key ' + key) return ''
24286
import sys import gtk from datetime import datetime import gobject from threading import Thread class uiSignalHelpers(object): def __init__(self, *args, **kwargs): super(uiSignalHelpers, self).__init__(*args, **kwargs) #print 'signal helpers __init__' def callback(self, *args, **kwargs): super(uiSignalHelpers, self).callback(*args, **kwargs) #print 'signal helpers callback' def gtk_widget_show(self, w, e = None): w.show() return True def gtk_widget_hide(self, w, e = None): w.hide() return True def information_message(self, widget, message, cb = None): self.attention = "INFO: %s" % message messagedialog = gtk.MessageDialog(widget, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_INFO, gtk.BUTTONS_OK, message) messagedialog.connect("delete-event", lambda w, e: w.hide() or True) if cb: messagedialog.connect("response", cb) messagedialog.set_default_response(gtk.RESPONSE_OK) messagedialog.show() messagedialog.present() return messagedialog def error_message(self, widget, message): self.attention = "ERROR: %s" % message messagedialog = gtk.MessageDialog(widget, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_ERROR, gtk.BUTTONS_CANCEL, message) messagedialog.run() messagedialog.destroy() def warning_message(self, widget, message): self.attention = "WARNING: %s" % message messagedialog = gtk.MessageDialog(widget, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_WARNING, gtk.BUTTONS_OK_CANCEL, message) messagedialog.show() messagedialog.present() messagedialog.run() messagedialog.destroy() def question_message(self, widget, message, cb = None): self.attention = "QUESTION: %s" % message messagedialog = gtk.MessageDialog(widget, gtk.DIALOG_MODAL | gtk.DIALOG_DESTROY_WITH_PARENT, gtk.MESSAGE_QUESTION, gtk.BUTTONS_YES_NO, message) messagedialog.connect("delete-event", lambda w, e: w.hide() or True) if cb: messagedialog.connect("response", cb) messagedialog.set_default_response(gtk.RESPONSE_YES) messagedialog.show() messagedialog.present() return messagedialog def interval_dialog(self, message): if not self.interval_dialog_showing: if not self.timetracker_window.is_active(): self.timetracker_window.show() self.timetracker_window.present() self.interval_dialog_showing = True return self.question_message(self.timetracker_window, message, self.on_interval_dialog) return None def stop_interval_dialog(self, message): if not self.stop_interval_dialog_showing: if not self.timetracker_window.is_active(): self.timetracker_window.show() self.timetracker_window.present() self.stop_interval_dialog_showing = True return self.information_message(self.timetracker_window, message, self.on_stopped) return None def set_custom_label(self, widget, text): #set custom label on stock button Label = widget.get_children()[0] Label = Label.get_children()[0].get_children()[1] Label = Label.set_label(text) def window_state(self, widget, state): self.timetracker_window_state = state.new_window_state class uiSignals(uiSignalHelpers): def __init__(self, *args, **kwargs): super(uiSignals, self).__init__(*args, **kwargs) #these are components defined inside the ui file #print 'signals __init__' self.preferences_window.connect('delete-event', lambda w, e: w.hide() or True) self.timetracker_window.connect('delete-event', lambda w, e: w.hide() or True) self.timetracker_window.connect('destroy', lambda w, e: w.hide() or True) self.timetracker_window.connect("window-state-event", self.window_state) self.about_dialog.connect("delete-event", lambda w, e: w.hide() or True) self.about_dialog.connect("response", lambda w, e: w.hide() or True) self.notes_textview.connect('key_press_event', self.on_textview_ctrl_enter) def callback(self, *args, **kwargs): #stub super(uiSignals, self).callback(*args, **kwargs) #executed after init, hopefully this will let me inject interrupts #print 'signals callback' self.icon.connect('activate', self.left_click) self.icon.connect("popup-menu", self.right_click) if sys.platform == "win32": from gtkwin32 import GTKWin32Ext self.timetracker_window.realize() self.win32ext = GTKWin32Ext(self.timetracker_window) self.win32ext.add_notify_icon() def before_init(self): #stub for later #print 'signals before init' pass def after_init(self): #init any other callback we can't setup in the actual init phase #print 'signals after init' self.project_combobox_handler = self.project_combobox.connect('changed', self.on_project_combobox_changed) self.task_combobox_handler = self.task_combobox.connect('changed', self.on_task_combobox_changed) def on_show_about_dialog(self, widget): self.about_dialog.show() def on_interval_dialog(self, dialog, a): #interval_dialog callback if a == gtk.RESPONSE_NO: self.refresh_and_show() else: #keep the timer running self.running = True self.current_selected_project_id = self.last_project_id self.current_selected_task_id = self.last_task_id self.current_notes = self.get_notes(self.last_notes) self.current_hours = "%0.02f" % round(float(self.last_hours) + float(self.interval), 2) self.current_text = self.last_text self.current_entry_id = self.last_entry_id entry = self.harvest.update(self.current_entry_id, {#append to existing timer 'notes': self.current_notes, 'hours': self.current_hours, 'project_id': self.current_project_id, 'task_id': self.current_task_id }) self.refresh_and_show() self.timetracker_window.hide() #hide timetracker and continue task dialog.destroy() self.attention = None self.interval_dialog_showing = False def on_textview_ctrl_enter(self, widget, event): ''' submit clicked event on ctrl+enter in notes textview ''' if event.state == gtk.gdk.CONTROL_MASK and \ gtk.gdk.keyval_name(event.keyval) == "Return": self.submit_button.emit('clicked') def on_stopped(self, dialog): if not self.timetracker_window.is_active(): self.timetracker_window.show() self.timetracker_window.present() dialog.destroy() self.attention = None self.stop_interval_dialog_showing = False def on_save_preferences_button_clicked(self, widget): if self.running: #if running it will turn off, lets empty the comboboxes #stop the timer #self.toggle_current_timer(self.current_entry_id) #maybe add pref option to kill timer on pref change? if self.interval_dialog_instance: self.interval_dialog_instance.hide() #hide the dialog self.stop_and_refactor_time() self.get_prefs() if self.connect_to_harvest(): self.preferences_window.hide() self.timetracker_window.show() self.timetracker_window.present() def on_task_combobox_changed(self, widget): new_idx = widget.get_active() if new_idx != -1: if new_idx != self.current_selected_task_idx: #-1 is sent from pygtk loop or something self.current_selected_task_id = self.get_combobox_selection(widget) self.current_selected_task_idx = new_idx self.refresh_comboboxes() def on_project_combobox_changed(self, widget): self.current_selected_project_id = self.get_combobox_selection(widget) new_idx = widget.get_active() if new_idx != -1: #reset task when new project is selected self.current_selected_project_idx = new_idx self.current_selected_task_id = None self.current_selected_task_idx = 0 self.refresh_comboboxes() def on_show_preferences(self, widget): self.preferences_window.show() self.preferences_window.present() def on_away_from_desk(self, widget): #toggle away state if self.running: self.away_from_desk = True if not self.away_from_desk else False def on_check_for_updates(self, widget): pass def on_top(self, widget): self.always_on_top = False if self.always_on_top else True self.timetracker_window.set_keep_above(self.always_on_top) def on_submit_button_clicked(self, widget): self.away_from_desk = False self.attention = None self.append_add_entry() self.set_textview_text(self.notes_textview, "") self.notes_textview.grab_focus() def on_stop_timer(self, widget): self.stop_and_refactor_time() def on_quit(self, widget): if self.running and self.harvest: self.harvest.toggle_timer(self.current_entry_id) gtk.main_quit() def refresh_and_show(self): self.set_entries() self.timetracker_window.show() self.timetracker_window.present() self.notes_textview.grab_focus() def on_refresh(self, widget): self.refresh_and_show() def left_click(self, widget): self.refresh_and_show() def right_click(self, widget, button, time): #create popup menu menu = gtk.Menu() refresh = gtk.ImageMenuItem(gtk.STOCK_REFRESH) refresh.connect("activate", self.on_refresh) menu.append(refresh) if self.running: stop_timer = gtk.MenuItem("Stop Timer") stop_timer.connect("activate", self.on_stop_timer) menu.append(stop_timer) if not self.away_from_desk: away = gtk.ImageMenuItem(gtk.STOCK_NO) away.set_label("Away from desk") else: away = gtk.ImageMenuItem(gtk.STOCK_YES) away.set_label("Back at desk") away.connect("activate", self.on_away_from_desk) menu.append(away) top = gtk.MenuItem("Always on top") prefs = gtk.MenuItem("Preferences") about = gtk.MenuItem("About") quit = gtk.MenuItem("Quit") top.connect("activate", self.on_top) prefs.connect("activate", self.on_show_preferences) about.connect("activate", self.on_show_about_dialog) quit.connect("activate", self.on_quit) menu.append(prefs) menu.append(top) menu.append(about) menu.append(quit) menu.show_all() menu.popup(None, None, gtk.status_icon_position_menu, button, time, self.icon)
24308
from awx.main import signals class TestCleanupDetachedLabels: def test_cleanup_detached_labels_on_deleted_parent(self, mocker): mock_labels = [mocker.MagicMock(), mocker.MagicMock()] mock_instance = mocker.MagicMock() mock_instance.labels.all = mocker.MagicMock() mock_instance.labels.all.return_value = mock_labels mock_labels[0].is_candidate_for_detach.return_value = True mock_labels[1].is_candidate_for_detach.return_value = False signals.cleanup_detached_labels_on_deleted_parent(None, mock_instance) mock_labels[0].is_candidate_for_detach.assert_called_with() mock_labels[1].is_candidate_for_detach.assert_called_with() mock_labels[0].delete.assert_called_with() mock_labels[1].delete.assert_not_called()
24329
from dataclasses import dataclass, field from typing import Dict import perde import pytest from util import FORMATS, FORMATS_EXCEPT """rust #[derive(Serialize, Debug, new)] struct Plain { a: String, b: String, c: u64, } add!(Plain {"xxx".into(), "yyy".into(), 3}); """ @pytest.mark.parametrize("m", FORMATS) def test_plain(m): @dataclass class Plain: a: str b: str c: int m.repack_type(Plain) """rust #[derive(Serialize, Debug, new)] #[serde(rename_all = "camelCase")] struct RenameAll { pen_pineapple: String, apple_pen: String, } add!(RenameAll {"xxx".into(), "yyy".into()}); """ @pytest.mark.parametrize("m", FORMATS) def test_rename_all(m): @perde.attr(rename_all="camelCase") @dataclass class RenameAll: pen_pineapple: str apple_pen: str m.repack_type(RenameAll) """rust #[derive(Serialize, Debug, new)] #[serde(rename = "RenameAllSerialize", rename_all = "PascalCase")] struct RenameAllSerializeOutput { pen_pineapple: String, apple_pen: String, } #[derive(Serialize, Debug, new)] #[serde(rename = "RenameAllSerialize")] struct RenameAllSerializeInput { pen_pineapple: String, apple_pen: String, } add!(RenameAllSerializeInput {"--".into(), "==".into()}); add!(RenameAllSerializeOutput {"--".into(), "==".into()}); """ @pytest.mark.parametrize("m", FORMATS) def test_rename_all_serialize(m): @perde.attr(rename_all_serialize="PascalCase") @dataclass class RenameAllSerialize: pen_pineapple: str apple_pen: str d = m.unpack_data("RenameAllSerializeInput", astype=RenameAllSerialize) v = m.dumps(d) e = m.data("RenameAllSerializeOutput") assert v == e """rust #[derive(Serialize, Debug, new)] #[serde(rename = "RenameAllDeserialize")] struct RenameAllDeserializeOutput { pen_pineapple: String, apple_pen: String, } #[derive(Serialize, Debug, new)] #[serde(rename = "RenameAllDeserialize", rename_all = "SCREAMING_SNAKE_CASE")] struct RenameAllDeserializeInput { pen_pineapple: String, apple_pen: String, } add!(RenameAllDeserializeInput {"--".into(), "==".into()}); add!(RenameAllDeserializeOutput {"--".into(), "==".into()}); """ @pytest.mark.parametrize("m", FORMATS) def test_rename_all_deserialize(m): @perde.attr(rename_all_deserialize="SCREAMING_SNAKE_CASE") @dataclass class RenameAllDeserialize: pen_pineapple: str apple_pen: str d = m.unpack_data("RenameAllDeserializeInput", astype=RenameAllDeserialize) v = m.dumps(d) e = m.data("RenameAllDeserializeOutput") assert v == e """rust #[derive(Serialize, Debug, new)] struct DenyUnknownFields { x: String, y: i64, z: i64, q: String, } add!(DenyUnknownFields {"aaaaa".into(), 1, -2, "unknown".into()}); """ @pytest.mark.parametrize("m", FORMATS) def test_deny_unknown_fields(m): @dataclass class NoDenyUnknownFields: x: str y: int z: int @perde.attr(deny_unknown_fields=True) @dataclass class DenyUnknownFields: x: str y: int z: int e = m.unpack_data("DenyUnknownFields", astype=NoDenyUnknownFields) assert e == NoDenyUnknownFields("aaaaa", 1, -2) with pytest.raises(Exception) as e: m.unpack_data("DenyUnknownFields", astype=DenyUnknownFields) print(f"{e}") """rust #[derive(Serialize, Debug, new)] struct Rename { a: String, #[serde(rename = "x")] b: String, c: u64, } add!(Rename {"xxx".into(), "yyy".into(), 3}); """ @pytest.mark.parametrize("m", FORMATS) def test_rename(m): @dataclass class Rename: a: str b: str = field(metadata={"perde_rename": "x"}) c: int m.repack_type(Rename) """rust #[derive(Serialize, Debug, new)] #[serde(rename_all = "camelCase")] struct RenameAllRename { pen_pineapple: String, #[serde(rename = "pen_pen")] apple_pen: String, } add!(RenameAllRename {"xxx".into(), "yyy".into()}); """ @pytest.mark.parametrize("m", FORMATS) def test_rename_in_rename_all(m): @perde.attr(rename_all="camelCase") @dataclass class RenameAllRename: pen_pineapple: str apple_pen: str = field(metadata={"perde_rename": "pen_pen"}) m.repack_type(RenameAllRename) """rust #[derive(Serialize, Debug, new)] struct NestedRenameChild { a: String, #[serde(rename = "d")] b: String, } #[derive(Serialize, Debug, new)] struct NestedRename { x: String, #[serde(rename = "w")] y: NestedRenameChild, z: i64, } add!(NestedRename {"xxx".into(), NestedRenameChild::new("ppp".into(), "qqq".into()), 1111} except "toml"); """ @pytest.mark.parametrize("m", FORMATS_EXCEPT("toml")) def test_nested_rename(m): @dataclass class NestedRenameChild: a: str b: str = field(metadata={"perde_rename": "d"}) @dataclass class NestedRename: x: str y: NestedRenameChild = field(metadata={"perde_rename": "w"}) z: int m.repack_type(NestedRename) """rust #[derive(Serialize, Debug, new)] #[serde(rename_all = "UPPERCASE")] struct NestedRenameAllChild { a: String, b: String, } #[derive(Serialize, Debug, new)] struct NestedRenameAll { x: String, y: NestedRenameAllChild, z: i64, } add!(NestedRenameAll {"xxx".into(), NestedRenameAllChild::new("ppp".into(), "qqq".into()), 1111} except "toml"); """ @pytest.mark.parametrize("m", FORMATS_EXCEPT("toml")) def test_nested_rename_all(m): @perde.attr(rename_all="UPPERCASE") @dataclass class NestedRenameAllChild: a: str b: str @dataclass class NestedRenameAll: x: str y: NestedRenameAllChild z: int m.repack_type(NestedRenameAll) """rust #[derive(Serialize, Debug, new)] struct FlattenChild { a: String, b: String, } #[derive(Serialize, Debug, new)] struct Flatten { x: String, #[serde(flatten)] y: FlattenChild, z: i64, } add!(Flatten {"xxx".into(), FlattenChild::new("ppp".into(), "qqq".into()), 1111} except "msgpack"); """ @pytest.mark.parametrize("m", FORMATS_EXCEPT("msgpack")) def test_flatten(m): @dataclass class FlattenChild: a: str b: str @dataclass class Flatten: x: str y: FlattenChild = field(metadata={"perde_flatten": True}) z: int m.repack_type(Flatten) """rust #[derive(Serialize, Debug, new)] struct DictFlatten { x: String, y: i64, #[serde(flatten)] z: IndexMap<String, String>, } add!(DictFlatten {"hey".into(), -103223, { let mut m = IndexMap::new(); m.insert("pp".into(), "q1".into()); m.insert("ppp".into(), "q2".into()); m.insert("pppp".into(), "q3".into()); m }} except "msgpack"); """ @pytest.mark.parametrize("m", FORMATS_EXCEPT("msgpack")) def test_dict_flatten(m): @dataclass class DictFlatten: x: str y: int z: Dict[str, str] = field(metadata={"perde_flatten": True}) m.repack_type(DictFlatten) """rust #[derive(Serialize, Debug, new)] struct Flatten2 { x: String, a: i64, b: i64, } add!(Flatten2 { "haa".into(), 11, 33 }); """ @pytest.mark.parametrize("m", FORMATS) def test_flatten2(m): @dataclass class Flatten2Child: a: int b: int @dataclass class Flatten2: x: str y: Flatten2Child = field(metadata={"perde_flatten": True}) m.repack_type(Flatten2) """rust #[derive(Serialize, Debug, new)] struct DictFlatten2 { x: String, y: i64, pp: String, ppp: String, pppp: String, } add!(DictFlatten2 { "hey".into(), -103223, "q1".into(), "q2".into(), "q3".into() }); """ # Hopefully support msgpack. @pytest.mark.parametrize("m", FORMATS_EXCEPT("msgpack")) def test_dict_flatten2(m): @dataclass class DictFlatten2: x: str y: int z: Dict[str, str] = field(metadata={"perde_flatten": True}) m.repack_type(DictFlatten2)
24371
from django.urls import path from . import views urlpatterns = [ path("draugiem/login/", views.login, name="draugiem_login"), path("draugiem/callback/", views.callback, name="draugiem_callback"), ]
24376
import sys import requests import json import argparse import time parser = argparse.ArgumentParser(description='Collects monitoring data from Pingdom.') parser.add_argument('-u', '--pingdom-user-name', help='The Pingdom User Name', required=True) parser.add_argument('-p', '--pingdom-password', help='The Pingdom Password', required=True) parser.add_argument('-a', '--pingdom-api-key', help='The Pingdom API-KEY', required=True) class Pingdom: def __init__(self, api_key, user_name, password): self.api_key = api_key, self.user_name = user_name, self.password = password, self.jsonData = [] def handle_error(self, error_message): sys.stderr.write("ERROR:|Pingdom| " + error_message) sys.exit(1) def call_api(self, api): headers = {'App-Key': self.api_key[0]} base_api = 'https://api.pingdom.com/api/2.0/' + api response = requests.get(base_api, headers=headers, auth=requests.auth.HTTPBasicAuth(self.user_name[0], self.password[0])) if response.status_code == 200: return response.json() else: self.handle_error("API [" + base_api + "] failed to execute with error code [" + str(response.status_code) + "].") def get_checks(self): response = self.call_api('checks') data = response.get("checks") counts = response.get("counts") up_count = 0 down_count = 0 unconfirmed_down_count = 0 unknown_count = 0 paused_count = 0 for x in data: status = x.get("status") if status == "up": up_count = up_count + 1 elif status == "down": down_count == down_count + 1 elif status == "unconfirmed_down": unconfirmed_down_count = unconfirmed_down_count + 1 elif status == "unknown": unknown_count = unknown_count + 1 elif status == "paused": paused_count = paused_count + 1 counts["up"] = up_count counts["down"] = down_count counts["unconfirmed_down"] = unconfirmed_down_count counts["unknown"] = unknown_count counts["paused"] = paused_count data.append(counts) self.jsonData = data def get_credits(self): response = self.call_api('credits') self.jsonData.append(response) def get_maintenance(self): response = self.call_api('maintenance') if response.get('maintenance'): for mw in response.get('maintenance'): window = {} window["description"] = mw.get("description") window["recurrencetype"] = mw.get("recurrencetype") window["repeatevery"] = mw.get("repeatevery") window["from"] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mw.get("from"))) window["to"] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(mw.get("to"))) window["window"] = 1 self.jsonData.append(window) if __name__ == "__main__": try: args = parser.parse_args() pingdom = Pingdom(args.pingdom_api_key, args.pingdom_user_name, args.pingdom_password) pingdom.get_checks() pingdom.get_credits() pingdom.get_maintenance() print(json.dumps(pingdom.jsonData)) except Exception as e: pingdom.handle_error(e.message)
24381
import logging from typing import Any, List, Optional from homeassistant.components.climate.const import ( HVAC_MODE_AUTO, HVAC_MODE_COOL, HVAC_MODE_FAN_ONLY, ) from gehomesdk import ErdAcFanSetting from ..common import OptionsConverter _LOGGER = logging.getLogger(__name__) class AcFanModeOptionsConverter(OptionsConverter): def __init__(self, default_option: ErdAcFanSetting = ErdAcFanSetting.AUTO): self._default = default_option @property def options(self) -> List[str]: return [i.stringify() for i in [ErdAcFanSetting.AUTO, ErdAcFanSetting.LOW, ErdAcFanSetting.MED, ErdAcFanSetting.HIGH]] def from_option_string(self, value: str) -> Any: try: return ErdAcFanSetting[value.upper().replace(" ","_")] except: _LOGGER.warn(f"Could not set fan mode to {value}") return self._default def to_option_string(self, value: Any) -> Optional[str]: try: return { ErdAcFanSetting.AUTO: ErdAcFanSetting.AUTO, ErdAcFanSetting.LOW: ErdAcFanSetting.LOW, ErdAcFanSetting.LOW_AUTO: ErdAcFanSetting.AUTO, ErdAcFanSetting.MED: ErdAcFanSetting.MED, ErdAcFanSetting.MED_AUTO: ErdAcFanSetting.AUTO, ErdAcFanSetting.HIGH: ErdAcFanSetting.HIGH, ErdAcFanSetting.HIGH_AUTO: ErdAcFanSetting.HIGH }.get(value).stringify() except: pass return self._default.stringify() class AcFanOnlyFanModeOptionsConverter(AcFanModeOptionsConverter): def __init__(self): super().__init__(ErdAcFanSetting.LOW) @property def options(self) -> List[str]: return [i.stringify() for i in [ErdAcFanSetting.LOW, ErdAcFanSetting.MED, ErdAcFanSetting.HIGH]]
24392
from typing import Dict # The rest of the codebase uses mojos everywhere. # Only use these units for user facing interfaces. units: Dict[str, int] = { "cryptodoge": 10 ** 6, # 1 cryptodoge (XCD) is 1,000,000 mojo (1 million) "mojo:": 1, "colouredcoin": 10 ** 3, # 1 coloured coin is 1000 colouredcoin mojos }
24413
import torch import torch.nn as nn from cogdl.utils import spmm class GINLayer(nn.Module): r"""Graph Isomorphism Network layer from paper `"How Powerful are Graph Neural Networks?" <https://arxiv.org/pdf/1810.00826.pdf>`__. .. math:: h_i^{(l+1)} = f_\Theta \left((1 + \epsilon) h_i^{l} + \mathrm{sum}\left(\left\{h_j^{l}, j\in\mathcal{N}(i) \right\}\right)\right) Parameters ---------- apply_func : callable layer function) layer or function applied to update node feature eps : float32, optional Initial `\epsilon` value. train_eps : bool, optional If True, `\epsilon` will be a learnable parameter. """ def __init__(self, apply_func=None, eps=0, train_eps=True): super(GINLayer, self).__init__() if train_eps: self.eps = torch.nn.Parameter(torch.FloatTensor([eps])) else: self.register_buffer("eps", torch.FloatTensor([eps])) self.apply_func = apply_func def forward(self, graph, x): out = (1 + self.eps) * x + spmm(graph, x) if self.apply_func is not None: out = self.apply_func(out) return out
24420
import json import falcon import time import uuid import requests from apps.database import init_db, db_session from apps.models import Account from apps.restaccount.logging import logging logger = logging.getLogger(__name__) from decouple import config ES_HOST = config('EVENTSTORE_HOST', default='eventstore') ES_PORT = config('EVENTSTORE_PORT', default=2113, cast=int) stream_url = 'http://{}:{}/streams/accounts'.format(ES_HOST, ES_PORT) content_header = { 'Content-Type': 'application/vnd.eventstore.events+json' } logger.info('stream_url: {}'.format(stream_url)) def get_account(account_id): return Account.query.get(account_id) class BalanceResource(object): def on_get(self, req, resp, account_id): init_db() doc = db_session.query(Account).get(account_id) db_session.close() if doc is None: raise falcon.HTTPBadRequest('Balance missing', 'Deposit money to start using an account') else: # Create a JSON representation of the resource resp.body = json.dumps(doc.as_dict(), ensure_ascii=False) # The following line can be omitted because 200 is the default # status returned by the framework, but it is included here to # illustrate how this may be overridden as needed. resp.status = falcon.HTTP_200 class DepositResource(object): def on_post(self, req, resp): body = req.stream.read() doc = json.loads(body.decode('utf-8')) logger.info('doc: {}'.format(doc)) payload = [ { "eventId": str(uuid.uuid1()), "eventType": "created-deposit", "data": doc } ] logger.info("payload: {}".format(payload)) r = requests.post(stream_url, data=str(payload), headers=content_header) resp.status = falcon.HTTP_200 class TransferResource(object): def on_post(self, req, resp): body = req.stream.read() doc = json.loads(body.decode('utf-8')) acc = get_account(doc['account_id']) payload = [ { "eventId": str(uuid.uuid1()), "eventType": "created-transfer", "data": doc } ] if acc is None: raise falcon.HTTPBadRequest('Account missing', 'You must deposit into an account before transfering') if acc.balance < doc['amount']: raise falcon.HTTPBadRequest('Insufficient funds', 'Account balance {} less than transfer amount {}'.format(acc.balance, doc['amount'])) else: logger.info("payload: {}".format(payload)) r = requests.post(stream_url, data=str(payload), headers=content_header) resp.status = falcon.HTTP_200
24453
import unittest import paddle import neural_renderer_paddle as nr class TestLighting(unittest.TestCase): def test_case1(self): """Test whether it is executable.""" faces = paddle.randn([64, 16, 3, 3], dtype=paddle.float32) textures = paddle.randn([64, 16, 8, 8, 8, 3], dtype=paddle.float32) nr.lighting(faces, textures) if __name__ == '__main__': unittest.main()
24475
from typing import List, Optional from pydantic import BaseModel class Provider(BaseModel): url: str name: str roles: Optional[List[str]] = None
24517
from datetime import datetime, timezone from io import StringIO from unittest import mock import freezegun import pytest from django.conf import settings from django.core.management import call_command from django.utils import timezone from model_bakery import baker from supportal.app.common.enums import CanvassResult from supportal.app.models import EmailSend CREATED_AT = datetime(2019, 10, 26, 1, tzinfo=timezone.utc) CREATED_AT_EARLIER = datetime(2019, 10, 26, tzinfo=timezone.utc) DAY_BEFORE_EXPIRE = datetime(2019, 11, 1, tzinfo=timezone.utc) TWO_DAY_BEFORE_EXPIRE = datetime(2019, 10, 31, tzinfo=timezone.utc) EXPIRED_AT = datetime(2019, 11, 2, 1, tzinfo=timezone.utc) EXPIRED_EARLIER = datetime(2019, 11, 2, tzinfo=timezone.utc) AFTER_EXPIRATION_DATE = datetime(2019, 11, 3, tzinfo=timezone.utc) SIX_DAYS_BEFORE_EXPIRE = datetime(2019, 10, 27, tzinfo=timezone.utc) def email_expiring_users(*args, **kwargs): call_command("email_users_with_expiring_assignments", **kwargs) @pytest.fixture def first_cambridge_assignment(cambridge_leader_user, cambridge_prospect): cambridge_assignment = baker.make( "VolProspectAssignment", user=cambridge_leader_user, person=cambridge_prospect ) cambridge_assignment.created_at = CREATED_AT cambridge_assignment.save() return cambridge_assignment @pytest.fixture def hayes_assignment(hayes_valley_leader_user, california_prospect): hayes_valley_assignment = baker.make( "VolProspectAssignment", user=hayes_valley_leader_user, person=california_prospect, ) hayes_valley_assignment.created_at = CREATED_AT_EARLIER hayes_valley_assignment.save() return hayes_valley_assignment @pytest.fixture def hayes_cambrdige_assignment(hayes_valley_leader_user, cambridge_prospect): hayes_valley_assignment = baker.make( "VolProspectAssignment", user=hayes_valley_leader_user, person=cambridge_prospect, ) hayes_valley_assignment.created_at = CREATED_AT hayes_valley_assignment.save() return hayes_valley_assignment @pytest.fixture def second_cambridge_assignment(cambridge_leader_user, california_prospect): cambridge_assignment = baker.make( "VolProspectAssignment", user=cambridge_leader_user, person=california_prospect ) cambridge_assignment.created_at = CREATED_AT cambridge_assignment.save() return cambridge_assignment @pytest.fixture def expired_assignment(cambridge_leader_user, somerville_prospect): cambridge_assignment = baker.make( "VolProspectAssignment", user=cambridge_leader_user, person=somerville_prospect ) cambridge_assignment.created_at = CREATED_AT cambridge_assignment.expired_at = EXPIRED_AT cambridge_assignment.save() return cambridge_assignment DEFAULT_TEMPLATE_DATA = { "assignment_count": "", "email": "", "expiration_date": "", "switchboard_login_url": settings.SUPPORTAL_BASE_URL, "first_name": "", "last_name": "", } def make_payload(assignment_count, email, expiration, first_name, last_name): return { "assignment_count": assignment_count, "email": email, "expiration_date": expiration.strftime("%a %b %d, %Y"), "switchboard_login_url": settings.SUPPORTAL_BASE_URL, "first_name": first_name, "last_name": last_name, } def check_email_sends(user, assignment_count, expiration, single_call_mock=None): assert EmailSend.objects.filter(user=user).count() == 1 email_sent = EmailSend.objects.get(user=user) assert email_sent.template_name == "expiring_contacts_email" assert email_sent.payload == { "assignment_count": assignment_count, "email": user.email, "expiration_date": expiration.strftime("%a %b %d, %Y"), "switchboard_login_url": settings.SUPPORTAL_BASE_URL, "first_name": user.first_name, "last_name": user.last_name, } if single_call_mock: single_call_mock.return_value.send_bulk_email.assert_called_once_with( configuration_set_name="organizing_emails", default_template_data=DEFAULT_TEMPLATE_DATA, from_email=settings.FROM_EMAIL, payload_array=[ make_payload( assignment_count, user.email, expiration, user.first_name, user.last_name, ) ], reply_to_email=settings.REPLY_TO_EMAIL, template="expiring_contacts_email", application_name="supportal", ) @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_with_uncontacted_assignments( first_cambridge_assignment, expired_assignment ): out = StringIO() assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 0 with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, send=True) first_cambridge_assignment.refresh_from_db() assert EmailSend.objects.all().count() == 1 check_email_sends( first_cambridge_assignment.user, 1, EXPIRED_AT, email_service_mock ) assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_dryrun(first_cambridge_assignment, expired_assignment): out = StringIO() assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 0 with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out) first_cambridge_assignment.refresh_from_db() assert EmailSend.objects.all().count() == 0 assert first_cambridge_assignment.user.email in out.getvalue() assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(DAY_BEFORE_EXPIRE) def test_dont_email_outside_of_two_days(first_cambridge_assignment, expired_assignment): out = StringIO() email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 0 assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 0 assert "Found 0 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_with_two_assignments( first_cambridge_assignment, second_cambridge_assignment, expired_assignment ): out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 1 check_email_sends( first_cambridge_assignment.user, 2, EXPIRED_AT, email_service_mock ) assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_with_two_users( first_cambridge_assignment, hayes_assignment, hayes_cambrdige_assignment, expired_assignment, ): out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 2 check_email_sends(first_cambridge_assignment.user, 1, EXPIRED_AT) check_email_sends(hayes_assignment.user, 2, EXPIRED_EARLIER) email_service_mock.return_value.send_bulk_email.assert_called_once_with( configuration_set_name="organizing_emails", default_template_data=DEFAULT_TEMPLATE_DATA, from_email=settings.FROM_EMAIL, payload_array=[ make_payload( 1, first_cambridge_assignment.user.email, EXPIRED_AT, first_cambridge_assignment.user.first_name, first_cambridge_assignment.user.last_name, ), make_payload( 2, hayes_assignment.user.email, EXPIRED_EARLIER, hayes_assignment.user.first_name, hayes_assignment.user.last_name, ), ], reply_to_email=settings.REPLY_TO_EMAIL, template="expiring_contacts_email", application_name="supportal", ) assert "Found 2 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_with_two_users_send_all_to_flag( first_cambridge_assignment, hayes_assignment, hayes_cambrdige_assignment, expired_assignment, ): out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users( stdout=out, send=True, send_all_to="<EMAIL>" ) assert EmailSend.objects.all().count() == 0 email_service_mock.return_value.send_bulk_email.assert_called_once_with( configuration_set_name="organizing_emails", default_template_data=DEFAULT_TEMPLATE_DATA, from_email=settings.FROM_EMAIL, payload_array=[ make_payload( 1, "<EMAIL>", EXPIRED_AT, first_cambridge_assignment.user.first_name, first_cambridge_assignment.user.last_name, ), make_payload( 2, "<EMAIL>", EXPIRED_EARLIER, hayes_assignment.user.first_name, hayes_assignment.user.last_name, ), ], reply_to_email=settings.REPLY_TO_EMAIL, template="expiring_contacts_email", application_name="supportal", ) assert "Found 2 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_with_two_users_limit_flag( first_cambridge_assignment, hayes_assignment, hayes_cambrdige_assignment, expired_assignment, ): out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, limit=1, send=True) assert EmailSend.objects.all().count() == 1 check_email_sends(first_cambridge_assignment.user, 1, EXPIRED_AT) assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_unsuccessfully_contacted_assignments( first_cambridge_assignment, expired_assignment ): first_cambridge_assignment.create_contact_event( result=CanvassResult.UNAVAILABLE_LEFT_MESSAGE ) first_cambridge_assignment.save() out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 1 check_email_sends( first_cambridge_assignment.user, 1, EXPIRED_AT, email_service_mock ) assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_dont_email_unsubscribed_user(first_cambridge_assignment, expired_assignment): first_cambridge_assignment.user.unsubscribed_at = datetime.now(tz=timezone.utc) first_cambridge_assignment.user.save() out = StringIO() email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 0 assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 0 assert "Found 0 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_dont_email_user_who_was_emailed_recently( first_cambridge_assignment, expired_assignment ): EmailSend.objects.create( user=first_cambridge_assignment.user, template_name=EmailSend.EXPIRING_PROSPECTS, payload={}, ) assert first_cambridge_assignment.user.unsubscribed_at is None out = StringIO() email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 1 assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 1 assert "Found 0 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_email_user_who_was_invited_recently( first_cambridge_assignment, expired_assignment ): EmailSend.objects.create( user=first_cambridge_assignment.user, template_name=EmailSend.INVITE_EMAIL, payload={}, ) assert first_cambridge_assignment.user.unsubscribed_at is None out = StringIO() with mock.patch( "supportal.app.management.commands.base_email_command.EmailService" ) as email_service_mock: email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 2 assert EmailSend.objects.filter(user=first_cambridge_assignment.user).count() == 2 assert "Found 1 users to email." in out.getvalue() @pytest.mark.django_db @freezegun.freeze_time(TWO_DAY_BEFORE_EXPIRE) def test_successfully_contacted_dont_email( first_cambridge_assignment, expired_assignment ): # Make sure that having a previous unsuccessful contact event doesn't cause # the contact to get expired. first_cambridge_assignment.create_contact_event( result=CanvassResult.UNAVAILABLE_LEFT_MESSAGE ) first_cambridge_assignment.create_contact_event( result=CanvassResult.SUCCESSFUL_CANVASSED ) first_cambridge_assignment.save() out = StringIO() email_expiring_users(stdout=out, send=True) first_cambridge_assignment.refresh_from_db() assert EmailSend.objects.all().count() == 0 assert "Found 0 users to email." in out.getvalue() @pytest.mark.django_db def test_expire_zero_assignments(): out = StringIO() email_expiring_users(stdout=out, send=True) assert EmailSend.objects.all().count() == 0 assert "Found 0 users to email." in out.getvalue()
24556
