id
stringlengths
3
8
content
stringlengths
100
981k
19759
import rospy MOVE_CYCLE_PERIOD = 0.01 def move_towards(target, current, step=1): if abs(target-current) < step: return target, True else: if target > current: return current + step, False else: return current - step, False def move_leg(leg, coxa=None, femur=None, tibia=None, step=1.3): coxa_done = True femur_done = True tibia_done = True if coxa: leg.coxa, coxa_done = move_towards(coxa, leg.coxa, step) if femur: leg.femur, femur_done = move_towards(femur, leg.femur, step) if tibia: leg.tibia, tibia_done = move_towards(tibia, leg.tibia, step) return coxa_done and femur_done and tibia_done def is_leg_close(leg, coxa=None, femur=None, tibia=None, tolerance=20): coxa_close = True femur_close = True tibia_close = True if coxa: coxa_close = leg.coxa + tolerance > coxa > leg.coxa - tolerance if femur: femur_close = leg.femur + tolerance > femur > leg.femur - tolerance if tibia: tibia_close = leg.tibia + tolerance > tibia > leg.tibia - tolerance return coxa_close and femur_close and tibia_close class FoldingManager(object): def __init__(self, body_controller): super(FoldingManager, self).__init__() self.body_controller = body_controller self.last_motor_position = None def position_femur_tibia(self): current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, None, 60, 240) lm = move_leg(self.last_motor_position.left_middle, None, 60, 240) lr = move_leg(self.last_motor_position.left_rear, None, 60, 240) rf = move_leg(self.last_motor_position.right_front, None, 240, 60) rm = move_leg(self.last_motor_position.right_middle, None, 240, 60) rr = move_leg(self.last_motor_position.right_rear, None, 240, 60) self.body_controller.set_motors(self.last_motor_position) if lf and lm and lr and rf and rm and rr: break rospy.sleep(0.05) def check_if_folded(self): current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position lf = is_leg_close(self.last_motor_position.left_front, 240) lm = is_leg_close(self.last_motor_position.left_middle, 240) or is_leg_close(self.last_motor_position.left_middle, 60) lr = is_leg_close(self.last_motor_position.left_rear, 60) rf = is_leg_close(self.last_motor_position.right_front, 60) rm = is_leg_close(self.last_motor_position.right_middle, 60) or is_leg_close(self.last_motor_position.right_middle, 240) rr = is_leg_close(self.last_motor_position.right_rear, 240) return lf and lm and lr and rf and rm and rr def unfold(self): self.position_femur_tibia() current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = False lr = False rf = False rr = False if self.last_motor_position.left_middle.coxa > 120: lf = move_leg(self.last_motor_position.left_front, 150) lm = move_leg(self.last_motor_position.left_middle, 150) if self.last_motor_position.left_middle.coxa < 180: lr = move_leg(self.last_motor_position.left_rear, 150) if self.last_motor_position.right_middle.coxa < 180: rf = move_leg(self.last_motor_position.right_front, 150) rm = move_leg(self.last_motor_position.right_middle, 150) if self.last_motor_position.right_middle.coxa > 120: rr = move_leg(self.last_motor_position.right_rear, 150) self.body_controller.set_motors(self.last_motor_position) if lf and lm and lr and rf and rm and rr: break while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, tibia=210) lm = move_leg(self.last_motor_position.left_middle, tibia=210) lr = move_leg(self.last_motor_position.left_rear, tibia=210) rf = move_leg(self.last_motor_position.right_front, tibia=90) rm = move_leg(self.last_motor_position.right_middle, tibia=90) rr = move_leg(self.last_motor_position.right_rear, tibia=90) self.body_controller.set_motors(self.last_motor_position) if lf and lm and lr and rf and rm and rr: break rospy.sleep(0.2) self.body_controller.set_torque(False) def fold(self): self.position_femur_tibia() current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position if not self.check_if_folded(): while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, 150) rm = move_leg(self.last_motor_position.right_middle, 150) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, 240) lr = move_leg(self.last_motor_position.left_rear, 60) rf = move_leg(self.last_motor_position.right_front, 60) rr = move_leg(self.last_motor_position.right_rear, 240) self.body_controller.set_motors(self.last_motor_position) if lf and lr and rf and rr: break while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, 240) rm = move_leg(self.last_motor_position.right_middle, 60) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break rospy.sleep(0.2) self.body_controller.set_torque(False) def unfold_on_ground(self): self.position_femur_tibia() current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position # lift middle legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, tibia=200) rm = move_leg(self.last_motor_position.right_middle, tibia=100) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break # fold out middle legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, coxa=150) rm = move_leg(self.last_motor_position.right_middle, coxa=150) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break # lower right leg while True: rospy.sleep(MOVE_CYCLE_PERIOD) rm = move_leg(self.last_motor_position.right_middle, femur=170, tibia=100) self.body_controller.set_motors(self.last_motor_position) if rm: break # unfold right legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) rf = move_leg(self.last_motor_position.right_front, coxa=150) rr = move_leg(self.last_motor_position.right_rear, coxa=150) self.body_controller.set_motors(self.last_motor_position) if rf and rr: break # lift right legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) rf = move_leg(self.last_motor_position.right_front, tibia=90) rr = move_leg(self.last_motor_position.right_rear, tibia=90) self.body_controller.set_motors(self.last_motor_position) if rf and rr: break # switch lifted side while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, femur=130, tibia=200) rm = move_leg(self.last_motor_position.right_middle, femur=240, tibia=90) self.body_controller.set_motors(self.last_motor_position) if rm and lm: break # unfold left legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, coxa=150) lr = move_leg(self.last_motor_position.left_rear, coxa=150) self.body_controller.set_motors(self.last_motor_position) if lf and lr: break # lift left legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, tibia=210) lr = move_leg(self.last_motor_position.left_rear, tibia=210) self.body_controller.set_motors(self.last_motor_position) if lf and lr: break # lift middle left while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, femur=60, tibia=210) self.body_controller.set_motors(self.last_motor_position) if lm: break rospy.sleep(0.2) self.body_controller.set_torque(False) def fold_on_ground(self): current_position = self.body_controller.read_hexapod_motor_positions() self.last_motor_position = current_position while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, 150, femur=60, tibia=210) lm = move_leg(self.last_motor_position.left_middle, 150, femur=60, tibia=210) lr = move_leg(self.last_motor_position.left_rear, 150, femur=60, tibia=210) rf = move_leg(self.last_motor_position.right_front, 150, femur=240, tibia=90) rm = move_leg(self.last_motor_position.right_middle, 150, femur=240, tibia=90) rr = move_leg(self.last_motor_position.right_rear, 150, femur=240, tibia=90) self.body_controller.set_motors(self.last_motor_position) if lf and lm and lr and rf and rm and rr: break # lower right leg while True: rospy.sleep(MOVE_CYCLE_PERIOD) rm = move_leg(self.last_motor_position.right_middle, femur=170, tibia=100) self.body_controller.set_motors(self.last_motor_position) if rm: break # compress right legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) rf = move_leg(self.last_motor_position.right_front, None, 240, 60) rr = move_leg(self.last_motor_position.right_rear, None, 240, 60) self.body_controller.set_motors(self.last_motor_position) if rf and rr: break # fold right legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) rf = move_leg(self.last_motor_position.right_front, 60) rr = move_leg(self.last_motor_position.right_rear, 240) self.body_controller.set_motors(self.last_motor_position) if rf and rr: break # switch lifted side while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, femur=130, tibia=200) rm = move_leg(self.last_motor_position.right_middle, femur=240, tibia=90) self.body_controller.set_motors(self.last_motor_position) if rm and lm: break # compress left legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, None, 60, 240) lr = move_leg(self.last_motor_position.left_rear, None, 60, 240) self.body_controller.set_motors(self.last_motor_position) if lf and lr: break # fold left legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lf = move_leg(self.last_motor_position.left_front, 240) lr = move_leg(self.last_motor_position.left_rear, 60) self.body_controller.set_motors(self.last_motor_position) if lf and lr: break # lift left middle leg while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, femur=60, tibia=210) self.body_controller.set_motors(self.last_motor_position) if lm: break # fold middle legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, 230) rm = move_leg(self.last_motor_position.right_middle, 70) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break # compress middle legs while True: rospy.sleep(MOVE_CYCLE_PERIOD) lm = move_leg(self.last_motor_position.left_middle, None, 60, 240) rm = move_leg(self.last_motor_position.right_middle, None, 240, 60) self.body_controller.set_motors(self.last_motor_position) if lm and rm: break rospy.sleep(0.2) self.body_controller.set_torque(False)
19773
import glob, os import numpy as np import tensorflow as tf import tensorflow.contrib.graph_editor as ge class Flownet2: def __init__(self, bilinear_warping_module): self.weights = dict() for key, shape in self.all_variables(): self.weights[key] = tf.get_variable(key, shape=shape) self.bilinear_warping_module = bilinear_warping_module def leaky_relu(self, x, s): assert s > 0 and s < 1, "Wrong s" return tf.maximum(x, s*x) def warp(self, x, flow): return self.bilinear_warping_module.bilinear_warping(x, tf.stack([flow[:,:,:,1], flow[:,:,:,0]], axis=3)) # flip true -> [:,:,:,0] y axis downwards # [:,:,:,1] x axis # as in matrix indexing # # false returns 0->x, 1->y def __call__(self, im0, im1, flip=True): f = self.get_blobs(im0, im1)['predict_flow_final'] if flip: f = tf.stack([f[:,:,:,1], f[:,:,:,0]], axis=3) return f def get_optimizer(self, flow, target, learning_rate=1e-4): #flow = self.__call__(im0, im1) loss = tf.reduce_sum(flow * target) # target holding the gradients! opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.95, beta2=0.99, epsilon=1e-8) opt = opt.minimize(loss, var_list= # [v for k,v in self.weights.iteritems() if (k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_'))]) [v for k,v in self.weights.iteritems() if ((k.startswith('net3_') or k.startswith('netsd_') or k.startswith('fuse_')) and not ('upsample' in k or 'deconv' in k))]) return opt, loss # If I run the network with large images (1024x2048) it crashes due to memory # constraints on a 12Gb titan X. # See https://github.com/tensorflow/tensorflow/issues/5816#issuecomment-268710077 # for a possible explanation. I fix it by adding run_after in the section with # the correlation layer so that 441 large tensors are not allocated at the same time def run_after(self, a_tensor, b_tensor): """Force a to run after b""" ge.reroute.add_control_inputs(a_tensor.op, [b_tensor.op]) # without epsilon I get nan-errors when I backpropagate def l2_norm(self, x): return tf.sqrt(tf.maximum(1e-5, tf.reduce_sum(x**2, axis=3, keep_dims=True))) def get_blobs(self, im0, im1): blobs = dict() batch_size = tf.to_int32(tf.shape(im0)[0]) width = tf.to_int32(tf.shape(im0)[2]) height = tf.to_int32(tf.shape(im0)[1]) TARGET_WIDTH = width TARGET_HEIGHT = height divisor = 64. ADAPTED_WIDTH = tf.to_int32(tf.ceil(tf.to_float(width)/divisor) * divisor) ADAPTED_HEIGHT = tf.to_int32(tf.ceil(tf.to_float(height)/divisor) * divisor) SCALE_WIDTH = tf.to_float(width) / tf.to_float(ADAPTED_WIDTH); SCALE_HEIGHT = tf.to_float(height) / tf.to_float(ADAPTED_HEIGHT); blobs['img0'] = im0 blobs['img1'] = im1 blobs['img0s'] = blobs['img0']*0.00392156862745098 blobs['img1s'] = blobs['img1']*0.00392156862745098 #mean = np.array([0.411451, 0.432060, 0.450141]) mean = np.array([0.37655231, 0.39534855, 0.40119368]) blobs['img0_nomean'] = blobs['img0s'] - mean blobs['img1_nomean'] = blobs['img1s'] - mean blobs['img0_nomean_resize'] = tf.image.resize_bilinear(blobs['img0_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['img1_nomean_resize'] = tf.image.resize_bilinear(blobs['img1_nomean'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['conv1a'] = tf.pad(blobs['img0_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]]) blobs['conv1a'] = tf.nn.conv2d(blobs['conv1a'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b'] blobs['conv1a'] = self.leaky_relu(blobs['conv1a'], 0.1) blobs['conv1b'] = tf.pad(blobs['img1_nomean_resize'], [[0,0], [3,3], [3,3], [0,0]]) blobs['conv1b'] = tf.nn.conv2d(blobs['conv1b'], self.weights['conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv1_b'] blobs['conv1b'] = self.leaky_relu(blobs['conv1b'], 0.1) blobs['conv2a'] = tf.pad(blobs['conv1a'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv2a'] = tf.nn.conv2d(blobs['conv2a'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b'] blobs['conv2a'] = self.leaky_relu(blobs['conv2a'], 0.1) blobs['conv2b'] = tf.pad(blobs['conv1b'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv2b'] = tf.nn.conv2d(blobs['conv2b'], self.weights['conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv2_b'] blobs['conv2b'] = self.leaky_relu(blobs['conv2b'], 0.1) blobs['conv3a'] = tf.pad(blobs['conv2a'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv3a'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b'] blobs['conv3a'] = self.leaky_relu(blobs['conv3a'], 0.1) blobs['conv3b'] = tf.pad(blobs['conv2b'], [[0,0], [2,2], [2,2], [0,0]]) blobs['conv3b'] = tf.nn.conv2d(blobs['conv3b'], self.weights['conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv3_b'] blobs['conv3b'] = self.leaky_relu(blobs['conv3b'], 0.1) # this might be considered a bit hacky tmp = [] x1_l = [] x2_l = [] for di in range(-20, 21, 2): for dj in range(-20, 21, 2): x1 = tf.pad(blobs['conv3a'], [[0,0], [20,20], [20,20], [0,0]]) x2 = tf.pad(blobs['conv3b'], [[0,0], [20-di,20+di], [20-dj,20+dj], [0,0]]) x1_l.append(x1) x2_l.append(x2) c = tf.nn.conv2d(x1*x2, tf.ones([1, 1, 256, 1])/256., strides=[1,1,1,1], padding='VALID') tmp.append(c[:,20:-20,20:-20,:]) for i in range(len(tmp)-1): #self.run_after(tmp[i], tmp[i+1]) self.run_after(x1_l[i], tmp[i+1]) self.run_after(x2_l[i], tmp[i+1]) blobs['corr'] = tf.concat(tmp, axis=3) blobs['corr'] = self.leaky_relu(blobs['corr'], 0.1) blobs['conv_redir'] = tf.nn.conv2d(blobs['conv3a'], self.weights['conv_redir_w'], strides=[1,1,1,1], padding="VALID") + self.weights['conv_redir_b'] blobs['conv_redir'] = self.leaky_relu(blobs['conv_redir'], 0.1) blobs['blob16'] = tf.concat([blobs['conv_redir'], blobs['corr']], axis=3) blobs['conv3_1'] = tf.nn.conv2d(blobs['blob16'], self.weights['conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv3_1_b'] blobs['conv3_1'] = self.leaky_relu(blobs['conv3_1'], 0.1) blobs['conv4'] = tf.pad(blobs['conv3_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv4'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv4_b'] blobs['conv4'] = self.leaky_relu(blobs['conv4'], 0.1) blobs['conv4_1'] = tf.nn.conv2d(blobs['conv4'], self.weights['conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv4_1_b'] blobs['conv4_1'] = self.leaky_relu(blobs['conv4_1'], 0.1) blobs['conv5'] = tf.pad(blobs['conv4_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv5'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv5_b'] blobs['conv5'] = self.leaky_relu(blobs['conv5'], 0.1) blobs['conv5_1'] = tf.nn.conv2d(blobs['conv5'], self.weights['conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv5_1_b'] blobs['conv5_1'] = self.leaky_relu(blobs['conv5_1'], 0.1) blobs['conv6'] = tf.pad(blobs['conv5_1'], [[0,0], [1,1], [1,1], [0,0]]) blobs['conv6'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['conv6_b'] blobs['conv6'] = self.leaky_relu(blobs['conv6'], 0.1) blobs['conv6_1'] = tf.nn.conv2d(blobs['conv6'], self.weights['conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['conv6_1_b'] blobs['conv6_1'] = self.leaky_relu(blobs['conv6_1'], 0.1) blobs['predict_flow6'] = tf.nn.conv2d(blobs['conv6_1'], self.weights['Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution1_b'] blobs['deconv5'] = tf.nn.conv2d_transpose(blobs['conv6_1'], self.weights['deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['deconv5_b'] blobs['deconv5'] = self.leaky_relu(blobs['deconv5'], 0.1) blobs['upsampled_flow6_to_5'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['upsample_flow6to5_b'] blobs['concat5'] = tf.concat([blobs['conv5_1'], blobs['deconv5'], blobs['upsampled_flow6_to_5']], axis=3) blobs['predict_flow5'] = tf.pad(blobs['concat5'], [[0,0], [1,1], [1,1], [0,0]]) blobs['predict_flow5'] = tf.nn.conv2d(blobs['predict_flow5'], self.weights['Convolution2_w'], strides=[1,1,1,1], padding="VALID") + self.weights['Convolution2_b'] blobs['deconv4'] = tf.nn.conv2d_transpose(blobs['concat5'], self.weights['deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['deconv4_b'] blobs['deconv4'] = self.leaky_relu(blobs['deconv4'], 0.1) blobs['upsampled_flow5_to_4'] = tf.nn.conv2d_transpose(blobs['predict_flow5'], self.weights['upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['upsample_flow5to4_b'] blobs['concat4'] = tf.concat([blobs['conv4_1'], blobs['deconv4'], blobs['upsampled_flow5_to_4']], axis=3) blobs['predict_flow4'] = tf.nn.conv2d(blobs['concat4'], self.weights['Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution3_b'] blobs['deconv3'] = tf.nn.conv2d_transpose(blobs['concat4'], self.weights['deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['deconv3_b'] blobs['deconv3'] = self.leaky_relu(blobs['deconv3'], 0.1) blobs['upsampled_flow4_to_3'] = tf.nn.conv2d_transpose(blobs['predict_flow4'], self.weights['upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['upsample_flow4to3_b'] blobs['concat3'] = tf.concat([blobs['conv3_1'], blobs['deconv3'], blobs['upsampled_flow4_to_3']], axis=3) blobs['predict_flow3'] = tf.nn.conv2d(blobs['concat3'], self.weights['Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution4_b'] blobs['deconv2'] = tf.nn.conv2d_transpose(blobs['concat3'], self.weights['deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['deconv2_b'] blobs['deconv2'] = self.leaky_relu(blobs['deconv2'], 0.1) blobs['upsampled_flow3_to_2'] = tf.nn.conv2d_transpose(blobs['predict_flow3'], self.weights['upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['upsample_flow3to2_b'] blobs['concat2'] = tf.concat([blobs['conv2a'], blobs['deconv2'], blobs['upsampled_flow3_to_2']], axis=3) blobs['predict_flow2'] = tf.nn.conv2d(blobs['concat2'], self.weights['Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['Convolution5_b'] blobs['blob41'] = blobs['predict_flow2'] * 20. blobs['blob42'] = tf.image.resize_bilinear(blobs['blob41'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['blob43'] = self.warp(blobs['img1_nomean_resize'], blobs['blob42']) blobs['blob44'] = blobs['img0_nomean_resize'] - blobs['blob43'] #blobs['blob45'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob44']**2, axis=3, keep_dims=True)) blobs['blob45'] = self.l2_norm(blobs['blob44']) blobs['blob46'] = 0.05*blobs['blob42'] blobs['blob47'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob43'], blobs['blob46'], blobs['blob45']], axis=3) #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE FIRST BRANCH ##################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob48'] = tf.pad(blobs['blob47'], [[0,0], [3,3], [3,3], [0,0]]) blobs['blob48'] = tf.nn.conv2d(blobs['blob48'], self.weights['net2_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv1_b'] blobs['blob48'] = self.leaky_relu(blobs['blob48'], 0.1) blobs['blob49'] = tf.pad(blobs['blob48'], [[0,0], [2,2], [2, 2], [0,0]]) blobs['blob49'] = tf.nn.conv2d(blobs['blob49'], self.weights['net2_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv2_b'] blobs['blob49'] = self.leaky_relu(blobs['blob49'], 0.1) blobs['blob50'] = tf.pad(blobs['blob49'], [[0,0], [2,2], [2,2], [0,0]]) blobs['blob50'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv3_b'] blobs['blob50'] = self.leaky_relu(blobs['blob50'], 0.1) blobs['blob51'] = tf.nn.conv2d(blobs['blob50'], self.weights['net2_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv3_1_b'] blobs['blob51'] = self.leaky_relu(blobs['blob51'], 0.1) blobs['blob52'] = tf.pad(blobs['blob51'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob52'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv4_b'] blobs['blob52'] = self.leaky_relu(blobs['blob52'], 0.1) blobs['blob53'] = tf.nn.conv2d(blobs['blob52'], self.weights['net2_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv4_1_b'] blobs['blob53'] = self.leaky_relu(blobs['blob53'], 0.1) blobs['blob54'] = tf.pad(blobs['blob53'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob54'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv5_b'] blobs['blob54'] = self.leaky_relu(blobs['blob54'], 0.1) blobs['blob55'] = tf.nn.conv2d(blobs['blob54'], self.weights['net2_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv5_1_b'] blobs['blob55'] = self.leaky_relu(blobs['blob55'], 0.1) blobs['blob56'] = tf.pad(blobs['blob55'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob56'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net2_conv6_b'] blobs['blob56'] = self.leaky_relu(blobs['blob56'], 0.1) blobs['blob57'] = tf.nn.conv2d(blobs['blob56'], self.weights['net2_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_conv6_1_b'] blobs['blob57'] = self.leaky_relu(blobs['blob57'], 0.1) blobs['blob58'] = tf.nn.conv2d(blobs['blob57'], self.weights['net2_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv6_b'] blobs['blob59'] = tf.nn.conv2d_transpose(blobs['blob57'], self.weights['net2_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net2_deconv5_b'] blobs['blob59'] = self.leaky_relu(blobs['blob59'], 0.1) blobs['blob60'] = tf.nn.conv2d_transpose(blobs['predict_flow6'], self.weights['net2_net2_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow6to5_b'] blobs['blob61'] = tf.concat([blobs['blob55'], blobs['blob59'], blobs['blob60']], axis=3) blobs['blob62'] = tf.nn.conv2d(blobs['blob61'], self.weights['net2_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv5_b'] blobs['blob63'] = tf.nn.conv2d_transpose(blobs['blob61'], self.weights['net2_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net2_deconv4_b'] blobs['blob63'] = self.leaky_relu(blobs['blob63'], 0.1) blobs['blob64'] = tf.nn.conv2d_transpose(blobs['blob62'], self.weights['net2_net2_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow5to4_b'] blobs['blob65'] = tf.concat([blobs['blob53'], blobs['blob63'], blobs['blob64']], axis=3) blobs['blob66'] = tf.nn.conv2d(blobs['blob65'], self.weights['net2_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv4_b'] blobs['blob67'] = tf.nn.conv2d_transpose(blobs['blob65'], self.weights['net2_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net2_deconv3_b'] blobs['blob67'] = self.leaky_relu(blobs['blob67'], 0.1) blobs['blob68'] = tf.nn.conv2d_transpose(blobs['blob66'], self.weights['net2_net2_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow4to3_b'] blobs['blob69'] = tf.concat([blobs['blob51'], blobs['blob67'], blobs['blob68']], axis=3) blobs['blob70'] = tf.nn.conv2d(blobs['blob69'], self.weights['net2_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv3_b'] blobs['blob71'] = tf.nn.conv2d_transpose(blobs['blob69'], self.weights['net2_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net2_deconv2_b'] blobs['blob71'] = self.leaky_relu(blobs['blob71'], 0.1) blobs['blob72'] = tf.nn.conv2d_transpose(blobs['blob70'], self.weights['net2_net2_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net2_net2_upsample_flow3to2_b'] blobs['blob73'] = tf.concat([blobs['blob49'], blobs['blob71'], blobs['blob72']], axis=3) blobs['blob74'] = tf.nn.conv2d(blobs['blob73'], self.weights['net2_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net2_predict_conv2_b'] blobs['blob75'] = blobs['blob74'] * 20. blobs['blob76'] = tf.image.resize_bilinear(blobs['blob75'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=True) blobs['blob77'] = self.warp(blobs['img1_nomean_resize'], blobs['blob76']) blobs['blob78'] = blobs['img0_nomean_resize'] - blobs['blob77'] #blobs['blob79'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob78']**2, axis=3, keep_dims=True)) blobs['blob79'] = self.l2_norm(blobs['blob78']) blobs['blob80'] = 0.05*blobs['blob76'] blobs['blob81'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize'], blobs['blob77'], blobs['blob80'], blobs['blob79']], axis=3) #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE SECOND BRANCH #################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob82'] = tf.pad(blobs['blob81'], [[0,0], [3,3], [3,3], [0,0]]) blobs['blob82'] = tf.nn.conv2d(blobs['blob82'], self.weights['net3_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv1_b'] blobs['blob82'] = self.leaky_relu(blobs['blob82'], 0.1) blobs['blob83'] = tf.pad(blobs['blob82'], [[0,0], [2,2], [2, 2], [0,0]]) blobs['blob83'] = tf.nn.conv2d(blobs['blob83'], self.weights['net3_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv2_b'] blobs['blob83'] = self.leaky_relu(blobs['blob83'], 0.1) blobs['blob84'] = tf.pad(blobs['blob83'], [[0,0], [2,2], [2,2], [0,0]]) blobs['blob84'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv3_b'] blobs['blob84'] = self.leaky_relu(blobs['blob84'], 0.1) blobs['blob85'] = tf.nn.conv2d(blobs['blob84'], self.weights['net3_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv3_1_b'] blobs['blob85'] = self.leaky_relu(blobs['blob85'], 0.1) blobs['blob86'] = tf.pad(blobs['blob85'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob86'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv4_b'] blobs['blob86'] = self.leaky_relu(blobs['blob86'], 0.1) blobs['blob87'] = tf.nn.conv2d(blobs['blob86'], self.weights['net3_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv4_1_b'] blobs['blob87'] = self.leaky_relu(blobs['blob87'], 0.1) blobs['blob88'] = tf.pad(blobs['blob87'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob88'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv5_b'] blobs['blob88'] = self.leaky_relu(blobs['blob88'], 0.1) blobs['blob89'] = tf.nn.conv2d(blobs['blob88'], self.weights['net3_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv5_1_b'] blobs['blob89'] = self.leaky_relu(blobs['blob89'], 0.1) blobs['blob90'] = tf.pad(blobs['blob89'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob90'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['net3_conv6_b'] blobs['blob90'] = self.leaky_relu(blobs['blob90'], 0.1) blobs['blob91'] = tf.nn.conv2d(blobs['blob90'], self.weights['net3_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_conv6_1_b'] blobs['blob91'] = self.leaky_relu(blobs['blob91'], 0.1) blobs['blob92'] = tf.nn.conv2d(blobs['blob91'], self.weights['net3_predict_conv6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv6_b'] blobs['blob93'] = tf.nn.conv2d_transpose(blobs['blob91'], self.weights['net3_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['net3_deconv5_b'] blobs['blob93'] = self.leaky_relu(blobs['blob93'], 0.1) blobs['blob94'] = tf.nn.conv2d_transpose(blobs['blob92'], self.weights['net3_net3_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow6to5_b'] blobs['blob95'] = tf.concat([blobs['blob89'], blobs['blob93'], blobs['blob94']], axis=3) blobs['blob96'] = tf.nn.conv2d(blobs['blob95'], self.weights['net3_predict_conv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv5_b'] blobs['blob97'] = tf.nn.conv2d_transpose(blobs['blob95'], self.weights['net3_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['net3_deconv4_b'] blobs['blob97'] = self.leaky_relu(blobs['blob97'], 0.1) blobs['blob98'] = tf.nn.conv2d_transpose(blobs['blob96'], self.weights['net3_net3_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow5to4_b'] blobs['blob99'] = tf.concat([blobs['blob87'], blobs['blob97'], blobs['blob98']], axis=3) blobs['blob100'] = tf.nn.conv2d(blobs['blob99'], self.weights['net3_predict_conv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv4_b'] blobs['blob101'] = tf.nn.conv2d_transpose(blobs['blob99'], self.weights['net3_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['net3_deconv3_b'] blobs['blob101'] = self.leaky_relu(blobs['blob101'], 0.1) blobs['blob102'] = tf.nn.conv2d_transpose(blobs['blob100'], self.weights['net3_net3_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow4to3_b'] blobs['blob103'] = tf.concat([blobs['blob85'], blobs['blob101'], blobs['blob102']], axis=3) blobs['blob104'] = tf.nn.conv2d(blobs['blob103'], self.weights['net3_predict_conv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv3_b'] blobs['blob105'] = tf.nn.conv2d_transpose(blobs['blob103'], self.weights['net3_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['net3_deconv2_b'] blobs['blob105'] = self.leaky_relu(blobs['blob105'], 0.1) blobs['blob106'] = tf.nn.conv2d_transpose(blobs['blob104'], self.weights['net3_net3_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['net3_net3_upsample_flow3to2_b'] blobs['blob107'] = tf.concat([blobs['blob83'], blobs['blob105'], blobs['blob106']], axis=3) blobs['blob108'] = tf.nn.conv2d(blobs['blob107'], self.weights['net3_predict_conv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['net3_predict_conv2_b'] blobs['blob109'] = blobs['blob108'] * 20. #################################################################################### #################################################################################### #################################################################################### ###################### END OF THE THIRD BRANCH #################################### #################################################################################### #################################################################################### #################################################################################### blobs['blob110'] = tf.concat([blobs['img0_nomean_resize'], blobs['img1_nomean_resize']], axis=3) #self.run_after(blobs['blob110'], blobs['blob109']) blobs['blob111'] = tf.nn.conv2d(blobs['blob110'], self.weights['netsd_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv0_b'] blobs['blob111'] = self.leaky_relu(blobs['blob111'], 0.1) blobs['blob112'] = tf.pad(blobs['blob111'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob112'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv1_b'] blobs['blob112'] = self.leaky_relu(blobs['blob112'], 0.1) blobs['blob113'] = tf.nn.conv2d(blobs['blob112'], self.weights['netsd_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv1_1_b'] blobs['blob113'] = self.leaky_relu(blobs['blob113'], 0.1) blobs['blob114'] = tf.pad(blobs['blob113'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob114'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv2_b'] blobs['blob114'] = self.leaky_relu(blobs['blob114'], 0.1) blobs['blob115'] = tf.nn.conv2d(blobs['blob114'], self.weights['netsd_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv2_1_b'] blobs['blob115'] = self.leaky_relu(blobs['blob115'], 0.1) blobs['blob116'] = tf.pad(blobs['blob115'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob116'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv3_b'] blobs['blob116'] = self.leaky_relu(blobs['blob116'], 0.1) blobs['blob117'] = tf.nn.conv2d(blobs['blob116'], self.weights['netsd_conv3_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv3_1_b'] blobs['blob117'] = self.leaky_relu(blobs['blob117'], 0.1) blobs['blob118'] = tf.pad(blobs['blob117'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob118'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv4_b'] blobs['blob118'] = self.leaky_relu(blobs['blob118'], 0.1) blobs['blob119'] = tf.nn.conv2d(blobs['blob118'], self.weights['netsd_conv4_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv4_1_b'] blobs['blob119'] = self.leaky_relu(blobs['blob119'], 0.1) blobs['blob120'] = tf.pad(blobs['blob119'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob120'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv5_b'] blobs['blob120'] = self.leaky_relu(blobs['blob120'], 0.1) blobs['blob121'] = tf.nn.conv2d(blobs['blob120'], self.weights['netsd_conv5_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv5_1_b'] blobs['blob121'] = self.leaky_relu(blobs['blob121'], 0.1) blobs['blob122'] = tf.pad(blobs['blob121'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob122'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_w'], strides=[1,2,2,1], padding="VALID") + self.weights['netsd_conv6_b'] blobs['blob122'] = self.leaky_relu(blobs['blob122'], 0.1) blobs['blob123'] = tf.nn.conv2d(blobs['blob122'], self.weights['netsd_conv6_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_conv6_1_b'] blobs['blob123'] = self.leaky_relu(blobs['blob123'], 0.1) blobs['blob124'] = tf.nn.conv2d(blobs['blob123'], self.weights['netsd_Convolution1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution1_b'] blobs['blob125'] = tf.nn.conv2d_transpose(blobs['blob123'], self.weights['netsd_deconv5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 512], strides=[1,2,2,1]) + self.weights['netsd_deconv5_b'] blobs['blob125'] = self.leaky_relu(blobs['blob125'], 0.1) blobs['blob126'] = tf.nn.conv2d_transpose(blobs['blob124'], self.weights['netsd_upsample_flow6to5_w'], output_shape=[batch_size, ADAPTED_HEIGHT/32, ADAPTED_WIDTH/32, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow6to5_b'] blobs['blob127'] = tf.concat([blobs['blob121'], blobs['blob125'], blobs['blob126']], axis=3) blobs['blob128'] = tf.nn.conv2d(blobs['blob127'], self.weights['netsd_interconv5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv5_b'] blobs['blob129'] = tf.nn.conv2d(blobs['blob128'], self.weights['netsd_Convolution2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution2_b'] blobs['blob130'] = tf.nn.conv2d_transpose(blobs['blob127'], self.weights['netsd_deconv4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 256], strides=[1,2,2,1]) + self.weights['netsd_deconv4_b'] blobs['blob130'] = self.leaky_relu(blobs['blob130'], 0.1) blobs['blob131'] = tf.nn.conv2d_transpose(blobs['blob129'], self.weights['netsd_upsample_flow5to4_w'], output_shape=[batch_size, ADAPTED_HEIGHT/16, ADAPTED_WIDTH/16, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow5to4_b'] blobs['blob132'] = tf.concat([blobs['blob119'], blobs['blob130'], blobs['blob131']], axis=3) blobs['blob133'] = tf.nn.conv2d(blobs['blob132'], self.weights['netsd_interconv4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv4_b'] blobs['blob134'] = tf.nn.conv2d(blobs['blob133'], self.weights['netsd_Convolution3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution3_b'] blobs['blob135'] = tf.nn.conv2d_transpose(blobs['blob132'], self.weights['netsd_deconv3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 128], strides=[1,2,2,1]) + self.weights['netsd_deconv3_b'] blobs['blob135'] = self.leaky_relu(blobs['blob135'], 0.1) blobs['blob136'] = tf.nn.conv2d_transpose(blobs['blob134'], self.weights['netsd_upsample_flow4to3_w'], output_shape=[batch_size, ADAPTED_HEIGHT/8, ADAPTED_WIDTH/8, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow4to3_b'] blobs['blob137'] = tf.concat([blobs['blob117'], blobs['blob135'], blobs['blob136']], axis=3) blobs['blob138'] = tf.nn.conv2d(blobs['blob137'], self.weights['netsd_interconv3_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv3_b'] blobs['blob139'] = tf.nn.conv2d(blobs['blob138'], self.weights['netsd_Convolution4_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution4_b'] blobs['blob140'] = tf.nn.conv2d_transpose(blobs['blob137'], self.weights['netsd_deconv2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 64], strides=[1,2,2,1]) + self.weights['netsd_deconv2_b'] blobs['blob140'] = self.leaky_relu(blobs['blob140'], 0.1) blobs['blob141'] = tf.nn.conv2d_transpose(blobs['blob139'], self.weights['netsd_upsample_flow3to2_w'], output_shape=[batch_size, ADAPTED_HEIGHT/4, ADAPTED_WIDTH/4, 2], strides=[1,2,2,1]) + self.weights['netsd_upsample_flow3to2_b'] blobs['blob142'] = tf.concat([blobs['blob115'], blobs['blob140'], blobs['blob141']], axis=3) blobs['blob143'] = tf.nn.conv2d(blobs['blob142'], self.weights['netsd_interconv2_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_interconv2_b'] blobs['blob144'] = tf.nn.conv2d(blobs['blob143'], self.weights['netsd_Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['netsd_Convolution5_b'] blobs['blob145'] = 0.05*blobs['blob144'] blobs['blob146'] = tf.image.resize_nearest_neighbor(blobs['blob145'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False) blobs['blob147'] = tf.image.resize_nearest_neighbor(blobs['blob109'], size=[ADAPTED_HEIGHT, ADAPTED_WIDTH], align_corners=False) #blobs['blob148'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob146']**2, axis=3, keep_dims=True)) blobs['blob148'] = self.l2_norm(blobs['blob146']) #blobs['blob149'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob147']**2, axis=3, keep_dims=True)) blobs['blob149'] = self.l2_norm(blobs['blob147']) blobs['blob150'] = self.warp(blobs['img1_nomean_resize'], blobs['blob146']) blobs['blob151'] = blobs['img0_nomean_resize'] - blobs['blob150'] #blobs['blob152'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob151']**2, axis=3, keep_dims=True)) blobs['blob152'] = self.l2_norm(blobs['blob151']) blobs['blob153'] = self.warp(blobs['img1_nomean_resize'], blobs['blob147']) blobs['blob154'] = blobs['img0_nomean_resize'] - blobs['blob153'] #blobs['blob155'] = tf.sqrt(1e-8+tf.reduce_sum(blobs['blob154']**2, axis=3, keep_dims=True)) blobs['blob155'] = self.l2_norm(blobs['blob154']) blobs['blob156'] = tf.concat([blobs['img0_nomean_resize'], blobs['blob146'], blobs['blob147'], blobs['blob148'], blobs['blob149'], blobs['blob152'], blobs['blob155']], axis=3) blobs['blob157'] = tf.nn.conv2d(blobs['blob156'], self.weights['fuse_conv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv0_b'] blobs['blob157'] = self.leaky_relu(blobs['blob157'], 0.1) blobs['blob158'] = tf.pad(blobs['blob157'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob158'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv1_b'] blobs['blob158'] = self.leaky_relu(blobs['blob158'], 0.1) blobs['blob159'] = tf.nn.conv2d(blobs['blob158'], self.weights['fuse_conv1_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv1_1_b'] blobs['blob159'] = self.leaky_relu(blobs['blob159'], 0.1) blobs['blob160'] = tf.pad(blobs['blob159'], [[0,0], [1,1], [1,1], [0,0]]) blobs['blob160'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_w'], strides=[1,2,2,1], padding="VALID") + self.weights['fuse_conv2_b'] blobs['blob160'] = self.leaky_relu(blobs['blob160'], 0.1) blobs['blob161'] = tf.nn.conv2d(blobs['blob160'], self.weights['fuse_conv2_1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_conv2_1_b'] blobs['blob161'] = self.leaky_relu(blobs['blob161'], 0.1) blobs['blob162'] = tf.nn.conv2d(blobs['blob161'], self.weights['fuse__Convolution5_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution5_b'] blobs['blob163'] = tf.nn.conv2d_transpose(blobs['blob161'], self.weights['fuse_deconv1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 32], strides=[1,2,2,1]) + self.weights['fuse_deconv1_b'] blobs['blob163'] = self.leaky_relu(blobs['blob163'], 0.1) blobs['blob164'] = tf.nn.conv2d_transpose(blobs['blob162'], self.weights['fuse_upsample_flow2to1_w'], output_shape=[batch_size, ADAPTED_HEIGHT/2, ADAPTED_WIDTH/2, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow2to1_b'] blobs['blob165'] = tf.concat([blobs['blob159'], blobs['blob163'], blobs['blob164']], axis=3) blobs['blob166'] = tf.nn.conv2d(blobs['blob165'], self.weights['fuse_interconv1_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv1_b'] blobs['blob167'] = tf.nn.conv2d(blobs['blob166'], self.weights['fuse__Convolution6_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution6_b'] blobs['blob168'] = tf.nn.conv2d_transpose(blobs['blob165'], self.weights['fuse_deconv0_w'], output_shape=[batch_size, ADAPTED_HEIGHT/1, ADAPTED_WIDTH/1, 16], strides=[1,2,2,1]) + self.weights['fuse_deconv0_b'] blobs['blob168'] = self.leaky_relu(blobs['blob168'], 0.1) blobs['blob169'] = tf.nn.conv2d_transpose(blobs['blob167'], self.weights['fuse_upsample_flow1to0_w'], output_shape=[batch_size, ADAPTED_HEIGHT, ADAPTED_WIDTH, 2], strides=[1,2,2,1]) + self.weights['fuse_upsample_flow1to0_b'] blobs['blob170'] = tf.concat([blobs['blob157'], blobs['blob168'], blobs['blob169']], axis=3) blobs['blob171'] = tf.nn.conv2d(blobs['blob170'], self.weights['fuse_interconv0_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse_interconv0_b'] blobs['blob172'] = tf.nn.conv2d(blobs['blob171'], self.weights['fuse__Convolution7_w'], strides=[1,1,1,1], padding="SAME") + self.weights['fuse__Convolution7_b'] blobs['predict_flow_resize'] = tf.image.resize_bilinear(blobs['blob172'], size=[TARGET_HEIGHT, TARGET_WIDTH], align_corners=True) scale = tf.stack([SCALE_WIDTH, SCALE_HEIGHT]) scale = tf.reshape(scale, [1,1,1,2]) blobs['predict_flow_final'] = scale*blobs['predict_flow_resize'] self.blobs = blobs return blobs def all_variables(self): return [('netsd_deconv5_w', (4, 4, 512, 1024)), ('netsd_conv1_b', (64,)), ('netsd_upsample_flow5to4_w', (4, 4, 2, 2)), ('conv2_b', (128,)), ('fuse__Convolution5_w', (3, 3, 128, 2)), ('netsd_conv4_1_w', (3, 3, 512, 512)), ('netsd_interconv3_w', (3, 3, 386, 128)), ('netsd_deconv4_w', (4, 4, 256, 1026)), ('deconv4_b', (256,)), ('fuse_interconv0_w', (3, 3, 82, 16)), ('netsd_Convolution2_b', (2,)), ('net3_conv4_b', (512,)), ('net3_conv3_b', (256,)), ('net3_predict_conv2_w', (3, 3, 194, 2)), ('net3_predict_conv3_b', (2,)), ('conv6_1_w', (3, 3, 1024, 1024)), ('fuse_upsample_flow2to1_b', (2,)), ('Convolution1_w', (3, 3, 1024, 2)), ('net3_deconv3_w', (4, 4, 128, 770)), ('net2_deconv3_b', (128,)), ('fuse_conv1_w', (3, 3, 64, 64)), ('conv5_w', (3, 3, 512, 512)), ('Convolution4_w', (3, 3, 386, 2)), ('fuse_conv0_b', (64,)), ('net2_conv3_w', (5, 5, 128, 256)), ('upsample_flow4to3_b', (2,)), ('netsd_conv4_1_b', (512,)), ('fuse_upsample_flow2to1_w', (4, 4, 2, 