blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
8ca9fad8cd78573c8d3ca2e9a76b0d607134371b
ce214c2cbecb3591665b2748c1c777dd83625f96
/lesson_13/api/routers.py
ff242ade61e4fcebb7697a8a760da6bb173b9707
[]
no_license
antonplkv/itea_advanced_june
e35af2f10d93d8ffb43664cd0cf7dfd46b969aef
c20e81167bfd87b7e16f340210b246a4cbc1751e
refs/heads/master
2022-12-04T20:27:21.908624
2020-08-19T18:19:49
2020-08-19T18:19:49
272,512,423
0
3
null
null
null
null
UTF-8
Python
false
false
200
py
from flask import Flask from flask_restful import Api from .resources import AuthorResource app = Flask(__name__) api = Api(app) api.add_resource(AuthorResource, '/authors', '/authors/<author_id>')
91ff95988bce1d58997328ad6d6def469c878d07
452c33c0622ec36e93e6ff6637533a15a067a8a4
/samples/client/petstore/python-experimental/petstore_api/models/outer_composite.py
f3887c8a3267c6a6532d498e3de2a32c135c4da3
[ "Apache-2.0" ]
permissive
eric-erki/openapi-generator
40c4294433bada9f693aca0c32326609e2234f9c
0ea1ead59e41e4e8a959235dc8234d44447a9658
refs/heads/master
2023-01-07T03:33:36.315459
2019-09-20T18:13:33
2019-09-20T18:13:33
209,955,560
1
3
Apache-2.0
2023-01-04T10:58:25
2019-09-21T09:09:49
Java
UTF-8
Python
false
false
4,876
py
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class OuterComposite(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'my_number': 'float', 'my_string': 'str', 'my_boolean': 'bool', } attribute_map = { 'my_number': 'my_number', # noqa: E501 'my_string': 'my_string', # noqa: E501 'my_boolean': 'my_boolean', # noqa: E501 } def __init__(self, my_number=None, my_string=None, my_boolean=None): # noqa: E501 """OuterComposite - a model defined in OpenAPI Keyword Args: my_number (float): [optional] # noqa: E501 my_string (str): [optional] # noqa: E501 my_boolean (bool): [optional] # noqa: E501 """ self._my_number = None self._my_string = None self._my_boolean = None self.discriminator = None if my_number is not None: self.my_number = my_number # noqa: E501 if my_string is not None: self.my_string = my_string # noqa: E501 if my_boolean is not None: self.my_boolean = my_boolean # noqa: E501 @property def my_number(self): """Gets the my_number of this OuterComposite. # noqa: E501 :return: The my_number of this OuterComposite. # noqa: E501 :rtype: float """ return self._my_number @my_number.setter def my_number( self, my_number): """Sets the my_number of this OuterComposite. :param my_number: The my_number of this OuterComposite. # noqa: E501 :type: float """ self._my_number = ( my_number) @property def my_string(self): """Gets the my_string of this OuterComposite. # noqa: E501 :return: The my_string of this OuterComposite. # noqa: E501 :rtype: str """ return self._my_string @my_string.setter def my_string( self, my_string): """Sets the my_string of this OuterComposite. :param my_string: The my_string of this OuterComposite. # noqa: E501 :type: str """ self._my_string = ( my_string) @property def my_boolean(self): """Gets the my_boolean of this OuterComposite. # noqa: E501 :return: The my_boolean of this OuterComposite. # noqa: E501 :rtype: bool """ return self._my_boolean @my_boolean.setter def my_boolean( self, my_boolean): """Sets the my_boolean of this OuterComposite. :param my_boolean: The my_boolean of this OuterComposite. # noqa: E501 :type: bool """ self._my_boolean = ( my_boolean) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OuterComposite): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
9aab50959e6376757d51b3fef3e88483eb1d7494
07c3124153a6909f19a21c3c664d8e3f8e0481d0
/fractals/sierpinski_triangle/sierpinski_triangle.py
aae6e3da8f1aaeec51acdaeab10b98c9d1557216
[]
no_license
gridl/art-of-turtle-programming
94ed422a4e75f83e4c3abf7910ed9e5ed8a40aa9
db6b2c1059bffc9df468691c6ecf1c110b38aafd
refs/heads/master
2020-03-19T16:20:48.680667
2015-12-15T05:46:03
2015-12-15T05:46:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,240
py
from turtle import * import math tracer(1, 0) setworldcoordinates(0, 0, 960, 810) bgcolor(0.1, 0.1, 0.1) BASE_SIZE = 13 BASE_HEIGHT = BASE_SIZE * math.sin(60 * (math.pi / 180)) START_X = 50 START_Y = 20 def draw_triangle(x, y, color): penup() pencolor(color) goto(x, y) # go to bottom-left corner pendown() setheading(60) forward(BASE_SIZE) # draw first side right(120) forward(BASE_SIZE) # draw second side right(120) forward(BASE_SIZE) # draw third side def draw_sierpinski(x, y, level, color): if level == 0: draw_triangle(x, y, color) draw_triangle(x + (BASE_SIZE * 0.5), y + BASE_HEIGHT, color) draw_triangle(x + BASE_SIZE, y, color) else: draw_sierpinski(x, y, level - 1, color) draw_sierpinski(x + (BASE_SIZE * 0.5 * (2 ** level)), y + (BASE_HEIGHT * (2 ** level)), level - 1, color) draw_sierpinski(x + (BASE_SIZE * (2 ** level)), y, level - 1, color) # loop from 5 to 0, drawing 5 sets of sierpinski triangles each with a different color for i in range(5, -1, -1): red = 1 - (0.2 * i) green = 0.1 * i blue = 0.1 * i draw_sierpinski(START_X, START_Y, i, (red, green, blue)) hideturtle() update() exitonclick()
dd2581b2b922761111f73de6a66b37bef9ca71ad
90419da201cd4948a27d3612f0b482c68026c96f
/sdk/python/pulumi_azure_nextgen/servicebus/latest/list_disaster_recovery_config_keys.py
25a135b1c7de1f742920f2d68de3190e3c721078
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
test-wiz-sec/pulumi-azure-nextgen
cd4bee5d70cb0d332c04f16bb54e17d016d2adaf
20a695af0d020b34b0f1c336e1b69702755174cc
refs/heads/master
2023-06-08T02:35:52.639773
2020-11-06T22:39:06
2020-11-06T22:39:06
312,993,761
0
0
Apache-2.0
2023-06-02T06:47:28
2020-11-15T09:04:00
null
UTF-8
Python
false
false
6,888
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'ListDisasterRecoveryConfigKeysResult', 'AwaitableListDisasterRecoveryConfigKeysResult', 'list_disaster_recovery_config_keys', ] @pulumi.output_type class ListDisasterRecoveryConfigKeysResult: """ Namespace/ServiceBus Connection String """ def __init__(__self__, alias_primary_connection_string=None, alias_secondary_connection_string=None, key_name=None, primary_connection_string=None, primary_key=None, secondary_connection_string=None, secondary_key=None): if alias_primary_connection_string and not isinstance(alias_primary_connection_string, str): raise TypeError("Expected argument 'alias_primary_connection_string' to be a str") pulumi.set(__self__, "alias_primary_connection_string", alias_primary_connection_string) if alias_secondary_connection_string and not isinstance(alias_secondary_connection_string, str): raise TypeError("Expected argument 'alias_secondary_connection_string' to be a str") pulumi.set(__self__, "alias_secondary_connection_string", alias_secondary_connection_string) if key_name and not isinstance(key_name, str): raise TypeError("Expected argument 'key_name' to be a str") pulumi.set(__self__, "key_name", key_name) if primary_connection_string and not isinstance(primary_connection_string, str): raise TypeError("Expected argument 'primary_connection_string' to be a str") pulumi.set(__self__, "primary_connection_string", primary_connection_string) if primary_key and not isinstance(primary_key, str): raise TypeError("Expected argument 'primary_key' to be a str") pulumi.set(__self__, "primary_key", primary_key) if secondary_connection_string and not isinstance(secondary_connection_string, str): raise TypeError("Expected argument 'secondary_connection_string' to be a str") pulumi.set(__self__, "secondary_connection_string", secondary_connection_string) if secondary_key and not isinstance(secondary_key, str): raise TypeError("Expected argument 'secondary_key' to be a str") pulumi.set(__self__, "secondary_key", secondary_key) @property @pulumi.getter(name="aliasPrimaryConnectionString") def alias_primary_connection_string(self) -> str: """ Primary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_primary_connection_string") @property @pulumi.getter(name="aliasSecondaryConnectionString") def alias_secondary_connection_string(self) -> str: """ Secondary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_secondary_connection_string") @property @pulumi.getter(name="keyName") def key_name(self) -> str: """ A string that describes the authorization rule. """ return pulumi.get(self, "key_name") @property @pulumi.getter(name="primaryConnectionString") def primary_connection_string(self) -> str: """ Primary connection string of the created namespace authorization rule. """ return pulumi.get(self, "primary_connection_string") @property @pulumi.getter(name="primaryKey") def primary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "primary_key") @property @pulumi.getter(name="secondaryConnectionString") def secondary_connection_string(self) -> str: """ Secondary connection string of the created namespace authorization rule. """ return pulumi.get(self, "secondary_connection_string") @property @pulumi.getter(name="secondaryKey") def secondary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "secondary_key") class AwaitableListDisasterRecoveryConfigKeysResult(ListDisasterRecoveryConfigKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListDisasterRecoveryConfigKeysResult( alias_primary_connection_string=self.alias_primary_connection_string, alias_secondary_connection_string=self.alias_secondary_connection_string, key_name=self.key_name, primary_connection_string=self.primary_connection_string, primary_key=self.primary_key, secondary_connection_string=self.secondary_connection_string, secondary_key=self.secondary_key) def list_disaster_recovery_config_keys(alias: Optional[str] = None, authorization_rule_name: Optional[str] = None, namespace_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListDisasterRecoveryConfigKeysResult: """ Use this data source to access information about an existing resource. :param str alias: The Disaster Recovery configuration name :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The namespace name :param str resource_group_name: Name of the Resource group within the Azure subscription. """ __args__ = dict() __args__['alias'] = alias __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:servicebus/latest:listDisasterRecoveryConfigKeys', __args__, opts=opts, typ=ListDisasterRecoveryConfigKeysResult).value return AwaitableListDisasterRecoveryConfigKeysResult( alias_primary_connection_string=__ret__.alias_primary_connection_string, alias_secondary_connection_string=__ret__.alias_secondary_connection_string, key_name=__ret__.key_name, primary_connection_string=__ret__.primary_connection_string, primary_key=__ret__.primary_key, secondary_connection_string=__ret__.secondary_connection_string, secondary_key=__ret__.secondary_key)
d212b119feedd836b1965727e519777fd8b95557
fea44d5ca4e6c9b2c7950234718a4531d453849e
/sktime/forecasting/tests/test_all_forecasters.py
c528a23d1d8d1d4b7fe5fc87dd17cbf747f4fa26
[ "BSD-3-Clause" ]
permissive
mlgig/sktime
288069ab8c9b0743113877032dfca8cf1c2db3fb
19618df351a27b77e3979efc191e53987dbd99ae
refs/heads/master
2023-03-07T20:22:48.553615
2023-02-19T18:09:12
2023-02-19T18:09:12
234,604,691
1
0
BSD-3-Clause
2020-01-17T17:50:12
2020-01-17T17:50:11
null
UTF-8
Python
false
false
28,833
py
# -*- coding: utf-8 -*- """Tests for BaseForecaster API points. # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) """ __author__ = ["mloning", "kejsitake", "fkiraly"] import numpy as np import pandas as pd import pytest from sktime.datatypes import check_is_mtype from sktime.datatypes._utilities import get_cutoff from sktime.exceptions import NotFittedError from sktime.forecasting.base._delegate import _DelegatedForecaster from sktime.forecasting.model_selection import ( ExpandingWindowSplitter, SlidingWindowSplitter, temporal_train_test_split, ) from sktime.forecasting.tests._config import ( TEST_ALPHAS, TEST_FHS, TEST_OOS_FHS, TEST_STEP_LENGTHS_INT, TEST_WINDOW_LENGTHS_INT, VALID_INDEX_FH_COMBINATIONS, ) from sktime.performance_metrics.forecasting import mean_absolute_percentage_error from sktime.tests.test_all_estimators import BaseFixtureGenerator, QuickTester from sktime.utils._testing.forecasting import ( _assert_correct_columns, _assert_correct_pred_time_index, _get_expected_index_for_update_predict, _get_n_columns, _make_fh, make_forecasting_problem, ) from sktime.utils._testing.series import _make_series from sktime.utils.validation.forecasting import check_fh # get all forecasters FH0 = 1 INVALID_X_INPUT_TYPES = [list("foo"), tuple()] INVALID_y_INPUT_TYPES = [list("bar"), tuple()] # testing data y = make_forecasting_problem() y_train, y_test = temporal_train_test_split(y, train_size=0.75) # names for index/fh combinations to display in tests index_fh_comb_names = [f"{x[0]}-{x[1]}-{x[2]}" for x in VALID_INDEX_FH_COMBINATIONS] pytest_skip_msg = ( "ForecastingHorizon with timedelta values " "is currently experimental and not supported everywhere" ) class ForecasterFixtureGenerator(BaseFixtureGenerator): """Fixture generator for forecasting tests. Fixtures parameterized ---------------------- estimator_class: estimator inheriting from BaseObject ranges over all estimator classes not excluded by EXCLUDED_TESTS estimator_instance: instance of estimator inheriting from BaseObject ranges over all estimator classes not excluded by EXCLUDED_TESTS instances are generated by create_test_instance class method scenario: instance of TestScenario ranges over all scenarios returned by retrieve_scenarios """ # note: this should be separate from TestAllForecasters # additional fixtures, parameters, etc should be added here # TestAllForecasters should contain the tests only estimator_type_filter = "forecaster" fixture_sequence = [ "estimator_class", "estimator_instance", "n_columns", "scenario", # "fh", "update_params", "step_length", ] def _generate_n_columns(self, test_name, **kwargs): """Return number of columns for series generation in positive test cases. Fixtures parameterized ---------------------- n_columns: int 1 for univariate forecasters, 2 for multivariate forecasters ranges over 1 and 2 for forecasters which are both uni/multivariate """ if "estimator_class" in kwargs.keys(): scitype_tag = kwargs["estimator_class"].get_class_tag("scitype:y") elif "estimator_instance" in kwargs.keys(): scitype_tag = kwargs["estimator_instance"].get_tag("scitype:y") else: return [] n_columns_list = _get_n_columns(scitype_tag) if len(n_columns_list) == 1: n_columns_names = ["" for x in n_columns_list] else: n_columns_names = [f"y:{x}cols" for x in n_columns_list] return n_columns_list, n_columns_names def _generate_update_params(self, test_name, **kwargs): """Return update_params for update calls. Fixtures parameterized ---------------------- update_params: bool whether to update parameters in update; ranges over True, False """ return [True, False], ["update_params=True", "update_params=False"] def _generate_step_length(self, test_name, **kwargs): """Return step length for window. Fixtures parameterized ---------------------- step_length: int 1 if update_params=True; TEST_STEP_LENGTH_INT if update_params=False """ update_params = kwargs["update_params"] if update_params: return [1], [""] else: return TEST_STEP_LENGTHS_INT, [f"step={a}" for a in TEST_STEP_LENGTHS_INT] class TestAllForecasters(ForecasterFixtureGenerator, QuickTester): """Module level tests for all sktime forecasters.""" def test_get_fitted_params(self, estimator_instance, scenario): """Test get_fitted_params.""" scenario.run(estimator_instance, method_sequence=["fit"]) try: params = estimator_instance.get_fitted_params() assert isinstance(params, dict) except NotImplementedError: pass # todo: should these not be checked in test_all_estimators? def test_raises_not_fitted_error(self, estimator_instance): """Test that calling post-fit methods before fit raises error.""" # We here check extra method of the forecaster API: update and update_predict. with pytest.raises(NotFittedError): estimator_instance.update(y_test, update_params=False) with pytest.raises(NotFittedError): cv = SlidingWindowSplitter(fh=1, window_length=1, start_with_window=False) estimator_instance.update_predict(y_test, cv=cv) try: with pytest.raises(NotFittedError): estimator_instance.get_fitted_params() except NotImplementedError: pass def test_y_multivariate_raises_error(self, estimator_instance): """Test that wrong y scitype raises error (uni/multivariate not supported).""" if estimator_instance.get_tag("scitype:y") == "multivariate": y = _make_series(n_columns=1) with pytest.raises(ValueError, match=r"two or more variables"): estimator_instance.fit(y, fh=FH0) if estimator_instance.get_tag("scitype:y") in ["univariate", "both"]: # this should pass since "both" allows any number of variables # and "univariate" automatically vectorizes, behaves multivariate pass # todo: should these not be "negative scenarios", tested in test_all_estimators? @pytest.mark.parametrize("y", INVALID_y_INPUT_TYPES) def test_y_invalid_type_raises_error(self, estimator_instance, y): """Test that invalid y input types raise error.""" with pytest.raises(TypeError, match=r"type"): estimator_instance.fit(y, fh=FH0) # todo: should these not be "negative scenarios", tested in test_all_estimators? @pytest.mark.parametrize("X", INVALID_X_INPUT_TYPES) def test_X_invalid_type_raises_error(self, estimator_instance, n_columns, X): """Test that invalid X input types raise error.""" y_train = _make_series(n_columns=n_columns) try: with pytest.raises(TypeError, match=r"type"): estimator_instance.fit(y_train, X, fh=FH0) except NotImplementedError as e: msg = str(e).lower() assert "exogenous" in msg # todo: refactor with scenarios. Need to override fh and scenario args for this. @pytest.mark.parametrize( "index_fh_comb", VALID_INDEX_FH_COMBINATIONS, ids=index_fh_comb_names ) @pytest.mark.parametrize("fh_int", TEST_FHS, ids=[f"fh={fh}" for fh in TEST_FHS]) def test_predict_time_index( self, estimator_instance, n_columns, index_fh_comb, fh_int ): """Check that predicted time index matches forecasting horizon. Tests predicted time index for predict and predict_residuals. """ index_type, fh_type, is_relative = index_fh_comb if fh_type == "timedelta": return None # todo: ensure check_estimator works with pytest.skip like below # pytest.skip( # "ForecastingHorizon with timedelta values " # "is currently experimental and not supported everywhere" # ) y_train = _make_series( n_columns=n_columns, index_type=index_type, n_timepoints=50 ) cutoff = get_cutoff(y_train, return_index=True) fh = _make_fh(cutoff, fh_int, fh_type, is_relative) try: estimator_instance.fit(y_train, fh=fh) y_pred = estimator_instance.predict() _assert_correct_pred_time_index(y_pred.index, cutoff, fh=fh_int) _assert_correct_columns(y_pred, y_train) y_test = _make_series( n_columns=n_columns, index_type=index_type, n_timepoints=len(y_pred) ) y_test.index = y_pred.index y_res = estimator_instance.predict_residuals(y_test) _assert_correct_pred_time_index(y_res.index, cutoff, fh=fh) except NotImplementedError: pass @pytest.mark.parametrize( "index_fh_comb", VALID_INDEX_FH_COMBINATIONS, ids=index_fh_comb_names ) @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) def test_predict_time_index_with_X( self, estimator_instance, n_columns, index_fh_comb, fh_int_oos ): """Check that predicted time index matches forecasting horizon.""" index_type, fh_type, is_relative = index_fh_comb if fh_type == "timedelta": return None # todo: ensure check_estimator works with pytest.skip like below # pytest.skip( # "ForecastingHorizon with timedelta values " # "is currently experimental and not supported everywhere" # ) z, X = make_forecasting_problem(index_type=index_type, make_X=True) # Some estimators may not support all time index types and fh types, hence we # need to catch NotImplementedErrors. y = _make_series(n_columns=n_columns, index_type=index_type) cutoff = get_cutoff(y.iloc[: len(y) // 2], return_index=True) fh = _make_fh(cutoff, fh_int_oos, fh_type, is_relative) y_train, _, X_train, X_test = temporal_train_test_split(y, X, fh=fh) try: estimator_instance.fit(y_train, X_train, fh=fh) y_pred = estimator_instance.predict(X=X_test) cutoff = get_cutoff(y_train, return_index=True) _assert_correct_pred_time_index(y_pred.index, cutoff, fh) _assert_correct_columns(y_pred, y_train) except NotImplementedError: pass @pytest.mark.parametrize( "index_fh_comb", VALID_INDEX_FH_COMBINATIONS, ids=index_fh_comb_names ) def test_predict_time_index_in_sample_full( self, estimator_instance, n_columns, index_fh_comb ): """Check that predicted time index equals fh for full in-sample predictions.""" index_type, fh_type, is_relative = index_fh_comb if fh_type == "timedelta": return None # todo: ensure check_estimator works with pytest.skip like below # pytest.skip( # "ForecastingHorizon with timedelta values " # "is currently experimental and not supported everywhere" # ) y_train = _make_series(n_columns=n_columns, index_type=index_type) cutoff = get_cutoff(y_train, return_index=True) steps = -np.arange(len(y_train)) fh = _make_fh(cutoff, steps, fh_type, is_relative) try: estimator_instance.fit(y_train, fh=fh) y_pred = estimator_instance.predict() _assert_correct_pred_time_index(y_pred.index, cutoff, fh) except NotImplementedError: pass def test_predict_series_name_preserved(self, estimator_instance): """Test that fit/predict preserves name attribute and type of pd.Series.""" # skip this test if estimator needs multivariate data # because then it does not take pd.Series at all if estimator_instance.get_tag("scitype:y") == "multivariate": return None y_train = _make_series(n_timepoints=15) y_train.name = "foo" estimator_instance.fit(y_train, fh=[1, 2, 3]) y_pred = estimator_instance.predict() _assert_correct_columns(y_pred, y_train) def _check_pred_ints( self, pred_ints: pd.DataFrame, y_train: pd.Series, y_pred: pd.Series, fh_int ): # make iterable if isinstance(pred_ints, pd.DataFrame): pred_ints = [pred_ints] for pred_int in pred_ints: # check column naming convention assert list(pred_int.columns) == ["lower", "upper"] # check time index cutoff = get_cutoff(y_train, return_index=True) _assert_correct_pred_time_index(pred_int.index, cutoff, fh_int) # check values assert np.all(pred_int["upper"] >= pred_int["lower"]) # check if errors are weakly monotonically increasing # pred_errors = y_pred - pred_int["lower"] # # assert pred_errors.is_mononotic_increasing # assert np.all( # pred_errors.values[1:].round(4) >= pred_errors.values[:-1].round(4) # ) @pytest.mark.parametrize("index_type", [None, "range"]) @pytest.mark.parametrize( "coverage", TEST_ALPHAS, ids=[f"alpha={a}" for a in TEST_ALPHAS] ) @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) def test_predict_interval( self, estimator_instance, n_columns, index_type, fh_int_oos, coverage ): """Check prediction intervals returned by predict. Arguments --------- estimator_instance : BaseEstimator class descendant instance, forecaster to test n_columns : number of columns for the test data index_type : index type of the test data fh_int_oos : forecasting horizon to test the forecaster at, all out of sample coverage: float, coverage at which to make prediction intervals Raises ------ AssertionError - if Forecaster test instance has "capability:pred_int" and pred. int are not returned correctly when asking predict for them AssertionError - if Forecaster test instance does not have "capability:pred_int" and no NotImplementedError is raised when asking predict for pred.int """ y_train = _make_series(n_columns=n_columns, index_type=index_type) estimator_instance.fit(y_train, fh=fh_int_oos) if estimator_instance.get_tag("capability:pred_int"): pred_ints = estimator_instance.predict_interval( fh_int_oos, coverage=coverage ) valid, msg, _ = check_is_mtype( pred_ints, mtype="pred_interval", scitype="Proba", return_metadata=True ) # type: ignore assert valid, msg else: with pytest.raises(NotImplementedError, match="prediction intervals"): estimator_instance.predict_interval(fh_int_oos, coverage=coverage) def _check_predict_quantiles( self, pred_quantiles: pd.DataFrame, y_train: pd.Series, fh, alpha ): # check if the input is a dataframe assert isinstance(pred_quantiles, pd.DataFrame) # check time index (also checks forecasting horizon is more than one element) cutoff = get_cutoff(y_train, return_index=True) _assert_correct_pred_time_index(pred_quantiles.index, cutoff, fh) # Forecasters where name of variables do not exist # In this cases y_train is series - the upper level in dataframe == 'Quantiles' if isinstance(y_train, pd.Series): expected = pd.MultiIndex.from_product([["Quantiles"], [alpha]]) else: # multiply variables with all alpha values expected = pd.MultiIndex.from_product([y_train.columns, [alpha]]) found = pred_quantiles.columns.to_flat_index() assert all(expected == found) if isinstance(alpha, list): # sorts the columns that correspond to alpha values pred_quantiles = pred_quantiles.reindex( columns=pred_quantiles.columns.reindex(sorted(alpha), level=1)[0] ) # check if values are monotonically increasing for var in pred_quantiles.columns.levels[0]: for index in range(len(pred_quantiles.index)): assert pred_quantiles[var].iloc[index].is_monotonic_increasing @pytest.mark.parametrize( "alpha", TEST_ALPHAS, ids=[f"alpha={a}" for a in TEST_ALPHAS] ) @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) def test_predict_quantiles(self, estimator_instance, n_columns, fh_int_oos, alpha): """Check prediction quantiles returned by predict. Arguments --------- Forecaster: BaseEstimator class descendant, forecaster to test fh: ForecastingHorizon, fh at which to test prediction alpha: float, alpha at which to make prediction intervals Raises ------ AssertionError - if Forecaster test instance has "capability:pred_int" and pred. int are not returned correctly when asking predict for them AssertionError - if Forecaster test instance does not have "capability:pred_int" and no NotImplementedError is raised when asking predict for pred.int """ y_train = _make_series(n_columns=n_columns) estimator_instance.fit(y_train, fh=fh_int_oos) try: quantiles = estimator_instance.predict_quantiles(fh=fh_int_oos, alpha=alpha) self._check_predict_quantiles(quantiles, y_train, fh_int_oos, alpha) except NotImplementedError: pass def test_pred_int_tag(self, estimator_instance): """Checks whether the capability:pred_int tag is correctly set. Arguments --------- estimator_instance : instance of BaseForecaster Raises ------ ValueError - if capability:pred_int is True, but neither predict_interval nor predict_quantiles have implemented content this can be by direct implementation of _predict_interval/_predict_quantiles or by defaulting to each other and/or _predict_proba """ f = estimator_instance # we skip the _DelegatedForecaster, since it implements delegation methods # which may look like the method is implemented, but in fact it is not if isinstance(f, _DelegatedForecaster): return None # check which methods are implemented implements_interval = f._has_implementation_of("_predict_interval") implements_quantiles = f._has_implementation_of("_predict_quantiles") implements_proba = f._has_implementation_of("_predict_proba") pred_int_works = implements_interval or implements_quantiles or implements_proba if not pred_int_works and f.get_class_tag("capability:pred_int", False): raise ValueError( f"{type(f).__name__} does not implement probabilistic forecasting, " 'but "capability:pred_int" flag has been set to True incorrectly. ' 'The flag "capability:pred_int" should instead be set to False.' ) if pred_int_works and not f.get_class_tag("capability:pred_int", False): raise ValueError( f"{type(f).__name__} does implement probabilistic forecasting, " 'but "capability:pred_int" flag has been set to False incorrectly. ' 'The flag "capability:pred_int" should instead be set to True.' ) @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) def test_score(self, estimator_instance, n_columns, fh_int_oos): """Check score method.""" y = _make_series(n_columns=n_columns) y_train, y_test = temporal_train_test_split(y) estimator_instance.fit(y_train, fh=fh_int_oos) y_pred = estimator_instance.predict() fh_idx = check_fh(fh_int_oos).to_indexer() # get zero based index expected = mean_absolute_percentage_error( y_test.iloc[fh_idx], y_pred, symmetric=False ) # compare expected score with actual score actual = estimator_instance.score(y_test.iloc[fh_idx], fh=fh_int_oos) assert actual == expected @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) def test_update_predict_single( self, estimator_instance, n_columns, fh_int_oos, update_params ): """Check correct time index of update-predict.""" y = _make_series(n_columns=n_columns) y_train, y_test = temporal_train_test_split(y) estimator_instance.fit(y_train, fh=fh_int_oos) y_pred = estimator_instance.update_predict_single( y_test, update_params=update_params ) cutoff = get_cutoff(y_train, return_index=True) _assert_correct_pred_time_index(y_pred.index, cutoff, fh_int_oos) _assert_correct_columns(y_pred, y_train) @pytest.mark.parametrize( "fh_int_oos", TEST_OOS_FHS, ids=[f"fh={fh}" for fh in TEST_OOS_FHS] ) @pytest.mark.parametrize("initial_window", TEST_WINDOW_LENGTHS_INT) def test_update_predict_predicted_index( self, estimator_instance, n_columns, fh_int_oos, step_length, initial_window, update_params, ): """Check predicted index in update_predict.""" y = _make_series(n_columns=n_columns, all_positive=True, index_type="datetime") y_train, y_test = temporal_train_test_split(y) cv = ExpandingWindowSplitter( fh=fh_int_oos, initial_window=initial_window, step_length=step_length, ) estimator_instance.fit(y_train, fh=fh_int_oos) y_pred = estimator_instance.update_predict( y_test, cv=cv, update_params=update_params ) assert isinstance(y_pred, (pd.Series, pd.DataFrame)) expected = _get_expected_index_for_update_predict( y_test, fh_int_oos, step_length, initial_window ) actual = y_pred.index np.testing.assert_array_equal(actual, expected) def test__y_and_cutoff(self, estimator_instance, n_columns): """Check cutoff and _y.""" # check _y and cutoff is None after construction f = estimator_instance y = _make_series(n_columns=n_columns) y_train, y_test = temporal_train_test_split(y, train_size=0.75) # check that _y and cutoff are empty when estimator is constructed assert f._y is None assert f.cutoff is None # check that _y and cutoff is updated during fit f.fit(y_train, fh=FH0) # assert isinstance(f._y, pd.Series) # action:uncomments the line above # why: fails for multivariates cause they are DataFrames # solution: look for a general solution for Series and DataFrames assert len(f._y) > 0 assert f.cutoff == y_train.index[-1] # check data pointers np.testing.assert_array_equal(f._y.index, y_train.index) # check that _y and cutoff is updated during update f.update(y_test, update_params=False) np.testing.assert_array_equal( f._y.index, np.append(y_train.index, y_test.index) ) assert f.cutoff == y_test.index[-1] def test__y_when_refitting(self, estimator_instance, n_columns): """Test that _y is updated when forecaster is refitted.""" y_train = _make_series(n_columns=n_columns) estimator_instance.fit(y_train, fh=FH0) estimator_instance.fit(y_train[3:], fh=FH0) # using np.squeeze to make the test flexible to shape differeces like # (50,) and (50, 1) assert np.all(np.squeeze(estimator_instance._y) == np.squeeze(y_train[3:])) def test_fh_attribute(self, estimator_instance, n_columns): """Check fh attribute and error handling if two different fh are passed.""" f = estimator_instance y_train = _make_series(n_columns=n_columns) f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) f.predict() np.testing.assert_array_equal(f.fh, FH0) f.predict(FH0) np.testing.assert_array_equal(f.fh, FH0) # if fh is not required in fit, test this again with fh passed late if not f.get_tag("requires-fh-in-fit"): f.fit(y_train) f.predict(FH0) np.testing.assert_array_equal(f.fh, FH0) def test_fh_not_passed_error_handling(self, estimator_instance, n_columns): """Check that not passing fh in fit/predict raises correct error.""" f = estimator_instance y_train = _make_series(n_columns=n_columns) if f.get_tag("requires-fh-in-fit"): # if fh required in fit, should raise error if not passed in fit with pytest.raises(ValueError): f.fit(y_train) else: # if fh not required in fit, should raise error if not passed until predict f.fit(y_train) with pytest.raises(ValueError): f.predict() def test_different_fh_in_fit_and_predict_error_handling( self, estimator_instance, n_columns ): """Check that fh different in fit and predict raises correct error.""" f = estimator_instance # if fh is not required in fit, can be overwritten, should not raise error if not f.get_tag("requires-fh-in-fit"): return None y_train = _make_series(n_columns=n_columns) f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) # changing fh during predict should raise error with pytest.raises(ValueError): f.predict(fh=FH0 + 1) def test_hierarchical_with_exogeneous(self, estimator_instance, n_columns): """Check that hierarchical forecasting works, also see bug #3961. Arguments --------- estimator_instance : instance of BaseForecaster n_columns : number of columns, of the endogeneous data y_train Raises ------ Exception - if fit/predict does not complete without error AssertionError - if forecast is not expected mtype pd_multiindex_hier, and does not have expected row and column indices """ from sktime.datatypes import check_is_mtype from sktime.datatypes._utilities import get_window from sktime.utils._testing.hierarchical import _make_hierarchical y_train = _make_hierarchical( hierarchy_levels=(2, 4), n_columns=n_columns, min_timepoints=22, max_timepoints=22, index_type="period", ) X = _make_hierarchical( hierarchy_levels=(2, 4), n_columns=2, min_timepoints=24, max_timepoints=24, index_type="period", ) X.columns = ["foo", "bar"] X_train = get_window(X, lag=2) X_test = get_window(X, window_length=2) fh = [1, 2] estimator_instance.fit(y=y_train, X=X_train, fh=fh) y_pred = estimator_instance.predict(X=X_test) assert isinstance(y_pred, pd.DataFrame) assert check_is_mtype(y_pred, "pd_multiindex_hier") msg = ( "returned columns after predict are not as expected. " f"expected: {y_train.columns}. Found: {y_pred.columns}" ) assert np.all(y_pred.columns == y_train.columns), msg # check consistency of forecast hierarchy with training data # some forecasters add __total levels, e.g., ReconcilerForecaster # if = not such a forecaster; else = levels are added if len(y_pred.index) == len(X_test.index): # the indices should be equal iff no levels are added assert np.all(y_pred.index == X_test.index) else: # if levels are added, all expected levels and times should be contained assert set(X_test.index).issubset(y_pred.index)
2d5ccf17197699d50e0b2fa57a4243eb7ca907aa
c609730a43596a2d3303f072fc97d9cf681fac7b
/cagey/carbuisness/main_currency_supply.py
ed84e5c37083ff51e2afabd4f2216adcf44c254f
[]
no_license
sinnettluo/ChenProject
5403311c0c7b78c484145e16d692abff00d2a110
0e33ecf1683afb22f1deb4bd54294c41aed8a46b
refs/heads/master
2023-03-22T23:48:08.430178
2020-09-02T15:05:02
2020-09-02T15:05:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
from scrapy.cmdline import execute import sys import os website = "currency_supply" sys.path.append(os.path.dirname(os.path.abspath(__file__))) execute(["scrapy", "crawl", website])
e59eaebb53a1dd0de0208e35718b32e92973811d
b7126fb70f72fea0e7bba6fe2fef6925302ef07b
/tceh5_opp/self_work/task1.py
735da977c22bdb199e6944c42bfec6b0ac104bb8
[]
no_license
duk1edev/tceh
79cd909c5a6221a2ca77d342b917462345140faa
21649d42488883beb58d709f4a9d1a05c75d2900
refs/heads/master
2021-07-12T10:20:22.330005
2020-04-29T09:24:08
2020-04-29T09:24:08
239,434,484
0
0
null
2021-03-20T03:38:26
2020-02-10T05:25:33
Python
UTF-8
Python
false
false
1,781
py
# 1. Создать класс корзина у кторого можно выставить разную вмесительность # для разных обьектов. В обект можн опомещать разные # 2. Создать класс - пакет в кторый тожно можн опомещать предмет у него тоже есть вместимость # 3. Любой класс что бы можно было помещать в корзину и в пакет # 4. Если вместимоть не достаточна сказать, что обьект поместить нельзя class Trash: def __init__(self, set_size): self.size = set_size def get_obj(self, obj): if obj.size > self.size: print('You could not put this stuff({} size) to that trash, \n' 'trash size is {}'.format(obj.size, self.size)) else: print('You put the {} size {} to the trash'.format(obj, obj.size)) class Packet(Trash): def __init__(self, set_size): self.size = set_size def get_obj(self, obj): if obj.size > self.size: print('You could not put this stuff({} size) to that packet, \n' 'packet size is {}'.format(obj.size, self.size)) else: print('You put the {} size {} to the packet'.format(obj, obj.size)) class SomeStuff: def __init__(self, set_size): self.size = set_size small_trash = Trash(5) middle_trash = Trash(10) big_trash = Trash(50) small_packet = Packet(3) middle_packet = Packet(5) big_packet = Packet(10) apple = SomeStuff(25) print(apple.size) garbage = SomeStuff(50) small_trash.get_obj(apple) big_trash.get_obj(garbage) big_packet.get_obj(garbage)
35614a4b8e4a335c54fd174d3cf65ff29c823483
db9ff8accaa4d8d4a96d3f9122c0fdc5e83ea2a5
/test/test_price_quantity.py
12635c2d23b1dcacf3ca517e059fcaba37c32bd5
[]
no_license
agtt/ebay-openapi-inventory
4754cdc8b6765acdb34f6b8f89b017ccbc6b1d2b
d990c26f16e811431892ac6401c73c4599c2d414
refs/heads/master
2023-06-17T10:53:43.204075
2021-07-14T18:32:38
2021-07-14T18:32:38
386,039,734
0
0
null
null
null
null
UTF-8
Python
false
false
1,200
py
""" Inventory API The Inventory API is used to create and manage inventory, and then to publish and manage this inventory on an eBay marketplace. There are also methods in this API that will convert eligible, active eBay listings into the Inventory API model. # noqa: E501 The version of the OpenAPI document: 1.13.0 Generated by: https://openapi-generator.tech """ import sys import unittest import openapi_client from openapi_client.model.offer_price_quantity import OfferPriceQuantity from openapi_client.model.ship_to_location_availability import ShipToLocationAvailability globals()['OfferPriceQuantity'] = OfferPriceQuantity globals()['ShipToLocationAvailability'] = ShipToLocationAvailability from openapi_client.model.price_quantity import PriceQuantity class TestPriceQuantity(unittest.TestCase): """PriceQuantity unit test stubs""" def setUp(self): pass def tearDown(self): pass def testPriceQuantity(self): """Test PriceQuantity""" # FIXME: construct object with mandatory attributes with example values # model = PriceQuantity() # noqa: E501 pass if __name__ == '__main__': unittest.main()
bcb87b977ae9f3dda477d957cc6ee78f8f5cdf2e
fbf6fcd3720d1a5f1f01f91c7ecad68f1b296924
/tools/test_modules.py
85199d0138cfbbde70f10f93fa006cc06675053a
[ "MIT" ]
permissive
uvavision/DrillDown
9602ddabd712d14df10e7026db3d7e62e7e4edba
ad0ef773b3af0859e48ea302f4f1d87215b26cef
refs/heads/master
2022-04-28T21:42:06.366515
2022-04-15T12:14:25
2022-04-15T12:14:25
214,220,415
11
4
null
null
null
null
UTF-8
Python
false
false
14,358
py