import unittest from pyhmmer.easel import Alphabet from pyhmmer.errors import UnexpectedError, AllocationError, EaselError, AlphabetMismatch class TestErrors(unittest.TestCase): def test_unexpected_error(self): err = UnexpectedError(1, "p7_ReconfigLength") self.assertEqual(repr(err), "UnexpectedError(1, 'p7_ReconfigLength')") self.assertEqual(str(err), "Unexpected error occurred in 'p7_ReconfigLength': eslFAIL (status code 1)") def test_allocation_error(self): err = AllocationError("ESL_SQ", 16) self.assertEqual(repr(err), "AllocationError('ESL_SQ', 16)") self.assertEqual(str(err), "Could not allocate 16 bytes for type ESL_SQ") err2 = AllocationError("float", 4, 32) self.assertEqual(repr(err2), "AllocationError('float', 4, 32)") self.assertEqual(str(err2), "Could not allocate 128 bytes for an array of 32 float") def test_easel_error(self): err = EaselError(1, "failure") self.assertEqual(repr(err), "EaselError(1, 'failure')") self.assertEqual(str(err), "Error raised from C code: failure, eslFAIL (status code 1)") def test_alphabet_mismatch(self): err = AlphabetMismatch(Alphabet.dna(), Alphabet.rna()) self.assertEqual(repr(err), "AlphabetMismatch(Alphabet.dna(), Alphabet.rna())") self.assertEqual(str(err), "Expected Alphabet.dna(), found Alphabet.rna()") self.assertNotEqual(err, 1) err2 = AlphabetMismatch(Alphabet.dna(), Alphabet.rna()) self.assertEqual(err, err) self.assertEqual(err, err2) err3 = AlphabetMismatch(Alphabet.dna(), Alphabet.amino()) self.assertNotEqual(err, err3)
24557
import base64 STANDARD_ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567' CUSTOM_ALPHABET = 'abcdefghjkmnprstuvwxyz0123456789' ENCODE_TRANS = str.maketrans(STANDARD_ALPHABET, CUSTOM_ALPHABET) DECODE_TRANS = str.maketrans(CUSTOM_ALPHABET, STANDARD_ALPHABET) PADDING_LETTER = '=' def encode(buffer): assert type(buffer) == bytes or type(buffer) == bytearray, "please pass an bytes" b32encoded = base64.b32encode(buffer) # encode bytes b32str = b32encoded.decode().replace(PADDING_LETTER, "") # translate chars return b32str.translate(ENCODE_TRANS) # remove padding char def decode(b32str): assert type(b32str) == str, "please pass an str" # pad to 8's multiple with '=' b32len = len(b32str) if b32len % 8 > 0: padded_len = b32len + (8 - b32len % 8) b32str = b32str.ljust(padded_len, PADDING_LETTER) # translate and decode return base64.b32decode(b32str.translate(DECODE_TRANS)) def decode_to_words(b32str): result = bytearray() for c in b32str: result.append(CUSTOM_ALPHABET.index(c)) return result def encode_words(words): result = "" for v in words: result += CUSTOM_ALPHABET[v] return result
24591
import os import re import csv import sys import json import yaml import time import socket import connexion import postgresql as psql from flask import current_app from urllib.parse import urlencode from hashlib import md5 from bokeh.embed import server_document from .processes import fetch_process, is_running, process_info from .utils import column_filter float_pattern = re.compile(r'^\d*\.\d+$') int_pattern = re.compile(r'^-?\d+$') NA_pattern = re.compile(r'^NA$') queryfilters = re.compile(r'(.+)(<=?|>=?|!=|==)(.+)') def init_column_mapping(row, schema): """Generate initial estimates of column data types""" defs = {column_filter(col): 'text' for col in row} # Apply predefined table schema defs.update({k: v for (k, v) in schema.items() if k in defs}) for (col, val) in row.items(): col = column_filter(col) if col not in schema: if int_pattern.match(val): try: int(val) print("Assigning int to", col, "based on", val) defs[col] = 'integer' except ValueError: print("ERROR: Int mismatch:", val) elif float_pattern.match(val): try: float(val) print("Assigning float to", col, "based on", val) defs[col] = 'decimal' except ValueError: print("ERROR: Float mismatch:", val) mapping = {} for (col, val) in defs.items(): if 'int' in val: mapping[col] = int elif val == 'decimal': mapping[col] = float else: mapping[col] = str return (mapping, defs) def column_mapping(row, mapping, schema): """Apply filtering to the current row. Detect if column data types need to be changed""" output = {} changes = {} for (col, val) in row.items(): col = column_filter(col) if val == None or NA_pattern.match(str(val)): output[col] = None continue if col not in schema and mapping[col] == str: if int_pattern.match(val): try: int(val) print("Assigning int to", col, "based on", val) mapping[col] = int changes[col] = int except ValueError: print("ERROR: Int mismatch:", val) elif float_pattern.match(val): try: float(val) print("Assigning float to", col, "based on", val) mapping[col] = float changes[col] = float except ValueError: print("ERROR: Float mismatch:", val) try: output[col] = mapping[col](val) except ValueError: output[col] = None return (mapping, output, changes) def old_file_read(db, CREATE_TABLE, tablekey, column_names, reader, mapping): with db.xact(): db.execute(CREATE_TABLE) # table marked for insertion during original attempt, so don't need to here # prepare the insertion query insert = db.prepare("INSERT INTO %s (%s) VALUES (%s)" % ( tablekey, ','.join(column_names), ','.join('$%d' % i for (_, i) in zip( column_names, range(1, sys.maxsize) )) )) update = "ALTER TABLE %s " % tablekey for row in reader: # process each row # We format the data in the row and update column data types, if # necessary (mapping, formatted, changes) = column_mapping(row, mapping, current_app.config['schema']) if len(changes): #Generate a query to alter the table schema, if any changes are required alter_cols = [] for (k, v) in changes.items(): # if there were any changes to the data type, update the table # since we only ever update a text column to int/decimal, then # it's okay to nullify the data typ = '' if v == int: typ = 'bigint' if k in {'start', 'stop'} else 'integer' elif v == float: typ = 'decimal' alter_cols.append( "ALTER COLUMN %s SET DATA TYPE %s USING %s::%s" % ( k, typ, k, typ ) ) # Re-generate the insert statement since the data types changed print("Alter:", update + ','.join(alter_cols)) db.execute(update + ','.join(alter_cols)) insert = db.prepare("INSERT INTO %s (%s) VALUES (%s)" % ( tablekey, ','.join(column_names), ','.join('$%d' % i for (_, i) in zip( column_names, range(1, sys.maxsize) )) )) # insert the row insert(*[formatted[column] for column in column_names]) def table_transaction(file_permissions, db, CREATE_TABLE, tablekey, all_tablecolumns, raw_reader, column_names, mapping): with db.xact(): db.execute(CREATE_TABLE) db.prepare("LOCK TABLE %s IN ACCESS EXCLUSIVE MODE" % (tablekey)) copy_query = "COPY %s (%s) FROM '%s' WITH FREEZE NULL 'NA' DELIMITER E'\t' CSV HEADER" % (tablekey, all_tablecolumns, raw_reader.name) #copy_query may result in psql.exceptions.InsufficientPrivilegeError when run; workaround attempted below if file_permissions: #mark the table for deletion when the server shuts down #don't need to mark table for deletion during second attempt if 'db-clean' not in current_app.config: current_app.config['db-clean'] = [tablekey] else: current_app.config['db-clean'].append(tablekey) #attempt file copy db.execute(copy_query) else: import subprocess filedest = "/tmp/"+os.path.basename(raw_reader.name) subprocess.run(["mktemp", filedest], stdout=subprocess.DEVNULL) subprocess.run(["cp", raw_reader.name, filedest]) subprocess.run(["chmod", "666", filedest]) copy_query = "COPY %s (%s) FROM '%s' WITH FREEZE NULL 'NA' DELIMITER E'\t' CSV HEADER" % (tablekey, all_tablecolumns, filedest) try: db.execute(copy_query) print("...Success") finally: subprocess.run(["rm", filedest]) col_val_query = "SELECT " for col_name in column_names: col_val_query += "(select %s from %s where %s is not null limit 1), "%(col_name, tablekey, col_name) col_val_query = col_val_query[:-2] col_values = db.prepare(col_val_query) values = col_values()[0] update = "ALTER TABLE %s " % tablekey row = dict(zip(col_values.column_names, values)) (mapping, formatted, changes) = column_mapping(row, mapping, current_app.config['schema']) if len(changes): #Generate a query to alter the table schema, if any changes are required alter_cols = [] for (k, v) in changes.items(): # if there were any changes to the data type, update the table # since we only ever update a text column to int/decimal, then # it's okay to nullify the data typ = '' if v == int: typ = 'bigint' if k in {'start', 'stop'} else 'integer' elif v == float: typ = 'decimal' alter_cols.append( "ALTER COLUMN %s SET DATA TYPE %s USING %s::%s" % ( k, typ, k, typ ) ) print("Alter:", update + ','.join(alter_cols)) db.execute(update + ','.join(alter_cols)) def create_table(parentID, fileID, data, tablekey, db): # Open a reader to cache the file in the database if parentID != -1: process = fetch_process(parentID, data, current_app.config['storage']['children']) if not process[0]: return ( { "code": 400, "message": "The requested process (%d) does not exist" % parentID, "fields": "parentID" }, 400 ) if is_running(process): return ( { "code": 400, "message": "The requested process (%d) is still running" % parentID, "fields": "parentID" }, 400 ) if str(fileID) not in process[0]['files']: return ( { "code": 400, "message": "The requested fileID (%s) does not exist for this process (%d)" % (fileID, parentID), "fields": "fileID" }, 400 ) raw_reader = open(process[0]['files'][fileID]['fullname']) else: if str(fileID) not in data['visualize']: return ( { "code": 400, "message": "The requested fileID (%s) does not exist in the visualize" % fileID, "fields": "fileID" }, 400 ) raw_reader = open(data['visualize'][str(fileID)]['fullname']) if not raw_reader.name.endswith('.tsv'): ext = os.path.splitext(raw_reader.name)[1].lower() if len(ext) and ext[0] == '.': ext = ext[1:] return serve_as(raw_reader, ext) reader = csv.DictReader(raw_reader, delimiter='\t') tmp_reader = open(raw_reader.name) tmp = csv.DictReader(tmp_reader, delimiter='\t') try: init = next(tmp) except StopIteration: return [] tmp_reader.close() # Get an initial estimate of column datatypes from the first row (mapping, column_names) = init_column_mapping(init, current_app.config['schema']) tablecolumns = "\n".join( # use the estimated types to create the table "%s %s," % (colname, column_names[colname]) for colname in column_names )[:-1] CREATE_TABLE = "CREATE TABLE %s (\ rowid SERIAL PRIMARY KEY NOT NULL,\ %s\ )" % (tablekey, tablecolumns) all_tablecolumns = ', '.join(column_filter(col) for col in reader.fieldnames) try: table_transaction(True, db, CREATE_TABLE, tablekey, all_tablecolumns, raw_reader, column_names, mapping) except psql.exceptions.UniqueError: #If another transaction already created specified table, pass pass except psql.exceptions.InsufficientPrivilegeError as e: #can occur when postgres user unable to open file due to permissions; specifically for travis-ci tests #check if resulting from postgres user permissions if e.args[0].startswith("must be superuser"): print("WARNING: Postgres user is not a super user; visualization time may be slow") old_file_read(db, CREATE_TABLE, tablekey, column_names, reader, mapping) #use inefficient file-read-to-db method else: #attempt to resolve by copying file to /tmp/, changing its permissions, and accessing it there try: print("InsufficientPrivilegeError raised in accessing file.\nAttempting workaround...") table_transaction(False, db, CREATE_TABLE, tablekey, all_tablecolumns, raw_reader, column_names, mapping) except psql.exceptions.InsufficientPrivilegeError: print("Postgres could not access file. Check to make sure that both the " "file and your current postgres user has the appropriate permissions.") raise raw_reader.close() def filterfile(parentID, fileID, count, page, filters, sort, direction): """Gets the file ID belonging to the parent.\ For result files, the parentID is the process ID that spawned them.\ For visualize files, the parentID is -1""" data = current_app.config['storage']['loader']() # first, generate the key tablekey = "data_%s_%s" % ( (parentID if parentID >= 0 else 'visualize'), fileID ) # check if the table exists: db = psql.open("localhost/pvacseq") fileID = str(fileID) with db.xact(): query = db.prepare("SELECT 1 FROM information_schema.tables WHERE table_name = $1") response = query(tablekey) if not len(response): # table does not exist table_errors = create_table(parentID, fileID, data, tablekey, db) if table_errors != None: return table_errors #with db.synchronizer: # test_query = db.prepare("SELECT 1 FROM information_schema.tables WHERE table_name = $1") # test_response = query(tablekey) with db.xact(): typequery = db.prepare( "SELECT column_name, data_type FROM information_schema.columns WHERE table_name = $1" ) column_defs = typequery(tablekey) column_maps = {} for (col, typ) in column_defs: if 'int' in typ: column_maps[col] = int elif typ == 'numeric'or typ == 'decimal': column_maps[col] = float else: column_maps[col] = str formatted_filters = [] for i in range(len(filters)): f = filters[i].strip() if not len(f): continue result = queryfilters.match(f) if not result: return ({ "code": 400, "message": "Encountered an invalid filter (%s)" % f, "fields": "filters" }, 400) colname = column_filter(result.group(1)) if colname not in column_maps: return ({ "code": 400, "message": "Unknown column name %s" % result.group(1), "fields": "filters" }, 400) op = result.group(2) typ = column_maps[colname] val = None try: val = column_maps[colname]( result.group(3) ) except ValueError: return ({ "code": 400, "message": "Value %s cannot be formatted to match the type of column %s (%s)" % ( result.group(3), result.group(1), typ ) }, 400) if typ == str and (op in {'==', '!='}): formatted_filters.append( json.dumps(colname) + (' not ' if '!' in op else ' ') + "LIKE '%s'" % ( json.dumps(val)[1:-1] ) ) else: # type is numerical op = op.replace('==', '=') formatted_filters.append( '%s %s %s' % ( json.dumps(colname), op, json.dumps(val) ) ) raw_query = "SELECT %s FROM %s" % ( ','.join([k[0] for k in column_defs]), tablekey ) if len(formatted_filters): raw_query += " WHERE " + " AND ".join(formatted_filters) if sort: if column_filter(sort) not in column_maps: return ({ 'code': 400, 'message': 'Invalid column name %s' % sort, 'fields': 'sort' }, 400) raw_query += " ORDER BY %s" % (column_filter(sort)) if direction: raw_query += " " + direction if count: raw_query += " LIMIT %d" % count if page: raw_query += " OFFSET %d" % (page * count) print("Query:", raw_query) import decimal with db.xact('SERIALIZABLE', 'READ ONLY DEFERRABLE'): query = db.prepare(raw_query) decimalizer = lambda x: (float(x) if type(x) == decimal.Decimal else x) result = [ { colname: decimalizer(value) for (colname, value) in zip( [k[0] for k in column_defs], [val for val in row] ) } for row in query.rows() ] db.close() return result def fileschema(parentID, fileID): data = current_app.config['storage']['loader']() tablekey = "data_%s_%s" % ( (parentID if parentID >= 0 else 'visualize'), fileID ) # check if the table exists: db = psql.open("localhost/pvacseq") with db.xact(): query = db.prepare("SELECT 1 FROM information_schema.tables WHERE table_name = $1") if not len(query(tablekey)): # table does not exist return ({ 'code': 400, 'message': "The requested file has not been loaded into the Postgres database", 'fields': "fileID" }, 400) typequery = db.prepare("SELECT column_name, data_type FROM information_schema.columns WHERE table_name = $1") result = { key: val for (key, val) in typequery(tablekey) } db.close() return result def serve_as(reader, filetype): if filetype == 'json': return { 'filetype':'json', 'content':json.load(reader) } elif filetype == 'yaml' or filetype == 'yml': return { 'filetype':'yaml', 'content':yaml.load(reader.read()) } elif filetype == 'log': return { 'filetype':'log', 'content':[line.rstrip() for line in reader.readlines()] } else: return { 'filetype':'raw', 'content':reader.read() } def visualize(parentID, fileID): vis = visualize_script(parentID, fileID) return '<html><head></head><body>%s</body></html'%(vis if type(vis)!=tuple else vis[0]) def visualize_script(parentID, fileID): """Return an HTML document containing the requested table visualization""" from .files import results_getcols data = current_app.config['storage']['loader']() #first call filterfile to load the table if it's not loaded already result = filterfile(parentID, fileID, 1, 0, '', 'rowid', 'ASC') if type(result) != list: return ( { 'code':400, 'message':json.dumps(result), 'fields':'unknown', }, 400 ) if len(result) == 0 or type(result) == dict: return ( 'Results file contains no data - cannot visualize' ) cols = results_getcols(parentID, fileID) if type(cols) != dict: return ( { 'code':400, 'message':json.dumps(cols), 'fields':'unknown' }, 400 ) proc_data = process_info(parentID) if type(proc_data)==dict and 'parameters' in proc_data and 'sample_name' in proc_data['parameters']: sample = proc_data['parameters']['sample_name'] elif parentID == -1: sample = data['visualize'][str(fileID)]['display_name'].rsplit(".", 1)[0] else: sample = 'Unknown Sample' if current_app.PROXY_IP_ADDRESS is not None: IP = current_app.PROXY_IP_ADDRESS else: IP = current_app.IP_ADDRESS return ( server_document( url="http://" + IP + ":5006/visualizations", arguments={ 'target-process': parentID, 'target-file': fileID, 'cols': json.dumps(cols), 'samplename': sample } ) )
24592
import numpy as np import chainer from chainer import cuda, Function, gradient_check, Variable from chainer import optimizers, serializers, utils from chainer import Link, Chain, ChainList import chainer.functions as F import chainer.links as L class normalNN(Chain): def __init__(self, dim): super().__init__( l1=L.Linear(dim, 100), l2=L.Linear(100, 1), ) self.af = F.relu def __call__(self, x): h = self.l1(x) h = self.af(h) h = self.l2(h) return h class MultiLayerPerceptron(Chain): def __init__(self, dim): super(MultiLayerPerceptron, self).__init__( l1=L.Linear(dim, 300, nobias=True), b1=L.BatchNormalization(300), l2=L.Linear(300, 300, nobias=True), b2=L.BatchNormalization(300), l3=L.Linear(300, 300, nobias=True), b3=L.BatchNormalization(300), l4=L.Linear(300, 300, nobias=True), b4=L.BatchNormalization(300), l5=L.Linear(300, 1)) self.af = F.relu def __call__(self, x): h = self.l1(x) h = self.b1(h) h = self.af(h) h = self.l2(h) h = self.b2(h) h = self.af(h) h = self.l3(h) h = self.b3(h) h = self.af(h) h = self.l4(h) h = self.b4(h) h = self.af(h) h = self.l5(h) return h class CNN(Chain): def __init__(self, dim): super(CNN, self).__init__( conv1=L.Convolution2D(3, 96, 3, pad=1), conv2=L.Convolution2D(96, 96, 3, pad=1), conv3=L.Convolution2D(96, 96, 3, pad=1, stride=2), conv4=L.Convolution2D(96, 192, 3, pad=1), conv5=L.Convolution2D(192, 192, 3, pad=1), conv6=L.Convolution2D(192, 192, 3, pad=1, stride=2), conv7=L.Convolution2D(192, 192, 3, pad=1), conv8=L.Convolution2D(192, 192, 1), conv9=L.Convolution2D(192, 10, 1), b1=L.BatchNormalization(96), b2=L.BatchNormalization(96), b3=L.BatchNormalization(96), b4=L.BatchNormalization(192), b5=L.BatchNormalization(192), b6=L.BatchNormalization(192), b7=L.BatchNormalization(192), b8=L.BatchNormalization(192), b9=L.BatchNormalization(10), fc1=L.Linear(None, 1000), fc2=L.Linear(1000, 1000), fc3=L.Linear(1000, 1), ) self.af = F.relu def __call__(self, x): h = self.conv1(x) h = self.b1(h) h = self.af(h) h = self.conv2(h) h = self.b2(h) h = self.af(h) h = self.conv3(h) h = self.b3(h) h = self.af(h) h = self.conv4(h) h = self.b4(h) h = self.af(h) h = self.conv5(h) h = self.b5(h) h = self.af(h) h = self.conv6(h) h = self.b6(h) h = self.af(h) h = self.conv7(h) h = self.b7(h) h = self.af(h) h = self.conv8(h) h = self.b8(h) h = self.af(h) h = self.conv9(h) h = self.b9(h) h = self.af(h) h = self.fc1(h) h = self.af(h) h = self.fc2(h) h = self.af(h) h = self.fc3(h) return h
24596
import json import requests from typing import List from konlpy.tag import Okt from requests.models import Response class OktTokenizer: """ A POS-tagger based tokenizer functor. Note that these are just examples. The `phrases` function usually gives a better result than an ordinary POS tokenizer. Example: tokenizer: OktTokenizer = OktTokenizer() tokens: List[str] = tokenizer(your_text_here) """ okt: Okt = Okt() def __call__(self, text: str) -> List[str]: tokens: List[str] = self.okt.phrases(text) return tokens class ApiTokenizer: """ An API based tokenizer functor, assuming that the response body is a jsonifyable string with content of list of `str` tokens. Example: tokenizer: ApiTokenizer = ApiTokenizer() tokens: List[str] = tokenizer(your_text_here) """ def __init__(self, endpoint: str) -> None: self.endpoint: str = endpoint def __call__(self, text: str) -> List[str]: body: bytes = text.encode('utf-8') res: Response = requests.post(self.endpoint, data=body) tokens: List[str] = json.loads(res.text) return tokens
24608
from .alexnet import alexnet_V2 import tensorflow.compat.v1 as tf import tensorflow.contrib.slim as slim from utils import montage_tf from .lci_nets import patch_inpainter, patch_discriminator import tensorflow.contrib as contrib # Average pooling params for imagenet linear classifier experiments AVG_POOL_PARAMS = {'conv_1': (6, 6, 'SAME'), 'conv_2': (4, 4, 'VALID'), 'conv_3': (3, 3, 'SAME'), 'conv_4': (3, 3, 'SAME'), 'conv_5': (2, 2, 'VALID')} class TRCNet: def __init__(self, batch_size, im_shape, n_tr_classes=6, lci_patch_sz=64, lci_crop_sz=80, ae_dim=48, n_layers_lci=5, tag='default', feats_ids=None, feat_pool='AVG', enc_params=None): if enc_params is None: enc_params = {} self.name = 'TRNet_{}'.format(tag) self.n_tr_classes = n_tr_classes self.batch_size = batch_size self.im_shape = im_shape self.feats_IDs = feats_ids self.feat_pool = feat_pool self.enc_params = enc_params self.lci_patch_sz = lci_patch_sz self.lci_crop_sz = lci_crop_sz self.num_LCI_layers = n_layers_lci self.ae_model = patch_inpainter self.class_model = alexnet_V2 self.disc_model = patch_discriminator self.ae_dim = ae_dim def lci(self, img, enc_scope, dec_scope): # Extract random patch patch, jit_x, jit_y = random_crop(img, crop_sz=(self.lci_crop_sz, self.lci_crop_sz)) # Erase the center of the patch patch_erased, mask_erase = patch_erase(patch, patch_sz=(self.lci_patch_sz, self.lci_patch_sz)) tf.summary.image('imgs/patch_erased', montage_tf(patch_erased, 4, 8), max_outputs=1) # Perform inpainting/autoencoding net_in = tf.concat([patch, patch_erased], 0) net_out, _ = self.ae_model(net_in, depth=self.ae_dim, num_layers=self.num_LCI_layers, encoder_scope=enc_scope, decoder_scope=dec_scope) patch_ae, patch_ip = tf.split(net_out, 2) # Paste inpainted patches pasted_patch_inpaint, patch_mask = paste_crop(img, patch_ip, jit_x, jit_y) pasted_patch_ae, _ = paste_crop(img, patch_ae, jit_x, jit_y) img_lci = img * (1. - patch_mask) + pasted_patch_inpaint img_patchae = img * (1. - patch_mask) + pasted_patch_ae return patch_ip, patch_ae, mask_erase, tf.ones_like(mask_erase), patch, img_lci, img_patchae def ssl_net(self, net, reuse=None, training=True, scope='encoder'): return self.class_model(net, self.n_tr_classes, reuse, training, scope, **self.enc_params) def net(self, img, reuse=tf.AUTO_REUSE, training=True): preds, _ = self.ssl_net(img, reuse, training, scope='features') return preds def linear_classifiers(self, img, num_classes, training, reuse=None): _, feats = self.ssl_net(img, training=False, scope='features') preds_list = [] with tf.variable_scope('classifier', reuse=reuse): for feats_id in self.feats_IDs: p = AVG_POOL_PARAMS[feats_id] if self.feat_pool == 'AVG': class_in = slim.avg_pool2d(feats[feats_id], p[0], p[1], p[2]) elif self.feat_pool == 'None': class_in = feats[feats_id] print('{} linear classifier input shape: {}'.format(feats_id, class_in.get_shape().as_list())) preds = linear_classifier(class_in, num_classes, reuse, training, scope=feats_id, wd=5e-4) preds_list.append(preds) return preds_list def patch_disc(self, input, update_collection, disc_scope): in_1, in_2 = tf.split(input, 2) input = tf.concat([in_1, in_2], -1) model, _ = self.disc_model(input, update_collection=update_collection, num_layers=self.num_LCI_layers - 1, scope=disc_scope) return model def linear_class_loss(self, scope, preds, labels): total_loss = 0. for pred, f_id in zip(preds, self.feats_IDs): loss = tf.losses.softmax_cross_entropy(labels, pred, scope=scope) tf.summary.scalar('losses/SCE_{}'.format(f_id), loss) total_loss += loss # Compute accuracy predictions = tf.argmax(pred, 1) tf.summary.scalar('accuracy/train_accuracy_{}'.format(f_id), slim.metrics.accuracy(predictions, tf.argmax(labels, 1))) loss_wd = tf.add_n(tf.losses.get_regularization_losses(), name='loss_wd') tf.summary.scalar('losses/loss_wd', loss_wd) total_loss = total_loss + loss_wd return total_loss def inpainter_loss(self, preads_fake, imgs, recs_erase, mask_erase, recs_orig, mask_orig): loss_fake = -tf.reduce_mean(preads_fake) tf.summary.scalar('losses/generator_fake_loss', loss_fake) loss_ae_erase = tf.losses.mean_squared_error(imgs, recs_erase, weights=50. * mask_erase) loss_ae_orig = tf.losses.mean_squared_error(imgs, recs_orig, weights=50. * mask_orig) tf.summary.scalar('losses/loss_ae_erase', loss_ae_erase) tf.summary.scalar('losses/loss_ae_orig', loss_ae_orig) return loss_fake + loss_ae_erase + loss_ae_orig def discriminator_loss(self, preds_fake, preds_real): loss_real = tf.reduce_mean(tf.nn.relu(1. - preds_real)) loss_fake = tf.reduce_mean(tf.nn.relu(1. + preds_fake)) loss = loss_real + loss_fake tf.summary.scalar('losses/disc_fake_loss', loss_fake) tf.summary.scalar('losses/disc_real_loss', loss_real) tf.summary.scalar('losses/disc_total_loss', loss) return loss def loss_ssl(self, preds, labels): # Define the loss loss = tf.losses.softmax_cross_entropy(labels, preds) tf.summary.scalar('losses/SCE', loss) # Compute accuracy predictions = tf.argmax(preds, 1) tf.summary.scalar('accuracy/train_accuracy', slim.metrics.accuracy(predictions, tf.argmax(labels, 1))) bs = self.batch_size tf.summary.scalar('accuracy/train_accuracy_real_noae', slim.metrics.accuracy(predictions[:bs // 2], tf.argmax(labels[:bs // 2], 1))) tf.summary.scalar('accuracy/train_accuracy_real_ae', slim.metrics.accuracy(predictions[bs // 2:bs], tf.argmax(labels[bs // 2:bs], 1))) tf.summary.scalar('accuracy/train_accuracy_lci', slim.metrics.accuracy(predictions[bs:2 * bs], tf.argmax(labels[bs:2 * bs], 1))) tf.summary.scalar('accuracy/train_accuracy_rot', slim.metrics.accuracy(predictions[2 * bs:-bs], tf.argmax(labels[2 * bs:-bs], 1))) tf.summary.scalar('accuracy/train_accuracy_warp', slim.metrics.accuracy(predictions[-bs:], tf.argmax(labels[-bs:], 1))) return loss def loss_lci_adv(self, preds, labels_tf): loss = tf.losses.softmax_cross_entropy(labels_tf, preds) return loss def linear_classifier(net, num_out, reuse=None, training=True, scope='classifier', wd=5e-4): with tf.variable_scope(scope, reuse=reuse): net = slim.batch_norm(net, decay=0.975, is_training=training, fused=True, center=False, scale=False) net = slim.flatten(net) net = slim.fully_connected(net, num_out, weights_initializer=contrib.layers.variance_scaling_initializer(), weights_regularizer=slim.l2_regularizer(wd), activation_fn=None, normalizer_fn=None) return net def patch_erase(img, patch_sz=(16, 16)): im_shape = img.get_shape() pad_sz = [im_shape[1] - patch_sz[0], im_shape[2] - patch_sz[1]] patch_mask = tf.ones([im_shape[0], patch_sz[0], patch_sz[1], im_shape[3]]) patch_mask = tf.pad(patch_mask, [[0, 0], [pad_sz[0] // 2, pad_sz[0] // 2], [pad_sz[1] // 2, pad_sz[1] // 2], [0, 0]]) return img * (1. - patch_mask) + 0.1 * patch_mask * tf.random_normal(im_shape), 1. - patch_mask def random_crop(img, crop_sz=(20, 20)): im_shape = img.get_shape().as_list() bsz = im_shape[0] dx = (im_shape[1] - crop_sz[0]) // 2 dy = (im_shape[2] - crop_sz[1]) // 2 base = tf.constant( [1, 0, 0, 0, 1, 0, 0, 0], shape=[1, 8], dtype=tf.float32 ) base = tf.tile(base, [bsz, 1]) mask_x = tf.constant( [0, 0, 1, 0, 0, 0, 0, 0], shape=[1, 8], dtype=tf.float32 ) mask_x = tf.tile(mask_x, [bsz, 1]) mask_y = tf.constant( [0, 0, 0, 0, 0, 1, 0, 0], shape=[1, 8], dtype=tf.float32 ) mask_y = tf.tile(mask_y, [bsz, 1]) jit_x = tf.random_uniform([bsz, 8], minval=-dx + 1, maxval=dx, dtype=tf.int32) jit_x = tf.cast(jit_x, tf.float32) jit_y = tf.random_uniform([bsz, 8], minval=-dy + 1, maxval=dy, dtype=tf.int32) jit_y = tf.cast(jit_y, tf.float32) xforms = base + jit_x * mask_x + jit_y * mask_y processed_data = contrib.image.transform( images=img, transforms=xforms ) cropped_data = processed_data[:, dx:dx + crop_sz[0], dy:dy + crop_sz[1], :] return cropped_data, jit_x, jit_y def paste_crop(img, crop, jit_x, jit_y): im_shape = tf.shape(img) crop_shape = tf.shape(crop) bsz = im_shape[0] dx_1 = (im_shape[1] - crop_shape[1]) // 2 dy_1 = (im_shape[2] - crop_shape[2]) // 2 dx_2 = im_shape[1] - crop_shape[1] - dx_1 dy_2 = im_shape[2] - crop_shape[2] - dy_1 patch_mask = tf.ones_like(crop) crop = tf.pad(crop, [[0, 0], [dx_1, dx_2], [dy_1, dy_2], [0, 0]]) patch_mask = tf.pad(patch_mask, [[0, 0], [dx_1, dx_2], [dy_1, dy_2], [0, 0]]) base = tf.constant( [1, 0, 0, 0, 1, 0, 0, 0], shape=[1, 8], dtype=tf.float32 ) base = tf.tile(base, [bsz, 1]) mask_x = tf.constant( [0, 0, 1, 0, 0, 0, 0, 0], shape=[1, 8], dtype=tf.float32 ) mask_x = tf.tile(mask_x, [bsz, 1]) mask_y = tf.constant( [0, 0, 0, 0, 0, 1, 0, 0], shape=[1, 8], dtype=tf.float32 ) mask_y = tf.tile(mask_y, [bsz, 1]) xforms = base - jit_x * mask_x - jit_y * mask_y transformed_crop = contrib.image.transform( images=crop, transforms=xforms ) transformed_mask = contrib.image.transform( images=patch_mask, transforms=xforms ) return transformed_crop, transformed_mask
24614
import tvm from functools import reduce from ..utils import to_int, to_int_or_None def get_need_tile(need_tile): return [True if x.value == 1 else False for x in need_tile] def get_factors(split_factor_entities): return [[x.value for x in factors.factors] for factors in split_factor_entities] def tile_axis(stage, axis, factors, inner_to_outer=False): ret = [] if inner_to_outer: factors = list(reversed(factors)) for f in factors[:-1]: axis, inner = stage.split(axis, f) ret.append(inner) ret.append(axis) ret = list(reversed(ret)) else: for f in factors[:-1]: outer, axis = stage.split(axis, nparts=f) ret.append(outer) ret.append(axis) return ret def tile_axes(sch, op, axes, need_tile, split_factors, inner_to_outer=False): """Tile axes according to need_tile and split_factors """ axis_map = {} count_axis = 0 split_axis_list = [] split_factor_list = [] for axis, need_tile, factors in zip(axes, need_tile, split_factors): if need_tile: split_axis = tile_axis(sch[op], axis, factors, inner_to_outer=inner_to_outer) split_axis_list.append(split_axis) split_factor_list.append(factors) axis_map[count_axis] = split_axis else: axis_map[count_axis] = axis count_axis += 1 return axis_map, split_axis_list, split_factor_list def get_bind_spec(binding_entity): ret = [] for b in binding_entity: tmp = [] for bb in b: tmp.append([bb[0].value, bb[1].value]) ret.append(tmp) return ret def bind_axes(sch, op, axis_map, bind, to_bind, already_bind=None, factors=None, extents=None): """The bind function will fuse some axes, which is dangerous because this is not updated to the schedule state. For now it shouldn't be a problem because the fusion should only happen on blockIdx.z """ ret = [] for part in bind: to_fuse = [] to_fuse_extent = 1 for ele in part: if ele[1] < 0: axis = axis_map[ele[0]] if already_bind is not None: to_fuse_extent *= extents[ele[0]] else: axis = axis_map[ele[0]][ele[1]] if already_bind is not None: to_fuse_extent *= factors[ele[0]][ele[1]] to_fuse.append(axis) if len(to_fuse) > 1: sch[op].reorder(*to_fuse) fused_axis = sch[op].fuse(*to_fuse) else: fused_axis = to_fuse[0] ret.append(fused_axis) sch[op].bind(fused_axis, to_bind) if already_bind is not None: already_bind["extent"] = to_fuse_extent return ret def get_move_to_inner(move): return [x.value for x in move] def reorder_spatial_and_reduce_axes(sch, op, axis_map, split_axis_list, reduce_split_axis_list, extents_info=None): """Reorder spatial and reduce axes """ pre = [] ones = [] for k, v in axis_map.items(): if not isinstance(v, (list, tuple)): if v.dom is None: ext = None else: ext = to_int_or_None(v.dom.extent) if ext is None: if v in extents_info: ext = extents_info[v] else: ERROR("Can't decide extent for %s" % (str(v))) if ext > 1: pre.append(v) else: ones.append(v) # perform local reorder num_axis_parts = len(split_axis_list[0]) if len(split_axis_list) > 0 else 0 num_reduce_axis_parts = len(reduce_split_axis_list[0]) if len(reduce_split_axis_list) > 0 else 0 leveled_axes = [] reduce_leveled_axes = [] local_order = [] def _inner(axis_list, leveled, nparts): for i in range(nparts): leveled.append([]) for part in axis_list: for i, axis in enumerate(part): leveled[i].append(axis) _inner(split_axis_list, leveled_axes, num_axis_parts) _inner(reduce_split_axis_list, reduce_leveled_axes, num_reduce_axis_parts) if len(leveled_axes) >= 1: # GPU specific reorder choice # put the inner part as inner-most axes local_order = list(reduce(lambda x, y: x + y, leveled_axes[:-1], [])) local_order += list(reduce(lambda x, y: x + y, reduce_leveled_axes, [])) local_order += leveled_axes[-1] else: local_order += list(reduce(lambda x, y: x + y, reduce_leveled_axes, [])) if len(local_order) > 0: sch[op].reorder(*ones, *pre, *local_order) return leveled_axes, reduce_leveled_axes
24645
import io from PIL import Image from torchvision import models import torch import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import urllib import os def get_model_from_global_agent(): global_model = models.squeezenet1_1(pretrained=True) global_model.classifier[1] = nn.Conv2d(512, 5, kernel_size=(1,1), stride=(1,1)) global_model.num_classes = 5 global_model.to(torch.device('cpu')) map_location=torch.device('cpu') model_weights_link = 'https://drive.google.com/uc?id=11pb2yJKXgyYC9XnB9cd6HlNCFNxnlY1D' model_weights_path = './model/squeezenet_0.pt' urllib.request.urlretrieve(model_weights_link, model_weights_path) global_model.load_state_dict(torch.load("./model/squeezenet_0.pt", map_location=torch.device('cpu'))) os.remove(model_weights_path) global_model.eval() return global_model def transform_image(image_bytes): apply_transform = transforms.Compose([transforms.Resize(265), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) image = Image.open(io.BytesIO(image_bytes)).convert('RGB') return apply_transform(image).unsqueeze(0) # change to DR dataset format def format_class_name(class_name): class_name = class_name.replace('_', ' ') class_name = class_name.title() return class_name
24659
import torch from torch import nn from configs import ANCHOR_SIZES class PostRes(nn.Module): def __init__(self, n_in, n_out, stride=1): super(PostRes, self).__init__() self.conv1 = nn.Conv3d(n_in, n_out, kernel_size=3, stride=stride, padding=1) self.bn1 = nn.BatchNorm3d(n_out) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv3d(n_out, n_out, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm3d(n_out) if stride != 1 or n_out != n_in: self.shortcut = nn.Sequential( nn.Conv3d(n_in, n_out, kernel_size=1, stride=stride), nn.BatchNorm3d(n_out)) else: self.shortcut = None def forward(self, x): residual = x if self.shortcut is not None: residual = self.shortcut(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += residual out = self.relu(out) return out class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.preBlock = nn.Sequential( nn.Conv3d(1, 24, kernel_size=3, padding=1), nn.BatchNorm3d(24), nn.ReLU(inplace=True), nn.Conv3d(24, 24, kernel_size=3, padding=1), nn.BatchNorm3d(24), nn.ReLU(inplace=True)) num_blocks_forw = [2, 2, 3, 3] num_blocks_back = [3, 3] self.featureNum_forw = [24, 32, 64, 64, 64] self.featureNum_back = [128, 64, 64] for i in range(len(num_blocks_forw)): blocks = [] for j in range(num_blocks_forw[i]): if j == 0: blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i + 1])) else: blocks.append(PostRes(self.featureNum_forw[i + 1], self.featureNum_forw[i + 1])) setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks)) for i in range(len(num_blocks_back)): blocks = [] for j in range(num_blocks_back[i]): if j == 0: if i == 0: addition = 3 else: addition = 0 blocks.append(PostRes(self.featureNum_back[i + 1] + self.featureNum_forw[i + 2] + addition, self.featureNum_back[i])) else: blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i])) setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks)) self.maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True) self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2, stride=2) self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2, stride=2) self.path1 = nn.Sequential( nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2), nn.BatchNorm3d(64), nn.ReLU(inplace=True)) self.path2 = nn.Sequential( nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2), nn.BatchNorm3d(64), nn.ReLU(inplace=True)) self.drop = nn.Dropout3d(p=0.5, inplace=False) self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size=1), nn.ReLU(), nn.Conv3d(64, 5 * len(ANCHOR_SIZES), kernel_size=1)) def forward(self, x, coord): out = self.preBlock(x) # 16 out_pool, indices0 = self.maxpool1(out) out1 = self.forw1(out_pool) # 32 out1_pool, indices1 = self.maxpool2(out1) out2 = self.forw2(out1_pool) # 64 out2_pool, indices2 = self.maxpool3(out2) out3 = self.forw3(out2_pool) # 96 out3_pool, indices3 = self.maxpool4(out3) out4 = self.forw4(out3_pool) # 96 rev3 = self.path1(out4) comb3 = self.back3(torch.cat((rev3, out3), 1)) # 96+96 rev2 = self.path2(comb3) comb2 = self.back2(torch.cat((rev2, out2, coord), 1)) # 64+64 comb2 = self.drop(comb2) out = self.output(comb2) size = out.size() out = out.view(out.size(0), out.size(1), -1) out = out.transpose(1, 2).contiguous().view(size[0], size[2], size[3], size[4], len(ANCHOR_SIZES), 5) return out