2)), ('netsd_conv4_b', (512,)), ('net2_net2_upsample_flow3to2_b', (2,)), ('net3_predict_conv4_b', (2,)), ('fuse_upsample_flow1to0_b', (2,)), ('conv4_1_w', (3, 3, 512, 512)), ('deconv2_b', (64,)), ('net2_conv4_1_w', (3, 3, 512, 512)), ('net3_deconv4_w', (4, 4, 256, 1026)), ('net2_deconv5_b', (512,)), ('netsd_deconv5_b', (512,)), ('net2_deconv2_b', (64,)), ('net3_conv2_b', (128,)), ('conv_redir_w', (1, 1, 256, 32)), ('fuse_conv1_1_b', (128,)), ('net2_deconv5_w', (4, 4, 512, 1024)), ('net2_conv5_b', (512,)), ('net2_conv4_w', (3, 3, 256, 512)), ('net2_predict_conv6_w', (3, 3, 1024, 2)), ('netsd_conv5_b', (512,)), ('deconv4_w', (4, 4, 256, 1026)), ('net2_net2_upsample_flow4to3_b', (2,)), ('fuse__Convolution6_w', (3, 3, 32, 2)), ('net3_deconv2_w', (4, 4, 64, 386)), ('net2_conv6_1_w', (3, 3, 1024, 1024)), ('netsd_conv0_b', (64,)), ('netsd_conv5_1_w', (3, 3, 512, 512)), ('net2_conv6_1_b', (1024,)), ('net3_conv2_w', (5, 5, 64, 128)), ('net3_predict_conv6_w', (3, 3, 1024, 2)), ('net3_conv4_1_b', (512,)), ('net3_net3_upsample_flow4to3_w', (4, 4, 2, 2)), ('net2_deconv2_w', (4, 4, 64, 386)), ('deconv3_b', (128,)), ('netsd_interconv5_b', (512,)), ('net2_conv3_1_w', (3, 3, 256, 256)), ('netsd_interconv4_w', (3, 3, 770, 256)), ('net3_deconv3_b', (128,)), ('fuse_conv0_w', (3, 3, 11, 64)), ('net3_predict_conv6_b', (2,)), ('fuse_upsample_flow1to0_w', (4, 4, 2, 2)), ('netsd_deconv3_b', (128,)), ('net3_predict_conv5_w', (3, 3, 1026, 2)), ('netsd_conv5_w', (3, 3, 512, 512)), ('netsd_interconv5_w', (3, 3, 1026, 512)), ('netsd_Convolution3_w', (3, 3, 256, 2)), ('net2_predict_conv4_w', (3, 3, 770, 2)), ('deconv2_w', (4, 4, 64, 386)), ('net3_predict_conv5_b', (2,)), ('fuse__Convolution5_b', (2,)), ('fuse__Convolution7_w', (3, 3, 16, 2)), ('net2_net2_upsample_flow6to5_w', (4, 4, 2, 2)), ('netsd_conv3_b', (256,)), ('net3_conv6_w', (3, 3, 512, 1024)), ('net3_conv1_b', (64,)), ('netsd_Convolution4_b', (2,)), ('net3_conv3_w', (5, 5, 128, 256)), ('netsd_conv0_w', (3, 3, 6, 64)), ('net2_conv4_b', (512,)), ('net2_predict_conv3_w', (3, 3, 386, 2)), ('net3_net3_upsample_flow3to2_w', (4, 4, 2, 2)), ('fuse_conv1_1_w', (3, 3, 64, 128)), ('deconv5_b', (512,)), ('fuse__Convolution7_b', (2,)), ('net3_conv6_1_w', (3, 3, 1024, 1024)), ('net3_net3_upsample_flow5to4_w', (4, 4, 2, 2)), ('net3_conv4_w', (3, 3, 256, 512)), ('upsample_flow5to4_w', (4, 4, 2, 2)), ('conv4_1_b', (512,)), ('img0s_aug_b', (320, 448, 3, 1)), ('conv5_1_b', (512,)), ('net3_conv4_1_w', (3, 3, 512, 512)), ('upsample_flow5to4_b', (2,)), ('net3_conv3_1_b', (256,)), ('Convolution1_b', (2,)), ('upsample_flow4to3_w', (4, 4, 2, 2)), ('conv5_1_w', (3, 3, 512, 512)), ('conv3_1_b', (256,)), ('conv3_w', (5, 5, 128, 256)), ('net2_conv2_b', (128,)), ('net3_net3_upsample_flow6to5_w', (4, 4, 2, 2)), ('upsample_flow3to2_b', (2,)), ('netsd_Convolution5_w', (3, 3, 64, 2)), ('netsd_interconv2_w', (3, 3, 194, 64)), ('net2_predict_conv6_b', (2,)), ('net2_deconv4_w', (4, 4, 256, 1026)), ('scale_conv1_b', (2,)), ('net2_net2_upsample_flow5to4_w', (4, 4, 2, 2)), ('netsd_conv2_b', (128,)), ('netsd_conv2_1_b', (128,)), ('netsd_upsample_flow6to5_w', (4, 4, 2, 2)), ('net2_predict_conv5_b', (2,)), ('net3_conv6_1_b', (1024,)), ('netsd_conv6_w', (3, 3, 512, 1024)), ('Convolution4_b', (2,)), ('net2_predict_conv4_b', (2,)), ('fuse_deconv1_b', (32,)), ('conv3_1_w', (3, 3, 473, 256)), ('net3_deconv2_b', (64,)), ('netsd_conv6_b', (1024,)), ('net2_conv5_1_w', (3, 3, 512, 512)), ('net3_conv5_1_w', (3, 3, 512, 512)), ('deconv5_w', (4, 4, 512, 1024)), ('fuse_conv2_b', (128,)), ('netsd_conv1_1_b', (128,)), ('netsd_upsample_flow6to5_b', (2,)), ('Convolution5_w', (3, 3, 194, 2)), ('scale_conv1_w', (1, 1, 2, 2)), ('net2_net2_upsample_flow5to4_b', (2,)), ('conv6_1_b', (1024,)), ('fuse_conv2_1_b', (128,)), ('netsd_Convolution5_b', (2,)), ('netsd_conv3_1_b', (256,)), ('conv2_w', (5, 5, 64, 128)), ('fuse_conv2_w', (3, 3, 128, 128)), ('net2_conv2_w', (5, 5, 64, 128)), ('conv3_b', (256,)), ('net3_deconv5_w', (4, 4, 512, 1024)), ('img1s_aug_w', (1, 1, 1, 1)), ('netsd_conv2_w', (3, 3, 128, 128)), ('conv6_w', (3, 3, 512, 1024)), ('netsd_conv4_w', (3, 3, 256, 512)), ('net2_conv1_w', (7, 7, 12, 64)), ('netsd_Convolution1_w', (3, 3, 1024, 2)), ('netsd_conv1_w', (3, 3, 64, 64)), ('netsd_deconv4_b', (256,)), ('conv4_w', (3, 3, 256, 512)), ('conv5_b', (512,)), ('net3_deconv5_b', (512,)), ('netsd_interconv3_b', (128,)), ('net3_conv3_1_w', (3, 3, 256, 256)), ('net2_predict_conv5_w', (3, 3, 1026, 2)), ('Convolution3_b', (2,)), ('netsd_conv5_1_b', (512,)), ('netsd_interconv4_b', (256,)), ('conv4_b', (512,)), ('net3_net3_upsample_flow6to5_b', (2,)), ('Convolution5_b', (2,)), ('fuse_conv2_1_w', (3, 3, 128, 128)), ('net3_net3_upsample_flow4to3_b', (2,)), ('conv1_w', (7, 7, 3, 64)), ('upsample_flow6to5_b', (2,)), ('conv6_b', (1024,)), ('netsd_upsample_flow3to2_w', (4, 4, 2, 2)), ('net2_deconv3_w', (4, 4, 128, 770)), ('netsd_conv2_1_w', (3, 3, 128, 128)), ('netsd_Convolution3_b', (2,)), ('netsd_upsample_flow4to3_w', (4, 4, 2, 2)), ('fuse_interconv1_w', (3, 3, 162, 32)), ('netsd_upsample_flow4to3_b', (2,)), ('netsd_conv3_1_w', (3, 3, 256, 256)), ('netsd_deconv3_w', (4, 4, 128, 770)), ('net3_conv5_b', (512,)), ('net3_conv5_1_b', (512,)), ('net2_net2_upsample_flow4to3_w', (4, 4, 2, 2)), ('net2_net2_upsample_flow3to2_w', (4, 4, 2, 2)), ('net2_conv3_b', (256,)), ('netsd_conv6_1_w', (3, 3, 1024, 1024)), ('fuse_deconv0_b', (16,)), ('net2_predict_conv2_w', (3, 3, 194, 2)), ('net2_conv1_b', (64,)), ('net2_conv6_b', (1024,)), ('net3_predict_conv2_b', (2,)), ('net2_conv4_1_b', (512,)), ('netsd_Convolution4_w', (3, 3, 128, 2)), ('deconv3_w', (4, 4, 128, 770)), ('fuse_deconv1_w', (4, 4, 32, 128)), ('netsd_Convolution2_w', (3, 3, 512, 2)), ('netsd_Convolution1_b', (2,)), ('net2_conv3_1_b', (256,)), ('fuse_conv1_b', (64,)), ('net2_deconv4_b', (256,)), ('net3_predict_conv4_w', (3, 3, 770, 2)), ('Convolution3_w', (3, 3, 770, 2)), ('netsd_upsample_flow3to2_b', (2,)), ('net3_net3_upsample_flow3to2_b', (2,)), ('fuse_interconv0_b', (16,)), ('Convolution2_w', (3, 3, 1026, 2)), ('net2_conv6_w', (3, 3, 512, 1024)), ('netsd_conv3_w', (3, 3, 128, 256)), ('netsd_upsample_flow5to4_b', (2,)), ('net3_predict_conv3_w', (3, 3, 386, 2)), ('conv_redir_b', (32,)), ('net2_conv5_1_b', (512,)), ('upsample_flow6to5_w', (4, 4, 2, 2)), ('net2_net2_upsample_flow6to5_b', (2,)), ('net3_conv6_b', (1024,)), ('fuse__Convolution6_b', (2,)), ('Convolution2_b', (2,)), ('upsample_flow3to2_w', (4, 4, 2, 2)), ('net3_conv1_w', (7, 7, 12, 64)), ('fuse_deconv0_w', (4, 4, 16, 162)), ('img0s_aug_w', (1, 1, 1, 1)), ('netsd_conv1_1_w', (3, 3, 64, 128)), ('netsd_deconv2_b', (64,)), ('net2_conv5_w', (3, 3, 512, 512)), ('fuse_interconv1_b', (32,)), ('netsd_conv6_1_b', (1024,)), ('netsd_interconv2_b', (64,)), ('img1s_aug_b', (320, 448, 3, 1)), ('netsd_deconv2_w', (4, 4, 64, 386)), ('net2_predict_conv3_b', (2,)), ('net2_predict_conv2_b', (2,)), ('net3_deconv4_b', (256,)), ('net3_net3_upsample_flow5to4_b', (2,)), ('conv1_b', (64,)), ('net3_conv5_w', (3, 3, 512, 512))]
19787
import sys import pytest import aiohttp_mako from aiohttp import web @pytest.fixture def app(): app = web.Application() lookup = aiohttp_mako.setup(app, input_encoding='utf-8', output_encoding='utf-8', default_filters=['decode.utf8']) tplt = "<html><body><h1>${head}</h1>${text}</body></html>" lookup.put_string('tplt.html', tplt) return app
19814
from __future__ import print_function import warnings import numpy as np C4 = 261.6 # Hz piano_max = 4186.01 # Hz piano_min = 27.5000 # Hz - not audible __all__ = ['cent_per_value','get_f_min','get_f_max','FrequencyScale'] def cent_per_value(f_min, f_max, v_min, v_max): """ This function takes in a frequency max and min, and y value max and min and returns a y scale parameter in units of cents/y value. Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- f_min : float Minimum frequency. f_max : float Maximum frequency. v_min : float Minimum y value. v_max : float Maximum y value. Returns ------- float A y-scale parameter in units of cents/y value. """ step = 1200 * np.log2(f_max / f_min) / (v_max - v_min) return step def get_f_min(f_max, cents_per_value, v_min, v_max): """ This function takes in a y value max and min, a maximum frequency and a y scale parameter in units of cents/y value, and returns the minimum frequency that fits to such a scale. Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- f_max : float Maximum frequency. cents_per_value : float A y scale parameter in units of cents/y value. v_min : float Minimum y value. v_max : float Maximum y value. Returns ------- float Minimum frequency. """ f_min = f_max / (2 ** ((v_max - v_min) * cents_per_value / 1200)) return f_min def get_f_max(f_min, cents_per_value, v_min, v_max): """ This function takes in a y value max and min, a minimum frequency and a y scale parameter in units of cents/y value, and returns the maximum frequency that fits to such a scale. Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- f_min : float Minimum frequency. cents_per_value : float A y scale parameter in units of cents/y value. v_min : float Minimum y value. v_max : float Maximum y value. Returns ------- float Maximum frequency. """ f_max = f_min * (2 ** ((v_max - v_min) * cents_per_value / 1200)) return f_max class FrequencyScale(object): """ This class builds a frequency scale and populates the namespace of frequency objects based on the given inputs from the following combos: - frequency_min, frequency_max, y value min and y value max - frequency_max, cents_per_value, y value min and y value max - frequency_min, cents_per_value, y value min and y value max Cents are a logarithmic unit of tone intervals (https://en.wikipedia.org/wiki/Cent_(music)). Parameters ---------- frequency_min : float Minimum frequency. frequency_max : float Maximum frequency. cents_per_value : float A y scale parameter in units of cents/y value. value_min : float Description of parameter `value_min`. value_max : float Description of parameter `value_max`. verbose : bool Flag to toggle printing functions. """ def __init__(self, value_min, value_max, frequency_min=None, frequency_max=None, cents_per_value=None, verbose=False): if verbose: print('initial vals (fmin, fmax, vmin, vmax):', frequency_min, frequency_max, value_min, value_max) # checking for which inputs were given self.y_inputs = [] if frequency_min != None: self.y_inputs.append('frequency_min') if frequency_max != None: self.y_inputs.append('frequency_max') if cents_per_value != None: self.y_inputs.append('cents_per_value') self.y_n_inputs = len(self.y_inputs) # raising exception if anything other than two inputs were given if self.y_n_inputs != 2: raise Exception('Frequency takes 2 of the frequency_min, frequency_max, and cents_per_value inputs. You inputted {} inputs, which were {}.'.format( self.y_n_inputs, self.y_inputs)) # frequency_min and frequency_max input case if (cents_per_value == None): cents_per_value = cent_per_value(frequency_min, frequency_max, value_min, value_max) # cents_per_value and frequency_max input case if (frequency_min == None): frequency_min = get_f_min(frequency_max, cents_per_value, value_min, value_max) # cents_per_value and frequency_min input case if (frequency_max == None): frequency_max = get_f_max(frequency_min, cents_per_value, value_min, value_max) self.y_value_min = value_min self.y_value_max = value_max self.y_frequency_max = frequency_max self.y_frequency_min = frequency_min self.y_cents_per_value = cents_per_value if self.y_frequency_max > piano_max: warnings.warn('Your maximum frequency of {} Hz is above a pianos maximum of {} Hz.'.format( np.round(self.y_frequency_max, 2), piano_max)) if self.y_frequency_min < piano_min: warnings.warn('Your minimum frequency of {} Hz is below a pianos minimum of {} Hz.'.format( np.round(self.y_frequency_min, 2), piano_min)) if self.y_value_min > self.y_value_max: warnings.warn('Min y value is greater than max y value.') if verbose: print('initial vals (f_min, f_max, y_min, y_max):', self.y_frequency_min, self.y_frequency_max, self.y_value_min, self.y_value_max) def freq(v): return self.y_frequency_min * \ 2 ** ((v - self.y_value_min) * self.y_cents_per_value / 1200) self.y_freq_translate_to_range = lambda array: list(map(freq, array)) if verbose: print('Frequency Scale Built')
19872
import numpy as np import h5py import pyglib.basic.units as units import pyglib.basic.splot as splot ''' Equation of state. ''' def Murnaghan(parameters, vol): ''' Given a vector of parameters and volumes, return a vector of energies. equation From PRB 28,5480 (1983) ''' E0 = parameters[0] B0 = parameters[1] BP = parameters[2] V0 = parameters[3] return E0 + B0 * vol / BP * (((V0 / vol)**BP) / \ (BP - 1) + 1) - V0 * B0 / (BP - 1.0) def Murnaghan_pv(parameters, vol): ''' function P(V). ''' B0 = parameters[1] BP = parameters[2] V0 = parameters[3] return B0 / BP * ((V0 / vol)**BP - 1.0) def eos_fit_fun(pars, y, x): ''' The objective function that will be minimized. ''' return y - Murnaghan(pars, x) def get_ev_fit(v, e): ''' Fitting the Birch-Murnaghan EOS to data. v in \A^3, e in eV. Based on http://gilgamesh.cheme.cmu.edu/doc/software/jacapo/ appendices/appendix-eos.html ''' from pylab import polyfit from scipy.optimize import leastsq # fit a parabola to the data # y = ax^2 + bx + c a, b, c = polyfit(v, e, 2) '''The parabola does not fit the data very well, but we can use it to get some analytical guesses for other parameters. V0 = minimum energy volume, or where dE/dV=0 E = aV^2 + bV + c dE/dV = 2aV + b = 0 V0 = -b/2a E0 is the minimum energy, which is: E0 = aV0^2 + bV0 + c B is equal to V0*d^2E/dV^2, which is just 2a*V0 and from experience we know Bprime_0 is usually a small number like 4 ''' # now here are our initial guesses. v0 = -b / (2 * a) e0 = a * v0**2 + b * v0 + c b0 = 2 * a * v0 bP = 4 # initial guesses in the same order used in the Murnaghan function x0 = [e0, b0, bP, v0] murnpars, ier = leastsq(eos_fit_fun, x0, args=(e, v)) return murnpars def h5get_mfit_ev(nmesh_fac=10, fsave='results.h5', path='/lapw'): '''Calculate and save Murnaghan fiting results in fsave. Interpolated e-v and p-v data on volume mesh with a factor a nmesh_fac of the original one are also stored. ''' # Get e,v data. with h5py.File(fsave, 'r') as f: e_list = f[path+'/etot_list'][...] v_list = f['/vol_list'][...] # fitting murnpars = get_ev_fit(v_list, e_list) vh = np.linspace(v_list[0], v_list[-1], nmesh_fac * len(v_list) - 1) eh = Murnaghan(murnpars, vh) ph = Murnaghan_pv(murnpars, vh)*units.eVA_GPa with h5py.File(fsave, 'a') as f: if path+'/eosfit' in f: del f[path+'/eosfit'] f[path+'/eosfit/e0'] = murnpars[0] f[path+'/eosfit/b0'] = murnpars[1] f[path+'/eosfit/bp'] = murnpars[2] f[path+'/eosfit/v0'] = murnpars[3] f[path+'/eosfit/v_list'] = vh f[path+'/eosfit/e_list'] = eh f[path+'/eosfit/p_list'] = ph splot.xy2_plot([v_list, vh], [e_list, eh], ['o', '-'], ['raw', 'fitting'], xlabel='V ($\AA^3$/primitive cell)', ylabel='E (eV/primitive cell)', fsave=path+'_evfit.pdf') splot.xy_plot(vh, ph, xlabel='V ($\AA^3$/primitive cell)', ylabel='P (GPa)', fsave=path+'_pvfit.pdf') def eos_spline(v, e, tol): ''' Get volume, energy, pressure, and bulk modulus using spline, given v in \A^3 and e in eV. ''' from scipy.interpolate import UnivariateSpline s = UnivariateSpline(v, e, k=3, s=tol) vh = np.linspace(v[0], v[-1], 10 * len(v) - 1) eh = [s.derivatives(i)[0] for i in vh] ph = [-s.derivatives(i)[1] * units.eVA_GPa for i in vh] bh = [s.derivatives(i)[2] * vh[i] * units.eVA_GPa for i in vh] return vh, eh, ph, bh
19885
from dataclasses import dataclass, field from typing import Any, Dict, List from aiographql.client.error import GraphQLError from aiographql.client.request import GraphQLRequestContainer @dataclass(frozen=True) class GraphQLBaseResponse(GraphQLRequestContainer): json: Dict[str, Any] = field(default_factory=dict) @dataclass(frozen=True) class GraphQLResponse(GraphQLBaseResponse): """ GraphQL Response object wrapping response data and any errors. This object also contains the a copy of the :class:`GraphQLRequest` that produced this response. """ @property def errors(self) -> List[GraphQLError]: """ A list of :class:`GraphQLError` objects if server responded with query errors. """ return [GraphQLError.load(error) for error in self.json.get("errors", list())] @property def data(self) -> Dict[str, Any]: """The data payload the server responded with.""" return self.json.get("data", dict()) @property def query(self) -> str: """The query string used to produce this response.""" return self.request.query
19896
import time from unittest import mock import pytest from django.contrib.auth.models import AnonymousUser from django.core.exceptions import ValidationError from django.db import IntegrityError from django.http import Http404 from django.test import RequestFactory, TestCase from django.urls import reverse from wagtail.admin.edit_handlers import ObjectList from wagtail.core.blocks.stream_block import StreamBlockValidationError from wagtail.core.models import Collection from wagtail.images import get_image_model from wagtail.images.tests.utils import get_test_image_file from wagtail.tests.utils import WagtailPageTests, WagtailTestUtils from wagtail_factories import ImageFactory from core.mixins import AuthenticatedUserRequired from core.models import ( AbstractObjectHash, CaseStudyRelatedPages, Country, CuratedListPage, DetailPage, IndustryTag, InterstitialPage, LandingPage, LessonPlaceholderPage, ListPage, MagnaPageChooserPanel, Product, Region, Tag, TopicPage, case_study_body_validation, ) from domestic.models import DomesticDashboard, DomesticHomePage, GreatDomesticHomePage from tests.helpers import SetUpLocaleMixin, make_test_video from tests.unit.core import factories from .factories import ( CaseStudyFactory, DetailPageFactory, LessonPlaceholderPageFactory, StructurePageFactory, TopicPageFactory, ) def test_object_hash(): mocked_file = mock.Mock() mocked_file.read.return_value = b'foo' hash = AbstractObjectHash.generate_content_hash(mocked_file) assert hash == 'acbd18db4cc2f85cedef654fccc4a4d8' @pytest.mark.django_db def test_detail_page_can_mark_as_read(client, domestic_homepage, user, domestic_site, mock_get_user_profile): # given the user has not read a lesson client.force_login(user) list_page = factories.ListPageFactory(parent=domestic_homepage, record_read_progress=True) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = factories.TopicPageFactory(parent=curated_list_page) detail_page = factories.DetailPageFactory(parent=topic_page) client.get(detail_page.url) # then the progress is saved read_hit = detail_page.page_views.get() assert read_hit.sso_id == str(user.pk) assert read_hit.list_page == list_page @pytest.mark.django_db def test_detail_page_cannot_mark_as_read(client, domestic_homepage, user, domestic_site, mock_get_user_profile): # given the user has not read a lesson client.force_login(user) list_page = factories.ListPageFactory(parent=domestic_homepage, record_read_progress=False) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = factories.TopicPageFactory(parent=curated_list_page) detail_page = factories.DetailPageFactory(parent=topic_page) client.get(detail_page.url) # then the progress is saved assert detail_page.page_views.count() == 0 @pytest.mark.django_db def test_detail_page_anon_user_not_marked_as_read(client, domestic_homepage, domestic_site, mock_get_user_profile): # given the user has not read a lesson clp = factories.CuratedListPageFactory(parent=domestic_homepage) topic_page = factories.TopicPageFactory(parent=clp) detail_page = factories.DetailPageFactory(parent=topic_page) client.get(detail_page.url) # then the progress is unaffected assert detail_page.page_views.count() == 0 @pytest.mark.django_db def test_curated_list_page_has_link_in_context_back_to_parent( client, domestic_homepage, domestic_site, mock_export_plan_detail_list, patch_get_user_lesson_completed, user, mock_get_user_profile, ): list_page = factories.ListPageFactory( parent=domestic_homepage, record_read_progress=False, slug='example-learning-homepage' ) curated_list_page = factories.CuratedListPageFactory(parent=list_page, slug='example-module') expected_url = list_page.url assert expected_url == '/example-learning-homepage/' client.force_login(user) # because unauthed users get redirected resp = client.get(curated_list_page.url) # Make a more precise string to search for: one that's marked up as a # hyperlink target, at least expected_link_string = f'href="{expected_url}"' assert expected_link_string.encode('utf-8') in resp.content @pytest.mark.django_db @pytest.mark.parametrize( 'querystring_to_add,expected_backlink_value', ( ('', None), ('?return-link=%2Fexport-plan%2F1%2Fabout-your-business%2F', '/export-plan/1/about-your-business/'), ( '?return-link=%2Fexport-plan%2F1%2Fabout-your-business%2F%3Ffoo%3Dbar', '/export-plan/1/about-your-business/?foo=bar', ), ( '?bam=baz&return-link=%2Fexport-plan%2F1%2Fabout-your-business%2F%3Ffoo%3Dbar', '/export-plan/1/about-your-business/?foo=bar', # NB: bam=baz should not be here ), ('?bam=baz&return-link=example%2Fexport-plan%2Fpath%2F%3Ffoo%3Dbar', None), ( ( '?bam=baz&return-link=https%3A%2F%2Fphishing.example.com' '%2Fexport-plan%2F1%2Fabout-your-business%2F%3Ffoo%3Dbar' ), None, ), ( ( '?bam=baz&return-link=%3A%2F%2Fphishing.example.com' '%2Fexport-plan%2F1%2Fabout-your-business%2F%3Ffoo%3Dbar' ), None, ), ('?bam=baz', None), ( '?bam=baz&return-link=%2Fexport-plan%2F1%2Fabout-your-business%2F%3Ffoo%3Dbar', '/export-plan/1/about-your-business/?foo=bar', ), ), ids=( 'no backlink querystring present', 'backlink querystring present without encoded querystring of its own', 'backlink querystring present WITH encoded querystring of its own', 'backlink querystring present WITH encoded querystring and other args', 'backlink querystring present WITH bad payload - path does not start with / ', 'backlink querystring present WITH bad payload - path is a full URL', 'backlink querystring present WITH bad payload - path is a URL with flexible proto', 'backlink querystring NOT present BUT another querystring is', 'backlink querystring present WITH OTHER QUERYSTRING TOO', ), ) def test_detail_page_get_context_handles_backlink_querystring_appropriately( rf, domestic_homepage, domestic_site, user, querystring_to_add, expected_backlink_value, export_plan_data ): list_page = factories.ListPageFactory(parent=domestic_homepage, record_read_progress=False) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = factories.TopicPageFactory(parent=curated_list_page) detail_page = factories.DetailPageFactory(parent=topic_page, template='learn/detail_page.html') lesson_page_url = detail_page.url if querystring_to_add: lesson_page_url += querystring_to_add request = rf.get(lesson_page_url) request.user = user context = detail_page.get_context(request) if expected_backlink_value is None: assert 'backlink' not in context else: assert context.get('backlink') == expected_backlink_value @pytest.mark.django_db @pytest.mark.parametrize( 'backlink_path,expected', ( (None, None), ('', None), ('/export-plan/1/about-your-business/', 'About your business'), ('/export-plan/1/business-objectives/', 'Business objectives'), ('/export-plan/1/target-markets-research/', 'Target markets research'), ('/export-plan/1/adapting-your-product/', 'Adapting your product'), ('/export-plan/1/marketing-approach/', 'Marketing approach'), ('/export-plan/1/costs-and-pricing/', 'Costs and pricing'), ('/export-plan/1/funding-and-credit/', 'Funding and credit'), ('/export-plan/1/getting-paid/', 'Getting paid'), ('/export-plan/1/travel-plan/', 'Travel plan'), ('/export-plan/1/business-risk/', 'Business risk'), ('/export-plan/1/adapting-your-product/?foo=bar', 'Adapting your product'), ('/export-plan/', None), ('/path/that/will/not/match/anything/', None), ), ids=( 'no backlink', 'empty string backlink', 'Seeking: About your business', 'Seeking: Business objectives', 'Seeking: Target markets research', 'Seeking: Adapting your product', 'Seeking: Marketing approach', 'Seeking: Costs and pricing', 'Seeking: Getting paid', 'Seeking: Funding and credit', 'Seeking: Travel plan', 'Seeking: Business risk', 'Valid backlink with querystring does not break name lookup', 'backlink for real page that is not an export plan step', 'backlink for a non-existent page', ), ) def test_detail_page_get_context_gets_backlink_title_based_on_backlink( backlink_path, expected, en_locale, ): detail_page = factories.DetailPageFactory(template='learn/detail_page.html') assert detail_page._get_backlink_title(backlink_path) == expected @pytest.mark.django_db def test_case_study__str_method(): case_study = CaseStudyFactory(title='', summary_context='Test Co') assert f'{case_study}' == 'Test Co' case_study = CaseStudyFactory(title='Alice and Bob export to every continent', summary_context='Test Co') assert f'{case_study}' == 'Alice and Bob export to every continent' @pytest.mark.django_db def test_case_study__timestamps(): case_study = CaseStudyFactory(summary_context='Test Co') created = case_study.created modified = case_study.created assert created == modified time.sleep(1) # Forgive this - we need to have a real, later save case_study.save() case_study.refresh_from_db() assert case_study.created == created assert case_study.modified > modified _case_study_top_level_error_message = ( 'This block must contain one Media section (with one or two items in it) and one Text section.' ) _case_study_one_video_only_error_message = 'Only one video may be used in a case study.' _case_study_video_order_error_message = 'The video must come before a still image.' @pytest.mark.django_db @pytest.mark.parametrize( 'block_type_values,exception_message', ( (['text'], _case_study_top_level_error_message), ([('media', ('video',))], _case_study_top_level_error_message), ([], None), (['text', 'text'], _case_study_top_level_error_message), (['text', ('media', ('video', 'image'))], _case_study_top_level_error_message), ([('media', ('video',)), ('media', ('video',))], _case_study_top_level_error_message), (['text', ('media', ('video', 'image')), 'text'], _case_study_top_level_error_message), ([('media', ('video', 'image')), 'text', ('media', ('video', 'image'))], _case_study_top_level_error_message), ([('media', ('video', 'image')), 'text'], None), ([('media', ('video',)), 'text'], None), ([('media', ('image',)), 'text'], None), ([('media', ('image', 'image')), 'text'], None), ([('media', ('image', 'video')), 'text'], _case_study_video_order_error_message), ([('media', ('video', 'video')), 'text'], _case_study_one_video_only_error_message), (['quote', ('media', ('video', 'image')), 'text'], None), (['quote', 'quote', ('media', ('video', 'image')), 'text'], None), ), ids=( '1. Top-level check: text node only: not fine', '2. Top-level check: media node only: not fine', '3. Top-level check: no nodes: fine - requirement is done at a higher level', '4. Top-level check: two text nodes: not fine', '5. Top-level check: text before media: not fine', '6. Top-level check: two media nodes: not fine', '7. Top-level check: text, media, text: not fine', '8. Top-level check: media, text, media: not fine', '9. media node (video and image) and text node: fine', '10. media node (video only) and text node: fine', '11. media node (image only) and text node: fine', '12. media node (two images) and text node: fine', '13. media node (image before video) and text node: not fine', '14. media node (two videos) and text node: not fine', '15. quote node, media node (video and image) and text node: fine', '16. 2 quote nodes, media node (video and image) and text node: fine', ), ) def test_case_study_body_validation(block_type_values, exception_message): def _create_block(block_type): mock_block = mock.Mock() mock_block.block_type = block_type return mock_block value = [] for block_spec in block_type_values: if type(block_spec) == tuple: parent_block = _create_block(block_spec[0]) children = [] for subblock_spec in block_spec[1]: children.append(_create_block(subblock_spec)) parent_block.value = children value.append(parent_block) else: value.append(_create_block(block_spec)) if exception_message: with pytest.raises(StreamBlockValidationError) as ctx: case_study_body_validation(value) assert ctx.message == exception_message else: # should not blow up case_study_body_validation(value) class LandingPageTests(WagtailPageTests): def test_can_be_created_under_homepage(self): self.assertAllowedParentPageTypes( LandingPage, { DomesticHomePage, GreatDomesticHomePage, }, ) def test_can_be_created_under_landing_page(self): self.assertAllowedSubpageTypes(LandingPage, {ListPage, InterstitialPage, DomesticDashboard}) class ListPageTests(WagtailPageTests): def test_can_be_created_under_landing_page(self): self.assertAllowedParentPageTypes(ListPage, {LandingPage}) def test_allowed_subtypes(self): self.assertAllowedSubpageTypes(ListPage, {CuratedListPage}) class CuratedListPageTests(WagtailPageTests): def test_can_be_created_under_list_page(self): self.assertAllowedParentPageTypes(CuratedListPage, {ListPage}) def test_allowed_subtypes(self): self.assertAllowedSubpageTypes(CuratedListPage, {TopicPage}) @pytest.mark.django_db def test_curatedlistpage_count_detail_pages(curated_list_pages_with_lessons): data = curated_list_pages_with_lessons clp_1 = data[0][0] clp_2 = data[1][0] assert clp_1.count_detail_pages == 2 # 2 pages, placeholder ignored assert clp_2.count_detail_pages == 1 # 1 page only, no placeholders at all class TopicPageTests(WagtailPageTests): def test_parent_page_types(self): self.assertAllowedParentPageTypes(TopicPage, {CuratedListPage}) def test_allowed_subtypes(self): self.assertAllowedSubpageTypes( TopicPage, { DetailPage, LessonPlaceholderPage, }, ) @pytest.mark.django_db def test_topic_page_redirects_to_module( rf, domestic_homepage, domestic_site, ): # The topic pages should never render their own content - they are basically # scaffolding to give us a sensible page tree. As such they shouldn't be # rendered list_page = factories.ListPageFactory(parent=domestic_homepage, record_read_progress=False) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = TopicPageFactory( parent=curated_list_page, ) # Check that we have the page tree set up correctly, else this is None assert curated_list_page.url is not None for page_method in ('serve', 'serve_preview'): request = rf.get(topic_page.url) resp = getattr(topic_page, page_method)(request) assert resp._headers['location'] == ('Location', curated_list_page.url) class LessonPlaceholderPageTests(WagtailPageTests): def test_parent_page_types(self): self.assertAllowedParentPageTypes(LessonPlaceholderPage, {TopicPage}) def test_allowed_subtypes(self): self.assertAllowedSubpageTypes(LessonPlaceholderPage, {}) @pytest.mark.django_db def test_context_cms_generic_page(rf, domestic_homepage): assert 'page' in domestic_homepage.get_context(rf) @pytest.mark.django_db def test_placeholder_page_redirects_to_module( rf, domestic_homepage, domestic_site, ): # The topic pages should never render their own content and instead redirect list_page = factories.ListPageFactory(parent=domestic_homepage, record_read_progress=False) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = TopicPageFactory( parent=curated_list_page, ) placeholder_page = LessonPlaceholderPageFactory(parent=topic_page) # Check that we have the page tree set up correctly, else this is None assert curated_list_page.url is not None for page_method in ('serve', 'serve_preview'): request = rf.get(placeholder_page.url) resp = getattr(placeholder_page, page_method)(request) assert resp._headers['location'] == ('Location', curated_list_page.url) @pytest.mark.django_db def test_structure_page_redirects_to_http404( rf, domestic_homepage, domestic_site, ): # The structure pages should never render their own content and instead return Http404 structure_page = StructurePageFactory(parent=domestic_homepage) for page_method in ('serve', 'serve_preview'): request = rf.get('/foo/') with pytest.raises(Http404): getattr(structure_page, page_method)(request) class DetailPageTests(SetUpLocaleMixin, WagtailPageTests): def test_parent_page_types(self): self.assertAllowedParentPageTypes(DetailPage, {TopicPage}) def test_detail_page_creation_for_single_hero_image(self): detail_page = DetailPageFactory(hero=[('Image', ImageFactory())]) self.assert_(detail_page, True) def test_validation_kick_for_multiple_hero_image(self): with pytest.raises(ValidationError): detail_page = DetailPageFactory(hero=[('Image', ImageFactory()), ('Image', ImageFactory())]) self.assert_(detail_page, None) @pytest.mark.django_db def test_redirection_for_unauthenticated_user( client, domestic_homepage, domestic_site, mock_export_plan_detail_list, patch_get_user_lesson_completed, user, mock_get_user_profile, ): landing_page = factories.LandingPageFactory(parent=domestic_homepage) interstitial_page = factories.InterstitialPageFactory(parent=landing_page) list_page = factories.ListPageFactory(parent=domestic_homepage) curated_list_page = factories.CuratedListPageFactory(parent=list_page) topic_page = factories.TopicPageFactory(parent=curated_list_page) detail_page = factories.DetailPageFactory(parent=topic_page) pages = [ landing_page, interstitial_page, list_page, curated_list_page, detail_page, ] for page in pages: assert isinstance(page, AuthenticatedUserRequired) for page in pages: response = client.get(page.url, follow=False) assert response.status_code == 302 assert response._headers['location'] == ('Location', f'/signup/?next={page.url}') # Show an authenticated user can still get in there client.force_login(user) for page in pages: response = client.get(page.url, follow=False) assert response.status_code == 200 class TestImageAltRendition(TestCase, WagtailTestUtils): def setUp(self): self.login() root_collection, _ = Collection.objects.get_or_create(name='Root', depth=0) great_image_collection = root_collection.add_child(name='Great Images') # Create an image with alt text AltTextImage = get_image_model() # Noqa self.image = AltTextImage.objects.create( title='Test image', file=get_test_image_file(), alt_text='smart alt text', collection=great_image_collection ) def test_image_alt_rendition(self): rendition = self.image.get_rendition('width-100') assert rendition.alt == 'smart alt text' assert self.image.title != rendition.alt class TestGreatMedia(TestCase): def test_sources_mp4_with_no_transcript(self): media = make_test_video() self.assertEqual( media.sources, [ { 'src': '/media/movie.mp4', 'type': 'video/mp4', 'transcript': None, } ], ) def test_sources_mp4_with_transcript(self): media = make_test_video(transcript='A test transcript text') self.assertEqual( media.sources, [ { 'src': '/media/movie.mp4', 'type': 'video/mp4', 'transcript': 'A test transcript text', } ], ) def test_subtitles__present(self): media = make_test_video() media.subtitles_en = 'Dummy subtitles content' media.save() self.assertTrue(media.subtitles_en) expected = [ { 'srclang': 'en', 'label': 'English', 'url': reverse('core:subtitles-serve', args=[media.id, 'en']), 'default': False, }, ] self.assertEqual(media.subtitles, expected) def test_subtitles__not_present(self): media = make_test_video() self.assertFalse(media.subtitles_en) self.assertEqual(media.subtitles, []) class TestSmallSnippets(TestCase): # Most snippets are generally small models. Move them out of this test case # into their own if/when they gain any custom methods beyond __str__ def test_region(self): region = Region.objects.create(name='Test Region') self.assertEqual(region.name, 'Test Region') self.assertEqual(f'{region}', 'Test Region') #  tests __str__ def test_country(self): region = Region.objects.create(name='Test Region') # NB: slugs are not automatically set. # The SlugField is about valiation, not auto-population by default country1 = Country.objects.create( name='Test Country', slug='test-country', ) country2 = Country.objects.create( name='Other Country', slug='other-country', region=region, ) country_unicode = Country.objects.create( name='Téßt Country', slug='tt-country', ) self.assertEqual(country1.name, 'Test Country') self.assertEqual(country1.slug, 'test-country') self.assertEqual(country1.region, None) self.assertEqual(f'{country1}', 'Test Country') #  tests __str__ self.assertEqual(country2.name, 'Other Country') self.assertEqual(country2.slug, 'other-country') self.assertEqual(country2.region, region) self.assertEqual(country_unicode.name, 'Téßt Country') # by default, ASCII only - https://docs.djangoproject.com/en/2.2/ref/utils/#django.utils.text.slugify self.assertEqual(country_unicode.slug, 'tt-country') self.assertEqual(country_unicode.region, None) self.assertEqual(f'{country_unicode}', 'Téßt Country') #  tests __str__ def test_country_sets_slug_on_save(self): country = Country.objects.create(name='Test Country') country.refresh_from_db() self.assertEqual(country.slug, 'test-country') # Slug is set only on first save, if not already set country_2 = Country.objects.create(name='Another Country') self.assertEqual(country_2.slug, 'another-country') country_2.name = 'Changed country name' country_2.save() country_2.refresh_from_db() self.assertEqual( country_2.slug, 'another-country', 'Slug should not have changed', ) # Can specify slug up-front country_3 = Country.objects.create( name='Country Three', slug='somewhere', ) country_3.refresh_from_db() self.assertEqual(country_3.slug, 'somewhere') # Can't reuse slug with self.assertRaises(IntegrityError): Country.objects.create(name='Test Country') def test_product(self): product = Product.objects.create(name='Test Product') self.assertEqual(product.name, 'Test Product') self.assertEqual(f'{product}', 'Test Product') #  tests __str__ def test_tag(self): tag = Tag.objects.create(name='Test Tag') self.assertEqual(tag.name, 'Test Tag') self.assertEqual(f'{tag}', 'Test Tag') #  tests __str__ def test_industry_tag(self): tag = IndustryTag.objects.create(name='Test IndustryTag') self.assertEqual(tag.name, 'Test IndustryTag') self.assertEqual(f'{tag}', 'Test IndustryTag') #  tests __str__ class TestMagnaPageChooserPanel(SetUpLocaleMixin, TestCase): def setUp(self): self.request = RequestFactory().get('/') user = AnonymousUser() # technically, Anonymous users cannot access the admin self.request.user = user model = CaseStudyRelatedPages # a model with a foreign key to Page which we want to render as a page chooser # a MagnaPageChooserPanel class that works on CaseStudyRelatedPages's 'page' field self.edit_handler = ObjectList( [MagnaPageChooserPanel('page', [DetailPage, CuratedListPage, TopicPage])] ).bind_to(model=model, request=self.request) self.my_page_chooser_panel = self.edit_handler.children[0] # build a form class containing the fields that MyPageChooserPanel wants self.PageChooserForm = self.edit_handler.get_form_class() # a test instance of PageChooserModel, pointing to the 'christmas' page self.detail_page = DetailPageFactory(slug='detail-page') self.test_instance = model.objects.create(page=self.detail_page) self.form = self.PageChooserForm(instance=self.test_instance) self.page_chooser_panel = self.my_page_chooser_panel.bind_to(instance=self.test_instance, form=self.form) def test_magna_page_chooser_panel_target_models(self): result = ( MagnaPageChooserPanel('page', [DetailPage, CuratedListPage, TopicPage]) .bind_to(model=MagnaPageChooserPanel) .target_models() ) self.assertEqual(result, [DetailPage, CuratedListPage, TopicPage]) def test_magna_page_chooser_panel_render_as_empty_field(self): test_instance = CaseStudyRelatedPages() form = self.PageChooserForm(instance=test_instance) page_chooser_panel = self.my_page_chooser_panel.bind_to(instance=test_instance, form=form, request=self.request) result = page_chooser_panel.render_as_field() self.assertIn('<span class="title"></span>', result) self.assertIn('Choose a page', result)
19918
import const def corpora2idx(sents, ind2idx): return [[ind2idx[w] if w in ind2idx else const.UNK for w in s] for s in sents]
19927
from flask import Flask, render_template, session, redirect, url_for app = Flask(__name__) app.config['SECRET_KEY'] = '<PASSWORD>' @app.route('/') def index(): return render_template('index.html') @app.route('/set-background/<mode>') def set_background(mode): session['mode'] = mode return redirect(url_for('index')) @app.route('/drop-session') def drop_session(): session.pop('mode', None) return redirect(url_for('index'))
19947