#!/usr/bin/env python import _init_paths import os, sys, cv2, json import math, PIL, cairo import numpy as np import pickle, random import os.path as osp from time import time from config import get_config from copy import deepcopy from glob import glob import matplotlib.pyplot as plt from vocab import Vocabulary from utils import * ####################################################################### from modules.text_encoder import TextEncoder from modules.region_encoder import RegionEncoder from modules.image_encoder import ImageEncoder from modules.context_encoder import ContextEncoder ####################################################################### from modules.attention import Attention from modules.tirg_rnn import TIRGRNN from modules.grounding_loss import GroundingLoss ####################################################################### from modules.image_model import ImageModel from modules.region_model import RegionModel from modules.paragraph_model import ParagraphModel from modules.image_hred_model import ImageHREDModel from modules.region_grounding_model import RegionGroundingModel ####################################################################### import torch, torchtext from torch.utils.data import Dataset from torch.utils.data import DataLoader from datasets.vg import vg from datasets.loader import region_loader, region_collate_fn from datasets.loader import caption_loader, caption_collate_fn from datasets.loader import paragraph_loader, paragraph_collate_fn def test_attention(config): attention = Attention(config, config.attn_type, 1024, 1024) h_s = torch.randn(7, 36, 1024) h_t = torch.randn(7, 5, 1024) m_s = torch.randn(7, 36).random_(0, 2) context, scores = attention(h_t, h_s, m_s) print(context.size(), scores.size()) def test_tirg_rnn(config): net = TIRGRNN(config, config.n_feature_dim, config.n_feature_dim, config.n_rnn_layers, dropout=0.1) input_var = np.random.randn(2, 3, config.n_feature_dim) prev_hidden = np.random.randn(config.n_rnn_layers, 2, config.n_feature_dim) input_var_th = torch.from_numpy(input_var).float() prev_hidden_th = torch.from_numpy(prev_hidden).float() last_layer_hiddens, last_step_hiddens = net(input_var_th, prev_hidden_th) print('last_layer_hiddens.size()', last_layer_hiddens.size()) print('last_step_hiddens.size()', last_step_hiddens.size()) def test_region_encoder(config): db = vg(config, 'test') loaddb = region_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=region_collate_fn) net = RegionEncoder(config) for cnt, batched in enumerate(loader): region_feats = batched['region_feats'].float() region_clses = batched['region_clses'].long() print('region_feats', region_feats.size()) print('region_clses', region_clses.size()) img_feats, masked_feats, mm = net(region_feats, region_clses) print('img_feats', img_feats.size()) if config.subspace_alignment_mode > 0: print('masked_feats', masked_feats.size()) print('mm', mm.size()) break def test_image_encoder(config): db = vg(config, 'test') loaddb = caption_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=caption_collate_fn) net = ImageEncoder(config) for cnt, batched in enumerate(loader): images = batched['images'].float() print('images', images.size()) feats = net(images) print('features', feats.size()) break def test_text_encoder(config): db = vg(config, 'test') loaddb = region_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=region_collate_fn) net = TextEncoder(config) for cnt, batched in enumerate(loader): sent_inds = batched['sent_inds'].long() sent_msks = batched['sent_msks'].float() bsize, slen, fsize = sent_inds.size() print('sent_inds', sent_inds.size()) print('sent_msks', sent_msks.size()) f1, f2, h = net(sent_inds.view(bsize*slen, fsize), sent_msks.view(bsize*slen, fsize)) print(f1.size(), f2.size(), h.size()) break def test_image_model(config): db = vg(config, 'test') loaddb = caption_loader(db) loader = DataLoader(loaddb, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=caption_collate_fn) net = ImageModel(config) for cnt, batched in enumerate(loader): images = batched['images'].float() sent_inds = batched['sent_inds'].long() sent_msks = batched['sent_msks'].long() img_feats, txt_feats = net(sent_inds, sent_msks, None, images) print('images', images.size()) print('img_feats', img_feats.size()) print('txt_feats', txt_feats.size()) break def test_grounding_loss(config): db = vg(config, 'test') loaddb = region_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=region_collate_fn) net = RegionModel(config) criterion = GroundingLoss(config) for cnt, batched in enumerate(loader): scene_inds = batched['scene_inds'].long()[:config.batch_size] sent_inds = batched['sent_inds'].long()[:config.batch_size] sent_msks = batched['sent_msks'].long()[:config.batch_size] region_feats = batched['region_feats'].float()[:config.batch_size] region_clses = batched['region_clses'].long()[:config.batch_size] region_masks = batched['region_masks'].float()[:config.batch_size] src_region_feats = batched['region_feats'].float()[config.batch_size:2*config.batch_size] src_region_clses = batched['region_clses'].long()[config.batch_size:2*config.batch_size] src_region_masks = batched['region_masks'].float()[config.batch_size:2*config.batch_size] img_feats, masked_feats, txt_feats, subspace_masks, sample_logits, sample_indices = \ net(scene_inds, sent_inds, sent_msks, src_region_feats, src_region_clses, src_region_masks, region_feats, region_clses, region_masks, config.explore_mode) masked_feats = img_feats sim1 = criterion.compute_batch_mutual_similarity(masked_feats, region_masks, txt_feats) sim2 = criterion.debug_compute_batch_mutual_similarity(masked_feats, region_masks, txt_feats) print('sim1', sim1.size()) print('sim2', sim2.size()) print('diff', torch.sum(torch.abs(sim1-sim2))) txt_masks = txt_feats.new_ones(txt_feats.size(0), txt_feats.size(1)) losses = criterion.forward_loss(masked_feats, region_masks, txt_feats, txt_masks, config.loss_reduction_mode) print('losses', losses.size()) break def test_paragraph_model(config): db = vg(config, 'test') loaddb = paragraph_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=paragraph_collate_fn) net = ParagraphModel(config) net.train() for name, param in net.named_parameters(): print(name, param.size()) for cnt, batched in enumerate(loader): start = time() scene_inds = batched['scene_inds'].long()[:config.batch_size] sent_inds = batched['sent_inds'].long()[:config.batch_size] sent_msks = batched['sent_msks'].long()[:config.batch_size] region_feats = batched['region_feats'].float()[:config.batch_size] region_clses = batched['region_clses'].long()[:config.batch_size] region_masks = batched['region_masks'].float()[:config.batch_size] img_feats, txt_feats = net(sent_inds, sent_msks, region_feats, region_clses, region_masks) losses = net.loss(img_feats, region_masks, txt_feats.unsqueeze(1)) print('losses', losses.size(), torch.mean(losses)) metrics, cache_results = net.evaluate(img_feats, region_masks, txt_feats.unsqueeze(1)) print('metrics', metrics) print('sent_inds', sent_inds.size()) print('sent_msks', sent_msks.size()) print('region_feats', region_feats.size()) print('region_clses', region_clses.size()) print('region_masks', region_masks.size()) print('img_feats', img_feats.size()) print('txt_feats', txt_feats.size()) print('time:', time() - start) break def test_region_model(config): db = vg(config, 'test') loaddb = region_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=region_collate_fn) net = RegionModel(config) net.train() for name, param in net.named_parameters(): print(name, param.size()) for cnt, batched in enumerate(loader): start = time() scene_inds = batched['scene_inds'].long()[:config.batch_size] sent_inds = batched['sent_inds'].long()[:config.batch_size] sent_msks = batched['sent_msks'].long()[:config.batch_size] region_feats = batched['region_feats'].float()[:config.batch_size] region_clses = batched['region_clses'].long()[:config.batch_size] region_masks = batched['region_masks'].float()[:config.batch_size] src_region_feats = batched['region_feats'].float()[config.batch_size:2*config.batch_size] src_region_clses = batched['region_clses'].long()[config.batch_size:2*config.batch_size] src_region_masks = batched['region_masks'].float()[config.batch_size:2*config.batch_size] img_feats, masked_feats, txt_feats, subspace_masks, sample_logits, sample_indices = \ net(scene_inds, sent_inds, sent_msks, src_region_feats, src_region_clses, src_region_masks, region_feats, region_clses, region_masks, config.explore_mode) print('img_feats', img_feats.size()) print('txt_feats', txt_feats.size()) if config.subspace_alignment_mode > 0: print('masked_feats', masked_feats.size()) print('subspace_masks', subspace_masks.size()) if config.instance_dim > 1: print('sample_logits', sample_logits.size()) print('sample_indices', sample_indices.size()) print('time:', time() - start) break def test_image_hred_model(config): db = vg(config, 'train') loaddb = caption_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=caption_collate_fn) net = ImageHREDModel(config) net.train() for name, param in net.named_parameters(): print(name, param.size()) for cnt, batched in enumerate(loader): images = batched['images'].float() sent_inds = batched['sent_inds'].long() sent_msks = batched['sent_msks'].long() img_feats, txt_feats = net(sent_inds, sent_msks, None, images) print('images', images.size()) print('img_feats', img_feats.size()) print('txt_feats', txt_feats.size()) loss = net.forward_loss(img_feats, txt_feats) print(loss) metrics, caches = net.evaluate(img_feats, txt_feats) print(metrics) break def test_region_grounding_model(config): db = vg(config, 'test') loaddb = region_loader(db) loader = DataLoader(loaddb, batch_size=3*config.batch_size, shuffle=True, num_workers=config.num_workers, collate_fn=region_collate_fn) net = RegionGroundingModel(config) if config.pretrained is not None: pretrained_path = osp.join(config.data_dir, 'caches/region_grounding_ckpts', config.pretrained+'.pkl') states = torch.load(pretrained_path, map_location=lambda storage, loc: storage) net.load_state_dict(states['state_dict'], strict=False) net.train() for name, param in net.named_parameters(): print(name, param.size()) for cnt, batched in enumerate(loader): scene_inds = batched['scene_inds'].long() sent_inds = batched['sent_inds'].long() sent_msks = batched['sent_msks'].long() region_feats = batched['region_feats'].float() region_clses = batched['region_clses'].long() region_masks = batched['region_masks'].float() img_feats, masked_feats, txt_feats, subspace_masks, sample_logits, sample_indices = \ net(scene_inds, sent_inds, sent_msks, None, None, None, region_feats, region_clses, region_masks, config.explore_mode) if config.instance_dim > 1: print(sample_indices[0]) # print('sample_logits', sample_logits.size()) # print('sample_indices', sample_indices.size()) txt_masks = txt_feats.new_ones(txt_feats.size(0), txt_feats.size(1)) losses = net.final_loss(img_feats, masked_feats, region_masks, txt_feats, txt_masks, sample_logits, sample_indices) print('losses', losses.size(), torch.mean(losses)) if config.subspace_alignment_mode > 0: metrics, cache_results = net.evaluate(masked_feats, region_masks, txt_feats) else: metrics, cache_results = net.evaluate(img_feats, region_masks, txt_feats) print('metrics', metrics) print('txt_feats', txt_feats.size()) print('img_feats', img_feats.size()) break if __name__ == '__main__': config, unparsed = get_config() np.random.seed(config.seed) random.seed(config.seed) torch.manual_seed(config.seed) if(config.cuda): torch.cuda.manual_seed_all(config.seed) prepare_directories(config) # test_attention(config) # test_softmax_rnn(config) # test_image_model(config) # test_region_model(config) # test_region_grounding_model(config) test_paragraph_model(config) # test_image_hred_model(config) # test_region_encoder(config) # test_image_encoder(config) # test_text_encoder(config) # test_tirg_rnn(config) # test_grounding_loss(config)
49ad24efef53d23c86760ee96c78f87e3dbe2cf5
7200d065030f2daf00a5249e9e4fe569438c78c7
/scrapers/dizilab_scraper.py
76713de8e84af6b17220f3eaed0295e7b7a714f8
[]
no_license
matt2005/salts
c765b037be1a2bb0e486ae9b30eceaf2b7c3bf14
5f71bc71e7b0b480f40d948d5568604dd181b6ad
refs/heads/master
2020-12-31T04:16:45.574380
2015-12-07T22:57:31
2015-12-07T22:57:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,957
py
""" SALTS XBMC Addon Copyright (C) 2014 tknorris This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import scraper import re import urlparse import urllib from salts_lib import kodi from salts_lib import dom_parser from salts_lib.constants import VIDEO_TYPES from salts_lib.constants import FORCE_NO_MATCH BASE_URL = 'http://dizilab.com' class Dizilab_Scraper(scraper.Scraper): base_url = BASE_URL def __init__(self, timeout=scraper.DEFAULT_TIMEOUT): self.timeout = timeout self.base_url = kodi.get_setting('%s-base_url' % (self.get_name())) @classmethod def provides(cls): return frozenset([VIDEO_TYPES.TVSHOW, VIDEO_TYPES.EPISODE]) @classmethod def get_name(cls): return 'Dizilab' def resolve_link(self, link): return link def format_source_label(self, item): label = '[%s] %s ' % (item['quality'], item['host']) return label def get_sources(self, video): source_url = self.get_url(video) hosters = [] if source_url and source_url != FORCE_NO_MATCH: url = urlparse.urljoin(self.base_url, source_url) html = self._http_get(url, cache_limit=.5) for match in re.finditer('{\s*file\s*:\s*"([^"]+)', html): stream_url = match.group(1) if 'dizlab' in stream_url.lower(): continue hoster = {'multi-part': False, 'host': self._get_direct_hostname(stream_url), 'class': self, 'quality': self._gv_get_quality(stream_url), 'views': None, 'rating': None, 'url': stream_url, 'direct': True} hosters.append(hoster) return hosters def get_url(self, video): return super(Dizilab_Scraper, self)._default_get_url(video) def _get_episode_url(self, show_url, video): episode_pattern = 'class="episode"\s+href="([^"]+/sezon-%s/bolum-%s)"' % (video.season, video.episode) title_pattern = 'class="episode-name"\s+href="(?P<url>[^"]+)">(?P<title>[^<]+)' return super(Dizilab_Scraper, self)._default_get_episode_url(show_url, video, episode_pattern, title_pattern) def search(self, video_type, title, year): search_url = urlparse.urljoin(self.base_url, '/arsiv?limit=&tur=&orderby=&ulke=&order=&yil=&dizi_adi=') search_url += urllib.quote_plus(title) html = self._http_get(search_url, cache_limit=8) results = [] for item in dom_parser.parse_dom(html, 'div', {'class': 'tv-series-single'}): try: url = re.search('href="([^"]+)', item).group(1) except: url = '' try: match_year = re.search('<span>\s*(\d{4})\s*</span>', item).group(1) except: match_year = '' try: match_title = dom_parser.parse_dom(item, 'a', {'class': 'title'}) match_title = re.search('([^>]+)$', match_title[0]).group(1) match_title = match_title.strip() except: match_title = '' if url and match_title and (not year or not match_year or year == match_year): result = {'url': self._pathify_url(url), 'title': match_title, 'year': ''} results.append(result) return results
5804b448d279b66e3077be6b2016ef4e6230d463
46279163a543cd8820bdc38133404d79e787c5d2
/benchmarks/tensorexpr/reduction.py
bc3e4e158a1750a0c9732c91297461f01ff5126b
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
erwincoumans/pytorch
31738b65e7b998bfdc28d0e8afa7dadeeda81a08
ae9f39eb580c4d92157236d64548b055f71cf14b
refs/heads/master
2023-01-23T10:27:33.628897
2020-12-06T01:22:00
2020-12-06T01:23:40
318,930,000
5
1
NOASSERTION
2020-12-06T01:58:57
2020-12-06T01:58:56
null
UTF-8
Python
false
false
5,706
py
from . import benchmark class ReduceBench(benchmark.Benchmark): def __init__(self, mode, device, dtype, case, M, N, K): super().__init__(mode, device, dtype) self.case = case self.M = M self.N = N self.K = K self.inputs = [self.randn( [M, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad )] if case == "row": self.dims = [1, 2] elif case == "mid": self.dims = [0, 2] elif case == "col": self.dims = [0, 1] else: raise ValueError("invalid case: %s" % case) def forward(self, inputs): x = self.add(inputs, 0.001) y = self.sum(x, self.dims) return y def config(self): return [self.M, self.N, self.K] @staticmethod def default_configs(): return [ # [512, 512, 512], [512, 64, 512], ] @staticmethod def module(): return "reduce" def memory_workload(self): if self.mode == "fwd": sol_count = 1 algorithmic_count = 1 else: sol_count = (1) + (1) algorithmic_count = 1 + 1 buffer_size = self.M * self.N * self.K return { "sol": buffer_size * sol_count, "algorithmic": buffer_size * algorithmic_count, } class ReduceRowBench(ReduceBench): def __init__(self, mode, device, dtype, M, N, K): super(ReduceRowBench, self).__init__(mode, device, dtype, "row", M, N, K) @staticmethod def module(): return "reduce_row" class ReduceMidBench(ReduceBench): def __init__(self, mode, device, dtype, M, N, K): super(ReduceMidBench, self).__init__(mode, device, dtype, "mid", M, N, K) @staticmethod def module(): return "reduce_mid" class ReduceColBench(ReduceBench): def __init__(self, mode, device, dtype, M, N, K): super(ReduceColBench, self).__init__(mode, device, dtype, "col", M, N, K) @staticmethod def module(): return "reduce_col" class Reduce2DBench(benchmark.Benchmark): ''' A benchmark class to validate 2 dimensional reduction performance. Only a simple add is fused to induce the fuser and isolate reduction perf. ''' def __init__(self, mode, device, dtype, red_dim, dim0, dim1): super().__init__(mode, device, dtype) self.red_dim = red_dim self.dim0 = dim0 self.dim1 = dim1 self.inputs = [self.randn( [dim0, dim1], device=device, dtype=dtype, requires_grad=self.requires_grad )] if red_dim != 0 and red_dim != 1 : raise ValueError("invalid reduction dimension: {}".format(red_dim)) def forward(self, inputs): x = self.add(inputs, 0.001) y = self.sum(x, [self.red_dim]) return y def config(self): return [self.red_dim, self.dim0, self.dim1] @staticmethod def default_configs(): return [ [1, 640, 524288], ] @staticmethod def module(): return "reduce2d" @staticmethod def input_iterable() : return True def memory_workload(self): assert self.mode == "fwd", "Only the forward operation is modeled!" buffer_size = self.dim0 * self.dim1 if self.red_dim == 0 : buffer_size += self.dim1 else : buffer_size += self.dim0 return { "sol": buffer_size, "algorithmic": buffer_size, } class Reduce2DInnerBench(Reduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super(Reduce2DInnerBench, self).__init__(mode, device, dtype, 1, dim0, dim1) @staticmethod def module(): return "reduce2d_inner" class Reduce2DOuterBench(Reduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super(Reduce2DOuterBench, self).__init__(mode, device, dtype, 0, dim0, dim1) @staticmethod def module(): return "reduce2d_outer" benchmark.register_benchmark_class(ReduceRowBench) benchmark.register_benchmark_class(ReduceMidBench) benchmark.register_benchmark_class(ReduceColBench) benchmark.register_benchmark_class(Reduce2DInnerBench) benchmark.register_benchmark_class(Reduce2DOuterBench) class DynamicReduce2DBench(benchmark.DynamicShape, Reduce2DBench): ''' A benchmark class to validate 2 dimensional reduction performance. Only a simple add is fused to induce the fuser and isolate reduction perf. ''' def __init__(self, mode, device, dtype, red_dim, dim0, dim1): benchmark.DynamicShape.__init__(self) Reduce2DBench.__init__(self, mode, device, dtype, red_dim, dim0, dim1) def instantiate_input(self): dim0, dim1 = self.rand_shape([self.dim0, self.dim1]) self.inputs = [self.randn( [dim0, dim1], device=self.device, dtype=self.dtype, requires_grad=self.requires_grad )] @staticmethod def module(): return "dynamicreduce2d" class DynamicReduce2DInnerBench(DynamicReduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super().__init__(mode, device, dtype, 1, dim0, dim1) @staticmethod def module(): return "reduce2d_dynamic_inner" class DynamicReduce2DOuterBench(DynamicReduce2DBench): def __init__(self, mode, device, dtype, dim0, dim1): super().__init__(mode, device, dtype, 0, dim0, dim1) @staticmethod def module(): return "reduce2d_dynamic_outer" benchmark.register_benchmark_class(DynamicReduce2DInnerBench) benchmark.register_benchmark_class(DynamicReduce2DOuterBench)
084d8ca89f293bf5398b5ab07d7076af43a5fb8d
590a0c3a7254b8dac85ab18072dbf766aca7af93
/Python-Exercise-100/python-exercise-example07.py
01777ba168c7f8e9c5ee7615fd7642d9f407aaf6
[ "MIT" ]
permissive
MiracleWong/PythonPractice
90c66d29a9cdf0200d3dbac946d05f12dd856e91
40aecd84045ad18f6aff95d5b8be8e352ca0a726
refs/heads/master
2021-08-15T17:19:51.543013
2021-06-15T03:59:51
2021-06-15T03:59:51
98,256,005
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- # 地址:http://www.runoob.com/python/python-exercise-example7.html a = [1, 2, 4, 5, 5, 6, 7, 7] b = a[:] print(b)
69bef76ac68fc60f87f5f5e549027b0bcfae66f7
91a2ecfaf5dc6c917ec2fda31f56291103f68ceb
/tests/protos/test_ctc_loss.py
6da44120062bdda6381ed74e2c0f8225fffc8ae4
[ "BSD-3-Clause" ]
permissive
MyrtleSoftware/myrtlespeech
635d1d16d1bd60fb07a4d30edbf9acb61786c13f
8522048fd37744ffa06827a0cbd202b839a15453
refs/heads/master
2021-07-16T14:55:00.479967
2020-03-20T14:33:15
2020-03-20T14:33:15
192,501,300
12
1
NOASSERTION
2020-03-20T14:33:17
2019-06-18T08:44:33
Python
UTF-8
Python
false
false
1,042
py
from typing import Dict from typing import Optional from typing import Tuple from typing import Union import hypothesis.strategies as st from myrtlespeech.protos import ctc_loss_pb2 from tests.protos.utils import all_fields_set # Fixtures and Strategies ----------------------------------------------------- @st.composite def ctc_losses( draw, return_kwargs: bool = False, alphabet_len: Optional[int] = None ) -> Union[ st.SearchStrategy[ctc_loss_pb2.CTCLoss], st.SearchStrategy[Tuple[ctc_loss_pb2.CTCLoss, Dict]], ]: """Returns a SearchStrategy for CTCLoss plus maybe the kwargs.""" kwargs = {} end = 1000 if alphabet_len is not None: end = max(0, alphabet_len - 1) kwargs["blank_index"] = draw(st.integers(0, end)) kwargs["reduction"] = draw( st.sampled_from(ctc_loss_pb2.CTCLoss.REDUCTION.values()) ) all_fields_set(ctc_loss_pb2.CTCLoss, kwargs) ctc_loss = ctc_loss_pb2.CTCLoss(**kwargs) if not return_kwargs: return ctc_loss return ctc_loss, kwargs
6b51b24a86d97f35f69a59c8dbc0e913bf0876c9
cdf9ba7b329d66a1b664d505332d4a441f6bf075
/benchmarks/SimResults/_bigLittle_hrrs_spec_tugberk_pinned/cmp_mcf/power.py
ba961d5f8f3483e208416648d0c7e4f2c4795df5
[ "MIT" ]
permissive
TugberkArkose/MLScheduler
3247c0bbc11c09261a3bad777f3940a465e5f15a
e493b6cbf7b9d29a2c9300d7dd6f0c2f102e4061
refs/heads/master
2021-03-27T19:11:44.207818
2020-03-19T11:32:08
2020-03-19T11:32:08
92,518,861
0
0
null
null
null
null
UTF-8
Python
false
false
68,592
py
power = {'BUSES': {'Area': 1.33155, 'Bus/Area': 1.33155, 'Bus/Gate Leakage': 0.00662954, 'Bus/Peak Dynamic': 0.0, 'Bus/Runtime Dynamic': 0.0, 'Bus/Subthreshold Leakage': 0.0691322, 'Bus/Subthreshold Leakage with power gating': 0.0259246, 'Gate Leakage': 0.00662954, 'Peak Dynamic': 0.0, 'Runtime Dynamic': 0.0, 'Subthreshold Leakage': 0.0691322, 'Subthreshold Leakage with power gating': 0.0259246}, 'Core': [{'Area': 32.6082, 'Execution Unit/Area': 8.2042, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.122718, 'Execution Unit/Instruction Scheduler/Area': 2.17927, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.328073, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.00115349, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.20978, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.115405, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.017004, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00962066, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00730101, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 1.00996, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00529112, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 2.07911, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.19984, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0800117, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0455351, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 4.84781, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.841232, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.000856399, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.55892, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.114614, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.0178624, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00897339, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.429859, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.114878, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.0641291, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.114073, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 5.08077, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00418352, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.030252, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0309397, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.030252, 'Execution Unit/Register Files/Runtime Dynamic': 0.0351232, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0442632, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00607074, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0731013, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.213101, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.0920413, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0345155, 'Execution Unit/Runtime Dynamic': 1.28615, 'Execution Unit/Subthreshold Leakage': 1.83518, 'Execution Unit/Subthreshold Leakage with power gating': 0.709678, 'Gate Leakage': 0.372997, 'Instruction Fetch Unit/Area': 5.86007, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000506958, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000506958, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000440908, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000170326, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000444452, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00189928, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00488396, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0590479, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0297431, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.89192, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0581824, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.101021, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 4.20366, 'Instruction Fetch Unit/Runtime Dynamic': 0.19573, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932587, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.408542, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0379509, 'L2/Runtime Dynamic': 0.00918222, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80969, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.39798, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.571277, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0351387, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0375566, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0375566, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.57605, 'Load Store Unit/Runtime Dynamic': 0.79405, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0926082, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.185217, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591622, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283406, 'Memory Management Unit/Area': 0.434579, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0328669, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0334364, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00813591, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.117632, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.00953991, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.332951, 'Memory Management Unit/Runtime Dynamic': 0.0429763, 'Memory Management Unit/Subthreshold Leakage': 0.0769113, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0399462, 'Peak Dynamic': 16.7931, 'Renaming Unit/Area': 0.369768, 'Renaming Unit/FP Front End RAT/Area': 0.168486, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00489731, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 3.33511, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0437281, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.024925, 'Renaming Unit/Free List/Area': 0.0414755, 'Renaming Unit/Free List/Gate Leakage': 4.15911e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0401324, 'Renaming Unit/Free List/Runtime Dynamic': 0.00590118, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000670426, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000377987, 'Renaming Unit/Gate Leakage': 0.00863632, 'Renaming Unit/Int Front End RAT/Area': 0.114751, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.00038343, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.86945, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0622644, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00611897, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00348781, 'Renaming Unit/Peak Dynamic': 4.56169, 'Renaming Unit/Runtime Dynamic': 0.0681656, 'Renaming Unit/Subthreshold Leakage': 0.070483, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0362779, 'Runtime Dynamic': 2.39625, 'Subthreshold Leakage': 6.21877, 'Subthreshold Leakage with power gating': 2.58311}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.0870089, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.140342, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.07084, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.298191, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.0995127, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.01747, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00364955, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0263907, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0269906, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0263907, 'Execution Unit/Register Files/Runtime Dynamic': 0.0306402, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0555979, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.162075, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.09897, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000458365, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000458365, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000402941, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000158012, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000387723, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00170739, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00426236, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0259468, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.65044, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.050756, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.0881269, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 3.94905, 'Instruction Fetch Unit/Runtime Dynamic': 0.170799, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0321542, 'L2/Runtime Dynamic': 0.007576, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.24982, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.497683, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0327632, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0327632, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.40453, 'Load Store Unit/Runtime Dynamic': 0.692023, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0807884, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.161577, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0286721, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0291546, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.102618, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.00832216, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.307981, 'Memory Management Unit/Runtime Dynamic': 0.0374767, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.3007, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0039256, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0458316, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0497572, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.0566, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.0869202, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.140199, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0707678, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.297887, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.0994127, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.01728, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00364582, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.0263642, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0269631, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.0263642, 'Execution Unit/Register Files/Runtime Dynamic': 0.0306089, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.055542, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.16191, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.09847, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000457936, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000457936, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000402566, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000157866, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000387327, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00170576, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00425829, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0259203, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.64875, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0507027, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.0880371, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 3.94729, 'Instruction Fetch Unit/Runtime Dynamic': 0.170624, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0321237, 'L2/Runtime Dynamic': 0.00756408, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.24879, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.497168, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0327299, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0327298, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.40335, 'Load Store Unit/Runtime Dynamic': 0.691309, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0807063, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.161412, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0286429, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.0291248, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.102513, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.00831343, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.307826, 'Memory Management Unit/Runtime Dynamic': 0.0374383, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.2973, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.0039216, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0457848, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0497064, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.05511, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}, {'Area': 32.0201, 'Execution Unit/Area': 7.68434, 'Execution Unit/Complex ALUs/Area': 0.235435, 'Execution Unit/Complex ALUs/Gate Leakage': 0.0132646, 'Execution Unit/Complex ALUs/Peak Dynamic': 0.0, 'Execution Unit/Complex ALUs/Runtime Dynamic': 0.202689, 'Execution Unit/Complex ALUs/Subthreshold Leakage': 0.20111, 'Execution Unit/Complex ALUs/Subthreshold Leakage with power gating': 0.0754163, 'Execution Unit/Floating Point Units/Area': 4.6585, 'Execution Unit/Floating Point Units/Gate Leakage': 0.0656156, 'Execution Unit/Floating Point Units/Peak Dynamic': 0.0, 'Execution Unit/Floating Point Units/Runtime Dynamic': 0.304033, 'Execution Unit/Floating Point Units/Subthreshold Leakage': 0.994829, 'Execution Unit/Floating Point Units/Subthreshold Leakage with power gating': 0.373061, 'Execution Unit/Gate Leakage': 0.120359, 'Execution Unit/Instruction Scheduler/Area': 1.66526, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Area': 0.275653, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Gate Leakage': 0.000977433, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Peak Dynamic': 1.04181, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Runtime Dynamic': 0.0868907, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage': 0.0143453, 'Execution Unit/Instruction Scheduler/FP Instruction Window/Subthreshold Leakage with power gating': 0.00810519, 'Execution Unit/Instruction Scheduler/Gate Leakage': 0.00568913, 'Execution Unit/Instruction Scheduler/Instruction Window/Area': 0.805223, 'Execution Unit/Instruction Scheduler/Instruction Window/Gate Leakage': 0.00414562, 'Execution Unit/Instruction Scheduler/Instruction Window/Peak Dynamic': 1.6763, 'Execution Unit/Instruction Scheduler/Instruction Window/Runtime Dynamic': 0.140151, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage': 0.0625755, 'Execution Unit/Instruction Scheduler/Instruction Window/Subthreshold Leakage with power gating': 0.0355964, 'Execution Unit/Instruction Scheduler/Peak Dynamic': 3.82262, 'Execution Unit/Instruction Scheduler/ROB/Area': 0.584388, 'Execution Unit/Instruction Scheduler/ROB/Gate Leakage': 0.00056608, 'Execution Unit/Instruction Scheduler/ROB/Peak Dynamic': 1.10451, 'Execution Unit/Instruction Scheduler/ROB/Runtime Dynamic': 0.0707437, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage': 0.00906853, 'Execution Unit/Instruction Scheduler/ROB/Subthreshold Leakage with power gating': 0.00364446, 'Execution Unit/Instruction Scheduler/Runtime Dynamic': 0.297786, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage': 0.0859892, 'Execution Unit/Instruction Scheduler/Subthreshold Leakage with power gating': 0.047346, 'Execution Unit/Integer ALUs/Area': 0.47087, 'Execution Unit/Integer ALUs/Gate Leakage': 0.0265291, 'Execution Unit/Integer ALUs/Peak Dynamic': 0.0993778, 'Execution Unit/Integer ALUs/Runtime Dynamic': 0.101344, 'Execution Unit/Integer ALUs/Subthreshold Leakage': 0.40222, 'Execution Unit/Integer ALUs/Subthreshold Leakage with power gating': 0.150833, 'Execution Unit/Peak Dynamic': 4.01721, 'Execution Unit/Register Files/Area': 0.570804, 'Execution Unit/Register Files/Floating Point RF/Area': 0.208131, 'Execution Unit/Register Files/Floating Point RF/Gate Leakage': 0.000232788, 'Execution Unit/Register Files/Floating Point RF/Peak Dynamic': 0.0, 'Execution Unit/Register Files/Floating Point RF/Runtime Dynamic': 0.00364458, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage': 0.00399698, 'Execution Unit/Register Files/Floating Point RF/Subthreshold Leakage with power gating': 0.00176968, 'Execution Unit/Register Files/Gate Leakage': 0.000622708, 'Execution Unit/Register Files/Integer RF/Area': 0.362673, 'Execution Unit/Register Files/Integer RF/Gate Leakage': 0.00038992, 'Execution Unit/Register Files/Integer RF/Peak Dynamic': 0.026355, 'Execution Unit/Register Files/Integer RF/Runtime Dynamic': 0.0269539, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage': 0.00614175, 'Execution Unit/Register Files/Integer RF/Subthreshold Leakage with power gating': 0.00246675, 'Execution Unit/Register Files/Peak Dynamic': 0.026355, 'Execution Unit/Register Files/Runtime Dynamic': 0.0305985, 'Execution Unit/Register Files/Subthreshold Leakage': 0.0101387, 'Execution Unit/Register Files/Subthreshold Leakage with power gating': 0.00423643, 'Execution Unit/Results Broadcast Bus/Area Overhead': 0.0390912, 'Execution Unit/Results Broadcast Bus/Gate Leakage': 0.00537402, 'Execution Unit/Results Broadcast Bus/Peak Dynamic': 0.0555225, 'Execution Unit/Results Broadcast Bus/Runtime Dynamic': 0.161855, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage': 0.081478, 'Execution Unit/Results Broadcast Bus/Subthreshold Leakage with power gating': 0.0305543, 'Execution Unit/Runtime Dynamic': 1.09831, 'Execution Unit/Subthreshold Leakage': 1.79543, 'Execution Unit/Subthreshold Leakage with power gating': 0.688821, 'Gate Leakage': 0.368936, 'Instruction Fetch Unit/Area': 5.85939, 'Instruction Fetch Unit/Branch Predictor/Area': 0.138516, 'Instruction Fetch Unit/Branch Predictor/Chooser/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Chooser/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Chooser/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Chooser/Runtime Dynamic': 0.000457793, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Chooser/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/Gate Leakage': 0.000757657, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Area': 0.0435221, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Gate Leakage': 0.000278362, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Peak Dynamic': 0.0168831, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Runtime Dynamic': 0.000457793, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage': 0.00759719, 'Instruction Fetch Unit/Branch Predictor/Global Predictor/Subthreshold Leakage with power gating': 0.0039236, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Area': 0.0257064, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Gate Leakage': 0.000154548, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Peak Dynamic': 0.0142575, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Runtime Dynamic': 0.000402441, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage': 0.00384344, 'Instruction Fetch Unit/Branch Predictor/L1_Local Predictor/Subthreshold Leakage with power gating': 0.00198631, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Area': 0.0151917, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Gate Leakage': 8.00196e-05, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Peak Dynamic': 0.00527447, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Runtime Dynamic': 0.000157818, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage': 0.00181347, 'Instruction Fetch Unit/Branch Predictor/L2_Local Predictor/Subthreshold Leakage with power gating': 0.000957045, 'Instruction Fetch Unit/Branch Predictor/Peak Dynamic': 0.0597838, 'Instruction Fetch Unit/Branch Predictor/RAS/Area': 0.0105732, 'Instruction Fetch Unit/Branch Predictor/RAS/Gate Leakage': 4.63858e-05, 'Instruction Fetch Unit/Branch Predictor/RAS/Peak Dynamic': 0.0117602, 'Instruction Fetch Unit/Branch Predictor/RAS/Runtime Dynamic': 0.000387195, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage': 0.000932505, 'Instruction Fetch Unit/Branch Predictor/RAS/Subthreshold Leakage with power gating': 0.000494733, 'Instruction Fetch Unit/Branch Predictor/Runtime Dynamic': 0.00170522, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage': 0.0199703, 'Instruction Fetch Unit/Branch Predictor/Subthreshold Leakage with power gating': 0.0103282, 'Instruction Fetch Unit/Branch Target Buffer/Area': 0.64954, 'Instruction Fetch Unit/Branch Target Buffer/Gate Leakage': 0.00272758, 'Instruction Fetch Unit/Branch Target Buffer/Peak Dynamic': 0.177867, 'Instruction Fetch Unit/Branch Target Buffer/Runtime Dynamic': 0.00425693, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage': 0.0811682, 'Instruction Fetch Unit/Branch Target Buffer/Subthreshold Leakage with power gating': 0.0435357, 'Instruction Fetch Unit/Gate Leakage': 0.0589979, 'Instruction Fetch Unit/Instruction Buffer/Area': 0.0226323, 'Instruction Fetch Unit/Instruction Buffer/Gate Leakage': 6.83558e-05, 'Instruction Fetch Unit/Instruction Buffer/Peak Dynamic': 0.606827, 'Instruction Fetch Unit/Instruction Buffer/Runtime Dynamic': 0.0259115, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage': 0.00151885, 'Instruction Fetch Unit/Instruction Buffer/Subthreshold Leakage with power gating': 0.000701682, 'Instruction Fetch Unit/Instruction Cache/Area': 3.14635, 'Instruction Fetch Unit/Instruction Cache/Gate Leakage': 0.029931, 'Instruction Fetch Unit/Instruction Cache/Peak Dynamic': 1.64819, 'Instruction Fetch Unit/Instruction Cache/Runtime Dynamic': 0.0506849, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage': 0.367022, 'Instruction Fetch Unit/Instruction Cache/Subthreshold Leakage with power gating': 0.180386, 'Instruction Fetch Unit/Instruction Decoder/Area': 1.85799, 'Instruction Fetch Unit/Instruction Decoder/Gate Leakage': 0.0222493, 'Instruction Fetch Unit/Instruction Decoder/Peak Dynamic': 1.37404, 'Instruction Fetch Unit/Instruction Decoder/Runtime Dynamic': 0.0880071, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage': 0.442943, 'Instruction Fetch Unit/Instruction Decoder/Subthreshold Leakage with power gating': 0.166104, 'Instruction Fetch Unit/Peak Dynamic': 3.9467, 'Instruction Fetch Unit/Runtime Dynamic': 0.170566, 'Instruction Fetch Unit/Subthreshold Leakage': 0.932286, 'Instruction Fetch Unit/Subthreshold Leakage with power gating': 0.40843, 'L2/Area': 4.53318, 'L2/Gate Leakage': 0.015464, 'L2/Peak Dynamic': 0.0321135, 'L2/Runtime Dynamic': 0.00756057, 'L2/Subthreshold Leakage': 0.834142, 'L2/Subthreshold Leakage with power gating': 0.401066, 'Load Store Unit/Area': 8.80901, 'Load Store Unit/Data Cache/Area': 6.84535, 'Load Store Unit/Data Cache/Gate Leakage': 0.0279261, 'Load Store Unit/Data Cache/Peak Dynamic': 2.24844, 'Load Store Unit/Data Cache/Runtime Dynamic': 0.496997, 'Load Store Unit/Data Cache/Subthreshold Leakage': 0.527675, 'Load Store Unit/Data Cache/Subthreshold Leakage with power gating': 0.25085, 'Load Store Unit/Gate Leakage': 0.0350888, 'Load Store Unit/LoadQ/Area': 0.0836782, 'Load Store Unit/LoadQ/Gate Leakage': 0.00059896, 'Load Store Unit/LoadQ/Peak Dynamic': 0.0327187, 'Load Store Unit/LoadQ/Runtime Dynamic': 0.0327186, 'Load Store Unit/LoadQ/Subthreshold Leakage': 0.00941961, 'Load Store Unit/LoadQ/Subthreshold Leakage with power gating': 0.00536918, 'Load Store Unit/Peak Dynamic': 2.40295, 'Load Store Unit/Runtime Dynamic': 0.691073, 'Load Store Unit/StoreQ/Area': 0.322079, 'Load Store Unit/StoreQ/Gate Leakage': 0.00329971, 'Load Store Unit/StoreQ/Peak Dynamic': 0.0806787, 'Load Store Unit/StoreQ/Runtime Dynamic': 0.161357, 'Load Store Unit/StoreQ/Subthreshold Leakage': 0.0345621, 'Load Store Unit/StoreQ/Subthreshold Leakage with power gating': 0.0197004, 'Load Store Unit/Subthreshold Leakage': 0.591321, 'Load Store Unit/Subthreshold Leakage with power gating': 0.283293, 'Memory Management Unit/Area': 0.4339, 'Memory Management Unit/Dtlb/Area': 0.0879726, 'Memory Management Unit/Dtlb/Gate Leakage': 0.00088729, 'Memory Management Unit/Dtlb/Peak Dynamic': 0.0286331, 'Memory Management Unit/Dtlb/Runtime Dynamic': 0.029115, 'Memory Management Unit/Dtlb/Subthreshold Leakage': 0.0155699, 'Memory Management Unit/Dtlb/Subthreshold Leakage with power gating': 0.00887485, 'Memory Management Unit/Gate Leakage': 0.00808595, 'Memory Management Unit/Itlb/Area': 0.301552, 'Memory Management Unit/Itlb/Gate Leakage': 0.00393464, 'Memory Management Unit/Itlb/Peak Dynamic': 0.102479, 'Memory Management Unit/Itlb/Runtime Dynamic': 0.00831051, 'Memory Management Unit/Itlb/Subthreshold Leakage': 0.0413758, 'Memory Management Unit/Itlb/Subthreshold Leakage with power gating': 0.0235842, 'Memory Management Unit/Peak Dynamic': 0.307774, 'Memory Management Unit/Runtime Dynamic': 0.0374255, 'Memory Management Unit/Subthreshold Leakage': 0.0766103, 'Memory Management Unit/Subthreshold Leakage with power gating': 0.0398333, 'Peak Dynamic': 14.2962, 'Renaming Unit/Area': 0.303608, 'Renaming Unit/FP Front End RAT/Area': 0.131045, 'Renaming Unit/FP Front End RAT/Gate Leakage': 0.00351123, 'Renaming Unit/FP Front End RAT/Peak Dynamic': 2.51468, 'Renaming Unit/FP Front End RAT/Runtime Dynamic': 0.0, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage': 0.0308571, 'Renaming Unit/FP Front End RAT/Subthreshold Leakage with power gating': 0.0175885, 'Renaming Unit/Free List/Area': 0.0340654, 'Renaming Unit/Free List/Gate Leakage': 2.5481e-05, 'Renaming Unit/Free List/Peak Dynamic': 0.0306032, 'Renaming Unit/Free List/Runtime Dynamic': 0.00392027, 'Renaming Unit/Free List/Subthreshold Leakage': 0.000370144, 'Renaming Unit/Free List/Subthreshold Leakage with power gating': 0.000201064, 'Renaming Unit/Gate Leakage': 0.00708398, 'Renaming Unit/Int Front End RAT/Area': 0.0941223, 'Renaming Unit/Int Front End RAT/Gate Leakage': 0.000283242, 'Renaming Unit/Int Front End RAT/Peak Dynamic': 0.731965, 'Renaming Unit/Int Front End RAT/Runtime Dynamic': 0.0457692, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage': 0.00435488, 'Renaming Unit/Int Front End RAT/Subthreshold Leakage with power gating': 0.00248228, 'Renaming Unit/Peak Dynamic': 3.58947, 'Renaming Unit/Runtime Dynamic': 0.0496895, 'Renaming Unit/Subthreshold Leakage': 0.0552466, 'Renaming Unit/Subthreshold Leakage with power gating': 0.0276461, 'Runtime Dynamic': 2.05462, 'Subthreshold Leakage': 6.16288, 'Subthreshold Leakage with power gating': 2.55328}], 'DRAM': {'Area': 0, 'Gate Leakage': 0, 'Peak Dynamic': 5.739548837198542, 'Runtime Dynamic': 5.739548837198542, 'Subthreshold Leakage': 4.252, 'Subthreshold Leakage with power gating': 4.252}, 'L3': [{'Area': 61.9075, 'Gate Leakage': 0.0484137, 'Peak Dynamic': 0.280118, 'Runtime Dynamic': 0.0738874, 'Subthreshold Leakage': 6.80085, 'Subthreshold Leakage with power gating': 3.32364}], 'Processor': {'Area': 191.908, 'Gate Leakage': 1.53485, 'Peak Dynamic': 59.9674, 'Peak Power': 93.0796, 'Runtime Dynamic': 8.63648, 'Subthreshold Leakage': 31.5774, 'Subthreshold Leakage with power gating': 13.9484, 'Total Cores/Area': 128.669, 'Total Cores/Gate Leakage': 1.4798, 'Total Cores/Peak Dynamic': 59.6873, 'Total Cores/Runtime Dynamic': 8.56259, 'Total Cores/Subthreshold Leakage': 24.7074, 'Total Cores/Subthreshold Leakage with power gating': 10.2429, 'Total L3s/Area': 61.9075, 'Total L3s/Gate Leakage': 0.0484137, 'Total L3s/Peak Dynamic': 0.280118, 'Total L3s/Runtime Dynamic': 0.0738874, 'Total L3s/Subthreshold Leakage': 6.80085, 'Total L3s/Subthreshold Leakage with power gating': 3.32364, 'Total Leakage': 33.1122, 'Total NoCs/Area': 1.33155, 'Total NoCs/Gate Leakage': 0.00662954, 'Total NoCs/Peak Dynamic': 0.0, 'Total NoCs/Runtime Dynamic': 0.0, 'Total NoCs/Subthreshold Leakage': 0.0691322, 'Total NoCs/Subthreshold Leakage with power gating': 0.0259246}}