24672
from tir import Webapp import unittest from tir.technologies.apw_internal import ApwInternal import datetime import time DateSystem = datetime.datetime.today().strftime('%d/%m/%Y') DateVal = datetime.datetime(2120, 5, 17) """------------------------------------------------------------------- /*/{Protheus.doc} PLSA809TestCase TIR - Casos de testes da rotina Indicacao de Prestador via CallCenter @author <NAME> @since 10/2020 @version 12 -------------------------------------------------------------------""" class PLSA809(unittest.TestCase): @classmethod def setUpClass(inst): inst.oHelper = Webapp() inst.oHelper.Setup("SIGAPLS","13/10/2020","T1","M SP 01","33") inst.oHelper.Program("PLSA809") inst.oHelper.AddParameter("MV_PLCALPG","" , "2") inst.oHelper.AddParameter("MV_PL809VL","" , ".F.") inst.oHelper.SetParameters() def test_PLSA809_001(self): # INCLUIR self.oHelper.SetButton("Incluir") self.oHelper.SetBranch("M SP 01 ") self.oHelper.SetValue("B9Y_CARTEI","00010100000001024", check_value = False) self.oHelper.SetValue("B9Y_CRMCGC","41226834671", check_value = False) time.sleep(10) self.oHelper.SetValue("B9Y_NOME","PLS DSAUPC TIR INCLUSAO") self.oHelper.SetValue("B9Y_EMAIL","<EMAIL>") self.oHelper.SetValue("B9Y_TEL","11332220000", check_value = False) self.oHelper.SetValue("B9Y_TIPOAT", "3 - Ambos") self.oHelper.SetValue("B9Y_OBS", "TESTE 2 TIR INCLUSAO") # Grid Enderecos self.oHelper.ClickGridCell("Cód Logr",row=1, grid_number=1) self.oHelper.SetKey("Enter", grid=True, grid_number=1) self.oHelper.SetValue("B9V_CODLOG","008") self.oHelper.ClickGridCell("Endereço",row=1, grid_number=1) self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(10) self.oHelper.SetValue("B9V_ENDER","ALBERT BARTHOLOME") self.oHelper.ClickGridCell("Nº",row=1, grid_number=1) self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(10) self.oHelper.SetValue("B9V_NUMERO","434") #self.oHelper.ClickGridCell("Complemento",row=1, grid_number=1) #self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(30) #self.oHelper.SetValue("B9V_COMEND","SALA 10") #self.oHelper.ClickGridCell("Bairro",row=1, grid_number=1) #self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(30) #self.oHelper.SetValue("B9V_BAIRRO","BUTANTA") #self.oHelper.ClickGridCell("Cód Cidade",row=1, grid_number=1) #self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(30) #self.oHelper.SetValue("B9V_CODCID","3550308") #self.oHelper.ClickGridCell("CEP",row=1, grid_number=1) #self.oHelper.SetKey("Enter", grid=True, grid_number=1) time.sleep(30) #self.oHelper.SetValue("B9V_CEP","05541000", check_value = False) # Grid Especialidades self.oHelper.ClickGridCell("Cod Espec",row=1, grid_number=2) self.oHelper.SetKey("Enter", grid=True, grid_number=2) time.sleep(10) self.oHelper.SetValue("B9Q_CODESP","002") self.oHelper.SetButton("Confirmar") self.oHelper.SetButton("Fechar") # "O beneficiário não possui email cadastrado na base de dados, favor informar o protocolo a ele para que seja possível acompanhar a indicação feita" self.oHelper.SetButton("Fechar") # "Registro inserido com sucesso." # VISUALIZAR self.oHelper.SetButton("Visualizar") self.oHelper.CheckResult("B9Y_CRMCGC","41226834671") self.oHelper.SetButton("Fechar") # INCLUSÃO COM MESMO CRM/CNPJ self.oHelper.SetButton("Incluir") self.oHelper.SetBranch("M SP 01 ") self.oHelper.SetValue("B9Y_CARTEI","00010100000001024", check_value = False) self.oHelper.SetValue("B9Y_CRMCGC","41226834671", check_value = False) time.sleep(10) self.oHelper.SetValue("B9Y_NOME","PLS DSAUPC TIR INCLUSAO 2") self.oHelper.SetValue("B9Y_EMAIL","<EMAIL>") self.oHelper.SetValue("B9Y_TEL","11333331234", check_value = False) self.oHelper.SetValue("B9Y_TIPOAT", "2 - Assistencial") self.oHelper.SetValue("B9Y_OBS", "TESTE 2 TIR INCLUSAO COM MESMO CRM/CNPJ") # Grid Especialidades self.oHelper.ClickGridCell("Indicar",row=1, grid_number=2) self.oHelper.SetKey("Enter", grid=True, grid_number=2) self.oHelper.SetButton("Confirmar") self.oHelper.SetButton("Fechar") # "O beneficiário não possui email cadastrado na base de dados, favor informar o protocolo a ele para que seja possível acompanhar a indicação feita" self.oHelper.SetButton("Fechar") # "Registro inserido com sucesso." self.oHelper.SetButton('x') self.oHelper.AssertTrue() @classmethod def tearDownClass(inst): inst.oHelper.TearDown() if __name__ == '__main__': unittest.main()
24707
import abc from config import MODEL_DIR class Network: __metaclass__ = abc.ABCMeta @abc.abstractmethod def __init__(self): self.model = None self.model_history = None self.X_train = None self.X_test = None self.y_train = None self.y_test = None @abc.abstractmethod def set_train_test_split(self): pass @abc.abstractmethod def build_model(self): pass @abc.abstractmethod def train_model(self): pass @abc.abstractmethod def forecast_model(self, start_datetime, end_datetime, freq): pass @abc.abstractmethod def visualize_output(self): pass def evaluate_model(self): return self.model.evaluate(self.X_test, self.y_test) def save_model(self, filename): self.model.save_weights(MODEL_DIR + filename) def load_model(self, filename): self.model.load_weights(MODEL_DIR + filename)
24715
import os def remove_comments_and_crlf(inp_path, comment_string=';', overwrite=False): tmpfilename = os.path.splitext(os.path.basename(inp_path))[0] + '_mod.inp' tmpfilepath = os.path.join(os.path.dirname(inp_path), tmpfilename) with open (inp_path) as oldf: with open(tmpfilepath, 'w') as newf: for line in oldf: if ';' in line: #remove the comments if line.strip()[0] == comment_string: #skip the whole line pass else: #write the line to the left of the comment non_comment_line = line.split(';')[0] newf.write(non_comment_line + '\n') elif line == '\n': pass else: newf.write(line) if overwrite: os.remove(inp_path) os.rename(tmpfilepath, inp_path) def line_by_line(path1, path2, outfile): """ given paths to two INP files, return a text file showing where differences occur in line-by-line fashion. If the order of elements do not match, this will be recorded as a difference. ignores any spaces in a file such that lines with more or less white space having the same non-whitespace will be considered equal. """ #outfile =r"P:\06_Tools\v_control\Testing\cleaned\linebyline.txt" with open(outfile, 'w') as diff_file: with open (path1) as f1: with open(path2) as f2: line1 = next(f1) line2 = next(f2) while line1 and line2: #replace all white space to check only actual content if line1.replace(" ", "") != line2.replace(" ", ""): diff_file.write(line1) line1 = next(f1) line2 = next(f2)
24717
import re import pprint pp = pprint.PrettyPrinter(indent=4) from sys import version_info # py3, for checking type of input def combine_messages(messages): """ Combines messages that have one or more integers in them, such as "trial001" "trial002", into a single message like "trial# (#=1-2)". This is to reduce the number of messages required to be displayed. Operates by creating the following structure, named "ti" for "template info": { 't2tn': {} - maps each template (containing "#") to a template number (tn) 'tn2t': [] - list of templates, indexed by the template number 'm2tns': {} - maps each message number (index in messages) to array of template numbers (tns) 'tn2dm': {} - maps each template number to a dictionary that has as keys the digits used to make the template, and with value the message number used to make the template with those digits. i.e.: { tn1: {d1: m1, d2: m2}, tn2: {d3: m3, d4: m4}, tn2: { ...}} where: tn - template number d: m - digits used to make template from message number m 'tn2md': {} - maps each template number of a dictionary that has keys the message number and value the digits used to make the message. These reverse the key-values in 'tn2dm', e.g.: { tn1: {m1: d1, m2: d2}, tn2: {m3: d3, m4: d4}, tn2: { ...}} where: tn - template number d: m - digits used to make template from message number m This array is used to dynamically remove entries in 'tn2dm' as each message in a template is displayed so that structure always has an accurate list of remaining messages. 'mout': [] - messages to display (output), formed by combining messages 'mfin': [] - set of message numbers "finished" (already included in mout). } This function works by first creating everything except mout and mfin, then going through each message, finding the template numbers that have the most digits, and using those to make the combined message. """ ti = {} ti['t2tn'] = {} ti['tn2t'] = [] ti['m2tns'] = {} ti['tn2dm'] = {} ti['tn2md'] = {} # debug_msg = "/acquisition/timeseries/fov_15002_17/data" # debug_mn = -1 for mn in range(len(messages)): msg = messages[mn] if version_info[0] > 2: assert isinstance(msg, str), "in Python 3, messages must be str (unicode) type" # if msg.startswith(debug_msg): # debug_mn = mn found_nums = re.findall("\d+", msg) if not found_nums: # no numbers found, don't process continue # remove any duplicates found_nums = list(set(found_nums)) for digits in found_nums: pattern = "(?<!\d)%s(?!\d)" % digits # substitute only if digits not surrounded by other digits template = re.sub(pattern, "#", msg) # make template for this message and digits if template not in ti['t2tn']: tn = len(ti['tn2t']) # template number ti['tn2t'].append(template) # add template to list of templates ti['t2tn'][template] = tn # add entry to map of template to template number else: tn = ti['t2tn'][template] # save template number (tn) in 'm2tns' if mn not in ti['m2tns']: ti['m2tns'][mn] = [tn,] else: ti['m2tns'][mn].append(tn) # save template number, digits and message number in 'tn2dm' idigits = int(digits) if tn not in ti['tn2dm']: ti['tn2dm'][tn] = {idigits: mn} ti['tn2md'][tn] = {mn: idigits} else: if digits in ti['tn2dm'][tn]: print ("duplicate message found: %s" % msg) break ti['tn2dm'][tn][idigits] = mn ti['tn2md'][tn][mn] = idigits # done building needed structures. Now generate 'output' (i.e. ti['mfin'] and ti['mout'] ti['mout'] = [] ti['mfin'] = set([]) for mn in range(len(messages)): # if mn == debug_mn: # print ("found mn %i '%s'" % (debug_mn, debug_msg)) # import pdb; pdb.set_trace() if mn in ti['mfin']: # message has already been displayed (using a template) continue if mn not in ti['m2tns']: # no digits found in this message, just display as is ti['mout'].append(messages[mn]) ti['mfin'].add(mn) continue # this message has at least one pattern. Find template with largest number of other messages # that have not been displayed yet # build list of pairs, (a, b); a - template number, b - number of messages in template tn_nm_pairs = [ (tn, len(ti['tn2dm'][tn])) for tn in ti['m2tns'][mn] ] # get those pairs that have the largest number of messages ltn_nm_pairs = largest_pairs(tn_nm_pairs) # nmax = 0 # for tn in ti['m2tns'][mn]: # dm = ti['tn2dm'][tn] # num_messages = len(ti['tn2dm'][tn]) # num messages associated with this template # if num_messages > nmax: # max_tn = [tn] # nmax = num_messages # elif num_messages == nmax: # # multiple templates have the same number of messages, will need to select # # one in a deterministic way # max_tn.append(tn) # # if no other messages use pattern, just display as is # if nmax == 1: if ltn_nm_pairs[0][1] == 1: # only one messages uses pattern, just display as is ti['mout'].append(messages[mn]) ti['mfin'].add(mn) continue # if len(max_tn) > 1: if len(ltn_nm_pairs) == 1: # only one template found that has maximal number of messages. use it. max_tn = ltn_nm_pairs[0][0] else: # multiple templates have the same maximal number of messages. Select the one # with the rightmost position of '#' in the template # build list of pairs, (a,b): a - template number, b - index of '#' in template tn_ix_pairs = [ (ltn_nm_pairs[i][0], ti['tn2t'][ltn_nm_pairs[i][0]].index('#')) for i in range(len(ltn_nm_pairs))] tn_ix_pairs = largest_pairs(tn_ix_pairs) if len(tn_ix_pairs) > 1: # should never happen since templates made for the same message cannot have # the same position for the '#' sys.exit("found multiple templates with same maximal number of messages and same template") # use the template found max_tn = tn_ix_pairs[0][0] # other messages use this template. Get list message numbers and digits that share this template s_digits = list(ti['tn2dm'][max_tn].keys()) # shared digits s_mns = list(ti['tn2dm'][max_tn].values()) # shared message numbers # update tn2dm to remove messages that will be displayed shortly (in this template) for mn in s_mns: for tn in ti['m2tns'][mn]: idigit = ti['tn2md'][tn][mn] del ti['tn2dm'][tn][idigit] # make new message by combining shared digits with template template = ti['tn2t'][max_tn] # convert digits from string to int # i_digits = sorted([int(i) for i in s_digits]) i_digits = sorted(s_digits) # make string representing ranges of digits prevn = i_digits[0] # initialize previous number to first sr = str(prevn) # string of ranges being generated in_range = False for i in range(1, len(i_digits)): newn = i_digits[i] if newn == prevn + 1: # in a range in_range = True else: # not in a range. But if was previously save end of previous range if in_range: sr = "%s-%i" % (sr, prevn) in_range = False # save new number sr = "%s,%i" % (sr, newn) prevn = newn # append final number if in range if in_range: sr = "%s-%i" % (sr, newn) new_message = template + " (#=%s)" % sr ti['mout'].append(new_message) # add all messages that share this template to ti['mfin'] so they are not displayed again ti['mfin'].update(s_mns) # return list of combined messages return ti['mout'] def largest_pairs(pairs): """"Input is a list of two-element tuples, e.g. [(5, 4), (2, 7), ...] Output is list of those, which have the largest 2nd element, e.g. [(2,7)]""" largest = -1 for pair in pairs: a, b = pair if b > largest: largest = b lpairs = [pair] elif b == largest: lpairs.append(pair) return lpairs def test_combine_messages(): """ tests combine_messages function""" messages = [ "some prefix trial-none", "some prefix trial23", "some prefix trial23/timestamps", "some prefix trial23 timestamps", "some prefix trial23\ntimestamps", "some prefix 32-bits, trial32", "some prefix 32-bits, trial33", "some prefix 32-bits, trial34", "some prefix 32-bits, trial35", "some prefix trial-11", "some prefix trial23 and trial23 again", "some prefix trial27", "some prefix trial27/timestamps", "some prefix trial27 timestamps", "some prefix trial27\ntimestamps", "some prefix 32-bits, trial27", "some prefix trial27 and trial27 again"] cm = combine_messages(messages) pp.pprint(cm) if __name__ == '__main__': test_combine_messages()
24756
from . import BasicType class UserProfilePhotos(BasicType): fields = { 'total_count': int, } def __init__(self, obj=None): super(UserProfilePhotos, self).__init__(obj) from . import photosize UserProfilePhotos.fields.update({ 'photos': { 'class': photosize.PhotoSize, 'array_of_array': True } })
24780
import nengo import pytest from nengo_spinnaker.builder import Model from nengo_spinnaker.builder.ports import OutputPort, InputPort from nengo_spinnaker.node_io import ethernet as ethernet_io from nengo_spinnaker.operators import SDPReceiver, SDPTransmitter @pytest.mark.parametrize("transmission_period", [0.001, 0.002]) def test_Ethernet_init(transmission_period): """Test that the Ethernet initialisation creates a host network and stores appropriate rates. """ # Create the EthernetIO io = ethernet_io.Ethernet(transmission_period=transmission_period) # Check that we stored the transmission period assert io.transmission_period == transmission_period # Check that there is a (empty) host network assert io.host_network.all_objects == list() assert io.host_network.all_connections == list() assert io.host_network.all_probes == list() # Check that the node input dictionary and lock are present with io.node_input_lock: assert io.node_input == dict() def test_get_spinnaker_source_for_node(): """Check that getting the SpiNNaker source for a Node returns an SDP Rx operator as the source object with OutputPort.standard as the port. The spec should indicate that the connection should be latching. """ with nengo.Network(): a = nengo.Node(lambda t: t**2, size_out=1) b = nengo.Ensemble(100, 1) a_b = nengo.Connection(a, b) # Create an empty model and an Ethernet object model = Model() io = ethernet_io.Ethernet() spec = io.get_node_source(model, a_b) assert isinstance(spec.target.obj, SDPReceiver) assert spec.target.port is OutputPort.standard assert spec.latching assert model.extra_operators == [spec.target.obj] def test_get_spinnaker_source_for_node_repeated(): """Getting the source twice for the same Node should return the same object. """ with nengo.Network(): a = nengo.Node(lambda t: t**2, size_out=1) b = nengo.Ensemble(100, 1) a_b0 = nengo.Connection(a, b) a_b1 = nengo.Connection(a, b, transform=-0.5) # Create an empty model and an Ethernet object model = Model() io = ethernet_io.Ethernet() spec0 = io.get_node_source(model, a_b0) spec1 = io.get_node_source(model, a_b1) assert spec0.target.obj is spec1.target.obj assert model.extra_operators == [spec0.target.obj] def test_get_spinnaker_sink_for_node(): """Check that getting the SpiNNaker sink for a Node returns an SDP Tx operator as the sink object with InputPort.standard as the port. """ with nengo.Network(): a = nengo.Ensemble(100, 1) b = nengo.Node(lambda t, x: None, size_in=1) a_b = nengo.Connection(a, b) # Create an empty model and an Ethernet object model = Model() io = ethernet_io.Ethernet() spec = io.get_node_sink(model, a_b) assert isinstance(spec.target.obj, SDPTransmitter) assert spec.target.port is InputPort.standard assert model.extra_operators == [spec.target.obj] def test_get_spinnaker_sink_for_node_repeated(): """Check that getting the SpiNNaker sink for a Node twice returns the same target. """ with nengo.Network(): a = nengo.Ensemble(100, 1) b = nengo.Node(lambda t, x: None, size_in=1) a_b0 = nengo.Connection(a, b) a_b1 = nengo.Connection(a, b, synapse=0.3) # Create an empty model and an Ethernet object model = Model() io = ethernet_io.Ethernet() spec0 = io.get_node_sink(model, a_b0) spec1 = io.get_node_sink(model, a_b1) assert spec0.target.obj is spec1.target.obj assert model.extra_operators == [spec0.target.obj]
24788
from rest_framework import serializers from api.model.foodComment import FoodComment from api.model.food import Food from django.contrib.auth.models import User from api.serializer.user import UserSerializer class FoodCommentSerializer(serializers.ModelSerializer): comment = serializers.CharField(max_length=255) photo = serializers.CharField(max_length=255, allow_null=True, required=False) user = serializers.PrimaryKeyRelatedField(queryset=User.objects.all()) food = serializers.PrimaryKeyRelatedField(queryset=Food.objects.all()) class Meta: model = FoodComment fields = '__all__' depth = 1 class FoodCommentReadSerializer(serializers.ModelSerializer): user = UserSerializer() class Meta: model = FoodComment fields = '__all__' depth = 1 class FoodCommentPureSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(queryset=User.objects.all()) food = serializers.PrimaryKeyRelatedField(queryset=Food.objects.all()) class Meta: model = FoodComment fields = ('comment', 'user', 'food') depth = 1
24823
import deepchem as dc import numpy as np import os def test_numpy_dataset_get_shape(): """Test that get_shape works for numpy datasets.""" num_datapoints = 100 num_features = 10 num_tasks = 10 # Generate data X = np.random.rand(num_datapoints, num_features) y = np.random.randint(2, size=(num_datapoints, num_tasks)) w = np.random.randint(2, size=(num_datapoints, num_tasks)) ids = np.array(["id"] * num_datapoints) dataset = dc.data.NumpyDataset(X, y, w, ids) X_shape, y_shape, w_shape, ids_shape = dataset.get_shape() assert X_shape == X.shape assert y_shape == y.shape assert w_shape == w.shape assert ids_shape == ids.shape def test_disk_dataset_get_shape_single_shard(): """Test that get_shape works for disk dataset.""" num_datapoints = 100 num_features = 10 num_tasks = 10 # Generate data X = np.random.rand(num_datapoints, num_features) y = np.random.randint(2, size=(num_datapoints, num_tasks)) w = np.random.randint(2, size=(num_datapoints, num_tasks)) ids = np.array(["id"] * num_datapoints) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) X_shape, y_shape, w_shape, ids_shape = dataset.get_shape() assert X_shape == X.shape assert y_shape == y.shape assert w_shape == w.shape assert ids_shape == ids.shape def test_disk_dataset_get_shape_multishard(): """Test that get_shape works for multisharded disk dataset.""" num_datapoints = 100 num_features = 10 num_tasks = 10 # Generate data X = np.random.rand(num_datapoints, num_features) y = np.random.randint(2, size=(num_datapoints, num_tasks)) w = np.random.randint(2, size=(num_datapoints, num_tasks)) ids = np.array(["id"] * num_datapoints) dataset = dc.data.DiskDataset.from_numpy(X, y, w, ids) # Should now have 10 shards dataset.reshard(shard_size=10) X_shape, y_shape, w_shape, ids_shape = dataset.get_shape() assert X_shape == X.shape assert y_shape == y.shape assert w_shape == w.shape assert ids_shape == ids.shape def test_disk_dataset_get_legacy_shape_single_shard(): """Test that get_shape works for legacy disk dataset.""" # This is the shape of legacy_data num_datapoints = 100 num_features = 10 num_tasks = 10 current_dir = os.path.dirname(os.path.abspath(__file__)) # legacy_dataset is a dataset in the legacy format kept around for testing # purposes. data_dir = os.path.join(current_dir, "legacy_dataset") dataset = dc.data.DiskDataset(data_dir) X_shape, y_shape, w_shape, ids_shape = dataset.get_shape() assert X_shape == (num_datapoints, num_features) assert y_shape == (num_datapoints, num_tasks) assert w_shape == (num_datapoints, num_tasks) assert ids_shape == (num_datapoints,) def test_disk_dataset_get_legacy_shape_multishard(): """Test that get_shape works for multisharded legacy disk dataset.""" # This is the shape of legacy_data_reshard num_datapoints = 100 num_features = 10 num_tasks = 10 # legacy_dataset_reshard is a sharded dataset in the legacy format kept # around for testing current_dir = os.path.dirname(os.path.abspath(__file__)) data_dir = os.path.join(current_dir, "legacy_dataset_reshard") dataset = dc.data.DiskDataset(data_dir) # Should now have 10 shards assert dataset.get_number_shards() == 10 X_shape, y_shape, w_shape, ids_shape = dataset.get_shape() assert X_shape == (num_datapoints, num_features) assert y_shape == (num_datapoints, num_tasks) assert w_shape == (num_datapoints, num_tasks) assert ids_shape == (num_datapoints,) def test_get_shard_size(): """ Test that using ids for getting the shard size does not break the method. The issue arises when attempting to load a dataset that does not have a labels column. The create_dataset method of the DataLoader class sets the y to None in this case, which causes the existing implementation of the get_shard_size() method to fail, as it relies on the dataset having a not None y column. This consequently breaks all methods depending on this, like the splitters for example. Note ---- DiskDatasets without labels cannot be resharded! """ current_dir = os.path.dirname(os.path.abspath(__file__)) file_path = os.path.join(current_dir, "reaction_smiles.csv") featurizer = dc.feat.DummyFeaturizer() loader = dc.data.CSVLoader( tasks=[], feature_field="reactions", featurizer=featurizer) dataset = loader.create_dataset(file_path) assert dataset.get_shard_size() == 4
24856
import logging import sys import os from logging.handlers import RotatingFileHandler from multiprocessing.pool import ThreadPool from optparse import OptionParser import requests from requests.packages import urllib3 urllib3.disable_warnings() # Workers configurations ASYNC_WORKERS_COUNT = 100 # How many threads will make http requests. WORKERS_DECREMENTED_COUNT_ON_ERROR = 10 # Retry the fuzzing with x less workers, to decrease the load on the server. STARTED_JOB_LOG_INTERVAL = 100 # Every x started jobs, a log will be written # IO Configurations DEFAULT_PATHS_LIST_FILE = 'words_lists/Filenames_or_Directories_Common.wordlist' VALID_ENDPOINTS_FILE = 'endpoints.txt' # HTTP Configuration RESOURCE_EXISTS_STATUS_CODES = list(range(200, 300)) + [401, 402, 403] DEFAULT_BASE_URL = 'https://www.example.com' # Logging configurations LOGS_DIRECTORY_FULL_NAME = 'logs' LOG_FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' LOGGING_LEVEL = logging.INFO BACKUP_LOGS_FILES_COUNT = 5 FUZZING_LOGGER_NAME = 'fuzzing' LOG_FILE_MAX_BYTES = 0.5 * 1000 * 1000 # 500 KB class FilesFactory(object): """ Manage files and directories """ files = [] urls = [] def read_files_from_directory(self, user_path): self.files = [os.path.join(user_path, f) for f in os.listdir(user_path) if os.path.isfile(os.path.join(user_path, f))] def read_lines_from_files(self): for l in self.files: h = open(l, 'r') self.urls += h.read().splitlines() def __init__(self,user_path): if os.path.isdir(user_path): self.read_files_from_directory(user_path) self.read_lines_from_files() elif(os.path.isfile(user_path)): self.files.append(user_path) self.read_lines_from_files() class LoggerFactory(object): """ Manages loggers """ loggers = {} logging_level = LOGGING_LEVEL logging.basicConfig(stream=sys.stdout, level=logging_level, format=LOG_FORMAT) # Modifying the logger's level to ERROR to prevent console spam logging.getLogger('urllib3').setLevel(logging.WARNING) @staticmethod def get_logger(logger_name): """ Gets a logger by it's name. Created the logger if it don't exist yet. :param logger_name: The name of the logger (identifier). :return: The logger instance. :returns: Logger """ if logger_name not in LoggerFactory.loggers: LoggerFactory.loggers[logger_name] = LoggerFactory._get_logger(logger_name) return LoggerFactory.loggers[logger_name] @staticmethod def _get_logger(logger_name, logs_directory_path=LOGS_DIRECTORY_FULL_NAME): """ Creates a logger with rolling file handler, Or returns the logger if it already exists. :param logger_name: The name of the logger :param logs_directory_path: The path of the directory that the logs will be written to. :return: An initialized logger instance. returns: Logger """ # Creating the logs folder if its doesn't exist if not os.path.exists(logs_directory_path): os.mkdir(logs_directory_path) logger = logging.getLogger(logger_name) formatter = logging.Formatter(LOG_FORMAT) # Adding a rotating file handler rotating_file_handler = RotatingFileHandler( os.path.join(logs_directory_path, '{0}.log'.format(logger_name)), maxBytes=LOG_FILE_MAX_BYTES, backupCount=BACKUP_LOGS_FILES_COUNT) rotating_file_handler.setFormatter(formatter) rotating_file_handler.setLevel(LOGGING_LEVEL) logger.addHandler(rotating_file_handler) return logger class AsyncURLFuzzer(object): """ An asynchronous http(s) website endpoint locator. Discovers active endpoints in websites, based on a list of common URLS. """ def __init__(self, base_url=DEFAULT_BASE_URL, list_file=DEFAULT_PATHS_LIST_FILE, async_workers_count=ASYNC_WORKERS_COUNT, output_file=VALID_ENDPOINTS_FILE, resource_exists_status_codes=RESOURCE_EXISTS_STATUS_CODES): """ Initializes a new member of this class. :param base_url: The base url of the website. :type base_url: str :param list_file: The path of a file, containing the paths to check. :type list_file: str :param async_workers_count: How many workers (threads) to use. :type async_workers_count: int :param output_file: The name of the active endpoints output file. :type output_file: str :param resource_exists_status_codes: A list of HTTP status codes to consider as valid. :type resource_exists_status_codes: list """ self._logger = LoggerFactory.get_logger(FUZZING_LOGGER_NAME) self._base_url = base_url self._list_file_path = list_file self._async_workers_count = async_workers_count self._output_file_path = output_file self._resource_exists_status_codes = resource_exists_status_codes self._active_paths_status_codes = {} self._checked_endpoints = {} self._endpoints_total_count = 0 self._session = requests.session() def start(self): """ Starts the fuzzing with the initialized parameters. """ self._get_website_endpoints() def _get_website_endpoints(self, async_workers_count=ASYNC_WORKERS_COUNT): """ Requests asynchronously for all the resources with a number of workers (threads). If it fails for HTTP overloads reasons, it retries with less workers, because it's probably a DDOS protection mechanism. :param async_workers_count: How many workers (threads) to use. :type async_workers_count: int """ self._load_paths_list() self._logger.info( 'Getting the endpoints of the website {0} with list file "{1}" and {2} async workers.'.format( self._base_url, self._list_file_path, async_workers_count)) if 0 >= async_workers_count: self._logger.error('Seems like the site does not support fuzzing, as it has a DDOS protection engine.') return pool = ThreadPool(async_workers_count) try: tasks = [] self._logger.debug('Preparing the workers...') for i, path in enumerate(self._paths): self._logger.debug('Started a worker for the endpoint {0}'.format(path)) if i > i and i % STARTED_JOB_LOG_INTERVAL == 0: self._logger.info('Started {0} workers'.format(i)) path = path.strip() full_path = '/'.join([self._base_url, path]) tasks.append(pool.apply_async(self.request_head, (full_path, path))) for t in tasks: status_code, full_path, path = t.get() self._checked_endpoints[path] = path if self._is_valid_status_code(status_code): self._active_paths_status_codes[path] = status_code self._logger.info( 'Fetched {0}/{1}; {2}; {3}'.format(len(self._checked_endpoints), self._endpoints_total_count, status_code, full_path)) self._save_output_log() except requests.ConnectionError as e: pool.terminate() self._logger.error(e) self._logger.warning('An error occured while fuzzing.' ' Retrying with less async workers to reduce the server load.') retry_workers_count = async_workers_count - WORKERS_DECREMENTED_COUNT_ON_ERROR self._get_website_endpoints(retry_workers_count) def _is_valid_status_code(self, status_code): """ Checks whether a HTTP status code implies that the resouce exists. :param status_code: :return: True if the status code implies that the resouce exists, False otherwise. """ return status_code in self._resource_exists_status_codes def _save_output_log(self): """ Saves the results to an output file. """ full_status_codes = {'/'.join([self._base_url, p]): code for p, code in self._active_paths_status_codes.items()} output_lines = ['{0} : {1}'.format(path, code) for path, code in full_status_codes.items()] if 1 >= len(output_lines): self._logger.warning( 'There were no discovered endpoints. consider using a different file from "words_list" directory') self._logger.info('The following endpoints are active:{0}{1}'.format(os.linesep, os.linesep.join(output_lines))) with open(self._output_file_path, 'a+') as output_file: output_lines.sort() output_file.write(os.linesep.join(output_lines)) self._logger.info('The endpoints were exported to "{0}"'.format(self._output_file_path)) def _load_paths_list(self): """ Loads the list of paths from the configured status. """ if not os.path.exists(self._list_file_path): raise FileNotFoundError('The file "{0}" does not exist.'.format(self._list_file_path)) with open(self._list_file_path) as paths_file: paths = [p.strip().lstrip('/').rstrip('/') for p in paths_file.readlines()] paths = [p for p in paths if p not in self._active_paths_status_codes] if not self._endpoints_total_count: self._endpoints_total_count = len(paths) self._paths = paths def request_head(self, url, path): """ Executes a http HEAD request to a url. :param url: The full url to contact. :param path: The uri of the request. :return: A tuple of 3 variables: the recieved status code (int), the url argument (str), the path argument (str). """ if url != '': res = self._session.head(url, verify=False, allow_redirects=True) return res.status_code, url, path if __name__ == '__main__': # Parsing the parameters. parser = OptionParser(description= 'An Asynchronous, robust websites endpoint discovery tool with smart error handling. ' 'Locates resources in websites based on a list of paths. ' 'Check out the "words_list"" directory for lists examples.', usage='%prog -u https://example.com/', version='%prog 0.1') parser.add_option('-u', '--url', dest='base_url', help='The target website to scan.', default=DEFAULT_BASE_URL) parser.add_option('-l', '--list', dest='list_file', help='A file containing the paths to check (separated with lines).', default=DEFAULT_PATHS_LIST_FILE) (options, args) = parser.parse_args() list_file = options.list_file base_url = options.base_url if base_url is None: parser.print_help() sys.exit() # Suspending warning logs from requests and urllib3 logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("requests").setLevel(logging.ERROR) if (os.path.isdir(base_url) or os.path.isfile(base_url)): FilesFactory(base_url) for u in FilesFactory.urls: fuzzer = AsyncURLFuzzer(u, list_file) fuzzer.start() else: fuzzer = AsyncURLFuzzer(base_url, list_file) fuzzer.start()
24906
from __future__ import division, print_function from .. import __version__ from ._global_imports import * try: import h5py except ImportError: print('Install h5py to enable signal caching.') raise class _Cache(object): """ Cache numerical model objects computed during likelihood evaluation. :param str filename: Filename of cache. :param str cache_dir: Directory to write cache to. :param bool read_only: Do not write to cache file? :param bool archive: If not read-only, then archive an existing cache file found at the same path? """ def __init__(self, filename, cache_dir='./', read_only=False, archive=True): if isinstance(filename, _six.string_types): if filename[-3:] != '.h5': self._filename = filename + '.h5' else: self._filename = filename self._cache_dir = cache_dir self._path = _os.path.join(self._cache_dir, self._filename) self._read_only = read_only self._archive_if_incompatible = archive def __enter__(self): return self def __exit__(self, exc, exc_value, traceback): if exc: print('Encountered problem whilst caching:') def _open(self, mode='r'): """ Get the :mod:`h5py` context manager. """ if self._read_only and mode != 'r': raise RuntimeError('The cache is in read-only mode.') return h5py.File(self._path, mode) def cache(self, data): """ Cache the computational data. """ with self._open('r+') as f: g = f['data'] for key, value in data.iteritems(): if isinstance(value, tuple) or isinstance(value, list): if key not in g.keys(): shape = [f.attrs['n'], len(value)] shape += [s for s in value[0].shape] g.create_dataset(key, shape=shape, dtype='float64') for j, v in enumerate(value): g[key][self.i,j,...] = v else: if key not in g.keys(): shape = [f.attrs['n']] + [s for s in value.shape] g.create_dataset(key, shape=shape, dtype='float64') g[key][self.i,...] = value self.i += 1 def reset_iterator(self): """ Reset the counter for the cache iterator. """ self.i = 0 def __iter__(self): self.reset_iterator() return self def __next__(self): """ Read from the cache. """ cached = {} with self._open('r') as f: g = f['data'] for key in g.keys(): cached[key] = g[key][self.i,...] self.i += 1 return cached def next(self): """ Python 2.x compatibility. """ return self.__next__() @make_verbose('Checking whether an existing cache can be read:', 'Cache state determined') def do_caching(self, samples, force=False): """ Check whether a new cache is required or whether an exising cache can be read without additional computation. :return: Boolean indicating whether to read (``False``) or write. """ if force: self._new(samples) return True try: # try reading file and checking keys with self._open('r') as f: if 'thetas' not in f.keys(): self._new(samples) return True except IOError: # create new cache file self._new(samples) return True else: # can be read, so check if samples array are matching if self._changed(samples): self._new(samples) return True else: return False @make_verbose('Creating new cache file', 'Cache file created') def _new(self, samples): """ Prepare a new cache file. """ if not _os.path.isdir(self._cache_dir): _os.mkdir(self._cache_dir) if self._archive_if_incompatible: try: with self._open('r'): pass except IOError: self._initialise(samples) else: self._archive() self._initialise(samples) else: self._initialise(samples) @make_verbose('Initialising cache file', 'Cache file initialised') def _initialise(self, samples): """ Initialise the cache. """ with self._open('w') as f: f.attrs['version'] = __version__ f.attrs['n'] = samples.shape[0] f.create_dataset('thetas', data=samples) f.create_group('/data') self.reset_iterator() def _changed(self, samples): """ Check whether software version or sample set has changed. """ with self._open('r') as f: if f.attrs['version'] != __version__: return True if not _np.array_equal(f['thetas'], samples): return True return False @make_verbose('Attempting to archive existing cache file in ' 'a subdirectory') def _archive(self): """ Archive an existing cache file. """ # to archive the existing cache file archive_dir = _os.path.join(self._cache_dir, 'archive') try: if not _os.path.isdir(archive_dir): _os.mkdir(archive_dir) except OSError: yield ('Archiving failed... cache file %s will be ' 'overwritten.' % self._filename) yield else: yield 'Targeting subdirectory: %s.' % archive_dir try: from datetime import datetime except ImportError: yield ('Archiving failed... cache file %s will be ' 'overwritten.' % self._filename) yield else: name_archived = self._filename[:-3] + '__archive__' name_archived += 'xpsi_version_%s__' % __version__ obj = datetime.now() name_archived += 'datetime__%i.%i.%i__%i.%i.%i' % (obj.day, obj.month, obj.year, obj.hour, obj.minute, obj.second) try: _os.rename(self._filename, _os.path.join(archive_dir, name_archived + '.h5')) except OSError: yield ('Archiving failed... cache file %s will be ' 'overwritten.' % self._filename) else: yield ('Exisiting cache file archived in ' 'subdirectory %s.' % archive_dir) yield None