import os import salt.utils.platform from tests.support.mock import patch from tests.support.unit import TestCase, skipIf try: import salt.utils.win_system as win_system except Exception as exc: # pylint: disable=broad-except win_system = exc class WinSystemImportTestCase(TestCase): """ Simply importing should not raise an error, especially on Linux """ def test_import(self): if isinstance(win_system, Exception): raise Exception( "Importing win_system caused traceback: {}".format(win_system) ) @skipIf(not salt.utils.platform.is_windows(), "Only test on Windows systems") class WinSystemTestCase(TestCase): """ Test cases for salt.utils.win_system """ def test_get_computer_name(self): """ Should return the computer name """ with patch("win32api.GetComputerNameEx", return_value="FAKENAME"): self.assertEqual(win_system.get_computer_name(), "FAKENAME") def test_get_computer_name_fail(self): """ If it fails, it returns False """ with patch("win32api.GetComputerNameEx", return_value=None): self.assertFalse(win_system.get_computer_name()) def test_get_pending_computer_name(self): """ Will return the pending computer name if one is pending """ expected = "PendingName" patch_value = {"vdata": expected} with patch("salt.utils.win_reg.read_value", return_value=patch_value): result = win_system.get_pending_computer_name() self.assertEqual(expected, result) def test_get_pending_computer_name_none(self): """ Will return the None if the pending computer is the current name """ patch_value = {"vdata": os.environ.get("COMPUTERNAME")} with patch("salt.utils.win_reg.read_value", return_value=patch_value): self.assertIsNone(win_system.get_pending_computer_name()) def test_get_pending_computer_name_false(self): """ Will return False if there is no pending computer name """ with patch("salt.utils.win_reg.read_value", return_value=False): self.assertIsNone(win_system.get_pending_computer_name()) def test_get_pending_component_servicing(self): """ If none of the keys exist, should return False """ with patch("salt.utils.win_reg.key_exists", return_value=False): self.assertFalse(win_system.get_pending_component_servicing()) def test_get_pending_component_servicing_true_1(self): """ If the RebootPending key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[True]): self.assertTrue(win_system.get_pending_component_servicing()) def test_get_pending_component_servicing_true_2(self): """ If the RebootInProgress key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[False, True]): self.assertTrue(win_system.get_pending_component_servicing()) def test_get_pending_component_servicing_true_3(self): """ If the PackagesPending key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[False, False, True]): self.assertTrue(win_system.get_pending_component_servicing()) def test_get_pending_domain_join(self): """ If none of the keys exist, should return False """ with patch("salt.utils.win_reg.key_exists", return_value=False): self.assertFalse(win_system.get_pending_domain_join()) def test_get_pending_domain_join_true_1(self): """ If the AvoidSpnSet key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[True]): self.assertTrue(win_system.get_pending_domain_join()) def test_get_pending_domain_join_true_2(self): """ If the JoinDomain key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[False, True]): self.assertTrue(win_system.get_pending_domain_join()) def test_get_pending_file_rename_false_1(self): """ If none of the value names exist, should return False """ patched_return = {"success": False} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertFalse(win_system.get_pending_file_rename()) def test_get_pending_file_rename_false_2(self): """ If one of the value names exists but is not set, should return False """ patched_return = {"success": True, "vdata": "(value not set)"} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertFalse(win_system.get_pending_file_rename()) def test_get_pending_file_rename_true_1(self): """ If one of the value names exists and is set, should return True """ patched_return = {"success": True, "vdata": "some value"} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertTrue(win_system.get_pending_file_rename()) def test_get_pending_servermanager_false_1(self): """ If the CurrentRebootAttempts value name does not exist, should return False """ patched_return = {"success": False} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertFalse(win_system.get_pending_servermanager()) def test_get_pending_servermanager_false_2(self): """ If the CurrentRebootAttempts value name exists but is not an integer, should return False """ patched_return = {"success": True, "vdata": "(value not set)"} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertFalse(win_system.get_pending_file_rename()) def test_get_pending_servermanager_true(self): """ If the CurrentRebootAttempts value name exists and is an integer, should return True """ patched_return = {"success": True, "vdata": 1} with patch("salt.utils.win_reg.read_value", return_value=patched_return): self.assertTrue(win_system.get_pending_file_rename()) def test_get_pending_dvd_reboot(self): """ If the DVDRebootSignal value name does not exist, should return False """ with patch("salt.utils.win_reg.value_exists", return_value=False): self.assertFalse(win_system.get_pending_dvd_reboot()) def test_get_pending_dvd_reboot_true(self): """ If the DVDRebootSignal value name exists, should return True """ with patch("salt.utils.win_reg.value_exists", return_value=True): self.assertTrue(win_system.get_pending_dvd_reboot()) def test_get_pending_update(self): """ If none of the keys exist and there are not subkeys, should return False """ with patch("salt.utils.win_reg.key_exists", return_value=False), patch( "salt.utils.win_reg.list_keys", return_value=[] ): self.assertFalse(win_system.get_pending_update()) def test_get_pending_update_true_1(self): """ If the RebootRequired key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[True]): self.assertTrue(win_system.get_pending_update()) def test_get_pending_update_true_2(self): """ If the PostRebootReporting key exists, should return True """ with patch("salt.utils.win_reg.key_exists", side_effect=[False, True]): self.assertTrue(win_system.get_pending_update()) def test_get_reboot_required_witnessed_false_1(self): """ The ``Reboot Required`` value name does not exist, should return False """ patched_data = {"vdata": None} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertFalse(win_system.get_reboot_required_witnessed()) def test_get_reboot_required_witnessed_false_2(self): """ The ``Reboot required`` value name is set to 0, should return False """ patched_data = {"vdata": 0} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertFalse(win_system.get_reboot_required_witnessed()) def test_get_reboot_required_witnessed_true(self): """ The ``Reboot required`` value name is set to 1, should return True """ patched_data = {"vdata": 1} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertTrue(win_system.get_reboot_required_witnessed()) def test_set_reboot_required_witnessed(self): """ The call to ``set_value`` should return True and should be called with the specified parameters """ with patch("salt.utils.win_reg.set_value", return_value=True) as sv: self.assertTrue(win_system.set_reboot_required_witnessed()) sv.assert_called_once_with( hive="HKLM", key=win_system.MINION_VOLATILE_KEY, volatile=True, vname=win_system.REBOOT_REQUIRED_NAME, vdata=1, vtype="REG_DWORD", ) def test_get_pending_update_exe_volatile_false_1(self): """ If UpdateExeVolatile value name is 0, should return False """ patched_data = {"success": True, "vdata": 0} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertFalse(win_system.get_pending_update_exe_volatile()) def test_get_pending_update_exe_volatile_false_2(self): """ If UpdateExeVolatile value name is not present, should return False """ patched_data = {"success": False} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertFalse(win_system.get_pending_update_exe_volatile()) def test_get_pending_update_exe_volatile_true_1(self): """ If UpdateExeVolatile value name is not 0, should return True """ patched_data = {"success": True, "vdata": 1} with patch("salt.utils.win_reg.read_value", return_value=patched_data): self.assertTrue(win_system.get_pending_update_exe_volatile()) def test_get_pending_reboot(self): """ If all functions return Falsy data, should return False """ with patch( "salt.utils.win_system.get_pending_update", return_value=False ), patch("salt.utils.win_update.needs_reboot", return_value=False), patch( "salt.utils.win_system.get_pending_update_exe_volatile", return_value=False ), patch( "salt.utils.win_system.get_pending_file_rename", return_value=False ), patch( "salt.utils.win_system.get_pending_servermanager", return_value=False ), patch( "salt.utils.win_system.get_pending_component_servicing", return_value=False ), patch( "salt.utils.win_system.get_pending_dvd_reboot", return_value=False ), patch( "salt.utils.win_system.get_reboot_required_witnessed", return_value=False ), patch( "salt.utils.win_system.get_pending_computer_name", return_value=None ), patch( "salt.utils.win_system.get_pending_domain_join", return_value=False ): self.assertFalse(win_system.get_pending_reboot()) def test_get_pending_reboot_true_1(self): """ If any boolean returning functions return True, should return True """ with patch( "salt.utils.win_system.get_pending_update", return_value=False ), patch("salt.utils.win_update.needs_reboot", return_value=False), patch( "salt.utils.win_system.get_pending_update_exe_volatile", return_value=False ), patch( "salt.utils.win_system.get_pending_file_rename", return_value=False ), patch( "salt.utils.win_system.get_pending_servermanager", return_value=False ), patch( "salt.utils.win_system.get_pending_component_servicing", return_value=False ), patch( "salt.utils.win_system.get_pending_dvd_reboot", return_value=False ), patch( "salt.utils.win_system.get_reboot_required_witnessed", return_value=False ), patch( "salt.utils.win_system.get_pending_computer_name", return_value=None ), patch( "salt.utils.win_system.get_pending_domain_join", return_value=True ): self.assertTrue(win_system.get_pending_reboot()) def test_get_pending_reboot_true_2(self): """ If a computer name is returned, should return True """ with patch( "salt.utils.win_system.get_pending_update", return_value=False ), patch("salt.utils.win_update.needs_reboot", return_value=False), patch( "salt.utils.win_system.get_pending_update_exe_volatile", return_value=False ), patch( "salt.utils.win_system.get_pending_file_rename", return_value=False ), patch( "salt.utils.win_system.get_pending_servermanager", return_value=False ), patch( "salt.utils.win_system.get_pending_component_servicing", return_value=False ), patch( "salt.utils.win_system.get_pending_dvd_reboot", return_value=False ), patch( "salt.utils.win_system.get_reboot_required_witnessed", return_value=False ), patch( "salt.utils.win_system.get_pending_computer_name", return_value="pending name", ): self.assertTrue(win_system.get_pending_reboot()) def test_get_pending_reboot_details(self): """ All items False should return a dictionary with all items False """ with patch( "salt.utils.win_system.get_pending_update", return_value=False ), patch("salt.utils.win_update.needs_reboot", return_value=False), patch( "salt.utils.win_system.get_pending_update_exe_volatile", return_value=False ), patch( "salt.utils.win_system.get_pending_file_rename", return_value=False ), patch( "salt.utils.win_system.get_pending_servermanager", return_value=False ), patch( "salt.utils.win_system.get_pending_component_servicing", return_value=False ), patch( "salt.utils.win_system.get_pending_dvd_reboot", return_value=False ), patch( "salt.utils.win_system.get_reboot_required_witnessed", return_value=False ), patch( "salt.utils.win_system.get_pending_computer_name", return_value=None ), patch( "salt.utils.win_system.get_pending_domain_join", return_value=False ): expected = { "Pending Component Servicing": False, "Pending Computer Rename": False, "Pending DVD Reboot": False, "Pending File Rename": False, "Pending Join Domain": False, "Pending ServerManager": False, "Pending Update": False, "Pending Windows Update": False, "Reboot Required Witnessed": False, "Volatile Update Exe": False, } result = win_system.get_pending_reboot_details() self.assertDictEqual(expected, result) def test_get_pending_reboot_details_true(self): """ All items True should return a dictionary with all items True """ with patch( "salt.utils.win_system.get_pending_update", return_value=True ), patch("salt.utils.win_update.needs_reboot", return_value=True), patch( "salt.utils.win_system.get_pending_update_exe_volatile", return_value=True ), patch( "salt.utils.win_system.get_pending_file_rename", return_value=True ), patch( "salt.utils.win_system.get_pending_servermanager", return_value=True ), patch( "salt.utils.win_system.get_pending_component_servicing", return_value=True ), patch( "salt.utils.win_system.get_pending_dvd_reboot", return_value=True ), patch( "salt.utils.win_system.get_reboot_required_witnessed", return_value=True ), patch( "salt.utils.win_system.get_pending_computer_name", return_value="pending name", ), patch( "salt.utils.win_system.get_pending_domain_join", return_value=True ): expected = { "Pending Component Servicing": True, "Pending Computer Rename": True, "Pending DVD Reboot": True, "Pending File Rename": True, "Pending Join Domain": True, "Pending ServerManager": True, "Pending Update": True, "Pending Windows Update": True, "Reboot Required Witnessed": True, "Volatile Update Exe": True, } result = win_system.get_pending_reboot_details() self.assertDictEqual(expected, result)
19957
import logging import os import re import time import urllib from threading import Thread import xmlrpclib from Queue import Queue from flask import current_app as app, render_template, request, redirect, abort, jsonify, json as json_mod, url_for, session, Blueprint from itsdangerous import TimedSerializer, BadTimeSignature, Signer, BadSignature from passlib.hash import bcrypt_sha256 from CTFd.utils import sha512, is_safe_url, authed, can_send_mail, sendmail, can_register, get_config, verify_email from CTFd.models import db, Teams, Pages import CTFd.auth import CTFd.views def create_user_thread(q): while True: user_pair = q.get(block=True) shell = xmlrpclib.ServerProxy('http://localhost:8000',allow_none=True) if user_pair[2] == "create": shell.add_user(user_pair[0], user_pair[1]) elif user_pair[2] == "change": shell.change_user(user_pair[0], user_pair[1]) def load(app): shell = Blueprint('shell', __name__, template_folder='shell-templates') app.register_blueprint(shell, url_prefix='/shell') page = Pages('shell',""" """ ) auth = Blueprint('auth', __name__) shellexists = Pages.query.filter_by(route='shell').first() if not shellexists: db.session.add(page) db.session.commit() @app.route('/shell', methods=['GET']) def shell_view(): if not authed(): return redirect(url_for('auth.login', next=request.path)) return render_template('shell.html',root=request.script_root) @app.route('/register', methods=['POST', 'GET']) def register(): if not can_register(): return redirect(url_for('auth.login')) if request.method == 'POST': errors = [] name = request.form['name'] email = request.form['email'] password = request.form['password'] name_len = len(name) < 2 names = Teams.query.add_columns('name', 'id').filter_by(name=name).first() emails = Teams.query.add_columns('email', 'id').filter_by(email=email).first() pass_short = len(password) == 0 pass_long = len(password) > 32 valid_email = re.match(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", request.form['email']) if not valid_email: errors.append("That email doesn't look right") if names: errors.append('That team name is already taken') if emails: errors.append('That email has already been used') if pass_short: errors.append('Pick a longer password') if pass_long: errors.append('Pick a shorter password') if name_len: errors.append('Pick a longer team name') if len(errors) > 0: return render_template('register.html', errors=errors, name=request.form['name'], email=request.form['email'], password=request.form['password']) else: with app.app_context(): team = Teams(name, email.lower(), password) db.session.add(team) db.session.commit() db.session.flush() shell = xmlrpclib.ServerProxy('http://localhost:8000',allow_none=True) shell.add_user(name, password) session['username'] = team.name session['id'] = team.id session['admin'] = team.admin session['nonce'] = sha512(os.urandom(10)) if can_send_mail() and get_config('verify_emails'): # Confirming users is enabled and we can send email. db.session.close() logger = logging.getLogger('regs') logger.warn("[{0}] {1} registered (UNCONFIRMED) with {2}".format(time.strftime("%m/%d/%Y %X"), request.form['name'].encode('utf-8'), request.form['email'].encode('utf-8'))) return redirect(url_for('auth.confirm_user')) else: # Don't care about confirming users if can_send_mail(): # We want to notify the user that they have registered. sendmail(request.form['email'], "You've successfully registered for {}".format(get_config('ctf_name'))) db.session.close() logger = logging.getLogger('regs') logger.warn("[{0}] {1} registered with {2}".format(time.strftime("%m/%d/%Y %X"), request.form['name'].encode('utf-8'), request.form['email'].encode('utf-8'))) return redirect(url_for('challenges.challenges_view')) else: return render_template('register.html') def reset_password(data=None): if data is not None and request.method == "GET": return render_template('reset_password.html', mode='set') if data is not None and request.method == "POST": try: s = TimedSerializer(app.config['SECRET_KEY']) name = s.loads(urllib.unquote_plus(data.decode('base64')), max_age=1800) except BadTimeSignature: return render_template('reset_password.html', errors=['Your link has expired']) except: return render_template('reset_password.html', errors=['Your link appears broken, please try again.']) team = Teams.query.filter_by(name=name).first_or_404() password = request.form['password'].strip() name = team.name pass_short = len(password) == 0 pass_long = len(password) > 32 #http://stackoverflow.com/questions/19605150/regex-for-password-must-be-contain-at-least-8-characters-least-1-number-and-bot errors = [] if pass_short: errors.append('Pick a longer password') if pass_long: errors.append('Pick a shorter password') if len(errors) > 0: return render_template('reset_password.html', errors=errors) shell = xmlrpclib.ServerProxy('http://localhost:8000',allow_none=True) shell.change_user(name, password) team.password = <PASSWORD>(password) db.session.commit() db.session.close() return redirect(url_for('auth.login')) if request.method == 'POST': email = request.form['email'].strip() team = Teams.query.filter_by(email=email).first() if not team: return render_template('reset_password.html', errors=['If that account exists you will receive an email, please check your inbox']) s = TimedSerializer(app.config['SECRET_KEY']) token = s.dumps(team.name) text = """ Did you initiate a password reset? {0}/{1} """.format(url_for('auth.reset_password', _external=True), urllib.quote_plus(token.encode('base64'))) sendmail(email, text) return render_template('reset_password.html', errors=['If that account exists you will receive an email, please check your inbox']) return render_template('reset_password.html') def profile(): if authed(): if request.method == "POST": errors = [] name = request.form.get('name') email = request.form.get('email') website = request.form.get('website') affiliation = request.form.get('affiliation') country = request.form.get('country') user = Teams.query.filter_by(id=session['id']).first() if not get_config('prevent_name_change'): names = Teams.query.filter_by(name=name).first() name_len = len(request.form['name']) < 2 emails = Teams.query.filter_by(email=email).first() valid_email = re.match(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", email) password = request.form['password'].strip() pass_short = len(password) == 0 pass_long = len(password) > 32 if ('password' in request.form.keys() and not len(request.form['password']) == 0) and \ (not bcrypt_sha256.verify(request.form.get('confirm').strip(), user.password)): errors.append("Your old password doesn't match what we have.") if not valid_email: errors.append("That email doesn't look right") if not get_config('prevent_name_change') and names and name != session['username']: errors.append('That team name is already taken') if emails and emails.id != session['id']: errors.append('That email has already been used') if not get_config('prevent_name_change') and name_len: errors.append('Pick a longer team name') if website.strip() and not validate_url(website): errors.append("That doesn't look like a valid URL") if pass_short: errors.append('Pick a longer password') if pass_long: errors.append('Pick a shorter password') if len(errors) > 0: return render_template('profile.html', name=name, email=email, website=website, affiliation=affiliation, country=country, errors=errors) else: team = Teams.query.filter_by(id=session['id']).first() if not get_config('prevent_name_change'): team.name = name if team.email != email.lower(): team.email = email.lower() if get_config('verify_emails'): team.verified = False session['username'] = team.name if 'password' in request.form.keys() and not len(request.form['password']) == 0: team.password = <PASSWORD>(request.form.get('password')) password = request.form['password'].strip() team.website = website team.affiliation = affiliation team.country = country name = team.name if password: shell = xmlrpclib.ServerProxy('http://localhost:8000',allow_none=True) shell.change_user(name, password) db.session.commit() db.session.close() return redirect(url_for('views.profile')) else: user = Teams.query.filter_by(id=session['id']).first() name = user.name email = user.email website = user.website affiliation = user.affiliation country = user.country prevent_name_change = get_config('prevent_name_change') confirm_email = get_config('verify_emails') and not user.verified return render_template('profile.html', name=name, email=email, website=website, affiliation=affiliation, country=country, prevent_name_change=prevent_name_change, confirm_email=confirm_email) else: return redirect(url_for('auth.login')) app.view_functions['auth.reset_password'] = reset_password app.view_functions['auth.register'] = register app.view_functions['views.profile'] = profile
19965
expected_output = { "ospf-statistics-information": { "ospf-statistics": { "dbds-retransmit": "203656", "dbds-retransmit-5seconds": "0", "flood-queue-depth": "0", "lsas-acknowledged": "225554974", "lsas-acknowledged-5seconds": "0", "lsas-flooded": "66582263", "lsas-flooded-5seconds": "0", "lsas-high-prio-flooded": "375568998", "lsas-high-prio-flooded-5seconds": "0", "lsas-nbr-transmit": "3423982", "lsas-nbr-transmit-5seconds": "0", "lsas-requested": "3517", "lsas-requested-5seconds": "0", "lsas-retransmit": "8064643", "lsas-retransmit-5seconds": "0", "ospf-errors": { "subnet-mismatch-error": "12" }, "packet-statistics": [ { "ospf-packet-type": "Hello", "packets-received": "5703920", "packets-received-5seconds": "3", "packets-sent": "6202169", "packets-sent-5seconds": "0" }, { "ospf-packet-type": "DbD", "packets-received": "185459", "packets-received-5seconds": "0", "packets-sent": "212983", "packets-sent-5seconds": "0" }, { "ospf-packet-type": "LSReq", "packets-received": "208", "packets-received-5seconds": "0", "packets-sent": "214", "packets-sent-5seconds": "0" }, { "ospf-packet-type": "LSUpdate", "packets-received": "16742100", "packets-received-5seconds": "0", "packets-sent": "15671465", "packets-sent-5seconds": "0" }, { "ospf-packet-type": "LSAck", "packets-received": "2964236", "packets-received-5seconds": "0", "packets-sent": "5229203", "packets-sent-5seconds": "0" } ], "total-database-summaries": "0", "total-linkstate-request": "0", "total-retransmits": "0" } } }
19970
from .Layer import * class Multiply(Layer): def __init__(self, models, *args, **kwargs): self.check_inputs(models, 2) Layer.__init__(self, models, *args, **kwargs) def reshape(self): self.Y = np.zeros(self.X[0].shape) def forward(self): self.Y = np.multiply(self.X[0], self.X[1]) def backward(self): self.dX = [np.multiply(self.dY, self.X[1]), np.multiply(self.dY, self.X[0])] class MultiplyConstant(Layer): def __init__(self, model, *args, **kwargs): self.check_inputs(model, 1) Layer.__init__(self, model, *args, **kwargs) self.constant = kwargs["constant"] def reshape(self): self.Y = np.zeros(self.X.shape) def forward(self): self.Y = self.X * self.constant def backward(self): self.dX = self.dY * self.constant Multiply.OP_L = MultiplyConstant Multiply.OP_R = MultiplyConstant
19971
from project.settings import INSTALLED_APPS, ALLOWED_HOSTS, BASE_DIR import os INSTALLED_APPS.append( 'webpack_loader',) INSTALLED_APPS.append( 'app',) ALLOWED_HOSTS.append('*',) # STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ # os.path.join(BASE_DIR, 'static',) os.path.join(BASE_DIR, 'app', 'vueapp','dist', 'static') ] WEBPACK_LOADER = { 'DEFAULT': { 'BUNDLE_DIR_NAME': 'static/vueapp/', 'STATS_FILE': os.path.join(BASE_DIR, 'app', 'vueapp', 'webpack-stats.json') } } INTERNAL_IPS = ( '0.0.0.0', '127.0.0.1', )
19982
import numpy as np import itertools from .contrib import compress_filter, smooth, residual_model from .contrib import reduce_interferences def expectation_maximization(y, x, iterations=2, verbose=0, eps=None): r"""Expectation maximization algorithm, for refining source separation estimates. This algorithm allows to make source separation results better by enforcing multichannel consistency for the estimates. This usually means a better perceptual quality in terms of spatial artifacts. The implementation follows the details presented in [1]_, taking inspiration from the original EM algorithm proposed in [2]_ and its weighted refinement proposed in [3]_, [4]_. It works by iteratively: * Re-estimate source parameters (power spectral densities and spatial covariance matrices) through :func:`get_local_gaussian_model`. * Separate again the mixture with the new parameters by first computing the new modelled mixture covariance matrices with :func:`get_mix_model`, prepare the Wiener filters through :func:`wiener_gain` and apply them with :func:`apply_filter``. References ---------- .. [1] <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] <NAME> and <NAME> and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. .. [3] <NAME> and <NAME> and <NAME>. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [4] <NAME> and <NAME> and <NAME>. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [5] <NAME> and <NAME> and <NAME> "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Parameters ---------- y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)] initial estimates for the sources x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] complex STFT of the mixture signal iterations: int [scalar] number of iterations for the EM algorithm. verbose: boolean display some information if True eps: float or None [scalar] The epsilon value to use for regularization and filters. If None, the default will use the epsilon of np.real(x) dtype. Returns ------- y: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)] estimated sources after iterations v: np.ndarray [shape=(nb_frames, nb_bins, nb_sources)] estimated power spectral densities R: np.ndarray [shape=(nb_bins, nb_channels, nb_channels, nb_sources)] estimated spatial covariance matrices Note ----- * You need an initial estimate for the sources to apply this algorithm. This is precisely what the :func:`wiener` function does. * This algorithm *is not* an implementation of the "exact" EM proposed in [1]_. In particular, it does compute the posterior covariance matrices the same (exact) way. Instead, it uses the simplified approximate scheme initially proposed in [5]_ and further refined in [3]_, [4]_, that boils down to just take the empirical covariance of the recent source estimates, followed by a weighted average for the update of the spatial covariance matrix. It has been empirically demonstrated that this simplified algorithm is more robust for music separation. Warning ------- It is *very* important to make sure `x.dtype` is `np.complex` if you want double precision, because this function will **not** do such conversion for you from `np.complex64`, in case you want the smaller RAM usage on purpose. It is usually always better in terms of quality to have double precision, by e.g. calling :func:`expectation_maximization` with ``x.astype(np.complex)``. This is notably needed if you let common deep learning frameworks like PyTorch or TensorFlow do the STFT, because this usually happens in single precision. """ # to avoid dividing by zero if eps is None: eps = np.finfo(np.real(x[0]).dtype).eps # dimensions (nb_frames, nb_bins, nb_channels) = x.shape nb_sources = y.shape[-1] # allocate the spatial covariance matrices and PSD R = np.zeros((nb_bins, nb_channels, nb_channels, nb_sources), x.dtype) v = np.zeros((nb_frames, nb_bins, nb_sources)) if verbose: print('Number of iterations: ', iterations) regularization = np.sqrt(eps) * ( np.tile(np.eye(nb_channels, dtype=np.complex64), (1, nb_bins, 1, 1))) for it in range(iterations): # constructing the mixture covariance matrix. Doing it with a loop # to avoid storing anytime in RAM the whole 6D tensor if verbose: print('EM, iteration %d' % (it+1)) for j in range(nb_sources): # update the spectrogram model for source j v[..., j], R[..., j] = get_local_gaussian_model( y[..., j], eps) for t in range(nb_frames): Cxx = get_mix_model(v[None, t, ...], R) Cxx += regularization inv_Cxx = _invert(Cxx, eps) # separate the sources for j in range(nb_sources): W_j = wiener_gain(v[None, t, ..., j], R[..., j], inv_Cxx) y[t, ..., j] = apply_filter(x[None, t, ...], W_j)[0] return y, v, R def wiener(v, x, iterations=1, use_softmask=True, eps=None): """Wiener-based separation for multichannel audio. The method uses the (possibly multichannel) spectrograms `v` of the sources to separate the (complex) Short Term Fourier Transform `x` of the mix. Separation is done in a sequential way by: * Getting an initial estimate. This can be done in two ways: either by directly using the spectrograms with the mixture phase, or by using :func:`softmask`. * Refinining these initial estimates through a call to :func:`expectation_maximization`. This implementation also allows to specify the epsilon value used for regularization. It is based on [1]_, [2]_, [3]_, [4]_. References ---------- .. [1] <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] <NAME> and <NAME> and <NAME>. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [3] <NAME> and <NAME> and <NAME>. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [4] <NAME> and <NAME> and <NAME> "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Parameters ---------- v: np.ndarray [shape=(nb_frames, nb_bins, {1,nb_channels}, nb_sources)] spectrograms of the sources. This is a nonnegative tensor that is usually the output of the actual separation method of the user. The spectrograms may be mono, but they need to be 4-dimensional in all cases. x: np.ndarray [complex, shape=(nb_frames, nb_bins, nb_channels)] STFT of the mixture signal. iterations: int [scalar] number of iterations for the EM algorithm use_softmask: boolean * if `False`, then the mixture phase will directly be used with the spectrogram as initial estimates. * if `True`, a softmasking strategy will be used as described in :func:`softmask`. eps: {None, float} Epsilon value to use for computing the separations. This is used whenever division with a model energy is performed, i.e. when softmasking and when iterating the EM. It can be understood as the energy of the additional white noise that is taken out when separating. If `None`, the default value is taken as `np.finfo(np.real(x[0])).eps`. Returns ------- y: np.ndarray [complex, shape=(nb_frames, nb_bins, nb_channels, nb_sources)] STFT of estimated sources Note ---- * Be careful that you need *magnitude spectrogram estimates* for the case `softmask==False`. * We recommand to use `softmask=False` only if your spectrogram model is pretty good, e.g. when the output of a deep neural net. In the case it is not so great, opt for an initial softmasking strategy. * The epsilon value will have a huge impact on performance. If it's large, only the parts of the signal with a significant energy will be kept in the sources. This epsilon then directly controls the energy of the reconstruction error. Warning ------- As in :func:`expectation_maximization`, we recommend converting the mixture `x` to double precision `np.complex` *before* calling :func:`wiener`. """ if use_softmask: y = softmask(v, x, eps=eps) else: y = v * np.exp(1j*np.angle(x[..., None])) if not iterations: return y # we need to refine the estimates. Scales down the estimates for # numerical stability max_abs = max(1, np.abs(x).max()/10.) x /= max_abs y = expectation_maximization(y/max_abs, x, iterations, eps=eps)[0] return y*max_abs def softmask(v, x, logit=None, eps=None): """Separates a mixture with a ratio mask, using the provided sources spectrograms estimates. Additionally allows compressing the mask with a logit function for soft binarization. The filter does *not* take multichannel correlations into account. The masking strategy can be traced back to the work of <NAME> in the case of *power* spectrograms [1]_. In the case of *fractional* spectrograms like magnitude, this filter is often referred to a "ratio mask", and has been shown to be the optimal separation procedure under alpha-stable assumptions [2]_. References ---------- .. [1] <NAME>,"Extrapolation, Inerpolation, and Smoothing of Stationary Time Series." 1949. .. [2] <NAME> and <NAME>. "Generalized Wiener filtering with fractional power spectrograms." 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. Parameters ---------- v: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_sources)] spectrograms of the sources x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] mixture signal logit: {None, float between 0 and 1} enable a compression of the filter. If not None, it is the threshold value for the logit function: a softmask above this threshold is brought closer to 1, and a softmask below is brought closer to 0. Returns ------- ndarray, shape=(nb_frames, nb_bins, nb_channels, nb_sources) estimated sources """ # to avoid dividing by zero if eps is None: eps = np.finfo(np.real(x[0]).dtype).eps total_energy = np.sum(v, axis=-1, keepdims=True) filter = v/(eps + total_energy.astype(x.dtype)) if logit is not None: filter = compress_filter(filter, eps, thresh=logit, multichannel=False) return filter * x[..., None] def _invert(M, eps): """ Invert matrices, with special fast handling of the 1x1 and 2x2 cases. Will generate errors if the matrices are singular: user must handle this through his own regularization schemes. Parameters ---------- M: np.ndarray [shape=(..., nb_channels, nb_channels)] matrices to invert: must be square along the last two dimensions eps: [scalar] regularization parameter to use _only in the case of matrices bigger than 2x2 Returns ------- invM: np.ndarray, [shape=M.shape] inverses of M """ nb_channels = M.shape[-1] if nb_channels == 1: # scalar case invM = 1.0/(M+eps) elif nb_channels == 2: # two channels case: analytical expression det = ( M[..., 0, 0]*M[..., 1, 1] - M[..., 0, 1]*M[..., 1, 0]) invDet = 1.0/(det) invM = np.empty_like(M) invM[..., 0, 0] = invDet*M[..., 1, 1] invM[..., 1, 0] = -invDet*M[..., 1, 0] invM[..., 0, 1] = -invDet*M[..., 0, 1] invM[..., 1, 1] = invDet*M[..., 0, 0] else: # general case : no use of analytical expression (slow!) invM = np.linalg.pinv(M, eps) return invM def wiener_gain(v_j, R_j, inv_Cxx): """ Compute the wiener gain for separating one source, given all parameters. It is the matrix applied to the mix to get the posterior mean of the source as in [1]_ References ---------- .. [1] <NAME> and <NAME> and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. Parameters ---------- v_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] power spectral density of the target source. R_j: np.ndarray [shape=(nb_bins, nb_channels, nb_channels)] spatial covariance matrix of the target source inv_Cxx: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)] inverse of the mixture covariance matrices Returns ------- G: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)] wiener filtering matrices, to apply to the mix, e.g. through :func:`apply_filter` to get the target source estimate. """ (_, nb_channels) = R_j.shape[:2] # computes multichannel Wiener gain as v_j R_j inv_Cxx G = np.zeros_like(inv_Cxx) for (i1, i2, i3) in itertools.product(*(range(nb_channels),)*3): G[..., i1, i2] += (R_j[None, :, i1, i3] * inv_Cxx[..., i3, i2]) G *= v_j[..., None, None] return G def apply_filter(x, W): """ Applies a filter on the mixture. Just corresponds to a matrix multiplication. Parameters ---------- x: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] STFT of the signal on which to apply the filter. W: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)] filtering matrices, as returned, e.g. by :func:`wiener_gain` Returns ------- y_hat: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] filtered signal """ nb_channels = W.shape[-1] # apply the filter y_hat = 0+0j for i in range(nb_channels): y_hat += W[..., i] * x[..., i, None] return y_hat def get_mix_model(v, R): """ Compute the model covariance of a mixture based on local Gaussian models. simply adds up all the v[..., j] * R[..., j] Parameters ---------- v: np.ndarray [shape=(nb_frames, nb_bins, nb_sources)] Power spectral densities for the sources R: np.ndarray [shape=(nb_bins, nb_channels, nb_channels, nb_sources)] Spatial covariance matrices of each sources Returns ------- Cxx: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)] Covariance matrix for the mixture """ nb_channels = R.shape[1] (nb_frames, nb_bins, nb_sources) = v.shape Cxx = np.zeros((nb_frames, nb_bins, nb_channels, nb_channels), R.dtype) for j in range(nb_sources): Cxx += v[..., j, None, None] * R[None, ..., j] return Cxx def _covariance(y_j): """ Compute the empirical covariance for a source. Parameters ---------- y_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)]. complex stft of the source. Returns ------- Cj: np.ndarray [shape=(nb_frames, nb_bins, nb_channels, nb_channels)] just y_j * conj(y_j.T): empirical covariance for each TF bin. """ (nb_frames, nb_bins, nb_channels) = y_j.shape Cj = np.zeros((nb_frames, nb_bins, nb_channels, nb_channels), y_j.dtype) for (i1, i2) in itertools.product(*(range(nb_channels),)*2): Cj[..., i1, i2] += y_j[..., i1] * np.conj(y_j[..., i2]) return Cj def get_local_gaussian_model(y_j, eps=1.): r""" Compute the local Gaussian model [1]_ for a source given the complex STFT. First get the power spectral densities, and then the spatial covariance matrix, as done in [1]_, [2]_ References ---------- .. [1] <NAME> and <NAME> and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. .. [2] <NAME> and <NAME> and <NAME>. "Low bitrate informed source separation of realistic mixtures." 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013. Parameters ---------- y_j: np.ndarray [shape=(nb_frames, nb_bins, nb_channels)] complex stft of the source. eps: float [scalar] regularization term Returns ------- v_j: np.ndarray [shape=(nb_frames, nb_bins)] power spectral density of the source R_J: np.ndarray [shape=(nb_bins, nb_channels, nb_channels)] Spatial covariance matrix of the source """ v_j = np.mean(np.abs(y_j)**2, axis=2) # updates the spatial covariance matrix nb_frames = y_j.shape[0] R_j = 0 weight = eps for t in range(nb_frames): R_j += _covariance(y_j[None, t, ...]) weight += v_j[None, t, ...] R_j /= weight[..., None, None] return v_j, R_j
19994
import os import requests from typing import Optional, List from pydantic import Field, validator from dbt_cloud.command.command import DbtCloudAccountCommand from dbt_cloud.field import JOB_ID_FIELD class DbtCloudJobRunCommand(DbtCloudAccountCommand): """Triggers a dbt Cloud job run and returns a status JSON response.""" job_id: int = JOB_ID_FIELD cause: str = Field( default="Triggered via API", description="A text description of the reason for running this job", ) git_sha: Optional[str] = Field( description="The git sha to check out before running this job" ) git_branch: Optional[str] = Field( description="The git branch to check out before running this job" ) schema_override: Optional[str] = Field( description="Override the destination schema in the configured target for this job" ) dbt_version_override: Optional[str] = Field( description="Override the version of dbt used to run this job" ) threads_override: Optional[int] = Field( description="Override the number of threads used to run this job" ) target_name_override: Optional[str] = Field( description="Override the target.name context variable used when running this job" ) generate_docs_override: Optional[bool] = Field( description="Override whether or not this job generates docs (true=yes, false=no)" ) timeout_seconds_override: Optional[int] = Field( description="Override the timeout in seconds for this job" ) steps_override: Optional[List[str]] = Field( description="Override the list of steps for this job" ) @validator("steps_override") def check_steps_override_is_none_if_empty(cls, value): return value or None @property def api_url(self) -> str: return f"{super().api_url}/jobs/{self.job_id}/run/" def execute(self) -> requests.Response: response = requests.post( url=self.api_url, headers=self.request_headers, json=self.get_payload(), ) return response
20000
from eblib import libcollect # Create a LibCollect object lc = libcollect.LibCollect() # Prepare arguments for do_collect # # Path to the script (can be absolute or relative) scriptname = 'plotting_data_monitor.pyw' # Ask the resulting distribution to be placed in # directory distrib targetdir = 'distrib' # Specify which libraries to exclude from the # distribution (because you know they're installed # on the target machine) excludes = ["PyQt4", "numpy", "serial", "pywin", "win32api", "win32com"] # This does the actual work # See the documentation of LibCollect for more options # lc.do_collect( scriptname, targetdir, excludes, verbose=True)
20038
from fastapi import HTTPException, Query, APIRouter from starlette.requests import Request from starlette.status import HTTP_404_NOT_FOUND from .models import db, Metadata mod = APIRouter() @mod.get("/metadata") async def search_metadata( request: Request, data: bool = Query( False, description="Switch to returning a list of GUIDs (false), " "or GUIDs mapping to their metadata (true).", ), limit: int = Query( 10, description="Maximum number of records returned. (max: 2000)" ), offset: int = Query(0, description="Return results at this given offset."), ): """Search the metadata. Without filters, this will return all data. Add filters as query strings like this: GET /metadata?a=1&b=2 This will match all records that have metadata containing all of: {"a": 1, "b": 2} The values are always treated as strings for filtering. Nesting is supported: GET /metadata?a.b.c=3 Matching records containing: {"a": {"b": {"c": 3}}} Providing the same key with more than one value filters records whose value of the given key matches any of the given values. But values of different keys must all match. For example: GET /metadata?a.b.c=3&a.b.c=33&a.b.d=4 Matches these: {"a": {"b": {"c": 3, "d": 4}}} {"a": {"b": {"c": 33, "d": 4}}} {"a": {"b": {"c": "3", "d": 4, "e": 5}}} But won't match these: {"a": {"b": {"c": 3}}} {"a": {"b": {"c": 3, "d": 5}}} {"a": {"b": {"d": 5}}} {"a": {"b": {"c": "333", "d": 4}}} """ limit = min(limit, 2000) queries = {} for key, value in request.query_params.multi_items(): if key not in {"data", "limit", "offset"}: queries.setdefault(key, []).append(value) def add_filter(query): for path, values in queries.items(): query = query.where( db.or_(Metadata.data[list(path.split("."))].astext == v for v in values) ) return query.offset(offset).limit(limit) if data: return { metadata.guid: metadata.data for metadata in await add_filter(Metadata.query).gino.all() } else: return [ row[0] for row in await add_filter(db.select([Metadata.guid])) .gino.return_model(False) .all() ] @mod.get("/metadata/{guid:path}") async def get_metadata(guid): """Get the metadata of the GUID.""" metadata = await Metadata.get(guid) if metadata: return metadata.data else: raise HTTPException(HTTP_404_NOT_FOUND, f"Not found: {guid}") def init_app(app): app.include_router(mod, tags=["Query"])
20057