c03744b393ec5f98ff295969921ddf3de80aecaf
9c52998e7d92640b82284e7e85bf69205fc94d73
/SeleniumLearningFiles/SeleniumLearning01/webdrivertest/web04.py
ec6aa9036031cb6a57f01829bff64e05c5c91ab3
[]
no_license
github653224/GitProjects_SeleniumLearing
b0c57d27fa48b0cd7475f8d8e8b19c57160e65fc
818b573a3b0f18def98610e59e3c0c6500a675bc
refs/heads/master
2021-07-20T05:54:46.392948
2017-10-27T12:53:41
2017-10-27T12:53:41
107,764,014
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys import time from random import randint verify =randint(1000,9999) print(u"生成的随机数字: %d " %verify) number=input("请输入随机数字:") print(number) number=int(number) if number ==verify: print ("登录成功!!") elif number==132741: print("登陆成功!!") else: print("输入错误")
31bda42177c67668b02106a2e58888a61630ed09
99e1a15d8f605be456f17608843c309dd8a3260f
/src/Battle/Attack/Steps/Test/suite.py
a11d3df523d7d71da56074941becf66d934c86c9
[]
no_license
sgtnourry/Pokemon-Project
e53604096dcba939efca358e4177374bffcf0b38
3931eee5fd04e18bb1738a0b27a4c6979dc4db01
refs/heads/master
2021-01-17T23:02:25.910738
2014-04-12T17:46:27
2014-04-12T17:46:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,034
py
import unittest from Battle.Attack.Steps.Test.remove_pp_step_test import suite as remove_pp_step_suite from Battle.Attack.Steps.Test.handle_miss_effects_step_test import suite as handle_miss_effects_step_suite from Battle.Attack.Steps.Test.handle_contact_step_test import suite as handle_contact_step_suite from Battle.Attack.Steps.Test.effects_step_test import suite as effects_step_suite from Battle.Attack.Steps.Test.damage_step_test import suite as damage_step_suite from Battle.Attack.Steps.Test.announcement_step_test import suite as announcement_step_suite from Battle.Attack.Steps.Test.hit_step_test import suite as hit_step_suite from Battle.Attack.Steps.Test.precondition_step_test import suite as precondition_step_suite suites = [precondition_step_suite, hit_step_suite, announcement_step_suite, damage_step_suite, effects_step_suite, handle_contact_step_suite, handle_miss_effects_step_suite, remove_pp_step_suite] suite = unittest.TestSuite(suites)
6843646e4bfc8dd6d189f4981122d415672c1403
8937c4d452c98699610923f76a395a2247f576df
/preprocess/crop.py
5b05cb13ad998812b4d8e78a1b99878b47e16046
[]
no_license
mistycheney/MouseBrainAtlas
812b204af06ed303f3c12d5c81edef50c8d9d1ed
bffbaa1ede9297084e64fc197716e63d5cb54275
refs/heads/master
2020-04-11T13:44:09.632311
2018-11-20T22:32:15
2018-11-20T22:32:15
20,377,173
3
9
null
2017-03-15T19:39:27
2014-06-01T12:42:08
Jupyter Notebook
UTF-8
Python
false
false
3,884
py
#! /usr/bin/env python import os import argparse import sys import time import numpy as np from multiprocess import Pool sys.path.append(os.path.join(os.environ['REPO_DIR'], 'utilities')) from utilities2015 import * from metadata import * from data_manager import * from learning_utilities import * parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='') parser.add_argument("stack", type=str, help="Brain name") parser.add_argument("versions", type=str, help="json encoded str list") parser.add_argument("resolutions", type=str, help="json encoded str list") parser.add_argument("prep_in", type=str, help="") parser.add_argument("prep_out", type=str, help="") parser.add_argument("input_crop_json", type=str, help="") parser.add_argument("output_crop_json", type=str, help="") parser.add_argument("n_jobs", type=int, help="", default=1) args = parser.parse_args() versions = json.loads(args.versions) if isinstance(versions, str): versions = [versions] else: assert isinstance(versions, list), "Argument versions must be str or str list." resolutions = json.loads(args.resolutions) if isinstance(resolutions, str): resolutions = [resolutions] else: assert isinstance(resolutions, list), "Argument resolutions must be str or str list." n_jobs = args.n_jobs def crop(stack, img_name, version, resol, x,y,w,h): input_fp = DataManager.get_image_filepath_v2(stack=stack, prep_id=5, resol=resol, version=version, fn=img_name) output_fp = DataManager.get_image_filepath_v2(stack=stack, fn=img_name, prep_id=2, version=version, resol=resol) img = imread(input_fp) save_data(img[y:y+h, x:x+w], output_fp) for version in versions: for resol in resolutions: if resol == 'raw': x = x_tb * 32 y = y_tb * 32 w = w_tb * 32 h = h_tb * 32 elif resol == 'thumbnail': x = x_tb y = y_tb w = w_tb h = h_tb else: raise # input_dir = DataManager.get_image_dir_v2(stack=stack, prep_id=5, version=version, resol='raw') out_dir = DataManager.get_image_dir_v2(stack=stack, prep_id=2, resol=resol, version=version) print 'out_dir:', out_dir # script = os.path.join(REPO_DIR, 'preprocess', 'warp_crop_IM_v3.py') # ! rm -rf {out_dir} create_if_not_exists(out_dir) t = time.time() pool = Pool(8) _ = pool.map(lambda img_name: crop(stack=stack, img_name=img_name, version=version, resol=resol, x=x, y=y, w=w, h=h), metadata_cache['valid_filenames'][stack]) pool.close() pool.join() # for img_name in metadata_cache['valid_filenames'][stack]: # f(stack=stack, img_name=img_name, version=version, resol=resol, # x=x, y=y, w=w, h=h) # run_distributed('convert \"%%(input_fp)s\" -crop %(w)dx%(h)d+%(x)d+%(y)d \"%%(output_fp)s\"' % \ # {'w':w_raw, 'h':h_raw, 'x':x_raw, 'y':y_raw}, # kwargs_list=[{'input_fp': DataManager.get_image_filepath_v2(stack=stack, prep_id=5, resol='raw', version=version, fn=img_name), # 'output_fp': DataManager.get_image_filepath_v2(stack=stack, fn=img_name, prep_id=2, version=version, resol='raw')} # for img_name in metadata_cache['valid_filenames'][stack]], # # for img_name in ['CHATM3_slide35_2018_02_17-S1']], # argument_type='single', # jobs_per_node=1, # local_only=True) # wait_qsub_complete() print 'done in', time.time() - t, 'seconds' # 1500s
04dd25f2e360e6a0b81d6329398e7373d37c3db2
ff801544b1979442b886d2d1eaf8480e7d6b0d24
/main.py
20bae383952351920f5e31df5cc21b3dcc2b56c3
[]
no_license
BLimmie/OctoGAN
7d420cd223ea0dd77dd0dfa1827f12fcd32e9dec
38bb4d76eb8dea22278da2d496b712c171be080f
refs/heads/master
2021-05-11T02:11:55.498819
2018-01-21T17:34:58
2018-01-21T17:34:58
118,352,908
1
0
null
null
null
null
UTF-8
Python
false
false
10,747
py
from __future__ import print_function import argparse import os import random import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable parser = argparse.ArgumentParser() parser.add_argument('--dataset', required=True, help='cifar10 | lsun | imagenet | folder | lfw | fake') parser.add_argument('--dataroot', required=True, help='path to dataset') parser.add_argument('--workers', type=int, help='number of data loading workers', default=2) parser.add_argument('--batchSize', type=int, default=64, help='input batch size') parser.add_argument('--imageSize', type=int, default=128, help='the height / width of the input image to network') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--niter', type=int, default=150, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--outf', default='.', help='folder to output images and model checkpoints') parser.add_argument('--manualSeed', type=int, help='manual seed') opt = parser.parse_args() print(opt) try: os.makedirs(opt.outf) except OSError: pass if opt.manualSeed is None: opt.manualSeed = random.randint(1, 10000) print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) if opt.cuda: torch.cuda.manual_seed_all(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if opt.dataset in ['imagenet', 'folder', 'lfw']: # folder dataset dataset = dset.ImageFolder(root=opt.dataroot, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == 'lsun': dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'], transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.CenterCrop(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == 'cifar10': dataset = dset.CIFAR10(root=opt.dataroot, download=True, transform=transforms.Compose([ transforms.Scale(opt.imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) elif opt.dataset == 'fake': dataset = dset.FakeData(image_size=(3, opt.imageSize, opt.imageSize), transform=transforms.ToTensor()) assert dataset dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) nc = 3 # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) class _netG(nn.Module): def __init__(self, ngpu): super(_netG, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d( nz, ngf * 16, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 16), nn.ReLU(True), # nn.ConvTranspose2d(ngf * 16, ngf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), # state size. (ngf*8) x 4 x 4 nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), # state size. (ngf*4) x 8 x 8 nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), # state size. (ngf*2) x 16 x 16 nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), # state size. (ngf) x 32 x 32 nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (nc) x 64 x 64 ) def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output netG = _netG(ngpu) netG.apply(weights_init) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) print(netG) class _netD(nn.Module): def __init__(self, ngpu): super(_netD, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is (nc) x 64 x 64 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # nn.Conv2d(ndf * 8, ndf * 16, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 16), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*8) x 4 x 4 nn.Conv2d(ndf * 16, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): if isinstance(input.data, torch.cuda.FloatTensor) and self.ngpu > 1: output = nn.parallel.data_parallel(self.main, input, range(self.ngpu)) else: output = self.main(input) return output.view(-1, 1).squeeze(1) netD = _netD(ngpu) netD.apply(weights_init) if opt.netD != '': netD.load_state_dict(torch.load(opt.netD)) print(netD) criterion = nn.BCELoss() input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize) noise = torch.FloatTensor(opt.batchSize, nz, 1, 1) fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1) label = torch.FloatTensor(opt.batchSize) real_label = 1 fake_label = 0 if opt.cuda: netD.cuda() netG.cuda() criterion.cuda() input, label = input.cuda(), label.cuda() noise, fixed_noise = noise.cuda(), fixed_noise.cuda() fixed_noise = Variable(fixed_noise) # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) for epoch in range(opt.niter): for i, data in enumerate(dataloader, 0): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real netD.zero_grad() real_cpu, _ = data batch_size = real_cpu.size(0) if opt.cuda: real_cpu = real_cpu.cuda() input.resize_as_(real_cpu).copy_(real_cpu) label.resize_(batch_size).fill_(real_label) inputv = Variable(input) labelv = Variable(label) output = netD(inputv) errD_real = criterion(output, labelv) errD_real.backward() D_x = output.data.mean() # train with fake noise.resize_(batch_size, nz, 1, 1).normal_(0, 1) noisev = Variable(noise) fake = netG(noisev) labelv = Variable(label.fill_(fake_label)) output = netD(fake.detach()) errD_fake = criterion(output, labelv) errD_fake.backward() D_G_z1 = output.data.mean() errD = errD_real + errD_fake optimizerD.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### netG.zero_grad() labelv = Variable(label.fill_(real_label)) # fake labels are real for generator cost output = netD(fake) errG = criterion(output, labelv) errG.backward() D_G_z2 = output.data.mean() optimizerG.step() print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f' % (epoch, opt.niter, i, len(dataloader), errD.data[0], errG.data[0], D_x, D_G_z1, D_G_z2)) if i % 100 == 0: vutils.save_image(real_cpu, '%s/real_samples.png' % opt.outf, normalize=True) fake = netG(fixed_noise) vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % (opt.outf, epoch), normalize=True) # do checkpointing torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outf, epoch)) torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outf, epoch))
41f2df2137a227386f0dece011dcf1d628037fd7
ad544b38ec09828cda1b1918f407975bc79bf976
/missioncontrol/mc/mc/views.py
82f5e002d54b800f164e42ee9229c4612ff2bd76
[]
no_license
mattvenn/earth-to-mars
6de13606f3f8087da40e8ed0543a03e0093c25fb
c2b0064ef87c3d095d231587ee3ef48b00360bfd
refs/heads/master
2021-01-10T07:29:17.557441
2016-03-17T16:34:42
2016-03-17T16:34:42
45,628,116
1
0
null
null
null
null
UTF-8
Python
false
false
11,754
py
from mc import app from mc import db from sqlalchemy.exc import IntegrityError import datetime from flask import Flask, request, session, g, redirect, url_for, \ abort, render_template, flash, jsonify, make_response, send_file from contextlib import closing from flask_admin.contrib.sqla import ModelView import time from wtforms import TextAreaField, TextField, IntegerField, FloatField, SelectField, PasswordField from wtforms import validators from flask_wtf import Form from flask_wtf.file import FileField, FileAllowed, FileRequired from wtforms.ext.sqlalchemy.fields import QuerySelectField from mc.models import Teams, School, Sample, Answers, Questions, GroupGraph, Photo, Panorama from graphing import submit_graph, update_group_graph, get_group_graph_name from werkzeug import secure_filename import os class SecureView(ModelView): def is_accessible(self): if 'logged_in' in session.keys(): return True def inaccessible_callback(self, name, **kwargs): # redirect to login page if user doesn't have access return redirect(url_for('login', next=request.url)) @app.teardown_appcontext def shutdown_session(exception=None): db.session.remove() # tested def get_teams(): return Teams.query.all() class LoginForm(Form): username = TextField('Username', [validators.Required()]) password = PasswordField('Password', [validators.Required()]) def validate(self): rv = Form.validate(self) if not rv: return False if self.username.data != app.config['USERNAME']: self.username.errors.append('Unknown username') return False if self.password.data != app.config['PASSWORD']: self.password.errors.append('bad password') return False return True class AnswerForm(Form): team = QuerySelectField(query_factory=get_teams, allow_blank=True, blank_text=u'Please choose') answer = TextAreaField('Answer', [validators.Required()]) def validate(self): rv = Form.validate(self) if not rv: return False if not self.team.data: self.team.errors.append('choose a team') return False self.answer = Answers(None, self.answer.data, self.team.data) return True class PhotoForm(Form): team = QuerySelectField(query_factory=get_teams, allow_blank=True, blank_text=u'Please choose') maxx = app.config['MAX_X'] maxy = app.config['MAX_Y'] x = IntegerField('X', [validators.NumberRange(min=0, max=maxx - 1)]) y = IntegerField('Y', [validators.NumberRange(min=0, max=maxy - 1)]) photo = FileField('Image', validators=[ FileRequired(message="you must choose a photo"), FileAllowed(['jpg', 'png'], message='only images allowed') ]) def validate(self): rv = Form.validate(self) if not rv: return False if not self.team.data: self.team.errors.append('choose a team') return False return True class SampleForm(Form): team = QuerySelectField(query_factory=get_teams, allow_blank=True, blank_text=u'Please choose') types = app.config['SAMPLE_TYPES'] methane = FloatField('Methane', [validators.NumberRange(min=types['methane']['min'], max=types['methane']['max'])]) temperature = FloatField('Temperature', [validators.NumberRange(min=types['temperature']['min'], max=types['temperature']['max'])]) humidity = FloatField('Humidity', [validators.NumberRange(min=types['humidity']['min'], max=types['humidity']['max'])]) maxx = app.config['MAX_X'] maxy = app.config['MAX_Y'] x = IntegerField('X', [validators.NumberRange(min=0, max=maxx - 1)]) y = IntegerField('Y', [validators.NumberRange(min=0, max=maxy - 1)]) def validate(self): rv = Form.validate(self) if not rv: return False if not self.team.data: self.team.errors.append('choose a team') return False if Sample.query.filter(Sample.x == self.x.data, Sample.y == self.y.data, Sample.team == self.team.data).first(): self.team.errors.append('your team already uploaded this sample') return False return True # tested def add_school_point(points=1): school = School.query.order_by(School.timestamp.desc()).first() if school is not None: school.points += points db.session.commit() # tested def get_group_id(): try: group_id = GroupGraph.query.all()[-1].id except IndexError: group_id = 0 return group_id # tested @app.route('/') def mission_control(): school = School.query.order_by(School.timestamp.desc()).first() now = datetime.datetime.now() end_hour = app.config['END_HOUR'] end_min = app.config['END_MIN'] end_time = datetime.datetime.now().replace(hour=end_hour,minute=end_min,second=0) delta = end_time - now mins = delta.total_seconds() / 60 hours = mins / 60 mins = mins % 60 secs = delta.total_seconds() % 60 time_info = { 'now': now.strftime('%H:%M'), 'left': '%02d:%02d' % (hours, mins) } pan = Panorama.query.first() pan_info = { 'name': pan.get_pan_name(), 'num': pan.get_num_photos() } return render_template('mission_control.html', school_info=school, time_info=time_info, pan_info=pan_info, group_id=get_group_id()) # tested @app.route('/show/samples') def show_samples(): samples = Sample.query.all() return render_template('show_samples.html', samples=samples) # tested @app.route('/show/graph/<type>') def show_group_graph(type): return render_template('show_group_graph.html', type=type, group_id=get_group_id()) # tested @app.route('/upload/sample', methods=['GET', 'POST']) def add_sample(): form = SampleForm() if form.validate_on_submit(): sample = Sample() form.populate_obj(sample) db.session.add(sample) db.session.commit() add_school_point() submit_graph(sample) # make a graph #update_group_graph(form.sample) flash('sample logged') return render_template('sample_submitted.html', sample=sample) return render_template('add_sample.html', form=form) class InvalidUsage(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): Exception.__init__(self) self.message = message if status_code is not None: self.status_code = status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['message'] = self.message return rv @app.errorhandler(InvalidUsage) def handle_invalid_usage(error): response = jsonify(error.to_dict()) response.status_code = error.status_code return response def make_csv(head, list): import StringIO import csv si = StringIO.StringIO() cw = csv.writer(si) cw.writerow(head) for i in list: cw.writerow(i.get_csv()) return si def make_csv_response(head, list, name): si = make_csv(head, list) response = make_response(si.getvalue()) response.headers["Content-Disposition"] = "attachment; filename=%s" % name return response @app.route('/api/questions') def api_get_questions(): questions = Questions.query.all() head = Questions.get_csv_head() return make_csv_response(head, questions,'questions.csv') @app.route('/api/answers') def api_get_answers(): answers = Answers.query.all() head = Answers.get_csv_head() return make_csv_response(head, answers,'answers.csv') # build an archive of all the cool data and zip it @app.route('/api/zipped-data') def zipped_data(): import zipfile import io import json memory_file = io.BytesIO() with zipfile.ZipFile(memory_file, 'w') as zf: for name in app.config['SAMPLE_TYPES'].keys(): graph_name = get_group_graph_name(name, get_group_id()) zf.write(graph_name, name + '.png') answers = Answers.query.all() head = Answers.get_csv_head() answers_csv = make_csv(head, answers) zf.writestr('answers.csv', answers_csv.getvalue()) questions = Questions.query.all() head = Questions.get_csv_head() questions_csv = make_csv(head, questions) zf.writestr('questions.csv', questions_csv.getvalue()) samples = Sample.query.all() data = { 'samples' : [sample.serialise() for sample in samples]} zf.writestr('samples.json', json.dumps(data)) memory_file.seek(0) return send_file(memory_file, attachment_filename='missioncontrol.zip', as_attachment=True) # tested @app.route('/api/team/<name>') def api_get_team_by_name(name): name = name.lower() teams = get_teams() for team in teams: if team.name.lower() == name: return jsonify(team.serialise()) raise InvalidUsage("no team of that name found") # tested @app.route('/api/samples') def api_get_all_samples(): samples = Sample.query.all() data = { 'samples' : [sample.serialise() for sample in samples]} return jsonify(data) # tested @app.route('/api/sample/<int:sample_id>') def api_get_sample(sample_id): sample = Sample.query.get(sample_id) if not sample: raise InvalidUsage("no sample of that id found") return jsonify(sample.serialise()) # tested @app.route('/api/sample', methods=['POST']) def api_add_sample(): if not request.json: raise InvalidUsage("json needed") form = SampleForm(data = request.get_json()) form.csrf_enabled = False if not form.validate(): raise InvalidUsage("invalid data", payload=form.errors) sample = Sample() form.populate_obj(sample) db.session.add(sample) db.session.commit() #update_group_graph(form.sample) add_school_point() return jsonify(sample.serialise()), 201 # tested @app.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): session['logged_in'] = True flash('You were logged in') return redirect('/admin') return render_template('login.html', form=form) # tested @app.route('/logout') def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect('/admin') # tested @app.route('/answers/<int:question_id>') def answers(question_id): question = Questions.query.get(question_id) return render_template('answer.html', question=question) # tested @app.route('/questions/<int:question_id>', methods=['GET', 'POST']) def questions(question_id): form = AnswerForm() question = Questions.query.get(question_id) if form.validate_on_submit(): form.answer.question = question db.session.add(form.answer) db.session.commit() add_school_point(10) flash('answer logged') return redirect(url_for('answers', question_id=question_id)) return render_template('question.html', question=question, form=form) @app.route('/upload/photo', methods=['GET', 'POST']) def add_photo(): form = PhotoForm() if form.validate_on_submit(): filename = secure_filename(form.photo.data.filename) form.photo.data.save(os.path.join(app.static_folder, 'photos', filename)) photo = Photo() form.populate_obj(photo) photo.image_path = filename db.session.add(photo) db.session.commit() pan = Panorama.query.first() pan.add_to_panorama(photo) add_school_point() return render_template('photo_submitted.html', photo=photo) return render_template('add_photo.html', form=form)
821a36d24596e0ac1a7bce97e1a3d9b9992c271f
03043b715d2e177dd3ba93078463ce79c33173dc
/NI_DAQmx/models/NI_PXIe_6535.py
ffdfbaabce93ed1ea32f606174fc1da92d542ec7
[]
no_license
labscript-suite-bitbucket-archive/cavitylab-labscript_devices--forked-from--labscript_suite-labscript_devices
2efc068eb35ca70e1eecab9c7fec7991fd596c9c
e665d3ee0ce1cfd7fb7cd5c6cc4d783528bc4935
refs/heads/master
2020-12-27T02:35:41.710162
2019-12-06T20:57:48
2019-12-06T20:57:48
253,143,395
1
0
null
null
null
null
UTF-8
Python
false
false
2,629
py
##################################################################### # # # /NI_DAQmx/models/_subclass_template.py # # # # Copyright 2018, Christopher Billington # # # # This file is part of the module labscript_devices, in the # # labscript suite (see http://labscriptsuite.org), and is # # licensed under the Simplified BSD License. See the license.txt # # file in the root of the project for the full license. # # # ##################################################################### ##################################################################### # WARNING # # # # This file is auto-generated, any modifications may be # # overwritten. See README.txt in this folder for details # # # ##################################################################### from __future__ import division, unicode_literals, print_function, absolute_import from labscript_utils import PY2 if PY2: str = unicode from labscript_devices.NI_DAQmx.labscript_devices import NI_DAQmx CAPABILITIES = { 'AI_range': None, 'AI_start_delay': None, 'AO_range': None, 'max_AI_multi_chan_rate': None, 'max_AI_single_chan_rate': None, 'max_AO_sample_rate': None, 'max_DO_sample_rate': 10000000.0, 'min_semiperiod_measurement': None, 'num_AI': 0, 'num_AO': 0, 'num_CI': 0, 'ports': { 'port0': {'num_lines': 8, 'supports_buffered': True}, 'port1': {'num_lines': 8, 'supports_buffered': True}, 'port2': {'num_lines': 8, 'supports_buffered': True}, 'port3': {'num_lines': 8, 'supports_buffered': True}, 'port4': {'num_lines': 6, 'supports_buffered': False}, }, 'supports_buffered_AO': False, 'supports_buffered_DO': True, 'supports_semiperiod_measurement': False, } class NI_PXIe_6535(NI_DAQmx): description = 'NI-PXIe-6535' def __init__(self, *args, **kwargs): # Any provided kwargs take precedent over capabilities combined_kwargs = CAPABILITIES.copy() combined_kwargs.update(kwargs) NI_DAQmx.__init__(self, *args, **combined_kwargs)
37e0fb4dbe4d99d999a4a4ff25c33d7f504d8fc8
ab574f7511fa15e5ea50a26f26e3e38f7e33505a
/win_2018/scipy/special/_ufuncs_cxx.py
65fc513447b7d344b151f7ba228174ebe12f7257
[]
no_license
zclongpop123/maya_python_packages
49d6b340512a2580bc8c14ae6281ca3f57017acd
4dd4a48c41749443ac16053d20aec04e9d2db202
refs/heads/master
2021-11-30T01:49:41.846727
2021-11-17T01:47:08
2021-11-17T01:47:08
49,186,909
16
9
null
2017-03-07T00:13:41
2016-01-07T06:48:35
Python
UTF-8
Python
false
false
288
py
def __bootstrap__(): global __bootstrap__, __loader__, __file__ import sys, pkg_resources, imp __file__ = pkg_resources.resource_filename(__name__, '_ufuncs_cxx.pyd') __loader__ = None; del __bootstrap__, __loader__ imp.load_dynamic(__name__,__file__) __bootstrap__()
387635873635283c5290831c6f2104f6d7e1fed8
aeb2f0bb7b01f87a1b6c65b88b216bed47025fe5
/experiment/ex_025_predict.py
db89c037080c832fffa5c1b6a6ffee69035c39e7
[]
no_license
kurupical/riiid
7e68239cd50243fbb734bf433d60ebd7469cb180
7bab580ce03d03873748a6afc91092c11871465f
refs/heads/master
2023-03-30T04:15:54.109815
2021-04-04T01:20:33
2021-04-04T01:20:33
302,828,112
2
1
null
null
null
null
UTF-8
Python
false
false
10,041
py
from datetime import datetime as dt from feature_engineering.feature_factory import \ FeatureFactoryManager, \ TargetEncoder, \ CountEncoder, \ MeanAggregator, \ TagsSeparator, \ UserLevelEncoder, \ NUniqueEncoder, \ ShiftDiffEncoder import pandas as pd import glob import os import tqdm import lightgbm as lgb import pickle import riiideducation import numpy as np from logging import Logger, StreamHandler, Formatter import shutil import time import warnings warnings.filterwarnings("ignore") model_dir = "../output/ex_025/20201022082802" data_types_dict = { 'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', } prior_columns = ["prior_group_responses", "prior_group_answers_correct"] def get_logger(): formatter = Formatter("%(asctime)s|%(levelname)s| %(message)s") logger = Logger(name="log") handler = StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) return logger def run(debug, model_dir, kaggle=False): if kaggle: files_dir = "/kaggle/input/riiid-split10/*.pickle" else: files_dir = "../input/riiid-test-answer-prediction/split10_base/*.pickle" logger = get_logger() # environment env = riiideducation.make_env() df_question = pd.read_csv("../input/riiid-test-answer-prediction/questions.csv", dtype={"bundle_id": "int32", "question_id": "int32", "correct_answer": "int8", "part": "int8"}) df_lecture = pd.read_csv("../input/riiid-test-answer-prediction/lectures.csv", dtype={"lecture_id": "int32", "tag": "int16", "part": "int8"}) # model loading models = [] for model_path in glob.glob(f"{model_dir}/*model*.pickle"): with open(model_path, "rb") as f: models.append(pickle.load(f)) # data preprocessing logger = get_logger() feature_factory_dict = {} feature_factory_dict["tags"] = { "TagsSeparator": TagsSeparator() } for column in ["content_id", "user_id", "content_type_id", "prior_question_had_explanation", "tags1", "tags2", "tags3", "tags4", "tags5", "tags6", ("user_id", "content_type_id"), ("user_id", "prior_question_had_explanation")]: is_partial_fit = column == "content_id" is_onebyone = "content_id" in column if type(column) == str: feature_factory_dict[column] = { "CountEncoder": CountEncoder(column=column, onebyone=is_onebyone), "TargetEncoder": TargetEncoder(column=column, is_partial_fit=is_partial_fit, onebyone=is_onebyone) } else: feature_factory_dict[column] = { "CountEncoder": CountEncoder(column=list(column), onebyone=is_onebyone), "TargetEncoder": TargetEncoder(column=list(column), is_partial_fit=is_partial_fit, onebyone=is_onebyone) } for column in ["part", ("user_id", "tag"), ("user_id", "part"), ("content_type_id", "part")]: if type(column) == str: feature_factory_dict[column] = { "CountEncoder": CountEncoder(column=column) } else: feature_factory_dict[column] = { "CountEncoder": CountEncoder(column=list(column)) } feature_factory_dict["user_id"]["MeanAggregatorTimestamp"] = MeanAggregator(column="user_id", agg_column="timestamp", remove_now=False) feature_factory_dict["user_id"]["MeanAggregatorPriorQuestionElapsedTime"] = MeanAggregator(column="user_id", agg_column="prior_question_elapsed_time", remove_now=True) feature_factory_dict["user_id"]["ShiftDiffEncoder"] = ShiftDiffEncoder(groupby="user_id", column="timestamp") feature_factory_dict["content_id"]["MeanAggregatorPriorQuestionElapsedTime"] = MeanAggregator(column="content_id", agg_column="prior_question_elapsed_time", remove_now=True) feature_factory_manager = FeatureFactoryManager(feature_factory_dict=feature_factory_dict, logger=logger) for model_id, fname in enumerate(glob.glob(files_dir)): logger.info(f"loading... {fname}") df = pd.read_pickle(fname) df["answered_correctly"] = df["answered_correctly"].replace(-1, np.nan) df["prior_question_had_explanation"] = df["prior_question_had_explanation"].fillna(-1).astype("int8") if debug: df = df.head(1000) df = pd.concat([pd.merge(df[df["content_type_id"] == 0], df_question, how="left", left_on="content_id", right_on="question_id"), pd.merge(df[df["content_type_id"] == 1], df_lecture, how="left", left_on="content_id", right_on="lecture_id")]).sort_values(["user_id", "timestamp"]) feature_factory_manager.fit(df, is_first_fit=True) iter_test = env.iter_test() df_test_prev = pd.DataFrame() df_test_prev1 = pd.DataFrame() answered_correctlies = [] user_answers = [] i = 0 t = time.time() for (df_test, df_sample_prediction) in iter_test: i += 1 logger.info(f"[time: {int(time.time() - t)}iteration {i}: data_length: {len(df_test)}") # 前回のデータ更新 if len(df_test_prev) > 0: # 初回のみパスするためのif answered_correctly = df_test.iloc[0]["prior_group_answers_correct"] answered_correctly = [int(x) for x in answered_correctly.replace("[", "").replace("'", "").replace("]", "").replace(" ", "").split(",")] user_answer = df_test.iloc[0]["prior_group_responses"] user_answer = [int(x) for x in user_answer.replace("[", "").replace("'", "").replace("]", "").replace(" ", "").split(",")] answered_correctlies.extend(answered_correctly) user_answers.extend(user_answer) df_test_prev1["answered_correctly"] = answered_correctly df_test_prev1["user_answer"] = user_answer df_test_prev1["answered_correctly"] = df_test_prev1["answered_correctly"].replace(-1, np.nan) df_test_prev1["prior_question_had_explanation"] = \ df_test_prev1["prior_question_had_explanation"].fillna(-1).astype("int8") feature_factory_manager.fit(df_test_prev1, partial_predict_mode=True, onebyone_mode=True) df_test_prev1 = pd.DataFrame() if debug: update_record = 50 else: update_record = 150 # update1 if len(df_test_prev) > update_record: df_test_prev["answered_correctly"] = answered_correctlies df_test_prev["user_answer"] = user_answers # df_test_prev = df_test_prev.drop(prior_columns, axis=1) df_test_prev["answered_correctly"] = df_test_prev["answered_correctly"].replace(-1, np.nan) df_test_prev["prior_question_had_explanation"] = df_test_prev["prior_question_had_explanation"].fillna(-1).astype("int8") feature_factory_manager.fit(df_test_prev, partial_predict_mode=True, onebyone_mode=False) df_test_prev = pd.DataFrame() answered_correctlies = [] user_answers = [] # 今回のデータ取得&計算 # logger.info(f"[time: {int(time.time() - t)}dataload") logger.info(f"merge... ") w_df1 = pd.merge(df_test[df_test["content_type_id"] == 0], df_question, how="left", left_on="content_id", right_on="question_id") w_df2 = pd.merge(df_test[df_test["content_type_id"] == 1], df_lecture, how="left", left_on="content_id", right_on="lecture_id") df_test = pd.concat([w_df1, w_df2]).sort_values(["user_id", "timestamp"]) df_test["tag"] = df_test["tag"].fillna(-1) df_test["correct_answer"] = df_test["correct_answer"].fillna(-1) df_test["bundle_id"] = df_test["bundle_id"].fillna(-1) logger.info(f"transform... ") df_test["prior_question_had_explanation"] = df_test["prior_question_had_explanation"].astype("float16").fillna(-1).astype("int8") df = feature_factory_manager.partial_predict(df_test) df.columns = [x.replace(" ", "_") for x in df.columns] logger.info(f"other... ") # predict predicts = [] cols = models[0].feature_name() for model in models: predicts.append(model.predict(df[cols])) df["answered_correctly"] = np.array(predicts).transpose().mean(axis=1) df_sample_prediction = pd.merge(df_sample_prediction[["row_id"]], df[["row_id", "answered_correctly"]], how="inner") env.predict(df_sample_prediction) df_test_prev = df_test_prev.append(df[cols + ["user_id", "tags"]]) df_test_prev1 = df[cols + ["user_id", "tags"]] if i < 5: df_test_prev.to_csv(f"{i}.csv") if __name__ == "__main__": run(debug=True, model_dir=model_dir)
139a60ffd6e82195e835f691c53c0f317ab5a8d9
acf7457d3a799cb9bff12686d2d616688bcd4b5b
/packages/python/plotly/plotly/validators/heatmap/_yperiod.py
6496c7ed1592b867d1b2a5946e177c084910c381
[ "MIT" ]
permissive
plotly/plotly.py
f4f61639f08160f16195efc95b5901dc5a937346
975a704074f01c078e0fdfa32bdf17130bf89e69
refs/heads/master
2023-09-06T06:15:08.340035
2023-08-24T12:28:14
2023-08-24T12:28:14
14,579,099
14,751
2,989
MIT
2023-09-08T19:55:32
2013-11-21T05:53:08
Python
UTF-8
Python
false
false
470
py
import _plotly_utils.basevalidators class YperiodValidator(_plotly_utils.basevalidators.AnyValidator): def __init__(self, plotly_name="yperiod", parent_name="heatmap", **kwargs): super(YperiodValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), implied_edits=kwargs.pop("implied_edits", {"ytype": "scaled"}), **kwargs, )
d978aee1a03ddbd4eec8a61a6d7792586dbbeb14
a25aa09af984d08084a395f9b6df427d3756f11a
/35.Search Insert Position.py
39611cdd7879d9f73747e131d4d9446fec4691dc
[]
no_license
luyihsien/leetcodepy
31971e851a4ae77942a5d9e3ff07faea6e504c66
a54bd09f4b28f106196a6cd8a0f9c056bcd237e6
refs/heads/master
2020-05-19T13:21:57.854086
2019-10-16T14:23:00
2019-10-16T14:23:00
185,037,569
0
0
null
null
null
null
UTF-8
Python
false
false
724
py
'''' class Solution: def searchInsert(self, nums: List[int], target: int) -> int: ''' class Solution: def searchInsert(self, nums, target): if len(nums)==0: return 0 for i in range(len(nums)): if nums[i]==target: return i for i in range(1,len(nums)): if nums[i]>target and nums[i-1]<target: return i if max(nums)<target: return len(nums) if min(nums)>target: return 0 ''' 成功 显示详情 执行用时 : 52 ms, 在Search Insert Position的Python3提交中击败了90.74% 的用户 内存消耗 : 13.5 MB, 在Search Insert Position的Python3提交中击败了96.03% 的用户 '''
713a24a7ccdd51e993b29e4b2f542ce44c4723f6
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03448/s790400785.py
17c0ac19efb39097ef60a9bdde7f5b5bfd5d9764
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
def resolve(): A = int(input()) B = int(input()) C = int(input()) X = int(input()) ans = [] for a in range(A + 1): for b in range(B + 1): c = (X - 500 * a - 100 * b) / 50 if c <= C and c >= 0: ans.append((a, b, c)) print((len(set(ans)))) return resolve()
80fc4b38b7dff6b4f630a8e31f713c5c9b512f3c
53163d4129930426c2d7aa650cb1b638d1347d21
/lxmert/lxmert/src/tasks/nlvr2_model.py
ef93474403461f18461d1da85fb8877b6f6b5364
[ "MIT" ]
permissive
fdsig/Transformer-MM-Explainability
5e4d9d0c927afd0316311259fc318b325d74628e
accc4dd3491d321948e826079ce85f61bb02e0a6
refs/heads/main
2023-09-03T01:21:27.188260
2021-11-17T23:56:49
2021-11-17T23:56:49
433,759,755
1
0
MIT
2021-12-01T09:20:31
2021-12-01T09:20:31
null
UTF-8
Python
false
false
1,773
py