24962
from django import template register = template.Library() @register.inclusion_tag('quiz/correct_answer.html', takes_context=True) def correct_answer_for_all(context, question): """ processes the correct answer based on a given question object if the answer is incorrect, informs the user """ answers = question.get_answers() incorrect_list = context.get('incorrect_questions', []) if question.id in incorrect_list: user_was_incorrect = True else: user_was_incorrect = False return {'previous': {'answers': answers}, 'user_was_incorrect': user_was_incorrect} @register.filter def answer_choice_to_string(question, answer): return question.answer_choice_to_string(answer)
24992
import re import string import numpy as np from tqdm import tqdm from typing import List from docqa.triviaqa.read_data import TriviaQaQuestion from docqa.triviaqa.trivia_qa_eval import normalize_answer, f1_score from docqa.utils import flatten_iterable, split """ Tools for turning the aliases and answer strings from TriviaQA into labelled spans """ class ExactMatchDetector(object): def __init__(self): self.answer_tokens = None def set_question(self, normalized_aliases): self.answer_tokens = normalized_aliases def any_found(self, para): words = [x.lower() for x in flatten_iterable(para)] occurances = [] for answer_ix, answer in enumerate(self.answer_tokens): word_starts = [i for i, w in enumerate(words) if answer[0] == w] n_tokens = len(answer) for start in word_starts: end = start + 1 ans_token = 1 while ans_token < n_tokens and end < len(words): next = words[end] if answer[ans_token] == next: ans_token += 1 end += 1 else: break if n_tokens == ans_token: occurances.append((start, end)) return list(set(occurances)) class NormalizedAnswerDetector(object): """ Try to labels tokens sequences, such that the extracted sequence would be evaluated as 100% correct by the official trivia-qa evaluation script """ def __init__(self): self.answer_tokens = None def set_question(self, normalized_aliases): self.answer_tokens = normalized_aliases def any_found(self, para): words = [normalize_answer(w) for w in flatten_iterable(para)] occurances = [] for answer_ix, answer in enumerate(self.answer_tokens): word_starts = [i for i, w in enumerate(words) if answer[0] == w] n_tokens = len(answer) for start in word_starts: end = start + 1 ans_token = 1 while ans_token < n_tokens and end < len(words): next = words[end] if answer[ans_token] == next: ans_token += 1 end += 1 elif next == "": end += 1 else: break if n_tokens == ans_token: occurances.append((start, end)) return list(set(occurances)) class FastNormalizedAnswerDetector(object): """ almost twice as fast and very,very close to NormalizedAnswerDetector's output """ def __init__(self): # These come from the TrivaQA official evaluation script self.skip = {"a", "an", "the", ""} self.strip = string.punctuation + "".join([u"‘", u"’", u"´", u"`", "_"]) self.answer_tokens = None def set_question(self, normalized_aliases): self.answer_tokens = normalized_aliases def any_found(self, para): # Normalize the paragraph words = [w.lower().strip(self.strip) for w in flatten_iterable(para)] occurances = [] for answer_ix, answer in enumerate(self.answer_tokens): # Locations where the first word occurs word_starts = [i for i, w in enumerate(words) if answer[0] == w] n_tokens = len(answer) # Advance forward until we find all the words, skipping over articles for start in word_starts: end = start + 1 ans_token = 1 while ans_token < n_tokens and end < len(words): next = words[end] if answer[ans_token] == next: ans_token += 1 end += 1 elif next in self.skip: end += 1 else: break if n_tokens == ans_token: occurances.append((start, end)) return list(set(occurances)) class CarefulAnswerDetector(object): """ There are some common false negatives in the above answer detection, in particular plurals of answers are often not found (nor are counted correct by the official script). This detector makes a stronger effort to find them, although its unclear if training with these additional answers would hurt/help our overall score since I never got around to trying it. """ def __init__(self): self.skip = {"a", "an", "the", "&", "and", "-", "\u2019", "\u2018", "\"", ";", "'", "(", ")", "'s'", "s", ":", ",", "."} self.answer_regex = None self.aliases = None def set_question(self, normalized_aliases): answer_regex = [] self.aliases = normalized_aliases for answer in normalized_aliases: tokens = [] for token in answer: if len(token) > 1: tokens.append(token + "s?") else: tokens.append(token) if tokens[-1] == "s": tokens[-1] = "s?" answer_regex.append([re.compile(x, re.IGNORECASE) for x in tokens]) self.answer_regex = answer_regex def any_found(self, para): words = flatten_iterable(para) occurances = [] for answer_ix, answer in enumerate(self.answer_regex): word_starts = [i for i, w in enumerate(words) if answer[0].fullmatch(w)] n_tokens = len(answer) for start in word_starts: end = start + 1 ans_token = 1 while ans_token < n_tokens and end < len(words): next = words[end] if answer[ans_token].match(next): ans_token += 1 end += 1 elif next in self.skip: end += 1 else: break if n_tokens == ans_token: occurances.append((start, end)) return list(set(occurances)) def evaluate_question_detector(questions, corpus, word_tokenize, detector, reference_detector=None, compute_f1s=False): """ Just for debugging """ n_no_docs = 0 answer_per_doc = [] answer_f1s = [] for question_ix, q in enumerate(tqdm(questions)): tokenized_aliases = [word_tokenize(x) for x in q.answer.normalized_aliases] detector.set_question(tokenized_aliases) for doc in q.all_docs: doc = corpus.get_document(doc.doc_id) if doc is None: n_no_docs += 1 continue output = [] for i, para in enumerate(doc): for s,e in detector.any_found(para): output.append((i, s, e)) if len(output) == 0 and reference_detector is not None: if reference_detector is not None: reference_detector.set_question(tokenized_aliases) detected = [] for i, para in enumerate(doc): for s, e in reference_detector.any_found(para): detected.append((i, s, e)) if len(detected) > 0: print("Found a difference") print(q.answer.normalized_aliases) print(tokenized_aliases) for p, s, e in detected: token = flatten_iterable(doc[p])[s:e] print(token) answer_per_doc.append(output) if compute_f1s: f1s = [] for p, s, e in output: token = flatten_iterable(doc[p])[s:e] answer = normalize_answer(" ".join(token)) f1 = 0 for gt in q.answer.normalized_aliases: f1 = max(f1, f1_score(answer, gt)) f1s.append(f1) answer_f1s.append(f1s) n_answers = sum(len(x) for x in answer_per_doc) print("Found %d answers (av %.4f)" % (n_answers, n_answers/len(answer_per_doc))) print("%.4f docs have answers" % np.mean([len(x) > 0 for x in answer_per_doc])) if len(answer_f1s) > 0: print("Average f1 is %.4f" % np.mean(flatten_iterable(answer_f1s))) def compute_answer_spans(questions: List[TriviaQaQuestion], corpus, word_tokenize, detector): for i, q in enumerate(questions): if i % 500 == 0: print("Completed question %d of %d (%.3f)" % (i, len(questions), i/len(questions))) q.question = word_tokenize(q.question) if q.answer is None: continue tokenized_aliases = [word_tokenize(x) for x in q.answer.all_answers] if len(tokenized_aliases) == 0: raise ValueError() detector.set_question(tokenized_aliases) for doc in q.all_docs: text = corpus.get_document(doc.doc_id) if text is None: raise ValueError() spans = [] offset = 0 for para_ix, para in enumerate(text): for s, e in detector.any_found(para): spans.append((s+offset, e+offset-1)) # turn into inclusive span offset += sum(len(s) for s in para) if len(spans) == 0: spans = np.zeros((0, 2), dtype=np.int32) else: spans = np.array(spans, dtype=np.int32) doc.answer_spans = spans def _compute_answer_spans_chunk(questions, corpus, tokenizer, detector): # We use tokenize_paragraph since some questions can have multiple sentences, # but we still store the results as a flat list of tokens word_tokenize = tokenizer.tokenize_paragraph_flat compute_answer_spans(questions, corpus, word_tokenize, detector) return questions def compute_answer_spans_par(questions: List[TriviaQaQuestion], corpus, tokenizer, detector, n_processes: int): if n_processes == 1: word_tokenize = tokenizer.tokenize_paragraph_flat compute_answer_spans(questions, corpus, word_tokenize, detector) return questions from multiprocessing import Pool with Pool(n_processes) as p: chunks = split(questions, n_processes) questions = flatten_iterable(p.starmap(_compute_answer_spans_chunk, [[c, corpus, tokenizer, detector] for c in chunks])) return questions def main(): from trivia_qa.build_span_corpus import TriviaQaWebDataset from data_processing.text_utils import NltkAndPunctTokenizer dataset = TriviaQaWebDataset() qs = dataset.get_train() qs = np.random.RandomState(0).choice(qs, 1000, replace=False) evaluate_question_detector(qs, dataset.evidence, NltkAndPunctTokenizer().tokenize_paragraph_flat, FastNormalizedAnswerDetector()) if __name__ == "__main__": main()
25004
from django.shortcuts import render, redirect, reverse from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.db.models import Q from django.views.generic import View from .models import OrgInfo, CityInfo, TeacherInfo from operations.models import UserLove # Create your views here. class OrgList(View): """ org_list 机构列表展示 """ @staticmethod def get(request): all_orgs = OrgInfo.objects.all() all_citys = CityInfo.objects.all() sort_orgs = all_orgs.order_by('-love_num')[:3] # 全局搜索过滤,模糊搜索 keyword = request.GET.get('keyword', '') if keyword: all_orgs = all_orgs.filter(Q(name__icontains=keyword)|Q(desc__icontains=keyword)|Q(detail__icontains=keyword)) # 根据机构类型进行过滤 category = request.GET.get('cat', '') if category: all_orgs = all_orgs.filter(org_category=category) # 根据城市进行过滤 city_id = request.GET.get('city', '') if city_id: all_orgs = all_orgs.filter(city_id=int(city_id)) # 排序 sort = request.GET.get('sort', '') if sort: if sort == 'course_num': pass else: all_orgs = all_orgs.order_by('-'+sort) # 分页 page = request.GET.get('page') pa = Paginator(all_orgs, 2) try: pages = pa.page(page) except PageNotAnInteger: pages = pa.page(1) except EmptyPage: pages = pa.page(pa.num_pages) return render(request, 'orgs/org-list.html', { 'all_orgs': all_orgs, 'all_citys': all_citys, 'sort_orgs': sort_orgs, 'pages': pages, 'category': category, 'city_id': city_id, 'sort': sort, 'keyword': keyword, }) class OrgDetail(View): """ org_detail 机构详情页 用户点击机构详情页,点击数+1 当用户登录时显示用户收藏状态信息 @params org_id: 机构id 通过查询数据库找到对应的机构进行展示 """ @staticmethod def get(request, org_id): if org_id: org = OrgInfo.objects.filter(id=int(org_id))[0] # 动态修改机构点击数 org.click_num += 1 org.save() # 在返回页面数据的时候,需要返回收藏这个机构的收藏状态 love_status = False if request.user.is_authenticated: love = UserLove.objects.filter(love_man=request.user, love_id=int(org_id), love_type=1, love_status=True) if love: love_status = True return render(request, 'orgs/org-detail-homepage.html', { 'org': org, 'detail_type': 'home', 'love_status': love_status, }) class OrgDetailCourse(View): """ org_detail_course 机构详情页-机构课程 """ def get(self, request, org_id): if org_id: org = OrgInfo.objects.filter(id=int(org_id))[0] love_status = False if request.user.is_authenticated: love = UserLove.objects.filter(love_man=request.user, love_id=int(org_id), love_type=1, love_status=True) if love: love_status = True return render(request, 'orgs/org-detail-course.html', { 'org': org, 'detail_type': 'course', 'love_status': love_status, }) class OrgDetailDesc(View): """ org_detail_desc 机构详情页-机构描述 """ def get(self, request, org_id): if org_id: org = OrgInfo.objects.filter(id=int(org_id))[0] love_status = False if request.user.is_authenticated: love = UserLove.objects.filter(love_man=request.user, love_id=int(org_id), love_type=1, love_status=True) if love: love_status = True return render(request, 'orgs/org-detail-desc.html', { 'org': org, 'detail_type': 'desc', 'love_status': love_status, }) class OrgDetailTeacher(View): """ org_detail_teacher 机构详情页-机构讲师 """ def get(self, request, org_id): if org_id: org = OrgInfo.objects.filter(id=int(org_id))[0] love_status = False if request.user.is_authenticated: love = UserLove.objects.filter(love_man=request.user, love_id=int(org_id), love_type=1, love_status=True) if love: love_status = True return render(request, 'orgs/org-detail-teachers.html', { 'org': org, 'detail_type': 'teacher', 'love_status': love_status, }) class TeacherList(View): """ teacher_list 讲师列表 """ @staticmethod def get(request): all_teachers = TeacherInfo.objects.all() recommend = all_teachers.order_by('-love_num')[:2] # 全局搜索过滤,模糊搜索 keyword = request.GET.get('keyword', '') if keyword: all_teachers = all_teachers.filter(Q(name__icontains=keyword)) # 排序 sort = request.GET.get('sort', '') if sort: all_teachers = all_teachers.order_by('-' + sort) # 分页 page = request.GET.get('page') pa = Paginator(all_teachers, 2) try: pages = pa.page(page) except PageNotAnInteger: pages = pa.page(1) except EmptyPage: pages = pa.page(pa.num_pages) return render(request, 'orgs/teachers-list.html', { 'all_teachers': all_teachers, 'pages': pages, 'recommend': recommend, 'sort': sort, 'keyword': keyword, }) class TeacherDetail(View): """ teacher_detail 讲师详情 """ def get(self, request, teacher_id): if teacher_id: teacher_list = TeacherInfo.objects.filter(id=teacher_id) if teacher_list: teacher = teacher_list[0] teacher.click_num += 1 teacher.save() # 讲师排行 recommend = TeacherInfo.objects.all().order_by('-click_num')[:3] return render(request, 'orgs/teacher-detail.html', { 'teacher': teacher, 'recommend': recommend, })
25008
from sys import path path.append('..') from armoryengine import * TheBDM.setBlocking(True) TheBDM.setOnlineMode(True) if not os.path.exists('testmultiblock'): os.mkdir('testmultiblock') fout = [] fout.append([0, 101, 'testmultiblock/blk00000.dat']) fout.append([0, 102, 'testmultiblock/blk00000_test1.dat']) # Add 1 block fout.append([0, 105, 'testmultiblock/blk00000_test2.dat']) # Add 3 blocks fout.append([106, 106, 'testmultiblock/blk00001_test3.dat']) # Just block split fout.append([107, 109, 'testmultiblock/blk00002_test4.dat']) # Another block split 3 blks fout.append([107, 110, 'testmultiblock/blk00002_test5.dat']) # Add block fout.append([110, 113, 'testmultiblock/blk00003_test5.dat']) # and split for start,end,theFile in fout: if os.path.exists(theFile): os.remove(theFile) lastLocation = [0]*len(fout) openfiles = [[trip[0], trip[1], open(trip[2],'wb')] for trip in fout] # Assume we are only reading into blk000000.dat, no split for h in range(120): head = TheBDM.getHeaderByHeight(h) blk = head.serializeWholeBlock(MAGIC_BYTES, True) for i,trip in enumerate(openfiles): start,end,theFile = trip if (start <= h <= end): theFile.write(blk) lastLocation[i] += len(blk) for start,end,opnfil in openfiles: opnfil.close() for i,trip in enumerate(fout): start,end,theFile = trip sz = os.path.getsize(theFile) f = open(theFile,'ab') if i<3: f.write('\x00'*(22000-sz)) else: f.write('\x00'*(1000-sz)) f.close() print 'Blocks written out:' for start,end,fn in fout: if end-start==0: print '\t%d in file: %s' % (end,fn) else: print '\t%d-%d in file: %s' % (start,end,fn)
25062
from django.urls import reverse from rest_framework import status from conf_site.api.tests import ConferenceSiteAPITestCase class ConferenceSiteAPIConferenceTestCase(ConferenceSiteAPITestCase): def test_conference_api_anonymous_user(self): response = self.client.get(reverse("conference-detail")) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, { "title": self.conference.title, "start_date": self.conference.start_date.strftime("%Y-%m-%d"), "end_date": self.conference.end_date.strftime("%Y-%m-%d"), })
25087
from tests.common.devices.base import AnsibleHostBase class VMHost(AnsibleHostBase): """ @summary: Class for VM server For running ansible module on VM server """ def __init__(self, ansible_adhoc, hostname): AnsibleHostBase.__init__(self, ansible_adhoc, hostname) @property def external_port(self): if not hasattr(self, "_external_port"): vm = self.host.options["variable_manager"] im = self.host.options["inventory_manager"] hostvars = vm.get_vars(host=im.get_host(self.hostname), include_delegate_to=False) setattr(self, "_external_port", hostvars["external_port"]) return getattr(self, "_external_port")
25098
from __future__ import absolute_import, division, print_function import pytest import telnyx TEST_RESOURCE_ID = "f1486bae-f067-460c-ad43-73a92848f902" class TestPortingOrder(object): def test_is_listable(self, request_mock): resources = telnyx.PortingOrder.list() request_mock.assert_requested("get", "/v2/porting_orders") assert isinstance(resources.data, list) assert isinstance(resources.data[0], telnyx.PortingOrder) def test_is_retrievable(self, request_mock): resource = telnyx.PortingOrder.retrieve(TEST_RESOURCE_ID) request_mock.assert_requested("get", "/v2/porting_orders/%s" % TEST_RESOURCE_ID) assert isinstance(resource, telnyx.PortingOrder) def test_is_creatable(self, request_mock): resource = telnyx.PortingOrder.create( phone_numbers=["13035550000", "13035550001", "13035550002"], ) request_mock.assert_requested("post", "/v2/porting_orders") assert isinstance(resource.data[0], telnyx.PortingOrder) def test_is_saveable(self, request_mock): porting_order = telnyx.PortingOrder.retrieve(TEST_RESOURCE_ID) porting_order.webhook_event = "https://update.com" porting_order.customer_reference = "updated name" resource = porting_order.save() request_mock.assert_requested( "patch", "/v2/porting_orders/%s" % TEST_RESOURCE_ID ) assert isinstance(resource, telnyx.PortingOrder) assert resource is porting_order def test_is_modifiable(self, request_mock): resource = telnyx.PortingOrder.modify( TEST_RESOURCE_ID, webhook_event="https://update.com", customer_reference="updated name", ) request_mock.assert_requested( "patch", "/v2/porting_orders/%s" % TEST_RESOURCE_ID ) assert isinstance(resource, telnyx.PortingOrder) def test_is_deletable(self, request_mock): resource = telnyx.PortingOrder.retrieve(TEST_RESOURCE_ID) resource.delete() request_mock.assert_requested( "delete", "/v2/porting_orders/%s" % TEST_RESOURCE_ID ) assert isinstance(resource, telnyx.PortingOrder) def test_can_confirm_porting_order_action(self, request_mock): resource = telnyx.PortingOrder.retrieve(TEST_RESOURCE_ID) resource.confirm() request_mock.assert_requested( "post", "/v2/porting_orders/%s/actions/confirm" % TEST_RESOURCE_ID ) assert isinstance(resource, telnyx.PortingOrder) @pytest.mark.skip(reason="PDF endpoint not supported by mock currently") def test_can_get_loa_template(self, request_mock): resource = telnyx.PortingOrder.retrieve(TEST_RESOURCE_ID) resource.loaTemplate() request_mock.assert_requested( "get", "/v2/porting_orders/%s/loa_template" % TEST_RESOURCE_ID ) assert isinstance(resource, telnyx.PortingOrder) def test_can_list_porting_phone_numbers(self, request_mock): resource = telnyx.PortingPhoneNumber.list() request_mock.assert_requested("get", "/v2/porting_phone_numbers") assert isinstance(resource.data, list) assert isinstance(resource.data[0], telnyx.PortingPhoneNumber)
25217
from bumblebee.bigquery_service import BigqueryService from datetime import datetime from abc import ABC from abc import abstractmethod from bumblebee.config import LoadMethod class BaseLoader(ABC): @abstractmethod def load(self, query): pass class PartitionLoader(BaseLoader): def __init__(self, bigquery_service, destination: str, load_method: LoadMethod, partition: datetime): self.bigquery_service = bigquery_service self.destination_name = destination self.load_method = load_method self.partition_date = partition def load(self, query): partition_date_str = self.partition_date.strftime("%Y%m%d") load_destination = "{}${}".format(self.destination_name, partition_date_str) write_disposition = self.load_method.write_disposition return self.bigquery_service.transform_load(query=query, write_disposition=write_disposition, destination_table=load_destination) class TableLoader(BaseLoader): def __init__(self, bigquery_service, destination: str, load_method: LoadMethod): self.bigquery_service = bigquery_service self.full_table_name = destination self.load_method = load_method def load(self, query): return self.bigquery_service.transform_load(query=query, write_disposition=self.load_method.write_disposition, destination_table=self.full_table_name) class DMLLoader(BaseLoader): def __init__(self,bigquery_service: BigqueryService, destination: str): self.bigquery_service = bigquery_service self.full_table_name = destination def load(self,query): return self.bigquery_service.execute_query(query)
25241
from distutils.version import StrictVersion as SV import unittest import minecraft class VersionTest(unittest.TestCase): def test_module_version_is_a_valid_pep_386_strict_version(self): SV(minecraft.__version__) def test_protocol_version_is_an_int(self): for version in minecraft.SUPPORTED_PROTOCOL_VERSIONS: self.assertTrue(type(version) is int)
25258
import datetime import os import sys from optparse import make_option from django.core.management.base import BaseCommand from django.conf import settings try: from django.contrib.gis.utils import LayerMapping except ImportError: print("gdal is required") sys.exit(1) from tigerline.models import County def county_import(county_shp, year): if year == "2010": county_mapping = { 'state_fips_code': 'STATEFP10', 'fips_code': 'COUNTYFP10', 'county_identifier': 'GEOID10', 'name': 'NAME10', 'name_and_description': 'NAMELSAD10', 'legal_statistical_description': 'LSAD10', 'fips_55_class_code': 'CLASSFP10', 'feature_class_code': 'MTFCC10', 'functional_status': 'FUNCSTAT10', 'mpoly': 'POLYGON', } else: county_mapping = { 'state_fips_code': 'STATEFP', 'fips_code': 'COUNTYFP', 'county_identifier': 'GEOID', 'name': 'NAME', 'name_and_description': 'NAMELSAD', 'legal_statistical_description': 'LSAD', 'fips_55_class_code': 'CLASSFP', 'feature_class_code': 'MTFCC', 'functional_status': 'FUNCSTAT', 'mpoly': 'POLYGON', } lm = LayerMapping(County, county_shp, county_mapping, encoding='LATIN1') lm.save(verbose=True) class Command(BaseCommand): help = 'Installs the 2010-2016 tigerline files for counties' def add_arguments(self, parser): parser.add_argument('--path', default='', dest='path', help='The directory where the county data is stored.' ) def handle(self, *args, **kwargs): path = kwargs['path'] # With DEBUG on this will DIE. settings.DEBUG = False # figure out which path we want to use. years = ["2016", "2015", "2014", "2013", "2012", "2011", "2010"] directories = [('tl_%s_us_county' % year, year) for year in years] tiger_file = "" for (directory, year) in directories: if year == "2010": directory = directory + "10" if os.path.exists(os.path.join(path, directory)): print('Found %s files.' % year) tiger_file = os.path.join(path, directory + "/" + directory + ".shp") break if not tiger_file: print('Could not find files.') exit() print("Start Counties: %s" % datetime.datetime.now()) county_import(tiger_file, year) print("End Counties: %s" % datetime.datetime.now())
25264
from __future__ import print_function import os import time import tensorflow as tf import numpy as np import sys from zoneout_wrapper import ZoneoutWrapper class SequencePredictor(): def add_placeholders(self): """Generates placeholder variables to represent the input tensors """ self.inputs_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_length), name="x") self.labels_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_length), name="y") self.dropout_placeholder = tf.placeholder(tf.float32) def create_feed_dict(self, inputs_batch, labels_batch=None, initial_state=None, keep_prob=1.0): """Creates the feed_dict for the model. NOTE: You do not have to do anything here. """ feed_dict = { self.inputs_placeholder: inputs_batch, self.dropout_placeholder: keep_prob, } if labels_batch is not None: feed_dict[self.labels_placeholder] = labels_batch if initial_state is not None: feed_dict[self.in_state] = initial_state return feed_dict def add_embedding(self): """ Creates one-hot encoding for the input. No embedding is used as of now """ embedding = tf.one_hot(self.inputs_placeholder, self.config.num_classes) return embedding def add_prediction_op(self): """ Get the input from the embedding layer """ x = self.add_embedding() """ Create a RNN first & define a placeholder for the initial state """ if self.config.model_type == "gru": cell = tf.nn.rnn_cell.GRUCell(self.config.hidden_size) elif self.config.model_type == "rnn": cell = tf.nn.rnn_cell.BasicRNNCell(self.config.hidden_size) else: raise Exception("Unsuppoprted model type...") if self.config.regularization == "dropout": cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob=self.dropout_placeholder) elif self.config.regularization == "zoneout": cell = ZoneoutWrapper(cell, zoneout_prob=self.dropout_placeholder) cell = tf.nn.rnn_cell.MultiRNNCell([cell] * self.config.num_layers, state_is_tuple=False) batch_size = tf.shape(x)[0] dynamic_max_length = tf.shape(x)[1] zero_state = cell.zero_state(batch_size, tf.float32) self.in_state = tf.placeholder_with_default(zero_state, [None, cell.state_size]) """ First find the sequence length and then use it to run the model """ #length = tf.reduce_sum(tf.reduce_max(tf.sign(x), 2), 1) output, self.out_state = tf.nn.dynamic_rnn(cell, x, initial_state=self.in_state) output = tf.reshape(output, shape=[-1, self.config.hidden_size]) """ Pass it through a linear + Softmax layer to get the predictions """ xavier_init = tf.contrib.layers.xavier_initializer() W = tf.get_variable("W", shape=[self.config.hidden_size, self.config.num_classes], initializer=xavier_init ) b1 = tf.get_variable("b1", shape=[self.config.num_classes], initializer=xavier_init ) preds = tf.add(tf.matmul(output,W),b1) preds = tf.reshape(preds, shape=[batch_size,dynamic_max_length, self.config.num_classes]) return preds def add_loss_op(self, preds): loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.labels_placeholder, logits=preds) ) scaled_loss = loss/np.log(2) tf.summary.scalar('loss', scaled_loss); return scaled_loss def add_training_op(self, loss): """Sets up the training Ops. """ global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') optimizer = tf.train.AdamOptimizer(self.config.lr) train_op = optimizer.minimize(loss, global_step=global_step) return global_step, train_op def loss_on_batch(self, sess, inputs_batch, labels_batch, initial_state=None): feed = self.create_feed_dict(inputs_batch=inputs_batch, labels_batch=labels_batch, initial_state=initial_state, keep_prob=1.0) loss, out_state = sess.run([self.loss,self.out_state], feed_dict=feed) return loss, out_state def train_on_batch(self, sess, inputs_batch, labels_batch, initial_state=None, dropout=1.0): feed = self.create_feed_dict(inputs_batch=inputs_batch, labels_batch=labels_batch, initial_state=initial_state, keep_prob=dropout) _, loss,out_state,_step, summary = sess.run([self.train_op, self.loss, self.out_state, self.global_step, self.merged_summaries], feed_dict=feed) return loss, out_state, _step, summary def build(self): self.add_placeholders() self.pred = self.add_prediction_op() self.loss = self.add_loss_op(self.pred) self.global_step, self.train_op = self.add_training_op(self.loss) self.merged_summaries = tf.summary.merge_all() def __init__(self, config): self.config = config self.build()
25276
from z3 import * H = Int('H') s = Solver() t = 4 + 4 * (((H - 1) / 2) / 2) s.add(H % 4 == 0) s.check() m = s.model() def subterms(t): seen = {} def subterms_rec(t): if is_app(t): for ch in t.children(): if ch in seen: continue seen[ch] = True yield ch for sub in subterms_rec(ch): yield sub return { s for s in subterms_rec(t) } def are_equal(s, t1, t2): s.push() s.add(t1 != t2) r = s.check() s.pop() return r == unsat def simplify(slv, mdl, t): subs = subterms(t) values = { s : mdl.eval(s) for s in subs } values[t] = mdl.eval(t) def simplify_rec(t): subs = subterms(t) for s in subs: if s.sort().eq(t.sort()) and values[s].eq(values[t]) and are_equal(slv, s, t): return simplify_rec(s) chs = [simplify_rec(ch) for ch in t.children()] return t.decl()(chs) return simplify_rec(t) print(t, "-->", simplify(s, m, t))
25278
from abc import ABC class ProbeConfig(object): def __init__(self): self.directives = {} def add_directive(self, directive): name = directive.keyword if name not in self.directives: self.directives[name] = [] self.directives[name].append(directive) def get_directives(self, name): return self.directives.get(name) def has_directive(self, name): return name in self.directives def get_directive(self, name): return self.directives.get(name)[0] def __str__(self): return ' '.join([s for s in self.directives]) class Directive(ABC): """ Represents a directive type. See https://nmap.org/book/vscan-fileformat.html """ def __init__(self, keyword, param_count, raw): self.keyword = keyword self.raw = raw self.parameters = raw.split(" ", param_count)[1:] def validate(self): pass class Exclude(Directive): """ This line tells nmap what ports identified by the probe are found on (only once per section) """ def __init__(self, raw): super().__init__('exclude', 1, raw) # This will need to be parsed into proper port format later self.ports = self.parameters[0] class Probe(Directive): """ This directive describes what nmap will send to fingerprint this service """ def __init__(self, raw): super().__init__('probe', 3, raw) self.protocol = self.parameters[0] self.probename = self.parameters[1] self.probestring = self.parameters[2] def validate(self): assert self.protocol == 'TCP' or self.protocol == 'UDP', \ 'Invalid protocol {} found, expected "UDP" or "TCP"'.format(self.protocol) class Match(Directive): """ This directive describes the response nmap is expecting to recieve for a service """ def __init__(self, raw): super().__init__('match', 2, raw) self.service = self.parameters[0] self.raw_pattern = self.parameters[1] self.pattern = None self.flags = [] self.version_info = [] class SoftMatch(Match): """ Similar to match, but after a softmap, nmap will only send probes matching the given service. This is intended to eventually lead to a 'hard' match that will provide more version info """ def __init__(self, raw): super().__init__(raw) self.service = self.parameters[0] self.raw_pattern = self.parameters[1] self.keyword = 'softmatch' class Ports(Directive): """ This line tells nmap what ports identified by the probe are found on (only once per section) """ def __init__(self, raw): super().__init__('ports', 1, raw) # This will need to be parsed into proper port format later self.ports = self.parameters[0] class SslPorts(Ports): """ Same as Ports, but wrapped in ssl """ def __init__(self, raw): super().__init__(raw) self.keyword = 'sslports' class Rarity(Directive): """ Determines how frequently a probe returns useful results. The higher the number, the rarer the probe is https://nmap.org/book/vscan-technique.html#vscan-selection-and-rarity """ def __init__(self, raw): super().__init__('rarity', 1, raw) self.rarity = int(self.parameters[0])
25324
import pytest from flake8.exceptions import ExecutionError from flake8_adjustable_complexity.config import DEFAULT_CONFIG @pytest.mark.parametrize( ('args', 'max_mccabe_complexity'), [ (['--max-mccabe-complexity=5'], 5), (['--max-adjustable-complexity=10'], 10), ([], DEFAULT_CONFIG.max_mccabe_complexity), ], ) def test_parse_max_mccabe_complexity(parse_options, args, max_mccabe_complexity): config = parse_options(args) assert config.max_mccabe_complexity == max_mccabe_complexity @pytest.mark.parametrize( ('args', 'max_complexity_per_path'), [ ( [ '--per-path-max-adjustable-complexity', 'foo.py:10,bar.py:20', ], { 'foo.py': 10, 'bar.py': 20, }, ), ([], DEFAULT_CONFIG.max_complexity_per_path), ], ) def test_parse_max_complexity_per_path(parse_options, args, max_complexity_per_path): config = parse_options(args) assert config.max_complexity_per_path == max_complexity_per_path def test_parse_max_complexity_per_path_error(parse_options): args = [ '--per-path-max-adjustable-complexity', 'foo.py:invalid-complexity', ] with pytest.raises(ExecutionError) as excinfo: parse_options(args) assert "Couldn\'t parse --per-path-adjustable-max-complexity" in str(excinfo.value) @pytest.mark.parametrize( ('args', 'var_names_blacklist'), [ ( ['--var-names-extra-blacklist=my_obj,my_var'], DEFAULT_CONFIG.var_names_blacklist | {'my_obj', 'my_var'}, ), ( ['--var-names-whitelist=var,result'], DEFAULT_CONFIG.var_names_blacklist - {'var', 'result'}, ), ( [ '--var-names-extra-blacklist=my_obj,my_var', '--var-names-whitelist=var,result', ], (DEFAULT_CONFIG.var_names_blacklist | {'my_obj', 'my_var'}) - {'var', 'result'}, ), ([], DEFAULT_CONFIG.var_names_blacklist), ], ) def test_parse_var_names_blacklist(parse_options, args, var_names_blacklist): config = parse_options(args) assert config.var_names_blacklist == var_names_blacklist
25333
from django.utils.translation import get_language def django_settings(request): return { "LANGUAGE": get_language(), }
25351