import numpy as np import torch from modules.frustum import get_box_corners_3d from kitti_meters.util import get_box_iou_3d __all__ = ['MeterFrustumKitti'] class MeterFrustumKitti: def __init__(self, num_heading_angle_bins, num_size_templates, size_templates, class_name_to_class_id, metric='iou_3d'): super().__init__() assert metric in ['iou_2d', 'iou_3d', 'accuracy', 'iou_3d_accuracy', 'iou_3d_class_accuracy'] self.metric = metric self.num_heading_angle_bins = num_heading_angle_bins self.num_size_templates = num_size_templates self.size_templates = size_templates.view(self.num_size_templates, 3) self.heading_angle_bin_centers = torch.arange(0, 2 * np.pi, 2 * np.pi / self.num_heading_angle_bins) self.class_name_to_class_id = class_name_to_class_id self.reset() def reset(self): self.total_seen_num = 0 self.total_correct_num = 0 self.iou_3d_corrent_num = 0 self.iou_2d_sum = 0 self.iou_3d_sum = 0 self.iou_3d_corrent_num_per_class = {cls: 0 for cls in self.class_name_to_class_id.keys()} self.total_seen_num_per_class = {cls: 0 for cls in self.class_name_to_class_id.keys()} def update(self, outputs, targets): if self.metric == 'accuracy': mask_logits = outputs['mask_logits'] mask_logits_target = targets['mask_logits'] self.total_seen_num += mask_logits_target.numel() self.total_correct_num += torch.sum(mask_logits.argmax(dim=1) == mask_logits_target).item() else: center = outputs['center'] # (B, 3) heading_scores = outputs['heading_scores'] # (B, NH) heading_residuals = outputs['heading_residuals'] # (B, NH) size_scores = outputs['size_scores'] # (B, NS) size_residuals = outputs['size_residuals'] # (B, NS, 3) center_target = targets['center'] # (B, 3) heading_bin_id_target = targets['heading_bin_id'] # (B, ) heading_residual_target = targets['heading_residual'] # (B, ) size_template_id_target = targets['size_template_id'] # (B, ) size_residual_target = targets['size_residual'] # (B, 3) class_id_target = targets['class_id'].cpu().numpy() # (B, ) batch_size = center.size(0) batch_id = torch.arange(batch_size, device=center.device) self.size_templates = self.size_templates.to(center.device) self.heading_angle_bin_centers = self.heading_angle_bin_centers.to(center.device) heading_bin_id = torch.argmax(heading_scores, dim=1) heading = self.heading_angle_bin_centers[heading_bin_id] + heading_residuals[batch_id, heading_bin_id] size_template_id = torch.argmax(size_scores, dim=1) size = self.size_templates[size_template_id] + size_residuals[batch_id, size_template_id] # (B, 3) corners = get_box_corners_3d(centers=center, headings=heading, sizes=size, with_flip=False) # (B, 8, 3) heading_target = self.heading_angle_bin_centers[heading_bin_id_target] + heading_residual_target # (B, ) size_target = self.size_templates[size_template_id_target] + size_residual_target # (B, 3) corners_target = get_box_corners_3d(centers=center_target, headings=heading_target, sizes=size_target, with_flip=False) # (B, 8, 3) iou_3d, iou_2d = get_box_iou_3d(corners.cpu().detach().numpy(), corners_target.cpu().detach().numpy()) self.iou_2d_sum += iou_2d.sum() self.iou_3d_sum += iou_3d.sum() self.iou_3d_corrent_num += np.sum(iou_3d >= 0.7) self.total_seen_num += batch_size for cls, cls_id in self.class_name_to_class_id.items(): mask = (class_id_target == cls_id) self.iou_3d_corrent_num_per_class[cls] += np.sum(iou_3d[mask] >= (0.7 if cls == 'Car' else 0.5)) self.total_seen_num_per_class[cls] += np.sum(mask) def compute(self): if self.metric == 'iou_3d': return self.iou_3d_sum / self.total_seen_num elif self.metric == 'iou_2d': return self.iou_2d_sum / self.total_seen_num elif self.metric == 'accuracy': return self.total_correct_num / self.total_seen_num elif self.metric == 'iou_3d_accuracy': return self.iou_3d_corrent_num / self.total_seen_num elif self.metric == 'iou_3d_class_accuracy': return sum(self.iou_3d_corrent_num_per_class[cls] / max(self.total_seen_num_per_class[cls], 1) for cls in self.class_name_to_class_id.keys()) / len(self.class_name_to_class_id) else: raise KeyError
20080
def filter_dict(dictionary_to_filter): return dict((k, v) for k, v in dictionary_to_filter.items() if v is not None)
20094
from appJar import gui def press(btn): if btn == "info": app.infoBox("Title Here", "Message here...") if btn == "error": app.errorBox("Title Here", "Message here...") if btn == "warning": app.warningBox("Title Here", "Message here...") if btn == "yesno": app.yesNoBox("Title Here", "Message here...") if btn == "question": app.questionBox("Title Here", "Message here...") if btn == "ok": app.okBox("Title Here", "Message here...") if btn == "retry": app.retryBox("Title Here", "Message here...") if btn == "text": app.textBox("Title Here", "Message here...") if btn == "number": app.numberBox("Title Here", "Message here...") app=gui() app.addButtons(["info", "error", "warning", "yesno", "question"], press) app.addButtons(["ok", "retry", "text", "number"], press) app.go()
20099
from custom_objects import FinanceCalculator from tkinter import messagebox class CalculationsPresenter(object): def __init__(self, view): self.view = view def convert_price(self, price): try: converted_price = FinanceCalculator.decimal_to_treasury(price) self.view.display_conversion(new_price=converted_price) return None except (ValueError, IndexError) as err: pass try: converted_price = FinanceCalculator.treasury_to_decimal(price) self.view.display_conversion(new_price=converted_price) except (ValueError, IndexError) as err: messagebox.showinfo( message="An example of a valid price would be 108.50 or 108-16", title="Invalid Price", )
20111
import subprocess, re, sys def get_coref_score(metric, path_to_scorer, gold=None, preds=None): output=subprocess.check_output(["perl", path_to_scorer, metric, preds, gold]).decode("utf-8") output=output.split("\n")[-3] matcher=re.search("Coreference: Recall: \(.*?\) (.*?)% Precision: \(.*?\) (.*?)% F1: (.*?)%", output) if matcher is not None: recall=float(matcher.group(1)) precision=float(matcher.group(2)) f1=float(matcher.group(3)) return recall, precision, f1 def get_conll(path_to_scorer, gold=None, preds=None): bcub_r, bcub_p, bcub_f=get_coref_score("bcub", path_to_scorer, gold, preds) muc_r, muc_p, muc_f=get_coref_score("muc", path_to_scorer, gold, preds) ceaf_r, ceaf_p, ceaf_f=get_coref_score("ceafe", path_to_scorer, gold, preds) print("bcub:\t%.1f" % bcub_f) print("muc:\t%.1f" % muc_f) print("ceaf:\t%.1f" % ceaf_f) avg=(bcub_f + muc_f + ceaf_f)/3. print("Average F1: %.1f" % (avg)) # Generate Latex table # print("%.1f&%.1f&%.1f&%.1f" % (bcub_f, muc_f, ceaf_f, avg)) return bcub_f, avg if __name__ == "__main__": goldFile=sys.argv[1] predFile=sys.argv[2] scorer=sys.argv[3] bcub_f, avg=get_conll(scorer, gold=goldFile, preds=predFile)
20120
from string import ascii_letters import textwrap from fontTools.misc.testTools import getXML from fontTools import subset from fontTools.fontBuilder import FontBuilder from fontTools.pens.ttGlyphPen import TTGlyphPen from fontTools.ttLib import TTFont, newTable from fontTools.subset.svg import NAMESPACES, ranges import pytest etree = pytest.importorskip("lxml.etree") @pytest.fixture def empty_svg_font(): glyph_order = [".notdef"] + list(ascii_letters) pen = TTGlyphPen(glyphSet=None) pen.moveTo((0, 0)) pen.lineTo((0, 500)) pen.lineTo((500, 500)) pen.lineTo((500, 0)) pen.closePath() glyph = pen.glyph() glyphs = {g: glyph for g in glyph_order} fb = FontBuilder(unitsPerEm=1024, isTTF=True) fb.setupGlyphOrder(glyph_order) fb.setupCharacterMap({ord(c): c for c in ascii_letters}) fb.setupGlyf(glyphs) fb.setupHorizontalMetrics({g: (500, 0) for g in glyph_order}) fb.setupHorizontalHeader() fb.setupOS2() fb.setupPost() fb.setupNameTable({"familyName": "TestSVG", "styleName": "Regular"}) svg_table = newTable("SVG ") svg_table.docList = [] fb.font["SVG "] = svg_table return fb.font def new_svg(**attrs): return etree.Element("svg", {"xmlns": NAMESPACES["svg"], **attrs}) def _lines(s): return textwrap.dedent(s).splitlines() @pytest.mark.parametrize( "gids, retain_gids, expected_xml", [ # keep four glyphs in total, don't retain gids, which thus get remapped ( "2,4-6", False, _lines( """\ <svgDoc endGlyphID="1" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph1" d="M2,2"/></svg>]]> </svgDoc> <svgDoc endGlyphID="2" startGlyphID="2"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph2" d="M4,4"/></svg>]]> </svgDoc> <svgDoc endGlyphID="3" startGlyphID="3"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph3" d="M5,5"/></svg>]]> </svgDoc> <svgDoc endGlyphID="4" startGlyphID="4"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph4" d="M6,6"/></svg>]]> </svgDoc> """ ), ), # same four glyphs, but we now retain gids ( "2,4-6", True, _lines( """\ <svgDoc endGlyphID="2" startGlyphID="2"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph2" d="M2,2"/></svg>]]> </svgDoc> <svgDoc endGlyphID="4" startGlyphID="4"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph4" d="M4,4"/></svg>]]> </svgDoc> <svgDoc endGlyphID="5" startGlyphID="5"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph5" d="M5,5"/></svg>]]> </svgDoc> <svgDoc endGlyphID="6" startGlyphID="6"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><path id="glyph6" d="M6,6"/></svg>]]> </svgDoc> """ ), ), ], ) def test_subset_single_glyph_per_svg( empty_svg_font, tmp_path, gids, retain_gids, expected_xml ): font = empty_svg_font svg_docs = font["SVG "].docList for i in range(1, 11): svg = new_svg() etree.SubElement(svg, "path", {"id": f"glyph{i}", "d": f"M{i},{i}"}) svg_docs.append((etree.tostring(svg).decode(), i, i)) svg_font_path = tmp_path / "TestSVG.ttf" font.save(svg_font_path) subset_path = svg_font_path.with_suffix(".subset.ttf") subset.main( [ str(svg_font_path), f"--output-file={subset_path}", f"--gids={gids}", "--retain_gids" if retain_gids else "--no-retain_gids", ] ) subset_font = TTFont(subset_path) assert getXML(subset_font["SVG "].toXML, subset_font) == expected_xml # This contains a bunch of cross-references between glyphs, paths, gradients, etc. # Note the path coordinates are completely made up and not meant to be rendered. # We only care about the tree structure, not it's visual content. COMPLEX_SVG = """\ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <linearGradient id="lg1" x1="50" x2="50" y1="80" y2="80" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </linearGradient> <radialGradient id="rg2" cx="50" cy="50" r="10" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </radialGradient> <radialGradient id="rg3" xlink:href="#rg2" r="20"/> <radialGradient id="rg4" xlink:href="#rg3" cy="100"/> <path id="p1" d="M3,3"/> <clipPath id="c1"> <circle cx="10" cy="10" r="1"/> </clipPath> </defs> <g id="glyph1"> <g id="glyph2"> <path d="M0,0"/> </g> <g> <path d="M1,1" fill="url(#lg1)"/> <path d="M2,2"/> </g> </g> <g id="glyph3"> <use xlink:href="#p1"/> </g> <use id="glyph4" xlink:href="#glyph1" x="10"/> <use id="glyph5" xlink:href="#glyph2" y="-10"/> <g id="glyph6"> <use xlink:href="#p1" transform="scale(2, 1)"/> </g> <g id="group1"> <g id="glyph7"> <path id="p2" d="M4,4"/> </g> <g id=".glyph7"> <path d="M4,4"/> </g> <g id="glyph8"> <g id=".glyph8"> <path id="p3" d="M5,5"/> <path id="M6,6"/> </g> <path d="M7,7"/> </g> <g id="glyph9"> <use xlink:href="#p2"/> </g> <g id="glyph10"> <use xlink:href="#p3"/> </g> </g> <g id="glyph11"> <path d="M7,7" fill="url(#rg4)"/> </g> <g id="glyph12"> <path d="M7,7" style="fill:url(#lg1);stroke:red;clip-path:url(#c1)"/> </g> </svg> """ @pytest.mark.parametrize( "subset_gids, expected_xml", [ # we only keep gid=2, with 'glyph2' defined inside 'glyph1': 'glyph2' # is renamed 'glyph1' to match the new subset indices, and the old 'glyph1' # is kept (as it contains 'glyph2') but renamed '.glyph1' to avoid clash ( "2", _lines( """\ <svgDoc endGlyphID="1" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g id=".glyph1"> <g id="glyph1"> <path d="M0,0"/> </g> </g> </svg> ]]> </svgDoc> """ ), ), # we keep both gid 1 and 2: the glyph elements' ids stay as they are (only the # range endGlyphID change); a gradient is kept since it's referenced by glyph1 ( "1,2", _lines( """\ <svgDoc endGlyphID="2" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <linearGradient id="lg1" x1="50" x2="50" y1="80" y2="80" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </linearGradient> </defs> <g id="glyph1"> <g id="glyph2"> <path d="M0,0"/> </g> <g> <path d="M1,1" fill="url(#lg1)"/> <path d="M2,2"/> </g> </g> </svg> ]]> </svgDoc> """ ), ), ( # both gid 3 and 6 refer (via <use xlink:href="#...") to path 'p1', which # is thus kept in <defs>; the glyph ids and range start/end are renumbered. "3,6", _lines( """\ <svgDoc endGlyphID="2" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <path id="p1" d="M3,3"/> </defs> <g id="glyph1"> <use xlink:href="#p1"/> </g> <g id="glyph2"> <use xlink:href="#p1" transform="scale(2, 1)"/> </g> </svg> ]]> </svgDoc> """ ), ), ( # 'glyph4' uses the whole 'glyph1' element (translated); we keep the latter # renamed to avoid clashes with new gids "3-4", _lines( """\ <svgDoc endGlyphID="2" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <linearGradient id="lg1" x1="50" x2="50" y1="80" y2="80" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </linearGradient> <path id="p1" d="M3,3"/> </defs> <g id=".glyph1"> <g id=".glyph2"> <path d="M0,0"/> </g> <g> <path d="M1,1" fill="url(#lg1)"/> <path d="M2,2"/> </g> </g> <g id="glyph1"> <use xlink:href="#p1"/> </g> <use id="glyph2" xlink:href="#.glyph1" x="10"/> </svg> ]]> </svgDoc> """ ), ), ( # 'glyph9' uses a path 'p2' defined inside 'glyph7', the latter is excluded # from our subset, thus gets renamed '.glyph7'; an unrelated element with # same id=".glyph7" doesn't clash because it was dropped. # Similarly 'glyph10' uses path 'p3' defined inside 'glyph8', also excluded # from subset and prefixed with '.'. But since an id=".glyph8" is already # used in the doc, we append a .{digit} suffix to disambiguate. "9,10", _lines( """\ <svgDoc endGlyphID="2" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g id="group1"> <g id=".glyph7"> <path id="p2" d="M4,4"/> </g> <g id=".glyph8.1"> <g id=".glyph8"> <path id="p3" d="M5,5"/> </g> </g> <g id="glyph1"> <use xlink:href="#p2"/> </g> <g id="glyph2"> <use xlink:href="#p3"/> </g> </g> </svg> ]]> </svgDoc> """ ), ), ( # 'glyph11' uses gradient 'rg4' which inherits from 'rg3', which inherits # from 'rg2', etc. "11", _lines( """\ <svgDoc endGlyphID="1" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <radialGradient id="rg2" cx="50" cy="50" r="10" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </radialGradient> <radialGradient id="rg3" xlink:href="#rg2" r="20"/> <radialGradient id="rg4" xlink:href="#rg3" cy="100"/> </defs> <g id="glyph1"> <path d="M7,7" fill="url(#rg4)"/> </g> </svg> ]]> </svgDoc> """ ), ), ( # 'glyph12' contains a style attribute with inline CSS declarations that # contains references to a gradient fill and a clipPath: we keep those "12", _lines( """\ <svgDoc endGlyphID="1" startGlyphID="1"> <![CDATA[<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <defs> <linearGradient id="lg1" x1="50" x2="50" y1="80" y2="80" gradientUnits="userSpaceOnUse"> <stop stop-color="#A47B62" offset="0"/> <stop stop-color="#AD8264" offset="1.0"/> </linearGradient> <clipPath id="c1"> <circle cx="10" cy="10" r="1"/> </clipPath> </defs> <g id="glyph1"> <path d="M7,7" style="fill:url(#lg1);stroke:red;clip-path:url(#c1)"/> </g> </svg> ]]> </svgDoc> """ ), ), ], ) def test_subset_svg_with_references( empty_svg_font, tmp_path, subset_gids, expected_xml ): font = empty_svg_font font["SVG "].docList.append((COMPLEX_SVG, 1, 12)) svg_font_path = tmp_path / "TestSVG.ttf" font.save(svg_font_path) subset_path = svg_font_path.with_suffix(".subset.ttf") subset.main( [ str(svg_font_path), f"--output-file={subset_path}", f"--gids={subset_gids}", "--pretty-svg", ] ) subset_font = TTFont(subset_path) if expected_xml is not None: assert getXML(subset_font["SVG "].toXML, subset_font) == expected_xml else: assert "SVG " not in subset_font def test_subset_svg_empty_table(empty_svg_font, tmp_path): font = empty_svg_font svg = new_svg() etree.SubElement(svg, "rect", {"id": "glyph1", "x": "1", "y": "2"}) font["SVG "].docList.append((etree.tostring(svg).decode(), 1, 1)) svg_font_path = tmp_path / "TestSVG.ttf" font.save(svg_font_path) subset_path = svg_font_path.with_suffix(".subset.ttf") # there's no gid=2 in SVG table, drop the empty table subset.main([str(svg_font_path), f"--output-file={subset_path}", f"--gids=2"]) assert "SVG " not in TTFont(subset_path) def test_subset_svg_missing_glyph(empty_svg_font, tmp_path): font = empty_svg_font svg = new_svg() etree.SubElement(svg, "rect", {"id": "glyph1", "x": "1", "y": "2"}) font["SVG "].docList.append( ( etree.tostring(svg).decode(), 1, # the range endGlyphID=2 declares two glyphs however our svg contains # only one glyph element with id="glyph1", the "glyph2" one is absent. # Techically this would be invalid according to the OT-SVG spec. 2, ) ) svg_font_path = tmp_path / "TestSVG.ttf" font.save(svg_font_path) subset_path = svg_font_path.with_suffix(".subset.ttf") # make sure we don't crash when we don't find the expected "glyph2" element subset.main([str(svg_font_path), f"--output-file={subset_path}", f"--gids=1"]) subset_font = TTFont(subset_path) assert getXML(subset_font["SVG "].toXML, subset_font) == [ '<svgDoc endGlyphID="1" startGlyphID="1">', ' <![CDATA[<svg xmlns="http://www.w3.org/2000/svg"><rect id="glyph1" x="1" y="2"/></svg>]]>', "</svgDoc>", ] # ignore the missing gid even if included in the subset; in this test case we # end up with an empty svg document--which is dropped, along with the empty table subset.main([str(svg_font_path), f"--output-file={subset_path}", f"--gids=2"]) assert "SVG " not in TTFont(subset_path) @pytest.mark.parametrize( "ints, expected_ranges", [ ((), []), ((0,), [(0, 0)]), ((0, 1), [(0, 1)]), ((1, 1, 1, 1), [(1, 1)]), ((1, 3), [(1, 1), (3, 3)]), ((4, 2, 1, 3), [(1, 4)]), ((1, 2, 4, 5, 6, 9, 13, 14, 15), [(1, 2), (4, 6), (9, 9), (13, 15)]), ], ) def test_ranges(ints, expected_ranges): assert list(ranges(ints)) == expected_ranges
20176
from inqry.system_specs import win_physical_disk UNIQUE_ID_OUTPUT = """ UniqueId -------- {256a2559-ce63-5434-1bee-3ff629daa3a7} {4069d186-f178-856e-cff3-ba250c28446d} {4da19f06-2e28-2722-a0fb-33c02696abcd} 50014EE20D887D66 eui.0025384161B6798A 5000C5007A75E216 500A07510F1A545C ATA LITEONIT LMT-256M6M mSATA 256GB TW0XXM305508532M0705 IDE\Diskpacker-virtualbox-iso-1421140659-disk1__F.R7BNPC\5&1944dbef&0&0.0.0:vagrant-2012-r2 """ def test_creating_list_of_unique_disk_ids(): expected_physical_disks = {'{256a2559-ce63-5434-1bee-3ff629daa3a7}', '{4069d186-f178-856e-cff3-ba250c28446d}', '{4da19f06-2e28-2722-a0fb-33c02696abcd}', '50014EE20D887D66', 'eui.0025384161B6798A', '5000C5007A75E216', '500A07510F1A545C', 'ATA LITEONIT LMT-256M6M mSATA 256GB TW0XXM305508532M0705', "IDE\Diskpacker-virtualbox-iso-1421140659-disk1__F.R7BNPC\5&1944dbef&0&0.0.0:vagrant-2012-r2"} assert expected_physical_disks == set(win_physical_disk.get_physical_disk_identifiers(UNIQUE_ID_OUTPUT))
20202
import os from netmiko import ConnectHandler from getpass import getpass from pprint import pprint # Code so automated tests will run properly # Check for environment variable, if that fails, use getpass(). password = os.getenv("NETMIKO_PASSWORD") if os.getenv("NETMIKO_PASSWORD") else getpass() my_device = { "device_type": "cisco_xe", "host": "cisco3.lasthop.io", "username": "pyclass", "password": password, } with ConnectHandler(**my_device) as net_connect: output = net_connect.send_command("show ip int brief", use_genie=True) # output = net_connect.send_command("show ip arp", use_genie=True) pprint(output)
20210
import pytest from conflow.merge import merge_factory from conflow.node import Node, NodeList, NodeMap def test_merge_node_node(default_config): base = Node('base', 'node_A') other = Node('other', 'node_B') assert merge_factory(base, other, default_config) == other def test_merge_node_nodelist(default_config): base = Node('base', 'node_A') other = NodeList('other', [2]) assert merge_factory(base, other, default_config) == other def test_merge_node_nodemap(default_config): base = Node('base', 'node_A') other = NodeMap('other', { 'db': { 'master': { 'host': 'other' } } }) assert merge_factory(base, other, default_config) == other def test_merge_nodelist_node(default_config): base = NodeList('other', [2]) other = Node('base', 'node_A') assert merge_factory(base, other, default_config) == other def test_merge_nodelist_nodelist_override(default_config): base = NodeList('base', [1]) other = NodeList('other', [2]) assert merge_factory(base, other, default_config) == other def test_merge_nodelist_nodelist_extend(extend_list_config): base = NodeList('base', [1]) other = NodeList('other', [2]) expected = NodeList('base', [1, 2]) assert merge_factory(base, other, extend_list_config) == expected def test_merge_nodelist_nodemap(default_config): base = NodeList('base', [1]) other = NodeMap('base', { 'db': { 'master': { 'host': 'base' } } }) assert merge_factory(base, other, default_config) == other def test_merge_nodemap_node(default_config): base = NodeMap('base', { 'db': { 'master': { 'host': 'base' } } }) other = Node('base', 'node_A') assert merge_factory(base, other, default_config) == other def test_merge_nodemap_nodelist(default_config): base = NodeMap('base', { 'db': { 'master': { 'host': 'base' } } }) other = NodeList('base', [1]) assert merge_factory(base, other, default_config) == other def test_merge_nodemap_nodemap_override(default_config): base = NodeMap('base', { 'db': { 'master': { 'host': 'base' } } }) other = NodeMap('other', { 'db': { 'master': { 'host': 'other' } } }) result = merge_factory(base, other, default_config) assert result.db.master.host == 'other' def test_merge_nodemap_nodemap_extend(default_config): base = NodeMap('base', { 'master': { 'host': 'master' } }) other = NodeMap('other', { 'slave': { 'host': 'slave' } }) result = merge_factory(base, other, default_config) assert 'master' in result assert 'slave' in result def test_merge_nodemap_nodemap_empty(default_config): base = NodeMap('base', {}) other = NodeMap('other', {}) expected = NodeMap('expected', {}) assert merge_factory(base, other, default_config) == expected def test_merge_different_types_strict(strict_config): base = NodeMap('base', {'merged_key': {'a': 'b'}}) other = NodeMap('other', {'merged_key': 1}) with pytest.raises(RuntimeError) as error: merge_factory(base, other, strict_config) error_message = ( "Cannot merge `{'a': 'b'}` and `1` with key `merged_key`" ) assert str(error.value) == error_message
20233
import unittest import os.path import requests_mock import tableauserverclient as TSC TEST_ASSET_DIR = os.path.join(os.path.dirname(__file__), 'assets') SIGN_IN_XML = os.path.join(TEST_ASSET_DIR, 'auth_sign_in.xml') SIGN_IN_IMPERSONATE_XML = os.path.join(TEST_ASSET_DIR, 'auth_sign_in_impersonate.xml') SIGN_IN_ERROR_XML = os.path.join(TEST_ASSET_DIR, 'auth_sign_in_error.xml') class AuthTests(unittest.TestCase): def setUp(self): self.server = TSC.Server('http://test') self.baseurl = self.server.auth.baseurl def test_sign_in(self): with open(SIGN_IN_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml) tableau_auth = TSC.TableauAuth('testuser', 'password', site_id='Samples') self.server.auth.sign_in(tableau_auth) self.assertEqual('eIX6mvFsqyansa4KqEI1UwOpS8ggRs2l', self.server.auth_token) self.assertEqual('6b7179ba-b82b-4f0f-91ed-812074ac5da6', self.server.site_id) self.assertEqual('1a96d216-e9b8-497b-a82a-0b899a965e01', self.server.user_id) def test_sign_in_with_personal_access_tokens(self): with open(SIGN_IN_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml) tableau_auth = TSC.PersonalAccessTokenAuth(token_name='mytoken', personal_access_token='<PASSWORD>', site_id='Samples') self.server.auth.sign_in(tableau_auth) self.assertEqual('eIX6mvFsqyansa4KqEI1UwOpS8ggRs2l', self.server.auth_token) self.assertEqual('6b7179ba-b82b-4f0f-91ed-812074ac5da6', self.server.site_id) self.assertEqual('1a96d216-e9b8-497b-a82a-0b899a965e01', self.server.user_id) def test_sign_in_impersonate(self): with open(SIGN_IN_IMPERSONATE_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml) tableau_auth = TSC.TableauAuth('testuser', 'password', user_id_to_impersonate='dd2239f6-ddf1-4107-981a-4cf94e415794') self.server.auth.sign_in(tableau_auth) self.assertEqual('MJonFA6HDyy2C3oqR13fRGqE6cmgz<PASSWORD>', self.server.auth_token) self.assertEqual('dad65087-b08b-4603-af4e-2887b8aafc67', self.server.site_id) self.assertEqual('dd2239f6-ddf1-4107-981a-4cf94e415794', self.server.user_id) def test_sign_in_error(self): with open(SIGN_IN_ERROR_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml, status_code=401) tableau_auth = TSC.TableauAuth('testuser', '<PASSWORD>') self.assertRaises(TSC.ServerResponseError, self.server.auth.sign_in, tableau_auth) def test_sign_in_invalid_token(self): with open(SIGN_IN_ERROR_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml, status_code=401) tableau_auth = TSC.PersonalAccessTokenAuth(token_name='mytoken', personal_access_token='invalid') self.assertRaises(TSC.ServerResponseError, self.server.auth.sign_in, tableau_auth) def test_sign_in_without_auth(self): with open(SIGN_IN_ERROR_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml, status_code=401) tableau_auth = TSC.TableauAuth('', '') self.assertRaises(TSC.ServerResponseError, self.server.auth.sign_in, tableau_auth) def test_sign_out(self): with open(SIGN_IN_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(self.baseurl + '/signin', text=response_xml) m.post(self.baseurl + '/signout', text='') tableau_auth = TSC.TableauAuth('testuser', 'password') self.server.auth.sign_in(tableau_auth) self.server.auth.sign_out() self.assertIsNone(self.server._auth_token) self.assertIsNone(self.server._site_id) self.assertIsNone(self.server._user_id) def test_switch_site(self): self.server.version = '2.6' baseurl = self.server.auth.baseurl site_id, user_id, auth_token = list('<PASSWORD>') self.server._set_auth(site_id, user_id, auth_token) with open(SIGN_IN_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(baseurl + '/switchSite', text=response_xml) site = TSC.SiteItem('Samples', 'Samples') self.server.auth.switch_site(site) self.assertEqual('eIX6mvFsq<PASSWORD>4KqEI1UwOpS8ggRs2l', self.server.auth_token) self.assertEqual('<PASSWORD>-8120<PASSWORD>', self.server.site_id) self.assertEqual('1a96d216-e9b8-497b-a82a-0b899a965e01', self.server.user_id) def test_revoke_all_server_admin_tokens(self): self.server.version = "3.10" baseurl = self.server.auth.baseurl with open(SIGN_IN_XML, 'rb') as f: response_xml = f.read().decode('utf-8') with requests_mock.mock() as m: m.post(baseurl + '/signin', text=response_xml) m.post(baseurl + '/revokeAllServerAdminTokens', text='') tableau_auth = TSC.TableauAuth('testuser', 'password') self.server.auth.sign_in(tableau_auth) self.server.auth.revoke_all_server_admin_tokens() self.assertEqual('eIX6mvFsqyansa4KqEI1UwOpS8ggRs2l', self.server.auth_token) self.assertEqual('<PASSWORD>ba-b82b-4f0f-91ed-812074ac5da6', self.server.site_id) self.assertEqual('1a96d216-e9b8-497b-a82a-0b899a965e01', self.server.user_id)
20234
import gym from gym import spaces, error, utils from gym.utils import seeding import numpy as np import configparser from os import path import matplotlib.pyplot as plt from matplotlib.pyplot import gca font = {'family': 'sans-serif', 'weight': 'bold', 'size': 14} class FlockingEnv(gym.Env): def __init__(self): config_file = path.join(path.dirname(__file__), "params_flock.cfg") config = configparser.ConfigParser() config.read(config_file) config = config['flock'] self.dynamic = False # if the agents are moving or not self.mean_pooling = True # normalize the adjacency matrix by the number of neighbors or not # number states per agent self.nx_system = 4 # numer of observations per agent self.n_features = 6 # number of actions per agent self.nu = 2 # problem parameters from file self.n_agents = int(config['network_size']) self.comm_radius = float(config['comm_radius']) self.comm_radius2 = self.comm_radius * self.comm_radius self.dt = float(config['system_dt']) self.v_max = float(config['max_vel_init']) self.v_bias = self.v_max self.r_max = float(config['max_rad_init']) self.std_dev = float(config['std_dev']) * self.dt # intitialize state matrices self.x = np.zeros((self.n_agents, self.nx_system)) self.u = np.zeros((self.n_agents, self.nu)) self.mean_vel = np.zeros((self.n_agents, self.nu)) self.init_vel = np.zeros((self.n_agents, self.nu)) self.a_net = np.zeros((self.n_agents, self.n_agents)) # TODO : what should the action space be? is [-1,1] OK? self.max_accel = 1 self.gain = 10.0 # TODO - adjust if necessary - may help the NN performance self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2 * self.n_agents,), dtype=np.float32) self.observation_space = spaces.Box(low=-np.Inf, high=np.Inf, shape=(self.n_agents, self.n_features), dtype=np.float32) self.fig = None self.line1 = None self.seed() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): #u = np.reshape(u, (-1, 2)) assert u.shape == (self.n_agents, self.nu) self.u = u if self.dynamic: # x position self.x[:, 0] = self.x[:, 0] + self.x[:, 2] * self.dt # y position self.x[:, 1] = self.x[:, 1] + self.x[:, 3] * self.dt # x velocity self.x[:, 2] = self.x[:, 2] + self.gain * self.u[:, 0] * self.dt #+ np.random.normal(0, self.std_dev, (self.n_agents,)) # y velocity self.x[:, 3] = self.x[:, 3] + self.gain * self.u[:, 1] * self.dt #+ np.random.normal(0, self.std_dev, (self.n_agents,)) return self._get_obs(), self.instant_cost(), False, {} def instant_cost(self): # sum of differences in velocities # TODO adjust to desired reward # action_cost = -1.0 * np.sum(np.square(self.u)) #curr_variance = -1.0 * np.sum((np.var(self.x[:, 2:4], axis=0))) versus_initial_vel = -1.0 * np.sum(np.sum(np.square(self.x[:, 2:4] - self.mean_vel), axis=1)) #return curr_variance + versus_initial_vel return versus_initial_vel def reset(self): x = np.zeros((self.n_agents, self.nx_system)) degree = 0 min_dist = 0 min_dist_thresh = 0.1 # 0.25 # generate an initial configuration with all agents connected, # and minimum distance between agents > min_dist_thresh while degree < 2 or min_dist < min_dist_thresh: # randomly initialize the location and velocity of all agents length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_agents,))) angle = np.pi * np.random.uniform(0, 2, size=(self.n_agents,)) x[:, 0] = length * np.cos(angle) x[:, 1] = length * np.sin(angle) bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,)) x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) + bias[0] x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) + bias[1] # compute distances between agents a_net = self.dist2_mat(x) # compute minimum distance between agents and degree of network to check if good initial configuration min_dist = np.sqrt(np.min(np.min(a_net))) a_net = a_net < self.comm_radius2 degree = np.min(np.sum(a_net.astype(int), axis=1)) # keep good initialization self.mean_vel = np.mean(x[:, 2:4], axis=0) self.init_vel = x[:, 2:4] self.x = x self.a_net = self.get_connectivity(self.x) return self._get_obs() def _get_obs(self): # state_values = self.x state_values = np.hstack((self.x, self.init_vel)) # initial velocities are part of state to make system observable if self.dynamic: state_network = self.get_connectivity(self.x) else: state_network = self.a_net return (state_values, state_network) def dist2_mat(self, x): """ Compute squared euclidean distances between agents. Diagonal elements are infinity Args: x (): current state of all agents Returns: symmetric matrix of size (n_agents, n_agents) with A_ij the distance between agents i and j """ x_loc = np.reshape(x[:, 0:2], (self.n_agents,2,1)) a_net = np.sum(np.square(np.transpose(x_loc, (0,2,1)) - np.transpose(x_loc, (2,0,1))), axis=2) np.fill_diagonal(a_net, np.Inf) return a_net def get_connectivity(self, x): """ Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist Args: x (): current state of all agents Returns: adjacency matrix of network """ a_net = self.dist2_mat(x) a_net = (a_net < self.comm_radius2).astype(float) if self.mean_pooling: # Normalize the adjacency matrix by the number of neighbors - results in mean pooling, instead of sum pooling n_neighbors = np.reshape(np.sum(a_net, axis=1), (self.n_agents,1)) # TODO or axis=0? Is the mean in the correct direction? n_neighbors[n_neighbors == 0] = 1 a_net = a_net / n_neighbors return a_net def controller(self): """ Consensus-based centralized flocking with no obstacle avoidance Returns: the optimal action """ # TODO implement Tanner 2003? u = np.mean(self.x[:,2:4], axis=0) - self.x[:,2:4] u = np.clip(u, a_min=-self.max_accel, a_max=self.max_accel) return u def render(self, mode='human'): """ Render the environment with agents as points in 2D space """ if self.fig is None: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) line1, = ax.plot(self.x[:, 0], self.x[:, 1], 'bo') # Returns a tuple of line objects, thus the comma ax.plot([0], [0], 'kx') plt.ylim(-1.0 * self.r_max, 1.0 * self.r_max) plt.xlim(-1.0 * self.r_max, 1.0 * self.r_max) a = gca() a.set_xticklabels(a.get_xticks(), font) a.set_yticklabels(a.get_yticks(), font) plt.title('GNN Controller') self.fig = fig self.line1 = line1 self.line1.set_xdata(self.x[:, 0]) self.line1.set_ydata(self.x[:, 1]) self.fig.canvas.draw() self.fig.canvas.flush_events() def close(self): pass
20237
import sys,os from torch.autograd import Variable import torch.optim as optim from tensorboardX import SummaryWriter import torch import time import shutil from torch.utils.data import DataLoader import csv from samp_net import EMDLoss, AttributeLoss, SAMPNet from config import Config from cadb_dataset import CADBDataset from test import evaluation_on_cadb def calculate_accuracy(predict, target, threhold=2.6): assert target.shape == predict.shape, '{} vs. {}'.format(target.shape, predict.shape) bin_tar = target > threhold bin_pre = predict > threhold correct = (bin_tar == bin_pre).sum() acc = correct.float() / target.size(0) return correct,acc def build_dataloader(cfg): trainset = CADBDataset('train', cfg) trainloader = DataLoader(trainset, batch_size=cfg.batch_size, shuffle=True, num_workers=cfg.num_workers, drop_last=False) return trainloader class Trainer(object): def __init__(self, model, cfg): self.cfg = cfg self.model = model self.device = torch.device('cuda:{}'.format(self.cfg.gpu_id)) self.trainloader = build_dataloader(cfg) self.optimizer = self.create_optimizer() self.scheduler = optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, mode='min', patience=5) self.epoch = 0 self.iters = 0 self.avg_mse = 0. self.avg_emd = 0. self.avg_acc = 0. self.avg_att = 0. self.smooth_coe = 0.4 self.smooth_mse = None self.smooth_emd = None self.smooth_acc = None self.smooth_att = None self.mse_loss = torch.nn.MSELoss() self.emd_loss = EMDLoss() self.test_acc = [] self.test_emd1 = [] self.test_emd2 = [] self.test_mse = [] self.test_srcc = [] self.test_lcc = [] if cfg.use_attribute: self.att_loss = AttributeLoss(cfg.attribute_weight) self.least_metric = 1. self.writer = self.create_writer() def create_optimizer(self): # for param in self.model.backbone.parameters(): # param.requires_grad = False bb_params = list(map(id, self.model.backbone.parameters())) lr_params = filter(lambda p:id(p) not in bb_params, self.model.parameters()) params = [ {'params': lr_params, 'lr': self.cfg.lr}, {'params': self.model.backbone.parameters(), 'lr': self.cfg.lr * 0.01} ] if self.cfg.optimizer == 'adam': optimizer = optim.Adam(params, weight_decay=self.cfg.weight_decay) elif self.cfg.optimizer == 'sgd': optimizer = optim.SGD(params, momentum=self.cfg.momentum, weight_decay=self.cfg.weight_decay) else: raise ValueError(f"not such optimizer {self.cfg.optimizer}") return optimizer def create_writer(self): print('Create tensorboardX writer...', self.cfg.log_dir) writer = SummaryWriter(log_dir=self.cfg.log_dir) return writer def run(self): for epoch in range(self.cfg.max_epoch): self.run_epoch() self.epoch += 1 self.scheduler.step(metrics=self.least_metric) self.writer.add_scalar('Train/lr', self.optimizer.param_groups[0]['lr'], self.epoch) if self.epoch % self.cfg.save_epoch == 0: checkpoint_path = os.path.join(self.cfg.checkpoint_dir, 'model-{epoch}.pth') torch.save(self.model.state_dict(), checkpoint_path.format(epoch=self.epoch)) print('Save checkpoint...') if self.epoch % self.cfg.test_epoch == 0: test_emd = self.eval_training() if test_emd < self.least_metric: self.least_metric = test_emd checkpoint_path = os.path.join(self.cfg.checkpoint_dir, 'model-best.pth') torch.save(self.model.state_dict(), checkpoint_path) print('Update best checkpoint...') self.writer.add_scalar('Test/Least EMD', self.least_metric, self.epoch) def eval_training(self): avg_acc, avg_r1_emd, avg_r2_emd, avg_mse, SRCC, LCC = \ evaluation_on_cadb(self.model, self.cfg) self.writer.add_scalar('Test/Average EMD(r=2)', avg_r2_emd, self.epoch) self.writer.add_scalar('Test/Average EMD(r=1)', avg_r1_emd, self.epoch) self.writer.add_scalar('Test/Average MSE', avg_mse, self.epoch) self.writer.add_scalar('Test/Accuracy', avg_acc, self.epoch) self.writer.add_scalar('Test/SRCC', SRCC, self.epoch) self.writer.add_scalar('Test/LCC', LCC, self.epoch) error = avg_r1_emd self.test_acc.append(avg_acc) self.test_emd1.append(avg_r1_emd) self.test_emd2.append(avg_r2_emd) self.test_mse.append(avg_mse) self.test_srcc.append(SRCC) self.test_lcc.append(LCC) self.write2csv() return error def write2csv(self): csv_path = os.path.join(self.cfg.exp_path, '..', '{}.csv'.format(self.cfg.exp_name)) header = ['epoch', 'Accuracy', 'EMD r=1', 'EMD r=2', 'MSE', 'SRCC', 'LCC'] epoches = list(range(len(self.test_acc))) metrics = [epoches, self.test_acc, self.test_emd1, self.test_emd2, self.test_mse, self.test_srcc, self.test_lcc] rows = [header] for i in range(len(epoches)): row = [m[i] for m in metrics] rows.append(row) for name, m in zip(header, metrics): if name == 'epoch': continue index = m.index(min(m)) if name in ['Accuracy', 'SRCC', 'LCC']: index = m.index(max(m)) title = 'best {} (epoch-{})'.format(name, index) row = [l[index] for l in metrics] row[0] = title rows.append(row) with open(csv_path, 'w') as f: cw = csv.writer(f) cw.writerows(rows) print('Save result to ', csv_path) def dist2ave(self, pred_dist): pred_score = torch.sum(pred_dist* torch.Tensor(range(1,6)).to(pred_dist.device), dim=-1, keepdim=True) return pred_score def run_epoch(self): self.model.train() for batch, data in enumerate(self.trainloader): self.iters += 1 image = data[0].to(self.device) score = data[1].to(self.device) score_dist = data[2].to(self.device) saliency = data[3].to(self.device) attributes = data[4].to(self.device) weight = data[5].to(self.device) pred_weight, pred_atts, pred_dist = self.model(image, saliency) if self.cfg.use_weighted_loss: dist_loss = self.emd_loss(score_dist, pred_dist, weight) else: dist_loss = self.emd_loss(score_dist, pred_dist) if self.cfg.use_attribute: att_loss = self.att_loss(attributes, pred_atts) loss = dist_loss + att_loss else: loss = dist_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.avg_emd += dist_loss.item() self.avg_att += att_loss.item() pred_score = self.dist2ave(pred_dist) correct, accuracy = calculate_accuracy(pred_score, score) self.avg_acc += accuracy.item() if (self.iters+1) % self.cfg.display_steps == 0: print('ground truth: average={}'.format(score.view(-1))) print('prediction: average={}'.format(pred_score.view(-1))) self.avg_emd = self.avg_emd / self.cfg.display_steps self.avg_acc = self.avg_acc / self.cfg.display_steps if self.cfg.use_attribute: self.avg_att = self.avg_att / self.cfg.display_steps if self.smooth_emd != None: self.avg_emd = (1-self.smooth_coe) * self.avg_emd + self.smooth_coe * self.smooth_emd self.avg_acc = (1-self.smooth_coe) * self.avg_acc + self.smooth_coe * self.smooth_acc if self.cfg.use_attribute: self.avg_att = (1-self.smooth_coe) * self.avg_att + self.smooth_coe * self.smooth_att self.writer.add_scalar('Train/AttributeLoss', self.avg_att, self.iters) self.writer.add_scalar('Train/EMD_Loss', self.avg_emd, self.iters) self.writer.add_scalar('Train/Accuracy', self.avg_acc, self.iters) if self.cfg.use_attribute: print('Traning Epoch:{}/{} Current Batch: {}/{} EMD_Loss:{:.4f} Attribute_Loss:{:.4f} ACC:{:.2%} lr:{:.6f} '. format( self.epoch, self.cfg.max_epoch, batch, len(self.trainloader), self.avg_emd, self.avg_att, self.avg_acc, self.optimizer.param_groups[0]['lr'])) else: print( 'Traning Epoch:{}/{} Current Batch: {}/{} EMD_Loss:{:.4f} ACC:{:.2%} lr:{:.6f} '. format( self.epoch, self.cfg.max_epoch, batch, len(self.trainloader), self.avg_emd, self.avg_acc, self.optimizer.param_groups[0]['lr'])) self.smooth_emd = self.avg_emd self.smooth_acc = self.avg_acc self.avg_mse = 0. self.avg_emd = 0. self.avg_acc = 0. if self.cfg.use_attribute: self.smooth_att = self.avg_att self.avg_att = 0. print() if __name__ == '__main__': cfg = Config() cfg.create_path() device = torch.device('cuda:{}'.format(cfg.gpu_id)) # evaluate(cfg) for file in os.listdir('./'): if file.endswith('.py'): shutil.copy(file, cfg.exp_path) print('Backup ', file) model = SAMPNet(cfg) model = model.train().to(device) trainer = Trainer(model, cfg) trainer.run()
20239