# coding=utf-8 # Copyleft 2019 project LXRT. import torch.nn as nn from lxrt.modeling import GeLU, BertLayerNorm from lxrt.entry import LXRTEncoder from param import args class NLVR2Model(nn.Module): def __init__(self): super().__init__() self.lxrt_encoder = LXRTEncoder( args, max_seq_length=20 ) self.hid_dim = hid_dim = self.lxrt_encoder.dim self.logit_fc = nn.Sequential( nn.Linear(hid_dim * 2, hid_dim * 2), GeLU(), BertLayerNorm(hid_dim * 2, eps=1e-12), nn.Linear(hid_dim * 2, 2) ) self.logit_fc.apply(self.lxrt_encoder.model.init_bert_weights) def forward(self, feat, pos, sent): """ :param feat: b, 2, o, f :param pos: b, 2, o, 4 :param sent: b, (string) :param leng: b, (numpy, int) :return: """ # Pairing images and sentences: # The input of NLVR2 is two images and one sentence. In batch level, they are saved as # [ [img0_0, img0_1], [img1_0, img1_1], ...] and [sent0, sent1, ...] # Here, we flat them to # feat/pos = [ img0_0, img0_1, img1_0, img1_1, ...] # sent = [ sent0, sent0, sent1, sent1, ...] sent = sum(zip(sent, sent), ()) batch_size, img_num, obj_num, feat_size = feat.size() assert img_num == 2 and obj_num == 36 and feat_size == 2048 feat = feat.view(batch_size * 2, obj_num, feat_size) pos = pos.view(batch_size * 2, obj_num, 4) # Extract feature --> Concat x = self.lxrt_encoder(sent, (feat, pos)) x = x.view(-1, self.hid_dim*2) # Compute logit of answers logit = self.logit_fc(x) return logit
b1b504761ef386bea3c5ec22159ec1973a0ac635
d4c47276c8fbd15240aa228eda04ee8e338caf02
/Python/Python Lesson/Second/Lesson9/Sample8.py
447d9972d35e1c1f96525406233e419f925a3a61
[]
no_license
developer579/Practice
a745384450172fb327913c130303ab76492096f1
54084468af83afcc44530e757800c8c3678147c1
refs/heads/main
2023-05-06T01:36:06.222554
2021-06-02T07:04:03
2021-06-02T07:04:03
324,312,009
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
import re ptr = ["TXT","TXT..",".TXT","..TXT"] str = ["TXT","TXTT","TXTTT","TTXT","TTTXT"] for valueptr in ptr: print("------") pattern = re.compile(valueptr) for valuestr in str: res = pattern.search(valuestr) if res is not None: m = "o" else: m = "x" mrs = "(パターン)" + valueptr + "(文字列)" + valuestr + "(マッチ)" + m print(mrs)
bfc47b482deb0ccf1f3e645d49665369758987ff
3a3e823f6b94b7eae8a363b0b51b036d2b0a1669
/metvae/dataset/biom.py
aa3196a0a38243f360389493a4983f3f36972811
[]
no_license
mortonjt/metvae
8a28bbbd72ee79d66992bd31bd82af65b83ea819
f2f241fdedd2f4c045a088727df1f155b9ce9a20
refs/heads/main
2022-12-31T16:24:26.014394
2020-10-20T23:38:50
2020-10-20T23:38:50
305,812,115
0
0
null
null
null
null
UTF-8
Python
false
false
7,780
py
import os import re import biom import math import logging import numpy as np import pandas as pd import torch from torch.utils.data import Dataset from typing import List logger = logging.getLogger(__name__) class BiomDataset(Dataset): """Loads a `.biom` file. Parameters ---------- filename : Path Filepath to biom table metadata_file : Path Filepath to sample metadata batch_category : str Column name forr batch indices """ def __init__( self, table: biom.Table, metadata: pd.DataFrame = None, batch_category: str = None, ): super(BiomDataset).__init__() self.table = table self.metadata = metadata self.batch_category = batch_category self.populate() def populate(self): logger.info("Preprocessing dataset") if self.metadata is not None: # match the metadata with the table ids = set(self.table.ids()) & set(self.metadata.index) filter_f = lambda v, i, m: i in ids self.table = self.table.filter(filter_f, axis='sample') self.metadata = self.metadata.loc[self.table.ids()] if self.metadata.index.name is None: raise ValueError('`Index` must have a name either' '`sampleid`, `sample-id` or #SampleID') self.index_name = self.metadata.index.name self.metadata = self.metadata.reset_index() self.batch_indices = None if self.batch_category is not None and self.metadata is not None: batch_cats = np.unique(self.metadata[self.batch_category].values) batch_cats = pd.Series( np.arange(len(batch_cats)), index=batch_cats) self.batch_indices = np.array( list(map(lambda x: batch_cats.loc[x], self.metadata[self.batch_category].values))) logger.info("Finished preprocessing dataset") def __len__(self) -> int: return len(self.table.ids()) def __getitem__(self, i): """ Returns all of the samples for a given subject Returns ------- counts : np.array OTU counts for specified samples. batch_indices : np.array Membership ids for batch samples. If not specified, return None. """ sample_idx = self.table.ids()[i] if self.batch_indices is not None: batch_indices = self.batch_indices[i] else: batch_indices = None counts = self.table.data(id=sample_idx, axis='sample') return counts, batch_indices def __iter__(self): worker_info = torch.utils.data.get_worker_info() start = 0 end = self.__len__() if worker_info is None: # single-process data loading for i in range(end): yield self.__getitem__(i) else: worker_id = worker_info.id w = float(worker_info.num_workers) t = (end - start) w = float(worker_info.num_workers) per_worker = int(math.ceil(t / w)) worker_id = worker_info.id iter_start = start + worker_id * per_worker iter_end = min(iter_start + per_worker, end) for i in range(iter_start, iter_end): yield self.__getitem__(i) class BiomBatchDataset(BiomDataset): """Loads a `.biom` file. Parameters ---------- filename : Path Filepath to biom table metadata_file : Path Filepath to sample metadata batch_differentials : str Pre-trained batch differentials effects batch_category : str Column name in metadata for batch indices Notes ----- Important, periods cannot be handled in the labels in the batch_category. Make sure that these are converted to hyphens or underscores. """ def __init__( self, table: biom.Table, metadata: pd.DataFrame, batch_differentials : pd.DataFrame, batch_category: str, format_columns=True, ): super(BiomBatchDataset).__init__() self.table = table self.metadata = metadata self.batch_category = batch_category self.batch_differentials = batch_differentials self.format_columns = format_columns self.populate() def populate(self): logger.info("Preprocessing dataset") # Match the metadata with the table ids = set(self.table.ids()) & set(self.metadata.index) filter_f = lambda v, i, m: i in ids self.table = self.table.filter(filter_f, axis='sample') self.metadata = self.metadata.loc[self.table.ids()] if self.metadata.index.name is None: raise ValueError('`Index` must have a name either' '`sampleid`, `sample-id` or #SampleID') self.index_name = self.metadata.index.name self.metadata = self.metadata.reset_index() # Clean up the batch indexes if self.format_columns: if (self.metadata[self.batch_category].dtypes == np.float64 or self.metadata[self.batch_category].dtypes == np.int64): # format the batch category column m = self.metadata[self.batch_category].astype(np.int64) self.metadata[self.batch_category] = m.astype(np.str) cols = self.batch_differentials.columns def regex_f(x): return re.findall(r"\[([A-Za-z0-9_]+).*\]", x)[0] cols = list(map(regex_f, cols)) print('columns', cols) self.batch_differentials.columns = cols # Retrieve batch labels batch_cats = np.unique(self.metadata[self.batch_category].values) batch_cats = pd.Series( np.arange(len(batch_cats)), index=batch_cats) self.batch_indices = np.array( list(map(lambda x: batch_cats.loc[x], self.metadata[self.batch_category].values))) # Clean up batch differentials table_features = set(self.table.ids(axis='observation')) batch_features = set(self.batch_differentials.index) ids = table_features & batch_features filter_f = lambda v, i, m: i in ids self.table = self.table.filter(filter_f, axis='observation') table_obs = self.table.ids(axis='observation') self.batch_differentials = self.batch_differentials.loc[table_obs] logger.info("Finished preprocessing dataset") def __getitem__(self, i): """ Returns all of the samples for a given subject. Returns ------- counts : np.array OTU counts for specified samples. batch_indices : np.array Membership ids for batch samples. """ sample_idx = self.table.ids()[i] batch_index = self.batch_indices[i] counts = self.table.data(id=sample_idx, axis='sample') batch_diffs = self.batch_differentials assert batch_index < batch_diffs.shape[1], f'Batch diffs " {batch_diffs.shape[1]} > index : {batch_index}' batch_diffs = np.array(batch_diffs.iloc[:, batch_index].values) return counts, batch_diffs def collate_single_f(batch): counts_list = np.vstack([b[0] for b in batch]) counts = torch.from_numpy(counts_list).float() return counts def collate_batch_f(batch): counts_list = np.vstack([b[0] for b in batch]) batch_diffs = np.vstack([b[1] for b in batch]) counts = torch.from_numpy(counts_list).float() batch_diffs = torch.from_numpy(batch_diffs).float() return counts, batch_diffs
6e0ae3e9c859c2ff133011147002083abb1e1ecf
6dfb7fe44b6c5bfb7feb5a101656e3d3402a621f
/simp_py_examples/course/S1800/t105.py
14b64f55e86d1ce9d76af5b273b6ada48bd93378
[ "MIT" ]
permissive
kcfkwok2003/Simp_py
11d6813fac83ab6309eb8efc22fcd8edde5b19b8
f75e66da01b45dc8688dda602f8b33d4258f0c31
refs/heads/master
2021-05-11T00:36:36.872754
2018-12-19T01:41:15
2018-12-19T01:41:15
118,306,332
0
0
null
null
null
null
UTF-8
Python
false
false
149
py
from simp_py import tft lcd = tft.tft lcd.clear() import time cnt=10 while cnt >=0: lcd.text(10,10, 'count: %s ' % cnt) cnt -=1 time.sleep(1)
a5da3fc38c2b91b2122f0fd2cb7e5d2e1f764ad9
9dc3ae479c1b5c6941681917151fcb0379f9173d
/CanvasFeatureFlag.py
7a8e37d3b28a61f52fb91ba58b6f1eb53cf1381a
[]
no_license
cthacker-udel/Python-Canvas-API-Wrapper
bf2400b42b644791f45bbda7ed42e2c03a8d97b2
0263c591a2b02197529559346558b9be02f592c3
refs/heads/master
2023-08-25T12:01:48.417204
2021-10-09T10:49:51
2021-10-09T10:49:51
388,362,237
2
0
null
null
null
null
UTF-8
Python
false
false
575
py
from CanvasClient import CanvasClient class CanvasFeatureFlags(CanvasClient): def __init__(self): self.course_id = None self.account_id = None self.user_id = None self.feature_id = None self.state = None def generate_queries(self): body = {} if self.state is not None: body['state'] = self.state return body def clear_queries(self): self.course_id = None self.account_id = None self.user_id = None self.feature_id = None self.state = None
3d613b080afe7af474f8504d12bf40d8034710ab
52b5773617a1b972a905de4d692540d26ff74926
/.history/binaryTree2_20200615152326.py
64f23d35b04053fcbead026e6e8a6c7c2d94f816
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
# Create a node and assign a value to the node class Node: def __init__(self,data): # designate one node as root self.data = data # then the two others as child nodes self.left = None self.right = None # A def printTree(self): print(self.data) root = Node(10) root.left = Node(2) root.right = Node(3) root.printTree()
8a8680338eb791a54e04854473d5d7158ca44726
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/pytype/pytype/tools/merge_pyi/test_data/var_annot.comment.py
8d3907c0a79e522e7a66e1587e8a8ca132b76a38
[]
no_license
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:fbf532cb3bc3376967d6a665559e5b50273ee6371ee9080fcc2f2d7e3592c2eb size 156
fa634099a27ded13c1952c58524029bb04dfce23
41986b7a1b95784f0a6256ae24d5942c70ced4d7
/prod/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/container/v1alpha1/container_v1alpha1_messages.py
49c00a4745dfa8067e647185d258367759f8dcfb
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
wakabayashi-seiya/terraform_gcp
ed829a5a21d5d19d6663804ee5d5f7f3d23b4ec4
f757e56779f33c2fabd8a8eed9c51ff0b897a38f
refs/heads/master
2021-07-07T21:51:35.993317
2020-03-11T05:42:57
2020-03-11T05:42:57
239,411,772
0
1
null
2021-04-30T21:05:04
2020-02-10T02:32:04
Python
UTF-8
Python
false
false
175,511
py
"""Generated message classes for container version v1alpha1. Builds and manages container-based applications, powered by the open source Kubernetes technology. """ # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding package = 'container' class AcceleratorConfig(_messages.Message): r"""AcceleratorConfig represents a Hardware Accelerator request. Fields: acceleratorCount: The number of the accelerator cards exposed to an instance. acceleratorType: The accelerator type resource name. List of supported accelerators [here](/compute/docs/gpus) """ acceleratorCount = _messages.IntegerField(1) acceleratorType = _messages.StringField(2) class AddonsConfig(_messages.Message): r"""Configuration for the addons that can be automatically spun up in the cluster, enabling additional functionality. Fields: cloudBuildConfig: Configuration for the Cloud Build addon. cloudRunConfig: Configuration for the Cloud Run addon. The `IstioConfig` addon must be enabled in order to enable Cloud Run. This option can only be enabled at cluster creation time. configConnectorConfig: Configuration for the ConfigConnector add-on, a Kubernetes extension to manage hosted GCP services through the Kubernetes API dnsCacheConfig: Configuration for NodeLocalDNS, a dns cache running on cluster nodes gcePersistentDiskCsiDriverConfig: Configuration for the GCP Compute Persistent Disk CSI driver. horizontalPodAutoscaling: Configuration for the horizontal pod autoscaling feature, which increases or decreases the number of replica pods a replication controller has based on the resource usage of the existing pods. httpLoadBalancing: Configuration for the HTTP (L7) load balancing controller addon, which makes it easy to set up HTTP load balancers for services in a cluster. istioConfig: Configuration for Istio, an open platform to connect, manage, and secure microservices. kalmConfig: Configuration for the KALM addon, which manages the lifecycle of k8s applications. kubernetesDashboard: Configuration for the Kubernetes Dashboard. This addon is deprecated, and will be disabled in 1.15. It is recommended to use the Cloud Console to manage and monitor your Kubernetes clusters, workloads and applications. For more information, see: https://cloud.google.com/kubernetes-engine/docs/concepts/dashboards networkPolicyConfig: Configuration for NetworkPolicy. This only tracks whether the addon is enabled or not on the Master, it does not track whether network policy is enabled for the nodes. """ cloudBuildConfig = _messages.MessageField('CloudBuildConfig', 1) cloudRunConfig = _messages.MessageField('CloudRunConfig', 2) configConnectorConfig = _messages.MessageField('ConfigConnectorConfig', 3) dnsCacheConfig = _messages.MessageField('DnsCacheConfig', 4) gcePersistentDiskCsiDriverConfig = _messages.MessageField('GcePersistentDiskCsiDriverConfig', 5) horizontalPodAutoscaling = _messages.MessageField('HorizontalPodAutoscaling', 6) httpLoadBalancing = _messages.MessageField('HttpLoadBalancing', 7) istioConfig = _messages.MessageField('IstioConfig', 8) kalmConfig = _messages.MessageField('KalmConfig', 9) kubernetesDashboard = _messages.MessageField('KubernetesDashboard', 10) networkPolicyConfig = _messages.MessageField('NetworkPolicyConfig', 11) class AuthenticatorGroupsConfig(_messages.Message): r"""Configuration for returning group information from authenticators. Fields: enabled: Whether this cluster should return group membership lookups during authentication using a group of security groups. securityGroup: The name of the security group-of-groups to be used. Only relevant if enabled = true. """ enabled = _messages.BooleanField(1) securityGroup = _messages.StringField(2) class AutoUpgradeOptions(_messages.Message): r"""AutoUpgradeOptions defines the set of options for the user to control how the Auto Upgrades will proceed. Fields: autoUpgradeStartTime: [Output only] This field is set when upgrades are about to commence with the approximate start time for the upgrades, in [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) text format. description: [Output only] This field is set when upgrades are about to commence with the description of the upgrade. """ autoUpgradeStartTime = _messages.StringField(1) description = _messages.StringField(2) class AutoprovisioningNodePoolDefaults(_messages.Message): r"""AutoprovisioningNodePoolDefaults contains defaults for a node pool created by NAP. Fields: management: Specifies the node management options for NAP created node- pools. minCpuPlatform: Minimum CPU platform to be used for NAP created node pools. The instance may be scheduled on the specified or newer CPU platform. Applicable values are the friendly names of CPU platforms, such as <code>minCpuPlatform: &quot;Intel Haswell&quot;</code> or <code>minCpuPlatform: &quot;Intel Sandy Bridge&quot;</code>. For more information, read [how to specify min CPU platform](https://cloud.google.com/compute/docs/instances/specify-min- cpu-platform) To unset the min cpu platform field pass "automatic" as field value. oauthScopes: Scopes that are used by NAP when creating node pools. If oauth_scopes are specified, service_account should be empty. serviceAccount: The Google Cloud Platform Service Account to be used by the node VMs. If service_account is specified, scopes should be empty. upgradeSettings: Specifies the upgrade settings for NAP created node pools """ management = _messages.MessageField('NodeManagement', 1) minCpuPlatform = _messages.StringField(2) oauthScopes = _messages.StringField(3, repeated=True) serviceAccount = _messages.StringField(4) upgradeSettings = _messages.MessageField('UpgradeSettings', 5) class AvailableVersion(_messages.Message): r"""AvailableVersion is an additional Kubernetes versions offered to users who subscribed to the release channel. Fields: reason: Reason for availability. version: Kubernetes version. """ reason = _messages.StringField(1) version = _messages.StringField(2) class BigQueryDestination(_messages.Message): r"""Parameters for using BigQuery as the destination of resource usage export. Fields: datasetId: The ID of a BigQuery Dataset. """ datasetId = _messages.StringField(1) class BinaryAuthorization(_messages.Message): r"""Configuration for Binary Authorization. Fields: enabled: Enable Binary Authorization for this cluster. If enabled, all container images will be validated by Google Binauthz. """ enabled = _messages.BooleanField(1) class CancelOperationRequest(_messages.Message): r"""CancelOperationRequest cancels a single operation. Fields: name: The name (project, location, operation id) of the operation to cancel. Specified in the format 'projects/*/locations/*/operations/*'. operationId: Deprecated. The server-assigned `name` of the operation. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the operation resides. This field has been deprecated and replaced by the name field. """ name = _messages.StringField(1) operationId = _messages.StringField(2) projectId = _messages.StringField(3) zone = _messages.StringField(4) class CidrBlock(_messages.Message): r"""CidrBlock contains an optional name and one CIDR block. Fields: cidrBlock: cidr_block must be specified in CIDR notation. displayName: display_name is an optional field for users to identify CIDR blocks. """ cidrBlock = _messages.StringField(1) displayName = _messages.StringField(2) class ClientCertificateConfig(_messages.Message): r"""Configuration for client certificates on the cluster. Fields: issueClientCertificate: Issue a client certificate. """ issueClientCertificate = _messages.BooleanField(1) class CloudBuildConfig(_messages.Message): r"""Configuration options for the Cloud Build addon. Fields: enabled: Whether the Cloud Build addon is enabled for this cluster. """ enabled = _messages.BooleanField(1) class CloudNatStatus(_messages.Message): r"""CloudNatStatus contains the desired state of the cloud nat functionality on this cluster. Fields: enabled: Enables Cloud Nat on this cluster. On an update if update.desired_cloud_nat_status.enabled = true, The API will check if any Routers in the cluster's network has Cloud NAT enabled on the pod range. a. If so, then the cluster nodes will be updated to not perform SNAT. b. If no NAT configuration exists, a new Router with Cloud NAT on the secondary range will be created first, and then the nodes will be updated to no longer do SNAT. """ enabled = _messages.BooleanField(1) class CloudRunConfig(_messages.Message): r"""Configuration options for the Cloud Run feature. Fields: disabled: Whether Cloud Run is enabled for this cluster. enableAlphaFeatures: Enable alpha features of Cloud Run. These features are only available to trusted testers. """ disabled = _messages.BooleanField(1) enableAlphaFeatures = _messages.BooleanField(2) class Cluster(_messages.Message): r"""A Google Kubernetes Engine cluster. Enums: NodeSchedulingStrategyValueValuesEnum: Defines behaviour of k8s scheduler. StatusValueValuesEnum: [Output only] The current status of this cluster. Messages: ResourceLabelsValue: The resource labels for the cluster to use to annotate any related GCE resources. Fields: addonsConfig: Configurations for the various addons available to run in the cluster. authenticatorGroupsConfig: Configuration controlling RBAC group membership information. autoscaling: Cluster-level autoscaling configuration. binaryAuthorization: Configuration for Binary Authorization. clusterIpv4Cidr: The IP address range of the container pods in this cluster, in [CIDR](http://en.wikipedia.org/wiki/Classless_Inter- Domain_Routing) notation (e.g. `10.96.0.0/14`). Leave blank to have one automatically chosen or specify a `/14` block in `10.0.0.0/8`. clusterTelemetry: Telemetry integration for the cluster. conditions: Which conditions caused the current cluster state. costManagementConfig: Configuration for the fine-grained cost management feature. createTime: [Output only] The time the cluster was created, in [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) text format. currentMasterVersion: The current software version of the master endpoint. currentNodeCount: [Output only] The number of nodes currently in the cluster. Deprecated. Call Kubernetes API directly to retrieve node information. currentNodeVersion: [Output only] Deprecated, use [NodePool.version ](/kubernetes- engine/docs/reference/rest/v1alpha1/projects.zones.clusters.nodePool) instead. The current version of the node software components. If they are currently at multiple versions because they're in the process of being upgraded, this reflects the minimum version of all nodes. databaseEncryption: Configuration of etcd encryption. databaseEncryptionKeyId: Resource name of a CloudKMS key to be used for the encryption of secrets in etcd. Ex. projects/kms- project/locations/global/keyRings/ring-1/cryptoKeys/key-1 Deprecated, use database_encryption instead. defaultMaxPodsConstraint: The default constraint on the maximum number of pods that can be run simultaneously on a node in the node pool of this cluster. Only honored if cluster created with IP Alias support. description: An optional description of this cluster. enableKubernetesAlpha: Kubernetes alpha features are enabled on this cluster. This includes alpha API groups (e.g. v1alpha1) and features that may not be production ready in the kubernetes version of the master and nodes. The cluster has no SLA for uptime and master/node upgrades are disabled. Alpha enabled clusters are automatically deleted thirty days after creation. enableTpu: Enable the ability to use Cloud TPUs in this cluster. endpoint: [Output only] The IP address of this cluster's master endpoint. The endpoint can be accessed from the internet at `https://username:password@endpoint/`. See the `masterAuth` property of this resource for username and password information. expireTime: [Output only] The time the cluster will be automatically deleted in [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) text format. initialClusterVersion: The initial Kubernetes version for this cluster. Valid versions are those found in validMasterVersions returned by getServerConfig. The version can be upgraded over time; such upgrades are reflected in currentMasterVersion and currentNodeVersion. Users may specify either explicit versions offered by Kubernetes Engine or version aliases, which have the following behavior: - "latest": picks the highest valid Kubernetes version - "1.X": picks the highest valid patch+gke.N patch in the 1.X version - "1.X.Y": picks the highest valid gke.N patch in the 1.X.Y version - "1.X.Y-gke.N": picks an explicit Kubernetes version - "","-": picks the default Kubernetes version initialNodeCount: The number of nodes to create in this cluster. You must ensure that your Compute Engine <a href="/compute/docs/resource- quotas">resource quota</a> is sufficient for this number of instances. You must also have available firewall and routes quota. For requests, this field should only be used in lieu of a "node_pool" object, since this configuration (along with the "node_config") will be used to create a "NodePool" object with an auto-generated name. Do not use this and a node_pool at the same time. This field is deprecated, use node_pool.initial_node_count instead. instanceGroupUrls: Deprecated. Use node_pools.instance_group_urls. ipAllocationPolicy: Configuration for cluster IP allocation. labelFingerprint: The fingerprint of the set of labels for this cluster. legacyAbac: Configuration for the legacy ABAC authorization mode. location: [Output only] The name of the Google Compute Engine [zone](/compute/docs/regions-zones/regions-zones#available) or [region](/compute/docs/regions-zones/regions-zones#available) in which the cluster resides. locations: The list of Google Compute Engine [zones](/compute/docs/zones#available) in which the cluster's nodes should be located. loggingService: The logging service the cluster should use to write logs. Currently available options: * `logging.googleapis.com` - the Google Cloud Logging service. * `none` - no logs will be exported from the cluster. * if left as an empty string,`logging.googleapis.com` will be used. maintenancePolicy: Configure the maintenance policy for this cluster. masterAuth: The authentication information for accessing the master endpoint. If unspecified, the defaults are used: For clusters before v1.12, if master_auth is unspecified, `username` will be set to "admin", a random password will be generated, and a client certificate will be issued. masterAuthorizedNetworksConfig: The configuration options for master authorized networks feature. masterIpv4CidrBlock: The IP prefix in CIDR notation to use for the hosted master network. This prefix will be used for assigning private IP addresses to the master or set of masters, as well as the ILB VIP. This field is deprecated, use private_cluster_config.master_ipv4_cidr_block instead. monitoringService: The monitoring service the cluster should use to write metrics. Currently available options: * `monitoring.googleapis.com` - the Google Cloud Monitoring service. * `none` - no metrics will be exported from the cluster. * if left as an empty string, `monitoring.googleapis.com` will be used. name: The name of this cluster. The name must be unique within this project and location (e.g. zone or region), and can be up to 40 characters with the following restrictions: * Lowercase letters, numbers, and hyphens only. * Must start with a letter. * Must end with a number or a letter. network: The name of the Google Compute Engine [network](/compute/docs /networks-and-firewalls#networks) to which the cluster is connected. If left unspecified, the `default` network will be used. networkConfig: Configuration for cluster networking. networkPolicy: Configuration options for the NetworkPolicy feature. nodeConfig: Parameters used in creating the cluster's nodes. For requests, this field should only be used in lieu of a "node_pool" object, since this configuration (along with the "initial_node_count") will be used to create a "NodePool" object with an auto-generated name. Do not use this and a node_pool at the same time. For responses, this field will be populated with the node configuration of the first node pool. (For configuration of each node pool, see `node_pool.config`) If unspecified, the defaults are used. This field is deprecated, use node_pool.config instead. nodeIpv4CidrSize: [Output only] The size of the address space on each node for hosting containers. This is provisioned from within the `container_ipv4_cidr` range. This field will only be set when cluster is in route-based network mode. nodePools: The node pools associated with this cluster. This field should not be set if "node_config" or "initial_node_count" are specified. nodeSchedulingStrategy: Defines behaviour of k8s scheduler. podSecurityPolicyConfig: Configuration for the PodSecurityPolicy feature. privateCluster: If this is a private cluster setup. Private clusters are clusters that, by default have no external IP addresses on the nodes and where nodes and the master communicate over private IP addresses. This field is deprecated, use private_cluster_config.enable_private_nodes instead. privateClusterConfig: Configuration for private cluster. releaseChannel: Release channel configuration. resourceLabels: The resource labels for the cluster to use to annotate any related GCE resources. resourceUsageExportConfig: Configuration for exporting resource usages. Resource usage export is disabled when this config unspecified. resourceVersion: Server-defined resource version (etag). securityProfile: User selected security profile selfLink: [Output only] Server-defined URL for the resource. servicesIpv4Cidr: [Output only] The IP address range of the Kubernetes services in this cluster, in [CIDR](http://en.wikipedia.org/wiki /Classless_Inter-Domain_Routing) notation (e.g. `1.2.3.4/29`). Service addresses are typically put in the last `/16` from the container CIDR. shieldedNodes: Shielded Nodes configuration. status: [Output only] The current status of this cluster. statusMessage: [Output only] Additional information about the current status of this cluster, if available. Deprecated, use the field conditions instead. subnetwork: The name of the Google Compute Engine [subnetwork](/compute/docs/subnetworks) to which the cluster is connected. On output this shows the subnetwork ID instead of the name. tierSettings: Cluster tier settings. tpuIpv4CidrBlock: [Output only] The IP address range of the Cloud TPUs in this cluster, in [CIDR](http://en.wikipedia.org/wiki/Classless_Inter- Domain_Routing) notation (e.g. `1.2.3.4/29`). verticalPodAutoscaling: Cluster-level Vertical Pod Autoscaling configuration. workloadIdentityConfig: Configuration for the use of k8s Service Accounts in GCP IAM policies. zone: [Output only] The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field is deprecated, use location instead. """ class NodeSchedulingStrategyValueValuesEnum(_messages.Enum): r"""Defines behaviour of k8s scheduler. Values: STRATEGY_UNSPECIFIED: Use default scheduling strategy. PRIORITIZE_LEAST_UTILIZED: Least utilized nodes will be prioritized by k8s scheduler. PRIORITIZE_MEDIUM_UTILIZED: Nodes with medium utilization will be prioritized by k8s scheduler. This option improves interoperability of scheduler with cluster autoscaler. """ STRATEGY_UNSPECIFIED = 0 PRIORITIZE_LEAST_UTILIZED = 1 PRIORITIZE_MEDIUM_UTILIZED = 2 class StatusValueValuesEnum(_messages.Enum): r"""[Output only] The current status of this cluster. Values: STATUS_UNSPECIFIED: Not set. PROVISIONING: The PROVISIONING state indicates the cluster is being created. RUNNING: The RUNNING state indicates the cluster has been created and is fully usable. RECONCILING: The RECONCILING state indicates that some work is actively being done on the cluster, such as upgrading the master or node software. Details can be found in the `statusMessage` field. STOPPING: The STOPPING state indicates the cluster is being deleted. ERROR: The ERROR state indicates the cluster may be unusable. Details can be found in the `statusMessage` field. DEGRADED: The DEGRADED state indicates the cluster requires user action to restore full functionality. Details can be found in the `statusMessage` field. """ STATUS_UNSPECIFIED = 0 PROVISIONING = 1 RUNNING = 2 RECONCILING = 3 STOPPING = 4 ERROR = 5 DEGRADED = 6 @encoding.MapUnrecognizedFields('additionalProperties') class ResourceLabelsValue(_messages.Message): r"""The resource labels for the cluster to use to annotate any related GCE resources. Messages: AdditionalProperty: An additional property for a ResourceLabelsValue object. Fields: additionalProperties: Additional properties of type ResourceLabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a ResourceLabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) addonsConfig = _messages.MessageField('AddonsConfig', 1) authenticatorGroupsConfig = _messages.MessageField('AuthenticatorGroupsConfig', 2) autoscaling = _messages.MessageField('ClusterAutoscaling', 3) binaryAuthorization = _messages.MessageField('BinaryAuthorization', 4) clusterIpv4Cidr = _messages.StringField(5) clusterTelemetry = _messages.MessageField('ClusterTelemetry', 6) conditions = _messages.MessageField('StatusCondition', 7, repeated=True) costManagementConfig = _messages.MessageField('CostManagementConfig', 8) createTime = _messages.StringField(9) currentMasterVersion = _messages.StringField(10) currentNodeCount = _messages.IntegerField(11, variant=_messages.Variant.INT32) currentNodeVersion = _messages.StringField(12) databaseEncryption = _messages.MessageField('DatabaseEncryption', 13) databaseEncryptionKeyId = _messages.StringField(14) defaultMaxPodsConstraint = _messages.MessageField('MaxPodsConstraint', 15) description = _messages.StringField(16) enableKubernetesAlpha = _messages.BooleanField(17) enableTpu = _messages.BooleanField(18) endpoint = _messages.StringField(19) expireTime = _messages.StringField(20) initialClusterVersion = _messages.StringField(21) initialNodeCount = _messages.IntegerField(22, variant=_messages.Variant.INT32) instanceGroupUrls = _messages.StringField(23, repeated=True) ipAllocationPolicy = _messages.MessageField('IPAllocationPolicy', 24) labelFingerprint = _messages.StringField(25) legacyAbac = _messages.MessageField('LegacyAbac', 26) location = _messages.StringField(27) locations = _messages.StringField(28, repeated=True) loggingService = _messages.StringField(29) maintenancePolicy = _messages.MessageField('MaintenancePolicy', 30) masterAuth = _messages.MessageField('MasterAuth', 31) masterAuthorizedNetworksConfig = _messages.MessageField('MasterAuthorizedNetworksConfig', 32) masterIpv4CidrBlock = _messages.StringField(33) monitoringService = _messages.StringField(34) name = _messages.StringField(35) network = _messages.StringField(36) networkConfig = _messages.MessageField('NetworkConfig', 37) networkPolicy = _messages.MessageField('NetworkPolicy', 38) nodeConfig = _messages.MessageField('NodeConfig', 39) nodeIpv4CidrSize = _messages.IntegerField(40, variant=_messages.Variant.INT32) nodePools = _messages.MessageField('NodePool', 41, repeated=True) nodeSchedulingStrategy = _messages.EnumField('NodeSchedulingStrategyValueValuesEnum', 42) podSecurityPolicyConfig = _messages.MessageField('PodSecurityPolicyConfig', 43) privateCluster = _messages.BooleanField(44) privateClusterConfig = _messages.MessageField('PrivateClusterConfig', 45) releaseChannel = _messages.MessageField('ReleaseChannel', 46) resourceLabels = _messages.MessageField('ResourceLabelsValue', 47) resourceUsageExportConfig = _messages.MessageField('ResourceUsageExportConfig', 48) resourceVersion = _messages.StringField(49) securityProfile = _messages.MessageField('SecurityProfile', 50) selfLink = _messages.StringField(51) servicesIpv4Cidr = _messages.StringField(52) shieldedNodes = _messages.MessageField('ShieldedNodes', 53) status = _messages.EnumField('StatusValueValuesEnum', 54) statusMessage = _messages.StringField(55) subnetwork = _messages.StringField(56) tierSettings = _messages.MessageField('TierSettings', 57) tpuIpv4CidrBlock = _messages.StringField(58) verticalPodAutoscaling = _messages.MessageField('VerticalPodAutoscaling', 59) workloadIdentityConfig = _messages.MessageField('WorkloadIdentityConfig', 60) zone = _messages.StringField(61) class ClusterAutoscaling(_messages.Message): r"""ClusterAutoscaling contains global, per-cluster information required by Cluster Autoscaler to automatically adjust the size of the cluster and create/delete node pools based on the current needs. Enums: AutoscalingProfileValueValuesEnum: Defines autoscaling behaviour. Fields: autoprovisioningLocations: The list of Google Compute Engine [zones](/compute/docs/zones#available) in which the NodePool's nodes can be created by NAP. autoprovisioningNodePoolDefaults: AutoprovisioningNodePoolDefaults contains defaults for a node pool created by NAP. autoscalingProfile: Defines autoscaling behaviour. enableNodeAutoprovisioning: Enables automatic node pool creation and deletion. resourceLimits: Contains global constraints regarding minimum and maximum amount of resources in the cluster. """ class AutoscalingProfileValueValuesEnum(_messages.Enum): r"""Defines autoscaling behaviour. Values: PROFILE_UNSPECIFIED: No change to autoscaling configuration. OPTIMIZE_UTILIZATION: Prioritize optimizing utilization of resources. BALANCED: Use default (balanced) autoscaling configuration. """ PROFILE_UNSPECIFIED = 0 OPTIMIZE_UTILIZATION = 1 BALANCED = 2 autoprovisioningLocations = _messages.StringField(1, repeated=True) autoprovisioningNodePoolDefaults = _messages.MessageField('AutoprovisioningNodePoolDefaults', 2) autoscalingProfile = _messages.EnumField('AutoscalingProfileValueValuesEnum', 3) enableNodeAutoprovisioning = _messages.BooleanField(4) resourceLimits = _messages.MessageField('ResourceLimit', 5, repeated=True) class ClusterTelemetry(_messages.Message): r"""Telemetry integration for the cluster. Enums: TypeValueValuesEnum: Type of the integration. Fields: type: Type of the integration. """ class TypeValueValuesEnum(_messages.Enum): r"""Type of the integration. Values: UNSPECIFIED: Not set. DISABLED: Monitoring integration is disabled. ENABLED: Monitoring integration is enabled. SYSTEM_ONLY: Only system components are monitored and logged. """ UNSPECIFIED = 0 DISABLED = 1 ENABLED = 2 SYSTEM_ONLY = 3 type = _messages.EnumField('TypeValueValuesEnum', 1) class ClusterUpdate(_messages.Message): r"""ClusterUpdate describes an update to the cluster. Exactly one update can be applied to a cluster with each request, so at most one field can be provided. Fields: concurrentNodeCount: Controls how many nodes to upgrade in parallel. A maximum of 20 concurrent nodes is allowed. Deprecated. This feature will be replaced by an equivalent new feature that gives better control over concurrency. It is not planned to propagate this field to GA and it will be eventually removed from the API. desiredAddonsConfig: Configurations for the various addons available to run in the cluster. desiredBinaryAuthorization: The desired configuration options for the Binary Authorization feature. desiredCloudNatStatus: The desired status of Cloud NAT for this cluster. Deprecated: use desired_default_snat_status instead. desiredClusterAutoscaling: The desired cluster-level autoscaling configuration. desiredClusterTelemetry: The desired telemetry integration for the cluster. desiredCostManagementConfig: The desired configuration for the fine- grained cost management feature. desiredDatabaseEncryption: Configuration of etcd encryption. desiredDefaultSnatStatus: The desired status of whether to disable default sNAT for this cluster. desiredImage: The desired name of the image to use for this node. This is used to create clusters using a custom image. desiredImageProject: The project containing the desired image to use for this node. This is used to create clusters using a custom image. desiredImageType: The desired image type for the node pool. NOTE: Set the "desired_node_pool" field as well. desiredIntraNodeVisibilityConfig: The desired config of Intra-node visibility. desiredLocations: The desired list of Google Compute Engine [zones](/compute/docs/zones#available) in which the cluster's nodes should be located. Changing the locations a cluster is in will result in nodes being either created or removed from the cluster, depending on whether locations are being added or removed. This list must always include the cluster's primary zone. desiredLoggingService: The logging service the cluster should use to write metrics. Currently available options: * "logging.googleapis.com/kubernetes" - the Google Cloud Logging service with Kubernetes-native resource model * "logging.googleapis.com" - the Google Cloud Logging service * "none" - no logs will be exported from the cluster desiredMasterAuthorizedNetworksConfig: The desired configuration options for master authorized networks feature. desiredMasterVersion: The Kubernetes version to change the master to. Users may specify either explicit versions offered by Kubernetes Engine or version aliases, which have the following behavior: - "latest": picks the highest valid Kubernetes version - "1.X": picks the highest valid patch+gke.N patch in the 1.X version - "1.X.Y": picks the highest valid gke.N patch in the 1.X.Y version - "1.X.Y-gke.N": picks an explicit Kubernetes version - "-": picks the default Kubernetes version desiredMonitoringService: The monitoring service the cluster should use to write metrics. Currently available options: * "monitoring.googleapis.com/kubernetes" - the Google Cloud Monitoring service with Kubernetes-native resource model * "monitoring.googleapis.com" - the Google Cloud Monitoring service * "none" - no metrics will be exported from the cluster desiredNodePoolAutoscaling: Autoscaler configuration for the node pool specified in desired_node_pool_id. If there is only one pool in the cluster and desired_node_pool_id is not provided then the change applies to that single node pool. desiredNodePoolId: The node pool to be upgraded. This field is mandatory if "desired_node_version", "desired_image_family", "desired_node_pool_autoscaling", or "desired_workload_metadata_config" is specified and there is more than one node pool on the cluster. desiredNodeVersion: The Kubernetes version to change the nodes to (typically an upgrade). Users may specify either explicit versions offered by Kubernetes Engine or version aliases, which have the following behavior: - "latest": picks the highest valid Kubernetes version - "1.X": picks the highest valid patch+gke.N patch in the 1.X version - "1.X.Y": picks the highest valid gke.N patch in the 1.X.Y version - "1.X.Y-gke.N": picks an explicit Kubernetes version - "-": picks the Kubernetes master version desiredPodSecurityPolicyConfig: The desired configuration options for the PodSecurityPolicy feature. desiredPrivateClusterConfig: The desired private cluster configuration. desiredPrivateIpv6Access: The desired status of Private IPv6 access for this cluster. desiredReleaseChannel: The desired release channel configuration. desiredResourceUsageExportConfig: The desired configuration for exporting resource usage. desiredShieldedNodes: Configuration for Shielded Nodes. desiredVerticalPodAutoscaling: Cluster-level Vertical Pod Autoscaling configuration. desiredWorkloadIdentityConfig: Configuration for Workload Identity. privateClusterConfig: The desired private cluster configuration. securityProfile: User may change security profile during update """ concurrentNodeCount = _messages.IntegerField(1, variant=_messages.Variant.INT32) desiredAddonsConfig = _messages.MessageField('AddonsConfig', 2) desiredBinaryAuthorization = _messages.MessageField('BinaryAuthorization', 3) desiredCloudNatStatus = _messages.MessageField('CloudNatStatus', 4) desiredClusterAutoscaling = _messages.MessageField('ClusterAutoscaling', 5) desiredClusterTelemetry = _messages.MessageField('ClusterTelemetry', 6) desiredCostManagementConfig = _messages.MessageField('CostManagementConfig', 7) desiredDatabaseEncryption = _messages.MessageField('DatabaseEncryption', 8) desiredDefaultSnatStatus = _messages.MessageField('DefaultSnatStatus', 9) desiredImage = _messages.StringField(10) desiredImageProject = _messages.StringField(11) desiredImageType = _messages.StringField(12) desiredIntraNodeVisibilityConfig = _messages.MessageField('IntraNodeVisibilityConfig', 13) desiredLocations = _messages.StringField(14, repeated=True) desiredLoggingService = _messages.StringField(15) desiredMasterAuthorizedNetworksConfig = _messages.MessageField('MasterAuthorizedNetworksConfig', 16) desiredMasterVersion = _messages.StringField(17) desiredMonitoringService = _messages.StringField(18) desiredNodePoolAutoscaling = _messages.MessageField('NodePoolAutoscaling', 19) desiredNodePoolId = _messages.StringField(20) desiredNodeVersion = _messages.StringField(21) desiredPodSecurityPolicyConfig = _messages.MessageField('PodSecurityPolicyConfig', 22) desiredPrivateClusterConfig = _messages.MessageField('PrivateClusterConfig', 23) desiredPrivateIpv6Access = _messages.MessageField('PrivateIPv6Status', 24) desiredReleaseChannel = _messages.MessageField('ReleaseChannel', 25) desiredResourceUsageExportConfig = _messages.MessageField('ResourceUsageExportConfig', 26) desiredShieldedNodes = _messages.MessageField('ShieldedNodes', 27) desiredVerticalPodAutoscaling = _messages.MessageField('VerticalPodAutoscaling', 28) desiredWorkloadIdentityConfig = _messages.MessageField('WorkloadIdentityConfig', 29) privateClusterConfig = _messages.MessageField('PrivateClusterConfig', 30) securityProfile = _messages.MessageField('SecurityProfile', 31) class CompleteIPRotationRequest(_messages.Message): r"""CompleteIPRotationRequest moves the cluster master back into single-IP mode. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster id) of the cluster to complete IP rotation. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) projectId = _messages.StringField(3) zone = _messages.StringField(4) class ConfigConnectorConfig(_messages.Message): r"""Configuration options for the Config Connector add-on. Fields: enabled: Whether Cloud Connector is enabled for this cluster. """ enabled = _messages.BooleanField(1) class ConsumptionMeteringConfig(_messages.Message): r"""Parameters for controlling consumption metering. Fields: enabled: Whether to enable consumption metering for this cluster. If enabled, a second BigQuery table will be created to hold resource consumption records. """ enabled = _messages.BooleanField(1) class ContainerProjectsAggregatedUsableSubnetworksListRequest(_messages.Message): r"""A ContainerProjectsAggregatedUsableSubnetworksListRequest object. Fields: filter: Filtering currently only supports equality on the networkProjectId and must be in the form: "networkProjectId=[PROJECTID]", where `networkProjectId` is the project which owns the listed subnetworks. This defaults to the parent project ID. pageSize: The max number of results per page that should be returned. If the number of available results is larger than `page_size`, a `next_page_token` is returned which can be used to get the next page of results in subsequent requests. Acceptable values are 0 to 500, inclusive. (Default: 500) pageToken: Specifies a page token to use. Set this to the next_page_token returned by previous list requests to get the next page of results. parent: The parent project where subnetworks are usable. Specified in the format 'projects/*'. """ filter = _messages.StringField(1) pageSize = _messages.IntegerField(2, variant=_messages.Variant.INT32) pageToken = _messages.StringField(3) parent = _messages.StringField(4, required=True) class ContainerProjectsLocationsClustersDeleteRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersDeleteRequest object. Fields: clusterId: Deprecated. The name of the cluster to delete. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to delete. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2, required=True) projectId = _messages.StringField(3) zone = _messages.StringField(4) class ContainerProjectsLocationsClustersGetJwksRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersGetJwksRequest object. Fields: parent: The cluster (project, location, cluster id) to get keys for. Specified in the format 'projects/*/locations/*/clusters/*'. """ parent = _messages.StringField(1, required=True) class ContainerProjectsLocationsClustersGetRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersGetRequest object. Fields: clusterId: Deprecated. The name of the cluster to retrieve. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to retrieve. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2, required=True) projectId = _messages.StringField(3) zone = _messages.StringField(4) class ContainerProjectsLocationsClustersListRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersListRequest object. Fields: parent: The parent (project and location) where the clusters will be listed. Specified in the format 'projects/*/locations/*'. Location "-" matches all zones and all regions. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides, or "-" for all zones. This field has been deprecated and replaced by the parent field. """ parent = _messages.StringField(1, required=True) projectId = _messages.StringField(2) zone = _messages.StringField(3) class ContainerProjectsLocationsClustersNodePoolsDeleteRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersNodePoolsDeleteRequest object. Fields: clusterId: Deprecate. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node pool to delete. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to delete. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2, required=True) nodePoolId = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class ContainerProjectsLocationsClustersNodePoolsGetRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersNodePoolsGetRequest object. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node pool to get. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2, required=True) nodePoolId = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class ContainerProjectsLocationsClustersNodePoolsListRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersNodePoolsListRequest object. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the parent field. parent: The parent (project, location, cluster id) where the node pools will be listed. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the parent field. """ clusterId = _messages.StringField(1) parent = _messages.StringField(2, required=True) projectId = _messages.StringField(3) zone = _messages.StringField(4) class ContainerProjectsLocationsClustersWellKnownGetOpenidConfigurationRequest(_messages.Message): r"""A ContainerProjectsLocationsClustersWellKnownGetOpenidConfigurationRequest object. Fields: parent: The cluster (project, location, cluster id) to get the discovery document for. Specified in the format 'projects/*/locations/*/clusters/*'. """ parent = _messages.StringField(1, required=True) class ContainerProjectsLocationsGetServerConfigRequest(_messages.Message): r"""A ContainerProjectsLocationsGetServerConfigRequest object. Fields: name: The name (project and location) of the server config to get, specified in the format 'projects/*/locations/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) to return operations for. This field has been deprecated and replaced by the name field. """ name = _messages.StringField(1, required=True) projectId = _messages.StringField(2) zone = _messages.StringField(3) class ContainerProjectsLocationsListRequest(_messages.Message): r"""A ContainerProjectsLocationsListRequest object. Fields: parent: Contains the name of the resource requested. Specified in the format 'projects/*'. """ parent = _messages.StringField(1, required=True) class ContainerProjectsLocationsOperationsGetRequest(_messages.Message): r"""A ContainerProjectsLocationsOperationsGetRequest object. Fields: name: The name (project, location, operation id) of the operation to get. Specified in the format 'projects/*/locations/*/operations/*'. operationId: Deprecated. The server-assigned `name` of the operation. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ name = _messages.StringField(1, required=True) operationId = _messages.StringField(2) projectId = _messages.StringField(3) zone = _messages.StringField(4) class ContainerProjectsLocationsOperationsListRequest(_messages.Message): r"""A ContainerProjectsLocationsOperationsListRequest object. Fields: parent: The parent (project and location) where the operations will be listed. Specified in the format 'projects/*/locations/*'. Location "-" matches all zones and all regions. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) to return operations for, or `-` for all zones. This field has been deprecated and replaced by the parent field. """ parent = _messages.StringField(1, required=True) projectId = _messages.StringField(2) zone = _messages.StringField(3) class ContainerProjectsZonesClustersDeleteRequest(_messages.Message): r"""A ContainerProjectsZonesClustersDeleteRequest object. Fields: clusterId: Deprecated. The name of the cluster to delete. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to delete. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1, required=True) name = _messages.StringField(2) projectId = _messages.StringField(3, required=True) zone = _messages.StringField(4, required=True) class ContainerProjectsZonesClustersGetRequest(_messages.Message): r"""A ContainerProjectsZonesClustersGetRequest object. Fields: clusterId: Deprecated. The name of the cluster to retrieve. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to retrieve. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1, required=True) name = _messages.StringField(2) projectId = _messages.StringField(3, required=True) zone = _messages.StringField(4, required=True) class ContainerProjectsZonesClustersListRequest(_messages.Message): r"""A ContainerProjectsZonesClustersListRequest object. Fields: parent: The parent (project and location) where the clusters will be listed. Specified in the format 'projects/*/locations/*'. Location "-" matches all zones and all regions. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides, or "-" for all zones. This field has been deprecated and replaced by the parent field. """ parent = _messages.StringField(1) projectId = _messages.StringField(2, required=True) zone = _messages.StringField(3, required=True) class ContainerProjectsZonesClustersNodePoolsDeleteRequest(_messages.Message): r"""A ContainerProjectsZonesClustersNodePoolsDeleteRequest object. Fields: clusterId: Deprecate. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node pool to delete. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to delete. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1, required=True) name = _messages.StringField(2) nodePoolId = _messages.StringField(3, required=True) projectId = _messages.StringField(4, required=True) zone = _messages.StringField(5, required=True) class ContainerProjectsZonesClustersNodePoolsGetRequest(_messages.Message): r"""A ContainerProjectsZonesClustersNodePoolsGetRequest object. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node pool to get. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1, required=True) name = _messages.StringField(2) nodePoolId = _messages.StringField(3, required=True) projectId = _messages.StringField(4, required=True) zone = _messages.StringField(5, required=True) class ContainerProjectsZonesClustersNodePoolsListRequest(_messages.Message): r"""A ContainerProjectsZonesClustersNodePoolsListRequest object. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the parent field. parent: The parent (project, location, cluster id) where the node pools will be listed. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the parent field. """ clusterId = _messages.StringField(1, required=True) parent = _messages.StringField(2) projectId = _messages.StringField(3, required=True) zone = _messages.StringField(4, required=True) class ContainerProjectsZonesGetServerconfigRequest(_messages.Message): r"""A ContainerProjectsZonesGetServerconfigRequest object. Fields: name: The name (project and location) of the server config to get, specified in the format 'projects/*/locations/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) to return operations for. This field has been deprecated and replaced by the name field. """ name = _messages.StringField(1) projectId = _messages.StringField(2, required=True) zone = _messages.StringField(3, required=True) class ContainerProjectsZonesOperationsGetRequest(_messages.Message): r"""A ContainerProjectsZonesOperationsGetRequest object. Fields: name: The name (project, location, operation id) of the operation to get. Specified in the format 'projects/*/locations/*/operations/*'. operationId: Deprecated. The server-assigned `name` of the operation. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ name = _messages.StringField(1) operationId = _messages.StringField(2, required=True) projectId = _messages.StringField(3, required=True) zone = _messages.StringField(4, required=True) class ContainerProjectsZonesOperationsListRequest(_messages.Message): r"""A ContainerProjectsZonesOperationsListRequest object. Fields: parent: The parent (project and location) where the operations will be listed. Specified in the format 'projects/*/locations/*'. Location "-" matches all zones and all regions. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) to return operations for, or `-` for all zones. This field has been deprecated and replaced by the parent field. """ parent = _messages.StringField(1) projectId = _messages.StringField(2, required=True) zone = _messages.StringField(3, required=True) class CostManagementConfig(_messages.Message): r"""Configuration for fine-grained cost management feature. Fields: enabled: Whether the feature is enabled or not. """ enabled = _messages.BooleanField(1) class CreateClusterRequest(_messages.Message): r"""CreateClusterRequest creates a cluster. Fields: cluster: A [cluster resource](/container- engine/reference/rest/v1alpha1/projects.zones.clusters) parent: The parent (project and location) where the cluster will be created. Specified in the format 'projects/*/locations/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the parent field. """ cluster = _messages.MessageField('Cluster', 1) parent = _messages.StringField(2) projectId = _messages.StringField(3) zone = _messages.StringField(4) class CreateNodePoolRequest(_messages.Message): r"""CreateNodePoolRequest creates a node pool for a cluster. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the parent field. nodePool: The node pool to create. parent: The parent (project, location, cluster id) where the node pool will be created. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the parent field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the parent field. """ clusterId = _messages.StringField(1) nodePool = _messages.MessageField('NodePool', 2) parent = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class CustomImageConfig(_messages.Message): r"""CustomImageConfig contains the information Fields: image: The name of the image to use for this node. imageFamily: The name of the image family to use for this node. imageProject: The project containing the image to use for this node. """ image = _messages.StringField(1) imageFamily = _messages.StringField(2) imageProject = _messages.StringField(3) class DailyMaintenanceWindow(_messages.Message): r"""Time window specified for daily maintenance operations. Fields: duration: [Output only] Duration of the time window, automatically chosen to be smallest possible in the given scenario. startTime: Time within the maintenance window to start the maintenance operations. It must be in format "HH:MM", where HH : [00-23] and MM : [00-59] GMT. """ duration = _messages.StringField(1) startTime = _messages.StringField(2) class DatabaseEncryption(_messages.Message): r"""Configuration of etcd encryption. Enums: StateValueValuesEnum: Denotes the state of etcd encryption. Fields: keyName: Name of CloudKMS key to use for the encryption of secrets in etcd. Ex. projects/my-project/locations/global/keyRings/my- ring/cryptoKeys/my-key state: Denotes the state of etcd encryption. """ class StateValueValuesEnum(_messages.Enum): r"""Denotes the state of etcd encryption. Values: UNKNOWN: Should never be set ENCRYPTED: Secrets in etcd are encrypted. DECRYPTED: Secrets in etcd are stored in plain text (at etcd level) - this is unrelated to Google Compute Engine level full disk encryption. """ UNKNOWN = 0 ENCRYPTED = 1 DECRYPTED = 2 keyName = _messages.StringField(1) state = _messages.EnumField('StateValueValuesEnum', 2) class DefaultSnatStatus(_messages.Message): r"""DefaultSnatStatus contains the desired state of whether default sNAT should be disabled on the cluster. Fields: disabled: Disables cluster default sNAT rules. """ disabled = _messages.BooleanField(1) class DnsCacheConfig(_messages.Message): r"""Configuration for NodeLocal DNSCache Fields: enabled: Whether NodeLocal DNSCache is enabled for this cluster. """ enabled = _messages.BooleanField(1) class Empty(_messages.Message): r"""A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ class FeatureConfig(_messages.Message): r"""FeatureConfig is the configuration for a specific feature including the definition of the feature as well as the tier in which it resides. Enums: FeatureValueValuesEnum: The feature that is being configured with this value. TierValueValuesEnum: The tier in which the configured feature resides. Fields: feature: The feature that is being configured with this value. tier: The tier in which the configured feature resides. """ class FeatureValueValuesEnum(_messages.Enum): r"""The feature that is being configured with this value. Values: DEFAULT_FEATURE: DEFAULT_FEATURE is the default zero value of the Feature. This value is valid. VERTICAL_POD_AUTOSCALER: The vertical pod autoscaling feature. NODE_AUTO_PROVISIONING: The node auto provisioning feature. BINARY_AUTHORIZATION: The binary authorization feature. RESOURCE_LABELS: The resource labels feature. USAGE_METERING: The GKE usage metering feature. CLOUD_RUN_ON_GKE: The Cloud Run on GKE feature. """ DEFAULT_FEATURE = 0 VERTICAL_POD_AUTOSCALER = 1 NODE_AUTO_PROVISIONING = 2 BINARY_AUTHORIZATION = 3 RESOURCE_LABELS = 4 USAGE_METERING = 5 CLOUD_RUN_ON_GKE = 6 class TierValueValuesEnum(_messages.Enum): r"""The tier in which the configured feature resides. Values: TIER_UNSPECIFIED: TIER_UNSPECIFIED is the default value. If this value is set during create or update, it defaults to the project level tier setting. STANDARD: Represents the standard tier or base Google Kubernetes Engine offering. ADVANCED: Represents the advanced tier. """ TIER_UNSPECIFIED = 0 STANDARD = 1 ADVANCED = 2 feature = _messages.EnumField('FeatureValueValuesEnum', 1) tier = _messages.EnumField('TierValueValuesEnum', 2) class GcePersistentDiskCsiDriverConfig(_messages.Message): r"""Configuration for the GCE PD CSI driver. This option can only be enabled at cluster creation time. Fields: enabled: Whether the GCE PD CSI driver is enabled for this cluster. """ enabled = _messages.BooleanField(1) class GetJSONWebKeysResponse(_messages.Message): r"""GetJSONWebKeysResponse is a valid JSON Web Key Set as specififed in rfc 7517 Fields: cacheHeader: OnePlatform automagically extracts this field and uses it to set the HTTP Cache-Control header. keys: The public component of the keys used by the cluster to sign token requests. """ cacheHeader = _messages.MessageField('HttpCacheControlResponseHeader', 1) keys = _messages.MessageField('Jwk', 2, repeated=True) class GetOpenIDConfigResponse(_messages.Message): r"""GetOpenIDConfigResponse is an OIDC discovery document for the cluster. See the OpenID Connect Discovery 1.0 specification for details. Fields: cacheHeader: OnePlatform automagically extracts this field and uses it to set the HTTP Cache-Control header. claims_supported: Supported claims. grant_types: Supported grant types. id_token_signing_alg_values_supported: supported ID Token signing Algorithms. issuer: OIDC Issuer. jwks_uri: JSON Web Key uri. response_types_supported: Supported response types. subject_types_supported: Supported subject types. """ cacheHeader = _messages.MessageField('HttpCacheControlResponseHeader', 1) claims_supported = _messages.StringField(2, repeated=True) grant_types = _messages.StringField(3, repeated=True) id_token_signing_alg_values_supported = _messages.StringField(4, repeated=True) issuer = _messages.StringField(5) jwks_uri = _messages.StringField(6) response_types_supported = _messages.StringField(7, repeated=True) subject_types_supported = _messages.StringField(8, repeated=True) class HorizontalPodAutoscaling(_messages.Message): r"""Configuration options for the horizontal pod autoscaling feature, which increases or decreases the number of replica pods a replication controller has based on the resource usage of the existing pods. Fields: disabled: Whether the Horizontal Pod Autoscaling feature is enabled in the cluster. When enabled, it ensures that metrics are collected into Stackdriver Monitoring. """ disabled = _messages.BooleanField(1) class HttpCacheControlResponseHeader(_messages.Message): r"""RFC-2616: cache control support Fields: age: 14.6 response cache age, in seconds since the response is generated directive: 14.9 request and response directives expires: 14.21 response cache expires, in RFC 1123 date format """ age = _messages.IntegerField(1) directive = _messages.StringField(2) expires = _messages.StringField(3) class HttpLoadBalancing(_messages.Message): r"""Configuration options for the HTTP (L7) load balancing controller addon, which makes it easy to set up HTTP load balancers for services in a cluster. Fields: disabled: Whether the HTTP Load Balancing controller is enabled in the cluster. When enabled, it runs a small pod in the cluster that manages the load balancers. """ disabled = _messages.BooleanField(1) class IPAllocationPolicy(_messages.Message): r"""Configuration for controlling how IPs are allocated in the cluster. Fields: allowRouteOverlap: If true, allow allocation of cluster CIDR ranges that overlap with certain kinds of network routes. By default we do not allow cluster CIDR ranges to intersect with any user declared routes. With allow_route_overlap == true, we allow overlapping with CIDR ranges that are larger than the cluster CIDR range. If this field is set to true, then cluster and services CIDRs must be fully-specified (e.g. `10.96.0.0/14`, but not `/14`), which means: 1) When `use_ip_aliases` is true, `cluster_ipv4_cidr_block` and `services_ipv4_cidr_block` must be fully-specified. 2) When `use_ip_aliases` is false, `cluster.cluster_ipv4_cidr` muse be fully-specified. clusterIpv4Cidr: This field is deprecated, use cluster_ipv4_cidr_block. clusterIpv4CidrBlock: The IP address range for the cluster pod IPs. If this field is set, then `cluster.cluster_ipv4_cidr` must be left blank. This field is only applicable when `use_ip_aliases` is true. Set to blank to have a range chosen with the default size. Set to /netmask (e.g. `/14`) to have a range chosen with a specific netmask. Set to a [CIDR](http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing) notation (e.g. `10.96.0.0/14`) from the RFC-1918 private networks (e.g. `10.0.0.0/8`, `172.16.0.0/12`, `192.168.0.0/16`) to pick a specific range to use. clusterSecondaryRangeName: The name of the secondary range to be used for the cluster CIDR block. The secondary range will be used for pod IP addresses. This must be an existing secondary range associated with the cluster subnetwork. This field is only applicable if use_ip_aliases is true and create_subnetwork is false. createSubnetwork: Whether a new subnetwork will be created automatically for the cluster. This field is only applicable when `use_ip_aliases` is true. nodeIpv4Cidr: This field is deprecated, use node_ipv4_cidr_block. nodeIpv4CidrBlock: The IP address range of the instance IPs in this cluster. This is applicable only if `create_subnetwork` is true. Set to blank to have a range chosen with the default size. Set to /netmask (e.g. `/14`) to have a range chosen with a specific netmask. Set to a [CIDR](http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing) notation (e.g. `10.96.0.0/14`) from the RFC-1918 private networks (e.g. `10.0.0.0/8`, `172.16.0.0/12`, `192.168.0.0/16`) to pick a specific range to use. servicesIpv4Cidr: This field is deprecated, use services_ipv4_cidr_block. servicesIpv4CidrBlock: The IP address range of the services IPs in this cluster. If blank, a range will be automatically chosen with the default size. This field is only applicable when `use_ip_aliases` is true. Set to blank to have a range chosen with the default size. Set to /netmask (e.g. `/14`) to have a range chosen with a specific netmask. Set to a [CIDR](http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing) notation (e.g. `10.96.0.0/14`) from the RFC-1918 private networks (e.g. `10.0.0.0/8`, `172.16.0.0/12`, `192.168.0.0/16`) to pick a specific range to use. servicesSecondaryRangeName: The name of the secondary range to be used as for the services CIDR block. The secondary range will be used for service ClusterIPs. This must be an existing secondary range associated with the cluster subnetwork. This field is only applicable with use_ip_aliases is true and create_subnetwork is false. subnetworkName: A custom subnetwork name to be used if `create_subnetwork` is true. If this field is empty, then an automatic name will be chosen for the new subnetwork. tpuIpv4CidrBlock: The IP address range of the Cloud TPUs in this cluster. If unspecified, a range will be automatically chosen with the default size. This field is only applicable when `use_ip_aliases` is true, and it must not be specified when the `tpu_use_service_networking` is `true`. Unspecified to have a range chosen with the default size `/20`. Set to /netmask (e.g. `/14`) to have a range chosen with a specific netmask. Set to a [CIDR](http://en.wikipedia.org/wiki/Classless_Inter- Domain_Routing) notation (e.g. `10.96.0.0/14`) from the RFC-1918 private networks (e.g. `10.0.0.0/8`, `172.16.0.0/12`, `192.168.0.0/16`) to pick a specific range to use. tpuUseServiceNetworking: Enable Cloud TPU's Service Networking mode. In this mode, the CIDR blocks used by the Cloud TPUs will be allocated and managed by Service Networking, instead of GKE. This field must be `false` when `tpu_ipv4_cidr_block` is specified. useIpAliases: Whether alias IPs will be used for pod IPs in the cluster. This is used in conjunction with use_routes. It cannot be true if use_routes is true. If both use_ip_aliases and use_routes are false, then the server picks the default IP allocation mode """ allowRouteOverlap = _messages.BooleanField(1) clusterIpv4Cidr = _messages.StringField(2) clusterIpv4CidrBlock = _messages.StringField(3) clusterSecondaryRangeName = _messages.StringField(4) createSubnetwork = _messages.BooleanField(5) nodeIpv4Cidr = _messages.StringField(6) nodeIpv4CidrBlock = _messages.StringField(7) servicesIpv4Cidr = _messages.StringField(8) servicesIpv4CidrBlock = _messages.StringField(9) servicesSecondaryRangeName = _messages.StringField(10) subnetworkName = _messages.StringField(11) tpuIpv4CidrBlock = _messages.StringField(12) tpuUseServiceNetworking = _messages.BooleanField(13) useIpAliases = _messages.BooleanField(14) class IntraNodeVisibilityConfig(_messages.Message): r"""IntraNodeVisibilityConfig contains the desired config of the intra-node visibility on this cluster. Fields: enabled: Enables intra node visibility for this cluster. """ enabled = _messages.BooleanField(1) class IstioConfig(_messages.Message): r"""Configuration options for Istio addon. Enums: AuthValueValuesEnum: The specified Istio auth mode, either none, or mutual TLS. Fields: auth: The specified Istio auth mode, either none, or mutual TLS. csmMeshName: DEPRECATED: No longer used. disabled: Whether Istio is enabled for this cluster. """ class AuthValueValuesEnum(_messages.Enum): r"""The specified Istio auth mode, either none, or mutual TLS. Values: AUTH_NONE: auth not enabled AUTH_MUTUAL_TLS: auth mutual TLS enabled """ AUTH_NONE = 0 AUTH_MUTUAL_TLS = 1 auth = _messages.EnumField('AuthValueValuesEnum', 1) csmMeshName = _messages.StringField(2) disabled = _messages.BooleanField(3) class Jwk(_messages.Message): r"""Jwk is a JSON Web Key as specified in RFC 7517 Fields: alg: Algorithm. crv: Used for ECDSA keys. e: Used for RSA keys. kid: Key ID. kty: Key Type. n: Used for RSA keys. use: Permitted uses for the public keys. x: Used for ECDSA keys. y: Used for ECDSA keys. """ alg = _messages.StringField(1) crv = _messages.StringField(2) e = _messages.StringField(3) kid = _messages.StringField(4) kty = _messages.StringField(5) n = _messages.StringField(6) use = _messages.StringField(7) x = _messages.StringField(8) y = _messages.StringField(9) class KalmConfig(_messages.Message): r"""Configuration options for the KALM addon. Fields: enabled: Whether KALM is enabled for this cluster. """ enabled = _messages.BooleanField(1) class KubernetesDashboard(_messages.Message): r"""Configuration for the Kubernetes Dashboard. Fields: disabled: Whether the Kubernetes Dashboard is enabled for this cluster. """ disabled = _messages.BooleanField(1) class LegacyAbac(_messages.Message): r"""Configuration for the legacy Attribute Based Access Control authorization mode. Fields: enabled: Whether the ABAC authorizer is enabled for this cluster. When enabled, identities in the system, including service accounts, nodes, and controllers, will have statically granted permissions beyond those provided by the RBAC configuration or IAM. """ enabled = _messages.BooleanField(1) class LinuxNodeConfig(_messages.Message): r"""Parameters that can be configured on Linux nodes. Messages: SysctlsValue: The Linux kernel parameters to be applied to the nodes and all pods running on the nodes. The following parameters are supported. kernel.pid_max kernel.threads-max fs.inotify.max_queued_events fs.inotify.max_user_instances fs.inotify.max_user_watches net.core.netdev_budget net.core.netdev_budget_usecs net.core.netdev_max_backlog net.core.rmem_default net.core.rmem_max net.core.wmem_default net.core.wmem_max net.core.optmem_max net.core.somaxconn net.ipv4.tcp_rmem net.ipv4.tcp_wmem net.ipv4.tcp_mem net.ipv4.tcp_fin_timeout net.ipv4.tcp_keepalive_intvl net.ipv4.tcp_keepalive_probes net.ipv4.tcp_keepalive_time net.ipv4.tcp_max_orphans net.ipv4.tcp_max_syn_backlog net.ipv4.tcp_max_tw_buckets net.ipv4.tcp_syn_retries net.ipv4.tcp_tw_reuse net.ipv4.udp_mem net.ipv4.udp_rmem_min net.ipv4.udp_wmem_min net.netfilter.nf_conntrack_generic_timeout net.netfilter.nf_conntrack_max net.netfilter.nf_conntrack_tcp_timeout_close_wait net.netfilter.nf_conntrack_tcp_timeout_established Fields: sysctls: The Linux kernel parameters to be applied to the nodes and all pods running on the nodes. The following parameters are supported. kernel.pid_max kernel.threads-max fs.inotify.max_queued_events fs.inotify.max_user_instances fs.inotify.max_user_watches net.core.netdev_budget net.core.netdev_budget_usecs net.core.netdev_max_backlog net.core.rmem_default net.core.rmem_max net.core.wmem_default net.core.wmem_max net.core.optmem_max net.core.somaxconn net.ipv4.tcp_rmem net.ipv4.tcp_wmem net.ipv4.tcp_mem net.ipv4.tcp_fin_timeout net.ipv4.tcp_keepalive_intvl net.ipv4.tcp_keepalive_probes net.ipv4.tcp_keepalive_time net.ipv4.tcp_max_orphans net.ipv4.tcp_max_syn_backlog net.ipv4.tcp_max_tw_buckets net.ipv4.tcp_syn_retries net.ipv4.tcp_tw_reuse net.ipv4.udp_mem net.ipv4.udp_rmem_min net.ipv4.udp_wmem_min net.netfilter.nf_conntrack_generic_timeout net.netfilter.nf_conntrack_max net.netfilter.nf_conntrack_tcp_timeout_close_wait net.netfilter.nf_conntrack_tcp_timeout_established """ @encoding.MapUnrecognizedFields('additionalProperties') class SysctlsValue(_messages.Message): r"""The Linux kernel parameters to be applied to the nodes and all pods running on the nodes. The following parameters are supported. kernel.pid_max kernel.threads-max fs.inotify.max_queued_events fs.inotify.max_user_instances fs.inotify.max_user_watches net.core.netdev_budget net.core.netdev_budget_usecs net.core.netdev_max_backlog net.core.rmem_default net.core.rmem_max net.core.wmem_default net.core.wmem_max net.core.optmem_max net.core.somaxconn net.ipv4.tcp_rmem net.ipv4.tcp_wmem net.ipv4.tcp_mem net.ipv4.tcp_fin_timeout net.ipv4.tcp_keepalive_intvl net.ipv4.tcp_keepalive_probes net.ipv4.tcp_keepalive_time net.ipv4.tcp_max_orphans net.ipv4.tcp_max_syn_backlog net.ipv4.tcp_max_tw_buckets net.ipv4.tcp_syn_retries net.ipv4.tcp_tw_reuse net.ipv4.udp_mem net.ipv4.udp_rmem_min net.ipv4.udp_wmem_min net.netfilter.nf_conntrack_generic_timeout net.netfilter.nf_conntrack_max net.netfilter.nf_conntrack_tcp_timeout_close_wait net.netfilter.nf_conntrack_tcp_timeout_established Messages: AdditionalProperty: An additional property for a SysctlsValue object. Fields: additionalProperties: Additional properties of type SysctlsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a SysctlsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) sysctls = _messages.MessageField('SysctlsValue', 1) class ListClustersResponse(_messages.Message): r"""ListClustersResponse is the result of ListClustersRequest. Fields: clusters: A list of clusters in the project in the specified zone, or across all ones. missingZones: If any zones are listed here, the list of clusters returned may be missing those zones. """ clusters = _messages.MessageField('Cluster', 1, repeated=True) missingZones = _messages.StringField(2, repeated=True) class ListLocationsResponse(_messages.Message): r"""ListLocationsResponse returns the list of all GKE locations and their recommendation state. Fields: locations: A full list of GKE locations. nextPageToken: Only return ListLocationsResponse that occur after the page_token. This value should be populated from the ListLocationsResponse.next_page_token if that response token was set (which happens when listing more Locations than fit in a single ListLocationsResponse). This is currently not used and will be honored once we use pagination. """ locations = _messages.MessageField('Location', 1, repeated=True) nextPageToken = _messages.StringField(2) class ListNodePoolsResponse(_messages.Message): r"""ListNodePoolsResponse is the result of ListNodePoolsRequest. Fields: nodePools: A list of node pools for a cluster. """ nodePools = _messages.MessageField('NodePool', 1, repeated=True) class ListOperationsResponse(_messages.Message): r"""ListOperationsResponse is the result of ListOperationsRequest. Fields: missingZones: If any zones are listed here, the list of operations returned may be missing the operations from those zones. operations: A list of operations in the project in the specified zone. """ missingZones = _messages.StringField(1, repeated=True) operations = _messages.MessageField('Operation', 2, repeated=True) class ListUsableSubnetworksResponse(_messages.Message): r"""ListUsableSubnetworksResponse is the response of ListUsableSubnetworksRequest. Fields: nextPageToken: This token allows you to get the next page of results for list requests. If the number of results is larger than `page_size`, use the `next_page_token` as a value for the query parameter `page_token` in the next request. The value will become empty when there are no more pages. subnetworks: A list of usable subnetworks in the specified network project. """ nextPageToken = _messages.StringField(1) subnetworks = _messages.MessageField('UsableSubnetwork', 2, repeated=True) class LocalSsdVolumeConfig(_messages.Message): r"""LocalSsdVolumeConfig is comprised of three fields, count, type, and format. Count is the number of ssds of this grouping requested, type is the interface type and is either nvme or scsi, and format is whether the disk is to be formatted with a filesystem or left for block storage Enums: FormatValueValuesEnum: Format of the local SSD (fs/block). Fields: count: Number of local SSDs to use format: Format of the local SSD (fs/block). type: Local SSD interface to use (nvme/scsi). """ class FormatValueValuesEnum(_messages.Enum): r"""Format of the local SSD (fs/block). Values: FORMAT_UNSPECIFIED: Default value FS: File system formatted BLOCK: Raw block """ FORMAT_UNSPECIFIED = 0 FS = 1 BLOCK = 2 count = _messages.IntegerField(1, variant=_messages.Variant.INT32) format = _messages.EnumField('FormatValueValuesEnum', 2) type = _messages.StringField(3) class Location(_messages.Message): r"""Location returns the location name, and if the location is recommended for GKE cluster scheduling. Enums: TypeValueValuesEnum: Contains the type of location this Location is for. Regional or Zonal. Fields: name: Contains the name of the resource requested. Specified in the format 'projects/*/locations/*'. recommended: Recommended is a bool combining the drain state of the location (ie- has the region been drained manually?), and the stockout status of any zone according to Zone Advisor. This will be internal only for use by pantheon. type: Contains the type of location this Location is for. Regional or Zonal. """ class TypeValueValuesEnum(_messages.Enum): r"""Contains the type of location this Location is for. Regional or Zonal. Values: LOCATION_TYPE_UNSPECIFIED: LOCATION_TYPE_UNSPECIFIED means the location type was not determined. ZONE: A GKE Location where Zonal clusters can be created. REGION: A GKE Location where Regional clusters can be created. """ LOCATION_TYPE_UNSPECIFIED = 0 ZONE = 1 REGION = 2 name = _messages.StringField(1) recommended = _messages.BooleanField(2) type = _messages.EnumField('TypeValueValuesEnum', 3) class MaintenancePolicy(_messages.Message): r"""MaintenancePolicy defines the maintenance policy to be used for the cluster. Fields: resourceVersion: A hash identifying the version of this policy, so that updates to fields of the policy won't accidentally undo intermediate changes (and so that users of the API unaware of some fields won't accidentally remove other fields). Make a <code>get()</code> request to the cluster to get the current resource version and include it with requests to set the policy. window: Specifies the maintenance window in which maintenance may be performed. """ resourceVersion = _messages.StringField(1) window = _messages.MessageField('MaintenanceWindow', 2) class MaintenanceWindow(_messages.Message): r"""MaintenanceWindow defines the maintenance window to be used for the cluster. Messages: MaintenanceExclusionsValue: Exceptions to maintenance window. Non- emergency maintenance should not occur in these windows. Fields: dailyMaintenanceWindow: DailyMaintenanceWindow specifies a daily maintenance operation window. maintenanceExclusions: Exceptions to maintenance window. Non-emergency maintenance should not occur in these windows. recurringWindow: RecurringWindow specifies some number of recurring time periods for maintenance to occur. The time windows may be overlapping. If no maintenance windows are set, maintenance can occur at any time. """ @encoding.MapUnrecognizedFields('additionalProperties') class MaintenanceExclusionsValue(_messages.Message): r"""Exceptions to maintenance window. Non-emergency maintenance should not occur in these windows. Messages: AdditionalProperty: An additional property for a MaintenanceExclusionsValue object. Fields: additionalProperties: Additional properties of type MaintenanceExclusionsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a MaintenanceExclusionsValue object. Fields: key: Name of the additional property. value: A TimeWindow attribute. """ key = _messages.StringField(1) value = _messages.MessageField('TimeWindow', 2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) dailyMaintenanceWindow = _messages.MessageField('DailyMaintenanceWindow', 1) maintenanceExclusions = _messages.MessageField('MaintenanceExclusionsValue', 