import math import numpy as np from numba import cuda, float32 from numba.cuda.testing import unittest import numba.cuda.random from numba.cuda.testing import skip_on_cudasim, CUDATestCase from numba.cuda.random import \ xoroshiro128p_uniform_float32, xoroshiro128p_normal_float32, \ xoroshiro128p_uniform_float64, xoroshiro128p_normal_float64 from numba.core import config # Distributions UNIFORM = 1 NORMAL = 2 @cuda.jit def rng_kernel_float32(states, out, count, distribution): thread_id = cuda.grid(1) for i in range(count): if distribution == UNIFORM: out[thread_id * count + i] = xoroshiro128p_uniform_float32(states, thread_id) elif distribution == NORMAL: out[thread_id * count + i] = xoroshiro128p_normal_float32(states, thread_id) @cuda.jit def rng_kernel_float64(states, out, count, distribution): thread_id = cuda.grid(1) for i in range(count): if distribution == UNIFORM: out[thread_id * count + i] = xoroshiro128p_uniform_float64(states, thread_id) elif distribution == NORMAL: out[thread_id * count + i] = xoroshiro128p_normal_float64(states, thread_id) class TestCudaRandomXoroshiro128p(CUDATestCase): def test_create(self): states = cuda.random.create_xoroshiro128p_states(10, seed=1) s = states.copy_to_host() self.assertEqual(len(np.unique(s)), 10) def test_create_subsequence_start(self): states = cuda.random.create_xoroshiro128p_states(10, seed=1) s1 = states.copy_to_host() states = cuda.random.create_xoroshiro128p_states(10, seed=1, subsequence_start=3) s2 = states.copy_to_host() # Starting seeds should match up with offset of 3 np.testing.assert_array_equal(s1[3:], s2[:-3]) def test_create_stream(self): stream = cuda.stream() states = cuda.random.create_xoroshiro128p_states(10, seed=1, stream=stream) s = states.copy_to_host() self.assertEqual(len(np.unique(s)), 10) def check_uniform(self, kernel_func, dtype): states = cuda.random.create_xoroshiro128p_states(32 * 2, seed=1) out = np.zeros(2 * 32 * 32, dtype=np.float32) kernel_func[2, 32](states, out, 32, UNIFORM) self.assertAlmostEqual(out.min(), 0.0, delta=1e-3) self.assertAlmostEqual(out.max(), 1.0, delta=1e-3) self.assertAlmostEqual(out.mean(), 0.5, delta=1.5e-2) self.assertAlmostEqual(out.std(), 1.0/(2*math.sqrt(3)), delta=6e-3) def test_uniform_float32(self): self.check_uniform(rng_kernel_float32, np.float32) @skip_on_cudasim('skip test for speed under cudasim') def test_uniform_float64(self): self.check_uniform(rng_kernel_float64, np.float64) def check_normal(self, kernel_func, dtype): states = cuda.random.create_xoroshiro128p_states(32 * 2, seed=1) out = np.zeros(2 * 32 * 32, dtype=dtype) kernel_func[2, 32](states, out, 32, NORMAL) self.assertAlmostEqual(out.mean(), 0.0, delta=4e-3) self.assertAlmostEqual(out.std(), 1.0, delta=2e-3) def test_normal_float32(self): self.check_normal(rng_kernel_float32, np.float32) @skip_on_cudasim('skip test for speed under cudasim') def test_normal_float64(self): self.check_normal(rng_kernel_float64, np.float64) if __name__ == '__main__': unittest.main()
25431
import os.path import time from moler.config import load_config from moler.device.device import DeviceFactory from moler.util.moler_test import MolerTest def outage_callback(device_name, ping_times): MolerTest.info("Network outage on {}".format(device_name)) ping_times["lost_connection_time"] = time.time() def ping_is_on_callback(ping_times): MolerTest.info("Ping works") if ping_times["lost_connection_time"] > 0: # ping operable AFTER any net loss if ping_times["reconnection_time"] == 0: ping_times["reconnection_time"] = time.time() outage_time = ping_times["reconnection_time"] - ping_times["lost_connection_time"] MolerTest.info("Network outage time is {}".format(outage_time)) def test_network_outage(): load_config(config=os.path.abspath('config/my_devices.yml')) unix1 = DeviceFactory.get_device(name='MyMachine1') unix2 = DeviceFactory.get_device(name='MyMachine2') # test setup ping_times = {"lost_connection_time": 0, "reconnection_time": 0} # ensure network is up before running test net_up = unix2.get_cmd(cmd_name="ifconfig", cmd_params={"options": "lo up"}) sudo_ensure_net_up = unix2.get_cmd(cmd_name="sudo", cmd_params={"password": "<PASSWORD>", "cmd_object": net_up}) sudo_ensure_net_up() # run event observing "network down/up" no_ping = unix1.get_event(event_name="ping_no_response") no_ping.add_event_occurred_callback(callback=outage_callback, callback_params={'device_name': 'MyMachine1', 'ping_times': ping_times}) no_ping.start() ping_is_on = unix1.get_event(event_name="ping_response") ping_is_on.add_event_occurred_callback(callback=ping_is_on_callback, callback_params={'ping_times': ping_times}) ping_is_on.start() # run test ping = unix1.get_cmd(cmd_name="ping", cmd_params={"destination": "localhost", "options": "-O"}) ping.start(timeout=120) time.sleep(3) ifconfig_down = unix2.get_cmd(cmd_name="ifconfig", cmd_params={"options": "lo down"}) sudo_ifconfig_down = unix2.get_cmd(cmd_name="sudo", cmd_params={"password": "<PASSWORD>", "cmd_object": ifconfig_down}) sudo_ifconfig_down() time.sleep(5) ifconfig_up = unix2.get_cmd(cmd_name="ifconfig", cmd_params={"options": "lo up"}) sudo_ifconfig_up = unix2.get_cmd(cmd_name="sudo", cmd_params={"password": "<PASSWORD>", "cmd_object": ifconfig_up}) sudo_ifconfig_up() time.sleep(3) # test teardown ping.cancel() no_ping.cancel() if __name__ == '__main__': test_network_outage() """ copy this file into workshop1/network_outage.py *** calculating network outage time *** 1. run it 2. see logs - look for "Network outage" and "Ping works" - be carefull in logs analysis - what's wrong? 3. fix incorrect calculation by exchanging: no_ping = unix1.get_event(event_name="ping_no_response") into: no_ping = unix1.get_event(event_name="ping_no_response", event_params={"till_occurs_times": 1}) """
25449
from config import args from utils import delete_existing, get_img, get_img_files import tensorbayes as tb import tensorflow as tf import numpy as np import os def push_to_buffer(buf, data_files): files = np.random.choice(data_files, len(buf), replace=False) for i, f in enumerate(files): buf[i] = get_img(f, (256, 256, 3)) def train(M): delete_existing(args.log_dir) train_writer = tf.summary.FileWriter(args.log_dir) train_files = get_img_files(args.train_dir) validation_files = get_img_files(args.validation_dir) iterep = args.iter_visualize with M.graph.as_default(): M.sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() batch = np.zeros((args.batch_size, 256, 256, 3), dtype='float32') for i in xrange(len(train_files) * args.n_epochs): push_to_buffer(batch, train_files) summary, _ = M.sess.run(M.ops_main, {M.x: batch}) train_writer.add_summary(summary, i + 1) train_writer.flush() message='i={:d}'.format(i + 1) end_viz, _ = tb.utils.progbar(i, iterep, message) if (i + 1) % args.iter_visualize == 0: for f, op in zip(validation_files, M.ops_images): img = np.expand_dims(get_img(f), 0) summary = M.sess.run(op, {M.x_test: img}) train_writer.add_summary(summary, i + 1) if (i + 1) % args.iter_save == 0: path = saver.save(M.sess, os.path.join(args.model_dir, 'model'), global_step=i + 1) print "Saving model to {:s}".format(path)
25503
import humps import pytest from django import test from django.contrib.auth.models import User from django.urls import reverse def test_profile_updates_correctly( profile_admin_client: test.Client, user: User, update_profile_params ): url = f"{reverse('admin_update_profile')}?email={user.email}" res = profile_admin_client.patch(url, humps.camelize(update_profile_params)) assert res.status_code == 200 user.refresh_from_db() profile = user.profile for key, val in update_profile_params.items(): assert getattr(profile, key) == val @pytest.mark.parametrize( argnames="method, status", argvalues=[("get", 400), ("put", 400), ("post", 405), ("patch", 400)], ) def test_requires_query_param( profile_admin_client: test.Client, method: str, status: int ): request_method = getattr(profile_admin_client, method) url = f"{reverse('admin_update_profile')}" res = request_method(url) assert res.status_code == status def test_missing_profile_returns_404(profile_admin_client: test.Client): url = f"{reverse('admin_update_profile')}?email=abc" res = profile_admin_client.get(url) assert res.status_code == 404 @pytest.mark.parametrize( argnames="method, status", argvalues=[("get", 200), ("post", 405), ("patch", 200)] ) def test_staff_user_has_access( authed_admin_client: test.Client, user: User, method: str, status: int ): request_method = getattr(authed_admin_client, method) url = f"{reverse('admin_update_profile')}?email={user.email}" res = request_method(url) assert res.status_code == status @pytest.mark.parametrize( argnames="method, status", argvalues=[("get", 403), ("put", 403), ("post", 405), ("patch", 403)], ) def test_view_requires_profile_admin_group( authed_client: test.Client, user: User, method: str, status: int ): request_method = getattr(authed_client, method) url = f"{reverse('admin_update_profile')}?email={user.email}" res = request_method(url) assert res.status_code == status
25549
import time import json from wptserve.utils import isomorphic_decode, isomorphic_encode def main(request, response): headers = [(b'Content-Type', b'application/javascript'), (b'Cache-Control', b'max-age=86400'), (b'Last-Modified', isomorphic_encode(time.strftime(u"%a, %d %b %Y %H:%M:%S GMT", time.gmtime())))] test = request.GET[b'test'] body = u''' const mainTime = {time:8f}; const testName = {test}; importScripts('update-max-aged-worker-imported-script.py'); addEventListener('message', event => {{ event.source.postMessage({{ mainTime, importTime, test: {test} }}); }}); '''.format( time=time.time(), test=json.dumps(isomorphic_decode(test)) ) return headers, body
25561
import asyncio import time from collections import namedtuple from http import HTTPStatus import pytest from aiojenkins.exceptions import JenkinsError from aiojenkins.jenkins import Jenkins from tests import CreateJob, get_host, get_login, get_password, is_ci_server @pytest.mark.asyncio async def test_invalid_host(jenkins): with pytest.raises(JenkinsError): jenkins = Jenkins('@#$') await jenkins.get_version() @pytest.mark.asyncio async def test_get_status(jenkins): await jenkins.get_status() @pytest.mark.asyncio async def test_quiet_down(jenkins): await jenkins.quiet_down() server_status = await jenkins.get_status() assert server_status['quietingDown'] is True await jenkins.cancel_quiet_down() server_status = await jenkins.get_status() assert server_status['quietingDown'] is False @pytest.mark.asyncio async def test_restart(jenkins): if not is_ci_server(): pytest.skip('takes too much time +40 seconds') await jenkins.safe_restart() await asyncio.sleep(5) await jenkins.wait_until_ready() assert (await jenkins.is_ready()) is True await jenkins.restart() await jenkins.wait_until_ready() assert (await jenkins.is_ready()) is True @pytest.mark.asyncio async def test_tokens(jenkins): version = await jenkins.get_version() if not (version.major >= 2 and version.minor >= 129): pytest.skip('Version isn`t support API tokens') async with CreateJob(jenkins) as job_name: token_value, token_uuid = await jenkins.generate_token('') token_name = str(time.time()) token_value, token_uuid = await jenkins.generate_token(token_name) await jenkins.nodes.enable('master') # instance without credentials jenkins_tokened = Jenkins(get_host(), get_login(), token_value) await jenkins_tokened.builds.start(job_name) await jenkins.revoke_token(token_uuid) with pytest.raises(JenkinsError): await jenkins_tokened.builds.start(job_name) @pytest.mark.asyncio async def test_run_groovy_script(jenkins): # TC: compare with expected result text = 'test' response = await jenkins.run_groovy_script('print("{}")'.format(text)) assert response == text # TC: invalid script response = await jenkins.run_groovy_script('xxx') assert 'No such property' in response @pytest.mark.asyncio async def test_retry_client(monkeypatch): attempts = 0 async def text(): return 'error' async def request(*args, **kwargs): nonlocal attempts attempts += 1 response = namedtuple( 'response', ['status', 'cookies', 'text', 'json'] ) if attempts == 1: raise asyncio.TimeoutError elif attempts < 3: response.status = HTTPStatus.INTERNAL_SERVER_ERROR else: response.status = HTTPStatus.OK response.text = text response.json = text return response retry = dict(total=5, statuses=[HTTPStatus.INTERNAL_SERVER_ERROR]) try: jenkins = Jenkins(get_host(), get_login(), get_password(), retry=retry) await jenkins.get_status() monkeypatch.setattr('aiohttp.client.ClientSession.request', request) await jenkins.get_status() finally: await jenkins.close() @pytest.mark.asyncio async def test_retry_validation(): retry = dict(attempts=5, statuses=[HTTPStatus.INTERNAL_SERVER_ERROR]) with pytest.raises(JenkinsError): jenkins = Jenkins(get_host(), get_login(), get_password(), retry=retry) await jenkins.get_status() def test_session_close(): def do(): Jenkins( get_host(), get_login(), get_password(), retry=dict(enabled=True) ) do() # just check for no exceptions import gc gc.collect()
25572
from flax.geometry import Blob, Point, Rectangle, Size, Span def test_blob_create(): rect = Rectangle(origin=Point(0, 0), size=Size(5, 5)) blob = Blob.from_rectangle(rect) assert blob.area == rect.area assert blob.height == rect.height def test_blob_math_disjoint(): # These rectangles look like this: # xxx # xxx # xxx xxx # xxx # xxx rect1 = Rectangle(origin=Point(0, 0), size=Size(3, 3)) rect2 = Rectangle(origin=Point(6, 2), size=Size(3, 3)) blob1 = Blob.from_rectangle(rect1) blob2 = Blob.from_rectangle(rect2) union_blob = blob1 + blob2 assert union_blob.area == blob1.area + blob2.area assert union_blob.area == rect1.area + rect2.area assert union_blob.height == 5 left_blob = blob1 - blob2 from pprint import pprint pprint(blob1.spans) pprint(blob2.spans) pprint(left_blob.spans) assert left_blob.area == blob1.area assert left_blob == blob1 right_blob = blob2 - blob1 from pprint import pprint pprint(blob1.spans) pprint(blob2.spans) pprint(right_blob.spans) assert right_blob.area == blob2.area assert right_blob == blob2 def test_blob_math_overlap(): # These rectangles look like this: # xxx # x##x # x##x # xxx rect1 = Rectangle(origin=Point(0, 0), size=Size(3, 3)) rect2 = Rectangle(origin=Point(1, 1), size=Size(3, 3)) blob1 = Blob.from_rectangle(rect1) blob2 = Blob.from_rectangle(rect2) union_blob = blob1 + blob2 assert union_blob.area == 14 left_blob = blob1 - blob2 assert left_blob.area == 5 assert left_blob.height == 3 assert left_blob.spans == { 0: (Span(0, 2),), 1: (Span(0, 0),), 2: (Span(0, 0),), } right_blob = blob2 - blob1 assert right_blob.area == 5 assert right_blob.height == 3 assert right_blob.spans == { 1: (Span(3, 3),), 2: (Span(3, 3),), 3: (Span(1, 3),), } def test_blob_math_contain(): # These rectangles look like this: # xxxxx # x###x # x###x # x###x # xxxxx rect1 = Rectangle(origin=Point(0, 0), size=Size(5, 5)) rect2 = Rectangle(origin=Point(1, 1), size=Size(3, 3)) blob1 = Blob.from_rectangle(rect1) blob2 = Blob.from_rectangle(rect2) union_blob = blob1 + blob2 assert union_blob.area == blob1.area assert union_blob.height == blob1.height left_blob = blob1 - blob2 assert left_blob.area == 16 assert left_blob.height == 5 assert left_blob.spans == { 0: (Span(0, 4),), 1: (Span(0, 0), Span(4, 4)), 2: (Span(0, 0), Span(4, 4)), 3: (Span(0, 0), Span(4, 4)), 4: (Span(0, 4),), } right_blob = blob2 - blob1 assert right_blob.area == 0 assert right_blob.height == 0 assert right_blob.spans == {} def test_blob_math_fuzzer(): pass
25577
from resolwe.flow.models import Data from resolwe.test import tag_process from resolwe_bio.utils.filter import filter_vcf_variable from resolwe_bio.utils.test import BioProcessTestCase class CheMutWorkflowTestCase(BioProcessTestCase): @tag_process("workflow-chemut") def test_chemut_workflow(self): with self.preparation_stage(): inputs = { "src": "chemut_genome.fasta.gz", "species": "Dictyostelium discoideum", "build": "dd-05-2009", } ref_seq = self.run_process("upload-fasta-nucl", inputs) bwa_index = self.run_process("bwa-index", {"ref_seq": ref_seq.id}) inputs = {"src1": ["AX4_mate1.fq.gz"], "src2": ["AX4_mate2.fq.gz"]} parental_reads = self.run_process("upload-fastq-paired", inputs) inputs = {"src1": ["CM_mate1.fq.gz"], "src2": ["CM_mate2.fq.gz"]} mut_reads = self.run_process("upload-fastq-paired", inputs) inputs = {"genome": bwa_index.id, "reads": parental_reads.id} align_parental = self.run_process("alignment-bwa-mem", inputs) inputs = {"genome": bwa_index.id, "reads": mut_reads.id} align_mut = self.run_process("alignment-bwa-mem", inputs) self.run_process( "workflow-chemut", { "analysis_type": "snv", "parental_strains": [align_parental.id], "mutant_strains": [align_mut.id], "genome": ref_seq.id, "Vc": {"stand_emit_conf": 15, "stand_call_conf": 35, "rf": True}, "Vf": {"read_depth": 7}, }, ) for data in Data.objects.all(): self.assertStatus(data, Data.STATUS_DONE) variants = Data.objects.last() self.assertFile( variants, "vcf", "chemut.vcf.gz", file_filter=filter_vcf_variable, compression="gzip", )
25628
from hearthbreaker.cards.base import SpellCard from hearthbreaker.constants import CHARACTER_CLASS, CARD_RARITY from hearthbreaker.tags.base import BuffUntil, Buff from hearthbreaker.tags.event import TurnStarted from hearthbreaker.tags.status import Stealth, Taunt, Frozen import hearthbreaker.targeting class TheCoin(SpellCard): def __init__(self): super().__init__("The Coin", 0, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False) def use(self, player, game): super().use(player, game) if player.mana < 10: player.mana += 1 class ArmorPlating(SpellCard): def __init__(self): super().__init__("Armor Plating", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.increase_health(1) class EmergencyCoolant(SpellCard): def __init__(self): super().__init__("Emergency Coolant", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.add_buff(Buff(Frozen())) class FinickyCloakfield(SpellCard): def __init__(self): super().__init__("Finicky Cloakfield", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_friendly_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.add_buff(BuffUntil(Stealth(), TurnStarted())) class ReversingSwitch(SpellCard): def __init__(self): super().__init__("Reversing Switch", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_minion_spell_target) def use(self, player, game): super().use(player, game) temp_attack = self.target.calculate_attack() temp_health = self.target.health if temp_attack == 0: self.target.die(None) else: self.target.set_attack_to(temp_health) self.target.set_health_to(temp_attack) class RustyHorn(SpellCard): def __init__(self): super().__init__("Rusty Horn", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.add_buff(Buff(Taunt())) class TimeRewinder(SpellCard): def __init__(self): super().__init__("Time Rewinder", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_friendly_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.bounce() class WhirlingBlades(SpellCard): def __init__(self): super().__init__("Whirling Blades", 1, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False, target_func=hearthbreaker.targeting.find_minion_spell_target) def use(self, player, game): super().use(player, game) self.target.change_attack(1) spare_part_list = [ArmorPlating(), EmergencyCoolant(), FinickyCloakfield(), TimeRewinder(), ReversingSwitch(), RustyHorn(), WhirlingBlades()] class GallywixsCoin(SpellCard): def __init__(self): super().__init__("Gallywix's Coin", 0, CHARACTER_CLASS.ALL, CARD_RARITY.COMMON, False) def use(self, player, game): super().use(player, game) if player.mana < 10: player.mana += 1
25644
import subprocess import time import sys import signal from testutils import assert_raises is_unix = not sys.platform.startswith("win") if is_unix: def echo(text): return ["echo", text] def sleep(secs): return ["sleep", str(secs)] else: def echo(text): return ["cmd", "/C", f"echo {text}"] def sleep(secs): # TODO: make work in a non-unixy environment (something with timeout.exe?) return ["sleep", str(secs)] p = subprocess.Popen(echo("test")) time.sleep(0.1) assert p.returncode is None assert p.poll() == 0 assert p.returncode == 0 p = subprocess.Popen(sleep(2)) assert p.poll() is None with assert_raises(subprocess.TimeoutExpired): assert p.wait(1) p.wait() assert p.returncode == 0 p = subprocess.Popen(echo("test"), stdout=subprocess.PIPE) p.wait() assert p.stdout.read().strip() == b"test" p = subprocess.Popen(sleep(2)) p.terminate() p.wait() if is_unix: assert p.returncode == -signal.SIGTERM else: assert p.returncode == 1 p = subprocess.Popen(sleep(2)) p.kill() p.wait() if is_unix: assert p.returncode == -signal.SIGKILL else: assert p.returncode == 1 p = subprocess.Popen(echo("test"), stdout=subprocess.PIPE) (stdout, stderr) = p.communicate() assert stdout.strip() == b"test" p = subprocess.Popen(sleep(5), stdout=subprocess.PIPE) with assert_raises(subprocess.TimeoutExpired): p.communicate(timeout=1)
25654
from . import get_main_movies_base_data from . import get_main_movies_full_data from . import get_celebrities_full_data from . import down_video_images from . import down_celebrity_images
25661
import random from precise.skaters.managerutil.managertesting import manager_test_run from precise.skaters.managers.equalmanagers import equal_daily_long_manager, equal_long_manager from precise.skaters.managers.equalmanagers import equal_weekly_long_manager, equal_weekly_buy_and_hold_long_manager from precise.skatertools.data.equityhistorical import random_cached_equity_dense from numpy.testing import assert_array_almost_equal def test_random_manager(): from precise.skaters.managers.allmanagers import LONG_MANAGERS mgr = random.choice(LONG_MANAGERS) manager_test_run(mgr=mgr) def test_daily_equal(): assert_equal_managing(equal_long_manager, equal_daily_long_manager) def test_weekly_equal(): assert_equal_managing(equal_weekly_long_manager, equal_weekly_buy_and_hold_long_manager) def assert_equal_managing(mgr1,mgr2): ys = random_cached_equity_dense(k=1, n_obs=50, n_dim=3, as_frame=False) s1 = {} s2 = {} for y in ys: w1, s1 = mgr1(y=y, s=s1) w2, s2 = mgr2(y=y, s=s2) assert_array_almost_equal(w1,w2, err_msg='managers are not the same') if __name__=='__main__': test_daily_equal() test_weekly_equal()
25672
def main(): seed = 0x1234 e = [0x62d5, 0x7b27, 0xc5d4, 0x11c4, 0x5d67, 0xa356, 0x5f84, 0xbd67, 0xad04, 0x9a64, 0xefa6, 0x94d6, 0x2434, 0x0178] flag = "" for index in range(14): for i in range(0x7f-0x20): c = chr(0x20+i) res = encode(c, index, seed) if res == e[index]: print(c) flag += c seed = encode(c, index, seed) print("Kosen{%s}" % flag) def encode(p1, p2, p3): p1 = ord(p1) & 0xff p2 = p2 & 0xffffffff p3 = p3 & 0xffffffff result = (((p1 >> 4) | (p1 & 0xf) << 4) + 1) ^ ((p2 >> 4) | (~p2 << 4)) & 0xff | (p3 >> 4) << 8 ^ ((p3 >> 0xc) | (p3 << 4)) << 8 return result & 0xffff if __name__ == "__main__": main()
25706
import arcpy, os #walk through all subdirectories and change mxd to store relative paths for root, dirs, files in os.walk(r"Q:\Geodata\shape"): for f in files: if f.endswith(".mxd"): filepath = root + '\\' + f print filepath try: mxd = arcpy.mapping.MapDocument(filepath) #set relative paths property mxd.relativePaths = True mxd.save() except: print filepath + ' failed' pass
25721
from django.contrib.auth.models import User from django.test import TestCase from adminlte_log.models import AdminlteLogType, AdminlteLog class AdminlteLogTest(TestCase): def setUp(self): AdminlteLogType.objects.create(name='test', code='test') self.user = User.objects.create_user(username='bohan') def test_log(self): log = AdminlteLog.info('test', user=self.user, sort_desc='This is a log', foo='bar') self.assertEqual(log.id, 1)
25778
import numpy as np import torch import torch.nn as nn import torch.optim as optim from rl.dataset import ReplayBuffer, RandomSampler from rl.base_agent import BaseAgent from rl.policies.mlp_actor_critic import MlpActor, MlpCritic from util.logger import logger from util.mpi import mpi_average from util.pytorch import optimizer_cuda, count_parameters, \ compute_gradient_norm, compute_weight_norm, sync_networks, sync_grads, \ obs2tensor, to_tensor from env.action_spec import ActionSpec class MetaPPOAgent(BaseAgent): """ Meta policy class. """ def __init__(self, config, ob_space): super().__init__(config, ob_space) if config.meta is None: logger.warn('Creating a dummy meta policy.') return # parse body parts and skills if config.subdiv: # subdiv = ob1,ob2-ac1/ob3,ob4-ac2/... clusters = config.subdiv.split('/') clusters = [cluster.split('-')[1].split(',') for cluster in clusters] else: clusters = [ob_space.keys()] if config.subdiv_skills: subdiv_skills = config.subdiv_skills.split('/') subdiv_skills = [skills.split(',') for skills in subdiv_skills] else: subdiv_skills = [['primitive']] * len(clusters) self.subdiv_skills = subdiv_skills assert len(subdiv_skills) == len(clusters), \ 'subdiv_skills and clusters have different # subdivisions' if config.meta == 'hard': ac_space = ActionSpec(size=0) for cluster, skills in zip(clusters, subdiv_skills): ac_space.add(','.join(cluster), 'discrete', len(skills), 0, 1) self.ac_space = ac_space if config.diayn: ob_clusters = config.subdiv.split('/') ob_clusters = [cluster.split('-')[0].split(',') for cluster in ob_clusters] for cluster, skills in zip(ob_clusters, subdiv_skills): self.ac_space.add(','.join(cluster) + '_diayn', 'continuous', config.z_dim, 0, 1) # build up networks self._actor = MlpActor(config, ob_space, ac_space, tanh_policy=False) self._old_actor = MlpActor(config, ob_space, ac_space, tanh_policy=False) self._critic = MlpCritic(config, ob_space) self._network_cuda(config.device) self._actor_optim = optim.Adam(self._actor.parameters(), lr=config.lr_actor) self._critic_optim = optim.Adam(self._critic.parameters(), lr=config.lr_critic) sampler = RandomSampler() self._buffer = ReplayBuffer(['ob', 'ac', 'done', 'rew', 'ret', 'adv', 'ac_before_activation', 'log_prob'], config.buffer_size, sampler.sample_func) if config.is_chef: logger.warn('Creating a meta PPO agent') logger.info('The actor has %d parameters', count_parameters(self._actor)) logger.info('The critic has %d parameters', count_parameters(self._critic)) def store_episode(self, rollouts): """ Stores @rollouts to replay buffer. """ self._compute_gae(rollouts) self._buffer.store_episode(rollouts) def _compute_gae(self, rollouts): """ Computes GAE from @rollouts. """ T = len(rollouts['done']) ob = rollouts['ob'] ob = self.normalize(ob) ob = obs2tensor(ob, self._config.device) vpred = self._critic(ob).detach().cpu().numpy()[:,0] assert len(vpred) == T + 1 done = rollouts['done'] rew = rollouts['rew'] adv = np.empty((T, ) , 'float32') lastgaelam = 0 for t in reversed(range(T)): nonterminal = 1 - done[t] delta = rew[t] + self._config.discount_factor * vpred[t + 1] * nonterminal - vpred[t] adv[t] = lastgaelam = delta + self._config.discount_factor * self._config.gae_lambda * nonterminal * lastgaelam ret = adv + vpred[:-1] assert np.isfinite(adv).all() assert np.isfinite(ret).all() # update rollouts if adv.std() == 0: rollouts['adv'] = (adv * 0).tolist() else: rollouts['adv'] = ((adv - adv.mean()) / adv.std()).tolist() rollouts['ret'] = ret.tolist() def state_dict(self): if self._config.meta is None: return {} return { 'actor_state_dict': self._actor.state_dict(), 'critic_state_dict': self._critic.state_dict(), 'actor_optim_state_dict': self._actor_optim.state_dict(), 'critic_optim_state_dict': self._critic_optim.state_dict(), 'ob_norm_state_dict': self._ob_norm.state_dict(), } def load_state_dict(self, ckpt): if self._config.meta is None: return self._actor.load_state_dict(ckpt['actor_state_dict']) self._critic.load_state_dict(ckpt['critic_state_dict']) self._ob_norm.load_state_dict(ckpt['ob_norm_state_dict']) self._network_cuda(self._config.device) self._actor_optim.load_state_dict(ckpt['actor_optim_state_dict']) self._critic_optim.load_state_dict(ckpt['critic_optim_state_dict']) optimizer_cuda(self._actor_optim, self._config.device) optimizer_cuda(self._critic_optim, self._config.device) def _network_cuda(self, device): self._actor.to(device) self._old_actor.to(device) self._critic.to(device) def sync_networks(self): sync_networks(self._actor) sync_networks(self._critic) def train(self): self._copy_target_network(self._old_actor, self._actor) for _ in range(self._config.num_batches): transitions = self._buffer.sample(self._config.batch_size) train_info = self._update_network(transitions) self._buffer.clear() train_info.update({ 'actor_grad_norm': compute_gradient_norm(self._actor), 'actor_weight_norm': compute_weight_norm(self._actor), 'critic_grad_norm': compute_gradient_norm(self._critic), 'critic_weight_norm': compute_weight_norm(self._critic), }) return train_info def _update_network(self, transitions): info = {} # pre-process observations o = transitions['ob'] o = self.normalize(o) bs = len(transitions['done']) _to_tensor = lambda x: to_tensor(x, self._config.device) o = _to_tensor(o) ac = _to_tensor(transitions['ac']) z = _to_tensor(transitions['ac_before_activation']) ret = _to_tensor(transitions['ret']).reshape(bs, 1) adv = _to_tensor(transitions['adv']).reshape(bs, 1) old_log_pi = _to_tensor(transitions['log_prob']).reshape(bs, 1) log_pi, ent = self._actor.act_log(o, z) if (log_pi - old_log_pi).max() > 20: print('(log_pi - old_log_pi) is too large', (log_pi - old_log_pi).max()) import ipdb; ipdb.set_trace() # the actor loss entropy_loss = self._config.entropy_loss_coeff * ent.mean() ratio = torch.exp(torch.clamp(log_pi - old_log_pi, -20, 20)) surr1 = ratio * adv surr2 = torch.clamp(ratio, 1.0 - self._config.clip_param, 1.0 + self._config.clip_param) * adv actor_loss = -torch.min(surr1, surr2).mean() if not np.isfinite(ratio.cpu().detach()).all() or not np.isfinite(adv.cpu().detach()).all(): import ipdb; ipdb.set_trace() info['entropy_loss'] = entropy_loss.cpu().item() info['actor_loss'] = actor_loss.cpu().item() actor_loss += entropy_loss discriminator_loss = self._actor.discriminator_loss() if discriminator_loss is not None: actor_loss += discriminator_loss * self._config.discriminator_loss_weight info['discriminator_loss'] = discriminator_loss.cpu().item() # the q loss value_pred = self._critic(o) value_loss = self._config.value_loss_coeff * (ret - value_pred).pow(2).mean() info['value_target'] = ret.mean().cpu().item() info['value_predicted'] = value_pred.mean().cpu().item() info['value_loss'] = value_loss.cpu().item() # update the actor self._actor_optim.zero_grad() actor_loss.backward() sync_grads(self._actor) self._actor_optim.step() # update the critic self._critic_optim.zero_grad() value_loss.backward() sync_grads(self._critic) self._critic_optim.step() # include info from policy info.update(self._actor.info) return mpi_average(info) def act(self, ob, is_train=True): """ Returns a set of actions and the actors' activations given an observation @ob. """ if self._config.meta: ob = self.normalize(ob) return self._actor.act(ob, is_train, return_log_prob=True) else: return [0], None, None
25793
from rest_framework import generics, permissions from rest_framework import filters as filters_rf from django_filters import rest_framework as filters from allauth.socialaccount.models import SocialAccount, SocialApp, SocialToken from .serializers import SocialAppSerializer, SocialAppExtendedSerializer, SocialAccountSerializer, \ SocialAccountExtendedSerializer, SocialTokenSerializer, SocialTokenExtendedSerializer class SocialAppListApi(generics.ListAPIView): """Список всех SocialApp""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialApp.objects.all() serializer_class = SocialAppExtendedSerializer filter_backends = [filters.DjangoFilterBackend, filters_rf.SearchFilter, filters_rf.OrderingFilter] filter_fields = ('id', 'provider', 'sites') search_fields = ['name', 'client_id', 'id'] ordering = ['id'] class SocialAppRetrieveDeleteUpdateApi(generics.RetrieveUpdateDestroyAPIView): """Просмотр, изменение и удаления приложения соц. сети""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialApp.objects.all() lookup_field = 'id' serializer_class = SocialAppSerializer class SocialAppCreateApi(generics.CreateAPIView): """Добавление приложения соц. сети""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialApp.objects.none() serializer_class = SocialAppSerializer class SocialAccountListApi(generics.ListAPIView): """Список всех аккаунтов соц. сетей""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialAccount.objects.all() serializer_class = SocialAccountExtendedSerializer filter_backends = [filters.DjangoFilterBackend, filters_rf.SearchFilter, filters_rf.OrderingFilter] filter_fields = ('id', 'user', 'provider') search_fields = ['user__username'] ordering = ['id'] class SocialAccountRetrieveDeleteUpdateApi(generics.RetrieveUpdateDestroyAPIView): """Просмотр, изменение и удаления аккаунта в соц. сети""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialAccount.objects.all() serializer_class = SocialAccountSerializer lookup_field = 'id' class SocialAccountCreateApi(generics.CreateAPIView): """Добавление аккаунта соц. сети""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialAccount.objects.none() serializer_class = SocialAccountSerializer class SocialTokenListApi(generics.ListAPIView): """Список токенов""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialToken.objects.all() serializer_class = SocialTokenExtendedSerializer filter_backends = [filters.DjangoFilterBackend, filters_rf.SearchFilter, filters_rf.OrderingFilter] filter_fields = ('id', 'app', 'account') search_fields = ['account__user__username', 'token', 'id'] ordering = ['id'] class SocialTokenRetrieveDeleteUpdateApi(generics.RetrieveUpdateDestroyAPIView): """Просмотр, изменение и удаления токенов""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialToken.objects.all() serializer_class = SocialTokenSerializer lookup_field = 'id' class SocialTokenCreateApi(generics.CreateAPIView): """Добавление токена""" permission_classes = [permissions.DjangoModelPermissions] queryset = SocialToken.objects.none() serializer_class = SocialTokenSerializer
25798