import pygame from pygame.mixer import music from pystage.core.assets import SoundManager from pystage.core._base_sprite import BaseSprite import time class _Sound(BaseSprite): # Like for costumes and backdrops, we need a class structure here. # Plus a global sound manager. def __init__(self): super().__init__() self.sound_manager = SoundManager(self) self.mixer = pygame.mixer self.mixer.init(channels=2) self.current_pan = 0 self.current_pitch = 0 self.current_volume = 100 def pystage_addsound(self, name): self.sound_manager.add_sound(name) def sound_play(self, name, loop=0): channel = self.mixer.find_channel() sound = self.sound_manager.get_sound(name) if sound is not None: channel.play(sound, loop) return channel def sound_playuntildone(self, name): sound = self.sound_manager.get_sound(name) if sound is not None: self.mixer.find_channel().play(sound, 0) # time.sleep(sound.get_length()) # This need to be done via wait time in code block # TODO: Add this function to yield blocks. self.code_manager.current_block.add_to_wait_time = sound.get_length() def sound_stopallsounds(self): self.mixer.stop() def sound_changeeffectby_pitch(self, value): # TODO: for pitching there is no ready to use code in pygame. To do so # we must operate on the audio array itself. # -360 to 360, 10 is a half-step, 120 an octave # changes only the speed of the sound pass sound_changeeffectby_pitch.opcode = "sound_changeeffectby" sound_changeeffectby_pitch.param = "EFFECT" sound_changeeffectby_pitch.value = "PITCH" sound_changeeffectby_pitch.translation = "sound_effects_pitch" def sound_changeeffectby_pan(self, value): # norm pan value from -100/100 to range 0/1 self.current_pan += value self.current_pan = min(100, max(-100, self.current_pan)) self._apply() sound_changeeffectby_pan.opcode = "sound_changeeffectby" sound_changeeffectby_pan.param = "EFFECT" sound_changeeffectby_pan.value = "PAN" sound_changeeffectby_pan.translation = "sound_effects_pan" def sound_seteffectto_pitch(self, value): # TODO: for pitching there is no ready to use code in pygame. To do so # we must operate on the audio array itself. pass sound_seteffectto_pitch.opcode = "sound_seteffectto" sound_seteffectto_pitch.param = "EFFECT" sound_seteffectto_pitch.value = "PITCH" sound_seteffectto_pitch.translation = "sound_effects_pitch" def sound_seteffectto_pan(self, value): # Values from -100 (left) to 100 (right) self.current_pan = value self.current_pan = min(100, max(-100, self.current_pan)) self._apply() sound_seteffectto_pan.opcode = "sound_seteffectto" sound_seteffectto_pan.param = "EFFECT" sound_seteffectto_pan.value = "PAN" sound_seteffectto_pan.translation = "sound_effects_pan" def sound_cleareffects(self): self.current_pan = 0 self.current_pitch = 0 self._apply() # apply pitch def _apply(self): # norm pan value from -100/100 to range 0/1 pgpan = (self.current_pan + 100) / 200 pgvolume = self.current_volume / 100 for channel_id in range(self.mixer.get_num_channels()): if pgpan > 0.5: self.mixer.Channel(channel_id).set_volume(1, 0) else: self.mixer.Channel(channel_id).set_volume(0, 1) for channel_id in range(self.mixer.get_num_channels()): self.mixer.Channel(channel_id).set_volume(pgvolume) def sound_changevolumeby(self, value): self.current_volume += value self.current_volume = min(100, max(0, self.current_volume)) self._apply() def sound_setvolumeto(self, value): self.current_volume = value self.current_volume = min(100, max(0, self.current_volume)) self._apply() def sound_volume(self): # as we hide the channel mechanic, we assume all channels are set to the same volume return self.mixer.Channel(0).get_volume() * 100
20298
import os import dgl import time import argparse import numpy as np import torch as th import distutils.util import torch.nn.functional as F import utils import models import data_loader os.environ["CUDA_VISIBLE_DEVICES"] = '0' dev = th.device('cuda' if th.cuda.is_available() else 'cpu') if __name__ == '__main__': argparser = argparse.ArgumentParser("training") argparser.add_argument('--adj-path', type=str, default='../data/adj_matrix_formal_stage.pkl') argparser.add_argument('--feat-path', type=str, default='../data/feature_formal_stage.npy') argparser.add_argument('--label-path', type=str, default='../data/train_labels_formal_stage.npy') argparser.add_argument('--output-dir', type=str, default='./saved_models/') argparser.add_argument('--output-name', type=str, default='tagcn_128_3.pkl') argparser.add_argument('--if-load-model', type=lambda x: bool(distutils.util.strtobool(x)), default=False) argparser.add_argument('--model-dir', type=str, default='./saved_models/') argparser.add_argument('--model-name', type=str, default='tagcn_128_3.pkl') argparser.add_argument('--num-epochs', type=int, default=5000) argparser.add_argument('--num-hidden', type=int, default=128) argparser.add_argument('--num-layers', type=int, default=3) argparser.add_argument('--lr', type=float, default=0.001) argparser.add_argument('--dropout', type=float, default=0.1) argparser.add_argument('--adj-norm', type=lambda x: bool(distutils.util.strtobool(x)), default=True) argparser.add_argument('--feat-norm', type=str, default=None) args = argparser.parse_args() print(vars(args)) dataset = data_loader.KddDataset(args.adj_path, args.feat_path, args.label_path, indices) adj = dataset.adj features = dataset.features labels = dataset.labels train_mask = dataset.train_mask val_mask = dataset.val_mask test_mask = dataset.test_mask size_raw = features.shape[0] size_reduced = size_raw - 50000 graph = dgl.DGLGraph() if args.adj_norm: adj = utils.adj_preprocess(adj) feat_norm_func = utils.feat_norm(args.feat_norm) graph.from_scipy_sparse_matrix(adj) features = th.FloatTensor(features).to(dev) features[th.where(features < -1.0)[0]] = 0 features[th.where(features > 1.0)[0]] = 0 features = feat_norm_func(features) labels = th.LongTensor(labels).to(dev) graph.ndata['features'] = features model = models.TAGCN(100, args.num_hidden, 20, args.num_layers, activation=F.leaky_relu, dropout=args.dropout) if args.if_load_model: model_states = th.load(os.path.join(args.model_dir, args.model_name), map_location=dev) model.load_state_dict(model_states) model = model.to(dev) optimizer = th.optim.Adam(model.parameters(), lr=args.lr) dur = [] for epoch in range(args.num_epochs): t0 = time.time() logits = model(graph, features).to(dev) logp = F.log_softmax(logits, 1)[:size_reduced] loss = F.nll_loss(logp[train_mask], labels[train_mask]).to(dev) optimizer.zero_grad() loss.backward() optimizer.step() dur.append(time.time() - t0) if epoch % 10 == 0: train_acc = utils.compute_acc(logp, labels, train_mask) val_acc = utils.compute_acc(logp, labels, val_mask) print('Epoch {:05d} | Loss {:.4f} | Train Acc {:.4f} | Val Acc {:.4f} ' '| Time(s) {:.4f} | GPU {:.1f} MiB'.format( epoch, loss, train_acc, val_acc, np.mean(dur), th.cuda.max_memory_allocated() / 1000000)) th.save(model.state_dict(), os.path.join(args.output_dir, args.output_name))
20310
from collections import namedtuple RGB = namedtuple("RGB", "red, green, blue") COLORS = { "red": RGB(255, 0, 0), "orange-deep": RGB(255, 40, 0), "orange": RGB(255, 120, 0), "yellow": RGB(255, 200, 0), "yellow-acid": RGB(160, 255, 0), "green": RGB(0, 255, 0), "green-forest": RGB(34, 139, 34), "green-spring": RGB(0, 255, 127), "green-teal": RGB(0, 128, 128), "green-turquoise": RGB(0, 199, 140), "green-coral": RGB(0, 255, 50), "cyan": RGB(0, 255, 255), "blue": RGB(0, 0, 255), "blue-light": RGB(65, 105, 225), "blue-navy": RGB(0, 0, 128), "blue-aqua": RGB(0, 255, 255), "purple": RGB(128, 0, 128), "pink": RGB(255, 0, 178), "magenta": RGB(255, 0, 255), "black": RGB(0, 0, 0), "white": RGB(255, 255, 255), "brown": RGB(139, 69, 19), "gold": RGB(255, 215, 0), "hotpink": RGB(255, 105, 180), "lightblue": RGB(173, 216, 230), "lightgreen": RGB(152, 251, 152), "lightpink": RGB(255, 182, 193), "lightyellow": RGB(255, 255, 224), "maroon": RGB(128, 0, 0), "mint": RGB(189, 252, 201), "olive": RGB(85, 107, 47), "peach": RGB(255, 100, 100), "plum": RGB(221, 160, 221), "sepia": RGB(94, 38, 18), "skyblue": RGB(135, 206, 235), "steelblue": RGB(70, 130, 180), "tan": RGB(210, 180, 140), "violetred": RGB(208, 32, 144), } GRADIENTS = { "Rainbow": { "colors": [ "red", "orange", "yellow", "green", "green-turquoise", "blue", "purple", "pink", ] }, "Dancefloor": {"colors": ["red", "pink", "blue"]}, "Plasma": {"colors": ["blue", "purple", "red", "orange-deep", "yellow"]}, "Ocean": {"colors": ["blue-aqua", "blue"]}, "Viridis": {"colors": ["purple", "blue", "green-teal", "green", "yellow"]}, "Jungle": {"colors": ["green", "green-forest", "orange"]}, "Spring": {"colors": ["pink", "orange-deep", "yellow"]}, "Winter": {"colors": ["green-turquoise", "green-coral"]}, "Frost": {"colors": ["blue", "blue-aqua", "purple", "pink"]}, "Sunset": {"colors": ["blue-navy", "orange", "red"]}, "Borealis": { "colors": [ "orange-deep", "purple", "green-turquoise", "green", ] }, "Rust": {"colors": ["orange-deep", "red"]}, "Christmas": { "colors": [ "red", "red", "red", "red", "red", "green", "green", "green", "green", "green", ], "method": "repeat", }, "Winamp": { "colors": [ "green", "yellow", "orange", "orange-deep", "red", ] }, }
20325
from menpofit.result import (ParametricIterativeResult, MultiScaleParametricIterativeResult) class LucasKanadeAlgorithmResult(ParametricIterativeResult): r""" Class for storing the iterative result of a Lucas-Kanade Image Alignment optimization algorithm. Parameters ---------- shapes : `list` of `menpo.shape.PointCloud` The `list` of shapes per iteration. The first and last members correspond to the initial and final shapes, respectively. homogeneous_parameters : `list` of ``(n_parameters,)`` `ndarray` The `list` of parameters of the homogeneous transform per iteration. The first and last members correspond to the initial and final shapes, respectively. initial_shape : `menpo.shape.PointCloud` or ``None``, optional The initial shape from which the fitting process started. If ``None``, then no initial shape is assigned. image : `menpo.image.Image` or `subclass` or ``None``, optional The image on which the fitting process was applied. Note that a copy of the image will be assigned as an attribute. If ``None``, then no image is assigned. gt_shape : `menpo.shape.PointCloud` or ``None``, optional The ground truth shape associated with the image. If ``None``, then no ground truth shape is assigned. costs : `list` of `float` or ``None``, optional The `list` of cost per iteration. If ``None``, then it is assumed that the cost function cannot be computed for the specific algorithm. """ def __init__(self, shapes, homogeneous_parameters, initial_shape=None, image=None, gt_shape=None, costs=None): super(LucasKanadeAlgorithmResult, self).__init__( shapes=shapes, shape_parameters=homogeneous_parameters, initial_shape=initial_shape, image=image, gt_shape=gt_shape, costs=costs) self._homogeneous_parameters = homogeneous_parameters @property def homogeneous_parameters(self): r""" Returns the `list` of parameters of the homogeneous transform obtained at each iteration of the fitting process. The `list` includes the parameters of the `initial_shape` (if it exists) and `final_shape`. :type: `list` of ``(n_params,)`` `ndarray` """ return self._shape_parameters class LucasKanadeResult(MultiScaleParametricIterativeResult): r""" Class for storing the multi-scale iterative fitting result of an ATM. It holds the shapes, shape parameters and costs per iteration. Parameters ---------- results : `list` of :map:`ATMAlgorithmResult` The `list` of optimization results per scale. scales : `list` or `tuple` The `list` of scale values per scale (low to high). affine_transforms : `list` of `menpo.transform.Affine` The list of affine transforms per scale that transform the shapes into the original image space. scale_transforms : `list` of `menpo.shape.Scale` The list of scaling transforms per scale. image : `menpo.image.Image` or `subclass` or ``None``, optional The image on which the fitting process was applied. Note that a copy of the image will be assigned as an attribute. If ``None``, then no image is assigned. gt_shape : `menpo.shape.PointCloud` or ``None``, optional The ground truth shape associated with the image. If ``None``, then no ground truth shape is assigned. """ def __init__(self, results, scales, affine_transforms, scale_transforms, image=None, gt_shape=None): super(LucasKanadeResult, self).__init__( results=results, scales=scales, affine_transforms=affine_transforms, scale_transforms=scale_transforms, image=image, gt_shape=gt_shape) # Create parameters list self._homogeneous_parameters = [] for r in results: self._homogeneous_parameters += r.homogeneous_parameters # Correct n_iters self._n_iters -= len(scales) @property def homogeneous_parameters(self): r""" Returns the `list` of parameters of the homogeneous transform obtained at each iteration of the fitting process. The `list` includes the parameters of the `initial_shape` (if it exists) and `final_shape`. :type: `list` of ``(n_params,)`` `ndarray` """ return self._homogeneous_parameters @property def shape_parameters(self): # Use homogeneous_parameters instead. raise AttributeError
20358
from setuptools import setup, find_packages version = {} with open("nltools/version.py") as f: exec(f.read(), version) with open("requirements.txt") as f: requirements = f.read().splitlines() extra_setuptools_args = dict(tests_require=["pytest"]) setup( name="nltools", version=version["__version__"], author="<NAME>", author_email="<EMAIL>", url="https://cosanlab.github.io/nltools", python_requires=">=3.6", install_requires=requirements, extras_require={"interactive_plots": ["ipywidgets>=5.2.2"]}, packages=find_packages(exclude=["nltools/tests"]), package_data={"nltools": ["resources/*"]}, include_package_data=True, license="LICENSE.txt", description="A Python package to analyze neuroimaging data", long_description="nltools is a collection of python tools to perform " "preprocessing, univariate GLMs, and predictive " "multivariate modeling of neuroimaging data. It is the " "analysis engine powering www.neuro-learn.org.", keywords=["neuroimaging", "preprocessing", "analysis", "machine-learning"], classifiers=[ "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", ], **extra_setuptools_args )
20366
from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog import torch import numpy as np import cv2 class Model: def __init__(self,confidence_thresh=0.6): cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = confidence_thresh # set threshold for this model cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") self.model = DefaultPredictor(cfg) def get_seg_output(self,image:np.array): out = self.model(image)['instances'] outputs = [(out.pred_masks[i],out.pred_classes[i]) for i in range(len(out.pred_classes)) if out.pred_classes[i]==0] return outputs class Preprocessing: def __init__(self,kernel,dilate_iter=5,erode_iter=1): self.kernel = kernel self.dilate_iter = dilate_iter self.erode_iter = erode_iter def get_target_mask(self,masks): out = np.zeros(masks[0].shape) for mask in masks: out += mask out = np.clip(out,0,1) return out def get_trimap(self,masks): target_mask = self.get_target_mask(masks) erode = cv2.erode(target_mask.astype('uint8'),self.kernel,iterations=self.erode_iter) dilate = cv2.dilate(target_mask.astype('uint8'),self.kernel,iterations=self.dilate_iter) h, w = target_mask.shape trimap = np.zeros((h, w, 2)) trimap[erode == 1, 1] = 1 trimap[dilate == 0, 0] = 1 return trimap
20367
from setuptools import setup setup( name="example-advanced-package", version="0.0.0", packages=[], )
20368
from distutils.core import setup setup( name='pyASA', packages=['pyASA'], version='0.1.0', description='Wrapper for the Cisco ASA REST API', author='xpac', author_email='<EMAIL>', url='https://github.com/xpac1985/pyASA', download_url='https://github.com/xpac1985/pyASA/tarball/0.1.0', keywords=['cisco', 'asa', 'rest-api', 'wrapper', 'alpha'], classifiers=[], )
20376
def _recipes_pil_prescript(plugins): try: import Image have_PIL = False except ImportError: from PIL import Image have_PIL = True import sys def init(): if Image._initialized >= 2: return if have_PIL: try: import PIL.JpegPresets sys.modules["JpegPresets"] = PIL.JpegPresets except ImportError: pass for plugin in plugins: try: if have_PIL: try: # First try absolute import through PIL (for # Pillow support) only then try relative imports m = __import__("PIL." + plugin, globals(), locals(), []) m = getattr(m, plugin) sys.modules[plugin] = m continue except ImportError: pass __import__(plugin, globals(), locals(), []) except ImportError: print("Image: failed to import") if Image.OPEN or Image.SAVE: Image._initialized = 2 return 1 Image.init = init
20397
import torch import numpy as np PAD_TOKEN_INDEX = 0 def pad_masking(x, target_len): # x: (batch_size, seq_len) batch_size, seq_len = x.size() padded_positions = x == PAD_TOKEN_INDEX # (batch_size, seq_len) pad_mask = padded_positions.unsqueeze(1).expand(batch_size, target_len, seq_len) return pad_mask def subsequent_masking(x): # x: (batch_size, seq_len - 1) batch_size, seq_len = x.size() subsequent_mask = np.triu(np.ones(shape=(seq_len, seq_len)), k=1).astype('uint8') subsequent_mask = torch.tensor(subsequent_mask).to(x.device) subsequent_mask = subsequent_mask.unsqueeze(0).expand(batch_size, seq_len, seq_len) return subsequent_mask
20441
from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from common import MayanAppConfig from .licenses import * # NOQA class MIMETypesApp(MayanAppConfig): name = 'mimetype' verbose_name = _('MIME types') def ready(self, *args, **kwargs): super(MIMETypesApp, self).ready(*args, **kwargs)
20474
from base import BaseDataSet, BaseDataLoader from utils import pallete import numpy as np import os import scipy import torch from PIL import Image import cv2 from torch.utils.data import Dataset from torchvision import transforms import json class VOCDataset(BaseDataSet): def __init__(self, **kwargs): self.num_classes = 21 self.palette = pallete.get_voc_pallete(self.num_classes) super(VOCDataset, self).__init__(**kwargs) def _set_files(self): self.root = os.path.join(self.root, 'VOCdevkit/VOC2012') if self.split == "val": file_list = os.path.join("dataloaders/voc_splits", f"{self.split}" + ".txt") elif self.split in ["train_supervised", "train_unsupervised"]: file_list = os.path.join("dataloaders/voc_splits", f"{self.n_labeled_examples}_{self.split}" + ".txt") else: raise ValueError(f"Invalid split name {self.split}") file_list = [line.rstrip().split(' ') for line in tuple(open(file_list, "r"))] self.files, self.labels = list(zip(*file_list)) def _load_data(self, index): image_path = os.path.join(self.root, self.files[index][1:]) image = np.asarray(Image.open(image_path), dtype=np.float32) image_id = self.files[index].split("/")[-1].split(".")[0] if self.use_weak_lables: label_path = os.path.join(self.weak_labels_output, image_id+".png") else: label_path = os.path.join(self.root, self.labels[index][1:]) label = np.asarray(Image.open(label_path), dtype=np.int32) return image, label, image_id class VOC(BaseDataLoader): def __init__(self, kwargs): self.MEAN = [0.485, 0.456, 0.406] self.STD = [0.229, 0.224, 0.225] self.batch_size = kwargs.pop('batch_size') kwargs['mean'] = self.MEAN kwargs['std'] = self.STD kwargs['ignore_index'] = 255 try: shuffle = kwargs.pop('shuffle') except: shuffle = False num_workers = kwargs.pop('num_workers') self.dataset = VOCDataset(**kwargs) super(VOC, self).__init__(self.dataset, self.batch_size, shuffle, num_workers, val_split=None)
20488
import torch import numpy as np import torch.nn as nn from torch.utils.data import Dataset, DataLoader def binary_reg(x: torch.Tensor): # forward: f(x) = (x>=0) # backward: f(x) = sigmoid a = torch.sigmoid(x) b = a.detach() c = (x.detach() >= 0).float() return a - b + c class HIN2vec(nn.Module): def __init__(self, node_size, path_size, embed_dim, sigmoid_reg=False, r=True): super().__init__() self.reg = torch.sigmoid if sigmoid_reg else binary_reg self.__initialize_model(node_size, path_size, embed_dim, r) def __initialize_model(self, node_size, path_size, embed_dim, r): self.start_embeds = nn.Embedding(node_size, embed_dim) self.end_embeds = self.start_embeds if r else nn.Embedding(node_size, embed_dim) self.path_embeds = nn.Embedding(path_size, embed_dim) # self.classifier = nn.Sequential( # nn.Linear(embed_dim, 1), # nn.Sigmoid(), # ) def forward(self, start_node: torch.LongTensor, end_node: torch.LongTensor, path: torch.LongTensor): # assert start_node.dim() == 1 # shape = (batch_size,) s = self.start_embeds(start_node) # (batch_size, embed_size) e = self.end_embeds(end_node) p = self.path_embeds(path) p = self.reg(p) agg = torch.mul(s, e) agg = torch.mul(agg, p) # agg = F.sigmoid(agg) # output = self.classifier(agg) output = torch.sigmoid(torch.sum(agg, axis=1)) return output def train(log_interval, model, device, train_loader: DataLoader, optimizer, loss_function, epoch): model.train() for idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data[:, 0], data[:, 1], data[:, 2]) loss = loss_function(output.view(-1), target) loss.backward() optimizer.step() if idx % log_interval == 0: print(f'\rTrain Epoch: {epoch} ' f'[{idx * len(data)}/{len(train_loader.dataset)} ({100. * idx / len(train_loader):.3f}%)]\t' f'Loss: {loss.item():.3f}\t\t', # f'data = {data}\t target = {target}', end='') print() class NSTrainSet(Dataset): """ 完全随机的负采样 todo 改进一下? """ def __init__(self, sample, node_size, neg=5): """ :param node_size: 节点数目 :param neg: 负采样数目 :param sample: HIN.sample()返回值,(start_node, end_node, path_id) """ print('init training dataset...') l = len(sample) x = np.tile(sample, (neg + 1, 1)) y = np.zeros(l * (1 + neg)) y[:l] = 1 # x[l:, 2] = np.random.randint(0, path_size - 1, (l * neg,)) x[l:, 1] = np.random.randint(0, node_size - 1, (l * neg,)) self.x = torch.LongTensor(x) self.y = torch.FloatTensor(y) self.length = len(x) print('finished') def __getitem__(self, index): return self.x[index], self.y[index] def __len__(self): return self.length if __name__ == '__main__': ## test binary_reg print('sigmoid') a = torch.tensor([-1.,0.,1.],requires_grad=True) b = torch.sigmoid(a) c = b.sum() print(a) print(b) print(c) c.backward() print(c.grad) print(b.grad) print(a.grad) print('binary') a = torch.tensor([-1., 0., 1.], requires_grad=True) b = binary_reg(a) c = b.sum() print(a) print(b) print(c) c.backward() print(c.grad) print(b.grad) print(a.grad)
20491
SECRET_KEY = None DB_HOST = "localhost" DB_NAME = "kido" DB_USERNAME = "kido" DB_PASSWORD = "<PASSWORD>" COMPRESSOR_DEBUG = False COMPRESSOR_OFFLINE_COMPRESS = True
20493
import torch import torch.nn as nn import torch.nn.functional as F def soft_dice_score( output: torch.Tensor, target: torch.Tensor, smooth: float = 0.0, eps: float = 1e-7, dims=None) -> torch.Tensor: assert output.size() == target.size() if dims is not None: intersection = torch.sum(output * target, dim=dims) cardinality = torch.sum(output + target, dim=dims) # print('cardinality', cardinality, 'intersection', intersection) else: intersection = torch.sum(output * target) cardinality = torch.sum(output + target) dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps) # print('dice_score', dice_score) return dice_score class DiceLoss(nn.Module): def __init__(self, smooth=1.0, eps=1e-7, ignore_index=None, weight=None, mode='MULTICLASS_MODE'): """Implementation of Dice loss for image segmentation task. https://github.com/qubvel/segmentation_models.pytorch """ super().__init__() self.smooth = smooth self.eps = eps self.ignore_index = ignore_index self.weight = weight self.mode = mode def forward(self, output, target): bs = target.size(0) num_classes = output.size(1) dims = (0, 2) # print(self.mode, self.ignore_index) if self.mode == 'MULTICLASS_MODE': output = output.log_softmax(dim=1).exp() else: output = F.logsigmoid(output).exp() # output = output.log_softmax(dim=1).exp() if self.mode == 'BINARY_MODE': target = target.view(bs, 1, -1) output = output.view(bs, 1, -1) if self.ignore_index is not None: mask = target != self.ignore_index output = output * mask target = target * mask else: target = target.view(bs, -1) output = output.view(bs, num_classes, -1) if self.ignore_index is not None: mask = target != self.ignore_index output = output * mask.unsqueeze(1) target = F.one_hot((target * mask).to(torch.long), num_classes) # N,H*W -> N,H*W, C target = target.permute(0, 2, 1) * mask.unsqueeze(1) else: target = F.one_hot(target, num_classes) # N,H*W -> N,H*W, C target = target.permute(0, 2, 1) # H, C, H*W scores = soft_dice_score(output, target.type_as(output), smooth=self.smooth, eps=self.eps, dims=dims) loss = 1.0 - scores mask = target.sum(dims) > 0 loss *= mask.to(loss.dtype) return loss.mean()
20494
import inspect import re from functools import update_wrapper from typing import Optional def is_interactive() -> bool: try: _ = get_ipython().__class__.__name__ # type: ignore return True except NameError: return False def get_attr_docstring(class_type, attr_name) -> Optional[str]: if attr_name == 'get': attr_name = '__call__' attr = getattr(class_type, attr_name, None) if attr and attr.__doc__: return re.sub(r' {3,}', '', attr.__doc__) return None def default_attr_filter(x) -> bool: # pylint: disable=unused-argument return True def get_class_docstring(class_type, attr_filter=default_attr_filter, extended=False): def format_attribute(x): attr = getattr(class_type, x) if isinstance(attr, property): name = f'.{x}' else: if extended: sig = str(inspect.signature(attr)).replace('self, ', '') else: sig = '()' name = f'.{x}{sig}' if extended: doc = get_attr_docstring(class_type, x) else: doc = '' return f'{name}{doc}' def filter_attribute(x): return all( [ not x.startswith('_'), attr_filter(x), not isinstance(getattr(class_type, x), property), ] ) return '\n'.join( map( format_attribute, filter( filter_attribute, dir(class_type), ), ), ) def inline_doc(method): if not is_interactive(): return method doc = [repr(method)] if method.__doc__: doc.append(re.sub(r' {3,}', '', method.__doc__)) class CustomReprDescriptor: def __get__(self, instance, owner): class MethodWrapper: def __init__(self): self.class_instance = instance self.doc = '\n'.join(doc) def __call__(self, *args, **kwargs): return method(self.class_instance, *args, **kwargs) def __repr__(self): return self.doc return update_wrapper(MethodWrapper(), method) return CustomReprDescriptor() class InlineDocstring(type): def __new__(mcs, name, bases, attrs, **kwargs): if is_interactive(): new_attrs = {} for attr_name, attr in attrs.items(): if callable(attr) and attr.__doc__ and not attr_name.startswith('_'): attr = inline_doc(attr) new_attrs[attr_name] = attr else: new_attrs = attrs return type.__new__(mcs, name, bases, new_attrs, **kwargs)
20498
import logging import inspect import re from collections import OrderedDict from gremlinpy.gremlin import Gremlin, Param, AS from .entity import (_Entity, Vertex, Edge, GenericVertex, GenericEdge, ENTITY_MAP) from .exception import (AstronomerQueryException, AstronomerMapperException) from .traversal import Traversal from .util import (camel_to_underscore, GIZMO_ID, GIZMO_LABEL, GIZMO_TYPE, GIZMO_ENTITY, GIZMO_VARIABLE, entity_name) logger = logging.getLogger(__name__) ENTITY_MAPPER_MAP = {} GENERIC_MAPPER = 'generic.mapper' _count = -1 _query_count = 0 _query_params = {} def next_query_variable(): global _count _count += 1 return '{}_{}'.format(GIZMO_VARIABLE, _count) def get_entity_mapper(entity=None, name=GENERIC_MAPPER): if isinstance(entity, _Entity): name = get_qualified_instance_name(entity) else: name = get_qualified_name(entity) if name not in ENTITY_MAPPER_MAP: name = GENERIC_MAPPER return ENTITY_MAPPER_MAP[name](self) def next_param_name(param): param = re.sub('\W', '_', param) if param not in _query_params: _query_params[param] = -1 _query_params[param] += 1 return '{}_{}'.format(param, _query_params[param]) def next_param(param, value): if isinstance(value, _Entity): value = entity_name(value) return Param(next_param_name(param), value) def next_entity_param(entity, param, value): name = entity_name(entity) field = '{}_{}'.format(name, param) return next_param(field, value) class Mapper: def __init__(self, request, gremlin=None, auto_commit=True, graph_instance_name=None): if not gremlin: gremlin = Gremlin() self.request = request self.gremlin = gremlin self.auto_commit = auto_commit self.graph_instance_name = graph_instance_name if not self.auto_commit and not self.graph_instance_name: error = ('If auto_commit is set, we need to know the' ' graph instance name') logger.exception(error) raise ArgumentError(error) self.reset() def reset(self): self.gremlin.reset() global _query_count global _count global _query_params _query_count = 0 _count = 0 _query_params = {} self.queries = [] self.return_vars = [] self.entities = OrderedDict() # ensure FIFO for testing self.del_entities = {} self.params = {} self.callbacks = {} self._magic_method = None def get_entity_variable(self, entity): ret = None for key, def_entity in self.entities.items(): if entity == def_entity: return key return ret def get_mapper(self, entity=None, name=GENERIC_MAPPER): if entity is not None: name = entity_name(entity) if name not in ENTITY_MAPPER_MAP: name = GENERIC_MAPPER return ENTITY_MAPPER_MAP[name](self) def enqueue_mapper(self, mapper): self.queries += mapper.queries self.return_vars += mapper.return_vars self.entities.update(mapper.entities) self.params.update(mapper.params) for entity, callbacks in mapper.callbacks.items(): exisiting = self.callbacks.get(entity, []) self.callbacks[entity] = exisiting + callbacks mapper.reset() return self def enqueue_script(self, gremlin=None, script=None, params=None): if gremlin is not None: script = [str(gremlin),] params = gremlin.bound_params gremlin.reset() if script: self.queries += script if params: self.params.update(params) return self def __getattr__(self, magic_method): """magic method that works in conjunction with __call__ method these two methods are used to shortcut the retrieval of an entity's mapper and call a specific method against this chain: user = User() user_mapper = mapper.get_mapper(user) emails = user_mapper.get_emails(user) can be shortened into: user = User() emails = mapper.get_emails(user) """ self._magic_method = magic_method return self def __call__(self, *args, **kwargs): mapper = self.get_mapper(args[0]) return getattr(mapper, self._magic_method)(*args, **kwargs) async def data(self, entity, *args): """utility method used to retrieve an entity's data. It also allows for method chaining in order to augment the resulting data. class MyMapper(_GenericMapper): async def add_two(self, entity, data): data['two'] = 2 return data async def add_three(self, entity, data): data['three'] = 3 return data entity = User() data = await mapper.data(user, 'add_two', 'add_three') the resulting data will have the data from the User class, plus a two and a three member """ collection = isinstance(entity, Collection) async def get_data(entity, data): retrieved = data for method in args: mapper = self.get_mapper(entity) async def wrapper(entity, data): res = await getattr(mapper, method)(entity=entity, data=data) return res retrieved = await wrapper(entity=entity, data=retrieved) return retrieved if collection: data = [] for coll_entity in entity: mapper = self.get_mapper(coll_entity) entity_data = await mapper.data(coll_entity) res = await get_data(coll_entity, entity_data) data.append(res) else: mapper = self.get_mapper(entity) entity_data = await mapper.data(entity) data = await get_data(entity, entity_data) return data def save(self, entity, bind_return=True, mapper=None, callback=None, **kwargs): if mapper is None: mapper = self.get_mapper(entity) logger.debug(('Saving entity: {} with mapper:' ' {}').format(entity.__repr__, mapper)) mapper.save(entity, bind_return, callback, **kwargs) return self.enqueue_mapper(mapper) def delete(self, entity, mapper=None, callback=None): if mapper is None: mapper = self.get_mapper(entity) logger.debug(('Deleting entity: {} with mapper:' ' {}').format(entity.__repr__, mapper)) mapper.delete(entity, callback=callback) # manually add the deleted entity to the self.entities # collection for callbacks from random import randrange key = 'DELETED_%s_entity' % str(randrange(0, 999999999)) self.del_entities[key] = entity return self.enqueue_mapper(mapper) def create(self, data=None, entity=None, data_type='python'): if data is None: data = {} if entity: mapper = self.get_mapper(entity) else: name = data.get(GIZMO_ENTITY, GENERIC_MAPPER) if isinstance(name, (list, tuple)): name = name[0]['value'] mapper = self.get_mapper(name=name) kwargs = { 'data': data, 'entity': entity, 'data_type': data_type, } return mapper.create(**kwargs) def connect(self, out_v, in_v, label=None, data=None, edge_entity=None, data_type='python'): """ method used to connect two vertices and create an Edge object the resulting edge is not saved to to graph until it is passed to save allowing further augmentation """ if not isinstance(out_v, Vertex): if not isinstance(out_v, (str, int)): err = 'The out_v needs to be either a Vertex or an id' logger.exception(err) raise AstronomerMapperException(err) if not isinstance(in_v, Vertex): if not isinstance(in_v, (str, int)): err = 'The in_v needs to be either a Vertex or an id' logger.exception(err) raise AstronomerMapperException(err) if data is None: data = {} data['outV'] = out_v data['inV'] = in_v data[GIZMO_TYPE] = 'edge' data[GIZMO_LABEL[0]] = label return self.create(data=data, entity=edge_entity, data_type=data_type) def start(self, entity): mapper = self.get_mapper(entity) return mapper.start(entity) def _build_queries(self): if len(self.return_vars) > 0: returns = [] for k in self.return_vars: returns.append("'{}': {}".format(k, k)) ret = '[{}]'.format(', '.join(returns)) self.queries.append(ret) return self def get(self, entity): mapper = self.get_mapper(entity) return mapper.get(entity) def apply_statement(self, statement): self.gremlin.apply_statement(statement) return self async def send(self): self._build_queries() script = ";\n".join(self.queries) params = self.params entities = self.entities callbacks = self.callbacks entities.update(self.del_entities) self.reset() res = await self.query(script=script, params=params, update_entities=entities, callbacks=callbacks) return res async def query(self, script=None, params=None, gremlin=None, update_entities=None, callbacks=None, collection=None): if gremlin is not None: script = str(gremlin) params = gremlin.bound_params gremlin.reset() if script is None: script = '' if params is None: params = {} if update_entities is None: update_entities = {} self.reset() response = await self.request.send(script, params, update_entities) for k, entity in update_entities.items(): cbs = callbacks.get(entity, []) for c in cbs: c(entity) if not collection: collection = Collection return collection(self, response) class _RootMapper(type): """ In the case of custom mappers, this metaclass will register the entity name with the mapper object. This is done so that when entities are loaded by name the associated mapper is used to CRUD it. This only works when the Mapper.create method is used to create the entity """ def __new__(cls, name, bases, attrs): cls = super(_RootMapper, cls).__new__(cls, name, bases, attrs) entity = attrs.pop('entity', None) if entity: map_name = entity_name(entity) ENTITY_MAPPER_MAP[map_name] = cls elif name == 'EntityMapper': ENTITY_MAPPER_MAP[GENERIC_MAPPER] = cls return cls def __call__(cls, *args, **kwargs): mapper = super(_RootMapper, cls).__call__(*args, **kwargs) for field in dir(mapper): if field.startswith('_'): continue val = getattr(mapper, field) if inspect.isclass(val) and issubclass(val, EntityMapper): if mapper.mapper: instance = val(mapper.mapper) setattr(mapper, field, instance) return mapper class EntityMapper(metaclass=_RootMapper): VARIABLE = GIZMO_VARIABLE unique = False unique_fields = None save_statements = None def __init__(self, mapper=None): self.mapper = mapper self.gremlin = None if self.mapper: self.gremlin = mapper.gremlin self.reset() def reset(self): self.queries = [] self.return_vars = [] self.entities = {} self.params = {} self.callbacks = {} async def data(self, entity): return entity.data def get(self, entity): trav = self.start(entity) vertex = issubclass(self.entity, Vertex) param_value = str(self.entity) param_name = 'out_{}_{}'.format(entity.__class__.__name__, param_value) entity_param = next_param(param_name, param_value) if vertex: trav.out().hasLabel(entity_param) else: trav.outE(entity_param) return trav def enqueue(self, query, bind_return=True): for entry in query.queries: script = entry['script'] if script in self.queries: continue if bind_return: variable = next_query_variable() script = '{} = {}'.format(variable, script) if 'entity' in entry: self.entities[variable] = entry['entity'] self.return_vars.append(variable) self.queries.append(script) self.params.update(entry['params']) return self def _enqueue_callback(self, entity, callback): if callback: listed = self.callbacks.get(entity, []) if isinstance(callback, (list, tuple)): listed += list(callback) elif callback: listed.append(callback) self.callbacks[entity] = listed return self def on_create(self, entity): pass def on_update(self, entity): pass def on_delete(self, entity): pass def _build_save_statements(self, entity, query, **kwargs): statement_query = Query(self.mapper) query_gremlin = Gremlin(self.gremlin.gv) for entry in query.queries: query_gremlin.bind_params(entry['params']) for statement in self.save_statements: instance = statement(entity, self, query, **kwargs) query_gremlin.apply_statement(instance) statement_query._add_query(str(query_gremlin), query_gremlin.bound_params, entity=entity) return statement_query def start(self, entity=None): return Traversal(self.mapper, entity or self.entity) def save(self, entity, bind_return=True, callback=None, *args, **kwargs): """callback and be a single callback or a list of them""" method = '_save_edge' if entity[GIZMO_TYPE] == 'edge' else \ '_save_vertex' if not isinstance(callback, (list, tuple)) and callback: callback = [callback] else: callback = [] if entity[GIZMO_ID]: callback.insert(0, self.on_update) else: callback.insert(0, self.on_create) self._enqueue_callback(entity, callback) return getattr(self, method)(entity=entity, bind_return=bind_return) def _save_vertex(self, entity, bind_return=True): """ method used to save a entity. IF both the unique_type and unique_fields params are set, it will run a sub query to check to see if an entity exists that matches those values """ query = Query(self.mapper) ref = self.mapper.get_entity_variable(entity) """ check to see if the entity has been used already in the current script execution. If it has use the reference if it hasnt, go through the process of saving it """ if ref: query._add_query(ref, params=None, entity=entity) return self.enqueue(query, bind_return) query.save(entity) if not entity[GIZMO_ID] and self.unique_fields: from .statement import MapperUniqueVertex if not self.save_statements: self.save_statements = [] if MapperUniqueVertex not in self.save_statements: self.save_statements.append(MapperUniqueVertex) if self.save_statements and len(self.save_statements): statement_query = self._build_save_statements(entity, query) return self.enqueue(statement_query, bind_return) else: return self.enqueue(query, bind_return) def _save_edge(self, entity, bind_return=True): query = Query(self.mapper) save = True edge_ref = self.mapper.get_entity_variable(entity) out_v = entity.out_v out_v_id = out_v[GIZMO_ID] if isinstance(out_v, Vertex) else None in_v = entity.in_v in_v_id = in_v[GIZMO_ID] if isinstance(in_v, Vertex) else None out_v_ref = self.mapper.get_entity_variable(out_v) in_v_ref = self.mapper.get_entity_variable(in_v) if edge_ref: query._add_query(edge_ref, params=None, entity=entity) return self.enqueue(query, bind_return) """ both out_v and in_v are checked to see if the entities stored in each respective variable has been used. If they have not and they are Vertex instances with an empty _id, send them to be saved. if they have been used, use the reference variable in the create edge logic """ query.save(entity) if not entity[GIZMO_ID] and self.unique and in_v_id and out_v_id: from .statement import MapperUniqueEdge if not self.save_statements: self.save_statements = [] if MapperUniqueEdge not in self.save_statements: self.save_statements.append(MapperUniqueEdge) if self.save_statements and len(self.save_statements): statement_query = self._build_save_statements(entity, query, out_v_id=out_v_id, in_v_id=in_v_id, label=entity[GIZMO_LABEL[0]], direction=self.unique) return self.enqueue(statement_query, False) else: return self.enqueue(query, bind_return) def delete(self, entity, lookup=True, callback=None): query = Query(self.mapper) if not isinstance(callback, (list, tuple)) and callback: callback = [callback] else: callback = [] query.delete(entity) callback.insert(0, self.on_delete) self._enqueue_callback(entity, callback) return self.enqueue(query, False) def create(self, data=None, entity=None, data_type='python'): """ Method used to create a new entity based on the data that is passed in. If the kwarg entity is passed in, it will be used to create the entity else if utils.GIZMO_ENTITY is in data, that will be used finally, entity.GenericVertex or entity.GenericEdge will be used to construct the entity """ check = True if data is None: data = {} if entity is not None: try: label = data.get(GIZMO_LABEL[0], None) entity = entity(data=data, data_type=data_type) check = False for f, r in entity._relationships.items(): r._mapper = self.mapper r._entity = entity except Exception as e: pass if check: try: if GIZMO_ENTITY in data: name = data[GIZMO_ENTITY] if isinstance(name, (list, tuple)): name = name[0]['value'] entity = ENTITY_MAP[name](data=data, data_type=data_type) for f, r in entity._relationships.items(): r._mapper = self.mapper r._entity = entity else: raise except Exception as e: # all else fails create a GenericVertex unless _type is 'edge' if data.get(GIZMO_TYPE, None) == 'edge': entity = GenericEdge(data=data, data_type=data_type) else: entity = GenericVertex(data=data, data_type=data_type) if GIZMO_ID in data: entity[GIZMO_ID] = data[GIZMO_ID] return entity def delete(self, entity, lookup=True, callback=None): query = Query(self.mapper) if not isinstance(callback, (list, tuple)) and callback: callback = [callback] else: callback = [] query.delete(entity) callback.insert(0, self.on_delete) self._enqueue_callback(entity, callback) return self.enqueue(query, False) class Query: def __init__(self, mapper): self.mapper = mapper self.gremlin = Gremlin(self.mapper.gremlin.gv) self.queries = [] self.fields = [] self.reset() def reset(self): self.fields = [] return self def _add_query(self, script, params=None, entity=None): if params is None: params = {} self.queries.append({ 'script': script, 'params': params, 'entity': entity, }) return self def _add_gremlin_query(self, entity=None): script = str(self.gremlin) params = self.gremlin.bound_params self._add_query(script, params, entity) return self.reset() def _field_changes(self, gremlin, entity, ignore=None): ignore = ignore or [] entity_name = str(entity) entity_alias = '{}_alias'.format(entity_name) entity_alias = next_param(entity_alias, entity_alias) def add_field(field, data): values = data.get('values', data.get('value', None)) if not isinstance(values, (list, tuple,)): values = [values, ] for i, value in enumerate(values): name = '{}_{}_{}'.format(entity_name, field, i) prop = "'{}'".format(field) gremlin.property(prop, Param(name, value)) def add_property(field, value, properties=None, ignore=None): ignore = ignore or [] if field.startswith('T.'): val_param = next_param('{}_{}'.format(entity_name, field), value) gremlin.unbound('property', field, val_param) return field_name = '{}_{}'.format(entity_name, field) prop = next_param(field_name, field) value_name = '{}_value'.format(field_name) value_param = next_param(value_name, value) params = [prop, value_param] if properties: for key, val in properties.items(): prop_key = next_param('{}_{}'.format(prop.name, key), key) prop_val = next_param('{}_{}_val'.format(prop.name, key), val) params += [prop_key, prop_val] gremlin.property(*params) for field, changes in entity.changes.items(): if field in ignore: continue if changes['immutable']: for val in changes['values']['values']: add_property(field, val) elif changes['deleted']: prop = next_param('{}_{}'.format(entity_name, field), field) remove = Gremlin('').it.get().func('remove') gremlin.AS(entity_alias).properties(prop) gremlin.sideEffect.close(remove) gremlin.select(entity_alias) else: for action, value in changes['values'].items(): if action == 'added': for val in value: add_property(field, val['value'], val['properties']) def _add_vertex(self, entity, set_variable=None): entity.data_type = 'graph' gremlin = self.gremlin label = None ignore = ['T.label', 'label'] if entity['label']: label = next_entity_param(entity, 'label', entity['label']) gremlin.unbound('addV', 'T.label', label) else: gremlin.addV() if set_variable: gremlin.set_ret_variable(set_variable, ignore=[GIZMO_ID, ]) self._field_changes(gremlin, entity, ignore=ignore) gremlin.func('next') entity.data_type = 'python' return self._add_gremlin_query(entity) def _update_entity(self, entity, set_variable=None): entity.data_type = 'graph' gremlin = self.gremlin entity_type, entity_id = entity.get_rep() if not entity_id: error = (('The entity {} scheduled to be updated does not have' ' an id').format(str(entity))) logger.exception(error) raise Exception() _id = next_param('{}_ID'.format(str(entity)), entity_id) ignore = [GIZMO_ID, GIZMO_LABEL[1]] alias = '{}_{}_updating'.format(entity_type, entity_id) alias = next_param(alias, alias) getattr(gremlin, entity_type.upper())(_id) gremlin.AS(alias) self._field_changes(gremlin, entity, ignore=ignore) gremlin.select(alias).next() entity.data_type = 'python' return self._add_gremlin_query(entity) def _add_edge(self, entity, set_variable=None): if not entity[GIZMO_LABEL[0]]: msg = 'A label is required in order to create an edge' logger.exception(msg) raise AstronomerQueryException(msg) def get_or_create_ends(): """this function will determine if the edge has both ends. If either end is an _Entity object it will get the reference to the object or save it and create a reference. Either the entity's id or reference will be used when saving the edge. """ out_v = entity.out_v out_v_ref = None in_v = entity.in_v in_v_ref = None if out_v is None or in_v is None: error = ('Both out and in vertices must be set before' ' saving the edge') logger.exception(error) raise AstronomerQueryException(error) if isinstance(out_v, _Entity): if out_v[GIZMO_ID]: out_v = out_v[GIZMO_ID] else: out_v_ref = self.mapper.get_entity_variable(out_v) if not out_v_ref: self.mapper.save(out_v) out_v_ref = self.mapper.get_entity_variable(out_v) if out_v_ref: out_v = out_v_ref if isinstance(in_v, _Entity): if in_v[GIZMO_ID]: in_v = in_v[GIZMO_ID] else: in_v_ref = self.mapper.get_entity_variable(in_v) if not in_v_ref: self.mapper.save(in_v) in_v_ref = self.mapper.get_entity_variable(in_v) if in_v_ref: in_v = in_v_ref return { 'out': { 'is_ref': out_v_ref, 'v': out_v, }, 'in': { 'is_ref': in_v_ref, 'v': in_v, }, } ends = get_or_create_ends() name = str(entity) gremlin = self.gremlin g = Gremlin(gremlin.gv) label = next_param('{}_label'.format(name), entity[GIZMO_LABEL[0]]) """ g.V($OUT_ID).next().addEdge($LABEL, g.V($IN_ID).next()).property(....) """ in_v = ends['in'] out_v = ends['out'] if in_v['is_ref']: g.unbound('V', in_v['v']) else: in_id = next_param('{}_in'.format(name), in_v['v']) g.V(in_id) g.func('next') if out_v['is_ref']: gremlin.unbound('V', out_v['v']) else: out_id = next_param('{}_out'.format(name), out_v['v']) gremlin.V(out_id) ignore = [GIZMO_LABEL[0], GIZMO_LABEL[1], GIZMO_TYPE] edge_args = [label, g] # edge properites only get one value and no meta-properties for field, changes in entity.changes.items(): if field in ignore: continue try: if changes['immutable']: value = changes['values']['values'][-1] else: value = changes['values'][-1] except: continue field_param = next_param('{}_{}'.format(name, field), field) field_value = next_param('{}_value'.format(field_param.name), value) edge_args += [field_param, field_value] gremlin.func('next').addEdge(*edge_args) return self._add_gremlin_query(entity) def save(self, entity, set_variable=None): if not entity[GIZMO_TYPE]: msg = 'The entity does not have a type defined' logger.exception(msg) raise AstronomerQueryException(msg) entity_type = entity[GIZMO_TYPE] if not entity[GIZMO_ID]: if entity_type == 'vertex': self._add_vertex(entity, set_variable) else: self._add_edge(entity, set_variable) else: self._update_entity(entity, set_variable) def delete(self, entity): entity_type, _id = entity.get_rep() if not _id: msg = ('The entity does not have an id defined and' ' connot be deleted') logger.exception(msg) raise AstronomerQueryException(msg) if not entity[GIZMO_TYPE]: msg = 'The entity does not have a type defined' logger.exception(msg) raise AstronomerQueryException(msg) delete = next_param('{}_ID'.format(str(entity)), _id) getattr(self.gremlin, entity_type)(delete).next().func('remove') return self._add_gremlin_query(entity) class Collection(object): def __init__(self, mapper, response=None): self.mapper = mapper if not response: response = lambda: None response.data = [] self.response = response self._entities = {} self._index = 0 self._data_type = 'python' def first(self): return self[0] def last(self): return self[-1] def get_data(self): return [x for x in self.response.data] data = property(get_data) @property def entity_data(self): """ this will get the instance data instead of the raw data. This will use the mapper to create each entity. Which may have a custom data attribute """ return [x.data for x in self] @property async def mapper_data(self): """this will get the data from the entity's mapper if it has a custom mapper """ data = [] if len(self): mapper = self.mapper.get_mapper(self[0]) for entity in self: data.append(await mapper.data(entity)) return data def __len__(self): return len(self.response.data) def __getitem__(self, key): entity = self._entities.get(key, None) if entity is None: try: data = self.response[key] if data is not None: entity = self.mapper.create(data=data, data_type=self._data_type) entity.dirty = False self._entities[key] = entity else: raise StopIteration() except Exception as e: raise StopIteration() return entity def __setitem__(self, key, value): self._entities[key] = value def __delitem__(self, key): if key in self._entities: del self._entities[key] def __iter__(self): return self def __next__(self): entity = self[self._index] self._index += 1 return entity
20506
class InterpreterException(Exception): def __init__(self, message): self.message = message def __str__(self): return self.message class SymbolNotFound(InterpreterException): pass class UnexpectedCharacter(InterpreterException): pass class ParserSyntaxError(InterpreterException): pass class DuplicateSymbol(InterpreterException): pass class InterpreterRuntimeError(InterpreterException): pass class InvalidParamCount(InterpreterRuntimeError): pass
20520
import cv2 import ProcessWithCV2 img1 = cv2.imread("D:/py/chinese/7.png") img2 = cv2.imread("D:/py/chinese/8.png") a = ProcessWithCV2.dHash(img1, img2, 1) print(a)
20540
from django.conf.urls.defaults import patterns, url urlpatterns = patterns( 'popcorn_gallery.tutorials.views', url(r'^(?P<slug>[\w-]+)/$', 'object_detail', name='object_detail'), url(r'^$', 'object_list', name='object_list'), )
20547
from distutils.spawn import find_executable from os import path import click from .settings import ( BASE_DEVELOPMENT_REQUIREMENTS_FILENAME, BASE_REQUIREMENTS_FILENAME, DEVELOPMENT_REQUIREMENTS_FILENAME, REQUIREMENTS_FILENAME, ) from .util import print_and_run def _ensure_pip_tools_installed(): if not find_executable('pip-sync'): click.echo('Installing pip-tools') print_and_run(('pip', 'install', 'pip-tools')) @click.group() def cli(): pass @cli.command() @click.option('--dev', is_flag=True, default=False) def install(dev): _ensure_pip_tools_installed() requirements_file = ( DEVELOPMENT_REQUIREMENTS_FILENAME if dev else REQUIREMENTS_FILENAME ) print_and_run(('pip-sync', requirements_file)) click.echo('Requirements setup complete!') @cli.command() def update(): _ensure_pip_tools_installed() print_and_run(( 'pip-compile', '-q', f'--output-file={path.relpath(REQUIREMENTS_FILENAME)}', path.relpath(BASE_REQUIREMENTS_FILENAME), )) click.echo(f'Requiremnts file updated: {path.relpath(REQUIREMENTS_FILENAME)}') @cli.command() def update_dev(): _ensure_pip_tools_installed() print_and_run(( 'pip-compile', '-q', f'--output-file={path.relpath(DEVELOPMENT_REQUIREMENTS_FILENAME)}', path.relpath(BASE_DEVELOPMENT_REQUIREMENTS_FILENAME), )) click.echo(f'Development requirements file updated: {DEVELOPMENT_REQUIREMENTS_FILENAME}') if __name__ == '__main__': cli()
20601
import sys sys.path.append("../../configs") #../../configs from path import EXP_PATH import numpy as np DECAY_PARAMS_DICT =\ { 'stair' : { 128 :{ 'a1': {'initial_lr' : 1e-5, 'decay_steps' : 50000, 'decay_rate' : 0.3}, 'a2' : {'initial_lr' : 3e-4, 'decay_steps' : 50000, 'decay_rate' : 0.3}, 'a3' : {'initial_lr' : 1e-3, 'decay_steps' : 50000, 'decay_rate' : 0.3}, 'a4' : {'initial_lr' : 3e-3, 'decay_steps' : 50000, 'decay_rate' : 0.3}, 'a5' : {'initial_lr' : 1e-2, 'decay_steps' : 50000, 'decay_rate' : 0.3} } }, 'piecewise' : { 128 : { 'a1' : {'boundaries' : [10000, 20000], 'values' : [1e-4, 3e-5, 1e-5]}, 'a2' : {'boundaries' : [10000, 20000], 'values' : [3e-4, 1e-4, 3e-5]}, 'a3' : {'boundaries' : [10000, 20000], 'values' : [1e-3, 3e-4, 1e-4]}, 'a4' : {'boundaries' : [10000, 20000], 'values' : [3e-3, 1e-3, 3e-4]}, 'a5' : {'boundaries' : [10000, 20000], 'values' : [1e-2, 3e-3, 1e-3]}, 'b1' : {'boundaries' : [20000, 35000], 'values' : [1e-4, 3e-5, 1e-5]}, 'b2' : {'boundaries' : [20000, 35000], 'values' : [3e-4, 1e-4, 3e-5]}, 'b3' : {'boundaries' : [20000, 35000], 'values' : [1e-3, 3e-4, 1e-4]}, 'b4' : {'boundaries' : [20000, 35000], 'values' : [3e-3, 1e-3, 3e-4]}, 'b5' : {'boundaries' : [20000, 35000], 'values' : [1e-2, 3e-3, 1e-3]} } } } ACTIVATE_K_SET = np.arange(1, 5) K_SET = [1,4,16] RESULT_DIR = EXP_PATH+"cifar_exps/" #========================PARAM============================# DATASET= 'cifar' GPU_ID = 0 BATCH_SIZE = 128 EPOCH = 300 NSCLASS = 16 # model EMBED_M= 64 CONV_NAME = 'conv1' # metric loss LOSS_TYPE = 'triplet' MARGIN_ALPHA = 0.3 LAMBDA = 0.003 # regularization for npair # learning DECAY_TYPE = 'stair' DECAY_PARAM_TYPE = 'a3'
20613
from aiohttp.test_utils import TestClient import pytest import typing import unittest.mock from rolling.kernel import Kernel from rolling.model.character import CharacterModel from rolling.model.character import MINIMUM_BEFORE_EXHAUSTED from rolling.server.document.affinity import AffinityDirectionType from rolling.server.document.affinity import AffinityJoinType from rolling.server.document.affinity import CHIEF_STATUS from rolling.server.document.affinity import MEMBER_STATUS from rolling.server.document.build import BuildDocument from rolling.server.document.build import DOOR_MODE_LABELS from rolling.server.document.build import DOOR_MODE__CLOSED from rolling.server.document.build import DOOR_MODE__CLOSED_EXCEPT_FOR from rolling.server.document.build import DoorDocument @pytest.fixture def websocket_prepare_mock() -> typing.Generator[unittest.mock.AsyncMock, None, None]: with unittest.mock.patch("aiohttp.web_ws.WebSocketResponse.prepare") as mock_: yield mock_ @pytest.fixture def zone_event_manager_listen_mock() -> typing.Generator[ unittest.mock.AsyncMock, None, None ]: with unittest.mock.patch( "rolling.server.zone.websocket.ZoneEventsManager._listen" ) as mock_: yield mock_ @pytest.fixture def zone_event_manager_close_mock() -> typing.Generator[ unittest.mock.AsyncMock, None, None ]: with unittest.mock.patch( "rolling.server.zone.websocket.ZoneEventsManager.close_websocket" ) as mock_: yield mock_ @pytest.fixture def socket_send_str_mock() -> typing.Generator[unittest.mock.AsyncMock, None, None]: with unittest.mock.patch("aiohttp.web_ws.WebSocketResponse.send_str") as mock_: yield mock_ class TestDoor: def _place_door(self, kernel: Kernel) -> DoorDocument: build = kernel.build_lib.place_build( world_row_i=1, world_col_i=1, zone_row_i=10, zone_col_i=10, build_id="DOOR", under_construction=False, ) return build def _create_rule( self, kernel: Kernel, author: CharacterModel, door: BuildDocument, mode: str, affinity_ids: typing.Optional[typing.List[int]], ) -> None: kernel.door_lib.update( character_id=author.id, build_id=door.id, new_mode=mode, new_affinity_ids=affinity_ids, ) def test_one_rule_lock__author_here__stranger_cant( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) def test_one_rule_lock_except__author_here__stranger_cant_but_member_can( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_franck_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model franck = worldmapc_franck_model # Given aff = kernel.affinity_lib.create( name="aff1", join_type=AffinityJoinType.ACCEPT_ALL, direction_type=AffinityDirectionType.ONE_DIRECTOR, ) kernel.affinity_lib.join( character_id=xena.id, affinity_id=aff.id, accepted=True, request=False, status_id=CHIEF_STATUS[0], ) kernel.affinity_lib.join( character_id=franck.id, affinity_id=aff.id, accepted=True, request=False, status_id=MEMBER_STATUS[0], ) door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED_EXCEPT_FOR, affinity_ids=[aff.id], ) # When assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=franck.id ) def test_two_rule_lock__author_here_and_first_can__stranger_second_cant( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) self._create_rule( kernel, author=arthur, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) async def test_two_rule_lock__author_first_travel__stranger_second_can( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) self._create_rule( kernel, author=arthur, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When/Then 1 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 await kernel.character_lib.move( character=xena, to_world_row=2, to_world_col=2, ) # When/Then 2 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 await kernel.character_lib.move( character=xena, to_world_row=1, to_world_col=1, ) # When/Then 3 assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) async def test_one_rule_lock__author_first_travel__stranger_second_can( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When/Then 1 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 await kernel.character_lib.move( character=xena, to_world_row=2, to_world_col=2, ) # When/Then 2 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 await kernel.character_lib.move( character=xena, to_world_row=1, to_world_col=1, ) # When/Then 3 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) async def test_one_rule_lock__author_dead__stranger_can( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When/Then 1 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 kernel.character_lib.kill(character_id=xena.id) # When/Then 2 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) async def test_one_rule_lock__author_vulnerable__stranger_can( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) # When/Then 1 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=xena.id ) assert kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) # Given 2 xena_doc = kernel.character_lib.get_document(xena.id) xena_doc.tiredness = MINIMUM_BEFORE_EXHAUSTED + 1 kernel.server_db_session.add(xena_doc) kernel.server_db_session.commit() xena = kernel.character_lib.get(id_=xena.id) assert xena.vulnerable # When/Then 2 assert not kernel.door_lib.is_access_locked_for( build_id=door.id, character_id=arthur.id ) @pytest.mark.usefixtures("websocket_prepare_mock") @pytest.mark.usefixtures("zone_event_manager_listen_mock") @pytest.mark.usefixtures("zone_event_manager_close_mock") async def test_events_when_door_author_left_when_back_in_zone( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, socket_send_str_mock: unittest.mock.AsyncMock, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model request_mock = unittest.mock.AsyncMock() # Given door = self._place_door(kernel) self._create_rule( kernel, author=xena, door=door, mode=DOOR_MODE__CLOSED, affinity_ids=[] ) _ = await kernel.server_zone_events_manager.get_new_socket( request=request_mock, row_i=1, col_i=1, character_id=arthur.id, ) # When await kernel.character_lib.move( character=xena, to_world_row=1, to_world_col=2, ) # Then socket_send_str_mock.assert_awaited() events_str_list = [arg[0][0] for arg in socket_send_str_mock.await_args_list] assert any(["NEW_BUILD" in event_str for event_str in events_str_list]) assert any(['{"WALKING":true}' in event_str for event_str in events_str_list]) # When socket_send_str_mock.reset_mock() await kernel.character_lib.move( character=xena, to_world_row=1, to_world_col=1, ) # Then socket_send_str_mock.assert_awaited() events_str_list = [arg[0][0] for arg in socket_send_str_mock.await_args_list] assert any(["NEW_BUILD" in event_str for event_str in events_str_list]) assert any(['{"WALKING":false}' in event_str for event_str in events_str_list]) @pytest.mark.usefixtures("websocket_prepare_mock") @pytest.mark.usefixtures("zone_event_manager_listen_mock") @pytest.mark.usefixtures("zone_event_manager_close_mock") async def test_events_when_door_author_update_rule( self, worldmapc_xena_model: CharacterModel, worldmapc_arthur_model: CharacterModel, worldmapc_kernel: Kernel, socket_send_str_mock: unittest.mock.AsyncMock, worldmapc_web_app: TestClient, ) -> None: kernel = worldmapc_kernel xena = worldmapc_xena_model arthur = worldmapc_arthur_model request_mock = unittest.mock.AsyncMock() web = worldmapc_web_app # Given door = self._place_door(kernel) _ = await kernel.server_zone_events_manager.get_new_socket( request=request_mock, row_i=1, col_i=1, character_id=arthur.id, ) # When response = await web.post( f"/character/{xena.id}/door/{door.id}?mode={DOOR_MODE_LABELS[DOOR_MODE__CLOSED]}" ) assert response.status == 200 # Then socket_send_str_mock.assert_awaited() events_str_list = [arg[0][0] for arg in socket_send_str_mock.await_args_list] assert any(["NEW_BUILD" in event_str for event_str in events_str_list]) assert any(['{"WALKING":false}' in event_str for event_str in events_str_list])
20623
from contextlib import contextmanager import pytest from sai import SaiObjType @contextmanager def config(npu): topo_cfg = { "lo_rif_oid": None, "cpu_port_oid": None, } # Create Loopback RIF lo_rif_oid = npu.create(SaiObjType.ROUTER_INTERFACE, [ "SAI_ROUTER_INTERFACE_ATTR_VIRTUAL_ROUTER_ID", npu.default_vrf_oid, "SAI_ROUTER_INTERFACE_ATTR_TYPE", "SAI_ROUTER_INTERFACE_TYPE_LOOPBACK", "SAI_ROUTER_INTERFACE_ATTR_MTU", "9100" ]) topo_cfg["lo_rif_oid"] = lo_rif_oid # Get CPU port cpu_port_oid = npu.get(npu.oid, ["SAI_SWITCH_ATTR_CPU_PORT", "oid:0x0"]).oid() topo_cfg["cpu_port_oid"] = cpu_port_oid # Get port HW lanes for oid in npu.port_oids: port_lanes = npu.get(oid, ["SAI_PORT_ATTR_HW_LANE_LIST", "8:0,0,0,0,0,0,0,0"]).to_list() # Remove default VLAN members vlan_mbr_oids = npu.get_list(npu.default_vlan_oid, "SAI_VLAN_ATTR_MEMBER_LIST", "oid:0x0") for oid in vlan_mbr_oids: npu.remove(oid) # Remove default 1Q bridge members dot1q_mbr_oids = npu.get_list(npu.dot1q_br_oid, "SAI_BRIDGE_ATTR_PORT_LIST", "oid:0x0") for oid in dot1q_mbr_oids: bp_type = npu.get(oid, ["SAI_BRIDGE_PORT_ATTR_TYPE", "SAI_BRIDGE_PORT_TYPE_PORT"]).value() if bp_type == "SAI_BRIDGE_PORT_TYPE_PORT": npu.remove(oid) npu.dot1q_bp_oids.clear() # Create default routes npu.create_route("0.0.0.0/0", npu.default_vrf_oid, None, ["SAI_ROUTE_ENTRY_ATTR_PACKET_ACTION", "SAI_PACKET_ACTION_DROP"]) npu.create_route("::/0", npu.default_vrf_oid, None, ["SAI_ROUTE_ENTRY_ATTR_PACKET_ACTION", "SAI_PACKET_ACTION_DROP"]) # Create Loopback RIF routes npu.create_route("fe80::5054:ff:fe12:3456/128", npu.default_vrf_oid, cpu_port_oid, ["SAI_ROUTE_ENTRY_ATTR_PACKET_ACTION", "SAI_PACKET_ACTION_FORWARD"]) npu.create_route("fe80::/10", npu.default_vrf_oid, cpu_port_oid, ["SAI_ROUTE_ENTRY_ATTR_PACKET_ACTION", "SAI_PACKET_ACTION_FORWARD"]) yield topo_cfg # TODO: TEARDOWN # Remove default routes npu.remove_route("fe80::/10", npu.default_vrf_oid) npu.remove_route("fe80::5054:ff:fe12:3456/128", npu.default_vrf_oid) npu.remove_route("::/0", npu.default_vrf_oid) npu.remove_route("0.0.0.0/0", npu.default_vrf_oid) # Create default 1Q bridge members for oid in npu.port_oids: bp_oid = npu.create(SaiObjType.BRIDGE_PORT, [ "SAI_BRIDGE_PORT_ATTR_TYPE", "SAI_BRIDGE_PORT_TYPE_PORT", "SAI_BRIDGE_PORT_ATTR_PORT_ID", oid, # "SAI_BRIDGE_PORT_ATTR_BRIDGE_ID", dot1q_br.oid(), "SAI_BRIDGE_PORT_ATTR_ADMIN_STATE", "true" ]) npu.dot1q_bp_oids.append(bp_oid) # Create default VLAN members and set PVID for idx, oid in enumerate(npu.port_oids): npu.create_vlan_member(npu.default_vlan_oid, npu.dot1q_bp_oids[idx], "SAI_VLAN_TAGGING_MODE_UNTAGGED") npu.set(oid, ["SAI_PORT_ATTR_PORT_VLAN_ID", npu.default_vlan_id]) # Remove Loopback RIF npu.remove(lo_rif_oid)
20628
import time import textwrap import math import binascii from inkfish.create_discriminant import create_discriminant from inkfish.classgroup import ClassGroup from inkfish.iterate_squarings import iterate_squarings from inkfish import proof_wesolowski from inkfish.proof_of_time import (create_proof_of_time_nwesolowski, check_proof_of_time_nwesolowski, generate_r_value) from inkfish import proof_pietrzak from tests.int_mod_n import int_mod_n start_t = 0 time_multiplier = 1000 # Use milliseconds def start_bench(): global start_t start_t = time.time() * time_multiplier def end_bench(name, iterations): global start_t print("%-80s" % name, round(((time.time() * time_multiplier) - start_t) / (iterations), 2), "ms") def bench_classgroup(): D = create_discriminant(b"seed", 512) g = ClassGroup.from_ab_discriminant(2, 1, D) while g[0].bit_length() < g[2].bit_length() or g[1].bit_length() < g[2].bit_length(): g = pow(g, 2) g2 = pow(g, 2) start_bench() for _ in range(0, 10000): g2 = g2.multiply(g) end_bench("Classgroup 512 bit multiply", 10000) start_bench() for _ in range(0, 10000): g2 = g2.square() end_bench("Classgroup 512 bit square", 10000) D = create_discriminant(b"seed", 1024) g = ClassGroup.from_ab_discriminant(2, 1, D) while g[0].bit_length() < g[2].bit_length() or g[1].bit_length() < g[2].bit_length(): g = pow(g, 2) g2 = pow(g, 2) start_bench() for _ in range(0, 10000): g2 = g2.multiply(g) end_bench("Classgroup 1024 bit multiply", 10000) start_bench() for _ in range(0, 10000): g2 = g2.square() end_bench("Classgroup 1024 bit square", 10000) D = create_discriminant(b"seed", 2048) g = ClassGroup.from_ab_discriminant(2, 1, D) while g[0].bit_length() < g[2].bit_length() or g[1].bit_length() < g[2].bit_length(): g = pow(g, 2) g2 = pow(g, 2) start_bench() for _ in range(0, 10000): g2 = g2.multiply(g) end_bench("Classgroup 2048 bit multiply", 10000) start_bench() for _ in range(0, 10000): g2 = g2.square() end_bench("Classgroup 2048 bit square", 10000) def bench_discriminant_generation(): start_bench() for i in range(100): create_discriminant(i.to_bytes(32, "big"), 512) end_bench("Generate 512 bit discriminant", 100) start_bench() for i in range(100): create_discriminant(i.to_bytes(32, "big"), 1024) end_bench("Generate 1024 bit discriminant", 100) start_bench() for i in range(100): create_discriminant(i.to_bytes(32, "big"), 2048) end_bench("Generate 2048 bit discriminant", 100) def bench_vdf_iterations(): D = create_discriminant(b"seed", 512) g = ClassGroup.from_ab_discriminant(2, 1, D) start_bench() for _ in range(10): iterate_squarings(g, [10000]) end_bench("VDF 10000 iterations, 512bit classgroup", 10) D = create_discriminant(b"seed", 1024) g = ClassGroup.from_ab_discriminant(2, 1, D) start_bench() for _ in range(2): iterate_squarings(g, [10000]) end_bench("VDF 10000 iterations, 1024bit classgroup", 2) D = create_discriminant(b"seed", 2048) g = ClassGroup.from_ab_discriminant(2, 1, D) start_bench() for _ in range(2): iterate_squarings(g, [10000]) end_bench("VDF 10000 iterations, 2048bit classgroup", 2) # 2048 bit modulus prime = int(''.join(textwrap.dedent(""" 2634427397878110232503205795695468045251992992603340168049253044454387 1080897872360133472596339100961569230393163880927301060812730934043766 3646941725034559080490451986171041751558689035115943134790395616490035 9846986660803055891526943083539429058955074960014718229954545667371414 8029627597753998530121193913181474174423003742206534823264658175666814 0135440982296559552013264268674093709650866928458407571602481922443634 2306826340229149641664159565679297958087282612514993965471602016939198 7906354607787482381087158402527243744342654041944357821920600344804411 149211019651477131981627171025001255607692340155184929729""").split( "\n"))) initial_x = int_mod_n(15619920774592561628351138998371642294622340518469892832433140464182509560910157, prime) start_bench() for _ in range(2): iterate_squarings(initial_x, [10000]) end_bench("VDF 10000 iterations, 2048bit RSA modulus", 2) # 4096 bit modulus prime = int(''.join(textwrap.dedent(""" 8466908771297228398108729385413406312941234872779790501232479567685076 4762372651919166693555570188656362906279057098994287649807661604067499 3053172889374223358861501556862285892231110003666671700028271837785598 2711897721600334848186874197010418494909265899320941516493102418008649 1453168421248338831347183727052419170386543046753155080120058844782449 2367606252473029574371603403502901208633055707823115620627698680602710 8443465519855901353485395338769455628849759950055397510380800451786140 7656499749760023191493764704430968335226478156774628814806959050849093 5035645687560103462845054697907307302184358040130405297282437884344166 7188530230135000709764482573583664708281017375197388209508666190855611 3020636147999796942848529907410787587958203267319164458728792653638371 7065019972034334447374200594285558460255762459285837794285154075321806 4811493971019446075650166775528463987738853022894781860563097254152754 1001763544907553312158598519824602240430350073539728131177239628816329 0179188493240741373702361870220590386302554494325819514615309801491107 2710093592877658471507118356670261129465668437063636041245619411937902 0658733974883998301959084381087966405508661151837877497650143949507846 1522640311670422105209760172585337397687461""").split("\n"))) initial_x = int_mod_n(15619920774592561628351138998371642294622340518469892832433140464182509560910157, prime) start_bench() for _ in range(2): iterate_squarings(initial_x, [10000]) end_bench("VDF 10000 iterations, 4096bit RSA modulus", 2) def bench_wesolowski(): iterations = 10000 discriminant_length = 512 discriminant = create_discriminant(b"seed", discriminant_length) L, k, _ = proof_wesolowski.approximate_parameters(iterations) x = ClassGroup.from_ab_discriminant(2, 1, discriminant) powers_to_calculate = [i * k * L for i in range(0, math.ceil(iterations/(k*L)) + 1)] powers_to_calculate += [iterations] start_t = time.time() * time_multiplier powers = iterate_squarings(x, powers_to_calculate) vdf_time = round(time.time() * time_multiplier - start_t) y = powers[iterations] identity = ClassGroup.identity_for_discriminant(discriminant) start_t = time.time() * time_multiplier start_bench() for _ in range(5): proof = proof_wesolowski.generate_proof(identity, x, y, iterations, k, L, powers) end_bench("Wesolowski " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, proof", 5) proof_time = round((time.time() * time_multiplier - start_t) / 5) print(" - Percentage of VDF time:", (proof_time / vdf_time) * 100, "%") start_bench() for _ in range(10): assert(proof_wesolowski.verify_proof(x, y, proof, iterations)) end_bench("Wesolowski " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, verification", 10) def bench_nwesolowski(): iterations = 10000 discriminant_length = 512 discriminant = create_discriminant(b"seed", discriminant_length) L, k, _ = proof_wesolowski.approximate_parameters(iterations) x = ClassGroup.from_ab_discriminant(2, 1, discriminant) powers_to_calculate = [i * k * L for i in range(0, math.ceil(iterations/(k*L)) + 1)] start_t = time.time() * time_multiplier for _ in range(20): iterate_squarings(x, powers_to_calculate) vdf_time = round(time.time() * time_multiplier - start_t) / 20 start_t = time.time() * time_multiplier start_bench() for _ in range(20): result, proof = create_proof_of_time_nwesolowski(discriminant, x, iterations, discriminant_length, 2, depth=0) end_bench("n-wesolowski depth 2 " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, proof", 20) proof_time = round((time.time() * time_multiplier - start_t) / 20) print(" - Percentage of VDF time:", (((proof_time - vdf_time) / vdf_time) * 100), "%") start_bench() for _ in range(20): assert(check_proof_of_time_nwesolowski(discriminant, x, result + proof, iterations, discriminant_length)) end_bench("n-wesolowski depth 2 " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, verification", 20) def bench_pietrzak(): iterations = 10000 discriminant_length = 512 discriminant = create_discriminant(b"seed", discriminant_length) delta = 8 x = ClassGroup.from_ab_discriminant(2, 1, discriminant) powers_to_calculate = proof_pietrzak.cache_indeces_for_count(iterations) start_t = time.time() * time_multiplier powers = iterate_squarings(x, powers_to_calculate) vdf_time = round(time.time() * time_multiplier - start_t) y = powers[iterations] identity = ClassGroup.identity_for_discriminant(discriminant) start_t = time.time() * time_multiplier start_bench() for _ in range(5): proof = proof_pietrzak.generate_proof(x, iterations, delta, y, powers, identity, generate_r_value, discriminant_length) end_bench("Pietrzak " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, proof", 10) proof_time = round((time.time() * time_multiplier - start_t) / 10) print(" - Percentage of VDF time:", (proof_time / vdf_time) * 100, "%") start_bench() for _ in range(10): assert(proof_pietrzak.verify_proof(x, y, proof, iterations, delta, generate_r_value, discriminant_length)) end_bench("Pietrzak " + str(discriminant_length) + "b class group, " + str(iterations) + " iterations, verification", 10) def bench_main(): bench_classgroup() bench_discriminant_generation() bench_vdf_iterations() bench_wesolowski() bench_nwesolowski() bench_pietrzak() if __name__ == '__main__': bench_main() """ Copyright 2018 Chia Network Inc Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """
20668
import openmoc import openmc.openmoc_compatible import openmc.mgxs import numpy as np import matplotlib # Enable Matplotib to work for headless nodes matplotlib.use('Agg') import matplotlib.pyplot as plt plt.ioff() opts = openmoc.options.Options() openmoc.log.set_log_level('NORMAL') ############################################################################### # Eigenvalue Calculation w/o SPH Factors ############################################################################### # Initialize 2-group OpenMC multi-group cross section library for a pin cell mgxs_lib = openmc.mgxs.Library.load_from_file(filename='mgxs', directory='.') # Create an OpenMOC Geometry from the OpenMOC Geometry openmoc_geometry = \ openmc.openmoc_compatible.get_openmoc_geometry(mgxs_lib.geometry) # Load cross section data openmoc_materials = \ openmoc.materialize.load_openmc_mgxs_lib(mgxs_lib, openmoc_geometry) # Initialize FSRs openmoc_geometry.initializeFlatSourceRegions() # Initialize an OpenMOC TrackGenerator track_generator = openmoc.TrackGenerator( openmoc_geometry, opts.num_azim, opts.azim_spacing) track_generator.generateTracks() # Initialize an OpenMOC Solver solver = openmoc.CPUSolver(track_generator) solver.setConvergenceThreshold(opts.tolerance) solver.setNumThreads(opts.num_omp_threads) # Run an eigenvalue calulation with the MGXS from OpenMC solver.computeEigenvalue(opts.max_iters) solver.printTimerReport() keff_no_sph = solver.getKeff() # Extract the OpenMOC scalar fluxes fluxes_no_sph = openmoc.process.get_scalar_fluxes(solver) ############################################################################### # Eigenvalue Calculation with SPH Factors ############################################################################### # Compute SPH factors sph, sph_mgxs_lib, sph_indices = \ openmoc.materialize.compute_sph_factors( mgxs_lib, azim_spacing=opts.azim_spacing, num_azim=opts.num_azim, num_threads=opts.num_omp_threads) # Load the SPH-corrected MGXS library data materials = \ openmoc.materialize.load_openmc_mgxs_lib(sph_mgxs_lib, openmoc_geometry) # Run an eigenvalue calculation with the SPH-corrected modified MGXS library solver.computeEigenvalue(opts.max_iters) solver.printTimerReport() keff_with_sph = solver.getKeff() # Report the OpenMC and OpenMOC eigenvalues openmoc.log.py_printf('RESULT', 'OpenMOC keff w/o SPH: \t%1.5f', keff_no_sph) openmoc.log.py_printf('RESULT', 'OpenMOC keff w/ SPH: \t%1.5f', keff_with_sph) openmoc.log.py_printf('RESULT', 'OpenMC keff: \t\t1.17574 +/- 0.00086') ############################################################################### # Extracting Scalar Fluxes ############################################################################### openmoc.log.py_printf('NORMAL', 'Plotting data...') # Plot the cells openmoc.plotter.plot_cells(openmoc_geometry) # Extract the OpenMOC scalar fluxes fluxes_sph = openmoc.process.get_scalar_fluxes(solver) fluxes_sph *= sph # Extract the OpenMC scalar fluxes num_fsrs = openmoc_geometry.getNumFSRs() num_groups = openmoc_geometry.getNumEnergyGroups() openmc_fluxes = np.zeros((num_fsrs, num_groups), dtype=np.float64) nufission_xs = np.zeros((num_fsrs, num_groups), dtype=np.float64) # Get the OpenMC flux in each FSR for fsr in range(num_fsrs): # Find the OpenMOC cell and volume for this FSR openmoc_cell = openmoc_geometry.findCellContainingFSR(fsr) cell_id = openmoc_cell.getId() fsr_volume = track_generator.getFSRVolume(fsr) # Store the volume-averaged flux mgxs = mgxs_lib.get_mgxs(cell_id, 'nu-fission') flux = mgxs.tallies['flux'].mean.flatten() flux = np.flipud(flux) / fsr_volume openmc_fluxes[fsr, :] = flux nufission_xs[fsr, :] = mgxs.get_xs(nuclide='all') # Extract energy group edges group_edges = mgxs_lib.energy_groups.group_edges group_edges += 1e-3 # Adjust lower bound to 1e-3 eV (for loglog scaling) # Compute difference in energy bounds for each group group_edges = np.flipud(group_edges) # Normalize fluxes with the fission source openmc_fluxes /= np.sum(openmc_fluxes * nufission_xs) fluxes_sph /= np.sum(fluxes_sph * nufission_xs) fluxes_no_sph /= np.sum(fluxes_no_sph * nufission_xs) ############################################################################### # Plot the OpenMC, OpenMOC Scalar Fluxes ############################################################################### # Extend the mgxs values array for matplotlib's step plot of fluxes openmc_fluxes = np.insert(openmc_fluxes, 0, openmc_fluxes[:,0], axis=1) fluxes_no_sph = np.insert(fluxes_no_sph, 0, fluxes_no_sph[:,0], axis=1) fluxes_sph = np.insert(fluxes_sph, 0, fluxes_sph[:,0], axis=1) # Plot OpenMOC and OpenMC fluxes in each FSR for fsr in range(num_fsrs): # Get the OpenMOC cell and material for this FSR cell = openmoc_geometry.findCellContainingFSR(fsr) material_name = cell.getFillMaterial().getName() # Create a step plot for the MGXS fig = plt.figure() plt.plot(group_edges, openmc_fluxes[fsr,:], drawstyle='steps', color='r', linewidth=2) plt.plot(group_edges, fluxes_no_sph[fsr,:], drawstyle='steps', color='b', linewidth=2) plt.plot(group_edges, fluxes_sph[fsr,:], drawstyle='steps', color='g', linewidth=2) plt.yscale('log') plt.xscale('log') plt.xlabel('Energy [eV]') plt.ylabel('Flux') plt.title('Normalized Flux ({0})'.format(material_name)) plt.xlim((min(group_edges), max(group_edges))) plt.legend(['openmc', 'openmoc w/o sph', 'openmoc w/ sph'], loc='best') plt.grid() filename = 'plots/flux-{0}.png'.format(material_name.replace(' ', '-')) plt.savefig(filename, bbox_inches='tight') plt.close() ############################################################################### # Plot OpenMC-to-OpenMOC Scalar Flux Errors ############################################################################### # Compute the percent relative error in the flux rel_err_no_sph = np.zeros(openmc_fluxes.shape) rel_err_sph = np.zeros(openmc_fluxes.shape) for fsr in range(num_fsrs): delta_flux_no_sph = fluxes_no_sph[fsr,:] - openmc_fluxes[fsr,:] delta_flux_sph = fluxes_sph[fsr,:] - openmc_fluxes[fsr,:] rel_err_no_sph[fsr,:] = delta_flux_no_sph / openmc_fluxes[fsr,:] * 100. rel_err_sph[fsr,:] = delta_flux_sph / openmc_fluxes[fsr,:] * 100. # Plot OpenMOC relative flux errors in each FSR for fsr in range(num_fsrs): # Get the OpenMOC cell and material for this FSR cell = openmoc_geometry.findCellContainingFSR(fsr) material_name = cell.getFillMaterial().getName() # Create a step plot for the MGXS fig = plt.figure() plt.plot(group_edges, rel_err_no_sph[fsr,:], drawstyle='steps', color='r', linewidth=2) plt.plot(group_edges, rel_err_sph[fsr,:], drawstyle='steps', color='b', linewidth=2) plt.xscale('log') plt.xlabel('Energy [eV]') plt.ylabel('Relative Error [%]') plt.title('OpenMOC-to-OpenMC Flux Rel. Err. ({0})'.format(material_name)) plt.xlim((min(group_edges), max(group_edges))) plt.legend(['openmoc w/o sph', 'openmoc w/ sph'], loc='best') plt.grid() filename = 'plots/rel-err-{0}.png'.format(material_name.replace(' ', '-')) plt.savefig(filename, bbox_inches='tight') plt.close()
20705