2) recurringWindow = _messages.MessageField('RecurringTimeWindow', 3) class MasterAuth(_messages.Message): r"""The authentication information for accessing the master endpoint. Authentication can be done using HTTP basic auth or using client certificates. Fields: clientCertificate: [Output only] Base64-encoded public certificate used by clients to authenticate to the cluster endpoint. clientCertificateConfig: Configuration for client certificate authentication on the cluster. For clusters before v1.12, if no configuration is specified, a client certificate is issued. clientKey: [Output only] Base64-encoded private key used by clients to authenticate to the cluster endpoint. clusterCaCertificate: [Output only] Base64-encoded public certificate that is the root of trust for the cluster. password: The password to use for HTTP basic authentication to the master endpoint. Because the master endpoint is open to the Internet, you should create a strong password. If a password is provided for cluster creation, username must be non-empty. username: The username to use for HTTP basic authentication to the master endpoint. For clusters v1.6.0 and later, basic authentication can be disabled by leaving username unspecified (or setting it to the empty string). """ clientCertificate = _messages.StringField(1) clientCertificateConfig = _messages.MessageField('ClientCertificateConfig', 2) clientKey = _messages.StringField(3) clusterCaCertificate = _messages.StringField(4) password = _messages.StringField(5) username = _messages.StringField(6) class MasterAuthorizedNetworksConfig(_messages.Message): r"""Configuration options for the master authorized networks feature. Enabled master authorized networks will disallow all external traffic to access Kubernetes master through HTTPS except traffic from the given CIDR blocks, Google Compute Engine Public IPs and Google Prod IPs. Fields: cidrBlocks: cidr_blocks define up to 50 external networks that could access Kubernetes master through HTTPS. enabled: Whether or not master authorized networks is enabled. """ cidrBlocks = _messages.MessageField('CidrBlock', 1, repeated=True) enabled = _messages.BooleanField(2) class MaxPodsConstraint(_messages.Message): r"""Constraints applied to pods. Fields: maxPodsPerNode: Constraint enforced on the max num of pods per node. """ maxPodsPerNode = _messages.IntegerField(1) class Metric(_messages.Message): r"""Progress metric is (string, int|float|string) pair. Fields: doubleValue: For metrics with floating point value. intValue: For metrics with integer value. name: Required. Metric name, e.g., "nodes total", "percent done". stringValue: For metrics with custom values (ratios, visual progress, etc.). """ doubleValue = _messages.FloatField(1) intValue = _messages.IntegerField(2) name = _messages.StringField(3) stringValue = _messages.StringField(4) class NetworkConfig(_messages.Message): r"""Parameters for cluster networking. Fields: disableDefaultSnat: Whether the cluster disables default in-node sNAT rules. In-node sNAT rules will be disabled when this flag is true. When set to false, default IP masquerade rules will be applied to the nodes to prevent sNAT on cluster internal traffic. Deprecated. Use default_snat_status instead enableCloudNat: Whether GKE Cloud NAT is enabled for this cluster. Requires that the cluster has already set IPAllocationPolicy.use_ip_aliases to true. Deprecated: use disable_default_snat instead. enableIntraNodeVisibility: Whether Intra-node visibility is enabled for this cluster. This enables flow logs for same node pod to pod traffic. enablePrivateIpv6Access: Whether or not Private IPv6 access is enabled. This enables direct connectivity from GKE pods to Google Cloud services over gRPC. enableSharedNetwork: Deprecated: This flag doesn't need to be flipped for using shared VPC and it has no effect. network: Output only. The relative name of the Google Compute Engine network(/compute/docs/networks-and-firewalls#networks) to which the cluster is connected. Example: projects/my-project/global/networks/my- network subnetwork: Output only. The relative name of the Google Compute Engine [subnetwork](/compute/docs/vpc) to which the cluster is connected. Example: projects/my-project/regions/us-central1/subnetworks/my-subnet """ disableDefaultSnat = _messages.BooleanField(1) enableCloudNat = _messages.BooleanField(2) enableIntraNodeVisibility = _messages.BooleanField(3) enablePrivateIpv6Access = _messages.BooleanField(4) enableSharedNetwork = _messages.BooleanField(5) network = _messages.StringField(6) subnetwork = _messages.StringField(7) class NetworkPolicy(_messages.Message): r"""Configuration options for the NetworkPolicy feature. https://kubernetes.io/docs/concepts/services-networking/networkpolicies/ Enums: ProviderValueValuesEnum: The selected network policy provider. Fields: enabled: Whether network policy is enabled on the cluster. provider: The selected network policy provider. """ class ProviderValueValuesEnum(_messages.Enum): r"""The selected network policy provider. Values: PROVIDER_UNSPECIFIED: Not set CALICO: Tigera (Calico Felix). """ PROVIDER_UNSPECIFIED = 0 CALICO = 1 enabled = _messages.BooleanField(1) provider = _messages.EnumField('ProviderValueValuesEnum', 2) class NetworkPolicyConfig(_messages.Message): r"""Configuration for NetworkPolicy. This only tracks whether the addon is enabled or not on the Master, it does not track whether network policy is enabled for the nodes. Fields: disabled: Whether NetworkPolicy is enabled for this cluster. """ disabled = _messages.BooleanField(1) class NodeConfig(_messages.Message): r"""Parameters that describe the nodes in a cluster. Messages: LabelsValue: The map of Kubernetes labels (key/value pairs) to be applied to each node. These will added in addition to any default label(s) that Kubernetes may apply to the node. In case of conflict in label keys, the applied set may differ depending on the Kubernetes version -- it's best to assume the behavior is undefined and conflicts should be avoided. For more information, including usage and the valid values, see: https://kubernetes.io/docs/concepts/overview/working-with- objects/labels/ MetadataValue: The metadata key/value pairs assigned to instances in the cluster. Keys must conform to the regexp [a-zA-Z0-9-_]+ and be less than 128 bytes in length. These are reflected as part of a URL in the metadata server. Additionally, to avoid ambiguity, keys must not conflict with any other metadata keys for the project or be one of the reserved keys: "cluster-location" "cluster-name" "cluster-uid" "configure-sh" "containerd-configure-sh" "enable-os-login" "gci- ensure-gke-docker" "gci-metrics-enabled" "gci-update-strategy" "instance-template" "kube-env" "startup-script" "user-data" "disable-address-manager" "windows-startup-script-ps1" "common-psm1" "k8s-node-setup-psm1" "install-ssh-psm1" "user-profile-psm1" "serial- port-logging-enable" Values are free-form strings, and only have meaning as interpreted by the image running in the instance. The only restriction placed on them is that each value's size must be less than or equal to 32 KB. The total size of all keys and values must be less than 512 KB. Fields: accelerators: A list of hardware accelerators to be attached to each node. See https://cloud.google.com/compute/docs/gpus for more information about support for GPUs. bootDiskKmsKey: The Customer Managed Encryption Key used to encrypt the boot disk attached to each node in the node pool. This should be of the form projects/[KEY_PROJECT_ID]/locations/[LOCATION]/keyRings/[RING_NAME] /cryptoKeys/[KEY_NAME]. For more information about protecting resources with Cloud KMS Keys please see: https://cloud.google.com/compute/docs/disks/customer-managed-encryption diskSizeGb: Size of the disk attached to each node, specified in GB. The smallest allowed disk size is 10GB. If unspecified, the default disk size is 100GB. diskType: Type of the disk attached to each node (e.g. 'pd-standard' or 'pd-ssd') If unspecified, the default disk type is 'pd-standard' imageType: The image type to use for this node. Note that for a given image type, the latest version of it will be used. kubeletConfig: Node kubelet configs. labels: The map of Kubernetes labels (key/value pairs) to be applied to each node. These will added in addition to any default label(s) that Kubernetes may apply to the node. In case of conflict in label keys, the applied set may differ depending on the Kubernetes version -- it's best to assume the behavior is undefined and conflicts should be avoided. For more information, including usage and the valid values, see: https://kubernetes.io/docs/concepts/overview/working-with- objects/labels/ linuxNodeConfig: Parameters that can be configured on Linux nodes. localSsdCount: The number of local SSD disks to be attached to the node. The limit for this value is dependent upon the maximum number of disks available on a machine per zone. See: https://cloud.google.com/compute/docs/disks/local-ssd for more information. localSsdVolumeConfigs: Parameters for using Local SSD with extra options as hostpath or local volumes machineType: The name of a Google Compute Engine [machine type](/compute/docs/machine-types) (e.g. `n1-standard-1`). If unspecified, the default machine type is `n1-standard-1`. metadata: The metadata key/value pairs assigned to instances in the cluster. Keys must conform to the regexp [a-zA-Z0-9-_]+ and be less than 128 bytes in length. These are reflected as part of a URL in the metadata server. Additionally, to avoid ambiguity, keys must not conflict with any other metadata keys for the project or be one of the reserved keys: "cluster-location" "cluster-name" "cluster-uid" "configure-sh" "containerd-configure-sh" "enable-os-login" "gci- ensure-gke-docker" "gci-metrics-enabled" "gci-update-strategy" "instance-template" "kube-env" "startup-script" "user-data" "disable-address-manager" "windows-startup-script-ps1" "common-psm1" "k8s-node-setup-psm1" "install-ssh-psm1" "user-profile-psm1" "serial- port-logging-enable" Values are free-form strings, and only have meaning as interpreted by the image running in the instance. The only restriction placed on them is that each value's size must be less than or equal to 32 KB. The total size of all keys and values must be less than 512 KB. minCpuPlatform: Minimum CPU platform to be used by this instance. The instance may be scheduled on the specified or newer CPU platform. Applicable values are the friendly names of CPU platforms, such as <code>minCpuPlatform: &quot;Intel Haswell&quot;</code> or <code>minCpuPlatform: &quot;Intel Sandy Bridge&quot;</code>. For more information, read [how to specify min CPU platform](https://cloud.google.com/compute/docs/instances/specify-min- cpu-platform) nodeGroup: The optional node group. Setting this field will assign instances of this pool to run on the specified node group. This is useful for running workloads on [sole tenant nodes](/compute/docs/nodes/) nodeImageConfig: The node image configuration to use for this node pool. Note that this is only applicable for node pools using image_type=CUSTOM. oauthScopes: The set of Google API scopes to be made available on all of the node VMs under the "default" service account. The following scopes are recommended, but not required, and by default are not included: * `https://www.googleapis.com/auth/compute` is required for mounting persistent storage on your nodes. * `https://www.googleapis.com/auth/devstorage.read_only` is required for communicating with **gcr.io** (the [Google Container Registry ](/container-registry/)). If unspecified, no scopes are added, unless Cloud Logging or Cloud Monitoring are enabled, in which case their required scopes will be added. preemptible: Whether the nodes are created as preemptible VM instances. See: https://cloud.google.com/compute/docs/instances/preemptible for more inforamtion about preemptible VM instances. reservationAffinity: The optional reservation affinity. Setting this field will apply the specified [Zonal Compute Reservation](/compute/docs/instances/reserving-zonal-resources) to this node pool. sandboxConfig: Sandbox configuration for this node. serviceAccount: The Google Cloud Platform Service Account to be used by the node VMs. Specify the email address of the Service Account; otherwise, if no Service Account is specified, the "default" service account is used. shieldedInstanceConfig: Shielded Instance options. tags: The list of instance tags applied to all nodes. Tags are used to identify valid sources or targets for network firewalls and are specified by the client during cluster or node pool creation. Each tag within the list must comply with RFC1035. taints: List of kubernetes taints to be applied to each node. For more information, including usage and the valid values, see: https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/ workloadMetadataConfig: The workload metadata configuration for this node. """ @encoding.MapUnrecognizedFields('additionalProperties') class LabelsValue(_messages.Message): r"""The map of Kubernetes labels (key/value pairs) to be applied to each node. These will added in addition to any default label(s) that Kubernetes may apply to the node. In case of conflict in label keys, the applied set may differ depending on the Kubernetes version -- it's best to assume the behavior is undefined and conflicts should be avoided. For more information, including usage and the valid values, see: https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/ Messages: AdditionalProperty: An additional property for a LabelsValue object. Fields: additionalProperties: Additional properties of type LabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a LabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) @encoding.MapUnrecognizedFields('additionalProperties') class MetadataValue(_messages.Message): r"""The metadata key/value pairs assigned to instances in the cluster. Keys must conform to the regexp [a-zA-Z0-9-_]+ and be less than 128 bytes in length. These are reflected as part of a URL in the metadata server. Additionally, to avoid ambiguity, keys must not conflict with any other metadata keys for the project or be one of the reserved keys: "cluster- location" "cluster-name" "cluster-uid" "configure-sh" "containerd- configure-sh" "enable-os-login" "gci-ensure-gke-docker" "gci-metrics- enabled" "gci-update-strategy" "instance-template" "kube-env" "startup-script" "user-data" "disable-address-manager" "windows- startup-script-ps1" "common-psm1" "k8s-node-setup-psm1" "install-ssh- psm1" "user-profile-psm1" "serial-port-logging-enable" Values are free- form strings, and only have meaning as interpreted by the image running in the instance. The only restriction placed on them is that each value's size must be less than or equal to 32 KB. The total size of all keys and values must be less than 512 KB. Messages: AdditionalProperty: An additional property for a MetadataValue object. Fields: additionalProperties: Additional properties of type MetadataValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a MetadataValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) accelerators = _messages.MessageField('AcceleratorConfig', 1, repeated=True) bootDiskKmsKey = _messages.StringField(2) diskSizeGb = _messages.IntegerField(3, variant=_messages.Variant.INT32) diskType = _messages.StringField(4) imageType = _messages.StringField(5) kubeletConfig = _messages.MessageField('NodeKubeletConfig', 6) labels = _messages.MessageField('LabelsValue', 7) linuxNodeConfig = _messages.MessageField('LinuxNodeConfig', 8) localSsdCount = _messages.IntegerField(9, variant=_messages.Variant.INT32) localSsdVolumeConfigs = _messages.MessageField('LocalSsdVolumeConfig', 10, repeated=True) machineType = _messages.StringField(11) metadata = _messages.MessageField('MetadataValue', 12) minCpuPlatform = _messages.StringField(13) nodeGroup = _messages.StringField(14) nodeImageConfig = _messages.MessageField('CustomImageConfig', 15) oauthScopes = _messages.StringField(16, repeated=True) preemptible = _messages.BooleanField(17) reservationAffinity = _messages.MessageField('ReservationAffinity', 18) sandboxConfig = _messages.MessageField('SandboxConfig', 19) serviceAccount = _messages.StringField(20) shieldedInstanceConfig = _messages.MessageField('ShieldedInstanceConfig', 21) tags = _messages.StringField(22, repeated=True) taints = _messages.MessageField('NodeTaint', 23, repeated=True) workloadMetadataConfig = _messages.MessageField('WorkloadMetadataConfig', 24) class NodeKubeletConfig(_messages.Message): r"""Node kubelet configs. NOTE: This is an Alpha only API. Fields: cpuCfsQuota: Enable CPU CFS quota enforcement for containers that specify CPU limits. If this option is enabled, kubelet uses CFS quota (https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt) to enforce container CPU limits. Otherwise, CPU limits will not be enforced at all. Disable this option to mitigate CPU throttling problems while still having your pods to be in Guaranteed QoS class by specifying the CPU limits. The default value is 'true' if unspecified. cpuCfsQuotaPeriod: Set the CPU CFS quota period value 'cpu.cfs_period_us'. The string must be a sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms". Valid time units are "ns", "us" (or "\xb5s"), "ms", "s", "m", "h". The value must be a positive duration. cpuManagerPolicy: Control the CPU management policy on the node. See https://kubernetes.io/docs/tasks/administer-cluster/cpu-management- policies/ The following values are allowed. - "none": the default, which represents the existing scheduling behavior. - "static": allows pods with certain resource characteristics to be granted increased CPU affinity and exclusivity on the node. """ cpuCfsQuota = _messages.BooleanField(1) cpuCfsQuotaPeriod = _messages.StringField(2) cpuManagerPolicy = _messages.StringField(3) class NodeManagement(_messages.Message): r"""NodeManagement defines the set of node management services turned on for the node pool. Fields: autoRepair: Whether the nodes will be automatically repaired. autoUpgrade: Whether the nodes will be automatically upgraded. upgradeOptions: Specifies the Auto Upgrade knobs for the node pool. """ autoRepair = _messages.BooleanField(1) autoUpgrade = _messages.BooleanField(2) upgradeOptions = _messages.MessageField('AutoUpgradeOptions', 3) class NodePool(_messages.Message): r"""NodePool contains the name and configuration for a cluster's node pool. Node pools are a set of nodes (i.e. VM's), with a common configuration and specification, under the control of the cluster master. They may have a set of Kubernetes labels applied to them, which may be used to reference them during pod scheduling. They may also be resized up or down, to accommodate the workload. Enums: StatusValueValuesEnum: [Output only] The status of the nodes in this pool instance. Fields: autoscaling: Autoscaler configuration for this NodePool. Autoscaler is enabled only if a valid configuration is present. conditions: Which conditions caused the current node pool state. config: The node configuration of the pool. initialNodeCount: The initial node count for the pool. You must ensure that your Compute Engine <a href="/compute/docs/resource- quotas">resource quota</a> is sufficient for this number of instances. You must also have available firewall and routes quota. instanceGroupUrls: [Output only] The resource URLs of the [managed instance groups](/compute/docs/instance-groups/creating-groups-of- managed-instances) associated with this node pool. locations: The list of Google Compute Engine [zones](/compute/docs/zones#available) in which the NodePool's nodes should be located. management: NodeManagement configuration for this NodePool. maxPodsConstraint: The constraint on the maximum number of pods that can be run simultaneously on a node in the node pool. name: The name of the node pool. podIpv4CidrSize: [Output only] The pod CIDR block size per node in this node pool. resourceVersion: Server-defined resource version (etag). selfLink: [Output only] Server-defined URL for the resource. status: [Output only] The status of the nodes in this pool instance. statusMessage: [Output only] Additional information about the current status of this node pool instance, if available. Deprecated, use the field conditions instead. upgradeSettings: Upgrade settings control disruption and speed of the upgrade. version: The version of the Kubernetes of this node. """ class StatusValueValuesEnum(_messages.Enum): r"""[Output only] The status of the nodes in this pool instance. Values: STATUS_UNSPECIFIED: Not set. PROVISIONING: The PROVISIONING state indicates the node pool is being created. RUNNING: The RUNNING state indicates the node pool has been created and is fully usable. RUNNING_WITH_ERROR: The RUNNING_WITH_ERROR state indicates the node pool has been created and is partially usable. Some error state has occurred and some functionality may be impaired. Customer may need to reissue a request or trigger a new update. RECONCILING: The RECONCILING state indicates that some work is actively being done on the node pool, such as upgrading node software. Details can be found in the `statusMessage` field. STOPPING: The STOPPING state indicates the node pool is being deleted. ERROR: The ERROR state indicates the node pool may be unusable. Details can be found in the `statusMessage` field. """ STATUS_UNSPECIFIED = 0 PROVISIONING = 1 RUNNING = 2 RUNNING_WITH_ERROR = 3 RECONCILING = 4 STOPPING = 5 ERROR = 6 autoscaling = _messages.MessageField('NodePoolAutoscaling', 1) conditions = _messages.MessageField('StatusCondition', 2, repeated=True) config = _messages.MessageField('NodeConfig', 3) initialNodeCount = _messages.IntegerField(4, variant=_messages.Variant.INT32) instanceGroupUrls = _messages.StringField(5, repeated=True) locations = _messages.StringField(6, repeated=True) management = _messages.MessageField('NodeManagement', 7) maxPodsConstraint = _messages.MessageField('MaxPodsConstraint', 8) name = _messages.StringField(9) podIpv4CidrSize = _messages.IntegerField(10, variant=_messages.Variant.INT32) resourceVersion = _messages.StringField(11) selfLink = _messages.StringField(12) status = _messages.EnumField('StatusValueValuesEnum', 13) statusMessage = _messages.StringField(14) upgradeSettings = _messages.MessageField('UpgradeSettings', 15) version = _messages.StringField(16) class NodePoolAutoscaling(_messages.Message): r"""NodePoolAutoscaling contains information required by cluster autoscaler to adjust the size of the node pool to the current cluster usage. Fields: autoprovisioned: Can this node pool be deleted automatically. enabled: Is autoscaling enabled for this node pool. maxNodeCount: Maximum number of nodes in the NodePool. Must be >= min_node_count. There has to enough quota to scale up the cluster. minNodeCount: Minimum number of nodes in the NodePool. Must be >= 1 and <= max_node_count. """ autoprovisioned = _messages.BooleanField(1) enabled = _messages.BooleanField(2) maxNodeCount = _messages.IntegerField(3, variant=_messages.Variant.INT32) minNodeCount = _messages.IntegerField(4, variant=_messages.Variant.INT32) class NodeTaint(_messages.Message): r"""Kubernetes taint is comprised of three fields: key, value, and effect. Effect can only be one of three types: NoSchedule, PreferNoSchedule or NoExecute. For more information, including usage and the valid values, see: https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/ Enums: EffectValueValuesEnum: Effect for taint. Fields: effect: Effect for taint. key: Key for taint. value: Value for taint. """ class EffectValueValuesEnum(_messages.Enum): r"""Effect for taint. Values: EFFECT_UNSPECIFIED: Not set NO_SCHEDULE: NoSchedule PREFER_NO_SCHEDULE: PreferNoSchedule NO_EXECUTE: NoExecute """ EFFECT_UNSPECIFIED = 0 NO_SCHEDULE = 1 PREFER_NO_SCHEDULE = 2 NO_EXECUTE = 3 effect = _messages.EnumField('EffectValueValuesEnum', 1) key = _messages.StringField(2) value = _messages.StringField(3) class Operation(_messages.Message): r"""This operation resource represents operations that may have happened or are happening on the cluster. All fields are output only. Enums: OperationTypeValueValuesEnum: The operation type. StatusValueValuesEnum: The current status of the operation. Fields: clusterConditions: Which conditions caused the current cluster state. detail: Detailed operation progress, if available. endTime: [Output only] The time the operation completed, in [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) text format. location: [Output only] The name of the Google Compute Engine [zone](/compute/docs/regions-zones/regions-zones#available) or [region](/compute/docs/regions-zones/regions-zones#available) in which the cluster resides. name: The server-assigned ID for the operation. nodepoolConditions: Which conditions caused the current node pool state. operationType: The operation type. progress: Output only. [Output only] Progress information for an operation. selfLink: Server-defined URL for the resource. startTime: [Output only] The time the operation started, in [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) text format. status: The current status of the operation. statusMessage: Output only. If an error has occurred, a textual description of the error. targetLink: Server-defined URL for the target of the operation. zone: The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the operation is taking place. This field is deprecated, use location instead. """ class OperationTypeValueValuesEnum(_messages.Enum): r"""The operation type. Values: TYPE_UNSPECIFIED: Not set. CREATE_CLUSTER: Cluster create. DELETE_CLUSTER: Cluster delete. UPGRADE_MASTER: A master upgrade. UPGRADE_NODES: A node upgrade. REPAIR_CLUSTER: Cluster repair. UPDATE_CLUSTER: Cluster update. CREATE_NODE_POOL: Node pool create. DELETE_NODE_POOL: Node pool delete. SET_NODE_POOL_MANAGEMENT: Set node pool management. AUTO_REPAIR_NODES: Automatic node pool repair. AUTO_UPGRADE_NODES: Automatic node upgrade. SET_LABELS: Set labels. SET_MASTER_AUTH: Set/generate master auth materials SET_NODE_POOL_SIZE: Set node pool size. SET_NETWORK_POLICY: Updates network policy for a cluster. SET_MAINTENANCE_POLICY: Set the maintenance policy. UPDATE_IP_ALLOCATION_POLICY: Update cluster IP allocation policy. """ TYPE_UNSPECIFIED = 0 CREATE_CLUSTER = 1 DELETE_CLUSTER = 2 UPGRADE_MASTER = 3 UPGRADE_NODES = 4 REPAIR_CLUSTER = 5 UPDATE_CLUSTER = 6 CREATE_NODE_POOL = 7 DELETE_NODE_POOL = 8 SET_NODE_POOL_MANAGEMENT = 9 AUTO_REPAIR_NODES = 10 AUTO_UPGRADE_NODES = 11 SET_LABELS = 12 SET_MASTER_AUTH = 13 SET_NODE_POOL_SIZE = 14 SET_NETWORK_POLICY = 15 SET_MAINTENANCE_POLICY = 16 UPDATE_IP_ALLOCATION_POLICY = 17 class StatusValueValuesEnum(_messages.Enum): r"""The current status of the operation. Values: STATUS_UNSPECIFIED: Not set. PENDING: The operation has been created. RUNNING: The operation is currently running. DONE: The operation is done, either cancelled or completed. ABORTING: The operation is aborting. """ STATUS_UNSPECIFIED = 0 PENDING = 1 RUNNING = 2 DONE = 3 ABORTING = 4 clusterConditions = _messages.MessageField('StatusCondition', 1, repeated=True) detail = _messages.StringField(2) endTime = _messages.StringField(3) location = _messages.StringField(4) name = _messages.StringField(5) nodepoolConditions = _messages.MessageField('StatusCondition', 6, repeated=True) operationType = _messages.EnumField('OperationTypeValueValuesEnum', 7) progress = _messages.MessageField('OperationProgress', 8) selfLink = _messages.StringField(9) startTime = _messages.StringField(10) status = _messages.EnumField('StatusValueValuesEnum', 11) statusMessage = _messages.StringField(12) targetLink = _messages.StringField(13) zone = _messages.StringField(14) class OperationProgress(_messages.Message): r"""Information about operation (or operation stage) progress. Enums: StatusValueValuesEnum: Status of an operation stage. Unset for single- stage operations. Fields: metrics: Progress metric bundle, for example: metrics: [{name: "nodes done", int_value: 15}, {name: "nodes total", int_value: 32}] or metrics: [{name: "progress", double_value: 0.56}, {name: "progress scale", double_value: 1.0}] name: A non-parameterized string describing an operation stage. Unset for single-stage operations. stages: Substages of an operation or a stage. status: Status of an operation stage. Unset for single-stage operations. """ class StatusValueValuesEnum(_messages.Enum): r"""Status of an operation stage. Unset for single-stage operations. Values: STATUS_UNSPECIFIED: Not set. PENDING: The operation has been created. RUNNING: The operation is currently running. DONE: The operation is done, either cancelled or completed. ABORTING: The operation is aborting. """ STATUS_UNSPECIFIED = 0 PENDING = 1 RUNNING = 2 DONE = 3 ABORTING = 4 metrics = _messages.MessageField('Metric', 1, repeated=True) name = _messages.StringField(2) stages = _messages.MessageField('OperationProgress', 3, repeated=True) status = _messages.EnumField('StatusValueValuesEnum', 4) class PodSecurityPolicyConfig(_messages.Message): r"""Configuration for the PodSecurityPolicy feature. Fields: enabled: Enable the PodSecurityPolicy controller for this cluster. If enabled, pods must be valid under a PodSecurityPolicy to be created. """ enabled = _messages.BooleanField(1) class PremiumConfig(_messages.Message): r"""PremiumConfig is the configuration for all premium features and tiers. Fields: features: The features that GKE provides. tiers: The tiers that are part of the premium offering. """ features = _messages.MessageField('FeatureConfig', 1, repeated=True) tiers = _messages.MessageField('TierConfig', 2, repeated=True) class PrivateClusterConfig(_messages.Message): r"""Configuration options for private clusters. Fields: enablePeeringRouteSharing: Whether to enable route sharing over the network peering. enablePrivateEndpoint: Whether the master's internal IP address is used as the cluster endpoint. enablePrivateNodes: Whether nodes have internal IP addresses only. If enabled, all nodes are given only RFC 1918 private addresses and communicate with the master via private networking. masterIpv4CidrBlock: The IP range in CIDR notation to use for the hosted master network. This range will be used for assigning internal IP addresses to the master or set of masters, as well as the ILB VIP. This range must not overlap with any other ranges in use within the cluster's network. peeringName: Output only. The peering name in the customer VPC used by this cluster. privateEndpoint: Output only. The internal IP address of this cluster's endpoint. publicEndpoint: Output only. The external IP address of this cluster's endpoint. """ enablePeeringRouteSharing = _messages.BooleanField(1) enablePrivateEndpoint = _messages.BooleanField(2) enablePrivateNodes = _messages.BooleanField(3) masterIpv4CidrBlock = _messages.StringField(4) peeringName = _messages.StringField(5) privateEndpoint = _messages.StringField(6) publicEndpoint = _messages.StringField(7) class PrivateIPv6Status(_messages.Message): r"""PrivateIPv6Status contains the desired state of the IPv6 fast path on this cluster. Private IPv6 access allows direct high speed communication from GKE pods to gRPC Google cloud services over IPv6. Fields: enabled: Enables private IPv6 access to Google Cloud services for this cluster. """ enabled = _messages.BooleanField(1) class RecurringTimeWindow(_messages.Message): r"""Represents an arbitrary window of time that recurs. Fields: recurrence: An RRULE (https://tools.ietf.org/html/rfc5545#section-3.8.5.3) for how this window reccurs. They go on for the span of time between the start and end time. For example, to have something repeat every weekday, you'd use: <code>FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR</code> To repeat some window daily (equivalent to the DailyMaintenanceWindow): <code>FREQ=DAILY</code> For the first weekend of every month: <code>FREQ=MONTHLY;BYSETPOS=1;BYDAY=SA,SU</code> This specifies how frequently the window starts. Eg, if you wanted to have a 9-5 UTC-4 window every weekday, you'd use something like: <code> start time = 2019-01-01T09:00:00-0400 end time = 2019-01-01T17:00:00-0400 recurrence = FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR </code> Windows can span multiple days. Eg, to make the window encompass every weekend from midnight Saturday till the last minute of Sunday UTC: <code> start time = 2019-01-05T00:00:00Z end time = 2019-01-07T23:59:00Z recurrence = FREQ=WEEKLY;BYDAY=SA </code> Note the start and end time's specific dates are largely arbitrary except to specify duration of the window and when it first starts. The FREQ values of HOURLY, MINUTELY, and SECONDLY are not supported. window: The window of the first recurrence. """ recurrence = _messages.StringField(1) window = _messages.MessageField('TimeWindow', 2) class ReleaseChannel(_messages.Message): r"""ReleaseChannel indicates which release channel a cluster is subscribed to. Release channels are arranged in order of risk and frequency of updates. When a cluster is subscribed to a release channel, Google maintains both the master version and the node version. Node auto-upgrade defaults to true and cannot be disabled. Updates to version related fields (e.g. current_master_version) return an error. Enums: ChannelValueValuesEnum: channel specifies which release channel the cluster is subscribed to. Fields: channel: channel specifies which release channel the cluster is subscribed to. """ class ChannelValueValuesEnum(_messages.Enum): r"""channel specifies which release channel the cluster is subscribed to. Values: UNSPECIFIED: No channel specified. RAPID: RAPID channel is offered on an early access basis for customers who want to test new releases before they are qualified for production use or general availability. New upgrades will occur roughly weekly. WARNING: Versions available in the RAPID Channel may be subject to unresolved issues with no known workaround and are not for use with production workloads or subject to any SLAs. REGULAR: Clusters subscribed to REGULAR receive versions that are considered GA quality. REGULAR is intended for production users who want to take advantage of new features. New upgrades will occur roughly every few weeks. STABLE: Clusters subscribed to STABLE receive versions that are known to be stable and reliable in production. STABLE is intended for production users who need stability above all else, or for whom frequent upgrades are too risky. New upgrades will occur roughly every few months. """ UNSPECIFIED = 0 RAPID = 1 REGULAR = 2 STABLE = 3 channel = _messages.EnumField('ChannelValueValuesEnum', 1) class ReleaseChannelConfig(_messages.Message): r"""ReleaseChannelConfig exposes configuration for a release channel. Enums: ChannelValueValuesEnum: The release channel this configuration applies to. Fields: availableVersions: List of available versions for the release channel. channel: The release channel this configuration applies to. defaultVersion: The default version for newly created clusters on the channel. """ class ChannelValueValuesEnum(_messages.Enum): r"""The release channel this configuration applies to. Values: UNSPECIFIED: No channel specified. RAPID: RAPID channel is offered on an early access basis for customers who want to test new releases before they are qualified for production use or general availability. New upgrades will occur roughly weekly. WARNING: Versions available in the RAPID Channel may be subject to unresolved issues with no known workaround and are not for use with production workloads or subject to any SLAs. REGULAR: Clusters subscribed to REGULAR receive versions that are considered GA quality. REGULAR is intended for production users who want to take advantage of new features. New upgrades will occur roughly every few weeks. STABLE: Clusters subscribed to STABLE receive versions that are known to be stable and reliable in production. STABLE is intended for production users who need stability above all else, or for whom frequent upgrades are too risky. New upgrades will occur roughly every few months. """ UNSPECIFIED = 0 RAPID = 1 REGULAR = 2 STABLE = 3 availableVersions = _messages.MessageField('AvailableVersion', 1, repeated=True) channel = _messages.EnumField('ChannelValueValuesEnum', 2) defaultVersion = _messages.StringField(3) class ReservationAffinity(_messages.Message): r"""[ReservationAffinity](/compute/docs/instances/reserving-zonal-resources) is the configuration of desired reservation which instances could take capacity from. Enums: ConsumeReservationTypeValueValuesEnum: Corresponds to the type of reservation consumption. Fields: consumeReservationType: Corresponds to the type of reservation consumption. key: Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, specify "googleapis.com/reservation-name" as the key and specify the name of your reservation as its value. values: Corresponds to the label value(s) of reservation resource(s). """ class ConsumeReservationTypeValueValuesEnum(_messages.Enum): r"""Corresponds to the type of reservation consumption. Values: UNSPECIFIED: Default value. This should not be used. NO_RESERVATION: Do not consume from any reserved capacity. ANY_RESERVATION: Consume any reservation available. SPECIFIC_RESERVATION: Must consume from a specific reservation. Must specify key value fields for specifying the reservations. """ UNSPECIFIED = 0 NO_RESERVATION = 1 ANY_RESERVATION = 2 SPECIFIC_RESERVATION = 3 consumeReservationType = _messages.EnumField('ConsumeReservationTypeValueValuesEnum', 1) key = _messages.StringField(2) values = _messages.StringField(3, repeated=True) class ResourceLimit(_messages.Message): r"""Contains information about amount of some resource in the cluster. For memory, value should be in GB. Fields: maximum: Maximum amount of the resource in the cluster. minimum: Minimum amount of the resource in the cluster. resourceType: Resource name "cpu", "memory" or gpu-specific string. """ maximum = _messages.IntegerField(1) minimum = _messages.IntegerField(2) resourceType = _messages.StringField(3) class ResourceUsageExportConfig(_messages.Message): r"""Configuration for exporting cluster resource usages. Fields: bigqueryDestination: Configuration to use BigQuery as usage export destination. consumptionMeteringConfig: Configuration to enable resource consumption metering. enableNetworkEgressMetering: Whether to enable network egress metering for this cluster. If enabled, a daemonset will be created in the cluster to meter network egress traffic. """ bigqueryDestination = _messages.MessageField('BigQueryDestination', 1) consumptionMeteringConfig = _messages.MessageField('ConsumptionMeteringConfig', 2) enableNetworkEgressMetering = _messages.BooleanField(3) class RollbackNodePoolUpgradeRequest(_messages.Message): r"""RollbackNodePoolUpgradeRequest rollbacks the previously Aborted or Failed NodePool upgrade. This will be an no-op if the last upgrade successfully completed. Fields: clusterId: Deprecated. The name of the cluster to rollback. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node poll to rollback upgrade. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to rollback. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) nodePoolId = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SandboxConfig(_messages.Message): r"""SandboxConfig contains configurations of the sandbox to use for the node. Enums: TypeValueValuesEnum: Type of the sandbox to use for the node. Fields: sandboxType: Type of the sandbox to use for the node (e.g. 'gvisor') type: Type of the sandbox to use for the node. """ class TypeValueValuesEnum(_messages.Enum): r"""Type of the sandbox to use for the node. Values: UNSPECIFIED: Default value. This should not be used. GVISOR: Run sandbox using gvisor. """ UNSPECIFIED = 0 GVISOR = 1 sandboxType = _messages.StringField(1) type = _messages.EnumField('TypeValueValuesEnum', 2) class SecurityProfile(_messages.Message): r"""User selected security profile Fields: disableRuntimeRules: Don't apply runtime rules. When set to true, no objects/deployments will be installed in the cluster to enforce runtime rules. This is useful to work with config-as-code systems name: Name with version of selected security profile A security profile name follows kebob-case (a-zA-Z*) and a version is like MAJOR.MINOR- suffix suffix is ([a-zA-Z0-9\-_\.]+) e.g. default-1.0-gke.0 """ disableRuntimeRules = _messages.BooleanField(1) name = _messages.StringField(2) class ServerConfig(_messages.Message): r"""Kubernetes Engine service configuration. Fields: channels: List of release channel configurations. defaultClusterVersion: Version of Kubernetes the service deploys by default. defaultImageType: Default image type. premiumConfig: Premium configuration for the service. validImageTypes: List of valid image types. validMasterVersions: List of valid master versions. validNodeVersions: List of valid node upgrade target versions. """ channels = _messages.MessageField('ReleaseChannelConfig', 1, repeated=True) defaultClusterVersion = _messages.StringField(2) defaultImageType = _messages.StringField(3) premiumConfig = _messages.MessageField('PremiumConfig', 4) validImageTypes = _messages.StringField(5, repeated=True) validMasterVersions = _messages.StringField(6, repeated=True) validNodeVersions = _messages.StringField(7, repeated=True) class SetAddonsConfigRequest(_messages.Message): r"""SetAddonsRequest sets the addons associated with the cluster. Fields: addonsConfig: The desired configurations for the various addons available to run in the cluster. clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to set addons. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ addonsConfig = _messages.MessageField('AddonsConfig', 1) clusterId = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetLabelsRequest(_messages.Message): r"""SetLabelsRequest sets the Google Cloud Platform labels on a Google Container Engine cluster, which will in turn set them for Google Compute Engine resources used by that cluster Messages: ResourceLabelsValue: The labels to set for that cluster. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. labelFingerprint: The fingerprint of the previous set of labels for this resource, used to detect conflicts. The fingerprint is initially generated by Kubernetes Engine and changes after every request to modify or update labels. You must always provide an up-to-date fingerprint hash when updating or changing labels. Make a <code>get()</code> request to the resource to get the latest fingerprint. name: The name (project, location, cluster id) of the cluster to set labels. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. resourceLabels: The labels to set for that cluster. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ @encoding.MapUnrecognizedFields('additionalProperties') class ResourceLabelsValue(_messages.Message): r"""The labels to set for that cluster. Messages: AdditionalProperty: An additional property for a ResourceLabelsValue object. Fields: additionalProperties: Additional properties of type ResourceLabelsValue """ class AdditionalProperty(_messages.Message): r"""An additional property for a ResourceLabelsValue object. Fields: key: Name of the additional property. value: A string attribute. """ key = _messages.StringField(1) value = _messages.StringField(2) additionalProperties = _messages.MessageField('AdditionalProperty', 1, repeated=True) clusterId = _messages.StringField(1) labelFingerprint = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) resourceLabels = _messages.MessageField('ResourceLabelsValue', 5) zone = _messages.StringField(6) class SetLegacyAbacRequest(_messages.Message): r"""SetLegacyAbacRequest enables or disables the ABAC authorization mechanism for a cluster. Fields: clusterId: Deprecated. The name of the cluster to update. This field has been deprecated and replaced by the name field. enabled: Whether ABAC authorization will be enabled in the cluster. name: The name (project, location, cluster id) of the cluster to set legacy abac. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) enabled = _messages.BooleanField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetLocationsRequest(_messages.Message): r"""SetLocationsRequest sets the locations of the cluster. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. locations: The desired list of Google Compute Engine [zones](/compute/docs/zones#available) in which the cluster's nodes should be located. Changing the locations a cluster is in will result in nodes being either created or removed from the cluster, depending on whether locations are being added or removed. This list must always include the cluster's primary zone. name: The name (project, location, cluster) of the cluster to set locations. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) locations = _messages.StringField(2, repeated=True) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetLoggingServiceRequest(_messages.Message): r"""SetLoggingServiceRequest sets the logging service of a cluster. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. loggingService: The logging service the cluster should use to write metrics. Currently available options: * "logging.googleapis.com" - the Google Cloud Logging service * "none" - no metrics will be exported from the cluster name: The name (project, location, cluster) of the cluster to set logging. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) loggingService = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetMaintenancePolicyRequest(_messages.Message): r"""SetMaintenancePolicyRequest sets the maintenance policy for a cluster. Fields: clusterId: The name of the cluster to update. maintenancePolicy: The maintenance policy to be set for the cluster. An empty field clears the existing maintenance policy. name: The name (project, location, cluster id) of the cluster to set maintenance policy. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). zone: The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. """ clusterId = _messages.StringField(1) maintenancePolicy = _messages.MessageField('MaintenancePolicy', 2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetMasterAuthRequest(_messages.Message): r"""SetMasterAuthRequest updates the admin password of a cluster. Enums: ActionValueValuesEnum: The exact form of action to be taken on the master auth. Fields: action: The exact form of action to be taken on the master auth. clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to set auth. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. update: A description of the update. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ class ActionValueValuesEnum(_messages.Enum): r"""The exact form of action to be taken on the master auth. Values: UNKNOWN: Operation is unknown and will error out. SET_PASSWORD: Set the password to a user generated value. GENERATE_PASSWORD: Generate a new password and set it to that. SET_USERNAME: Set the username. If an empty username is provided, basic authentication is disabled for the cluster. If a non-empty username is provided, basic authentication is enabled, with either a provided password or a generated one. """ UNKNOWN = 0 SET_PASSWORD = 1 GENERATE_PASSWORD = 2 SET_USERNAME = 3 action = _messages.EnumField('ActionValueValuesEnum', 1) clusterId = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) update = _messages.MessageField('MasterAuth', 5) zone = _messages.StringField(6) class SetMonitoringServiceRequest(_messages.Message): r"""SetMonitoringServiceRequest sets the monitoring service of a cluster. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. monitoringService: The monitoring service the cluster should use to write metrics. Currently available options: * "monitoring.googleapis.com" - the Google Cloud Monitoring service * "none" - no metrics will be exported from the cluster name: The name (project, location, cluster) of the cluster to set monitoring. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) monitoringService = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetNetworkPolicyRequest(_messages.Message): r"""SetNetworkPolicyRequest enables/disables network policy for a cluster. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster id) of the cluster to set networking policy. Specified in the format 'projects/*/locations/*/clusters/*'. networkPolicy: Configuration options for the NetworkPolicy feature. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) networkPolicy = _messages.MessageField('NetworkPolicy', 3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class SetNodePoolAutoscalingRequest(_messages.Message): r"""SetNodePoolAutoscalingRequest sets the autoscaler settings of a node pool. Fields: autoscaling: Autoscaling configuration for the node pool. clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool) of the node pool to set autoscaler settings. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to upgrade. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ autoscaling = _messages.MessageField('NodePoolAutoscaling', 1) clusterId = _messages.StringField(2) name = _messages.StringField(3) nodePoolId = _messages.StringField(4) projectId = _messages.StringField(5) zone = _messages.StringField(6) class SetNodePoolManagementRequest(_messages.Message): r"""SetNodePoolManagementRequest sets the node management properties of a node pool. Fields: clusterId: Deprecated. The name of the cluster to update. This field has been deprecated and replaced by the name field. management: NodeManagement configuration for the node pool. name: The name (project, location, cluster, node pool id) of the node pool to set management properties. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to update. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) management = _messages.MessageField('NodeManagement', 2) name = _messages.StringField(3) nodePoolId = _messages.StringField(4) projectId = _messages.StringField(5) zone = _messages.StringField(6) class SetNodePoolSizeRequest(_messages.Message): r"""SetNodePoolSizeRequest sets the size a node pool. Fields: clusterId: Deprecated. The name of the cluster to update. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster, node pool id) of the node pool to set size. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodeCount: The desired node count for the pool. nodePoolId: Deprecated. The name of the node pool to update. This field has been deprecated and replaced by the name field. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) nodeCount = _messages.IntegerField(3, variant=_messages.Variant.INT32) nodePoolId = _messages.StringField(4) projectId = _messages.StringField(5) zone = _messages.StringField(6) class ShieldedInstanceConfig(_messages.Message): r"""A set of Shielded Instance options. Fields: enableIntegrityMonitoring: Defines whether the instance has integrity monitoring enabled. enableSecureBoot: Defines whether the instance has Secure Boot enabled. """ enableIntegrityMonitoring = _messages.BooleanField(1) enableSecureBoot = _messages.BooleanField(2) class ShieldedNodes(_messages.Message): r"""Configuration of Shielded Nodes feature. Fields: enabled: Whether Shielded Nodes features are enabled on all nodes in this cluster. """ enabled = _messages.BooleanField(1) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default=u'json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) class StartIPRotationRequest(_messages.Message): r"""StartIPRotationRequest creates a new IP for the cluster and then performs a node upgrade on each node pool to point to the new IP. Fields: clusterId: Deprecated. The name of the cluster. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster id) of the cluster to start IP rotation. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://developers.google.com/console/help/new/#projectnumber). This field has been deprecated and replaced by the name field. rotateCredentials: Whether to rotate credentials during IP rotation. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) projectId = _messages.StringField(3) rotateCredentials = _messages.BooleanField(4) zone = _messages.StringField(5) class StatusCondition(_messages.Message): r"""StatusCondition describes why a cluster or a node pool has a certain status (e.g., ERROR or DEGRADED). Enums: CodeValueValuesEnum: Machine-friendly representation of the condition Fields: code: Machine-friendly representation of the condition message: Human-friendly representation of the condition """ class CodeValueValuesEnum(_messages.Enum): r"""Machine-friendly representation of the condition Values: UNKNOWN: UNKNOWN indicates a generic condition. GCE_STOCKOUT: GCE_STOCKOUT indicates that Google Compute Engine resources are temporarily unavailable. GKE_SERVICE_ACCOUNT_DELETED: GKE_SERVICE_ACCOUNT_DELETED indicates that the user deleted their robot service account. GCE_QUOTA_EXCEEDED: Google Compute Engine quota was exceeded. SET_BY_OPERATOR: Cluster state was manually changed by an SRE due to a system logic error. CLOUD_KMS_KEY_ERROR: Unable to perform an encrypt operation against the CloudKMS key used for etcd level encryption. More codes TBA """ UNKNOWN = 0 GCE_STOCKOUT = 1 GKE_SERVICE_ACCOUNT_DELETED = 2 GCE_QUOTA_EXCEEDED = 3 SET_BY_OPERATOR = 4 CLOUD_KMS_KEY_ERROR = 5 code = _messages.EnumField('CodeValueValuesEnum', 1) message = _messages.StringField(2) class TierConfig(_messages.Message): r"""TierConfig is the configuration for a tier offering. For example the GKE standard or advanced offerings which contain different levels of functionality and possibly cost. Enums: ParentValueValuesEnum: The tier from which the tier being configured inherits. The configured tier will inherit all the features from its parent tier. TierValueValuesEnum: The tier that is being configured with this value. Fields: parent: The tier from which the tier being configured inherits. The configured tier will inherit all the features from its parent tier. tier: The tier that is being configured with this value. """ class ParentValueValuesEnum(_messages.Enum): r"""The tier from which the tier being configured inherits. The configured tier will inherit all the features from its parent tier. Values: TIER_UNSPECIFIED: TIER_UNSPECIFIED is the default value. If this value is set during create or update, it defaults to the project level tier setting. STANDARD: Represents the standard tier or base Google Kubernetes Engine offering. ADVANCED: Represents the advanced tier. """ TIER_UNSPECIFIED = 0 STANDARD = 1 ADVANCED = 2 class TierValueValuesEnum(_messages.Enum): r"""The tier that is being configured with this value. Values: TIER_UNSPECIFIED: TIER_UNSPECIFIED is the default value. If this value is set during create or update, it defaults to the project level tier setting. STANDARD: Represents the standard tier or base Google Kubernetes Engine offering. ADVANCED: Represents the advanced tier. """ TIER_UNSPECIFIED = 0 STANDARD = 1 ADVANCED = 2 parent = _messages.EnumField('ParentValueValuesEnum', 1) tier = _messages.EnumField('TierValueValuesEnum', 2) class TierSettings(_messages.Message): r"""Cluster tier settings. Enums: TierValueValuesEnum: Cluster tier. Fields: tier: Cluster tier. """ class TierValueValuesEnum(_messages.Enum): r"""Cluster tier. Values: TIER_UNSPECIFIED: TIER_UNSPECIFIED is the default value. If this value is set during create or update, it defaults to the project level tier setting. STANDARD: Represents the standard tier or base Google Kubernetes Engine offering. ADVANCED: Represents the advanced tier. """ TIER_UNSPECIFIED = 0 STANDARD = 1 ADVANCED = 2 tier = _messages.EnumField('TierValueValuesEnum', 1) class TimeWindow(_messages.Message): r"""Represents an arbitrary window of time. Fields: endTime: The time that the window ends. The end time should take place after the start time. startTime: The time that the window first starts. """ endTime = _messages.StringField(1) startTime = _messages.StringField(2) class UpdateClusterRequest(_messages.Message): r"""UpdateClusterRequest updates the settings of a cluster. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. name: The name (project, location, cluster) of the cluster to update. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. update: A description of the update. updatedCluster: The updated cluster object. This field must be empty if 'update' is set. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) name = _messages.StringField(2) projectId = _messages.StringField(3) update = _messages.MessageField('ClusterUpdate', 4) updatedCluster = _messages.MessageField('Cluster', 5) zone = _messages.StringField(6) class UpdateMasterRequest(_messages.Message): r"""UpdateMasterRequest updates the master of the cluster. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. masterVersion: The Kubernetes version to change the master to. Users may specify either explicit versions offered by Kubernetes Engine or version aliases, which have the following behavior: - "latest": picks the highest valid Kubernetes version - "1.X": picks the highest valid patch+gke.N patch in the 1.X version - "1.X.Y": picks the highest valid gke.N patch in the 1.X.Y version - "1.X.Y-gke.N": picks an explicit Kubernetes version - "-": picks the default Kubernetes version name: The name (project, location, cluster) of the cluster to update. Specified in the format 'projects/*/locations/*/clusters/*'. projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) masterVersion = _messages.StringField(2) name = _messages.StringField(3) projectId = _messages.StringField(4) zone = _messages.StringField(5) class UpdateNodePoolRequest(_messages.Message): r"""SetNodePoolVersionRequest updates the version of a node pool. Fields: clusterId: Deprecated. The name of the cluster to upgrade. This field has been deprecated and replaced by the name field. image: The desired name of the image name to use for this node. This is used to create clusters using a custom image. imageProject: The project containing the desired image to use for this node pool. This is used to create clusters using a custom image. imageType: The desired image type for the node pool. locations: The desired list of Google Compute Engine [zones](/compute/docs/zones#available) in which the node pool's nodes should be located. Changing the locations for a node pool will result in nodes being either created or removed from the node pool, depending on whether locations are being added or removed. name: The name (project, location, cluster, node pool) of the node pool to update. Specified in the format 'projects/*/locations/*/clusters/*/nodePools/*'. nodePoolId: Deprecated. The name of the node pool to upgrade. This field has been deprecated and replaced by the name field. nodeVersion: The Kubernetes version to change the nodes to (typically an upgrade). Users may specify either explicit versions offered by Kubernetes Engine or version aliases, which have the following behavior: - "latest": picks the highest valid Kubernetes version - "1.X": picks the highest valid patch+gke.N patch in the 1.X version - "1.X.Y": picks the highest valid gke.N patch in the 1.X.Y version - "1.X.Y-gke.N": picks an explicit Kubernetes version - "-": picks the Kubernetes master version projectId: Deprecated. The Google Developers Console [project ID or project number](https://support.google.com/cloud/answer/6158840). This field has been deprecated and replaced by the name field. updatedNodePool: The updated node pool object. This field must be empty if any other node pool field is set (e.g. 'node_version', 'image_type', 'locations', etc.) upgradeSettings: Upgrade settings control disruption and speed of the upgrade. workloadMetadataConfig: The desired workload metadata config for the node pool. zone: Deprecated. The name of the Google Compute Engine [zone](/compute/docs/zones#available) in which the cluster resides. This field has been deprecated and replaced by the name field. """ clusterId = _messages.StringField(1) image = _messages.StringField(2) imageProject = _messages.StringField(3) imageType = _messages.StringField(4) locations = _messages.StringField(5, repeated=True) name = _messages.StringField(6) nodePoolId = _messages.StringField(7) nodeVersion = _messages.StringField(8) projectId = _messages.StringField(9) updatedNodePool = _messages.MessageField('NodePool', 10) upgradeSettings = _messages.MessageField('UpgradeSettings', 11) workloadMetadataConfig = _messages.MessageField('WorkloadMetadataConfig', 12) zone = _messages.StringField(13) class UpgradeSettings(_messages.Message): r"""These upgrade settings control the level of parallelism and the level of disruption caused by an upgrade. maxUnavailable controls the number of nodes that can be simultaneously unavailable. maxSurge controls the number of additional nodes that can be added to the node pool temporarily for the time of the upgrade to increase the number of available nodes. (maxUnavailable + maxSurge) determines the level of parallelism (how many nodes are being upgraded at the same time). Note: upgrades inevitably introduce some disruption since workloads need to be moved from old nodes to new, upgraded ones. Even if maxUnavailable=0, this holds true. (Disruption stays within the limits of PodDisruptionBudget, if it is configured.) For example, a 5-node pool is created with maxSurge set to 2 and maxUnavailable set to 1. During an upgrade, GKE creates 2 upgraded nodes, then brings down up to 3 existing nodes after the upgraded nodes are ready. GKE will only bring down 1 node at a time. Fields: maxSurge: The maximum number of nodes that can be created beyond the current size of the node pool during the upgrade process. maxUnavailable: The maximum number of nodes that can be simultaneously unavailable during the upgrade process. A node is considered available if its status is Ready. """ maxSurge = _messages.IntegerField(1, variant=_messages.Variant.INT32) maxUnavailable = _messages.IntegerField(2, variant=_messages.Variant.INT32) class UsableSubnetwork(_messages.Message): r"""UsableSubnetwork resource returns the subnetwork name, its associated network and the primary CIDR range. Fields: ipCidrRange: The range of internal addresses that are owned by this subnetwork. network: Network Name. secondaryIpRanges: Secondary IP ranges. statusMessage: A human readable status message representing the reasons for cases where the caller cannot use the secondary ranges under the subnet. For example if the secondary_ip_ranges is empty due to a permission issue, an insufficient permission message will be given by status_message. subnetwork: Subnetwork Name. """ ipCidrRange = _messages.StringField(1) network = _messages.StringField(2) secondaryIpRanges = _messages.MessageField('UsableSubnetworkSecondaryRange', 3, repeated=True) statusMessage = _messages.StringField(4) subnetwork = _messages.StringField(5) class UsableSubnetworkSecondaryRange(_messages.Message): r"""Secondary IP range of a usable subnetwork. Enums: StatusValueValuesEnum: This field is to determine the status of the secondary range programmably. Fields: ipCidrRange: The range of IP addresses belonging to this subnetwork secondary range. rangeName: The name associated with this subnetwork secondary range, used when adding an alias IP range to a VM instance. status: This field is to determine the status of the secondary range programmably. """ class StatusValueValuesEnum(_messages.Enum): r"""This field is to determine the status of the secondary range programmably. Values: UNKNOWN: UNKNOWN is the zero value of the Status enum. It's not a valid status. UNUSED: UNUSED denotes that this range is unclaimed by any cluster. IN_USE_SERVICE: IN_USE_SERVICE denotes that this range is claimed by a cluster for services. It cannot be used for other clusters. IN_USE_SHAREABLE_POD: IN_USE_SHAREABLE_POD denotes this range was created by the network admin and is currently claimed by a cluster for pods. It can only be used by other clusters as a pod range. IN_USE_MANAGED_POD: IN_USE_MANAGED_POD denotes this range was created by Google Kubernetes Engine and is claimed for pods. It cannot be used for other clusters. """ UNKNOWN = 0 UNUSED = 1 IN_USE_SERVICE = 2 IN_USE_SHAREABLE_POD = 3 IN_USE_MANAGED_POD = 4 ipCidrRange = _messages.StringField(1) rangeName = _messages.StringField(2) status = _messages.EnumField('StatusValueValuesEnum', 3) class VerticalPodAutoscaling(_messages.Message): r"""VerticalPodAutoscaling contains global, per-cluster information required by Vertical Pod Autoscaler to automatically adjust the resources of pods controlled by it. Fields: enabled: Enables vertical pod autoscaling. """ enabled = _messages.BooleanField(1) class WorkloadIdentityConfig(_messages.Message): r"""Configuration for the use of k8s Service Accounts in GCP IAM policies. Fields: identityNamespace: IAM Identity Namespace to attach all k8s Service Accounts to. workloadPool: The workload pool to attach all Kubernetes service accounts to. """ identityNamespace = _messages.StringField(1) workloadPool = _messages.StringField(2) class WorkloadMetadataConfig(_messages.Message): r"""WorkloadMetadataConfig defines the metadata configuration to expose to workloads on the node pool. Enums: ModeValueValuesEnum: Mode is the configuration for how to expose metadata to workloads running on the node pool. NodeMetadataValueValuesEnum: NodeMetadata is the configuration for how to expose metadata to the workloads running on the node. Fields: mode: Mode is the configuration for how to expose metadata to workloads running on the node pool. nodeMetadata: NodeMetadata is the configuration for how to expose metadata to the workloads running on the node. """ class ModeValueValuesEnum(_messages.Enum): r"""Mode is the configuration for how to expose metadata to workloads running on the node pool. Values: MODE_UNSPECIFIED: Not set. GCE_METADATA: Expose all GCE metadata to pods. GKE_METADATA: Run the GKE Metadata Server on this node. The GKE Metadata Server exposes a metadata API to workloads that is compatible with the V1 Compute Metadata APIs exposed by the Compute Engine and App Engine Metadata Servers. This feature can only be enabled if Workload Identity is enabled at the cluster level. """ MODE_UNSPECIFIED = 0 GCE_METADATA = 1 GKE_METADATA = 2 class NodeMetadataValueValuesEnum(_messages.Enum): r"""NodeMetadata is the configuration for how to expose metadata to the workloads running on the node. Values: UNSPECIFIED: Not set. SECURE: Prevent workloads not in hostNetwork from accessing certain VM metadata, specifically kube-env, which contains Kubelet credentials, and the instance identity token. Metadata concealment is a temporary security solution available while the bootstrapping process for cluster nodes is being redesigned with significant security improvements. This feature is scheduled to be deprecated in the future and later removed. EXPOSE: Expose all VM metadata to pods. GKE_METADATA_SERVER: Run the GKE Metadata Server on this node. The GKE Metadata Server exposes a metadata API to workloads that is compatible with the V1 Compute Metadata APIs exposed by the Compute Engine and App Engine Metadata Servers. This feature can only be enabled if Workload Identity is enabled at the cluster level. """ UNSPECIFIED = 0 SECURE = 1 EXPOSE = 2 GKE_METADATA_SERVER = 3 mode = _messages.EnumField('ModeValueValuesEnum', 1) nodeMetadata = _messages.EnumField('NodeMetadataValueValuesEnum', 2) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
0efae463197cf4b67c08549dc4459158bc1c5d11
a3c7c11c607800155457ea1f886e2d84eadd9610
/examples/3_NeuralNetworks/convolutional_network.py
17aa1d84f64834e38d5523b130d66d3e697d1ee0
[ "MIT" ]
permissive
353622088/CapsNet
eddba478143bd092ce27bd49dbb65c63d80824e4
04408978dfccd9a6545fc250648fd2f600974a95
refs/heads/master
2021-08-28T02:22:56.958370
2017-12-11T03:03:52
2017-12-11T03:03:52
112,295,252
0
0
null
null
null
null
UTF-8
Python
false
false
4,934
py
""" Convolutional Neural Network. Build and train a convolutional neural network with TensorFlow. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) This example is using TensorFlow layers API, see 'convolutional_network_raw' example for a raw implementation with variables. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ """ from __future__ import division, print_function, absolute_import # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("../tmp/data/", one_hot=False) import tensorflow as tf # Training Parameters learning_rate = 0.001 num_steps = 2000 batch_size = 128 # Network Parameters num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units # Create the neural network def conv_net(x_dict, n_classes, dropout, reuse, is_training): # Define a scope for reusing the variables with tf.variable_scope('ConvNet', reuse=reuse): # TF Estimator input is a dict, in case of multiple inputs x = x_dict['images'] # MNIST data input is a 1-D vector of 784 features (28*28 pixels) # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 32 filters and a kernel size of 5 conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv1 = tf.layers.max_pooling2d(conv1, 2, 2) # Convolution Layer with 64 filters and a kernel size of 3 conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 conv2 = tf.layers.max_pooling2d(conv2, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer fc1 = tf.contrib.layers.flatten(conv2) # Fully connected layer (in tf contrib folder for now) fc1 = tf.layers.dense(fc1, 1024) # Apply Dropout (if is_training is False, dropout is not applied) fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) # Output layer, class prediction out = tf.layers.dense(fc1, n_classes) return out # Define the model function (following TF Estimator Template) def model_fn(features, labels, mode): # Build the neural network # Because Dropout have different behavior at training and prediction time, we # need to create 2 distinct computation graphs that still share the same weights. logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True) logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False) # Predictions pred_classes = tf.argmax(logits_test, axis=1) pred_probas = tf.nn.softmax(logits_test) # If prediction mode, early return if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) # Define loss and optimizer print(logits_train.shape) print(labels.shape) loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits_train, labels=tf.cast(labels, dtype=tf.int32))) # tf.summary.scalar(name='loss', tensor=loss_op) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) # Evaluate the accuracy of the model acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) # merge_all_op = tf.summary.merge_all() # TF Estimators requires to return a EstimatorSpec, that specify # the different ops for training, evaluating, ... estim_specs = tf.estimator.EstimatorSpec( mode=mode, predictions=pred_classes, loss=loss_op, train_op=train_op, eval_metric_ops={'accuracy': acc_op}) return estim_specs # Build the Estimator model = tf.estimator.Estimator(model_fn, model_dir='logdir') # Define the input function for training input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.train.images}, y=mnist.train.labels, batch_size=batch_size, num_epochs=None, shuffle=True) # Train the Model model.train(input_fn, steps=num_steps) # Evaluate the Model # Define the input function for evaluating input_fn = tf.estimator.inputs.numpy_input_fn( x={'images': mnist.test.images}, y=mnist.test.labels, batch_size=batch_size, shuffle=False) # Use the Estimator 'evaluate' method e = model.evaluate(input_fn) print("Testing Accuracy:", e['accuracy'])
0d35174dbee1362ac380bf5e44b079d867cc538d
33ccdaa6293162511c4ad74284f69b2bd6451044
/pyscutils/scvi_utils.py
047d3b60725774029d64a5f1cef0c6622d33e66e
[ "BSD-3-Clause" ]
permissive
saketkc/pyscutils
f3f9199f0c2e3954dc79369b99f4612acd9cf0c2
282a6cc707deaee80ab8ebc5596d25b9e21d6ffb
refs/heads/master
2023-01-23T02:26:28.599751
2020-11-19T00:31:07
2020-11-19T00:31:07
297,775,606
0
0
null
null
null
null
UTF-8
Python
false
false
50,655
py
import os import warnings warnings.simplefilter("ignore") import shutil from typing import Dict, Iterable, List, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd import proplot import scanpy as sc import scvi import seaborn as sns import torch import torch.nn as nn from adjustText import adjust_text from scvi import set_seed from scvi.dataset import AnnDatasetFromAnnData from scvi.models.utils import one_hot from scvi.inference import UnsupervisedTrainer, load_posterior from scvi.models.distributions import ( NegativeBinomial, Poisson, ZeroInflatedNegativeBinomial, ) from scvi.models.log_likelihood import log_nb_positive, log_zinb_positive from scvi.models.modules import DecoderSCVI, Encoder, FCLayers, LinearDecoderSCVI from scvi.models.vae import LDVAE, VAE from torch.distributions import Normal from torch.distributions import kl_divergence as kl ## Modifications from scVI code marked with '################ ===>' def compute_scvi_latent( adata: sc.AnnData, n_latent: int = 50, n_encoder: int = 1, n_epochs: int = 200, lr: float = 1e-3, use_batches: bool = False, use_cuda: bool = False, linear: bool = False, cell_offset: str = "none", gene_offset: str = "none", ldvae_bias: bool = False, reconstruction_loss: str = "zinb", hvg_genes=None, ) -> Tuple[scvi.inference.Posterior, np.ndarray]: """Train and return a scVI model and sample a latent space :param adata: sc.AnnData object non-normalized :param n_latent: dimension of the latent space :param n_epochs: number of training epochs :param lr: learning rate :param use_batches :param use_cuda :return: (scvi.Posterior, latent_space) """ # Convert easily to scvi dataset scviDataset = AnnDatasetFromAnnData(adata) if isinstance(hvg_genes, int): scviDataset.subsample_genes(hvg_genes) # print(scviDataset.X.shape) # print(scviDataset.X[:10,:5]) # print(scviDataset.raw.X.shape) if isinstance(scviDataset.X, np.ndarray): X = scviDataset.X else: X = scviDataset.X.toarray() gene_mean = torch.mean( torch.from_numpy(X).float().to(torch.cuda.current_device()), dim=1 ) cell_mean = torch.mean( torch.from_numpy(X).float().to(torch.cuda.current_device()), dim=0 ) # Train a model if not linear: vae = VAEGeneCell( scviDataset.nb_genes, n_batch=scviDataset.n_batches * use_batches, n_latent=n_latent, n_layers=n_encoder, cell_offset=cell_offset, gene_offset=gene_offset, reconstruction_loss=reconstruction_loss, ) else: vae = LDVAEGeneCell( scviDataset.nb_genes, n_batch=scviDataset.n_batches * use_batches, n_latent=n_latent, n_layers_encoder=n_encoder, cell_offset=cell_offset, gene_offset=gene_offset, bias=ldvae_bias, reconstruction_loss=reconstruction_loss, ) trainer = UnsupervisedTrainer(vae, scviDataset, train_size=1.0, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs, lr=lr) # Extract latent space posterior = trainer.create_posterior( trainer.model, scviDataset, indices=np.arange(len(scviDataset)) ).sequential() latent, _, _ = posterior.get_latent() return posterior, latent, vae, trainer # Decoder class DecoderSCVI(nn.Module): """Decodes data from latent space of ``n_input`` dimensions ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. Parameters ---------- n_input The dimensionality of the input (latent space) n_output The dimensionality of the output (data space) n_cat_list A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding n_layers The number of fully-connected hidden layers n_hidden The number of nodes per hidden layer dropout_rate Dropout rate to apply to each of the hidden layers Returns ------- """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, ): super().__init__() self.px_decoder = FCLayers( n_in=n_input, n_out=n_hidden, n_cat_list=n_cat_list, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=0, ) # mean gamma self.px_scale_decoder = nn.Sequential( nn.Linear(n_hidden, n_output), nn.Softmax(dim=-1) ) # dispersion: here we only deal with gene-cell dispersion case self.px_r_decoder = nn.Linear(n_hidden, n_output) # dropout self.px_dropout_decoder = nn.Linear(n_hidden, n_output) def forward( self, dispersion: str, z: torch.Tensor, library: torch.Tensor, *cat_list: int ): """The forward computation for a single sample. #. Decodes the data from the latent space using the decoder network #. Returns parameters for the ZINB distribution of expression #. If ``dispersion != 'gene-cell'`` then value for that param will be ``None`` Parameters ---------- dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell z : tensor with shape ``(n_input,)`` library library size cat_list list of category membership(s) for this sample Returns ------- 4-tuple of :py:class:`torch.Tensor` parameters for the ZINB distribution of expression """ # The decoder returns values for the parameters of the ZINB distribution px = self.px_decoder(z, *cat_list) px_scale = self.px_scale_decoder(px) px_dropout = self.px_dropout_decoder(px) # Clamp to high value: exp(12) ~ 160000 to avoid nans (computational stability) px_rate = (torch.exp(library)) * px_scale # torch.clamp( , max=12) px_r = self.px_r_decoder(px) if dispersion == "gene-cell" else None return px_scale, px_r, px_rate, px_dropout ## Modifications from scVI code marked with '################ ===>' class DecoderSCVIGeneCell(DecoderSCVI): """Decodes data from latent space of ``n_input`` dimensions ``n_output`` dimensions using a fully-connected neural network of ``n_hidden`` layers. Parameters ---------- n_input The dimensionality of the input (latent space) n_output The dimensionality of the output (data space) n_cat_list A list containing the number of categories for each category of interest. Each category will be included using a one-hot encoding n_layers The number of fully-connected hidden layers n_hidden The number of nodes per hidden layer dropout_rate Dropout rate to apply to each of the hidden layers Returns ------- """ def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, n_layers: int = 1, n_hidden: int = 128, ): super().__init__(n_input, n_output, n_cat_list, n_layers, n_hidden) def forward( self, dispersion: str, z: torch.Tensor, library: torch.Tensor, *cat_list: int, cell_offset: torch.Tensor, gene_offset: torch.Tensor, dispersion_clamp: list, ): """The forward computation for a single sample. #. Decodes the data from the latent space using the decoder network #. Returns parameters for the ZINB distribution of expression #. If ``dispersion != 'gene-cell'`` then value for that param will be ``None`` Parameters ---------- dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell z : tensor with shape ``(n_input,)`` library library size cat_list list of category membership(s) for this sample Returns ------- 4-tuple of :py:class:`torch.Tensor` parameters for the ZINB distribution of expression """ # The decoder returns values for the parameters of the ZINB distribution px = self.px_decoder(z, *cat_list) px_scale = self.px_scale_decoder(px) px_dropout = self.px_dropout_decoder(px) # Clamp to high value: exp(12) ~ 160000 to avoid nans (computational stability ################ ===> cell_offset = torch.reshape(cell_offset, (cell_offset.shape[0], 1)) px_rate = ( (torch.exp(library) * (cell_offset)) * px_scale * gene_offset ) # torch.clamp( , max=12) px_rate = ( (torch.exp(library) * (cell_offset)) * px_scale * gene_offset ) # torch.clamp( , max=12) # px_rate = cell_offset #torch.exp(library) + cell_mean * px_scale # torch.clamp( , max=12) # px_rate = torch.exp(library + cell_mean) * px_scale # torch.clamp( , max=12) px_r = self.px_r_decoder(px) if dispersion == "gene-cell" else None if dispersion == "gene-cell" and dispersion_clamp: px_r = torch.clamp(px_r, min=dispersion_clamp[0], max=dispersion_clamp[1]) return px_scale, px_r, px_rate, px_dropout class LinearDecoderSCVIGeneCell(nn.Module): def __init__( self, n_input: int, n_output: int, n_cat_list: Iterable[int] = None, use_batch_norm: bool = True, bias: bool = False, ): super(LinearDecoderSCVIGeneCell, self).__init__() # mean gamma self.factor_regressor = FCLayers( n_in=n_input, n_out=n_output, n_cat_list=n_cat_list, n_layers=1, use_relu=False, use_batch_norm=use_batch_norm, bias=bias, dropout_rate=0, ) # dropout self.px_dropout_decoder = FCLayers( n_in=n_input, n_out=n_output, n_cat_list=n_cat_list, n_layers=1, use_relu=False, use_batch_norm=use_batch_norm, bias=bias, dropout_rate=0, ) def forward( self, dispersion: str, z: torch.Tensor, library: torch.Tensor, *cat_list: int, cell_offset: torch.Tensor, gene_offset: torch.Tensor, ): # The decoder returns values for the parameters of the ZINB distribution raw_px_scale = self.factor_regressor(z, *cat_list) px_scale = torch.softmax(raw_px_scale, dim=-1) px_dropout = self.px_dropout_decoder(z, *cat_list) ##px_rate = torch.exp(library) * px_scale ################ ===> cell_offset = torch.reshape(cell_offset, (cell_offset.shape[0], 1)) px_rate = ( (torch.exp(library) * cell_offset) * px_scale * gene_offset ) # torch.clamp( , max=12) px_r = None return px_scale, px_r, px_rate, px_dropout # VAEGeneCell model class VAEGeneCell(nn.Module): """Variational auto-encoder model. This is an implementation of the scVI model descibed in [Lopez18]_ Parameters ---------- n_input Number of input genes n_batch Number of batches, if 0, no batch correction is performed. n_labels Number of labels n_hidden Number of nodes per hidden layer n_latent Dimensionality of the latent space n_layers Number of hidden layers used for encoder and decoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution * ``'poisson'`` - Poisson distribution Examples -------- >>> gene_dataset = CortexDataset() >>> vae = VAE(gene_dataset.nb_genes, n_batch=gene_dataset.n_batches * False, ... n_labels=gene_dataset.n_labels) """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, reconstruction_loss: str = "zinb", latent_distribution: str = "normal", cell_offset: str = "none", ################ ===> gene_offset: str = "none", ################ ===> dispersion_clamp: list = [], beta_disentanglement: float = 1.0, kl_type: str = "reverse", ): super().