import os import json import re import sys import logging import hashlib import uuid import jsonschema import tempfile import controller import anchore_utils import anchore_auth from anchore.util import contexts _logger = logging.getLogger(__name__) default_policy_version = '1_0' default_whitelist_version = '1_0' default_bundle_version = '1_0' supported_whitelist_versions = [default_whitelist_version] supported_bundle_versions = [default_bundle_version] supported_policy_versions = [default_bundle_version] # interface operations def check(): if not load_policymeta(): return (False, "policys are not initialized: please run 'anchore policys sync' and try again") return (True, "success") def sync_policymeta(bundlefile=None, outfile=None): ret = {'success': False, 'text': "", 'status_code': 1} policyurl = contexts['anchore_config']['policy_url'] policy_timeout = contexts['anchore_config']['policy_conn_timeout'] policy_maxretries = contexts['anchore_config']['policy_max_retries'] policymeta = {} if bundlefile: if not os.path.exists(bundlefile): ret['text'] = "no such file ("+str(bundlefile)+")" return(False, ret) try: with open(bundlefile, 'r') as FH: policymeta = json.loads(FH.read()) except Exception as err: ret['text'] = "synced policy bundle cannot be read/is not valid JSON: exception - " +str(err) return(False, ret) else: record = anchore_auth.anchore_auth_get(contexts['anchore_auth'], policyurl, timeout=policy_timeout, retries=policy_maxretries) if record['success']: try: bundleraw = json.loads(record['text']) policymeta = bundleraw['bundle'] except Exception as err: ret['text'] = 'failed to parse bundle response from service - exception: ' + str(err) return(False, ret) else: _logger.debug("failed to download policybundle: message from server - " + str(record)) themsg = "unspecificied failure while attempting to download bundle from anchore.io" try: if record['status_code'] == 404: themsg = "no policy bundle found on anchore.io - please create and save a policy using the policy editor in anchore.io and try again" elif record['status_code'] == 401: themsg = "cannot download a policy bundle from anchore.io - current user does not have access rights to download custom policies" except Exception as err: themsg = "exception while inspecting response from server - exception: " + str(err) ret['text'] = "failed to download policybundle: " + str(themsg) return(False, ret) if not verify_policy_bundle(bundle=policymeta): _logger.debug("downloaded policy bundle failed to verify: " +str(policymeta)) ret['text'] = "input policy bundle does not conform to policy bundle schema" return(False, ret) if outfile: if outfile != '-': try: with open(outfile, 'w') as OFH: OFH.write(json.dumps(policymeta)) except Exception as err: ret['text'] = "could not write downloaded policy bundle to specified file ("+str(outfile)+") - exception: " + str(err) return(False, ret) else: if not contexts['anchore_db'].save_policymeta(policymeta): ret['text'] = "cannot get list of policies from service\nMessage from server: " + record['text'] return (False, ret) if policymeta: ret['text'] = json.dumps(policymeta, indent=4) return(True, ret) def load_policymeta(policymetafile=None): ret = {} if policymetafile: with open(policymetafile, 'r') as FH: ret = json.loads(FH.read()) else: ret = contexts['anchore_db'].load_policymeta() if not ret: # use the system default default_policy_bundle_file = os.path.join(contexts['anchore_config'].config_dir, 'anchore_default_bundle.json') try: if os.path.exists(default_policy_bundle_file): with open(default_policy_bundle_file, 'r') as FH: ret = json.loads(FH.read()) else: raise Exception("no such file: " + str(default_policy_bundle_file)) except Exception as err: _logger.warn("could not load default bundle (" + str(default_policy_bundle_file) + ") - exception: " + str(err)) raise err return(ret) def save_policymeta(policymeta): return(contexts['anchore_db'].save_policymeta(policymeta)) # bundle # Convert def convert_to_policy_bundle(name="default", version=default_bundle_version, policy_file=None, policy_version=default_policy_version, whitelist_files=[], whitelist_version=default_whitelist_version): policies = {} p = read_policy(name=str(uuid.uuid4()), file=policy_file) policies.update(p) whitelists = {} for wf in whitelist_files: w = read_whitelist(name=str(uuid.uuid4()), file=wf) whitelists.update(w) m = create_mapping(map_name="default", policy_name=policies.keys()[0], whitelists=whitelists.keys(), repotagstring='*/*:*') mappings.append(m) bundle = create_policy_bundle(name='default', policies=policies, policy_version=policy_version, whitelists=whitelists, whitelist_version=whitelist_version, mappings=mappings) if not verify_policy_bundle(bundle=bundle): return({}) return(bundle) # C def create_policy_bundle(name=None, version=default_bundle_version, policies={}, policy_version=default_policy_version, whitelists={}, whitelist_version=default_whitelist_version, mappings=[]): ret = { 'id': str(uuid.uuid4()), 'name':name, 'version':version, 'policies':[], 'whitelists':[], 'mappings':[] } for f in policies: el = { 'version':policy_version, 'id':f, 'name':f, 'rules':[] } el['rules'] = unformat_policy_data(policies[f]) ret['policies'].append(el) for f in whitelists: el = { 'version':whitelist_version, 'id':f, 'name':f, 'items':[] } el['items'] = unformat_whitelist_data(whitelists[f]) ret['whitelists'].append(el) for m in mappings: ret['mappings'].append(m) _logger.debug("created bundle: ("+str(name)+") : " + json.dumps(ret.keys(), indent=4)) return(ret) # R def read_policy_bundle(bundle_file=None): ret = {} with open(bundle_file, 'r') as FH: ret = json.loads(FH.read()) cleanstr = json.dumps(ret).encode('utf8') ret = json.loads(cleanstr) if not verify_policy_bundle(bundle=ret): raise Exception("input bundle does not conform to bundle schema") return(ret) # V def verify_policy_bundle(bundle={}): bundle_schema = {} try: bundle_schema_file = os.path.join(contexts['anchore_config']['pkg_dir'], 'schemas', 'anchore-bundle.schema') except: from pkg_resources import Requirement, resource_filename bundle_schema_file = os.path.join(resource_filename("anchore", ""), 'schemas', 'anchore-bundle.schema') try: if os.path.exists(bundle_schema_file): with open (bundle_schema_file, "r") as FH: bundle_schema = json.loads(FH.read()) except Exception as err: _logger.error("could not load bundle schema: " + str(bundle_schema_file)) return(False) if not bundle_schema: _logger.error("could not load bundle schema: " + str(bundle_schema_file)) return(False) else: try: jsonschema.validate(bundle, schema=bundle_schema) except Exception as err: _logger.error("could not validate bundle against schema: " + str(err)) return(False) return(True) # U def update_policy_bundle(bundle={}, name=None, policies={}, whitelists={}, mappings={}): if not verify_policy_bundle(bundle=bundle): raise Exception("input bundle is incomplete - cannot update bad bundle: " + json.dumps(bundle, indent=4)) ret = {} ret.update(bundle) new_bundle = create_policy_bundle(name=name, policies=policies, whitelists=whitelists, mappings=mappings) for key in ['name', 'policies', 'whitelists', 'mappings']: if new_bundle[key]: ret[key] = new_bundle.pop(key, ret[key]) return(ret) # SAVE def write_policy_bundle(bundle_file=None, bundle={}): if not verify_policy_bundle(bundle=bundle): raise Exception("cannot verify input policy bundle, skipping write: " + str(bundle_file)) with open(bundle_file, 'w') as OFH: OFH.write(json.dumps(bundle)) return(True) # mapping # C def create_mapping(map_name=None, policy_name=None, whitelists=[], repotagstring=None): ret = {} ret['name'] = map_name ret['policy_id'] = policy_name ret['whitelist_ids'] = whitelists image_info = anchore_utils.get_all_image_info(repotagstring) registry = image_info.pop('registry', "N/A") repo = image_info.pop('repo', "N/A") tag = image_info.pop('tag', "N/A") imageId = image_info.pop('imageId', "N/A") digest = image_info.pop('digest', "N/A") ret['registry'] = registry ret['repository'] = repo ret['image'] = { 'type':'tag', 'value':tag } ret['id'] = str(uuid.uuid4()) return(ret) # policy/wl # V def verify_whitelist(whitelistdata=[], version=default_whitelist_version): ret = True if not isinstance(whitelistdata, list): ret = False if version in supported_whitelist_versions: # do 1_0 format/checks pass return(ret) # R def read_whitelist(name=None, file=None, version=default_whitelist_version): if not name: raise Exception("bad input: " + str(name) + " : " + str(file)) if file: if not os.path.exists(file): raise Exception("input file does not exist: " + str(file)) wdata = anchore_utils.read_plainfile_tolist(file) if not verify_whitelist(whitelistdata=wdata, version=version): raise Exception("cannot verify whitelist data read from file as valid") else: wdata = [] ret = {} ret[name] = wdata return(ret) def structure_whitelist(whitelistdata): ret = [] for item in whitelistdata: try: (k,v) = re.match("([^\s]*)\s*([^\s]*)", item).group(1,2) if not re.match("^\s*#.*", k): ret.append([k, v]) except Exception as err: pass return(ret) def unformat_whitelist_data(wldata): ret = [] whitelists = structure_whitelist(wldata) for wlitem in whitelists: gate, triggerId = wlitem el = { 'gate':gate, 'trigger_id':triggerId, 'id':str(uuid.uuid4()) } ret.append(el) return(ret) def format_whitelist_data(wldata): ret = [] version = wldata['version'] if wldata['version'] == default_whitelist_version: for item in wldata['items']: ret.append(' '.join([item['gate'], item['trigger_id']])) else: raise Exception ("detected whitelist version format in bundle not supported: " + str(version)) return(ret) def extract_whitelist_data(bundle, wlid): for wl in bundle['whitelists']: if wlid == wl['id']: return(format_whitelist_data(wl)) # R def read_policy(name=None, file=None, version=default_bundle_version): if not name or not file: raise Exception("input error") if not os.path.exists(file): raise Exception("input file does not exist: " + str(file)) pdata = anchore_utils.read_plainfile_tolist(file) if not verify_policy(policydata=pdata, version=version): raise Exception("cannot verify policy data read from file as valid") ret = {} ret[name] = pdata return(ret) def structure_policy(policydata): policies = {} for l in policydata: l = l.strip() patt = re.compile('^\s*#') if (l and not patt.match(l)): polinput = l.split(':') module = polinput[0] check = polinput[1] action = polinput[2] modparams = "" if (len(polinput) > 3): modparams = ':'.join(polinput[3:]) if module not in policies: policies[module] = {} if check not in policies[module]: policies[module][check] = {} if 'aptups' not in policies[module][check]: policies[module][check]['aptups'] = [] aptup = [action, modparams] if aptup not in policies[module][check]['aptups']: policies[module][check]['aptups'].append(aptup) policies[module][check]['action'] = action policies[module][check]['params'] = modparams return(policies) # return a give policyId from a bundle in raw poldata format def extract_policy_data(bundle, polid): for pol in bundle['policies']: if polid == pol['id']: return(format_policy_data(pol)) # convert from policy bundle policy format to raw poldata format def format_policy_data(poldata): ret = [] version = poldata['version'] if poldata['version'] == default_policy_version: for item in poldata['rules']: polline = ':'.join([item['gate'], item['trigger'], item['action'], ""]) if 'params' in item: for param in item['params']: polline = polline + param['name'] + '=' + param['value'] + " " ret.append(polline) else: raise Exception ("detected policy version format in bundle not supported: " + str(version)) return(ret) # convert from raw poldata format to bundle format def unformat_policy_data(poldata): ret = [] policies = structure_policy(poldata) for gate in policies.keys(): try: for trigger in policies[gate].keys(): action = policies[gate][trigger]['action'] params = policies[gate][trigger]['params'] el = { 'gate':gate, 'trigger':trigger, 'action':action, 'params':[] } for p in params.split(): (k,v) = p.split("=") el['params'].append({'name':k, 'value':v}) ret.append(el) except Exception as err: print str(err) pass return(ret) # V def verify_policy(policydata=[], version=default_policy_version): ret = True if not isinstance(policydata, list): ret = False if version in supported_policy_versions: # do 1_0 format/checks pass return(ret) def run_bundle(anchore_config=None, bundle={}, image=None, matchtags=[], stateless=False, show_whitelisted=True, show_triggerIds=True): retecode = 0 if not anchore_config or not bundle or not image: raise Exception("input error") if not verify_policy_bundle(bundle=bundle): raise Exception("input bundle does not conform to bundle schema") imageId = anchore_utils.discover_imageId(image) digests = [] if not matchtags: matchtags = [image] evalmap = {} evalresults = {} for matchtag in matchtags: _logger.info("evaluating tag: " + str(matchtag)) mapping_results = get_mapping_actions(image=matchtag, imageId=imageId, in_digests=digests, bundle=bundle) for pol,wl,polname,wlnames,mapmatch,match_json,evalhash in mapping_results: evalmap[matchtag] = evalhash _logger.debug("attempting eval: " + evalhash + " : " + matchtag) if evalhash not in evalresults: fnames = {} try: if stateless: policies = structure_policy(pol) whitelists = structure_whitelist(wl) rc = execute_gates(imageId, policies) result, fullresult = evaluate_gates_results(imageId, policies, {}, whitelists) eval_result = structure_eval_results(imageId, fullresult, show_whitelisted=show_whitelisted, show_triggerIds=show_triggerIds, imageName=matchtag) gate_result = {} gate_result[imageId] = eval_result else: con = controller.Controller(anchore_config=anchore_config, imagelist=[imageId], allimages=contexts['anchore_allimages'], force=True) for (fname, data) in [('tmppol', pol), ('tmpwl', wl)]: fh, thefile = tempfile.mkstemp(dir=anchore_config['tmpdir']) fnames[fname] = thefile try: with open(thefile, 'w') as OFH: for l in data: OFH.write(l + "\n") except Exception as err: raise err finally: os.close(fh) gate_result = con.run_gates(policy=fnames['tmppol'], global_whitelist=fnames['tmpwl'], show_triggerIds=show_triggerIds, show_whitelisted=show_whitelisted) evalel = { 'results': list(), 'policy_name':"N/A", 'whitelist_names':"N/A", 'policy_data':list(), 'whitelist_data':list(), 'mapmatch':"N/A", 'matched_mapping_rule': {} } evalel['results'] = gate_result evalel['policy_name'] = polname evalel['whitelist_names'] = wlnames evalel['policy_data'] = pol evalel['whitelist_data'] = wl evalel['mapmatch'] = mapmatch evalel['matched_mapping_rule'] = match_json _logger.debug("caching eval result: " + evalhash + " : " + matchtag) evalresults[evalhash] = evalel ecode = result_get_highest_action(gate_result) if ecode == 1: retecode = 1 elif retecode == 0 and ecode > retecode: retecode = ecode except Exception as err: _logger.error("policy evaluation error: " + str(err)) finally: for f in fnames.keys(): if os.path.exists(fnames[f]): os.remove(fnames[f]) else: _logger.debug("skipping eval, result already cached: " + evalhash + " : " + matchtag) ret = {} for matchtag in matchtags: ret[matchtag] = {} ret[matchtag]['bundle_name'] = bundle['name'] try: evalresult = evalresults[evalmap[matchtag]] ret[matchtag]['evaluations'] = [evalresult] except Exception as err: raise err return(ret, retecode) def result_get_highest_action(results): highest_action = 0 for k in results.keys(): action = results[k]['result']['final_action'] if action == 'STOP': highest_action = 1 elif highest_action == 0 and action == 'WARN': highest_action = 2 return(highest_action) def get_mapping_actions(image=None, imageId=None, in_digests=[], bundle={}): """ Given an image, image_id, digests, and a bundle, determine which policies and whitelists to evaluate. :param image: Image obj :param imageId: image id string :param in_digests: candidate digests :param bundle: bundle dict to evaluate :return: tuple of (policy_data, whitelist_data, policy_name, whitelist_names, matchstring, mapping_rule_json obj, evalhash) """ if not image or not bundle: raise Exception("input error") if not verify_policy_bundle(bundle=bundle): raise Exception("input bundle does not conform to bundle schema") ret = [] image_infos = [] image_info = anchore_utils.get_all_image_info(image) if image_info and image_info not in image_infos: image_infos.append(image_info) for m in bundle['mappings']: polname = m['policy_id'] wlnames = m['whitelist_ids'] for image_info in image_infos: #_logger.info("IMAGE INFO: " + str(image_info)) ii = {} ii.update(image_info) registry = ii.pop('registry', "N/A") repo = ii.pop('repo', "N/A") tags = [] fulltag = ii.pop('fulltag', "N/A") if fulltag != 'N/A': tinfo = anchore_utils.parse_dockerimage_string(fulltag) if 'tag' in tinfo and tinfo['tag']: tag = tinfo['tag'] for t in [image, fulltag]: tinfo = anchore_utils.parse_dockerimage_string(t) if 'tag' in tinfo and tinfo['tag'] and tinfo['tag'] not in tags: tags.append(tinfo['tag']) digest = ii.pop('digest', "N/A") digests = [digest] for d in image_info['digests']: dinfo = anchore_utils.parse_dockerimage_string(d) if 'digest' in dinfo and dinfo['digest']: digests.append(dinfo['digest']) p_ids = [] p_names = [] for p in bundle['policies']: p_ids.append(p['id']) p_names.append(p['name']) wl_ids = [] wl_names = [] for wl in bundle['whitelists']: wl_ids.append(wl['id']) wl_names.append(wl['name']) if polname not in p_ids: _logger.info("policy not in bundle: " + str(polname)) continue skip=False for wlname in wlnames: if wlname not in wl_ids: _logger.info("whitelist not in bundle" + str(wlname)) skip=True if skip: continue mname = m['name'] mregistry = m['registry'] mrepo = m['repository'] if m['image']['type'] == 'tag': mtag = m['image']['value'] mdigest = None mimageId = None elif m['image']['type'] == 'digest': mdigest = m['image']['value'] mtag = None mimageId = None elif m['image']['type'] == 'id': mimageId = m['image']['value'] mtag = None mdigest = None else: mtag = mdigest = mimageId = None mregistry_rematch = mregistry mrepo_rematch = mrepo mtag_rematch = mtag try: matchtoks = [] for tok in mregistry.split("*"): matchtoks.append(re.escape(tok)) mregistry_rematch = "^" + '(.*)'.join(matchtoks) + "$" matchtoks = [] for tok in mrepo.split("*"): matchtoks.append(re.escape(tok)) mrepo_rematch = "^" + '(.*)'.join(matchtoks) + "$" matchtoks = [] for tok in mtag.split("*"): matchtoks.append(re.escape(tok)) mtag_rematch = "^" + '(.*)'.join(matchtoks) + "$" except Exception as err: _logger.error("could not set up regular expression matches for mapping check - exception: " + str(err)) _logger.debug("matchset: " + str([mregistry_rematch, mrepo_rematch, mtag_rematch]) + " : " + str([mregistry, mrepo, mtag]) + " : " + str([registry, repo, tag, tags])) if registry == mregistry or mregistry == '*' or re.match(mregistry_rematch, registry): _logger.debug("checking mapping for image ("+str(image_info)+") match.") if repo == mrepo or mrepo == '*' or re.match(mrepo_rematch, repo): doit = False matchstring = mname + ": N/A" if tag: if False and (mtag == tag or mtag == '*' or mtag in tags or re.match(mtag_rematch, tag)): matchstring = mname + ":" + ','.join([mregistry, mrepo, mtag]) doit = True else: for t in tags: if re.match(mtag_rematch, t): matchstring = mname + ":" + ','.join([mregistry, mrepo, mtag]) doit = True break if not doit and (digest and (mdigest == digest or mdigest in in_digests or mdigest in digests)): matchstring = mname + ":" + ','.join([mregistry, mrepo, mdigest]) doit = True if not doit and (imageId and (mimageId == imageId)): matchstring = mname + ":" + ','.join([mregistry, mrepo, mimageId]) doit = True matchstring = matchstring.encode('utf8') if doit: _logger.debug("match found for image ("+str(image_info)+") matchstring ("+str(matchstring)+")") wldata = [] wldataset = set() for wlname in wlnames: wldataset = set(list(wldataset) + extract_whitelist_data(bundle, wlname)) wldata = list(wldataset) poldata = extract_policy_data(bundle, polname) wlnames.sort() evalstr = ','.join([polname] + wlnames) evalhash = hashlib.md5(evalstr).hexdigest() ret.append( ( poldata, wldata, polname,wlnames, matchstring, m, evalhash) ) return(ret) else: _logger.debug("no match found for image ("+str(image_info)+") match.") else: _logger.debug("no match found for image ("+str(image_info)+") match.") return(ret) def execute_gates(imageId, policies, refresh=True): import random success = True anchore_config = contexts['anchore_config'] imagename = imageId gatesdir = '/'.join([anchore_config["scripts_dir"], "gates"]) workingdir = '/'.join([anchore_config['anchore_data_dir'], 'querytmp']) outputdir = workingdir _logger.info(imageId + ": evaluating policies...") for d in [outputdir, workingdir]: if not os.path.exists(d): os.makedirs(d) imgfile = '/'.join([workingdir, "queryimages." + str(random.randint(0, 99999999))]) anchore_utils.write_plainfile_fromstr(imgfile, imageId) try: gmanifest, failedgates = anchore_utils.generate_gates_manifest() if failedgates: _logger.error("some gates failed to run - check the gate(s) modules for errors: " + str(','.join(failedgates))) success = False else: success = True for gatecheck in policies.keys(): # get all commands that match the gatecheck gcommands = [] for gkey in gmanifest.keys(): if gmanifest[gkey]['gatename'] == gatecheck: gcommands.append(gkey) # assemble the params from the input policy for this gatecheck params = [] for trigger in policies[gatecheck].keys(): if 'params' in policies[gatecheck][trigger] and policies[gatecheck][trigger]['params']: params.append(policies[gatecheck][trigger]['params']) if not params: params = ['all'] if gcommands: for command in gcommands: cmd = [command] + [imgfile, anchore_config['image_data_store'], outputdir] + params _logger.debug("running gate command: " + str(' '.join(cmd))) (rc, sout, cmdstring) = anchore_utils.run_command(cmd) if rc: _logger.error("FAILED") _logger.error("\tCMD: " + str(cmdstring)) _logger.error("\tEXITCODE: " + str(rc)) _logger.error("\tOUTPUT: " + str(sout)) success = False else: _logger.debug("") _logger.debug("\tCMD: " + str(cmdstring)) _logger.debug("\tEXITCODE: " + str(rc)) _logger.debug("\tOUTPUT: " + str(sout)) _logger.debug("") else: _logger.warn("WARNING: gatecheck ("+str(gatecheck)+") line in policy, but no gates were found that match this gatecheck") except Exception as err: _logger.error("gate evaluation failed - exception: " + str(err)) finally: if imgfile and os.path.exists(imgfile): try: os.remove(imgfile) except: _logger.error("could not remove tempfile: " + str(imgfile)) if success: report = generate_gates_report(imageId) contexts['anchore_db'].save_gates_report(imageId, report) _logger.info(imageId + ": evaluated.") return(success) def generate_gates_report(imageId): # this routine reads the results of image gates and generates a formatted report report = {} outputs = contexts['anchore_db'].list_gate_outputs(imageId) for d in outputs: report[d] = contexts['anchore_db'].load_gate_output(imageId, d) return(report) def evaluate_gates_results(imageId, policies, image_whitelist, global_whitelist): ret = list() fullret = list() final_gate_action = 'GO' for m in policies.keys(): gdata = contexts['anchore_db'].load_gate_output(imageId, m) for l in gdata: (k, v) = re.match('(\S*)\s*(.*)', l).group(1, 2) imageId = imageId check = m trigger = k output = v triggerId = hashlib.md5(''.join([check,trigger,output])).hexdigest() # if the output is structured (i.e. decoded as an # anchore compatible json string) then extract the # elements for display try: json_output = json.loads(output) if 'id' in json_output: triggerId = str(json_output['id']) if 'desc' in json_output: output = str(json_output['desc']) except: pass if k in policies[m]: trigger = k action = policies[check][trigger]['action'] r = {'imageId':imageId, 'check':check, 'triggerId':triggerId, 'trigger':trigger, 'output':output, 'action':action} # this is where whitelist check should go whitelisted = False whitelist_type = "none" if global_whitelist and ([m, triggerId] in global_whitelist): whitelisted = True whitelist_type = "global" elif image_whitelist and 'ignore' in image_whitelist and (r in image_whitelist['ignore']): whitelisted = True whitelist_type = "image" else: # look for prefix wildcards try: for [gmod, gtriggerId] in global_whitelist: if gmod == m: # special case for backward compat try: if gmod == 'ANCHORESEC' and not re.match(".*\*.*", gtriggerId) and re.match("^CVE.*|^RHSA.*", gtriggerId): gtriggerId = gtriggerId + "*" except Exception as err: _logger.warn("problem with backward compat modification of whitelist trigger - exception: " + str(err)) matchtoks = [] for tok in gtriggerId.split("*"): matchtoks.append(re.escape(tok)) rematch = "^" + '(.*)'.join(matchtoks) + "$" _logger.debug("checking regexp wl<->triggerId for match: " + str(rematch) + " : " + str(triggerId)) if re.match(rematch, triggerId): _logger.debug("found wildcard whitelist match") whitelisted = True whitelist_type = "global" break except Exception as err: _logger.warn("problem with prefix wildcard match routine - exception: " + str(err)) fullr = {} fullr.update(r) fullr['whitelisted'] = whitelisted fullr['whitelist_type'] = whitelist_type fullret.append(fullr) if not whitelisted: if policies[m][k]['action'] == 'STOP': final_gate_action = 'STOP' elif final_gate_action != 'STOP' and policies[m][k]['action'] == 'WARN': final_gate_action = 'WARN' ret.append(r) else: # whitelisted, skip evaluation pass ret.append({'imageId':imageId, 'check':'FINAL', 'trigger':'FINAL', 'output':"", 'action':final_gate_action}) fullret.append({'imageId':imageId, 'check':'FINAL', 'trigger':'FINAL', 'output':"", 'action':final_gate_action, 'whitelisted':False, 'whitelist_type':"none", 'triggerId':"N/A"}) return(ret, fullret) def structure_eval_results(imageId, evalresults, show_triggerIds=False, show_whitelisted=False, imageName=None): if not imageName: imageName = imageId record = {} record['result'] = {} record['result']['header'] = ['Image_Id', 'Repo_Tag'] if show_triggerIds: record['result']['header'].append('Trigger_Id') record['result']['header'] += ['Gate', 'Trigger', 'Check_Output', 'Gate_Action'] if show_whitelisted: record['result']['header'].append('Whitelisted') record['result']['rows'] = list() for m in evalresults: id = imageId name = imageName gate = m['check'] trigger = m['trigger'] output = m['output'] triggerId = m['triggerId'] action = m['action'] row = [id[0:12], name] if show_triggerIds: row.append(triggerId) row += [gate, trigger, output, action] if show_whitelisted: row.append(m['whitelist_type']) if not m['whitelisted'] or show_whitelisted: record['result']['rows'].append(row) if gate == 'FINAL': record['result']['final_action'] = action return(record) # small test if __name__ == '__main__': from anchore.configuration import AnchoreConfiguration config = AnchoreConfiguration(cliargs={}) anchore_utils.anchore_common_context_setup(config) policies = {} whitelists = {} mappings = [] pol0 = read_policy(name=str(uuid.uuid4()), file='/root/.anchore/conf/anchore_gate.policy') pol1 = read_policy(name=str(uuid.uuid4()), file='/root/.anchore/conf/anchore_gate.policy') policies.update(pol0) policies.update(pol1) gl0 = read_whitelist(name=str(uuid.uuid4())) wl0 = read_whitelist(name=str(uuid.uuid4()), file='/root/wl0') whitelists.update(gl0) whitelists.update(wl0) map0 = create_mapping(map_name="default", policy_name=policies.keys()[0], whitelists=whitelists.keys(), repotagstring='*/*:*') mappings.append(map0) bundle = create_policy_bundle(name='default', policies=policies, policy_version=default_policy_version, whitelists=whitelists, whitelist_version=default_whitelist_version, mappings=mappings) print "CREATED BUNDLE: " + json.dumps(bundle, indent=4) rc = write_policy_bundle(bundle_file="/tmp/bun.json", bundle=bundle) newbun = read_policy_bundle(bundle_file="/tmp/bun.json") if newbun != bundle: print "BUNDLE RESULT DIFFERENT AFTER SAVE/LOAD" thebun = convert_to_policy_bundle(name='default', policy_file='/root/.anchore/conf/anchore_gate.policy', policy_version=default_policy_version, whitelist_files=['/root/wl0'], whitelist_version=default_whitelist_version) rc = write_policy_bundle(bundle_file="/tmp/bun1.json", bundle=thebun) pol0 = read_policy(name="meh", file='/root/.anchore/conf/anchore_gate.policy') policies = structure_policy(pol0['meh']) #rc = execute_gates("4a415e3663882fbc554ee830889c68a33b3585503892cc718a4698e91ef2a526", policies) result, image_ecode = run_bundle(anchore_config=config, image='alpine', matchtags=[], bundle=thebun) with open("/tmp/a", 'w') as OFH: OFH.write(json.dumps(result, indent=4)) try: result, image_ecode = run_bundle_stateless(anchore_config=config, image='alpine', matchtags=[], bundle=thebun) with open("/tmp/b", 'w') as OFH: OFH.write(json.dumps(result, indent=4)) except Exception as err: import traceback traceback.print_exc() print str(err)
25805
import ROOT,sys from larlite import larlite as fmwk1 from larcv import larcv as fmwk2 from ROOT import handshake io1=fmwk1.storage_manager(fmwk1.storage_manager.kBOTH) io1.add_in_filename(sys.argv[1]) io1.set_out_filename('boke.root') io1.open() io2=fmwk2.IOManager(fmwk2.IOManager.kREAD) io2.add_in_file(sys.argv[2]) io2.initialize() hs=handshake.HandShaker() ctr=0 while io1.next_event() and io2.read_entry(ctr): ev_pfpart = io1.get_data(fmwk1.data.kPFParticle, "dl") ev_vertex = io1.get_data(fmwk1.data.kVertex, "dl") ev_shower = io1.get_data(fmwk1.data.kShower, "dl") ev_track = io1.get_data(fmwk1.data.kTrack, "dl") ev_cluster = io1.get_data(fmwk1.data.kCluster, "dl") ev_hit = io1.get_data(fmwk1.data.kHit, "dl") ev_ass = io1.get_data(fmwk1.data.kAssociation,"dl") ev_hit_in = io1.get_data(fmwk1.data.kHit, "gaushit") ev_pgraph = io2.get_data(fmwk2.kProductPGraph,'test') ev_pixel2d = io2.get_data(fmwk2.kProductPixel2D,'test_ctor') hs.pixel_distance_threshold(1.) hs.set_larlite_pointers(ev_pfpart, ev_vertex, ev_shower, ev_track, ev_cluster, ev_hit, ev_ass) hs.construct(ev_pgraph, ev_pixel2d, ev_hit_in) io1.set_id(io1.run_id(), io1.subrun_id(), io1.event_id()) #io1.next_event() #io1.go_to() #io2.read_entry() #io1.save_entry() ctr+=1 io1.close() io2.finalize()
25826
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_script import Manager from flask_migrate import Migrate, MigrateCommand app = Flask(__name__) app.config[ 'SQLALCHEMY_DATABASE_URI'] = 'postgres://xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' db = SQLAlchemy(app) migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) class UserData(db.Model): __tablename__ = 'UserData' Id = db.Column(db.Integer, primary_key=True) Name = db.Column(db.String(64)) Description = db.Column(db.String(256)) CreateDate = db.Column(db.DateTime) def __init__(self , Name , Description , CreateDate ): self.Name = Name self.Description = Description self.CreateDate = CreateDate if __name__ == '__main__': manager.run()
25837
from django.conf import settings from django.conf.urls import url from django.urls import LocalePrefixPattern, URLResolver, get_resolver, path from TWLight.i18n.views import set_language # Direct rip from django.conf.urls.i18n, but imports our local set_language # from GitHub def i18n_patterns(*urls, prefix_default_language=True): """ Add the language code prefix to every URL pattern within this function. This may only be used in the root URLconf, not in an included URLconf. """ if not settings.USE_I18N: return list(urls) return [ URLResolver( LocalePrefixPattern(prefix_default_language=prefix_default_language), list(urls), ) ] urlpatterns = [path("setlang/", set_language, name="set_language")]
25840
from __future__ import absolute_import import chainer import chainer.functions as F from .convolution import ConvolutionND def _pair(x, ndim=2): if hasattr(x, '__getitem__'): return x return [x]*ndim class PixelShuffleUpsamplerND(chainer.Chain): """Pixel Shuffler for the super resolution. This upsampler is effective upsampling method compared with the deconvolution. The deconvolution has a problem of the checkerboard artifact. A detail of this problem shows the following. http://distill.pub/2016/deconv-checkerboard/ See also: https://arxiv.org/abs/1609.05158 """ def __init__(self, ndim, in_channels, out_channels, resolution, ksize=None, stride=1, pad=0, pad_mode='reflect', nobias=False, initialW=None, initial_bias=None): super(PixelShuffleUpsamplerND, self).__init__() self.ndim = ndim self.resolution = resolution self.in_channels = in_channels self.out_channels = out_channels self.pad = _pair(pad, self.ndim) self.pad_mode = pad_mode with self.init_scope(): m = self.resolution ** self.ndim self.conv = ConvolutionND( ndim, in_channels, out_channels * m, ksize, stride, self.pad, self.pad_mode, nobias, initialW, initial_bias) def __call__(self, x): r = self.resolution out = self.conv(x) batchsize = out.shape[0] in_channels = out.shape[1] out_channels = self.out_channels in_shape = out.shape[2:] out_shape = tuple(s * r for s in in_shape) r_tuple = tuple(self.resolution for _ in range(self.ndim)) out = F.reshape(out, (batchsize, out_channels,) + r_tuple + in_shape) out = F.transpose(out, self.make_transpose_indices()) out = F.reshape(out, (batchsize, out_channels, ) + out_shape) return out def make_transpose_indices(self): si = [0, 1] si.extend([2 * (i + 1) + 1 for i in range(self.ndim)]) si.extend([2 * (i + 1) for i in range(self.ndim)]) return si class PixelShuffleUpsampler2D(PixelShuffleUpsamplerND): def __init__(self, in_channels, out_channels, resolution, ksize=None, stride=1, pad=0, pad_mode='reflect', nobias=False, initialW=None, initial_bias=None): super(PixelShuffleUpsampler2D, self).__init__( 2, in_channels, out_channels, resolution, ksize, stride, pad, pad_mode, nobias, initialW, initial_bias) class PixelShuffleUpsampler3D(PixelShuffleUpsamplerND): def __init__(self, in_channels, out_channels, resolution, ksize=None, stride=1, pad=0, pad_mode='reflect', nobias=False, initialW=None, initial_bias=None): super(PixelShuffleUpsampler3D, self).__init__( 3, in_channels, out_channels, resolution, ksize, stride, pad, pad_mode, nobias, initialW, initial_bias)
25899
import alignments import re import read import binaryIO import math import os import preprocess import time class Compressor: aligned = None # 0 - zlib # 1 - lzma # 2 - bz2 compressMethod = 0 covSize = 0 totalSize = 0 def __init__(self, frag_len_cutoff): if self.compressMethod == 0: self.zlib = __import__('zlib') elif self.compressMethod == 1: self.lzma = __import__('lzma') elif self.compressMethod == 2: self.bz2 = __import__('bz2') if frag_len_cutoff: print('Set fragment length cutoff to %d' % frag_len_cutoff) self.frag_len_cutoff = frag_len_cutoff def compress(self, samFilename, compressedFilename, gtf, min_filename, frag_len_z_cutoff, split_diff_strands, split_discordant): ''' Compresses the alignments to 2 files, one for unspliced and one for spliced file_prefix: Prefix for all output file names ''' self.p = preprocess.Preprocessor(samFilename, frag_len_z_cutoff, split_diff_strands) if not self.frag_len_cutoff: self.frag_len_cutoff = self.p.frag_len_cutoff print('Using fragment length cutoff of ' + str(self.frag_len_cutoff)) if split_diff_strands: print('Splitting mates on different strands') else: print('Not splitting mates on different strands') if split_discordant: print('Splitting discordant') else: print('Not splitting discordant') # Reads on different strands that should be unpaired self.diff_strand_unpaired = self.p.unpaired del self.p # Read header header = '' with open(samFilename, 'r') as f: for line in f: if line[0] == '@': header += line else: break self.chromosomes = self.parseSAMHeader(header) self.aligned = alignments.Alignments(self.chromosomes, self.frag_len_cutoff, split_discordant) if gtf: self.aligned.gtf_exons = self.parseGTF(gtf, self.aligned.chromOffsets) self.compressByBundle(samFilename, compressedFilename, min_filename) #print('%d unmatched' % self.aligned.numUnmatched) print('Approximately %d / %d = %f%% of compressed file is coverage' % (self.covSize, self.totalSize, 100.0*float(self.covSize)/float(self.totalSize))) print('Finished compressing') def compressByBundle(self, input_name, compressed_name, intermediate_name=None): ''' Read a sorted SAM file and compress in segments determined by clusters of reads :param filename: :return: ''' # If coverage is 0 for at least this many bases end of a potential gene overlapRadius = 50 spliced_index = [] bundles = [] first = True bundle_id = 0 read_id = 0 diff_strand_unpaired_id = 0 num_diff_strand_unpaired = len(self.diff_strand_unpaired) firstR = None with open(input_name, 'r') as filehandle: id = 0 start_id = 0 for line in filehandle: # Check if header line if line[0] == '@': continue row = line.strip().split('\t') if row[2] == '*': # HISAT includes unmapped reads at the end of the file; we just skip them continue if not row[2] in self.chromosomes[0]: print('Error! Chromosome ' + str(row[2]) + ' not found!') exit() # Starting position of this read start = self.aligned.chromOffsets[row[2]] + int(row[3]) if self.aligned.gene_bounds and start > (self.aligned.gene_bounds[-1] + overlapRadius): # Compress most recent bundle self.aligned.finalizeExons() self.aligned.finalizeUnmatched() self.aligned.finalize_cross_bundle_reads() #if self.aligned.gene_bounds[0] < 100480943 and self.aligned.gene_bounds[1] > 100478955: # print(bundle_id) # print(self.aligned.gene_bounds) # print(self.aligned.exons) # print(self.aligned.gene_bounds[0] - self.aligned.chromOffsets['X']) # print(self.aligned.gene_bounds[1] - self.aligned.chromOffsets['X']) # exit() bundle_id += 1 start_id = id bundles.append(self.aligned.exons) # Write to intermediate file if intermediate_name: if first: # If it's the first bundle, write the header as well with open(intermediate_name, 'w') as f1: read_id = self.aligned.writeSAM(f1, self.aligned.unpaired, self.aligned.paired, True, False, read_id) else: with open(intermediate_name, 'a') as f1: read_id = self.aligned.writeSAM(f1, self.aligned.unpaired, self.aligned.paired, False, False, read_id) junctions, maxReadLen = self.aligned.computeBuckets() self.sortedJuncs = sorted(junctions.keys()) # Compress bundle to temporary file if first: mode = 'wb' else: mode = 'ab' with open('temp.bin', mode) as f: l = self.compressBundle(junctions, maxReadLen, f) spliced_index.append(l) # Start new bundle self.aligned.resetBundle() self.aligned.exons.add(start) first = False # Process read if row[5] == '*': # HISAT occasionally prints * as the cigar string when it is identical to its mate #print('No cigar string') #print(row[0]) #exit() exons = None else: exons = self.parseCigar(row[5], int(row[3])) # find XS (strand) and NH values strand = None NH = 1 for r in row[11 : len(row)]: if r[0:5] == 'XS:A:' or r[0:5] == 'XS:a:': strand = r[5] elif r[0:3] == 'NH:': NH = int(r[5:]) flags = int(row[1]) if flags & 4: # Read is unmapped continue r = read.Read(row[2], int(row[3]), exons, strand, NH) #r.name = row[0] if row[6] == '*' or (flags & 8): paired = False elif diff_strand_unpaired_id < num_diff_strand_unpaired and id == self.diff_strand_unpaired[diff_strand_unpaired_id]: #if not row[6] == '*': # print('\t'.join(row)) paired = False diff_strand_unpaired_id += 1 else: paired = True r.bundle = bundle_id r.pairOffset = int(row[7]) if row[6] == '=': r.pairChrom = row[2] else: r.pairChrom = row[6] self.aligned.processRead(row[0], r, paired) id += 1 # Compress final cluster self.aligned.finalizeExons() self.aligned.finalizeUnmatched() self.aligned.finalize_cross_bundle_reads() bundle_id += 1 bundles.append(self.aligned.exons) # Write to intermediate file if intermediate_name: if first: # If it's the first bundle, write the header as well with open(intermediate_name, 'w') as f1: read_id = self.aligned.writeSAM(f1, self.aligned.unpaired, self.aligned.paired, True, False, read_id) first = False else: with open(intermediate_name, 'a') as f1: read_id = self.aligned.writeSAM(f1, self.aligned.unpaired, self.aligned.paired, False, False, read_id) junctions, maxReadLen = self.aligned.computeBuckets() self.sortedJuncs = sorted(junctions.keys()) # Compress bundle to temporary file if first: mode = 'wb' else: mode = 'ab' with open('temp.bin', mode) as f: l = self.compressBundle(junctions, maxReadLen, f) spliced_index.append(l) leftovers = 0 for k,v in self.aligned.cross_bundle_reads.items(): #if len(v) > 0: # print(k) # print(v) # exit() leftovers += len(v) print('%d cross-bundle reads unmatched' % leftovers) bundle_lens = [c[-1]-c[0] for c in bundles] print('Minimum bundle length: %d' % min(bundle_lens)) print('Maximum bundle length: %d' % max(bundle_lens)) print('Average bundle length: %d'% (sum(bundle_lens) / len(bundle_lens))) # Write index information and append spliced and unspliced files with open(compressed_name, 'wb') as f: s = binaryIO.writeChroms(self.chromosomes) s += binaryIO.writeClusters(bundles) s += binaryIO.writeList(spliced_index) f.write(s) # Compress bundle-spanning buckets self.compressCrossBundle(self.aligned.cross_bundle_buckets, self.aligned.max_cross_bundle_read_len, bundle_id, f) # Move contents of temporary file to output file with open('temp.bin', 'rb') as f2: f.write(f2.read()) os.remove('temp.bin') def compressBundle(self, junctions, maxReadLen, filehandle): # Determine the number of bytes for read lengths readLenBytes = binaryIO.findNumBytes(maxReadLen) cluster = binaryIO.valToBinary(1, readLenBytes) cluster += binaryIO.writeJunctionsList(self.sortedJuncs, 2) self.totalSize += len(cluster) # TODO: No need for junc_lens? junc_lens = [] junc_string = b'' for j in self.sortedJuncs: #if self.aligned.exons[0] == 100476370 and j == [2, None, 1]: # s, c, t = binaryIO.writeJunction(readLenBytes, junctions[j]) self.covSize += c self.totalSize += t junc_lens.append(len(s)) junc_string += s #cluster += binaryIO.writeList(junc_lens) cluster += junc_string # Write to file start = filehandle.tell() filehandle.write(self.compressString(cluster)) # return length of cluster in file return filehandle.tell() - start def compressCrossBundle(self, cross_bundle_buckets, maxReadLen, num_bundles, filehandle): ''' Compress the bundle-spanning buckets ''' readLenBytes = binaryIO.findNumBytes(maxReadLen) bundleIdBytes = binaryIO.findNumBytes(num_bundles) buckets_sorted = sorted(cross_bundle_buckets.keys()) if len(buckets_sorted) > 0: print('%d cross-bundle buckets' % len(buckets_sorted)) pos = filehandle.tell() chunk_size = 20 num_chunks = math.ceil(len(buckets_sorted) / chunk_size) chunk_lens = [0] * num_chunks index = binaryIO.valToBinary(4, len(buckets_sorted)) index += binaryIO.valToBinary(2, chunk_size) index += binaryIO.valToBinary(1, readLenBytes) index += binaryIO.writeCrossBundleBucketNames(bundleIdBytes, cross_bundle_buckets, buckets_sorted) self.totalSize += len(index) main = b'' chunk = b'' chunk_id = 0 for i in range(len(buckets_sorted)): b = buckets_sorted[i] ch, c, t = binaryIO.writeCrossBundleBucket(readLenBytes, cross_bundle_buckets[b]) chunk += ch self.covSize += c self.totalSize += t if (i+1) % chunk_size == 0: compressed = self.compressString(chunk) chunk_lens[chunk_id] = len(compressed) chunk_id += 1 main += compressed chunk = b'' if len(chunk) > 0: compressed = self.compressString(chunk) chunk_lens[chunk_id] = len(compressed) main += compressed index += binaryIO.writeList(chunk_lens) index = self.compressString(index) length = len(index) numBytes = binaryIO.findNumBytes(length) binaryIO.writeVal(filehandle, 1, numBytes) binaryIO.writeVal(filehandle, numBytes, length) filehandle.write(index) filehandle.write(main) print('Compressed size: %d' % (filehandle.tell() - pos)) else: binaryIO.writeVal(filehandle, 1, 1) binaryIO.writeVal(filehandle, 1, 0) def parseCigar(self, cigar, offset): ''' Parse the cigar string starting at the given index of the genome Returns a list of offsets for each exonic region of the read [(start1, end1), (start2, end2), ...] ''' exons = [] newExon = True # Parse cigar string match = re.search("\D", cigar) while match: index = match.start() length = int(''.join(cigar[:index])) if cigar[index] == 'N': # Separates contiguous exons, so set boolean to start a new one newExon = True elif cigar[index] == 'M': # If in the middle of a contiguous exon, append the length to it, otherwise start a new exon if newExon: exons.append([offset, offset+length]) newExon = False else: exons[-1][1] += length elif cigar[index] == 'D': # If in the middle of a contiguous exon, append the deleted length to it if not newExon: exons[-1][1] += length # Skip soft clipping if not cigar[index] == 'S': offset += length cigar = cigar[index+1:] match = re.search("\D", cigar) return exons def parseSAMHeader(self, header): # In the order they appear in the header chromNames = [] chromLens = [] # Dictionary contains chromosome lengths for lookup for line in header.split('\n'): if line[0:3] == '@SQ': row = line.strip().split('\t') chromNames.append(row[1][3:]) chromLens.append(int(row[2][3:])) return [chromNames, chromLens] def parseGTF(self, gtf, chromOffsets): exons = set() with open(gtf, 'r') as f: for line in f: row = line.rstrip().split('\t') if row[2] == 'exon': exons.add(int(row[3]) + chromOffsets[row[0]]) exons.add(int(row[4]) + chromOffsets[row[0]]) return sorted(list(exons)) def compressString(self, s): ''' Use a predefined python library to compress the given string. Return the compressed string ''' if self.compressMethod == 0: return self.zlib.compress(s) elif self.compressMethod == 1: return self.lzma.compress(s) elif self.compressMethod == 2: return self.bz2.compress(s)