import os import sys import signal import asyncio import json import time import traceback import typing import socket import re import select import websockets if sys.platform != "win32": import termios import tty else: import msvcrt import win32api from .. import api from ..shared import constants, log, types as t from ..shared.constants import State import conducto.internal.host_detection as hostdet if sys.version_info < (3, 7): # create_task is stdlib in 3.7, but we can declare it as a synonym for the # 3.6 ensure_future asyncio.create_task = asyncio.ensure_future STATE_TO_COLOR = { State.PENDING: log.Color.TRUEWHITE, State.QUEUED: log.Color.GRAY, State.RUNNING: log.Color.BLUE, State.DONE: log.Color.GREEN, State.ERROR: log.Color.RED, State.WORKER_ERROR: log.Color.PURPLE, } class Listener(object): def update_node(self, name, data): pass async def background_task(self, title): pass async def key_press(self, char): # Listeners are passed the quit_func so that they can decide when to exit pass def render(self): pass def shutdown(self): pass def connect(token: t.Token, pipeline_id: t.PipelineId, starthelp: str): pipeline = api.Pipeline().get(pipeline_id, token=token) ui = ShellUI(token, pipeline, starthelp) if sys.platform == "win32": win32api.SetConsoleCtrlHandler(ui.ctrl_c, True) try: asyncio.get_event_loop().run_until_complete(ui.run()) except Exception: ui.reset_stdin() traceback.print_exc() class ShellUI(object): def __init__(self, token, pipeline: dict, starthelp: str): self.pipeline = pipeline self.quitting = False self.loop = asyncio.get_event_loop() self.gw_socket = None self.start_func_complete = None self.starthelp = starthelp from . import one_line, full_screen self.listeners: typing.List[Listener] = [one_line.OneLineDisplay(self)] @property def allow_sleep(self): # TODO: This is an ugly time-out to avoid shutting down the shell UI # because the NS cache still believes the pipeline is sleeping. return self.start_func_complete and time.time() > self.start_func_complete + 3.0 async def view_loop(self): """ Every 0.25 seconds render the pipeline """ log.info("[view] starting") while True: await asyncio.sleep(0.25) for listener in self.listeners: listener.render() def set_gw(self, gw_socket): self.gw_socket = gw_socket async def wait_gw(self): while self.gw_socket is None: await asyncio.sleep(0.1) async def start_pipeline(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Manager().launch(pipeline_id) await self.wait_gw() payload = {"type": "SET_AUTORUN", "payload": {"value": True}} await self.gw_socket.send(json.dumps(payload)) async def sleep_pipeline(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Pipeline().sleep_standby(pipeline_id) else: payload = {"type": "CLOSE_PROGRAM", "payload": None} await self.gw_socket.send(json.dumps(payload)) async def reset(self): if self.gw_socket is None: pipeline_id = self.pipeline["pipeline_id"] api.Manager().launch(pipeline_id) await self.wait_gw() payload = {"type": "RESET", "payload": ["/"]} await self.gw_socket.send(json.dumps(payload)) async def gw_socket_loop(self): """ Loop and listen for socket messages """ start_tasks = await self.run_start_func() pl = constants.PipelineLifecycle while True: if ( self.pipeline is None or self.pipeline.get("status", None) not in pl.active ): await asyncio.sleep(0.5) continue if start_tasks is not None: tasks = start_tasks # we clear the start_tasks now since later reconnects should # show reconnecting. start_tasks = None else: msg = "Connection lost. Reconnecting" pretasks = [xx.background_task(msg) for xx in self.listeners] tasks = [asyncio.create_task(task) for task in pretasks] try: websocket = await api.connect_to_pipeline(self.pipeline["pipeline_id"]) except PermissionError: print() print("You are not permitted to connect to this pipeline.") self.quit() break except ConnectionError: self.quit() break for task in tasks: task.cancel() for listener in self.listeners: listener.install_normal_key_mode() self.set_gw(websocket) was_slept = False try: await websocket.send( json.dumps({"type": "RENDER_NODE", "payload": "/"}) ) log.info("[gw_socket_loop] starting") async for msg_text in websocket: msg = json.loads(msg_text) if msg["type"] in ("NODES_STATE_UPDATE", "RENDER_NODE"): log.debug(f"incoming gw message {msg['type']}") for name, data in msg["payload"].items(): for listener in self.listeners: listener.update_node(name, data) elif msg["type"] == "SLEEP": was_slept = True # we are done here, do not try to reconnect. break except websockets.ConnectionClosedError as e: log.debug(f"ConnectionClosedError {e.code} {e.reason}") self.set_gw(None) if was_slept: break def get_ns_url(self): url = api.Config().get_url() url = re.sub("^http", "ws", url) + "/ns/" return url async def reconnect_ns(self): ns_url = self.get_ns_url() log.debug("[run] Connecting to", ns_url) header = {"Authorization": f"bearer {api.Config().get_token(refresh=False)}"} # we retry connection for roughly 2 minutes for i in range(45): try: websocket = await websockets.connect(ns_url, extra_headers=header) break except ( websockets.ConnectionClosedError, websockets.InvalidStatusCode, socket.gaierror, ): log.debug(f"cannot connect to ns ... waiting {i}") await asyncio.sleep(min(3.0, (2 ** i) / 8)) else: self.quit() return None log.debug("[run] ns Connected") return websocket async def ns_socket_loop(self): """ Loop and listen for socket messages """ while True: msg = "Connection lost. Reconnecting" if self.start_func_complete is not None: pretasks = [xx.background_task(msg) for xx in self.listeners] else: pretasks = [] tasks = [asyncio.create_task(task) for task in pretasks] websocket = await self.reconnect_ns() for task in tasks: task.cancel() if websocket is None: if self.start_func_complete is not None: for listener in self.listeners: listener.install_disconnect_mode() self.quit() break if self.start_func_complete is not None: for listener in self.listeners: listener.install_normal_key_mode() subscribe = { "type": "SUBSCRIBE", "payload": {"pipeline_id": self.pipeline["pipeline_id"]}, } await websocket.send(json.dumps(subscribe)) try: log.info("[ns_socket_loop] starting") async for msg_text in websocket: msg = json.loads(msg_text) if msg["type"] in ("FULL_INFO_UPDATE",): log.debug(f"incoming ns message {msg['type']}") progs = msg["payload"]["programIdToInfo"] try: self.pipeline = progs[self.pipeline["pipeline_id"]] except KeyError: # TODO: the NS cache may not yet have the pipeline, # this is to allow for that. if self.allow_sleep: raise else: continue if "state" not in self.pipeline["meta"]: self.pipeline["meta"] = { "state": "pending", "stateCounts": {x: 0 for x in STATE_TO_COLOR.keys()}, } pl = constants.PipelineLifecycle if self.pipeline["status"] in pl.sleeping and self.allow_sleep: self.quit() elif self.pipeline["status"] not in pl.active: for listener in self.listeners: listener.update_node("/", self.pipeline["meta"]) except websockets.ConnectionClosedError: pass def ctrl_c(self, a, b=None): # This is the windows control C handler self.quit() return True async def key_loop(self): """ Loop and listen for key inputs """ log.info("[key_loop] starting") if sys.platform != "win32": self.old_settings = termios.tcgetattr(sys.stdin.fileno()) tty.setraw(sys.stdin.fileno()) async for char in stream_as_char_generator(self.loop, sys.stdin): if ord(char) in (3, 4): # Ctrl+c (sigint) & Ctrl+d (eof) get captured as a non-printing # characters with ASCII code 3 & 4 respectively. Quit # gracefully. self.quit() elif ord(char) == 26: # Ctrl+z gets captured as a non-printing character with ASCII # code 26. Send SIGSTOP and reset the terminal. self.reset_stdin() os.kill(os.getpid(), signal.SIGSTOP) if sys.platform != "win32": self.old_settings = termios.tcgetattr(sys.stdin.fileno()) tty.setraw(sys.stdin.fileno()) for listener in self.listeners: await listener.key_press(char) self.reset_stdin() def reset_stdin(self): if hasattr(self, "old_settings"): termios.tcsetattr(sys.stdin.fileno(), termios.TCSADRAIN, self.old_settings) async def run_start_func(self): pretasks = [ xx.background_task(self.starthelp, immediate=True) for xx in self.listeners ] tasks = [asyncio.create_task(task) for task in pretasks] self.start_func_complete = time.time() return tasks async def run(self): # Start all the loops. The view and socket loops are nonblocking The # key_loop needs to be run separately because it blocks on user input tasks = [ self.loop.create_task(self.view_loop()), self.loop.create_task(self.gw_socket_loop()), self.loop.create_task(self.ns_socket_loop()), self.loop.create_task(self.key_loop()), ] # Wait on all of them. The `gather` variable can be cancelled in # `key_task()` if the user Ctrl+c's, which will cause the other loops # to be cancelled gracefully. self.gather_handle = asyncio.gather(*tasks) try: await self.gather_handle except asyncio.CancelledError: return except websockets.ConnectionClosedError: self.reset_stdin() return else: log.error("gather_handle returned but it shouldn't have!") raise Exception("gather_handle returned but it shouldn't have!") finally: for listener in self.listeners: listener.shutdown() def disconnect(self): self.quit() def quit(self): """ Make all event loops quit """ self.reset_stdin() self.quitting = True self.gather_handle.cancel() def stdin_data(): return select.select([sys.stdin], [], [], 0) == ([sys.stdin], [], []) async def stream_as_char_generator(loop, stream): if sys.platform != "win32": has_key = stdin_data read_key = lambda: stream.read(1) else: has_key = msvcrt.kbhit read_key = lambda: msvcrt.getch().decode("ascii") while True: await asyncio.sleep(0.05) if has_key(): char = read_key() if not char: # EOF. break yield char
20717
from typing import Optional, Sequence import torch from ...gpu import Device from ...models.encoders import EncoderFactory from ...models.optimizers import OptimizerFactory from ...models.q_functions import QFunctionFactory from ...preprocessing import ActionScaler, RewardScaler, Scaler from ...torch_utility import TorchMiniBatch from .ddpg_impl import DDPGImpl class TD3Impl(DDPGImpl): _target_smoothing_sigma: float _target_smoothing_clip: float def __init__( self, observation_shape: Sequence[int], action_size: int, actor_learning_rate: float, critic_learning_rate: float, actor_optim_factory: OptimizerFactory, critic_optim_factory: OptimizerFactory, actor_encoder_factory: EncoderFactory, critic_encoder_factory: EncoderFactory, q_func_factory: QFunctionFactory, gamma: float, tau: float, n_critics: int, target_reduction_type: str, target_smoothing_sigma: float, target_smoothing_clip: float, use_gpu: Optional[Device], scaler: Optional[Scaler], action_scaler: Optional[ActionScaler], reward_scaler: Optional[RewardScaler], ): super().__init__( observation_shape=observation_shape, action_size=action_size, actor_learning_rate=actor_learning_rate, critic_learning_rate=critic_learning_rate, actor_optim_factory=actor_optim_factory, critic_optim_factory=critic_optim_factory, actor_encoder_factory=actor_encoder_factory, critic_encoder_factory=critic_encoder_factory, q_func_factory=q_func_factory, gamma=gamma, tau=tau, n_critics=n_critics, target_reduction_type=target_reduction_type, use_gpu=use_gpu, scaler=scaler, action_scaler=action_scaler, reward_scaler=reward_scaler, ) self._target_smoothing_sigma = target_smoothing_sigma self._target_smoothing_clip = target_smoothing_clip def compute_target(self, batch: TorchMiniBatch) -> torch.Tensor: assert self._targ_policy is not None assert self._targ_q_func is not None with torch.no_grad(): action = self._targ_policy(batch.next_observations) # smoothing target noise = torch.randn(action.shape, device=batch.device) scaled_noise = self._target_smoothing_sigma * noise clipped_noise = scaled_noise.clamp( -self._target_smoothing_clip, self._target_smoothing_clip ) smoothed_action = action + clipped_noise clipped_action = smoothed_action.clamp(-1.0, 1.0) return self._targ_q_func.compute_target( batch.next_observations, clipped_action, reduction=self._target_reduction_type, )
20769
import io import zlib import numpy as np def maybe_compress(str, compress): return zlib.compress(str) if compress else str def maybe_decompress(str, decompress): return zlib.decompress(str) if decompress else str def serialize_numpy(arr: np.ndarray, compress: bool = False) -> str: """Serializes numpy array to string with optional zlib compression. Args: arr (np.ndarray): Numpy array to serialize. compress (bool, optional): Whether to compress resulting string with zlib or not. Defaults to False. Returns: str: serialized string """ buf = io.BytesIO() assert isinstance(arr, np.ndarray) np.save(buf, arr) result = buf.getvalue() return maybe_compress(result, compress) def deserialize_numpy(serialized_string: str, decompress: bool = False) -> np.ndarray: """Deserializes numpy array from compressed string. Args: serialized_string (str): Serialized numpy array decompress (bool, optional): Whether to decompress string with zlib before laoding. Defaults to False. Returns: np.ndarray: deserialized numpy array """ str = maybe_decompress(serialized_string, decompress) buf = io.BytesIO(str) return np.load(buf)
20851
import numpy as np from matplotlib import _api from .axes_divider import make_axes_locatable, Size from .mpl_axes import Axes @_api.delete_parameter("3.3", "add_all") def make_rgb_axes(ax, pad=0.01, axes_class=None, add_all=True, **kwargs): """ Parameters ---------- pad : float Fraction of the axes height. """ divider = make_axes_locatable(ax) pad_size = pad * Size.AxesY(ax) xsize = ((1-2*pad)/3) * Size.AxesX(ax) ysize = ((1-2*pad)/3) * Size.AxesY(ax) divider.set_horizontal([Size.AxesX(ax), pad_size, xsize]) divider.set_vertical([ysize, pad_size, ysize, pad_size, ysize]) ax.set_axes_locator(divider.new_locator(0, 0, ny1=-1)) ax_rgb = [] if axes_class is None: try: axes_class = ax._axes_class except AttributeError: axes_class = type(ax) for ny in [4, 2, 0]: ax1 = axes_class(ax.get_figure(), ax.get_position(original=True), sharex=ax, sharey=ax, **kwargs) locator = divider.new_locator(nx=2, ny=ny) ax1.set_axes_locator(locator) for t in ax1.yaxis.get_ticklabels() + ax1.xaxis.get_ticklabels(): t.set_visible(False) try: for axis in ax1.axis.values(): axis.major_ticklabels.set_visible(False) except AttributeError: pass ax_rgb.append(ax1) if add_all: fig = ax.get_figure() for ax1 in ax_rgb: fig.add_axes(ax1) return ax_rgb @_api.deprecated("3.3", alternative="ax.imshow(np.dstack([r, g, b]))") def imshow_rgb(ax, r, g, b, **kwargs): return ax.imshow(np.dstack([r, g, b]), **kwargs) class RGBAxes: """ 4-panel imshow (RGB, R, G, B). Layout: +---------------+-----+ | | R | + +-----+ | RGB | G | + +-----+ | | B | +---------------+-----+ Subclasses can override the ``_defaultAxesClass`` attribute. Attributes ---------- RGB : ``_defaultAxesClass`` The axes object for the three-channel imshow. R : ``_defaultAxesClass`` The axes object for the red channel imshow. G : ``_defaultAxesClass`` The axes object for the green channel imshow. B : ``_defaultAxesClass`` The axes object for the blue channel imshow. """ _defaultAxesClass = Axes @_api.delete_parameter("3.3", "add_all") def __init__(self, *args, pad=0, add_all=True, **kwargs): """ Parameters ---------- pad : float, default: 0 fraction of the axes height to put as padding. add_all : bool, default: True Whether to add the {rgb, r, g, b} axes to the figure. This parameter is deprecated. axes_class : matplotlib.axes.Axes *args Unpacked into axes_class() init for RGB **kwargs Unpacked into axes_class() init for RGB, R, G, B axes """ axes_class = kwargs.pop("axes_class", self._defaultAxesClass) self.RGB = ax = axes_class(*args, **kwargs) if add_all: ax.get_figure().add_axes(ax) else: kwargs["add_all"] = add_all # only show deprecation in that case self.R, self.G, self.B = make_rgb_axes( ax, pad=pad, axes_class=axes_class, **kwargs) # Set the line color and ticks for the axes. for ax1 in [self.RGB, self.R, self.G, self.B]: ax1.axis[:].line.set_color("w") ax1.axis[:].major_ticks.set_markeredgecolor("w") @_api.deprecated("3.3") def add_RGB_to_figure(self): """Add red, green and blue axes to the RGB composite's axes figure.""" self.RGB.get_figure().add_axes(self.R) self.RGB.get_figure().add_axes(self.G) self.RGB.get_figure().add_axes(self.B) def imshow_rgb(self, r, g, b, **kwargs): """ Create the four images {rgb, r, g, b}. Parameters ---------- r, g, b : array-like The red, green, and blue arrays. kwargs : imshow kwargs kwargs get unpacked into the imshow calls for the four images. Returns ------- rgb : matplotlib.image.AxesImage r : matplotlib.image.AxesImage g : matplotlib.image.AxesImage b : matplotlib.image.AxesImage """ if not (r.shape == g.shape == b.shape): raise ValueError( f'Input shapes ({r.shape}, {g.shape}, {b.shape}) do not match') RGB = np.dstack([r, g, b]) R = np.zeros_like(RGB) R[:, :, 0] = r G = np.zeros_like(RGB) G[:, :, 1] = g B = np.zeros_like(RGB) B[:, :, 2] = b im_rgb = self.RGB.imshow(RGB, **kwargs) im_r = self.R.imshow(R, **kwargs) im_g = self.G.imshow(G, **kwargs) im_b = self.B.imshow(B, **kwargs) return im_rgb, im_r, im_g, im_b @_api.deprecated("3.3", alternative="RGBAxes") class RGBAxesBase(RGBAxes): pass
20929
import numpy as np import os,sys,time import torch import torch.nn.functional as torch_F import collections from easydict import EasyDict as edict import util class Pose(): def __call__(self,R=None,t=None): assert(R is not None or t is not None) if R is None: if not isinstance(t,torch.Tensor): t = torch.tensor(t) R = torch.eye(3,device=t.device).repeat(*t.shape[:-1],1,1) elif t is None: if not isinstance(R,torch.Tensor): R = torch.tensor(R) t = torch.zeros(R.shape[:-1],device=R.device) else: if not isinstance(R,torch.Tensor): R = torch.tensor(R) if not isinstance(t,torch.Tensor): t = torch.tensor(t) assert(R.shape[:-1]==t.shape and R.shape[-2:]==(3,3)) R = R.float() t = t.float() pose = torch.cat([R,t[...,None]],dim=-1) # [...,3,4] assert(pose.shape[-2:]==(3,4)) return pose def invert(self,pose,use_inverse=False): R,t = pose[...,:3],pose[...,3:] R_inv = R.inverse() if use_inverse else R.transpose(-1,-2) t_inv = (-R_inv@t)[...,0] pose_inv = self(R=R_inv,t=t_inv) return pose_inv def compose(self,pose_list): # pose_new(x) = poseN(...(pose2(pose1(x)))...) pose_new = pose_list[0] for pose in pose_list[1:]: pose_new = self.compose_pair(pose_new,pose) return pose_new def compose_pair(self,pose_a,pose_b): # pose_new(x) = pose_b(pose_a(x)) R_a,t_a = pose_a[...,:3],pose_a[...,3:] R_b,t_b = pose_b[...,:3],pose_b[...,3:] R_new = R_b@R_a t_new = (R_b@t_a+t_b)[...,0] pose_new = self(R=R_new,t=t_new) return pose_new pose = Pose() def to_hom(X): X_hom = torch.cat([X,torch.ones_like(X[...,:1])],dim=-1) return X_hom def world2cam(X,pose): # [B,N,3] X_hom = to_hom(X) return [email protected](-1,-2) def cam2img(X,cam_intr): return X@cam_intr.transpose(-1,-2) def img2cam(X,cam_intr): return X@cam_intr.inverse().transpose(-1,-2) def cam2world(X,pose): X_hom = to_hom(X) pose_inv = Pose().invert(pose) return X_hom@pose_inv.transpose(-1,-2) def angle_to_rotation_matrix(a,axis): roll = dict(X=1,Y=2,Z=0)[axis] O = torch.zeros_like(a) I = torch.ones_like(a) M = torch.stack([torch.stack([a.cos(),-a.sin(),O],dim=-1), torch.stack([a.sin(),a.cos(),O],dim=-1), torch.stack([O,O,I],dim=-1)],dim=-2) M = M.roll((roll,roll),dims=(-2,-1)) return M def get_camera_grid(opt,batch_size,intr=None): # compute image coordinate grid if opt.camera.model=="perspective": y_range = torch.arange(opt.H,dtype=torch.float32,device=opt.device).add_(0.5) x_range = torch.arange(opt.W,dtype=torch.float32,device=opt.device).add_(0.5) Y,X = torch.meshgrid(y_range,x_range) # [H,W] xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2] elif opt.camera.model=="orthographic": assert(opt.H==opt.W) y_range = torch.linspace(-1,1,opt.H,device=opt.device) x_range = torch.linspace(-1,1,opt.W,device=opt.device) Y,X = torch.meshgrid(y_range,x_range) # [H,W] xy_grid = torch.stack([X,Y],dim=-1).view(-1,2) # [HW,2] xy_grid = xy_grid.repeat(batch_size,1,1) # [B,HW,2] if opt.camera.model=="perspective": grid_3D = img2cam(to_hom(xy_grid),intr) # [B,HW,3] elif opt.camera.model=="orthographic": grid_3D = to_hom(xy_grid) # [B,HW,3] return xy_grid,grid_3D def get_center_and_ray(opt,pose,intr=None,offset=None): # [HW,2] batch_size = len(pose) xy_grid,grid_3D = get_camera_grid(opt,batch_size,intr=intr) # [B,HW,3] # compute center and ray if opt.camera.model=="perspective": if offset is not None: grid_3D[...,:2] += offset center_3D = torch.zeros(batch_size,1,3,device=opt.device) # [B,1,3] elif opt.camera.model=="orthographic": center_3D = torch.cat([xy_grid,torch.zeros_like(xy_grid[...,:1])],dim=-1) # [B,HW,3] # transform from camera to world coordinates grid_3D = cam2world(grid_3D,pose) # [B,HW,3] center_3D = cam2world(center_3D,pose) # [B,HW,3] ray = grid_3D-center_3D # [B,HW,3] return center_3D,ray def get_3D_points_from_depth(opt,center,ray,depth,multi_samples=False): if multi_samples: center,ray = center[:,:,None],ray[:,:,None] # x = c+dv points_3D = center+ray*depth # [B,HW,3]/[B,HW,N,3]/[N,3] return points_3D def get_depth_from_3D_points(opt,center,ray,points_3D): # d = ||x-c||/||v|| (x-c and v should be in same direction) depth = (points_3D-center).norm(dim=-1,keepdim=True)/ray.norm(dim=-1,keepdim=True) # [B,HW,1] return depth
20935
import logging, time, os class Config: def __init__(self, data_prefix): # data_prefix = r'../data/' self.data_prefix = data_prefix self._multiwoz_damd_init() def _multiwoz_damd_init(self): self.vocab_path_train = self.data_prefix + '/multi-woz-processed/vocab' self.data_path = self.data_prefix + '/multi-woz-processed/' self.data_file = 'data_for_damd.json' self.dev_list = self.data_prefix + '/multi-woz/valListFile.json' self.test_list = self.data_prefix + '/multi-woz/testListFile.json' self.dbs = { 'attraction': self.data_prefix + '/db/attraction_db_processed.json', 'hospital': self.data_prefix + '/db/hospital_db_processed.json', 'hotel': self.data_prefix + '/db/hotel_db_processed.json', 'police': self.data_prefix + '/db/police_db_processed.json', 'restaurant': self.data_prefix + '/db/restaurant_db_processed.json', 'taxi': self.data_prefix + '/db/taxi_db_processed.json', 'train': self.data_prefix + '/db/train_db_processed.json', } self.domain_file_path = self.data_prefix + '/multi-woz-processed/domain_files.json' self.slot_value_set_path = self.data_prefix + '/db/value_set_processed.json' self.exp_domains = ['all'] # hotel,train, attraction, restaurant, taxi self.enable_aspn = True self.use_pvaspn = False self.enable_bspn = True self.bspn_mode = 'bspn' # 'bspn' or 'bsdx' self.enable_dspn = False # removed self.enable_dst = False self.exp_domains = ['all'] # hotel,train, attraction, restaurant, taxi self.max_context_length = 900 self.vocab_size = 3000
20957
try: import pathlib except ImportError as e: try: import pathlib2 as pathlib except ImportError: raise e def name_to_asserted_group_path(name): path = pathlib.PurePosixPath(name) if path.is_absolute(): raise NotImplementedError( "Absolute paths are currently not supported and unlikely to be implemented." ) if len(path.parts) < 1 and str(name) != ".": raise NotImplementedError( "Getting an item on a group with path '" + name + "' " + "is not supported and unlikely to be implemented." ) return path def remove_root(name): path = pathlib.PurePosixPath(name) if path.is_absolute(): path = path.relative_to(path.root) return path
20959
def bubblesort(L): keepgoing = True while keepgoing: keepgoing = False for i in range(len(L)-1): if L[i]>L[i+1]: L[i], L[i+1] = L[i+1], L[i] keepgoing = True
20993
import numpy as np import pytest from arbol import aprint from dexp.processing.utils.normalise import Normalise from dexp.utils.backends import Backend from dexp.utils.testing.testing import execute_both_backends @execute_both_backends @pytest.mark.parametrize( "dexp_nuclei_background_data", [dict(length_xy=128, dtype=np.float32)], indirect=True, ) def test_normalise(dexp_nuclei_background_data): _, _, image = dexp_nuclei_background_data image = image.astype(np.uint16) # required to convert afterwards normalise = Normalise(image, low=-0.5, high=1, in_place=False, clip=True, dtype=np.float32) image_normalised = normalise.forward(image) image_denormalised = normalise.backward(image_normalised) assert image_normalised.dtype == np.float32 assert image_denormalised.dtype == image.dtype assert image_normalised.shape == image.shape assert image_denormalised.shape == image.shape assert image_normalised.min() >= -0.5 assert image_normalised.max() <= 1 assert image_normalised.max() - image_normalised.min() >= 1.5 assert image_denormalised.min() * (1 + 1e-3) >= image.min() assert image_denormalised.max() <= (1 + 1e-3) * image.max() assert (image_denormalised.max() - image_denormalised.min()) * (1 + 1e-3) >= image.max() - image.min() xp = Backend.get_xp_module() error = xp.median(xp.abs(image - image_denormalised)).item() aprint(f"Error = {error}") assert error < 1e-6
20996
from ..utils import AnalysisException from .expressions import Expression class Literal(Expression): def __init__(self, value): super().__init__() self.value = value def eval(self, row, schema): return self.value def __str__(self): if self.value is True: return "true" if self.value is False: return "false" if self.value is None: return "NULL" return str(self.value) def get_literal_value(self): if hasattr(self.value, "expr") or isinstance(self.value, Expression): raise AnalysisException("Value should not be a Column or an Expression," f" but got {type(self)}: {self}") return self.value def args(self): return (self.value, ) __all__ = ["Literal"]
21014
from .layer_send import AxolotlSendLayer from .layer_control import AxolotlControlLayer from .layer_receive import AxolotlReceivelayer
21035
from .mem_bank import RGBMem, CMCMem from .mem_moco import RGBMoCo, CMCMoCo def build_mem(opt, n_data): if opt.mem == 'bank': mem_func = RGBMem if opt.modal == 'RGB' else CMCMem memory = mem_func(opt.feat_dim, n_data, opt.nce_k, opt.nce_t, opt.nce_m) elif opt.mem == 'moco': mem_func = RGBMoCo if opt.modal == 'RGB' else CMCMoCo memory = mem_func(opt.feat_dim, opt.nce_k, opt.nce_t) else: raise NotImplementedError( 'mem not suported: {}'.format(opt.mem)) return memory
21043
import pyblaze.nn.data.extensions from .noise import NoiseDataset, LabeledNoiseDataset from .zip import ZipDataLoader from .transform import TransformDataset
21059
from functools import partial from typing import Callable from typing import TYPE_CHECKING from ...config import Conf from .menu import Menu, MenuEntry, MenuSeparator if TYPE_CHECKING: from ...ui.views.disassembly_view import DisassemblyView class DisasmInsnContextMenu(Menu): """ Dissembly Instruction's Context Menu Items and callback funcion. It provides context menu for dissembly instructions in the Dissembly View. For adding items in plugins, use `Workspace.add_disasm_insn_ctx_menu_entry` and `Workspace.remove_disasm_insn_ctx_menu_entry`. """ def __init__(self, disasm_view: 'DisassemblyView'): super().__init__("", parent=disasm_view) self.insn_addr = None self.entries.extend([ MenuEntry('T&oggle selection', self._toggle_instruction_selection), MenuSeparator(), MenuEntry('&XRefs...', self._popup_xrefs), MenuSeparator(), ]) if Conf.has_operation_mango: self.entries.extend([ MenuEntry("&Depends on...", self._popup_dependson_dialog), MenuSeparator(), ]) self.entries.extend([ MenuEntry('E&xecute symbolically...', self._popup_newstate_dialog), MenuEntry('&Avoid in execution...', self._avoid_in_execution), MenuEntry('&Find in execution...', self._find_in_execution), MenuEntry('Add &hook...', self._add_hook), MenuEntry('View function &documentation...', self._view_docs) ]) @property def _disasm_view(self) -> 'DisassemblyView': return self.parent def _popup_newstate_dialog(self): self._disasm_view.popup_newstate_dialog(async_=True) def _popup_dependson_dialog(self): self._disasm_view.popup_dependson_dialog(use_operand=True) def _toggle_instruction_selection(self): self._disasm_view.infodock.toggle_instruction_selection(self.insn_addr) def _avoid_in_execution(self): self._disasm_view.avoid_addr_in_exec(self.insn_addr) self._disasm_view.refresh() def _find_in_execution(self): self._disasm_view.find_addr_in_exec(self.insn_addr) self._disasm_view.refresh() def _add_hook(self): self._disasm_view.popup_hook_dialog(async_=True) def _view_docs(self): if self._disasm_view is None: return addr = self._disasm_view._address_in_selection() if addr is not None: self._disasm_view.popup_func_doc_dialog(addr) def _popup_xrefs(self): if self._disasm_view is None or self._disasm_view._flow_graph is None: return r = self._disasm_view._flow_graph.get_selected_operand_info() if r is not None: _, ins_addr, operand = r self._disasm_view.parse_operand_and_popup_xref_dialog(ins_addr, operand, async_=True) # # Public Methods # def add_menu_entry(self, text, callback: Callable[['DisasmInsnContextMenu'], None], add_separator_first=True): if add_separator_first: self.entries.append(MenuSeparator()) self.entries.append(MenuEntry(text, partial(callback, self))) def remove_menu_entry(self, text, remove_preceding_separator=True): for idx, m in enumerate(self.entries): if not isinstance(m, MenuEntry): continue if m.caption == text: self.entries.remove(m) if remove_preceding_separator: self.entries.pop(idx-1)
21079
class AnalyticalModelStick(AnalyticalModel,IDisposable): """ An element that represents a stick in the structural analytical model. Could be one of beam,brace or column type. """ def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def GetAlignmentMethod(self,selector): """ GetAlignmentMethod(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> AnalyticalAlignmentMethod Gets the alignment method for a given selector. selector: End of the analytical model. Returns: The alignment method at a given end. """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetLocalCoordinateSystem(self,*__args): """ GetLocalCoordinateSystem(self: AnalyticalModelStick,point: XYZ) -> Transform Gets the local coordinate system (LCS) reflects analytical model orientation at the specified point. point: The point on the analytical model stick element. Returns: Transformation matrix. x - longitudinal axis,y - transversal,section - horizontal,strong axis,z - transversal,section - vertical,weak axis,origin - base point of LCS. GetLocalCoordinateSystem(self: AnalyticalModelStick,parameter: float) -> Transform Gets the local coordinate system (LCS) reflects analytical model orientation at the specified parameter value along a curve. parameter: The parameter value along a curve that should be in the range [0,1],where 0 represents start and 1 represents end of the element. Returns: Transformation matrix. x - longitudinal axis,y - transversal,section - horizontal,strong axis,z - transversal,section - vertical,weak axis,origin - base point of LCS. """ pass def GetMemberForces(self): """ GetMemberForces(self: AnalyticalModelStick) -> IList[MemberForces] Gets the member forces associated with this element. Returns: Returns a collection of Member Forces associated with this element. Empty collection will be returned if element doesn't have any Member Forces. To find out with which end member forces are associated use Autodesk::Revit::DB::Structure::MemberForces::Position property to obtain a position of Member Forces on element. """ pass def GetProjectionPlaneY(self,selector): """ GetProjectionPlaneY(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> ElementId Retrieves analytical model projection information for Y direction. selector: End of the analytical model. Returns: Plane on to which analytical model is projected,or invalidElementId if not projected to a Plane. """ pass def GetProjectionPlaneZ(self,selector): """ GetProjectionPlaneZ(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> ElementId Retrieves analytical model projection information for Z direction. selector: End of the analytical model. Returns: Plane on to which analytical model is projected,or invalidElementId if not projected to a Plane. """ pass def GetProjectionY(self,selector): """ GetProjectionY(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> StickElementProjectionY Retrieves analytical model projection information for Y direction. selector: End of the analytical model. Returns: Indicates if the projection is a preset value,or refers to a Plane. """ pass def GetProjectionZ(self,selector): """ GetProjectionZ(self: AnalyticalModelStick,selector: AnalyticalElementSelector) -> StickElementProjectionZ Retrieves analytical model projection information for Z direction. selector: End of the analytical model. Returns: Indicates if the projection is a preset value,or refers to a Plane. """ pass def GetReleases(self,start,fx,fy,fz,mx,my,mz): """ GetReleases(self: AnalyticalModelStick,start: bool) -> (bool,bool,bool,bool,bool,bool) Gets the releases of element. start: The position on analytical model stick element. True for start,false for end. """ pass def GetReleaseType(self,start): """ GetReleaseType(self: AnalyticalModelStick,start: bool) -> ReleaseType Gets the release type. start: The position on analytical model stick element. True for start,false for end. Returns: The type of release. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def RemoveAllMemberForces(self): """ RemoveAllMemberForces(self: AnalyticalModelStick) -> bool Removes all member forces associated with element. Returns: True if any member forces were removed,false otherwise. """ pass def RemoveMemberForces(self,start): """ RemoveMemberForces(self: AnalyticalModelStick,start: bool) -> bool Removes member forces defined for given position. start: Member Forces position on analytical model stick element. True for start,false for end. Returns: True if member forces for provided position were removed,false otherwise. """ pass def SetAlignmentMethod(self,selector,method): """ SetAlignmentMethod(self: AnalyticalModelStick,selector: AnalyticalElementSelector,method: AnalyticalAlignmentMethod) Sets the alignment method for a given selector. selector: End of the analytical model. method: The alignment method at a given end. """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def SetMemberForces(self,*__args): """ SetMemberForces(self: AnalyticalModelStick,start: bool,force: XYZ,moment: XYZ) Adds Member Forces to element. start: Member Forces position on analytical model stick element. True for start,false for end. force: The translational forces at specified position of the element. The x value of XYZ object represents force along x-axis of the analytical model coordinate system,y along y-axis,z along z-axis respectively. moment: The rotational forces at specified position of the element. The x value of XYZ object represents moment about x-axis of the analytical model coordinate system,y about y-axis,z about z-axis respectively. SetMemberForces(self: AnalyticalModelStick,memberForces: MemberForces) Sets Member Forces to element. memberForces: End to which member forces will be added is defined by setting Autodesk::Revit::DB::Structure::MemberForces::Position property in provided Member Forces object. """ pass def SetProjection(self,selector,*__args): """ SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,planeIdY: ElementId,projectionZ: StickElementProjectionZ) Sets the analytical model projection to a preset value. selector: End of the analytical model. planeIdY: Plane on to which analytical model may be projected in Y direction. Plane identifies a Level,a Grid,or a Ref Plane. projectionZ: Preset value for Analytical Model Stick projection Z. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,projectionY: StickElementProjectionY,projectionZ: StickElementProjectionZ) Sets the analytical model projection to a preset value. selector: End of the analytical model. projectionY: Preset value for Analytical Model Stick projection Y. projectionZ: Preset value for Analytical Model Stick projection Z. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,planeIdY: ElementId,planeIdZ: ElementId) Sets the analytical model projection to a preset value. selector: End of the analytical model. planeIdY: Plane on to which analytical model may be projected in Y direction. Plane identifies a Level,a Grid,or a Ref Plane. planeIdZ: Plane on to which analytical model may be projected in Z direction. Plane identifies a Level,a Grid,or a Ref Plane. SetProjection(self: AnalyticalModelStick,selector: AnalyticalElementSelector,projectionY: StickElementProjectionY,planeIdZ: ElementId) Sets the analytical model projection to a preset value. selector: End of the analytical model. projectionY: Preset value for Analytical Model Stick projection Y. planeIdZ: Plane on to which analytical model may be projected in Z direction. Plane identifies a Level,a Grid,or a Ref Plane. """ pass def SetReleases(self,start,fx,fy,fz,mx,my,mz): """ SetReleases(self: AnalyticalModelStick,start: bool,fx: bool,fy: bool,fz: bool,mx: bool,my: bool,mz: bool) Sets the releases of element. start: The position on analytical model stick element. True for start,false for end. """ pass def SetReleaseType(self,start,releaseType): """ SetReleaseType(self: AnalyticalModelStick,start: bool,releaseType: ReleaseType) Sets the release type. start: The position on analytical model stick element. True for start,false for end. releaseType: The type of release. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
21090
import doctest from nose.tools import assert_equal, assert_true from corehq.apps.fixtures.models import ( FieldList, FixtureDataItem, FixtureItemField, ) from custom.abt.reports import fixture_utils from custom.abt.reports.fixture_utils import ( dict_values_in, fixture_data_item_to_dict, ) def test_dict_values_in_param_none(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, None) assert_true(result) def test_dict_values_in_param_empty(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, {}) assert_true(result) def test_dict_values_in_value_none(): swallow = {'permutation': 'unladen'} result = dict_values_in(swallow, {'permutation': None}) assert_true(result) def test_fixture_data_item_to_dict(): data_item = FixtureDataItem( domain='test-domain', data_type_id='123456', fields={ 'id': FieldList( doc_type='FieldList', field_list=[ FixtureItemField( doc_type='FixtureItemField', field_value='789abc', properties={} ) ] ), 'name': FieldList( doc_type='FieldList', field_list=[ FixtureItemField( doc_type='FixtureItemField', field_value='John', properties={'lang': 'en'} ), FixtureItemField( doc_type='FixtureItemField', field_value='Jan', properties={'lang': 'nld'} ), FixtureItemField( doc_type='FixtureItemField', field_value='Jean', properties={'lang': 'fra'} ), ] ) } ) dict_ = fixture_data_item_to_dict(data_item) assert_equal(dict_, { 'id': '789abc', 'name': 'John' }) def test_empty_fixture_data_item_to_dict(): data_item = FixtureDataItem( domain='test-domain', data_type_id='123456', fields={ 'id': FieldList( doc_type='FieldList', field_list=[] ), 'name': FieldList( doc_type='FieldList', field_list=[] ) } ) dict_ = fixture_data_item_to_dict(data_item) assert_equal(dict_, { 'id': None, 'name': None, }) def test_doctests(): results = doctest.testmod(fixture_utils) assert results.failed == 0
21182
import os import sys from dataclasses import dataclass import click import numpy as np import xgboost as xgb from rich import print, traceback WD = os.path.dirname(__file__) @click.command() @click.option('-i', '--input', required=True, type=str, help='Path to data file to predict.') @click.option('-m', '--model', type=str, help='Path to an already trained XGBoost model. If not passed a default model will be loaded.') @click.option('-c/-nc', '--cuda/--no-cuda', type=bool, default=False, help='Whether to enable cuda or not') @click.option('-o', '--output', type=str, help='Path to write the output to') def main(input: str, model: str, cuda: bool, output: str): """Command-line interface for {{ cookiecutter.project_name }}""" print(r"""[bold blue] {{ cookiecutter.project_name }} """) print('[bold blue]Run [green]{{ cookiecutter.project_name }} --help [blue]for an overview of all commands\n') if not model: model = get_xgboost_model(f'{WD}/models/xgboost_test_model.xgb') else: model = get_xgboost_model(model) if cuda: model.set_param({'predictor': 'gpu_predictor'}) print('[bold blue] Parsing data') data_to_predict = parse_data_to_predict(input) print('[bold blue] Performing predictions') predictions = np.round(model.predict(data_to_predict.DM)) print(predictions) if output: print(f'[bold blue]Writing predictions to {output}') write_results(predictions, output) @dataclass class Dataset: X: np.ndarray y: list DM: xgb.DMatrix gene_names: list sample_names: list def parse_data_to_predict(path_to_data_to_predict: str) -> Dataset: """ Parses the data to predict and returns a full Dataset include the DMatrix :param path_to_data_to_predict: Path to the data on which predictions should be performed on """ X = [] y = [] gene_names = [] sample_names = [] with open(path_to_data_to_predict, "r") as file: all_runs_info = next(file).split("\n")[0].split("\t")[2:] for run_info in all_runs_info: split_info = run_info.split("_") y.append(int(split_info[0])) sample_names.append(split_info[1]) for line in file: split = line.split("\n")[0].split("\t") X.append([float(x) for x in split[2:]]) gene_names.append(split[:2]) X = [list(i) for i in zip(*X)] X_np = np.array(X) DM = xgb.DMatrix(X_np, label=y) return Dataset(X_np, y, DM, gene_names, sample_names) def write_results(predictions: np.ndarray, path_to_write_to) -> None: """ Writes the predictions into a human readable file. :param predictions: Predictions as a numpy array :param path_to_write_to: Path to write the predictions to """ np.savetxt(path_to_write_to, predictions, delimiter=',') def get_xgboost_model(path_to_xgboost_model: str): """ Fetches the model of choice and creates a booster from it. :param path_to_xgboost_model: Path to the xgboost model1 """ model = xgb.Booster() model.load_model(os.path.abspath(path_to_xgboost_model)) return model if __name__ == "__main__": traceback.install() sys.exit(main()) # pragma: no cover
21212
import unittest import os import json import pandas as pd import numpy as np class TestingExercise2_07(unittest.TestCase): def setUp(self) -> None: ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(ROOT_DIR, '..', 'dtypes.json'), 'r') as jsonfile: self.dtyp = json.load(jsonfile) self.data = pd.read_csv(os.path.join(ROOT_DIR, '..', 'Datasets', 'earthquake_data.csv'), dtype = self.dtyp) def test_object_vars(self): self.object_variables = self.data.select_dtypes(include = [np.object]).nunique().sort_values() self.assertEqual(max(self.object_variables), (3821)) if __name__ == '__main__': unittest.main()
21227
from setuptools import setup import src setup(name='lsankidb', version=src.__version__, install_requires=['AnkiTools'], description='"ls" for your local Anki database.', #FIXME this duplicates README.md long_description=""" .. image:: https://cdn.jsdelivr.net/gh/AurelienLourot/lsankidb@c9735756451d135f94601b816469128e0cdadba2/thirdparty/logo.png :height: 64px :width: 64px :align: right lsankidb ======== ``ls`` for your local `Anki <https://apps.ankiweb.net/>`__ database. Dump all your Anki terms in order to save them, search them, ``grep`` them or ``diff`` them. :: $ lsankidb Listing /home/me/.local/share/Anki2/User 1/collection.anki2 ... Default French ['Hello', 'Bonjour'] ['How are you?', 'Comment ça va ?'] German ['Hello', 'Hallo'] ['How are you?', "Wie geht's?"] `See on GitHub. <https://github.com/AurelienLourot/lsankidb>`__ """, keywords=['anki', 'terminal', 'cli', 'dump', 'ls',], author='<NAME>', author_email='<EMAIL>', url='https://github.com/AurelienLourot/lsankidb', download_url='https://github.com/AurelienLourot/lsankidb/tarball/' + src.__version__, license='public domain', classifiers=['Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: Public Domain', 'Natural Language :: English', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Education', 'Topic :: Utilities'], packages=['src'], entry_points=""" [console_scripts] lsankidb = src.lsankidb:main """)
21232
from stix_shifter_utils.modules.base.stix_transmission.base_delete_connector import BaseDeleteConnector class DeleteConnector(BaseDeleteConnector): def __init__(self, api_client): self.api_client = api_client def delete_query_connection(self, search_id): return {"success": True}
21413
import sys output=sys.argv[1] input_list=(sys.argv[2:]) EXP={} header=[] for input_file in input_list: fi=open(input_file) header=header+fi.readline().replace('"','').rstrip().split() for line in fi: seq=line.replace('"','').rstrip().split() if seq[0] in EXP: EXP[seq[0]]=EXP[seq[0]]+seq[1:] else: EXP[seq[0]]=seq[1:] fi.close() fo=open(output,'w') fo.write('\t'.join(header)+'\n') for gene in EXP: if len(EXP[gene])==len(header): fo.write(gene+'\t'+'\t'.join(EXP[gene])+'\n') fo.close()
21454