25914
import inspect from collections import defaultdict from typing import Dict, List, NamedTuple from .core import PluginFinder, PluginSpec from .discovery import PackagePathPluginFinder class EntryPoint(NamedTuple): name: str value: str group: str EntryPointDict = Dict[str, List[str]] def discover_entry_points(finder: PluginFinder) -> EntryPointDict: """ Creates a dictionary for the entry_points attribute of setuptools' setup(), where keys are stevedore plugin namespaces, and values are lists of "name = module:object" pairs. :return: an entry_point dictionary """ return to_entry_point_dict([spec_to_entry_point(spec) for spec in finder.find_plugins()]) def to_entry_point_dict(eps: List[EntryPoint]) -> EntryPointDict: result = defaultdict(list) names = defaultdict(set) # book-keeping to check duplicates for ep in eps: if ep.name in names[ep.group]: raise ValueError("Duplicate entry point %s %s" % (ep.group, ep.name)) result[ep.group].append("%s=%s" % (ep.name, ep.value)) names[ep.group].add(ep.name) return result def spec_to_entry_point(spec: PluginSpec) -> EntryPoint: module = inspect.getmodule(spec.factory).__name__ name = spec.factory.__name__ path = f"{module}:{name}" return EntryPoint(group=spec.namespace, name=spec.name, value=path) def find_plugins(where=".", exclude=(), include=("*",)) -> EntryPointDict: """ Utility for setup.py that collects all plugins from the specified path, and creates a dictionary for entry_points. For example: setup( entry_points=find_plugins() ) """ return discover_entry_points( PackagePathPluginFinder(where=where, exclude=exclude, include=include) )
25986
from transformers import model_paths def test_candy_model(): assert model_paths.CANDY_FAST_NEURAL_TRANSFER_MODEL == "models/candy.t7" def test_feathers_model(): assert model_paths.FEATHERS_FAST_NEURAL_TRANSFER_MODEL == "models/feathers.t7" def test_mosaic_model(): assert model_paths.MOSAIC_FAST_NEURAL_TRANSFER_MODEL == "models/mosaic.t7" def test_the_scream_model(): assert model_paths.THE_SCREAM_FAST_NEURAL_TRANSFER_MODEL == "models/the_scream.t7" def test_udnie_model(): assert model_paths.UDNIE_FAST_NEURAL_TRANSFER_MODEL == "models/udnie.t7" def test_celeba_distill_model(): assert model_paths.CELEBA_DISTILL_ANIME_GAN == "models/celeba_distill.pt" def test_face_paint_model(): assert model_paths.FACE_PAINT_ANIME_GAN == "models/face_paint_512_v2.pt" def test_paprika_model(): assert model_paths.PAPRIKA_ANIME_GAN == "models/paprika.pt"
26021
from watchFaceParser.elements.basicElements.imageSet import ImageSet class Icon: definitions = { 1: { 'Name': 'Images', 'Type': ImageSet}, 2: { 'Name': 'NoWeatherImageIndex', 'Type': 'long'}, }
26028
from data_importers.management.commands import BaseHalaroseCsvImporter class Command(BaseHalaroseCsvImporter): council_id = "SCE" addresses_name = "2021-11-10T10:12:49.277177/polling_station_export-2021-11-10.csv" stations_name = "2021-11-10T10:12:49.277177/polling_station_export-2021-11-10.csv" elections = ["2021-11-25"] def address_record_to_dict(self, record): if record.housepostcode in [ "YO21 1SU", "YO12 5DB", "YO14 9EW", "YO21 3JU", "YO21 3FP", "YO11 3PQ", ]: return None if record.uprn == "10023875937": # 3 POSTGATE WAY, UGTHORPE, WHITBY return None return super().address_record_to_dict(record)
26044
from beem.utils import formatTimeString, resolve_authorperm, construct_authorperm, addTzInfo from beem.nodelist import NodeList from beem.comment import Comment from beem import Steem from beem.account import Account from beem.instance import set_shared_steem_instance from beem.blockchain import Blockchain import time import json import os import math import dataset import random from datetime import date, datetime, timedelta from dateutil.parser import parse from beem.constants import STEEM_100_PERCENT from steemrewarding.post_storage import PostsTrx from steemrewarding.command_storage import CommandsTrx from steemrewarding.vote_rule_storage import VoteRulesTrx from steemrewarding.pending_vote_storage import PendingVotesTrx from steemrewarding.config_storage import ConfigurationDB from steemrewarding.vote_storage import VotesTrx from steemrewarding.vote_log_storage import VoteLogTrx from steemrewarding.failed_vote_log_storage import FailedVoteLogTrx from steemrewarding.broadcast_vote_storage import BroadcastVoteTrx from steemrewarding.utils import isfloat, upvote_comment, valid_age, upvote_comment_without_check from steemrewarding.version import version as rewardingversion from steemrewarding.account_storage import AccountsDB from steemrewarding.version import version as rewarding_version import dataset if __name__ == "__main__": config_file = 'config.json' if not os.path.isfile(config_file): raise Exception("config.json is missing!") else: with open(config_file) as json_data_file: config_data = json.load(json_data_file) # print(config_data) databaseConnector = config_data["databaseConnector"] wallet_password = config_data["wallet_password"] posting_auth_acc = config_data["posting_auth_acc"] voting_round_sec = config_data["voting_round_sec"] start_prep_time = time.time() db = dataset.connect(databaseConnector) # Create keyStorage print("Start upvote_post_comments_timebased.py") nobroadcast = False # nobroadcast = True postTrx = PostsTrx(db) votesTrx = VotesTrx(db) voteRulesTrx = VoteRulesTrx(db) confStorage = ConfigurationDB(db) pendingVotesTrx = PendingVotesTrx(db) voteLogTrx = VoteLogTrx(db) failedVoteLogTrx = FailedVoteLogTrx(db) accountsTrx = AccountsDB(db) broadcastVoteTrx = BroadcastVoteTrx(db) conf_setup = confStorage.get() # last_post_block = conf_setup["last_post_block"] nodes = NodeList() # nodes.update_nodes(weights={"block": 1}) try: nodes.update_nodes() except: print("could not update nodes") node_list = nodes.get_nodes(exclude_limited=False) stm = Steem(node=node_list, num_retries=5, call_num_retries=3, timeout=15, nobroadcast=nobroadcast) stm.wallet.unlock(wallet_password) last_voter = None print("Start apply new timebased votes") voter_counter = 0 delete_pending_votes = [] rc_sp_to_low_account_list = [] vote_counter = 0 vote_count = 0 for pending_vote in pendingVotesTrx.get_command_list_timed(): settings = None voter_acc = None author, permlink = resolve_authorperm(pending_vote["authorperm"]) if pending_vote["voter"] in rc_sp_to_low_account_list: continue age_min = (datetime.utcnow() - pending_vote["comment_timestamp"]).total_seconds() / 60 maximum_vote_delay_min = pending_vote["maximum_vote_delay_min"] if age_min < pending_vote["vote_delay_min"] - voting_round_sec / 2.0 / 60 - 3: # print("%s is not ready yet - %.2f min should be %.2f" % (pending_vote["authorperm"], age_min, pending_vote["vote_delay_min"])) continue if settings is None: settings = accountsTrx.get(pending_vote["voter"]) if settings is None: voter_acc = Account(pending_vote["voter"], steem_instance=stm) print("update %s - did not exists" % pending_vote["voter"]) posting_auth = False for a in voter_acc["posting"]["account_auths"]: if a[0] == posting_auth_acc: posting_auth = True if pending_vote["voter"] == posting_auth_acc: posting_auth = True accountsTrx.upsert({"name": pending_vote["voter"], "vp_update":datetime.utcnow(), "vp": voter_acc.vp, "down_vp": voter_acc.get_downvoting_power(), "sp": voter_acc.sp, "rc": voter_acc.get_rc_manabar()["current_mana"] / 1e9, "last_update": datetime.utcnow(), "posting_auth_acc": posting_auth}) pause_votes_below_vp = 0 settings = accountsTrx.get(pending_vote["voter"]) elif settings["sp"] is None or settings["vp"] is None or settings["last_update"] is None or settings["rc"] is None or settings["posting_auth_acc"] is None: print("update %s - None" % pending_vote["voter"]) voter_acc = Account(pending_vote["voter"], steem_instance=stm) posting_auth = False for a in voter_acc["posting"]["account_auths"]: if a[0] == posting_auth_acc: posting_auth = True if pending_vote["voter"] == posting_auth_acc: posting_auth = True accountsTrx.upsert({"name": pending_vote["voter"], "vp_update":datetime.utcnow(), "vp": voter_acc.vp, "down_vp": voter_acc.get_downvoting_power(), "sp": voter_acc.sp, "rc": voter_acc.get_rc_manabar()["current_mana"] / 1e9, "last_update": datetime.utcnow(), "posting_auth_acc": posting_auth}) settings = accountsTrx.get(pending_vote["voter"]) elif (datetime.utcnow() - settings["last_update"]).total_seconds() / 60 > 1: print("update %s - last update was before %f s" % (pending_vote["voter"], (datetime.utcnow() - settings["last_update"]).total_seconds())) voter_acc = Account(pending_vote["voter"], steem_instance=stm) posting_auth = False for a in voter_acc["posting"]["account_auths"]: if a[0] == posting_auth_acc: posting_auth = True if pending_vote["voter"] == posting_auth_acc: posting_auth = True accountsTrx.upsert({"name": pending_vote["voter"], "vp_update":datetime.utcnow(), "vp": voter_acc.vp, "down_vp": voter_acc.get_downvoting_power(), "sp": voter_acc.sp, "rc": voter_acc.get_rc_manabar()["current_mana"] / 1e9, "last_update": datetime.utcnow(), "posting_auth_acc": posting_auth}) settings = accountsTrx.get(pending_vote["voter"]) if pending_vote["vote_weight"] > 0: pause_votes_below_vp = settings["pause_votes_below_vp"] vp = settings["vp"] else: pause_votes_below_vp = settings["pause_down_votes_below_down_vp"] vp = settings["down_vp"] vp_update = settings["last_update"] if vp_update is not None: diff_in_seconds = ((datetime.utcnow()) - (vp_update)).total_seconds() regenerated_vp = diff_in_seconds * 10000 / 432000 / 100 vp = vp + regenerated_vp #down_vp = down_vp + regenerated_vp if vp > 100: vp = 100 #if down_vp > 100: # down_vp = 100 if vp < pause_votes_below_vp: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "Voting is paused (VP = %.2f %%, which below pause_votes_below_vp of %.2f %%)" % (vp, pause_votes_below_vp), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue # print("time vote %.2f s - %d votes" % (time.time() - start_prep_time, vote_count)) if (pending_vote["vote_weight"] is None or pending_vote["vote_weight"] == 0) and (pending_vote["vote_sbd"] is None or float(pending_vote["vote_sbd"]) <= 0): # voter_acc = Account(pending_vote["voter"], steem_instance=stm) failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "vote_weight was set to zero. (%s %% and %s $)" % (pending_vote["vote_weight"], pending_vote["vote_sbd"]), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue if maximum_vote_delay_min < 0: maximum_vote_delay_min = 9360 if age_min > maximum_vote_delay_min + voting_round_sec / 60: # voter_acc = Account(pending_vote["voter"], steem_instance=stm) failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "post is older than %.2f min." % (maximum_vote_delay_min), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue voter_counter += 1 # voter_acc = Account(pending_vote["voter"], steem_instance=stm) if settings["sp"] < 0.1: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "Could not vot %s, as Steem Power is almost zero." % (pending_vote["authorperm"]), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) print("Could not process %s - sp < 0.1" % pending_vote["authorperm"]) rc_sp_to_low_account_list.append(pending_vote["voter"]) continue if settings["rc"] < 0.5: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "Could not vot %s, as RC is almost zero." % (pending_vote["authorperm"]), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) print("Could not process %s - rc to low" % pending_vote["authorperm"]) rc_sp_to_low_account_list.append(pending_vote["voter"]) continue vote_weight = pending_vote["vote_weight"] if vote_weight is None or vote_weight == 0: voter_acc = Account(pending_vote["voter"], steem_instance=stm) vote_weight = voter_acc.get_vote_pct_for_SBD(float(pending_vote["vote_sbd"])) / 100. if vote_weight > 100: vote_weight = 100 elif vote_weight < 0.01: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "vote_weight was set to zero.", "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": voter_acc.vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue age_hour = ((datetime.utcnow()) - pending_vote["created"]).total_seconds() / 60 / 60 if age_hour > 156: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "post is older than 6.5 days.", "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue if vp < pending_vote["min_vp"]: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "Voting power is %.2f %%, which is to low. (min_vp is %.2f %%)" % (vp, pending_vote["min_vp"]), "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue if pending_vote["max_votes_per_day"] > -1: if settings is None: settings = accountsTrx.get(pending_vote["voter"]) if settings is not None: sliding_time_window = settings["sliding_time_window"] else: sliding_time_window = True votes_24h_before = voteLogTrx.get_votes_per_day(pending_vote["voter"], author, sliding_time_window) if votes_24h_before >= pending_vote["max_votes_per_day"]: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "The author was already upvoted %d in the last 24h (max_votes_per_day is %d)." % (votes_24h_before, pending_vote["max_votes_per_day"]), "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue if pending_vote["max_votes_per_week"] > -1: if settings is None: settings = accountsTrx.get(pending_vote["voter"]) if settings is not None: sliding_time_window = settings["sliding_time_window"] else: sliding_time_window = True votes_168h_before = voteLogTrx.get_votes_per_week(pending_vote["voter"], author, sliding_time_window) if votes_168h_before >= pending_vote["max_votes_per_week"]: failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "The author was already upvoted %d in the last 7 days (max_votes_per_week is %d)." % (votes_168h_before, pending_vote["max_votes_per_week"]), "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"],"vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue if pending_vote["vp_scaler"] > 0: vote_weight *= 1 - ((100 - vp) / 100 * pending_vote["vp_scaler"]) if abs(vote_weight) < 0.02: error_msg = "Vote weight is zero or below zero (%.2f %%)" % vote_weight failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": error_msg, "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": settings["vp"], "down_vp": settings["down_vp"],"vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue cnt = 0 c = None while c is None and cnt < 5: cnt += 1 try: c = Comment(pending_vote["authorperm"], use_tags_api=True, steem_instance=stm) c.refresh() except: nodelist = NodeList() nodelist.update_nodes() stm = Steem(node=nodelist.get_nodes(), num_retries=5, call_num_retries=3, timeout=15, nobroadcast=nobroadcast) time.sleep(1) if cnt == 5: print("Could not read %s" % (pending_vote["authorperm"])) failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "Could not process %s" % (pending_vote["authorperm"]), "timestamp": datetime.utcnow(), "vote_weight": pending_vote["vote_weight"], "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) print("Could not process %s" % pending_vote["authorperm"]) continue votes_list = votesTrx.get_authorperm_votes(pending_vote["authorperm"]) try: if pending_vote["max_net_votes"] >= 0 and pending_vote["max_net_votes"] < len(votes_list): failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "The number of post/comment votes (%d) is higher than max_net_votes (%d)." % (len(votes_list), pending_vote["max_net_votes"]), "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue except: continue if False and pending_vote["max_pending_payout"] >= 0 and pending_vote["max_pending_payout"] < float(c["pending_payout_value"]): failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": "The pending payout of post/comment votes (%.2f) is higher than max_pending_payout (%.2f)." % (float(c["pending_payout_value"]), pending_vote["max_pending_payout"]), "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue # check for max votes per day/week already_voted = False for v in votes_list: if pending_vote["voter"] == v["voter"]: already_voted = True if not settings["posting_auth_acc"] or already_voted: if already_voted: error_msg = "already voted." else: error_msg = "posting authority is missing" failedVoteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "error": error_msg, "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vp": vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) continue # sucess = upvote_comment(c, pending_vote["voter"], vote_weight) if False: reply_message = upvote_comment_without_check(c, pending_vote["voter"], vote_weight) if reply_message is not None: vote_count += 1 if pending_vote["leave_comment"]: try: if settings is None: settings = accountsTrx.get(pending_vote["voter"]) if settings is not None and "upvote_comment" in settings and settings["upvote_comment"] is not None: json_metadata = {'app': 'rewarding/%s' % (rewarding_version)} reply_body = settings["upvote_comment"] reply_body = reply_body.replace("{{name}}", "@%s" % c["author"] ).replace("{{voter}}", "@%s" % pending_vote["voter"]) c.reply(reply_body, author=pending_vote["voter"], meta=json_metadata) except: print("Could not leave comment!") voteLogTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "author": c["author"], "timestamp": datetime.utcnow(), "vote_weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "voted_after_min": age_min, "vp": vp, "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "trail_vote": pending_vote["trail_vote"], "main_post": pending_vote["main_post"], "voter_to_follow": pending_vote["voter_to_follow"]}) expiration = formatTimeString(reply_message["expiration"]).replace(tzinfo=None) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) else: expiration = datetime.utcnow() broadcastVoteTrx.add({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "weight": vote_weight, "vote_delay_min": pending_vote["vote_delay_min"], "min_vp": pending_vote["min_vp"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"], "main_post": pending_vote["main_post"], "author": c["author"], "voted_after_min": 0, "created": datetime.utcnow(), "vp": settings["vp"], "down_vp": settings["down_vp"], "maximum_vote_delay_min": pending_vote["maximum_vote_delay_min"], "comment_timestamp": pending_vote["comment_timestamp"], "trail_vote": pending_vote["trail_vote"], "voter_to_follow": pending_vote["voter_to_follow"], "leave_comment": pending_vote["leave_comment"], "vote_timestamp": pending_vote["comment_timestamp"] + timedelta(seconds=pending_vote["vote_delay_min"]/60), "max_votes_per_day": pending_vote["max_votes_per_day"], "max_votes_per_week": pending_vote["max_votes_per_week"]}) delete_pending_votes.append({"authorperm": pending_vote["authorperm"], "voter": pending_vote["voter"], "vote_when_vp_reached": pending_vote["vote_when_vp_reached"]}) for pending_vote in delete_pending_votes: pendingVotesTrx.delete(pending_vote["authorperm"], pending_vote["voter"], pending_vote["vote_when_vp_reached"]) delete_pending_votes = [] print("%d voter have been checked!" % voter_counter) print("time vote %.2f s - %d votes" % (time.time() - start_prep_time, vote_count))
26064
import torch import torch.nn as nn import torch.nn.functional as F from ..decoder import ConvDecoder from ..encoder import build_encoder from ..modules import conv, deconv from ..similarity import CorrelationLayer from ..utils import warp from .build import MODEL_REGISTRY @MODEL_REGISTRY.register() class PWCNet(nn.Module): """ Implementation of the paper `PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume <https://arxiv.org/abs/1709.02371>`_ Parameters ---------- cfg : :class:`CfgNode` Configuration for the model """ def __init__(self, cfg): super(PWCNet, self).__init__() self.cfg = cfg self.encoder = build_encoder(cfg.ENCODER) self.correlation_layer = CorrelationLayer( pad_size=cfg.SIMILARITY.PAD_SIZE, max_displacement=cfg.SIMILARITY.MAX_DISPLACEMENT, ) search_range = (2 * cfg.SIMILARITY.MAX_DISPLACEMENT + 1) ** 2 self.decoder_layers = nn.ModuleList() decoder_cfg = cfg.DECODER.CONFIG self.up_feature_layers = nn.ModuleList() for i in range(len(decoder_cfg)): if i == 0: concat_channels = search_range else: concat_channels = ( search_range + decoder_cfg[i] + cfg.SIMILARITY.MAX_DISPLACEMENT ) self.decoder_layers.append( ConvDecoder( config=decoder_cfg, to_flow=True, concat_channels=concat_channels, ) ) self.up_feature_layers.append( deconv( concat_channels + sum(decoder_cfg), 2, kernel_size=4, stride=2, padding=1, ) ) self.deconv_layers = nn.ModuleList() for i in range(len(decoder_cfg)): self.deconv_layers.append(deconv(2, 2, kernel_size=4, stride=2, padding=1)) self.dc_conv = nn.ModuleList( [ conv( search_range + cfg.SIMILARITY.MAX_DISPLACEMENT + decoder_cfg[-1] + sum(decoder_cfg), 128, kernel_size=3, stride=1, padding=1, dilation=1, ), ] ) self.dc_conv.append( conv( decoder_cfg[0], decoder_cfg[0], kernel_size=3, stride=1, padding=2, dilation=2, ) ) padding = 4 dilation = 4 for i in range(len(decoder_cfg) - 2): self.dc_conv.append( conv( decoder_cfg[i], decoder_cfg[i + 1], kernel_size=3, stride=1, padding=padding, dilation=dilation, ) ) padding *= 2 dilation *= 2 self.dc_conv.append( conv( decoder_cfg[3], decoder_cfg[4], kernel_size=3, stride=1, padding=1, dilation=1, ) ) self.dc_conv.append( nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1, bias=True) ) self.dc_conv = nn.Sequential(*self.dc_conv) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight.data, mode="fan_in") if m.bias is not None: m.bias.data.zero_() def _corr_relu(self, features1, features2): corr = self.correlation_layer(features1, features2) return F.leaky_relu(corr, negative_slope=0.1) def forward(self, img1, img2): """ Performs forward pass of the network Parameters ---------- img1 : torch.Tensor Image to predict flow from img2 : torch.Tensor Image to predict flow to Returns ------- torch.Tensor Flow from img1 to img2 """ H, W = img1.shape[-2:] feature_pyramid1 = self.encoder(img1) feature_pyramid2 = self.encoder(img2) up_flow, up_features = None, None up_flow_scale = 0.625 flow_preds = [] for i in range(len(self.decoder_layers)): if i == 0: corr = self._corr_relu(feature_pyramid1[i], feature_pyramid2[i]) concatenated_features = corr else: warped_features = warp(feature_pyramid2[i], up_flow * up_flow_scale) up_flow_scale *= 2 corr = self._corr_relu(feature_pyramid1[i], warped_features) concatenated_features = torch.cat( [corr, feature_pyramid1[i], up_flow, up_features], dim=1 ) flow, features = self.decoder_layers[i](concatenated_features) flow_preds.append(flow) up_flow = self.deconv_layers[i](flow) up_features = self.up_feature_layers[i](features) flow_preds.reverse() flow_preds[0] += self.dc_conv(features) if self.training: return flow_preds else: flow = flow_preds[0] if self.cfg.INTERPOLATE_FLOW: H_, W_ = flow.shape[-2:] flow = F.interpolate( flow, img1.shape[-2:], mode="bilinear", align_corners=True ) flow_u = flow[:, 0, :, :] * (W / W_) flow_v = flow[:, 1, :, :] * (H / H_) flow = torch.stack([flow_u, flow_v], dim=1) if self.cfg.FLOW_SCALE_FACTOR is not None: flow *= self.cfg.FLOW_SCALE_FACTOR return flow
26129
import FWCore.ParameterSet.Config as cms import TrackingTools.MaterialEffects.OppositeMaterialPropagator_cfi #PropagatorWithMaterialESProducer oppositeToMomElePropagator = TrackingTools.MaterialEffects.OppositeMaterialPropagator_cfi.OppositeMaterialPropagator.clone( Mass = 0.000511, ComponentName = 'oppositeToMomElePropagator' )
26130
from rdflib import plugin from rdflib import store plugin.register( "SQLAlchemy", store.Store, "rdflib_sqlalchemy.store", "SQLAlchemy", )
26132
import difflib import discord from discord.ext import commands from discord.ext.commands import CommandNotFound intents = discord.Intents.all() client = commands.Bot(command_prefix="+", intents=intents, help_command=None) @client.event async def on_ready(): print("Bot Online") @client.event async def on_command_error(ctx: commands.Context, exc): if isinstance(exc, CommandNotFound): await send_command_suggestion(ctx, ctx.invoked_with) else: pass async def send_command_suggestion(ctx: commands.Context, command_name: str) -> None: """Sends user similar commands if any can be found.""" raw_commands = [] for cmd in client.walk_commands(): if not cmd.hidden: raw_commands += (cmd.name, *cmd.aliases) if similar_command_data := difflib.get_close_matches(command_name, raw_commands, 1): similar_command_name = similar_command_data[0] similar_command = client.get_command(similar_command_name) if not similar_command: return try: if not await similar_command.can_run(ctx): return except commands.errors.CommandError: return misspelled_content = ctx.message.content e = discord.Embed() e.set_author(name="Did you mean:") e.description = misspelled_content.replace( command_name, similar_command_name, 1 ) await ctx.send(embed=e, delete_after=10.0) client.run("TOKEN")
26133
import asyncio import logging import time from typing import Optional, List from hummingbot.core.data_type.user_stream_tracker_data_source import \ UserStreamTrackerDataSource from hummingbot.logger import HummingbotLogger from hummingbot.connector.exchange.bitfinex.bitfinex_order_book import BitfinexOrderBook from hummingbot.connector.exchange.bitfinex.bitfinex_websocket import BitfinexWebsocket from hummingbot.connector.exchange.bitfinex.bitfinex_auth import BitfinexAuth from hummingbot.connector.exchange.bitfinex.bitfinex_order_book_message import \ BitfinexOrderBookMessage class BitfinexAPIUserStreamDataSource(UserStreamTrackerDataSource): MESSAGE_TIMEOUT = 30.0 _logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._logger is None: cls._logger = logging.getLogger(__name__) return cls._logger def __init__(self, bitfinex_auth: BitfinexAuth, trading_pairs: Optional[List[str]] = None): if trading_pairs is None: trading_pairs = [] self._bitfinex_auth: BitfinexAuth = bitfinex_auth self._trading_pairs = trading_pairs self._current_listen_key = None self._listen_for_user_stream_task = None self._last_recv_time: float = 0 super().__init__() @property def order_book_class(self): return BitfinexOrderBook @property def last_recv_time(self) -> float: return self._last_recv_time async def listen_for_user_stream(self, ev_loop: asyncio.BaseEventLoop, output: asyncio.Queue): while True: try: ws = await BitfinexWebsocket(self._bitfinex_auth).connect() await ws.authenticate() async for msg in ws.messages(): transformed_msg: BitfinexOrderBookMessage = self._transform_message_from_exchange(msg) if transformed_msg is None: continue else: output.put_nowait(transformed_msg) except asyncio.CancelledError: raise except Exception: self.logger().error( "Unexpected error with Bitfinex WebSocket connection. " "Retrying after 30 seconds...", exc_info=True, ) await asyncio.sleep(self.MESSAGE_TIMEOUT) def _transform_message_from_exchange(self, msg) -> Optional[BitfinexOrderBookMessage]: order_book_message: BitfinexOrderBookMessage = BitfinexOrderBook.diff_message_from_exchange(msg, time.time()) if any([ order_book_message.type_heartbeat, order_book_message.event_auth, order_book_message.event_info, ]): # skip unneeded events and types return return order_book_message
26174
import csv def read_regressor_examples(num_of_features, num_of_decisions, file_path): xs = [] ys = [] with open(file_path, mode='r', encoding='utf-8') as file: reader = csv.reader(file, delimiter=' ') for row in reader: x = [float(value) for value in row[0 : num_of_features]] y = [float(value) for value in row[num_of_features : num_of_features + num_of_decisions]] xs.append(x) ys.append(y) return { 'x': xs, 'y': ys }
26207
class T: WORK_REQUEST = 1 WORK_REPLY = 2 REDUCE = 3 BARRIER = 4 TOKEN = 7 class Tally: total_dirs = 0 total_files = 0 total_filesize = 0 total_stat_filesize = 0 total_symlinks = 0 total_skipped = 0 total_sparse = 0 max_files = 0 total_nlinks = 0 total_nlinked_files = 0 total_0byte_files = 0 devfile_cnt = 0 devfile_sz = 0 spcnt = 0 # stripe cnt account per process # ZFS total_blocks = 0 class G: ZERO = 0 ABORT = -1 WHITE = 50 BLACK = 51 NONE = -99 TERMINATE = -100 MSG = 99 MSG_VALID = True MSG_INVALID = False fmt1 = '%(asctime)s - %(levelname)s - %(rank)s:%(filename)s:%(lineno)d - %(message)s' fmt2 = '%(asctime)s - %(rank)s:%(filename)s:%(lineno)d - %(message)s' bare_fmt = '%(name)s - %(levelname)s - %(message)s' mpi_fmt = '%(name)s - %(levelname)s - %(rank)s - %(message)s' bare_fmt2 = '%(message)s' str = {WHITE: "white", BLACK: "black", NONE: "not set", TERMINATE: "terminate", ABORT: "abort", MSG: "message"} KEY = "key" VAL = "val" logger = None logfile = None loglevel = "warn" use_store = False fix_opt = False preserve = False DB_BUFSIZE = 10000 memitem_threshold = 100000 tempdir = None total_chunks = 0 rid = None chk_file = None chk_file_db = None totalsize = 0 src = None dest = None args_src = None args_dest = None resume = None reduce_interval = 30 reduce_enabled = False verbosity = 0 am_root = False copytype = 'dir2dir' # Lustre file system fs_lustre = None lfs_bin = None stripe_threshold = None b0 = 0 b4k = 4 * 1024 b8k = 8 * 1024 b16k = 16 * 1024 b32k = 32 * 1024 b64k = 64 * 1024 b128k = 128 * 1024 b256k = 256 * 1024 b512k = 512 * 1024 b1m = 1024 * 1024 b2m = 2 * b1m b4m = 4 * b1m b8m = 8 * b1m b16m = 16 * b1m b32m = 32 * b1m b64m = 64 * b1m b128m = 128 * b1m b256m = 256 * b1m b512m = 512 * b1m b1g = 1024 * b1m b4g = 4 * b1g b16g = 16 * b1g b64g = 64 * b1g b128g = 128 * b1g b256g = 256 * b1g b512g = 512 * b1g b1tb = 1024 * b1g b4tb = 4 * b1tb FSZ_BOUND = 64 * b1tb # 25 bins bins = [b0, b4k, b8k, b16k, b32k, b64k, b128k, b256k, b512k, b1m, b2m, b4m, b16m, b32m, b64m, b128m, b256m, b512m, b1g, b4g, b64g, b128g, b256g, b512g, b1tb, b4tb] # 17 bins, the last bin is special # This is error-prone, to be refactored. # bins_fmt = ["B1_000k_004k", "B1_004k_008k", "B1_008k_016k", "B1_016k_032k", "B1_032k_064k", "B1_064k_256k", # "B1_256k_512k", "B1_512k_001m", # "B2_001m_004m", "B2_m004_016m", "B2_016m_512m", "B2_512m_001g", # "B3_001g_100g", "B3_100g_256g", "B3_256g_512g", # "B4_512g_001t", # "B5_001t_up"] # GPFS gpfs_block_size = ("256k", "512k", "b1m", "b4m", "b8m", "b16m", "b32m") gpfs_block_cnt = [0, 0, 0, 0, 0, 0, 0] gpfs_subs = (b256k/32, b512k/32, b1m/32, b4m/32, b8m/32, b16m/32, b32m/32) dev_suffixes = [".C", ".CC", ".CU", ".H", ".CPP", ".HPP", ".CXX", ".F", ".I", ".II", ".F90", ".F95", ".F03", ".FOR", ".O", ".A", ".SO", ".S", ".IN", ".M4", ".CACHE", ".PY", ".PYC"]
26256
def _init(): from som.vm.universe import create_universe return create_universe() current_universe = _init()
26261
import re # crawl roster faulty_prof = { 'Francis,J)' : 'Francis,J (jdf2)', 'Glathar,E)' : 'Glathar,E', 'Cady,B)' : 'Cady,B' } section_types = set() day_pattern = { 'M': 1, 'T': 1<<1, 'W': 1<<2, 'R': 1<<3, 'F': 1<<4, 'S': 1<<5, 'U': 1<<6 } def to_bool(s): return True if s == 'Y' else False def to_list(node): return [a.text.strip() for a in node] def set_if_truthy(obj, idx, value): if value: obj[idx] = value def convert_crosslist(c): if c is None: return None if len(c) > 0: return [c.find('subject').text, int(c.find('catalog_nbr').text)] return None def get_s(node): if node is None: return None return node.text def maybe_float(s): if s.find('.') > -1: return float(s) return int(s) def convert_units(s): return [maybe_float(a) for a in s.split('-')] class CourseParser(object): def __init__(self): self.courses = [] self.profs = set() def parse(self, node): raise NotImplementedError() class CourseParserJson(CourseParser): def __init__(self): super(CourseParserJson, self).__init__() self.sessions = set() self.locations = set() self.facility = set() @staticmethod def crosslist(d): if d: return [d['subject'], int(d['catalogNbr']), d['type']] return None def convert_meeting(self, node, parent=None): obj = {} pattern = 0 pattern_desc = node.get('pattern', '').replace('Su', 'U') if pattern_desc != 'TBA': for c in pattern_desc: pattern |= day_pattern[c] set_if_truthy(obj, 'ptn', pattern) facility = node.get('facilityDescrshort') if facility and facility != 'TBA': set_if_truthy(obj, 'bldg', facility[:3]) set_if_truthy(obj, 'rm', facility[3:]) set_if_truthy(obj, 'loc', node.get('facilityDescr')) set_if_truthy(obj, 'st', node.get('timeStart')) set_if_truthy(obj, 'et', node.get('timeEnd')) set_if_truthy(obj, 'sd', node.get('startDt')) set_if_truthy(obj, 'ed', node.get('endDt')) set_if_truthy(obj, 'profs', [s['netid'] for s in node.get('instructors', [])]) set_if_truthy(obj, 'topic', node.get('meetingTopicDescription')) return obj def convert_section(self, node, parent=None): comp = node.get('ssrComponent') obj = {} obj['nbr'] = int(node.get('classNbr')) obj['sec'] = node.get('section') # obj['loc'] = node.get('location') # obj['campus'] = node.get('campus') set_if_truthy(obj, 'topic', node.get('topicDescription')) self.locations.add((node.get('location'), node.get('locationDescr'), node.get('campus'), node.get('campusDescr'))) set_if_truthy(obj, 'mt', [self.convert_meeting(s, node) for s in node.get('meetings', [])]) return comp, obj def parse(self, node): obj = {} obj['sub'] = node.get('subject') obj['nbr'] = int(node.get('catalogNbr')) obj['title'] = node.get('titleLong') for group in node.get('enrollGroups', []): course = obj.copy() if group['unitsMinimum'] == group['unitsMaximum']: course['unit'] = [group['unitsMaximum']] else: course['unit'] = [group['unitsMinimum'], group['unitsMaximum']] set_if_truthy(course, 'optcomp', group['componentsOptional']) set_if_truthy(course, 'session', group['sessionCode']) set_if_truthy(course, 'crosslists', [self.crosslist(d) for d in group.get('simpleCombinations', [])]) secs = {} for sec in group['classSections']: comp, sec = self.convert_section(sec, group) if comp not in secs: secs[comp] = [] secs[comp].append(sec) course['secs'] = secs self.courses.append(course) self.sessions.add((group['sessionCode'], group['sessionBeginDt'], group['sessionEndDt'], group['sessionLong'])) class CourseParserXML(CourseParser): def __init__(self): self.courses = [] self.profs = set() def parse(self, node): self.courses.append(self.convert_course(node)) def parse_prof(self, name): if name in faulty_prof: name = faulty_prof[name] result = re.search(r'\((.+)\)', name) if result is None: print "warning: %s dont have netid" % name return name else: netid = result.group(1) self.profs.add(netid) return netid def convert_meeting(self, node): obj = {} pattern = 0 pattern_desc = node.find('meeting_pattern_sdescr').text if pattern_desc != 'TBA': for c in pattern_desc: pattern |= day_pattern[c] set_if_truthy(obj, 'ptn', pattern) set_if_truthy(obj, 'bldg', node.find('building_code').text) set_if_truthy(obj, 'rm', node.find('room').text) set_if_truthy(obj, 'st', node.find('start_time').text) set_if_truthy(obj, 'et', node.find('end_time').text) set_if_truthy(obj, 'sd', node.find('start_date').text) set_if_truthy(obj, 'ed', node.find('end_date').text) set_if_truthy(obj, 'profs', [self.parse_prof(s) for s in to_list(node.find('instructors') or [])]) return obj def convert_section(self, node): comp = node.get('ssr_component') obj = {} obj['nbr'] = int(node.get('class_number')) obj['sec'] = node.get('class_section') section_types.add(comp) set_if_truthy(obj, 'consent', get_s(node.find('consent_ldescr'))) set_if_truthy(obj, 'note', get_s(node.find('notes'))) set_if_truthy(obj, 'mt', [self.convert_meeting(s) for s in node.findall('meeting')]) return comp, obj def convert_course(self, node): obj = {} obj['sub'] = node.get('subject') obj['nbr'] = int(node.get('catalog_nbr')) obj['unit'] = convert_units(node.find('units').text) obj['title'] = node.find('course_title').text set_if_truthy(obj, 'topics', to_list(node.find('topics'))) set_if_truthy(obj, 'crosslists', [convert_crosslist(a) for a in node.find('crosslists') or []]) set_if_truthy(obj, 'comeetings', [convert_crosslist(a) for a in node.find('comeetings') or []]) secs = {} for sec in node.find('sections'): comp, sec = self.convert_section(sec) if comp not in secs: secs[comp] = [] secs[comp].append(sec) obj['secs'] = secs return obj
26291
import time from typing import Any, List import pytest from yarl import URL from neuro_sdk import Action, FileStatus, FileStatusType from neuro_sdk.storage import DiskUsageInfo from neuro_cli.formatters.storage import ( BaseFilesFormatter, BSDAttributes, BSDPainter, DiskUsageFormatter, FilesSorter, GnuIndicators, GnuPainter, LongFilesFormatter, NonePainter, SimpleFilesFormatter, VerticalColumnsFilesFormatter, get_painter, ) class TestNonePainter: def test_simple(self, rich_cmp: Any) -> None: painter = NonePainter() file = FileStatus( "File1", 2048, FileStatusType.FILE, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/user/File1"), ) rich_cmp(painter.paint(file.name, file.type)) class TestGnuPainter: def test_color_parsing_simple(self) -> None: painter = GnuPainter("rs=1;0;1") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" painter = GnuPainter(":rs=1;0;1") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" painter = GnuPainter("rs=1;0;1:") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" painter = GnuPainter("rs=1;0;1:fi=32;42") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" assert painter.color_indicator[GnuIndicators.FILE] == "32;42" painter = GnuPainter("rs=1;0;1:fi") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" assert painter.color_indicator[GnuIndicators.FILE] == "" painter = GnuPainter("rs=1;0;1:fi=") assert painter.color_indicator[GnuIndicators.RESET] == "1;0;1" assert painter.color_indicator[GnuIndicators.FILE] == "" @pytest.mark.parametrize( "escaped,result", [ ("\\a", "\a"), ("\\b", "\b"), ("\\e", chr(27)), ("\\f", "\f"), ("\\n", "\n"), ("\\r", "\r"), ("\\t", "\t"), ("\\v", "\v"), ("\\?", chr(127)), ("\\_", " "), ("a\\n", "a\n"), ("a\\tb", "a\tb"), ("a\\t\\rb", "a\t\rb"), ("a\\=b", "a=b"), ], ) def test_color_parsing_escaped_simple(self, escaped: str, result: str) -> None: painter = GnuPainter("rs=" + escaped) assert painter.color_indicator[GnuIndicators.RESET] == result painter = GnuPainter(escaped + "=1;2") assert painter.color_ext_type[result] == "1;2" painter = GnuPainter(escaped + "=" + escaped) assert painter.color_ext_type[result] == result @pytest.mark.parametrize( "escaped,result", [ ("\\7", chr(7)), ("\\8", "8"), ("\\10", chr(8)), ("a\\2", "a" + chr(2)), ("a\\2b", "a" + chr(2) + "b"), ], ) def test_color_parsing_escaped_octal(self, escaped: str, result: str) -> None: painter = GnuPainter("rs=" + escaped) assert painter.color_indicator[GnuIndicators.RESET] == result painter = GnuPainter(escaped + "=1;2") assert painter.color_ext_type[result] == "1;2" painter = GnuPainter(escaped + "=" + escaped) assert painter.color_ext_type[result] == result @pytest.mark.parametrize( "escaped,result", [ ("\\x7", chr(0x7)), ("\\x8", chr(0x8)), ("\\x10", chr(0x10)), ("\\XaA", chr(0xAA)), ("a\\x222", "a" + chr(0x22) + "2"), ("a\\x2z", "a" + chr(0x2) + "z"), ], ) def test_color_parsing_escaped_hex(self, escaped: str, result: str) -> None: painter = GnuPainter("rs=" + escaped) assert painter.color_indicator[GnuIndicators.RESET] == result painter = GnuPainter(escaped + "=1;2") assert painter.color_ext_type[result] == "1;2" painter = GnuPainter(escaped + "=" + escaped) assert painter.color_ext_type[result] == result @pytest.mark.parametrize( "escaped,result", [ ("^a", chr(1)), ("^?", chr(127)), ("^z", chr(26)), ("a^Z", "a" + chr(26)), ("a^Zb", "a" + chr(26) + "b"), ], ) def test_color_parsing_carret(self, escaped: str, result: str) -> None: painter = GnuPainter("rs=" + escaped) assert painter.color_indicator[GnuIndicators.RESET] == result painter = GnuPainter(escaped + "=1;2") assert painter.color_ext_type[result] == "1;2" painter = GnuPainter(escaped + "=" + escaped) assert painter.color_ext_type[result] == result @pytest.mark.parametrize("escaped", [("^1"), ("^"), ("^" + chr(130))]) def test_color_parsing_carret_incorrect(self, escaped: str) -> None: with pytest.raises(EnvironmentError): GnuPainter("rs=" + escaped) with pytest.raises(EnvironmentError): GnuPainter(escaped + "=1;2") @pytest.mark.parametrize( "ls_colors", [ "di=32;41:fi=0;44:no=0;46", "di=32;41:no=0;46", "no=0;46", "*.text=0;46", "*.txt=0;46", ], ) def test_coloring(self, rich_cmp: Any, ls_colors: str) -> None: file = FileStatus( "test.txt", 1024, FileStatusType.FILE, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/usertest.txt"), ) folder = FileStatus( "tmp", 0, FileStatusType.DIRECTORY, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.WRITE, uri=URL("storage://default/usertmp"), ) painter = GnuPainter(ls_colors) rich_cmp(painter.paint(file.name, file.type), index=0) rich_cmp(painter.paint(folder.name, folder.type), index=1) class TestBSDPainter: def test_color_parsing(self) -> None: painter = BSDPainter("exfxcxdxbxegedabagacad") assert painter._colors[BSDAttributes.DIRECTORY] == "ex" @pytest.mark.parametrize( "ls_colors", ["exfxcxdxbxegedabagacad", "Eafxcxdxbxegedabagacad"] ) def test_coloring(self, ls_colors: str, rich_cmp: Any) -> None: file = FileStatus( "test.txt", 1024, FileStatusType.FILE, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/usertest.txt"), ) folder = FileStatus( "tmp", 0, FileStatusType.DIRECTORY, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.WRITE, uri=URL("storage://default/usertmp"), ) painter = BSDPainter(ls_colors) rich_cmp(painter.paint(file.name, file.type), index=0) rich_cmp(painter.paint(folder.name, folder.type), index=1) class TestPainterFactory: def test_detection(self, monkeypatch: Any) -> None: monkeypatch.setenv("LS_COLORS", "") monkeypatch.setenv("LSCOLORS", "") painter = get_painter(True) assert isinstance(painter, NonePainter) monkeypatch.setenv("LSCOLORS", "exfxcxdxbxegedabagacad") monkeypatch.setenv("LS_COLORS", "di=32;41:fi=0;44:no=0;46") painter_without_color = get_painter(False) painter_with_color = get_painter(True) assert isinstance(painter_without_color, NonePainter) assert not isinstance(painter_with_color, NonePainter) monkeypatch.setenv("LSCOLORS", "") monkeypatch.setenv("LS_COLORS", "di=32;41:fi=0;44:no=0;46") painter = get_painter(True) assert isinstance(painter, GnuPainter) monkeypatch.setenv("LSCOLORS", "exfxcxdxbxegedabagacad") monkeypatch.setenv("LS_COLORS", "") painter = get_painter(True) assert isinstance(painter, BSDPainter) class TestFilesFormatter: files = [ FileStatus( "File1", 2048, FileStatusType.FILE, int(time.mktime(time.strptime("2018-01-01 03:00:00", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/userFile1"), ), FileStatus( "File2", 1024, FileStatusType.FILE, int(time.mktime(time.strptime("2018-10-10 13:10:10", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/userFile2"), ), FileStatus( "File3 with space", 1_024_001, FileStatusType.FILE, int(time.mktime(time.strptime("2019-02-02 05:02:02", "%Y-%m-%d %H:%M:%S"))), Action.READ, uri=URL("storage://default/userFile 3 with space"), ), ] folders = [ FileStatus( "Folder1", 0, FileStatusType.DIRECTORY, int(time.mktime(time.strptime("2017-03-03 06:03:03", "%Y-%m-%d %H:%M:%S"))), Action.MANAGE, uri=URL("storage://default/userFolder11"), ), FileStatus( "1Folder with space", 0, FileStatusType.DIRECTORY, int(time.mktime(time.strptime("2017-03-03 06:03:02", "%Y-%m-%d %H:%M:%S"))), Action.MANAGE, uri=URL("storage://default/user1Folder with space"), ), ] files_and_folders = files + folders @pytest.mark.parametrize( "formatter", [ (SimpleFilesFormatter(color=False)), (VerticalColumnsFilesFormatter(width=100, color=False)), (LongFilesFormatter(human_readable=False, color=False)), ], ) def test_formatter_with_files_and_folders( self, formatter: BaseFilesFormatter, rich_cmp: Any ) -> None: rich_cmp(formatter(self.files_and_folders)) @pytest.mark.parametrize( "formatter", [ (SimpleFilesFormatter(color=False)), (VerticalColumnsFilesFormatter(width=100, color=False)), (LongFilesFormatter(human_readable=False, color=False)), ], ) def test_formatter_with_empty_files( self, formatter: BaseFilesFormatter, rich_cmp: Any ) -> None: files: List[FileStatus] = [] rich_cmp(formatter(files)) def test_sorter(self) -> None: sorter = FilesSorter.NAME files = sorted(self.files_and_folders, key=sorter.key()) assert files == [ self.folders[1], self.files[0], self.files[1], self.files[2], self.folders[0], ] sorter = FilesSorter.SIZE files = sorted(self.files_and_folders, key=sorter.key()) assert files[2:5] == [self.files[1], self.files[0], self.files[2]] sorter = FilesSorter.TIME files = sorted(self.files_and_folders, key=sorter.key()) assert files == [ self.folders[1], self.folders[0], self.files[0], self.files[1], self.files[2], ] class TestUsageFormatter: def test_formatter(self, rich_cmp: Any) -> None: usage = DiskUsageInfo( total=100000, used=80000, free=20000, cluster_name="default" ) formatter = DiskUsageFormatter() rich_cmp(formatter(usage))
26306
import time import asyncio import random import pyee import logging from plugins.input_fsx import fsx_pb2 from hexi.service import event _logger = logging.getLogger(__name__) class UDPServer(asyncio.DatagramProtocol): def __init__(self, manager, token): super().__init__() self.manager = manager self.token = token self.sn = 0 def datagram_received(self, data, addr): try: # Note: there are no length prefix in UDP packets msg = fsx_pb2.UdpResponseMessage() msg.ParseFromString(data) if msg.token != self.token: _logger.warn('A message is discarded because of incorrect token') self.manager.ee.emit('udp_discarded_message') return if msg.serialNumber <= self.sn: _logger.warn('A message is discarded because of received newer message') self.manager.ee.emit('udp_discarded_message') return self.sn = msg.serialNumber self.manager.ee.emit('udp_received_message', msg) except Exception as e: _logger.warn(e) self.manager.ee.emit('udp_discarded_message') def connection_lost(self, exc): self.manager.ee.emit('udp_closed') class TCPClientManager(object): def __init__(self, channel, host, port, retry_sec=2): self.channel = channel self.host = host self.port = port self.retry_sec = retry_sec self.work_future = None self.heartbeat_future = None self.connect_future = None self.reconnect_future = None self.reader = None self.writer = None self.state = 'idle' self.ee = channel.ee async def connect_async(self): while True and (self.state in ['connecting', 'reconnecting']): try: future = asyncio.open_connection(self.host, self.port) reader, writer = await asyncio.wait_for(future, timeout=3) _logger.info('Telemetry connected') self.reader = reader self.writer = writer self.state = 'connected' self.work_future = asyncio.ensure_future(self.work_async()) self.work_future.add_done_callback(self.on_work_done) self.heartbeat_future = asyncio.ensure_future(self.heartbeat_async()) self.heartbeat_future.add_done_callback(self.on_heartbeat_done) self.ee.emit('tcp_connected') break except (OSError, asyncio.TimeoutError): #print('Server not connected, retry in {0} seconds'.format(self.retry_sec)) await asyncio.sleep(self.retry_sec) def connect(self): assert(self.state in ['idle', 'disconnected']) assert(self.connect_future == None) self.state = 'connecting' self.connect_future = asyncio.ensure_future(self.connect_async()) self.connect_future.add_done_callback(self.on_connect_done) return self.connect_future def on_connect_done(self, future): self.connect_future = None async def heartbeat_async(self): while True: await asyncio.sleep(10) msg = fsx_pb2.TcpRequestMessage() msg.msgType = fsx_pb2.TcpRequestMessage.MSG_TYPE_PING msg.pingBody.timeStamp = int(time.time()) self.write_message(msg) def on_heartbeat_done(self, future): self.heartbeat_future = None async def work_async(self): try: while True: size_buffer = await self.reader.readexactly(4) size = int.from_bytes(size_buffer, byteorder='little') body_buffer = await self.reader.readexactly(size) msg = fsx_pb2.TcpResponseMessage() msg.ParseFromString(body_buffer) self.ee.emit('tcp_received_message', msg) except (asyncio.IncompleteReadError, ConnectionResetError, ConnectionAbortedError): pass def on_work_done(self, future): _logger.info('Telemetry connection lost') self.work_future = None if self.heartbeat_future != None: self.heartbeat_future.cancel() self.reader = None self.writer = None if self.state != 'disconnected': self.reconnect() async def reconnect_async(self): await self.connect_async() def reconnect(self): assert(self.state == 'connected') assert(self.reconnect_future == None) _logger.info('Telemetry reconnecting') self.state = 'reconnecting' self.reconnect_future = asyncio.ensure_future(self.reconnect_async()) self.reconnect_future.add_done_callback(self.on_reconnect_done) return self.reconnect_future def on_reconnect_done(self, f): self.reconnect_future = None def disconnect(self): assert(self.state in ['connecting', 'connected', 'reconnecting']) self.state = 'disconnected' if self.connect_future != None: self.connect_future.cancel() if self.reconnect_future != None: self.reconnect_future.cancel() if self.work_future != None: self.work_future.cancel() if self.heartbeat_future != None: self.heartbeat_future.cancel() if self.writer != None: self.writer.close() def write_message(self, msg): data = msg.SerializeToString() data = len(data).to_bytes(4, byteorder = 'little') + data self.writer.write(data) class UDPServerManager(object): def __init__(self, channel, token, host, port): self.channel = channel self.token = token self.host = host self.port = port self.transport = None self.protocol = None self.state = 'idle' self.ee = channel.ee def protocol_factory(self): return UDPServer(self, self.token) async def create_endpoint_async(self): assert(self.state in ['idle', 'closed']) self.state = 'opening' loop = asyncio.get_event_loop() transport, protocol = await loop.create_datagram_endpoint( self.protocol_factory, local_addr=(self.host, self.port)) self.transport = transport self.protocol = protocol self.state = 'opened' _logger.info('Telemetry receiver listening at {0}:{1}'.format(self.host, self.port)) def close(self): assert(self.state in ['opening', 'opened']) _logger.info('Telemetry receiver is closing') self.state = 'closed' if self.transport != None: self.transport.close() self.transport == None self.protocol == None class DataChannel(object): def __init__(self, udp_port, tcp_host, tcp_port): self.ee = pyee.EventEmitter() self.udp_token = random.randint(0, 0x6FFFFFFF) self.udp_port = udp_port self.tcp = TCPClientManager(self, tcp_host, tcp_port) self.udp = UDPServerManager(self, self.udp_token, '0.0.0.0', udp_port) self.udp_receive_counter = 0 self.udp_discard_counter = 0 self.ee.on('tcp_connected', self.on_tcp_connected) self.ee.on('tcp_received_message', self.on_tcp_received_message) self.ee.on('udp_received_message', self.on_udp_received_message) self.ee.on('udp_discarded_message', self.on_udp_discarded_message) async def udp_analytics_async(self): last_receive = 0 last_discard = 0 while True: await asyncio.sleep(1) delta_receive = self.udp_receive_counter - last_receive delta_discard = self.udp_discard_counter - last_discard last_receive = self.udp_receive_counter last_discard = self.udp_discard_counter self.ee.emit('udp_analytics_tick', { 'receive_all': last_receive, 'discard_all': last_discard, 'receive_tick': delta_receive, 'discard_tick': delta_discard}) def on_udp_analytics_done(self, future): self.udp_analytics_future = None async def start_async(self): _logger.info('Starting telemetry channel') self.udp_analytics_future = asyncio.ensure_future(self.udp_analytics_async()) self.udp_analytics_future.add_done_callback(self.on_udp_analytics_done) await self.udp.create_endpoint_async() await self.tcp.connect() _logger.info('Telemetry channel started') def stop(self): _logger.info('Stopping telemetry channel') if self.udp_analytics_future != None: self.udp_analytics_future.cancel() self.tcp.disconnect() self.udp.close() def on_tcp_connected(self): self.udp.protocol.sn = 0 msg = fsx_pb2.TcpRequestMessage() msg.msgType = fsx_pb2.TcpRequestMessage.MSG_TYPE_SET_CONFIG msg.setConfigBody.udpPort = self.udp_port msg.setConfigBody.udpToken = self.udp_token self.tcp.write_message(msg) def on_tcp_received_message(self, msg): if msg.success != True: _logger.error('Telemetry command failed') def on_udp_received_message(self, msg): self.udp_receive_counter = self.udp_receive_counter + 1 def on_udp_discarded_message(self): self.udp_discard_counter = self.udp_discard_counter + 1
26311
import argparse from collections import defaultdict import pickle import re import lightgbm as lgb import pandas as pd import numpy as np import xgboost as xgb from ..data_utils import SEG_FP, get_encoded_classes from ..utils import print_metrics from ..metric import get_metrics from .blend import ( score_predictions_by_image_id, submission_from_predictions_by_image_id) def main(): parser = argparse.ArgumentParser() arg = parser.add_argument arg('detailed_then_features', nargs='+', help='detailed dataframes and the features in the same order') arg('--use-xgb', type=int, default=1) arg('--use-lgb', type=int, default=1) arg('--num-boost-round', type=int, default=400) arg('--lr', type=float, default=0.05, help='for lightgbm') arg('--eta', type=float, default=0.15, help='for xgboost') arg('--save-model') arg('--load-model') arg('--output') arg('--n-folds', type=int, default=5) arg('--seg-fp-adjust', type=float) args = parser.parse_args() if len(args.detailed_then_features) % 2 != 0: parser.error('number of detailed and features must be equal') n = len(args.detailed_then_features) // 2 detailed_paths, feature_paths = (args.detailed_then_features[:n], args.detailed_then_features[n:]) if args.output: if not args.load_model: parser.error('--output needs --load-model') elif len(feature_paths) == 1: parser.error('need more than one feature df for train/valid split') print('\n'.join( f'{f} | {d}' for f, d in zip(detailed_paths, feature_paths))) detailed_dfs = [pd.read_csv(path) for path in detailed_paths] feature_dfs = [pd.read_csv(path) for path in feature_paths] valid_df = feature_dfs[0] assert valid_df.columns[0] == 'item' assert valid_df.columns[-1] == 'y' feature_cols = [ col for col in valid_df.columns[1:-1] if col not in { 'width', 'height', 'aspect', 'candidate_count', 'candidate_count_on_page', 'candidate_freq_on_page', }] top_cls_re = re.compile('^top_\d+_cls') def build_features(df): df = df[feature_cols].copy() for col in feature_cols: if top_cls_re.match(col): df[f'{col}_is_candidate'] = df[col] == df['candidate_cls'] # del df[col] print(' '.join(df.columns)) return df classes = get_encoded_classes() cls_by_idx = {idx: cls for cls, idx in classes.items()} cls_by_idx[-1] = SEG_FP y_preds = [] all_metrics = [] for fold_num in range(args.n_folds): print(f'fold {fold_num}') detailed = (detailed_dfs[fold_num if len(detailed_dfs) != 1 else 0] .copy()) valid_df = feature_dfs[fold_num if len(feature_dfs) != 1 else 0].copy() valid_features = build_features(valid_df) xgb_valid_data = xgb.DMatrix(valid_features, label=valid_df['y']) fold_path = lambda path, kind: f'{path}.{kind}.fold{fold_num}' if args.load_model: lgb_load_path = (fold_path(args.load_model, 'lgb') if args.use_lgb else None) xgb_load_path = (fold_path(args.load_model, 'xgb') if args.use_xgb else None) print(f'loading from {lgb_load_path}, {xgb_load_path}') if lgb_load_path: lgb_model = lgb.Booster(model_file=lgb_load_path) if xgb_load_path: with open(xgb_load_path, 'rb') as f: xgb_model = pickle.load(f) else: train_df = pd.concat([df for i, df in enumerate(feature_dfs) if i != fold_num]) train_features = build_features(train_df) if args.use_lgb: lgb_model = train_lgb( train_features, train_df['y'], valid_features, valid_df['y'], lr=args.lr, num_boost_round=args.num_boost_round) if args.use_xgb: xgb_model = train_xgb( train_features, train_df['y'], valid_features, valid_df['y'], eta=args.eta, num_boost_round=args.num_boost_round) if args.save_model: lgb_save_path = (fold_path(args.save_model, 'lgb') if args.use_lgb else None) xgb_save_path = (fold_path(args.save_model, 'xgb') if args.use_xgb else None) print(f'saving to {lgb_save_path}, {xgb_save_path}') if lgb_save_path: lgb_model.save_model( lgb_save_path, num_iteration=lgb_model.best_iteration) if xgb_save_path: with open(xgb_save_path, 'wb') as f: pickle.dump(xgb_model, f) print('prediction') predictions = [] if args.use_lgb: predictions.append(lgb_model.predict( valid_features, num_iteration=lgb_model.best_iteration)) if args.use_xgb: predictions.append(xgb_model.predict( xgb_valid_data, ntree_limit=xgb_model.best_ntree_limit)) valid_df['y_pred'] = np.mean(predictions, axis=0) if args.seg_fp_adjust: valid_df.loc[valid_df['candidate_cls'] == -1, 'y_pred'] += \ args.seg_fp_adjust y_preds.append(valid_df['y_pred'].values) max_by_item = get_max_by_item(valid_df) print('scoring') detailed['pred'] = \ max_by_item['candidate_cls'].apply(cls_by_idx.__getitem__) print(f'SEG_FP ratio: {(detailed["pred"] == SEG_FP).mean():.5f}') predictions_by_image_id = get_predictions_by_image_id(detailed) if not args.output: metrics = { 'accuracy': (detailed["pred"] == detailed["true"]).mean(), } metrics.update( score_predictions_by_image_id(predictions_by_image_id)) print_metrics(metrics) all_metrics.append(metrics) if args.output: valid_df['y_pred'] = np.mean(y_preds, axis=0) max_by_item = get_max_by_item(valid_df) detailed['pred'] = \ max_by_item['candidate_cls'].apply(cls_by_idx.__getitem__) predictions_by_image_id = get_predictions_by_image_id(detailed) submission = submission_from_predictions_by_image_id( predictions_by_image_id) submission.to_csv(args.output, index=False) else: print('\nAll folds:') print_metrics(get_metrics(all_metrics)) def train_lgb(train_features, train_y, valid_features, valid_y, *, lr, num_boost_round): train_data = lgb.Dataset(train_features, train_y) valid_data = lgb.Dataset(valid_features, valid_y, reference=train_data) params = { 'objective': 'binary', 'metric': 'binary_logloss', 'learning_rate': lr, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'feature_fraction': 0.9, 'min_data_in_leaf': 20, 'num_leaves': 41, 'scale_pos_weight': 1.2, 'lambda_l2': 1, } print(params) return lgb.train( params=params, train_set=train_data, num_boost_round=num_boost_round, early_stopping_rounds=20, valid_sets=[valid_data], verbose_eval=10, ) def train_xgb(train_features, train_y, valid_features, valid_y, *, eta, num_boost_round): train_data = xgb.DMatrix(train_features, label=train_y) valid_data = xgb.DMatrix(valid_features, label=valid_y) params = { 'eta': eta, 'objective': 'binary:logistic', 'gamma': 0.01, 'max_depth': 8, } print(params) eval_list = [(valid_data, 'eval')] return xgb.train( params, train_data, num_boost_round, eval_list, early_stopping_rounds=20, verbose_eval=10, ) def get_max_by_item(df): return (df.iloc[df.groupby('item')['y_pred'].idxmax()] .reset_index(drop=True)) def get_predictions_by_image_id(detailed): predictions_by_image_id = defaultdict(list) for item in detailed.itertuples(): if item.pred != SEG_FP: predictions_by_image_id[item.image_id].append({ 'cls': item.pred, 'center': (item.x + item.w / 2, item.y + item.h / 2), }) return predictions_by_image_id if __name__ == '__main__': main()
26319
from anuga.utilities import plot_utils as util from matplotlib import pyplot as pyplot import numpy verbose= True swwfile = 'merewether_1m.sww' p=util.get_output(swwfile) p2=util.get_centroids(p) # Time index at last time tindex = len(p2.time)-1 if verbose: print('calculating experimental transect') x_data = [ 0.0, 3.0, 6.0, 9.0, 12.0, 15.0, 18.0, 21.0, 24.0, 27.0, 30.0, 33.0] #vel = [ 0.0, 0.0, 1.1, 3.2, 3.4, 2.4, 3.2, 3.2, 3.7, 3.1, 0.4, 0.0] vel_data = [ 0.0, 0.4, 3.1, 3.7, 3.2, 3.2, 2.4, 3.4, 3.2, 1.1, 0.0, 0.0] #depth = [ 0.0, 0.0, 0.1, 0.5, 0.45, 0.4, 0.55, 0.1, 0.1, 0.05, 0.04, 0.0] depth_data = [ 0.0, 0.04, 0.05, 0.1, 0.1, 0.55, 0.4, 0.45, 0.5, 0.1, 0.0, 0.0] from scipy import interpolate fvel = interpolate.interp1d(x_data, vel_data) fdepth = interpolate.interp1d(x_data, depth_data) if verbose: print('calculating model heights at observation points') # Get nearest wet points to 'point observations' point_observations = numpy.genfromtxt( 'Observations/ObservationPoints.csv', delimiter=",",skip_header=1) nearest_points = point_observations[:,0]*0. - 1 for i in range(len(nearest_points)): # Compute distance of ANUGA points to observation, and # if the ANUGA point is dry then add a large value # Then find index of minimum n = ( (p2.x+p2.xllcorner-point_observations[i,0])**2 + \ (p2.y+p2.yllcorner-point_observations[i,1])**2 + \ (p2.stage[tindex,:] <= p2.elev)*1.0e+06).argmin() nearest_points[i] = n f = open('Stage_point_comparison.csv','w') f.writelines( 'Field, ANUGA, TUFLOW, ANUGA minus Field, ANUGA minus TUFLOW \n' ) if verbose: print nearest_points.tolist() for i in range(len(nearest_points)): po = point_observations[i,-2] tu = point_observations[i,-1] anuga_data = p2.stage[tindex, nearest_points.tolist()[i]] newline = str(round(po,2)) + ', ' + str(round(anuga_data,2)) + ', ' + str(tu) + ', ' + \ str(round(anuga_data - po,2)) + ', ' + str(round(anuga_data - tu,2)) + '\n' f.writelines(newline) f.flush() f.close() if verbose: print('Plot transect') ## Plot transect 1 [need to guess appropriate end points as these are not so ## clear from the report] xx=util.near_transect(p2,[103, 100.], [130.,80.],tol=0.5) xx2=xx[0] pyplot.clf() pyplot.figure(figsize=(16,10.5)) pyplot.subplot(121) pyplot.scatter(p2.x, p2.y, c=p2.elev,edgecolors='none') # Add nice elevation data colVals = numpy.maximum(numpy.minimum(p2.elev, 25.), 19.) util.plot_triangles(p, values = colVals, edgecolors='none') pyplot.gca().set_aspect('equal') pyplot.scatter(p2.x[xx2],p2.y[xx2],color='green') pyplot.xlim( (40., 160.)) pyplot.ylim( (0.,140.)) pyplot.title('Transect points in green') pyplot.subplot(222) pyplot.scatter(xx[1],p2.vel[tindex,xx[0]],color='green',label='model') pyplot.scatter(xx[1],fvel(xx[1]),color='blue',label='data') pyplot.legend(loc='upper left') #pyplot.xlim(0,25) pyplot.title('Final flow speed along the transect') pyplot.subplot(224) pyplot.scatter(xx[1],p2.stage[tindex,xx[0]]-p2.elev[xx[0]],color='green',label='model') pyplot.scatter(xx[1],fdepth(xx[1]),color='blue',label='data') pyplot.legend(loc='upper left') #pyplot.xlim(0,25) pyplot.title('Final depth along the transect') pyplot.savefig('Transect1.png', bbox_inches='tight') if verbose: print('Plot velocity field') pyplot.clf() # Velocity vector plot pyplot.figure(figsize=(16,22)) pyplot.scatter(p2.x,p2.y,c=(p2.elev>24.),edgecolors='none', s=0.2) pyplot.gca().set_aspect('equal') pyplot.xlim((100,180)) pyplot.ylim((100,210)) #k=range(0,len(p2.x),2) # Thin out the vectors for easier viewing colVals = numpy.maximum(numpy.minimum(p2.elev, 25.), 19.) util.plot_triangles(p, values = colVals, edgecolors='white') k = range(len(p2.x)) # Thin out the triangles #k = (((10.*(p2.x - p2.x.round())).round()%2 == 0.0)*((10.*(p2.y - p2.y.round())).round()%2 == 0.0)).nonzero()[0] pyplot.quiver(p2.x[k],p2.y[k],p2.xvel[tindex,k], p2.yvel[tindex,k], scale_units='xy',units='xy',width=0.1, color='black',scale=1.0) pyplot.savefig('velocity_stationary.png',dpi=100, bbox_inches='tight') ## Froude number plot if verbose: print('Plot Froude number plot') pyplot.clf() pyplot.figure(figsize=(6,8)) froude_number = p2.vel[tindex]/(numpy.maximum(p2.height[tindex], 1.0e-03)*9.8)**0.5 froude_category = (froude_number>1.).astype(float) + (froude_number > 0.).astype(float) pyplot.scatter(p2.x,p2.y,edgecolors='none', s=0.2) ## Fake additions to plot to hack matplotlib legend pyplot.scatter(0.,0., color='FireBrick',label='>1', marker='s') pyplot.scatter(0.,0., color='PaleGreen',label='0-1', marker='s') pyplot.scatter(0.,0., color='blue',label='0',marker='s') pyplot.gca().set_aspect('equal') util.plot_triangles(p, values = froude_category, edgecolors='none') pyplot.xlim((p.x.min(), p.x.max())) pyplot.ylim((p.y.min(), p.y.max())) pyplot.title("Froude Number zones: 0, (0,1], or >1") import matplotlib.patches as mpatches #red_patch = mpatches.Patch(color='red', label='>1') #green_patch = mpatches.Patch(color='green', label='(0-1]') #blue_patch = mpatches.Patch(color='blue', label='0.') #pyplot.legend(handles=[red_patch, green_patch, blue_patch], labels=['>1', '(0-1]', '0.'], loc='best') pyplot.legend(loc='upper left') pyplot.savefig('froudeNumber.png',dpi=100,bbox_inches='tight')
26344
import time from typing import Callable from functools import wraps def timeit(metric_callback: Callable, **labels): def wrapper(func): @wraps(func) def func_wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) metric_callback(time.time() - start, labels=labels) return result return func_wrapper return wrapper
26363
from myhdl import Signal, intbv, always, always_comb, block, instances from hdmi.cores.primitives import dram16xn @block def convert_30_to_15(reset, clock, clockx2, data_in, tmds_data2, tmds_data1, tmds_data0): """ The block converts the 30-bit data into 15-bit data. Args: reset: The reset signal clock: The pixel clock clockx2: The clock with twice the frequency of pixel clock data_in: The input 30-bit data tmds_data2: 5 bits of the output data (output[15:10]) tmds_data1: 5 bits of the output data (output[10:5]) tmds_data0: 5 bits of the output data (output[5:0]) Returns: myhdl.instances() : A list of myhdl instances. """ # RAM Address write_addr, _write_addr, read_addr, _read_addr = [Signal(intbv(0)[4:0]) for _ in range(4)] data_int = Signal(intbv(0)[30:0]) @always(write_addr) def case_wa(): if write_addr < 15: _write_addr.next = write_addr + 1 else: _write_addr.next = 0 @always(clock.posedge, reset.posedge) def fdc(): if reset: write_addr.next = 0 else: write_addr.next = _write_addr o_data_out = Signal(intbv(0)[30:0]) # Dummy variable fifo_u = dram16xn(data_in, write_addr, read_addr, Signal(True), clock, o_data_out, data_int) @always(read_addr) def case_ra(): if read_addr < 15: _read_addr.next = read_addr + 1 else: _read_addr.next = 0 reset_sync, _reset_sync, reset_p = [Signal(bool(0)) for _ in range(3)] sync = Signal(bool(0)) @always(clockx2.posedge, reset.posedge) def fdp(): if reset: reset_sync.next = 1 else: reset_sync.next = reset @always(clockx2.posedge) def fdr(): if reset_p: sync.next = 0 else: sync.next = not sync @always(clockx2.posedge) def fdre(): if reset_p: read_addr.next = 0 elif sync: read_addr.next = _read_addr db = Signal(intbv(0)[30:0]) @always(clockx2.posedge) def fde(): if sync: db.next = data_int mux = Signal(intbv(0)[15:0]) @always_comb def mux_logic(): if not sync: mux.next = db[15:0] else: mux.next = db[30:15] @always(clockx2.posedge) def fd(): _reset_sync.next = reset_sync reset_p.next = _reset_sync tmds_data0.next = mux[5:0] tmds_data1.next = mux[10:5] tmds_data2.next = mux[15:10] return instances()
26468
from __future__ import division import numpy as np from sklearn.utils import shuffle from sklearn.metrics import * """ Module with different fitness functions implemented to be used by the CRO algorithm. The functions' only argument must be an individual (coral) and return its fitness, a number. The fitness might require other arguments, in that case the partial function in python's functools module is a very good option """ def max_ones(coral): """ Description: Returns the percentage of 1's in the coral. This function assumes 'coral' is a list, it could be further improved if it was a numpy array Input: - coral Output: - fitness """ return 100*(sum(coral) / len(coral)) def feature_selection(coral, X, y, model, get_prediction = lambda model, X: model.predict(X), metric=roc_auc_score, random_seed=None): """ Description: Returns the fitness (given by metric) of the selected features given by coral, when using Xt and yt for training the model clf Input: - coral : an individual - X: Data input - y: Data output - model: instance of the model to be trained - get_prediction: function that accepts the model and X and outputs the vector that will be used in the metric (predictions, scores...) - metric: metric that will be used as fitness Output: - fitness """ # offset % of data for training, the rest for testing offset = int(X.shape[0] * 0.9) Xs, ys = shuffle(X, y, random_state=random_seed) Xs = np.multiply(Xs, coral) X_train, y_train = Xs[:offset], ys[:offset] X_test, y_test = Xs[offset:], ys[offset:] # train model model.fit(X_train, y_train) # Compute metric y_pred = get_prediction(model, X_test) fitness = metric(y_test, y_pred) return fitness