from simcse import SimCSE from esimcse import ESimCSE from promptbert import PromptBERT from sbert import SBERT from cosent import CoSent from config import Params from log import logger import torch from transformers import AutoTokenizer class SimCSERetrieval(object): def __init__(self, pretrained_model_path, simcse_path, pool_type, dropout): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) model = SimCSE(Params.pretrained_model, pool_type, dropout) self.checkpoint = torch.load(simcse_path, map_location='cpu') model.load_state_dict(self.checkpoint['model_state_dict']) model.eval() self.model = model def print_checkpoint_info(self): loss = self.checkpoint['loss'] epoch = self.checkpoint['epoch'] model_info = {'loss': loss, 'epoch': epoch} return model_info def calculate_sentence_embedding(self, sentence): device = "cpu" input_encodings = self.tokenizer(sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_embedding = self.model(input_encodings['input_ids'].to(device), input_encodings['attention_mask'].to(device), input_encodings['token_type_ids'].to(device)) return sentence_embedding def calculate_sentence_similarity(self, sentence1, sentence2): sentence1 = sentence1.strip() sentence2 = sentence2.strip() sentence1_embedding = self.calculate_sentence_embedding(sentence1) sentence2_embedding = self.calculate_sentence_embedding(sentence2) similarity = torch.cosine_similarity(sentence1_embedding, sentence2_embedding, dim=-1) similarity = float(similarity.item()) return similarity class ESimCSERetrieval(object): def __init__(self, pretrained_model_path, esimcse_path, dropout): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) model = ESimCSE(Params.pretrained_model, dropout) self.checkpoint = torch.load(esimcse_path, map_location='cpu') model.load_state_dict(self.checkpoint['model_state_dict']) model.eval() self.model = model def print_checkpoint_info(self): loss = self.checkpoint['loss'] epoch = self.checkpoint['epoch'] model_info = {'loss': loss, 'epoch': epoch} return model_info def calculate_sentence_embedding(self, sentence): device = "cpu" input_encodings = self.tokenizer(sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_embedding = self.model(input_encodings['input_ids'].to(device), input_encodings['attention_mask'].to(device), input_encodings['token_type_ids'].to(device)) return sentence_embedding def calculate_sentence_similarity(self, sentence1, sentence2): sentence1 = sentence1.strip() sentence2 = sentence2.strip() sentence1_embedding = self.calculate_sentence_embedding(sentence1) sentence2_embedding = self.calculate_sentence_embedding(sentence2) similarity = torch.cosine_similarity(sentence1_embedding, sentence2_embedding, dim=-1) similarity = float(similarity.item()) return similarity class PromptBertRetrieval(object): def __init__(self, pretrained_model_path, promptbert_path, dropout): super().__init__() self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) special_token_dict = {'additional_special_tokens': ['[X]']} self.tokenizer.add_special_tokens(special_token_dict) mask_id = self.tokenizer.convert_tokens_to_ids(Params.mask_token) model = PromptBERT(pretrained_model_path, dropout, mask_id) model.encoder.resize_token_embeddings(len(self.tokenizer)) checkpoint = torch.load(promptbert_path, map_location='cpu') model.load_state_dict(checkpoint['model_state_dict']) self.checkpoint = checkpoint self.model = model def print_checkpoint_info(self): loss = self.checkpoint['loss'] epoch = self.checkpoint['epoch'] model_info = {'loss': loss, 'epoch': epoch} return model_info def calculate_sentence_mask_embedding(self, sentence): device = "cpu" prompt_sentence = Params.prompt_templates[0].replace("[X]", sentence) prompt_encodings = self.tokenizer(prompt_sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_mask_embedding = self.model.calculate_mask_embedding(prompt_encodings['input_ids'].to(device), prompt_encodings['attention_mask'].to(device), prompt_encodings['token_type_ids'].to(device)) return sentence_mask_embedding def calculate_sentence_embedding(self, sentence): device = "cpu" prompt_sentence = Params.prompt_templates[0].replace("[X]", sentence) sentence_num = len(self.tokenizer.tokenize(sentence)) template_sentence = Params.prompt_templates[0].replace("[X]", "[X]"*sentence_num) prompt_encodings = self.tokenizer(prompt_sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') template_encodings = self.tokenizer(template_sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_embedding = self.model(prompt_input_ids=prompt_encodings['input_ids'].to(device), prompt_attention_mask=prompt_encodings['attention_mask'].to(device), prompt_token_type_ids=prompt_encodings['token_type_ids'].to(device), template_input_ids=template_encodings['input_ids'].to(device), template_attention_mask=template_encodings['attention_mask'].to(device), template_token_type_ids=template_encodings['token_type_ids'].to(device)) return sentence_embedding def calculate_sentence_similarity(self, sentence1, sentence2): # sentence1_embedding = self.calculate_sentence_mask_embedding(sentence1) # sentence2_embedding = self.calculate_sentence_mask_embedding(sentence2) sentence1_embedding = self.calculate_sentence_embedding(sentence1) sentence2_embedding = self.calculate_sentence_embedding(sentence2) similarity = torch.cosine_similarity(sentence1_embedding, sentence2_embedding, dim=-1) similarity = float(similarity.item()) return similarity class SBERTRetrieval(object): def __init__(self, pretrained_model_path, sbert_path, pool_type, dropout): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) model = SBERT(Params.pretrained_model, pool_type, dropout) self.checkpoint = torch.load(sbert_path, map_location='cpu') model.load_state_dict(self.checkpoint['model_state_dict']) model.eval() self.model = model def print_checkpoint_info(self): loss = self.checkpoint['train_loss'] epoch = self.checkpoint['epoch'] model_info = {'loss': loss, 'epoch': epoch} return model_info def calculate_sentence_embedding(self, sentence): device = "cpu" input_encodings = self.tokenizer(sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_embedding = self.model(input_encodings['input_ids'].to(device), input_encodings['attention_mask'].to(device), input_encodings['token_type_ids'].to(device)) return sentence_embedding def calculate_sentence_similarity(self, sentence1, sentence2): sentence1 = sentence1.strip() sentence2 = sentence2.strip() sentence1_embedding = self.calculate_sentence_embedding(sentence1) sentence2_embedding = self.calculate_sentence_embedding(sentence2) similarity = torch.cosine_similarity(sentence1_embedding, sentence2_embedding, dim=-1) similarity = float(similarity.item()) return similarity class CoSentRetrieval(object): def __init__(self, pretrained_model_path, cosent_path): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path) model = CoSent(Params.pretrained_model, Params.cosent_pool_type, Params.cosent_dropout) self.checkpoint = torch.load(cosent_path, map_location='cpu') model.load_state_dict(self.checkpoint['model_state_dict']) model.eval() self.model = model def print_checkpoint_info(self): loss = self.checkpoint['loss'] epoch = self.checkpoint['epoch'] model_info = {'loss': loss, 'epoch': epoch} return model_info def calculate_sentence_embedding(self, sentence): device = "cpu" input_encodings = self.tokenizer(sentence, padding=True, truncation=True, max_length=Params.max_length, return_tensors='pt') sentence_embedding = self.model(input_encodings['input_ids'].to(device), input_encodings['attention_mask'].to(device), input_encodings['token_type_ids'].to(device)) return sentence_embedding def calculate_sentence_similarity(self, sentence1, sentence2): sentence1 = sentence1.strip() sentence2 = sentence2.strip() sentence1_embedding = self.calculate_sentence_embedding(sentence1) sentence2_embedding = self.calculate_sentence_embedding(sentence2) similarity = torch.cosine_similarity(sentence1_embedding, sentence2_embedding, dim=-1) similarity = float(similarity.item()) return similarity simcse_retrieval = SimCSERetrieval(Params.pretrained_model, Params.simcse_model, Params.pool_type, Params.simcse_dropout) logger.info("start simcse model succussfully!") esimcse_repeat_retrieval = ESimCSERetrieval(Params.pretrained_model, Params.esimcse_repeat_model, Params.esimcse_repeat_dropout) logger.info("start esimcse repeat model succussfully!") esimcse_same_retrieval = ESimCSERetrieval(Params.pretrained_model, Params.esimcse_same_model, Params.esimcse_same_dropout) logger.info("start esimcse same model succussfully!") esimcse_multi_retrieval = ESimCSERetrieval(Params.pretrained_model, Params.esimcse_multi_model, Params.esimcse_multi_dropout) logger.info("start esimcse multi model succussfully!") promptbert_retrieval = PromptBertRetrieval(Params.pretrained_model, Params.promptbert_model, Params.promptbert_dropout) logger.info("start promptbert model succussfully!") sbert_retrieval = SBERTRetrieval(Params.pretrained_model, Params.sbert_model, Params.sbert_pool_type, Params.sbert_dropout) logger.info("start sbert model succussfully!") cosent_retrieval = CoSentRetrieval(Params.pretrained_model, Params.cosent_model) logger.info("start cosent model succussfully!") if __name__ == "__main__": # model_path = "models/esimcse_0.32_0.15_160.pth" # model_path = "models/esimcse_multi_0.15_64.pth" # model_path = "models/esimcse_0.15_64.pth" # simcse_retrieval = SimCSERetrieval(Params.pretrained_model, Params.simcse_model, Params.pool_type, Params.simcse_dropout) # model_info = simcse_retrieval.print_checkpoint_info() # print(model_info) model_info = sbert_retrieval.print_checkpoint_info() print(model_info) while True: print("input your sentence1:") sentence1 = input() print("input your sentence2:") sentence2 = input() sbert_sentence_similarity = sbert_retrieval.calculate_sentence_similarity(sentence1, sentence2) # promptbert_sentence_similarity = prom.calculate_sentence_similarity(sentence1, sentence2) # print("simcse sim: {}, promptbert sim: {}".format(simcse_sentence_similarity, promptbert_sentence_similarity)) print("sbert similarity: {}".format(sbert_sentence_similarity))
21458
import random import requests import time HOSTS = [ 'us-east-1', 'us-west-1', 'eu-west-1', ] VEHICLES = [ 'bike', 'scooter', 'car', ] if __name__ == "__main__": print(f"starting load generator") time.sleep(15) print('done sleeping') while True: host = HOSTS[random.randint(0, len(HOSTS) - 1)] vehicle = VEHICLES[random.randint(0, len(VEHICLES) - 1)] print(f"requesting {vehicle} from {host}") resp = requests.get(f'http://web:8000/{vehicle}') print(f"received {resp}") time.sleep(random.uniform(0.2, 0.4))
21460
from django.contrib import admin from . import models class ReadOnlyAdminMixin(): def get_readonly_fields(self, request, obj=None): return list(set( [field.name for field in self.opts.local_fields] + [field.name for field in self.opts.local_many_to_many] )) class ReadOnlyAdmin(ReadOnlyAdminMixin, admin.ModelAdmin): pass class DerivationCodeAdmin(ReadOnlyAdmin): list_display = ('code', 'description') class FoodDescriptionAdmin(ReadOnlyAdmin): list_display = ('ndb_no', 'food_group', 'short_desc') class FoodGroupAdmin(ReadOnlyAdmin): list_display = ('code', 'description') class FootnoteAdmin(ReadOnlyAdmin): list_display = ('pk', 'footnote_no', 'food_description', 'footnote_type') class NutrientDefinitionAdmin(ReadOnlyAdmin): list_display = ('nutrient_number', 'tagname', 'nutrient_description') class SourceCodeAdmin(ReadOnlyAdmin): list_display = ('source_code', 'description') class WeightAdmin(ReadOnlyAdmin): list_display = ('food_description', 'amount', 'measure_description') admin.site.register(models.DerivationCode, DerivationCodeAdmin) admin.site.register(models.FoodDescription, FoodDescriptionAdmin) admin.site.register(models.FoodGroup, FoodGroupAdmin) admin.site.register(models.Footnote, FootnoteAdmin) admin.site.register(models.NutrientDefinition, NutrientDefinitionAdmin) admin.site.register(models.SourceCode, SourceCodeAdmin) admin.site.register(models.Weight, WeightAdmin)
21478
from pymp3decoder import Decoder import contextlib import os import math import pyaudio CHUNK_SIZE = 4096 def take_chunk(content): """ Split a buffer of data into chunks """ num_blocks = int(math.ceil(1.0*len(content)/CHUNK_SIZE)) for start in range(num_blocks): yield content[CHUNK_SIZE*start:CHUNK_SIZE*(start+1)] class TestPlayer: @contextlib.contextmanager def start(self): try: p = pyaudio.PyAudio() self.decoder = Decoder(CHUNK_SIZE*20) self.stream = p.open(format=p.get_format_from_width(2), channels=2, rate=44100, output=True) yield self.stream finally: self.stream.stop_stream() self.stream.close() p.terminate() def test_file(self): """ Open a file and decode it """ abs_location = os.path.join(os.path.dirname(os.path.abspath(__file__)), "test.mp3") with open(abs_location, "rb") as in_file, self.start(): content = in_file.read() for chunk in self.decoder.decode_iter(take_chunk(content)): self.stream.write(chunk)
21519
import re from . import tables from .instr import Instruction from .instr.nop import * from .instr.alu import * from .instr.bcd import * from .instr.bit import * from .instr.flag import * from .instr.mov import * from .instr.smov import * from .instr.ld_st import * from .instr.stack import * from .instr.jmp import * from .instr.call import * from .instr.ctx import * from .instr.trap import * enumerations = { 'R': tables.rx_ax, 'I': tables.dsp8_dsp16_abs16, '6': tables.dsp8_abs16, '7': tables.r0x_r0y_dsp8_abs16, '8': tables.r0x_dsp8_abs16, 'A': tables.reg16_dsp8_dsp16_dsp20_abs16, 'E': tables.reg8l_dsp8_dsp16_abs16, 'N': tables.reg8_dsp8_dsp16_abs16, 'C': tables.creg, 'J': tables.cnd_j3, 'K': tables.cnd_j4, 'M': tables.cnd_bm4, } encodings = { '0111_011z_1111_dddd': AbsReg, '0111_011z_0110_dddd': AdcImm, '1011_000z_ssss_dddd': AdcReg, '0111_011z_1110_dddd': Adcf, '0111_011z_0100_dddd': AddImm, '1100_100z_iiii_dddd': AddImm4, '1000_0DDD;8': AddImm8, '1010_000z_ssss_dddd': AddReg, '0010_0DSS;7': AddReg8, '0111_110z_1110_1011': AddImmSP, '0111_1101_1011_iiii': AddImm4SP, '1111_100z_iiii_dddd': Adjnz, '0111_011z_0010_dddd': AndImm, '1001_0DDD;8': AndImm8, '1001_000z_ssss_dddd': AndReg, '0001_0DSS;7': AndReg8, '0111_1110_0100_ssss': Band, '0111_1110_1000_dddd': Bclr, '0100_0bbb': BclrSB, '0111_1110_0010_dddd': Bmcnd, '0111_1101_1101_CCCC;M': BmcndC, '0111_1110_0101_ssss': Bnand, '0111_1110_0111_ssss': Bnor, '0111_1110_1010_dddd': Bnot, '0101_0bbb': BnotSB, '0111_1110_0011_ssss': Bntst, '0111_1110_1101_ssss': Bnxor, '0111_1110_0110_ssss': Bor, '0111_1110_1001_dddd': Bset, '0100_1bbb': BsetSB, '0111_1110_1011_ssss': Btst, '0101_1bbb': BtstSB, '0111_1110_0000_dddd': Btstc, '0111_1110_0001_dddd': Btsts, '0111_1110_1100_ssss': Bxor, '0000_0000': Brk, '0111_011z_1000_dddd': CmpImm, '1101_000z_iiii_dddd': CmpImm4, '1110_0DDD;8': CmpImm8, '1100_000z_ssss_dddd': CmpReg, '0011_1DSS;7': CmpReg8, '0111_1100_1110_1110': DadcImm8, '0111_1101_1110_1110': DadcImm16, '0111_1100_1110_0110': DadcReg8, '0111_1101_1110_0110': DadcReg16, '0111_1100_1110_1100': DaddImm8, '0111_1101_1110_1100': DaddImm16, '0111_1100_1110_0100': DaddReg8, '0111_1101_1110_0100': DaddReg16, '1010_1DDD;8': Dec, '1111_d010': DecAdr, '0111_110z_1110_0001': DivImm, '0111_011z_1101_ssss': DivReg, '0111_110z_1110_0000': DivuImm, '0111_011z_1100_ssss': DivuReg, '0111_110z_1110_0011': DivxImm, '0111_011z_1001_ssss': DivxReg, '0111_1100_1110_1111': DsbbImm8, '0111_1101_1110_1111': DsbbImm16, '0111_1100_1110_0111': DsbbReg8, '0111_1101_1110_0111': DsbbReg16, '0111_1100_1110_1101': DsubImm8, '0111_1101_1110_1101': DsubImm16, '0111_1100_1110_0101': DsubReg8, '0111_1101_1110_0101': DsubReg16, '0111_1100_1111_0010': Enter, '0111_1101_1111_0010': Exitd, '0111_1100_0110_DDDD;E': Exts, '0111_1100_1111_0011': ExtsR0, '1110_1011_0fff_0101': Fclr, '1110_1011_0fff_0100': Fset, '1010_0DDD;8': Inc, '1011_d010': IncAdr, '1110_1011_11ii_iiii': Int, '1111_0110': Into, '0110_1CCC;J': Jcnd1, '0111_1101_1100_CCCC;K': Jcnd2, '0110_0iii': Jmp3, '1111_1110': Jmp8, '1111_0100': Jmp16, '1111_1100': JmpAbs, '0111_1101_0010_ssss': Jmpi, '0111_1101_0000_SSSS;A': JmpiAbs, '1110_1110': Jmps, '1111_0101': Jsr16, '1111_1101': JsrAbs, '0111_1101_0011_ssss': Jsri, '0111_1101_0001_SSSS;A': JsriAbs, '1110_1111': Jsrs, '1110_1011_0DDD;C_0000': LdcImm, '0111_1010_1DDD;C_ssss': LdcReg, '0111_1100_1111_0000': Ldctx, '0111_010z_1000_dddd': Lde, '0111_010z_1001_dddd': LdeA0, '0111_010z_1010_dddd': LdeA1A0, '0111_1101_1010_0iii': Ldipl, '0111_010z_1100_dddd': MovImmReg, '1101_100z_iiii_dddd': MovImm4Reg, '1100_0DDD;8': MovImm8Reg, '1110_d010': MovImm8Adr, '1010_d010': MovImm16Adr, '1011_0DDD;8': MovZero8Reg, '0111_001z_ssss_dddd': MovRegReg, '0011_0dss': MovRegAdr, '0000_0sDD;6': MovReg8Reg, '0000_1DSS;7': MovRegReg8, '0111_010z_1011_dddd': MovIndSPReg, '0111_010z_0011_ssss': MovRegIndSP, '1110_1011_0DDD;R_SSSS;I': Mova, '0111_1100_10rr_DDDD;N': MovdirR0LReg, '0111_1100_00rr_SSSS;N': MovdirRegR0L, '0111_110z_0101_dddd': MulImm, '0111_100z_ssss_dddd': MulReg, '0111_110z_0100_dddd': MuluImm, '0111_000z_ssss_dddd': MuluReg, '0111_010z_0101_dddd': NegReg, '0000_0100': Nop, '0111_010z_0111_dddd': NotReg, '1011_1DDD;8': NotReg8, '0111_011z_0011_dddd': OrImm, '1001_1DDD;8': OrImm8, '1001_100z_ssss_dddd': OrReg, '0001_1DSS;7': OrReg8, '0111_010z_1101_dddd': Pop, '1001_d010': PopReg8, '1101_d010': PopAdr, '1110_1011_0DDD;C_0011': Popc, '1110_1101': Popm, '0111_110z_1110_0010': PushImm, '0111_010z_0100_ssss': Push, '1000_s010': PushReg8, '1100_s010': PushAdr, '0111_1101_1001_SSSS;I': Pusha, '1110_1011_0SSS;C_0010': Pushc, '1110_1100': Pushm, '1111_1011': Reit, '0111_110z_1111_0001': Rmpa, '1110_000z_iiii_dddd': RotImm4, '0111_010z_0110_dddd': RotR1H, '0111_011z_1010_dddd': Rolc, '0111_011z_1011_dddd': Rorc, '1111_0011': Rts, '0111_011z_0111_dddd': SbbImm, '1011_100z_ssss_dddd': SbbReg, '1111_000z_iiii_dddd': ShaImm4, '0111_010z_1111_dddd': ShaR1H, '1110_1011_101d_iiii': Sha32Imm4, '1110_1011_001d_0001': Sha32R1H, '1110_100z_iiii_dddd': ShlImm4, '0111_010z_1110_dddd': ShlR1H, '1110_1011_100d_iiii': Shl32Imm4, '1110_1011_000d_0001': Shl32R1H, '0111_110z_1110_1001': Smovb, '0111_110z_1110_1000': Smovf, '0111_110z_1110_1010': Sstr, '0111_1011_1SSS;C_dddd': StcReg, '0111_1100_1100_DDDD;A': StcPc, '0111_1101_1111_0000': Stctx, '0111_010z_0000_ssss': Ste, '0111_010z_0001_ssss': SteA0, '0111_010z_0010_ssss': SteA1A0, '1101_0DDD;8': Stnz, '1100_1DDD;8': Stz, '1101_1DDD;8': Stzx, '0111_011z_0101_dddd': SubImm, '1000_1DDD;8': SubImm8, '1010_100z_ssss_dddd': SubReg, '0010_1DSS;7': SubReg8, '0111_011z_0000_dddd': TstImm, '1000_000z_ssss_dddd': TstReg, '1111_1111': Und, '0111_1101_1111_0011': Wait, '0111_101z_00ss_dddd': Xchg, '0111_011z_0001_dddd': XorImm, '1000_100z_ssss_dddd': XorReg, } def generate_tables(): for encoding, instr in encodings.items(): def expand_encoding(table, parts): part, *parts = parts if ';' in part: part, enum = part.split(';', 2) else: enum = '' assert len(part) == 4 and len(enum) <= 1 chunks = [] try: chunks.append(int(part, 2)) except ValueError: wildcard_part = re.sub(r'[A-Z]', '0', part) instr_code = int(re.sub(r'[^01]', '0', wildcard_part), 2) instr_mask = int(re.sub(r'[^01]', '0', wildcard_part.replace('0', '1')), 2) operand_mask = int(re.sub(r'[^01]', '1', wildcard_part.replace('1', '0')), 2) operand_code = 0 while True: chunks.append(instr_code | operand_code) if operand_code == operand_mask: break # The following line cleverly uses carries to make a counter only from the bits # that are set in `operand_mask`. To understand it, consider that `instr_mask` # is the inverse of `operand_mask`, and adding 1 to a 011...1 chunk changes it # into a 100...0 chunk. operand_code = ((operand_code | instr_mask) + 1) & operand_mask if enum: shift = 4 - re.search(r'[A-Z]+', part).end() chunks, chunk_templates = [], chunks for template in chunk_templates: for legal_bits in enumerations[enum]: chunks.append(template | (legal_bits << shift)) for chunk in chunks: if parts: try: subtable = table[chunk] except KeyError: subtable = table[chunk] = dict() assert isinstance(subtable, dict) expand_encoding(subtable, parts) else: assert chunk not in table, "{} conflicts with {}".format(instr, table[chunk]) table[chunk] = instr parts = encoding.split('_') while re.match(r"^[a-z]+$", parts[-1]): parts.pop() expand_encoding(Instruction.opcodes, parts) def print_assigned(): def contract_encoding(table, parts): for part, entry in table.items(): if isinstance(entry, dict): contract_encoding(entry, (*parts, part)) else: encoding = '_'.join('{:04b}'.format(part) for part in (*parts, part)) mnemonic = entry().name() print('{:20s} {}'.format(encoding, mnemonic)) contract_encoding(Instruction.opcodes, ()) def print_unassigned(): def contract_encoding(table, parts): unassigned = set(range(16)) for part, entry in table.items(): unassigned.remove(part) if isinstance(entry, dict): contract_encoding(entry, (*parts, part)) for part in unassigned: print('_'.join('{:04b}'.format(part) for part in (*parts, part))) contract_encoding(Instruction.opcodes, ()) generate_tables() # print_assigned() # print_unassigned()
21524
from unittest import TestCase from schemer import Schema, Array, ValidationException from dusty.schemas.base_schema_class import DustySchema, DustySpecs from ...testcases import DustyTestCase class TestDustySchemaClass(TestCase): def setUp(self): self.base_schema = Schema({'street': {'type': basestring}, 'house_number': {'type': int, 'default': 1}}) self.bigger_schema = Schema({'address': {'type': self.base_schema, 'default': {}}, 'first_name': {'type': basestring, 'required': True}, 'last_name': {'type': basestring, 'default': 'johnson'}}) def test_init_invalid_doc(self): doc = {'street': 'dogstoon', 'house_number': '1'} with self.assertRaises(ValidationException): DustySchema(self.base_schema, doc) def test_valid_doc(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(dusty_schema['street'], 'dogstoon') self.assertEquals(dusty_schema['house_number'], 1) def test_setting_defaults(self): doc = {'street': 'dogstoon'} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(dusty_schema['street'], 'dogstoon') self.assertEquals(dusty_schema['house_number'], 1) def test_setting_defaults_more_complicated_1(self): doc = {'first_name': 'dusty'} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertEquals(dusty_schema['first_name'], 'dusty') self.assertEquals(dusty_schema['last_name'], 'johnson') self.assertEquals(dusty_schema['address'], {'house_number': 1}) def test_setting_defaults_more_complicated_2(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertEquals(dusty_schema['address']['street'], 'dogstoon') self.assertEquals(dusty_schema['address']['house_number'], 1) def test_in_1(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertTrue('first_name' in dusty_schema) def test_in_2(self): doc = {'first_name': 'dusty', 'address': {'street': 'dogstoon'}} dusty_schema = DustySchema(self.bigger_schema, doc) self.assertFalse('first_names' in dusty_schema) def test_keys(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(set(['street', 'house_number']), set(dusty_schema.keys())) def test_values(self): doc = {'street': 'dogstoon', 'house_number': 1} dusty_schema = DustySchema(self.base_schema, doc) self.assertEquals(set(['dogstoon', 1]), set(dusty_schema.values())) class TestDustySpecsClass(DustyTestCase): def test_finds_app_or_lib(self): specs = DustySpecs(self.temp_specs_path) self.assertEquals(specs.get_app_or_lib('app-a'), specs['apps']['app-a']) self.assertEquals(specs.get_app_or_lib('lib-a'), specs['libs']['lib-a']) def test_raises_without_app_or_lib(self): specs = DustySpecs(self.temp_specs_path) with self.assertRaises(KeyError): specs.get_app_or_lib('non-existant-thingy') def test_get_app_or_service(self): specs = DustySpecs(self.temp_specs_path) self.assertEquals(specs.get_app_or_service('app-a'), specs['apps']['app-a']) self.assertEquals(specs.get_app_or_service('service-a'), specs['services']['service-a'])
21546
import torch from torch.autograd import Function class Identity(Function): @staticmethod def forward(ctx, x, name): ctx.name = name return x.clone() def backward(ctx, grad): import pydevd pydevd.settrace(suspend=False, trace_only_current_thread=True) grad_temp = grad.clone() return grad_temp, None
21568
import FWCore.ParameterSet.Config as cms # This modifier sets replaces the default pattern recognition with mkFit for tobTecStep trackingMkFitTobTecStep = cms.Modifier()
21590
from plugin.scrobbler.core import SessionEngine, SessionHandler @SessionEngine.register class PlayingHandler(SessionHandler): __event__ = 'playing' __src__ = ['create', 'pause', 'stop', 'start'] __dst__ = ['start', 'stop'] @classmethod def process(cls, session, payload): # Handle media change if cls.has_media_changed(session, payload) and session.state in ['start', 'pause']: yield 'stop', session.payload # Handle current media if cls.has_finished(session, payload): if session.state in ['start', 'pause']: yield 'stop', payload elif session.state in ['create', 'pause', 'stop']: yield 'start', payload elif session.state == 'start': yield None, payload
21625
import argparse from os import listdir, path import numpy as np def convert(main_folder, output): ret = [] for label, class_folder in listdir(main_folder): class_folder_path = path.join(main_folder, class_folder) for img_name in listdir(class_folder_path): image_path = path.join(class_folder, img_name) ret.append([image_path, str(label)]) np.savetxt(output, ret, delimiter=" ", fmt="%s %i") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Folder with classes subfolders to a file to train." ) parser.add_argument("--folder", "-f", help="Folder to convert.") parser.add_argument("--output", "-o", help="Output file.") args = parser.parse_args() convert(args.folder, args.output)
21642
import os from sys import platform def say_beep(n: int): for i in range(0, n): if platform == "darwin": os.system("say beep")
21653
import simplejson as json from .telegram_field import TelegramField class WTelegramHeader(object): def __init__(self): # self._startField = TelegramField() self._lField = TelegramField() self._cField = TelegramField() # self._crcField = TelegramField() # self._stopField = TelegramField() self._headerLength = 2 # self._headerLengthCRCStop = 8 @property def headerLength(self): return self._headerLength # @property # def headerLengthCRCStop(self): # return self._headerLengthCRCStop @property def startField(self): return self._startField @startField.setter def startField(self, value): self._startField = TelegramField(value) @property def lField(self): return self._lField @lField.setter def lField(self, value): self._lField = TelegramField(value) @property def cField(self): return self._cField @cField.setter def cField(self, value): self._cField = TelegramField(value) @property def interpreted(self): return { 'length': hex(self.lField.parts[0]), 'c': hex(self.cField.parts[0]), } # @property # def crcField(self): # return self._crcField # @crcField.setter # def crcField(self, value): # self._crcField = TelegramField(value) # @property # def stopField(self): # return self._stopField # @stopField.setter # def stopField(self, value): # self._stopField = TelegramField(value) def load(self, hat): header = hat if isinstance(hat, str): header = list(map(ord, hat)) # self.startField = header[0] self.lField = header[0] self.cField = header[1] # self.crcField = header[-2] # self.stopField = header[-1] def to_JSON(self): return json.dumps(self.interpreted, sort_keys=False, indent=4, use_decimal=True)
21669
from box.parser import Parser from box.generator import Generator import os class Importer: def __init__(self, path): # Path to directory containing function graphs to import self.path = os.path.abspath(path) # { "FunctionName": <Generator>, ... } self.function_declarations = {} # List of (Parser, Generator) objects, # one for each function graph .box file self.parser_generators = self._parse_box_files() print(self.function_declarations) def _parse_box_files(self): # Result is a list of tuples [(parser, generator), ...] result = [] for file in os.listdir(self.path): if file.endswith(".box"): path = os.path.join(self.path, file) parser = Parser(path) generator = Generator(parser) code = generator.to_python([]) result.append((parser, generator)) self.function_declarations[generator.function_name] = generator return result
21681
import json from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType from pathlib import Path def main(): parser = ArgumentParser(description='Collect markdown files, and write JSON.', formatter_class=ArgumentDefaultsHelpFormatter) project_path = Path(__file__).parent.parent.parent.parent parser.add_argument('--source', type=Path, default=project_path / 'html' / 'tutorials') parser.add_argument('--target', type=FileType('w'), default=str(project_path / 'html' / 'src' / 'tutorials.json')) args = parser.parse_args() tutorials = {} # source_file: Path for source_file in args.source.rglob('*.md'): name = str(source_file.relative_to(args.source).with_suffix('')) if name == 'README': continue source = source_file.read_text() tutorials[name] = source json.dump(tutorials, args.target) main()
21704
import torch import torch.nn as nn class voxel_match_loss(nn.Module): def __init__(self): super().__init__() self.criterion=nn.MSELoss() def forward(self,output,label): positive_mask=torch.zeros(label.shape).cuda() positive_mask=torch.where(label>0.2,torch.ones_like(positive_mask), positive_mask) positive_loss=self.criterion(output*positive_mask,label*positive_mask) negative_mask=torch.zeros(label.shape).cuda() negative_mask = torch.where(label <= 0.2, torch.ones_like(negative_mask), negative_mask) negative_loss=self.criterion(output*negative_mask,label*negative_mask) loss=positive_loss+negative_loss loss=loss/2 return loss
21736
import functools from flask import Blueprint from flask import render_template from flask import g from flask import redirect from flask import url_for from flask import flash from mflac.vuln_app.db import get_db bp = Blueprint("admin", __name__, url_prefix="/admin") def admin_required(view): @functools.wraps(view) def wrapped_view(**kwargs): if g.user is None or not g.user['is_admin']: flash("Forbidden. You haven't enough permissions") return redirect(url_for("index.index")) return view(**kwargs) return wrapped_view def login_required(view): @functools.wraps(view) def wrapped_view(**kwargs): if g.user is None: return redirect(url_for("auth.login")) return view(**kwargs) return wrapped_view @bp.route("/users_list") @login_required @admin_required def users_list(): db = get_db() users = db.execute("SELECT id, username, is_admin FROM user").fetchall() return render_template('admin/users_list.html', users=users)
21772
from __future__ import absolute_import from __future__ import print_function import os import sys from conversion_imagenet import TestModels from conversion_imagenet import is_paddle_supported def get_test_table(): return { 'paddle' : { 'resnet50' : [ TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, TestModels.coreml_emit, TestModels.keras_emit, TestModels.mxnet_emit, TestModels.pytorch_emit, TestModels.tensorflow_emit ], 'resnet101' : [ #TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, TestModels.coreml_emit, TestModels.keras_emit, TestModels.mxnet_emit, TestModels.pytorch_emit, TestModels.tensorflow_emit ], 'vgg16' : [ TestModels.onnx_emit, #TestModels.caffe_emit, #TestModels.cntk_emit, #TestModels.coreml_emit, #TestModels.keras_emit, #TestModels.mxnet_emit, #TestModels.pytorch_emit, #TestModels.tensorflow_emit ], }} def test_paddle(): if not is_paddle_supported(): return # omit tensorflow lead to crash import tensorflow as tf test_table = get_test_table() tester = TestModels(test_table) tester._test_function('paddle', tester.paddle_parse) if __name__ == '__main__': test_paddle()
21790
import numpy as np from matplotlib import pyplot as plt """ https://stackoverflow.com/questions/42750910/convert-rgb-image-to-index-image/62980021#62980021 convert semantic labels from RGB coding to index coding Steps: 1. define COLORS (see below) 2. hash colors 3. run rgb2index(segmentation_rgb) see example below TODO: apparently, using cv2.LUT is much simpler (and maybe faster?) """ COLORS = np.array([[0, 0, 0], [0, 0, 255], [255, 0, 0], [0, 255, 0]]) W = np.power(255, [0, 1, 2]) HASHES = np.sum(W * COLORS, axis=-1) HASH2COLOR = {h: c for h, c in zip(HASHES, COLORS)} HASH2IDX = {h: i for i, h in enumerate(HASHES)} def rgb2index(segmentation_rgb): """ turn a 3 channel RGB color to 1 channel index color """ s_shape = segmentation_rgb.shape s_hashes = np.sum(W * segmentation_rgb, axis=-1) print(np.unique(segmentation_rgb.reshape((-1, 3)), axis=0)) func = lambda x: HASH2IDX[int(x)] # noqa segmentation_idx = np.apply_along_axis(func, 0, s_hashes.reshape((1, -1))) segmentation_idx = segmentation_idx.reshape(s_shape[:2]) return segmentation_idx segmentation = np.array([[0, 0, 0], [0, 0, 255], [255, 0, 0]] * 3).reshape((3, 3, 3)) segmentation_idx = rgb2index(segmentation) print(segmentation) print(segmentation_idx) fig, axes = plt.subplots(1, 2, figsize=(6, 3)) axes[0].imshow(segmentation) axes[0].set_title("Segmentation RGB") axes[1].imshow(segmentation_idx) axes[1].set_title("Segmentation IDX") plt.show()
21827
from .model import KerasModel import keras from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from keras.layers import BatchNormalization, Dropout, Conv2D, MaxPooling2D import kapre from kapre.utils import Normalization2D from kapre.time_frequency import Spectrogram class CNN_STFT(KerasModel): def create_model(self, input_shape, dropout=0.5, print_summary=False): # basis of the CNN_STFT is a Sequential network model = Sequential() # spectrogram creation using STFT model.add(Spectrogram(n_dft = 128, n_hop = 16, input_shape = input_shape, return_decibel_spectrogram = False, power_spectrogram = 2.0, trainable_kernel = False, name = 'static_stft')) model.add(Normalization2D(str_axis = 'freq')) # Conv Block 1 model.add(Conv2D(filters = 24, kernel_size = (12, 12), strides = (1, 1), name = 'conv1', border_mode = 'same')) model.add(BatchNormalization(axis = 1)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size = (2, 2), strides = (2,2), padding = 'valid', data_format = 'channels_last')) # Conv Block 2 model.add(Conv2D(filters = 48, kernel_size = (8, 8), name = 'conv2', border_mode = 'same')) model.add(BatchNormalization(axis = 1)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size = (2, 2), strides = (2, 2), padding = 'valid', data_format = 'channels_last')) # Conv Block 3 model.add(Conv2D(filters = 96, kernel_size = (4, 4), name = 'conv3', border_mode = 'same')) model.add(BatchNormalization(axis = 1)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size = (2, 2), strides = (2,2), padding = 'valid', data_format = 'channels_last')) model.add(Dropout(dropout)) # classificator model.add(Flatten()) model.add(Dense(2)) # two classes only model.add(Activation('softmax')) if print_summary: print(model.summary()) # compile the model model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) # assign model and return self.model = model return model
21838
import heterocl as hcl hcl.init() target = hcl.Platform.xilinx_zc706 initiation_interval = 4 a = hcl.placeholder((10, 20), name="a") b = hcl.placeholder((10, 20), name="b") c = hcl.placeholder((10, 20), name="c") d = hcl.placeholder((10, 20), name="d") e = hcl.placeholder((10, 20), name="e") def add_mul(a, b, c, d, e): @hcl.def_([a.shape, b.shape, c.shape]) def ret_add(a, b, c): with hcl.for_(0, a.shape[0]) as i: with hcl.for_(0, a.shape[1]) as j: c[i, j] = a[i, j] + b[i, j] @hcl.def_([c.shape, d.shape, e.shape]) def ret_mul(c, d, e): # hcl.update(c, lambda x, y: a[x, y] * b[x, y], 'c_mul') with hcl.for_(0, c.shape[0]) as i: with hcl.for_(0, c.shape[1]) as j: e[i, j] = c[i, j] * d[i, j] ret_add(a, b, c) ret_mul(c, d, e) # compute customization s = hcl.create_schedule([a, b, c, d, e], add_mul) # op1 = add_mul.ret_add.c # op2 = add_mul.ret_mul.c # s[op1].pipeline(op1.axis[0], initiation_interval) # stream into modules / device a0, b0 = s.to([a, b], target.xcel) d0 = s.to(d, target.xcel) #s.partition(b0, dim=2, factor=2) s.to([a0, b0], s[add_mul.ret_add]) s.to(d0, s[add_mul.ret_mul]) # within device move producer to consumer s.to(c, s[add_mul.ret_mul], s[add_mul.ret_add], depth=10) # return tensor for inter-device move # e0 = s.stream_to(e, hcl.CPU('riscv')) # print(add_mul.ret_mul._buf, c._buf) print(hcl.lower(s)) code = hcl.build(s, target) print(code) # # with open("example.cl", "w") as f: # f.write(code) # f.close()
21936
DILAMI_WEEKDAY_NAMES = { 0: "شمبه", 1: "یکشمبه", 2: "دۊشمبه", 3: "سۊشمبه", 4: "چارشمبه", 5: "پئنشمبه", 6: "جۊمه", } DILAMI_MONTH_NAMES = { 0: "پنجيک", 1: "نؤرۊز ما", 2: "کۊرچ ٚ ما", 3: "أرئه ما", 4: "تیر ما", 5: "مۊردال ما", 6: "شریرما", 7: "أمیر ما", 8: "آول ما", 9: "سیا ما", 10: "دیا ما", 11: "ورفن ٚ ما", 12: "اسفندار ما", } DILAMI_LEAP_YEARS = ( 199, 203, 207, 211, 215, 220, 224, 228, 232, 236, 240, 244, 248, 253, 257, 261, 265, 269, 273, 277, 281, 286, 290, 294, 298, 302, 306, 310, 315, 319, 323, 327, 331, 335, 339, 343, 348, 352, 356, 360, 364, 368, 372, 376, 381, 385, 389, 393, 397, 401, 405, 409, 414, 418, 422, 426, 430, 434, 438, 443, 447, 451, 455, 459, 463, 467, 471, 476, 480, 484, 488, 492, 496, 500, 504, 509, 513, 517, 521, 525, 529, 533, 537, 542, 546, 550, 554, 558, 562, 566, 571, 575, 579, 583, 587, 591, 595, 599, 604, 608, 612, 616, 620, 624, 628, 632, 637, 641, 645, 649, 653, 657, 661, 665, 669, 674, 678, 682, 686, 690, 694, 698, 703, 707, 711, 715, 719, 723, 727, 731, 736, 740, 744, 748, 752, 756, 760, 764, 769, 773, 777, 781, 785, 789, 793, 797, 802, 806, 810, 814, 818, 822, 826, 831, 835, 839, 843, 847, 851, 855, 859, 864, 868, 872, 876, 880, 884, 888, 892, 897, 901, 905, 909, 913, 917, 921, 925, 930, 934, 938, 942, 946, 950, 954, 959, 963, 967, 971, 975, 979, 983, 987, 992, 996, 1000, 1004, 1008, 1012, 1016, 1020, 1025, 1029, 1033, 1037, 1041, 1045, 1049, 1053, 1058, 1062, 1066, 1070, 1074, 1078, 1082, 1087, 1091, 1095, 1099, 1103, 1107, 1111, 1115, 1120, 1124, 1128, 1132, 1136, 1140, 1144, 1148, 1153, 1157, 1161, 1165, 1169, 1173, 1177, 1181, 1186, 1190, 1194, 1198, 1202, 1206, 1210, 1215, 1219, 1223, 1227, 1231, 1235, 1239, 1243, 1248, 1252, 1256, 1260, 1264, 1268, 1272, 1276, 1281, 1285, 1289, 1293, 1297, 1301, 1305, 1309, 1314, 1318, 1322, 1326, 1330, 1334, 1338, 1343, 1347, 1351, 1355, 1359, 1363, 1367, 1371, 1376, 1380, 1384, 1388, 1392, 1396, 1400, 1404, 1409, 1413, 1417, 1421, 1425, 1429, 1433, 1437, 1442, 1446, 1450, 1454, 1458, 1462, 1466, 1471, 1475, 1479, 1483, 1487, 1491, 1495, 1499, 1504, 1508, 1512, 1516, 1520, 1524, 1528, 1532, 1537, 1541, 1545, 1549, 1553, 1557, 1561, 1565, 1570, 1574, 1578, 1582, 1586, 1590, 1594, 1599, 1603, 1607, 1611, 1615, 1619, 1623, 1627, 1632, 1636, 1640, 1644, 1648, 1652, 1656, 1660, 1665, 1669, 1673, 1677, 1681, 1685, 1689, 1693, 1698, 1702, 1706, 1710, 1714, 1718, 1722, 1727, 1731, 1735, 1739, 1743, 1747, 1751, 1755, 1760, 1764, 1768, 1772, 1776, 1780, 1784, 1788, 1793, 1797, 1801, 1805, 1809, 1813, 1817, 1821, 1826, 1830, 1834, 1838, 1842, 1846, 1850, 1855, 1859, 1863, 1867, 1871, 1875, 1879, 1883, 1888, 1892, 1896, 1900, 1904, 1908, 1912, 1916, 1921, 1925, 1929, 1933, 1937, 1941, 1945, 1949, 1954, 1958, 1962, 1966, 1970, 1974, 1978, 1983, 1987, 1991, 1995, 1999, 2003, 2007, 2011, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2049, 2053, 2057, 2061, 2065, 2069, 2073, 2077, 2082, 2086, 2090, 2094, 2098, 2102, 2106, 2111, 2115, 2119, 2123, 2127, 2131, 2135, 2139, 2144, 2148, 2152, 2156, 2160, 2164, 2168, 2172, 2177, 2181, 2185, 2189, 2193, 2197, 2201, 2205, 2210, 2214, 2218, 2222, 2226, 2230, 2234, 2239, 2243, 2247, 2251, 2255, 2259, 2263, 2267, 2272, 2276, 2280, 2284, 2288, 2292, 2296, 2300, 2305, 2309, 2313, 2317, 2321, 2325, 2329, 2333, 2338, 2342, 2346, 2350, 2354, 2358, 2362, 2367, 2371, 2375, 2379, 2383, 2387, 2391, 2395, 2400, 2404, 2408, 2412, 2416, 2420, 2424, 2428, 2433, 2437, 2441, 2445, 2449, 2453, 2457, 2461, 2466, 2470, 2474, 2478, 2482, 2486, 2490, 2495, 2499, 2503, 2507, 2511, 2515, 2519, 2523, 2528, 2532, 2536, 2540, 2544, 2548, 2552, 2556, 2561, 2565, 2569, 2573, 2577, 2581, 2585, 2589, 2594, 2598, 2602, 2606, 2610, 2614, 2618, 2623, 2627, 2631, 2635, 2639, 2643, 2647, 2651, 2656, 2660, 2664, 2668, 2672, 2676, 2680, 2684, 2689, 2693, 2697, 2701, 2705, 2709, 2713, 2717, 2722, 2726, 2730, 2734, 2738, 2742, 2746, 2751, 2755, 2759, 2763, 2767, 2771, 2775, 2779, 2784, 2788, 2792, 2796, 2800, 2804, 2808, 2812, 2817, 2821, 2825, 2829, 2833, 2837, 2841, 2845, 2850, 2854, 2858, 2862, 2866, 2870, 2874, 2879, 2883, 2887, 2891, 2895, 2899, 2903, 2907, 2912, 2916, 2920, 2924, 2928, 2932, 2936, 2940, 2945, 2949, 2953, 2957, 2961, 2965, 2969, 2973, 2978, 2982, 2986, 2990, 2994, 2998, 3002, 3007, 3011, 3015, 3019, 3023, 3027, 3031, 3035, 3040, 3044, 3048, 3052, 3056, 3060, 3064, 3068, 3073, 3077, 3081, 3085, 3089, 3093, 3097, 3101, 3106, 3110, 3114, 3118, 3122, 3126, 3130, 3135, 3139, 3143, 3147, 3151, 3155, 3159, 3163, 3168, 3172, 3176, 3180, 3184, 3188, 3192, 3196, 3201, 3205, 3209, 3213, 3217, 3221, 3225, 3229, 3234, 3238, 3242, 3246, 3250, 3254, 3258, 3263, 3267, 3271, 3275, 3279, 3283, 3287, 3291, 3296, 3300, 3304, 3308, 3312, 3316, 3320, 3324, 3329, 3333, 3337, 3341, 3345, 3349, 3353, 3357, 3362, 3366, 3370, ) #: Minimum year supported by the library. MINYEAR = 195 #: Maximum year supported by the library. MAXYEAR = 3372
22008
from __future__ import with_statement from contextlib import contextmanager from test import TemplateTest, eq_, raises, template_base, mock import os from mako.cmd import cmdline class CmdTest(TemplateTest): @contextmanager def _capture_output_fixture(self, stream="stdout"): with mock.patch("sys.%s" % stream) as stdout: yield stdout def test_stdin_success(self): with self._capture_output_fixture() as stdout: with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="hello world ${x}"))): cmdline(["--var", "x=5", "-"]) eq_(stdout.write.mock_calls[0][1][0], "hello world 5") def test_stdin_syntax_err(self): with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="${x"))): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", "-"]) assert "SyntaxException: Expected" in \ stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_stdin_rt_err(self): with mock.patch("sys.stdin", mock.Mock( read=mock.Mock(return_value="${q}"))): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", "-"]) assert "NameError: Undefined" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_success(self): with self._capture_output_fixture() as stdout: cmdline(["--var", "x=5", os.path.join(template_base, "cmd_good.mako")]) eq_(stdout.write.mock_calls[0][1][0], "hello world 5") def test_file_syntax_err(self): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", os.path.join(template_base, "cmd_syntax.mako")]) assert "SyntaxException: Expected" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_rt_err(self): with self._capture_output_fixture("stderr") as stderr: with raises(SystemExit): cmdline(["--var", "x=5", os.path.join(template_base, "cmd_runtime.mako")]) assert "NameError: Undefined" in stderr.write.mock_calls[0][1][0] assert "Traceback" in stderr.write.mock_calls[0][1][0] def test_file_notfound(self): with raises(SystemExit, "error: can't find fake.lalala"): cmdline(["--var", "x=5", "fake.lalala"])
22010
from LightPipes import * import matplotlib.pyplot as plt def TheExample(N): fig=plt.figure(figsize=(11,9.5)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) labda=1000*nm; size=10*mm; f1=10*m f2=1.11111111*m z=1.0*m w=5*mm; F=Begin(size,labda,N); F=RectAperture(w,w,0,0,0,F); #1) Using Lens and Fresnel: F1=Lens(z,0,0,F) F1=Fresnel(z,F1) phi1=Phase(F1);phi1=PhaseUnwrap(phi1) I1=Intensity(0,F1); x1=[] for i in range(N): x1.append((-size/2+i*size/N)/mm) #2) Using Lens + LensFresnel and Convert: F2=Lens(f1,0,0,F); F2=LensFresnel(f2,z,F2); F2=Convert(F2); phi2=Phase(F2);phi2=PhaseUnwrap(phi2) I2=Intensity(0,F2); x2=[] newsize=size/10 for i in range(N): x2.append((-newsize/2+i*newsize/N)/mm) ax1.plot(x1,phi1[int(N/2)],'k--',label='Lens + Fresnel') ax1.plot(x2,phi2[int(N/2)],'k',label='LensFresnel + Convert'); ax1.set_xlim(-newsize/2/mm,newsize/2/mm) ax1.set_ylim(-2,4) ax1.set_xlabel('x [mm]'); ax1.set_ylabel('phase [rad]'); ax1.set_title('phase, N = %d' %N) legend = ax1.legend(loc='upper center', shadow=True) ax2.plot(x1,I1[int(N/2)],'k--',label='Lens+Fresnel') ax2.plot(x2,I2[int(N/2)], 'k',label='LensFresnel + Convert'); ax2.set_xlim(-newsize/2/mm,newsize/2/mm) ax2.set_ylim(0,1000) ax2.set_xlabel('x [mm]'); ax2.set_ylabel('Intensity [a.u.]'); ax2.set_title('intensity, N = %d' %N) legend = ax2.legend(loc='upper center', shadow=True) ax3.imshow(I1);ax3.axis('off');ax3.set_title('Intensity, Lens + Fresnel, N = %d' %N) ax3.set_xlim(int(N/2)-N/20,int(N/2)+N/20) ax3.set_ylim(int(N/2)-N/20,int(N/2)+N/20) ax4.imshow(I2);ax4.axis('off');ax4.set_title('Intensity, LensFresnel + Convert, N = %d' %N) plt.show() TheExample(100) #100 x 100 grid TheExample(1000) #1000 x 1000 grid