__init__() self.dispersion = dispersion self.n_latent = n_latent self.log_variational = log_variational self.reconstruction_loss = reconstruction_loss # Automatically deactivate if useless self.n_batch = n_batch self.n_labels = n_labels self.latent_distribution = latent_distribution ################ ===> self.cell_offset = cell_offset self.gene_offset = gene_offset self.dispersion_clamp = dispersion_clamp self.beta_disentanglement = beta_disentanglement self.kl_type = kl_type if self.dispersion == "gene": self.px_r = torch.nn.Parameter(torch.randn(n_input)) elif self.dispersion == "gene-batch": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_batch)) elif self.dispersion == "gene-label": self.px_r = torch.nn.Parameter(torch.randn(n_input, n_labels)) elif self.dispersion == "gene-cell": pass else: raise ValueError( "dispersion must be one of ['gene', 'gene-batch'," " 'gene-label', 'gene-cell'], but input was " "{}.format(self.dispersion)" ) # z encoder goes from the n_input-dimensional data to an n_latent-d # latent space representation self.z_encoder = Encoder( n_input, n_latent, n_layers=n_layers, n_hidden=n_hidden, dropout_rate=dropout_rate, distribution=latent_distribution, ) # l encoder goes from n_input-dimensional data to 1-d library size self.l_encoder = Encoder( n_input, 1, n_layers=1, n_hidden=n_hidden, dropout_rate=dropout_rate ) # decoder goes from n_latent-dimensional space to n_input-d data ################ ===> self.decoder = DecoderSCVIGeneCell( n_latent, n_input, n_cat_list=[n_batch], n_layers=n_layers, n_hidden=n_hidden, ) def get_latents(self, x, y=None) -> torch.Tensor: """Returns the result of ``sample_from_posterior_z`` inside a list Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) Returns ------- type one element list of tensor """ return [self.sample_from_posterior_z(x, y)] def sample_from_posterior_z( self, x, y=None, give_mean=False, n_samples=5000 ) -> torch.Tensor: """Samples the tensor of latent values from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) give_mean is True when we want the mean of the posterior distribution rather than sampling (Default value = False) n_samples how many MC samples to average over for transformed mean (Default value = 5000) Returns ------- type tensor of shape ``(batch_size, n_latent)`` """ if self.log_variational: x = torch.log(1 + x) qz_m, qz_v, z = self.z_encoder(x, y) # y only used in VAEC if give_mean: if self.latent_distribution == "ln": samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples]) z = self.z_encoder.z_transformation(samples) z = z.mean(dim=0) else: z = qz_m return z def sample_from_posterior_l(self, x) -> torch.Tensor: """Samples the tensor of library sizes from the posterior Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` Returns ------- type tensor of shape ``(batch_size, 1)`` """ if self.log_variational: x = torch.log(1 + x) ql_m, ql_v, library = self.l_encoder(x) return library def get_sample_scale( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of predicted frequencies of expression Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of predicted frequencies of expression with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_scale"] def get_sample_rate( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None ) -> torch.Tensor: """Returns the tensor of means of the negative binomial distribution Parameters ---------- x tensor of values with shape ``(batch_size, n_input)`` y tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) n_samples number of samples (Default value = 1) transform_batch int of batch to transform samples into (Default value = None) Returns ------- type tensor of means of the negative binomial distribution with shape ``(batch_size, n_input)`` """ return self.inference( x, batch_index=batch_index, y=y, n_samples=n_samples, transform_batch=transform_batch, )["px_rate"] def get_reconstruction_loss( self, x, px_rate, px_r, px_dropout, **kwargs ) -> torch.Tensor: # Reconstruction Loss px_rate_ = px_rate if self.reconstruction_loss == "zinb": reconst_loss = ( -ZeroInflatedNegativeBinomial( mu=px_rate_, theta=px_r, zi_logits=px_dropout ) .log_prob(x) .sum(dim=-1) ) elif self.reconstruction_loss == "nb": reconst_loss = ( -NegativeBinomial(mu=px_rate_, theta=px_r).log_prob(x).sum(dim=-1) ) elif self.reconstruction_loss == "poisson": reconst_loss = -Poisson(px_rate_).log_prob(x).sum(dim=-1) return reconst_loss def inference( self, x, batch_index=None, y=None, n_samples=1, transform_batch=None, **kwargs ) -> Dict[str, torch.Tensor]: """Helper function used in forward pass""" x_ = x if self.log_variational: x_ = torch.log(1 + x_) # Sampling qz_m, qz_v, z = self.z_encoder(x_, y) ql_m, ql_v, library = self.l_encoder(x_) if n_samples > 1: qz_m = qz_m.unsqueeze(0).expand((n_samples, qz_m.size(0), qz_m.size(1))) qz_v = qz_v.unsqueeze(0).expand((n_samples, qz_v.size(0), qz_v.size(1))) # when z is normal, untran_z == z untran_z = Normal(qz_m, qz_v.sqrt()).sample() z = self.z_encoder.z_transformation(untran_z) ql_m = ql_m.unsqueeze(0).expand((n_samples, ql_m.size(0), ql_m.size(1))) ql_v = ql_v.unsqueeze(0).expand((n_samples, ql_v.size(0), ql_v.size(1))) library = Normal(ql_m, ql_v.sqrt()).sample() if transform_batch is not None: dec_batch_index = transform_batch * torch.ones_like(batch_index) else: dec_batch_index = batch_index ################ ===> try: # if use_cuda: cell_offset = torch.ones(x.shape[0]).to(torch.cuda.current_device()) gene_offset = torch.ones(x.shape[1]).to(torch.cuda.current_device()) except: cell_offset = torch.ones(x.shape[0]) gene_offset = torch.ones(x.shape[1]) if self.cell_offset == "count": cell_offset = torch.sum(x, dim=1) elif self.cell_offset == "mean": cell_offset = torch.mean(x, dim=1) if self.gene_offset == "count": gene_offset = torch.sum(x, dim=0) elif self.gene_offset == "mean": gene_offset = torch.mean(x, dim=0) px_scale, px_r, px_rate, px_dropout = self.decoder( self.dispersion, z, library, dec_batch_index, y, cell_offset=cell_offset, ################ ===> gene_offset=gene_offset, ################ ===> dispersion_clamp=self.dispersion_clamp, ) if self.dispersion == "gene-label": px_r = F.linear( one_hot(y, self.n_labels), self.px_r ) # px_r gets transposed - last dimension is nb genes elif self.dispersion == "gene-batch": px_r = F.linear(one_hot(dec_batch_index, self.n_batch), self.px_r) elif self.dispersion == "gene": px_r = self.px_r px_r = torch.exp(px_r) return dict( px_scale=px_scale, px_r=px_r, px_rate=px_rate, px_dropout=px_dropout, qz_m=qz_m, qz_v=qz_v, z=z, ql_m=ql_m, ql_v=ql_v, library=library, ) def forward( self, x, local_l_mean, local_l_var, batch_index=None, y=None ) -> Tuple[torch.Tensor, torch.Tensor]: """Returns the reconstruction loss and the KL divergences Parameters ---------- x tensor of values with shape (batch_size, n_input) local_l_mean tensor of means of the prior distribution of latent variable l with shape (batch_size, 1) local_l_var tensor of variancess of the prior distribution of latent variable l with shape (batch_size, 1) batch_index array that indicates which batch the cells belong to with shape ``batch_size`` (Default value = None) y tensor of cell-types labels with shape (batch_size, n_labels) (Default value = None) Returns ------- type the reconstruction loss and the Kullback divergences """ # Parameters for z latent distribution outputs = self.inference(x, batch_index, y) qz_m = outputs["qz_m"] qz_v = outputs["qz_v"] ql_m = outputs["ql_m"] ql_v = outputs["ql_v"] px_rate = outputs["px_rate"] px_r = outputs["px_r"] px_dropout = outputs["px_dropout"] # KL Divergence mean = torch.zeros_like(qz_m) scale = torch.ones_like(qz_v) # only use it on mean if self.kl_type == "reverse": kl_divergence_z = kl( Normal(qz_m, torch.sqrt(qz_v)), Normal(mean, scale) ).sum(dim=1) elif self.kl_type == "forward": kl_divergence_z = kl( Normal(mean, scale), Normal(qz_m, torch.sqrt(qz_v)) ).sum(dim=1) elif self.kl_type == "symmetric": p_sum_q = Normal(mean + qz_m, scale + torch.sqrt(qz_v)) kl_divergence_z_f = kl(Normal(mean, scale), p_sum_q).sum(dim=1) kl_divergence_z_r = kl(Normal(qz_m, torch.sqrt(qz_v)), p_sum_q).sum(dim=1) kl_divergence_z = 0.5 * (kl_divergence_z_f + kl_divergence_z_r) kl_divergence_l = kl( Normal(ql_m, torch.sqrt(ql_v)), Normal(local_l_mean, torch.sqrt(local_l_var)), ).sum(dim=1) kl_divergence = kl_divergence_z * self.beta_disentanglement reconst_loss = self.get_reconstruction_loss( x, px_rate, px_r, px_dropout, ) return reconst_loss + kl_divergence_l, kl_divergence, 0.0 class LDVAEGeneCell(VAEGeneCell): """Linear-decoded Variational auto-encoder model. Implementation of [Svensson20]_. This model uses a linear decoder, directly mapping the latent representation to gene expression levels. It still uses a deep neural network to encode the latent representation. Compared to standard VAE, this model is less powerful, but can be used to inspect which genes contribute to variation in the dataset. It may also be used for all scVI tasks, like differential expression, batch correction, imputation, etc. However, batch correction may be less powerful as it assumes a linear model. Parameters ---------- n_input Number of input genes n_batch Number of batches n_labels Number of labels n_hidden Number of nodes per hidden layer (for encoder) n_latent Dimensionality of the latent space n_layers_encoder Number of hidden layers used for encoder NNs dropout_rate Dropout rate for neural networks dispersion One of the following * ``'gene'`` - dispersion parameter of NB is constant per gene across cells * ``'gene-batch'`` - dispersion can differ between different batches * ``'gene-label'`` - dispersion can differ between different labels * ``'gene-cell'`` - dispersion can differ for every gene in every cell log_variational Log(data+1) prior to encoding for numerical stability. Not normalization. reconstruction_loss One of * ``'nb'`` - Negative binomial distribution * ``'zinb'`` - Zero-inflated negative binomial distribution use_batch_norm Bool whether to use batch norm in decoder bias Bool whether to have bias term in linear decoder """ def __init__( self, n_input: int, n_batch: int = 0, n_labels: int = 0, n_hidden: int = 128, n_latent: int = 10, n_layers_encoder: int = 1, dropout_rate: float = 0.1, dispersion: str = "gene", log_variational: bool = True, reconstruction_loss: str = "nb", use_batch_norm: bool = True, bias: bool = False, latent_distribution: str = "normal", cell_offset: str = "none", gene_offset: str = "none", ): super().__init__( n_input, n_batch, n_labels, n_hidden, n_latent, n_layers_encoder, dropout_rate, dispersion, log_variational, reconstruction_loss, latent_distribution, cell_offset, ################ ===> gene_offset, ################ ===> ) self.use_batch_norm = use_batch_norm self.z_encoder = Encoder( n_input, n_latent, n_layers=n_layers_encoder, n_hidden=n_hidden, dropout_rate=dropout_rate, distribution=latent_distribution, ) ################ ===> self.decoder = LinearDecoderSCVIGeneCell( n_latent, n_input, n_cat_list=[n_batch], use_batch_norm=use_batch_norm, bias=bias, ) @torch.no_grad() def get_loadings(self) -> np.ndarray: """Extract per-gene weights (for each Z, shape is genes by dim(Z)) in the linear decoder.""" # This is BW, where B is diag(b) batch norm, W is weight matrix if self.use_batch_norm is True: w = self.decoder.factor_regressor.fc_layers[0][0].weight bn = self.decoder.factor_regressor.fc_layers[0][1] sigma = torch.sqrt(bn.running_var + bn.eps) gamma = bn.weight b = gamma / sigma bI = torch.diag(b) loadings = torch.matmul(bI, w) else: loadings = self.decoder.factor_regressor.fc_layers[0][0].weight loadings = loadings.detach().cpu().numpy() if self.n_batch > 1: loadings = loadings[:, : -self.n_batch] return loadings def compute_scvi_latent( adata: sc.AnnData, n_latent: int = 50, n_encoder: int = 1, n_epochs: int = 200, lr: float = 1e-3, use_batches: bool = False, use_cuda: bool = False, linear: bool = False, cell_offset: str = "none", gene_offset: str = "none", ldvae_bias: bool = False, reconstruction_loss: str = "zinb", dispersion: str = "gene", hvg_genes="all", point_size=10, dispersion_clamp=[], beta_disentanglement=1.0, kl_type="reverse", ) -> Tuple[scvi.inference.Posterior, np.ndarray]: """Train and return a scVI model and sample a latent space :param adata: sc.AnnData object non-normalized :param n_latent: dimension of the latent space :param n_epochs: number of training epochs :param lr: learning rate :param use_batches :param use_cuda :return: (scvi.Posterior, latent_space) """ # Convert easily to scvi dataset scviDataset = AnnDatasetFromAnnData(adata) if isinstance(hvg_genes, int): scviDataset.subsample_genes(hvg_genes) if isinstance(scviDataset.X, np.ndarray): X = scviDataset.X else: X = scviDataset.X.toarray() # Train a model if not linear: vae = VAEGeneCell( scviDataset.nb_genes, n_batch=scviDataset.n_batches * use_batches, n_latent=n_latent, n_layers=n_encoder, cell_offset=cell_offset, gene_offset=gene_offset, reconstruction_loss=reconstruction_loss, dispersion=dispersion, dispersion_clamp=dispersion_clamp, beta_disentanglement=beta_disentanglement, kl_type=kl_type, ) else: vae = LDVAEGeneCell( scviDataset.nb_genes, n_batch=scviDataset.n_batches * use_batches, n_latent=n_latent, n_layers_encoder=n_encoder, cell_offset=cell_offset, gene_offset=gene_offset, bias=ldvae_bias, reconstruction_loss=reconstruction_loss, dispersion=dispersion, ) trainer = UnsupervisedTrainer(vae, scviDataset, train_size=1.0, use_cuda=use_cuda) trainer.train(n_epochs=n_epochs, lr=lr) # Extract latent space posterior = trainer.create_posterior( trainer.model, scviDataset, indices=np.arange(len(scviDataset)) ).sequential() latent, _, _ = posterior.get_latent() return posterior, latent, vae, trainer def RunVAE( adata, reconstruction_loss, n_latent=30, n_encoder=1, linear=False, cell_offset="none", gene_offset="none", ldvae=False, ldvae_bias=False, title_prefix="", dispersion="gene", hvg_genes="all", point_size=5, n_epochs=200, lr=1e-3, batch_size=1000, use_cuda=False, legend_loc="on data", figsize=(10, 5), legend_fontweight="normal", sct_cell_pars=None, outdir=None, sct_gene_pars=None, sct_model_pars_fit=None, dispersion_clamp=[], beta_disentanglement=1.0, kl_type="reverse", ): sct_gene_pars_df = pd.read_csv(sct_gene_pars, sep="\t", index_col=0) sct_model_pars_fit_df = pd.read_csv(sct_model_pars_fit, sep="\t", index_col=0) sct_model_paras_withgmean = sct_model_pars_fit_df.join(sct_gene_pars_df) scvi_posterior, scvi_latent, scvi_vae, scvi_trainer = compute_scvi_latent( adata, n_encoder=n_encoder, n_epochs=n_epochs, n_latent=n_latent, use_cuda=use_cuda, linear=linear, cell_offset=cell_offset, gene_offset=gene_offset, reconstruction_loss=reconstruction_loss, dispersion=dispersion, hvg_genes=hvg_genes, dispersion_clamp=dispersion_clamp, beta_disentanglement=beta_disentanglement, kl_type=kl_type, ) suffix = "_{}_{}_{}_{}".format( cell_offset, gene_offset, reconstruction_loss, dispersion ) scviDataset = AnnDatasetFromAnnData(adata) if isinstance(hvg_genes, int): scviDataset.subsample_genes(hvg_genes) # posterior freq of genes per cell # scale = scvi_posterior.sequential(batch_size=batch_size).get_sample_scale() # scale = scale.detach() scale = scvi_posterior.get_sample_scale() # batch_size=batch_size for _ in range(99): scale += scvi_posterior.get_sample_scale() scale /= 100 scale_df = pd.DataFrame(scale) scale_df.index = list(adata.obs_names) scale_df.columns = list(scviDataset.gene_ids) scale_df = scale_df.T scvi_latent_df = pd.DataFrame(scvi_latent) scvi_latent_df.index = list(adata.obs_names) if outdir: os.makedirs(outdir, exist_ok=True) scale_df.to_csv( os.path.join(outdir, "SCVI_scale_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) scvi_latent_df.to_csv( os.path.join(outdir, "SCVI_latent_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) adata.obsm["X_scvi"] = scvi_latent for gene, gene_scale in zip(adata.var.index, np.squeeze(scale).T): adata.obs["scale_" + gene] = gene_scale sc.pp.neighbors(adata, use_rep="X_scvi", n_neighbors=20, n_pcs=30) sc.tl.umap(adata, min_dist=0.3) sc.tl.leiden(adata, key_added="X_scvi", resolution=0.8) X_umap = adata.obsm["X_umap"] X_umap_df = pd.DataFrame(X_umap) X_umap_df.index = list(adata.obs_names) if outdir: X_umap_df.to_csv( os.path.join(outdir, "SCVI_Xumap_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) scviDataset = AnnDatasetFromAnnData(adata) if isinstance(hvg_genes, int): scviDataset.subsample_genes(hvg_genes) if isinstance(scviDataset.X, np.ndarray): X = scviDataset.X else: X = scviDataset.X.toarray() try: X = torch.from_numpy(X).float().to(torch.cuda.current_device()) batch = torch.from_numpy(scviDataset.batch_indices.astype(float)).to( torch.cuda.current_device() ) except: X = torch.from_numpy(X).float() batch = torch.from_numpy(scviDataset.batch_indices.astype(float)) inference = scvi_vae.inference(X, batch) # torch.cuda.empty_cache() if reconstruction_loss == "nb": reconst_loss = log_nb_positive( X, inference["px_rate"], inference["px_r"], inference["px_dropout"], ) elif reconstruction_loss == "zinb": reconst_loss = log_zinb_positive( X, inference["px_rate"], inference["px_r"], inference["px_dropout"], ) gene_loss = np.nansum(reconst_loss.detach().cpu().numpy(), axis=0) cell_loss = np.nansum(reconst_loss.detach().cpu().numpy(), axis=1) gene_mean = np.array(adata[:, scviDataset.gene_names].X.mean(0))[0] if not gene_mean.shape: # TODO: need to handle this more gracefully gene_mean = np.array(adata[:, scviDataset.gene_names].X.mean(0)) cell_mean = np.array(adata[:, scviDataset.gene_names].X.mean(1)).flatten() fig1 = plt.figure(figsize=figsize) ax = fig1.add_subplot(121) ax.scatter( gene_mean, gene_loss, label="Gene", alpha=0.5, color="black", s=point_size ) gene_loss_df = pd.DataFrame([gene_mean, gene_loss]) gene_loss_df = gene_loss_df.T gene_loss_df.index = list(scviDataset.gene_names) gene_loss_df.columns = ["gene_mean", "gene_loss"] cell_loss_df = pd.DataFrame([cell_mean, cell_loss]) cell_loss_df = cell_loss_df.T cell_loss_df.index = list(adata.obs_names) cell_loss_df.columns = ["cell_mean", "cell_loss"] if outdir: gene_loss_df.to_csv( os.path.join(outdir, "SCVI_geneloss_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) cell_loss_df.to_csv( os.path.join(outdir, "SCVI_cellloss_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) ax.set_xlabel("Mean counts") ax.set_ylabel("Reconstuction loss") ax.legend(scatterpoints=1) ax = fig1.add_subplot(122) sc.pl.umap( adata, color="named_clusters", show=False, legend_fontweight=legend_fontweight, ax=ax, size=point_size, legend_loc=legend_loc, ) title = "{} | Genewise | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) fig1.suptitle(title) fig1.tight_layout(rect=[0, 0.03, 1, 0.95]) title = title.replace(" ", "").replace("=", "_") if outdir: os.makedirs(outdir, exist_ok=True) fig1.savefig(os.path.join(outdir, "{}.pdf".format(title))) fig1.savefig(os.path.join(outdir, "{}.png".format(title))) fig2 = plt.figure(figsize=figsize) ax = fig2.add_subplot(121) ax.scatter(cell_mean, cell_loss, label="Cell", alpha=0.5, s=point_size) ax.set_xlabel("Mean counts") ax.set_ylabel("Reconstuction loss") ax.legend(scatterpoints=1) ax = fig2.add_subplot(122) sc.pl.umap( adata, color="named_clusters", show=False, ax=ax, legend_loc=legend_loc, legend_fontweight=legend_fontweight, size=point_size, ) title = "{} | Cellwise | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) fig2.suptitle(title) fig2.tight_layout(rect=[0, 0.03, 1, 0.95]) title = title.replace(" ", "").replace("=", "_") if outdir: fig2.savefig(os.path.join(outdir, "{}.pdf".format(title))) fig2.savefig(os.path.join(outdir, "{}.png".format(title))) if outdir: model_name = "{} | Posterior | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) # scVI explicitly asks this path to be empty shutil.rmtree( os.path.join(outdir, model_name.replace(" ", "") + ".posterior"), ignore_errors=True, ) scvi_posterior.save_posterior( os.path.join(outdir, model_name.replace(" ", "") + ".posterior") ) if sct_cell_pars is None: fig1.show() fig2.show() obj_to_return = ( scvi_posterior, scvi_latent, scvi_vae, scvi_trainer, fig1, fig2, None, ) titles_to_return = ( "posterior", "latent", "vae", "trainer", "cellwise_plot", "genewise_plot", "libsize_plot", ) return dict(zip(titles_to_return, obj_to_return)) title = "{} | Libsize | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) library_sizes = pd.DataFrame(scvi_posterior.get_stats()) sct_library_sizes = pd.read_csv(sct_cell_pars, sep="\t") library_sizes.index = adata.obs_names library_sizes.columns = ["scvi_libsize"] library_sizes["scvi_loglibsize"] = np.log10(library_sizes["scvi_libsize"]) library_size_df = library_sizes.join(sct_library_sizes) fig3 = plt.figure(figsize=(10, 5)) ax = fig3.add_subplot(121) ax.scatter( library_size_df["log_umi"], library_size_df["scvi_libsize"], alpha=0.5, s=point_size, ) ax.set_xlabel("log_umi") ax.set_ylabel("scvi_libsize") ax = fig3.add_subplot(122) sc.pl.umap( adata, color="named_clusters", show=False, ax=ax, legend_fontweight=legend_fontweight, legend_loc=legend_loc, size=point_size, ) fig3.suptitle(title) fig3.tight_layout(rect=[0, 0.03, 1, 0.95]) title = title.replace(" ", "").replace("=", "_") if outdir: fig3.savefig(os.path.join(outdir, "{}.pdf".format(title))) fig3.savefig(os.path.join(outdir, "{}.png".format(title))) fig1.show() fig2.show() fig3.show() means_df = [] dropout_df = [] dispersion_df = [] for tensors in scvi_posterior.sequential(batch_size=batch_size): sample_batch, _, _, batch_index, labels = tensors outputs = scvi_posterior.model.inference( sample_batch, batch_index=batch_index, y=labels ) px_r = outputs["px_r"].detach().cpu().numpy() px_rate = outputs["px_rate"].detach().cpu().numpy() px_dropout = outputs["px_dropout"].detach().cpu().numpy() dropout_df.append(px_dropout) dispersion_df.append(px_r) means_df.append(px_rate) dropout_df = pd.DataFrame(np.vstack(dropout_df)) dispersion_df = pd.DataFrame(np.vstack(dispersion_df)) means_df = pd.DataFrame(np.vstack(means_df)) means_df.index = list(adata.obs_names) means_df.columns = list(scviDataset.gene_names) means_df = means_df.T dropout_df.index = list(adata.obs_names) dropout_df.columns = list(scviDataset.gene_names) dropout_df = dropout_df.T dispersion_df.index = list(adata.obs_names) dispersion_df.columns = list(scviDataset.gene_names) dispersion_df = dispersion_df.T reconst_loss_df = pd.DataFrame(reconst_loss.detach().cpu().numpy()) reconst_loss_df.index = list(adata.obs_names) reconst_loss_df.columns = list(scviDataset.gene_names) reconst_loss_df = reconst_loss_df.T if outdir: os.makedirs(outdir, exist_ok=True) means_df.to_csv( os.path.join(outdir, "SCVI_means_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) dropout_df.to_csv( os.path.join(outdir, "SCVI_dropout_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) dispersion_df.to_csv( os.path.join(outdir, "SCVI_dispersions_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) reconst_loss_df.to_csv( os.path.join(outdir, "SCVI_reconstloss_df_{}.tsv".format(suffix)), sep="\t", index=True, header=True, ) obj_to_return = ( scvi_posterior, scvi_latent, scvi_vae, scvi_trainer, fig1, fig2, fig3, ) titles_to_return = ( "posterior", "latent", "vae", "trainer", "cellwise_plot", "genewise_plot", "libsize_plot", ) sct_gene_pars_df = pd.read_csv(sct_gene_pars, sep="\t", index_col=0) gene_cell_disp_summary_df = pd.DataFrame( dispersion_df.median(1), columns=["gene_cell_mean_disp"] ) merged_df = sct_gene_pars_df.join(gene_cell_disp_summary_df).dropna() fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(121) ax.scatter( merged_df["gmean"], merged_df["gene_cell_mean_disp"], alpha=0.5, label="Gene" ) ax.legend(frameon=False) ax.set_xlabel("Gene gmean") ax.set_ylabel("SCVI theta") merged_df = sct_gene_pars_df.join(sct_model_pars_fit_df) ax = fig.add_subplot(122) ax.scatter(merged_df["gmean"], merged_df["theta"], alpha=0.5, label="Gene") ax.legend(frameon=False) # , loc='upper left') ax.set_xlabel("Gene gmean") ax.set_ylabel("SCT theta") title = "{} | ThetaVSGmean | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) fig.suptitle(title) fig.tight_layout() title = title.replace(" ", "") if outdir: fig.savefig(os.path.join(outdir, "{}.pdf".format(title))) fig.savefig(os.path.join(outdir, "{}.png".format(title))) sct_library_sizes = pd.read_csv(sct_cell_pars, sep="\t") mean_scvi_disp_df = pd.DataFrame(dispersion_df.mean(1), columns=["scvi_dispersion"]) sct_disp_df = pd.read_csv( sct_cell_pars.replace("_cell_", "_model_"), sep="\t", index_col=0 ) joined_df = sct_disp_df.join(mean_scvi_disp_df) title = "{} | Dispersion | disp:{} | loss:{} | ldvae:{}({}) | n_enc:{} | c_ofst:{} | g_ofst:{}".format( title_prefix, dispersion, reconstruction_loss, ldvae, ldvae_bias, n_encoder, cell_offset, gene_offset, ) fig4 = plt.figure(figsize=(10, 5)) ax = fig4.add_subplot(121) ax.scatter(joined_df["theta"], joined_df["scvi_dispersion"], alpha=0.5) ax.axline([0, 0], [1, 1], color="gray", linestyle="dashed") ax.set_xlabel("SCT theta") ax.set_ylabel("scVI theta") ax = fig4.add_subplot(122) sc.pl.umap( adata, color="named_clusters", show=False, ax=ax, legend_fontweight=legend_fontweight, legend_loc=legend_loc, size=point_size, ) fig4.suptitle(title) fig4.tight_layout(rect=[0, 0.03, 1, 0.95]) title = title.replace(" ", "").replace("=", "_") if outdir: fig4.savefig(os.path.join(outdir, "{}.pdf".format(title))) fig4.savefig(os.path.join(outdir, "{}.png".format(title))) return dict(zip(titles_to_return, obj_to_return)) def RunSCVI( counts_dir, metadata_file, sct_cell_pars, outdir, title_prefix="", idents_col="phenoid", reconstruction_loss="nb", dispersion="gene-cell", cell_offset="none", gene_offset="none", n_encoder=1, hvg_genes=3000, ldvae=False, ldvae_bias=False, use_cuda=True, genes_to_exclude_file=None, lr=1e-3, kl_type="reverse", **kwargs, ): adata = sc.read_10x_mtx(counts_dir) metadata = pd.read_csv(metadata_file, sep="\t", index_col=0) adata.obs["named_clusters"] = metadata[idents_col] n_epochs = np.min([round((20000 / adata.n_obs) * 400), 400]) sct_model_pars_fit = sct_cell_pars.replace("cell_pars", "model_pars_fit") sct_gene_pars = sct_cell_pars.replace("cell_pars", "gene_attrs") if genes_to_exclude_file: genes_to_exclude_df = pd.read_csv(genes_to_exclude_file, sep="\t", index_col=0) genes_to_exclude = genes_to_exclude_df.index.tolist() all_genes = adata.var_names genes_to_keep = list(set(all_genes).difference(genes_to_exclude)) adata = adata[:, genes_to_keep] results = RunVAE( adata, reconstruction_loss, linear=ldvae, title_prefix=title_prefix, n_encoder=n_encoder, cell_offset=cell_offset, gene_offset=gene_offset, hvg_genes=hvg_genes, n_epochs=n_epochs, lr=lr, dispersion=dispersion, use_cuda=use_cuda, sct_cell_pars=sct_cell_pars, sct_gene_pars=sct_gene_pars, sct_model_pars_fit=sct_model_pars_fit, outdir=outdir, kl_type=kl_type, **kwargs, ) return results
88f37dcfa3636c5a91c3546ae84c383167f931e2
5ec06dab1409d790496ce082dacb321392b32fe9
/clients/python-flask/generated/openapi_server/models/com_adobe_cq_social_commons_emailreply_impl_custom_email_client_provider_properties.py
4d9bc47c42da303a7c969c543512bee62080c310
[ "Apache-2.0" ]
permissive
shinesolutions/swagger-aem-osgi
e9d2385f44bee70e5bbdc0d577e99a9f2525266f
c2f6e076971d2592c1cbd3f70695c679e807396b
refs/heads/master
2022-10-29T13:07:40.422092
2021-04-09T07:46:03
2021-04-09T07:46:03
190,217,155
3
3
Apache-2.0
2022-10-05T03:26:20
2019-06-04T14:23:28
null
UTF-8
Python
false
false
4,134
py
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from openapi_server.models.base_model_ import Model from openapi_server.models.config_node_property_array import ConfigNodePropertyArray # noqa: F401,E501 from openapi_server.models.config_node_property_integer import ConfigNodePropertyInteger # noqa: F401,E501 from openapi_server import util class ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, priority_order: ConfigNodePropertyInteger=None, reply_email_patterns: ConfigNodePropertyArray=None): # noqa: E501 """ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties - a model defined in OpenAPI :param priority_order: The priority_order of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. # noqa: E501 :type priority_order: ConfigNodePropertyInteger :param reply_email_patterns: The reply_email_patterns of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. # noqa: E501 :type reply_email_patterns: ConfigNodePropertyArray """ self.openapi_types = { 'priority_order': ConfigNodePropertyInteger, 'reply_email_patterns': ConfigNodePropertyArray } self.attribute_map = { 'priority_order': 'priorityOrder', 'reply_email_patterns': 'replyEmailPatterns' } self._priority_order = priority_order self._reply_email_patterns = reply_email_patterns @classmethod def from_dict(cls, dikt) -> 'ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The comAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. # noqa: E501 :rtype: ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties """ return util.deserialize_model(dikt, cls) @property def priority_order(self) -> ConfigNodePropertyInteger: """Gets the priority_order of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :return: The priority_order of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :rtype: ConfigNodePropertyInteger """ return self._priority_order @priority_order.setter def priority_order(self, priority_order: ConfigNodePropertyInteger): """Sets the priority_order of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :param priority_order: The priority_order of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :type priority_order: ConfigNodePropertyInteger """ self._priority_order = priority_order @property def reply_email_patterns(self) -> ConfigNodePropertyArray: """Gets the reply_email_patterns of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :return: The reply_email_patterns of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :rtype: ConfigNodePropertyArray """ return self._reply_email_patterns @reply_email_patterns.setter def reply_email_patterns(self, reply_email_patterns: ConfigNodePropertyArray): """Sets the reply_email_patterns of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :param reply_email_patterns: The reply_email_patterns of this ComAdobeCqSocialCommonsEmailreplyImplCustomEmailClientProviderProperties. :type reply_email_patterns: ConfigNodePropertyArray """ self._reply_email_patterns = reply_email_patterns
ed56edac7dcdd5606246aad436c9d852a3f3f40f
786f34fc2fea4f764d083b2bb3fd75222dfbbac1
/jobsPortal/jobsPortal/urls.py
df7cc52aa22d588c3e134c6f19a0b5e4a7a1e052
[]
no_license
shivendra04/DjangoProjects
6c4ddc58588c7033afa7a1f5a299e33b1afb3897
d3a190fd47582190f2ad41d8dc4b30b7841cf679
refs/heads/master
2022-12-20T00:01:22.524044
2020-09-22T08:05:43
2020-09-22T08:05:43
297,578,265
1
0
null
null
null
null
UTF-8
Python
false
false
994
py
"""jobsPortal URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from jobsApp import views urlpatterns = [ path('admin/', admin.site.urls), path('home/', views.home), path('home/hydjobs/', views.hydjob), path('home/punejobs/', views.punejob), path('home/banglorejobs/', views.banglorejob), path('home/chennaijobs/', views.chennaijob), ]
83cef915c5831fa22780de720175e98cce80ccc3
3a4f14d6638bc0c12c129ed73c6c3543437203df
/src/morphforgeexamples/multicell_simulation/multicell_simulation010.py
4e246688646bd3831457507719b3611426692cef
[ "BSD-2-Clause" ]
permissive
unidesigner/morphforge
ef04ccb3877f069a0feea72eb1b44c97930dac44
510cd86549b2c2fb19296da2d4408ed8091fb962
refs/heads/master
2021-01-15T22:34:28.795355
2012-04-05T08:55:12
2012-04-05T08:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
"""[*] Two cells connected with an AMPA synapse"""
8e4033741ac16a69170a9bfaf0ba7158c207ddc2
d0cf8b68b68e33900544dc056566511428692b71
/tests/spoof/gs_feature_elision.py
c2aabeb4d4d1e9b78fab46632764e38d376bfe25
[ "MIT" ]
permissive
ryanfb/OCRmyPDF
3f1547c164d3b74b5e6c003bb875e50c292b36a4
f6a4d8f1f808a1c963c85e498a773ef0439db5ed
refs/heads/master
2021-01-21T04:25:00.603736
2017-08-27T20:53:36
2017-08-27T20:53:36
101,911,301
1
0
null
2017-08-30T17:44:15
2017-08-30T17:44:15
null
UTF-8
Python
false
false
800
py
#!/usr/bin/env python3 # © 2016 James R. Barlow: github.com/jbarlow83 import sys import os from subprocess import check_call """Replicate one type of Ghostscript feature elision warning during PDF/A creation.""" def real_ghostscript(argv): gs_args = ['gs'] + argv[1:] os.execvp("gs", gs_args) return # Not reachable elision_warning = """GPL Ghostscript 9.20: Setting Overprint Mode to 1 not permitted in PDF/A-2, overprint mode not set""" def main(): if '--version' in sys.argv: print('9.20') print('SPOOFED: ' + os.path.basename(__filename__)) sys.exit(0) gs_args = ['gs'] + sys.argv[1:] check_call(gs_args) if '-sDEVICE=pdfwrite' in sys.argv[1:]: print(elision_warning) sys.exit(0) if __name__ == '__main__': main()
c93c5ccd6c588a6c7f2b024b62acc6badd12163b
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/HDGiiCmSgJeeu3388_19.py
09b87a15f58f460743f3b6ef6eaacc88c698ba44
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
""" A fuse melts when a current in an electrical device exceeds the fuse's rating, breaking the circuit and preventing the heat from building up too much (which can cause a fire). The ideal fuse to choose is **higher** than the device's current output, yet **as close as possible** to it as well. Given a list of _fuse ratings_ , and the _device's current output_ , return which of the fuses is the best for the device. ### Examples choose_fuse(["3V", "5V", "12V"], "4.5V") ➞ "5V" choose_fuse(["5V", "14V", "2V"], "5.5V") ➞ "14V" choose_fuse(["17V", "15V", "12V"], "9V") ➞ "12V" ### Notes * You will be given three possible ratings in voltage. * Fuses may not be in a sorted order. * Assume that there is a valid fuse in every test case """ def choose_fuse(f, c): ​ f = [int(e[:-1]) for e in f if float(e[:-1]) >= float(c[:-1])] return str(min(f))+'V'
448a496d6cf183fe73cf62e90b39b8f5e925a6f8
cc1d44cf04e5b2b15bb296a434aad4ae4bcfc4be
/python3/qr/zbarlight_test.py
5944e63c9ba7fb774948ce49dce2fe4de1a416f1
[]
no_license
ericosur/ericosur-snippet
dda2200546b13fb9b84632d115a0f4ca5e3d5c47
0309eeb614612f9a35843e2f45f4080ae03eaa81
refs/heads/main
2023-08-08T04:54:05.907435
2023-07-25T06:04:01
2023-07-25T06:04:01
23,057,196
2
1
null
2022-08-31T09:55:19
2014-08-18T03:18:52
Perl
UTF-8
Python
false
false
864
py
#!/usr/bin/env python3 # coding: utf-8 ''' apt-get install libzbar-dev pip install zbarlight I do not recomment use this module to decode qrcode. ''' import sys from PIL import Image import common try: import zbarlight except ImportError: print('need to install zbarligt (python) and libzbar-dev') sys.exit(1) def read_image(fn): ''' read image ''' im = None with open(fn, "rb") as fin: im = Image.open(fin) im.load() return im def process(): ''' process ''' arr = common.get_pngs() for fn in arr: print('fn:', fn) im = read_image(fn) codes = zbarlight.scan_codes(['qrcode'], im) # codes in type 'byte' for s in codes: print(s) print(s.decode('utf-8')) def main(): ''' main ''' process() if __name__ == '__main__': main()
ee2c1cb101ed600ef6a59804bd8a60d49f33250a
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/storage/azure-mgmt-storage/azure/mgmt/storage/v2019_06_01/aio/_storage_management_client_async.py
c4106bd382d3bd7e0ec92066dc1895978266f306
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
8,245
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.mgmt.core import AsyncARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential from ._configuration_async import StorageManagementClientConfiguration from .operations_async import Operations from .operations_async import SkusOperations from .operations_async import StorageAccountsOperations from .operations_async import UsagesOperations from .operations_async import ManagementPoliciesOperations from .operations_async import PrivateEndpointConnectionsOperations from .operations_async import PrivateLinkResourcesOperations from .operations_async import ObjectReplicationPoliciesOperations from .operations_async import EncryptionScopesOperations from .operations_async import BlobServicesOperations from .operations_async import BlobContainersOperations from .operations_async import FileServicesOperations from .operations_async import FileSharesOperations from .operations_async import QueueServicesOperations from .operations_async import QueueOperations from .operations_async import TableServicesOperations from .operations_async import TableOperations from .. import models class StorageManagementClient(object): """The Azure Storage Management API. :ivar operations: Operations operations :vartype operations: azure.mgmt.storage.v2019_06_01.aio.operations_async.Operations :ivar skus: SkusOperations operations :vartype skus: azure.mgmt.storage.v2019_06_01.aio.operations_async.SkusOperations :ivar storage_accounts: StorageAccountsOperations operations :vartype storage_accounts: azure.mgmt.storage.v2019_06_01.aio.operations_async.StorageAccountsOperations :ivar usages: UsagesOperations operations :vartype usages: azure.mgmt.storage.v2019_06_01.aio.operations_async.UsagesOperations :ivar management_policies: ManagementPoliciesOperations operations :vartype management_policies: azure.mgmt.storage.v2019_06_01.aio.operations_async.ManagementPoliciesOperations :ivar private_endpoint_connections: PrivateEndpointConnectionsOperations operations :vartype private_endpoint_connections: azure.mgmt.storage.v2019_06_01.aio.operations_async.PrivateEndpointConnectionsOperations :ivar private_link_resources: PrivateLinkResourcesOperations operations :vartype private_link_resources: azure.mgmt.storage.v2019_06_01.aio.operations_async.PrivateLinkResourcesOperations :ivar object_replication_policies: ObjectReplicationPoliciesOperations operations :vartype object_replication_policies: azure.mgmt.storage.v2019_06_01.aio.operations_async.ObjectReplicationPoliciesOperations :ivar encryption_scopes: EncryptionScopesOperations operations :vartype encryption_scopes: azure.mgmt.storage.v2019_06_01.aio.operations_async.EncryptionScopesOperations :ivar blob_services: BlobServicesOperations operations :vartype blob_services: azure.mgmt.storage.v2019_06_01.aio.operations_async.BlobServicesOperations :ivar blob_containers: BlobContainersOperations operations :vartype blob_containers: azure.mgmt.storage.v2019_06_01.aio.operations_async.BlobContainersOperations :ivar file_services: FileServicesOperations operations :vartype file_services: azure.mgmt.storage.v2019_06_01.aio.operations_async.FileServicesOperations :ivar file_shares: FileSharesOperations operations :vartype file_shares: azure.mgmt.storage.v2019_06_01.aio.operations_async.FileSharesOperations :ivar queue_services: QueueServicesOperations operations :vartype queue_services: azure.mgmt.storage.v2019_06_01.aio.operations_async.QueueServicesOperations :ivar queue: QueueOperations operations :vartype queue: azure.mgmt.storage.v2019_06_01.aio.operations_async.QueueOperations :ivar table_services: TableServicesOperations operations :vartype table_services: azure.mgmt.storage.v2019_06_01.aio.operations_async.TableServicesOperations :ivar table: TableOperations operations :vartype table: azure.mgmt.storage.v2019_06_01.aio.operations_async.TableOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = StorageManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self._config, self._serialize, self._deserialize) self.skus = SkusOperations( self._client, self._config, self._serialize, self._deserialize) self.storage_accounts = StorageAccountsOperations( self._client, self._config, self._serialize, self._deserialize) self.usages = UsagesOperations( self._client, self._config, self._serialize, self._deserialize) self.management_policies = ManagementPoliciesOperations( self._client, self._config, self._serialize, self._deserialize) self.private_endpoint_connections = PrivateEndpointConnectionsOperations( self._client, self._config, self._serialize, self._deserialize) self.private_link_resources = PrivateLinkResourcesOperations( self._client, self._config, self._serialize, self._deserialize) self.object_replication_policies = ObjectReplicationPoliciesOperations( self._client, self._config, self._serialize, self._deserialize) self.encryption_scopes = EncryptionScopesOperations( self._client, self._config, self._serialize, self._deserialize) self.blob_services = BlobServicesOperations( self._client, self._config, self._serialize, self._deserialize) self.blob_containers = BlobContainersOperations( self._client, self._config, self._serialize, self._deserialize) self.file_services = FileServicesOperations( self._client, self._config, self._serialize, self._deserialize) self.file_shares = FileSharesOperations( self._client, self._config, self._serialize, self._deserialize) self.queue_services = QueueServicesOperations( self._client, self._config, self._serialize, self._deserialize) self.queue = QueueOperations( self._client, self._config, self._serialize, self._deserialize) self.table_services = TableServicesOperations( self._client, self._config, self._serialize, self._deserialize) self.table = TableOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "StorageManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
77842a6aee9b5ded6310e374e78ec44dfddb45bd
d2cb930ed5df0b1b5f7944e00f6f884bf014803d
/douban/twisted-demo.py
fcf677fc5cecf53c84cde258c7d3baea35271f91
[]
no_license
sixDegree/python-scrapy-demo
3cae4298b01edab65449cfe9af56b2fa59f4c07d
b66530e54156be8c7877f1fc4d497fd497b6fdda
refs/heads/master
2020-06-17T03:16:23.038061
2019-07-08T09:25:15
2019-07-08T09:25:15
195,777,787
0
0
null
null
null
null
UTF-8
Python
false
false
5,184
py
from twisted.internet import reactor # 事件循环(自动终止条件:所有socket都已移除) from twisted.internet import defer # defer.Deferred 特殊的socket对象(需手动调用执行,手动移除) from twisted.internet import task import treq # 用于发送异步Request,返回Deferred对象 import time # 延迟机制: # Deferred 延迟对象,代表的是一个无法立即获取的值 def demo_defer1(): d = defer.Deferred() print("called:", d.called) # False print("call...") d.callback("Hello") print("called:", d.called) # True print("result:", d.result) # Hello def demo_defer2(): def done(v): print("done called") return "Hello " + v d = defer.Deferred() d.addCallback(done) print("called:", d.called) # False print("call...") d.callback("Tom") print("called:", d.called) # True print("result:", d.result) # Hello Tom def demo_defer3(): def status(*ds): return [(getattr(d, 'result', 'N/A'), len(d.callbacks)) for d in ds] def b_callback(arg): print("b_callback called with arg =", arg) return b def on_done(arg): print("on_done called with arg =", arg) return arg a = defer.Deferred() b = defer.Deferred() a.addCallback(b_callback).addCallback(on_done) print(status(a, b)) # [('N/A', 2), ('N/A', 0)] a.callback(3) # b_callback called with arg = 3 print(status(a, b)) # [(<Deferred at 0x1047a0da0>, 1), ('N/A', 1)] b.callback(4) # on_done called with arg = 4 print(status(a, b)) # [(4, 0), (None, 0)] def demo_defer4(): def status(*ds): return [(getattr(d, 'result', 'N/A'), len(d.callbacks)) for d in ds] def b_callback(arg): print("b_callback called with arg =", arg) return b def on_done(arg): print("on_done called with arg =", arg) return arg a = defer.Deferred() b = defer.Deferred() a.addCallback(b_callback).addCallback(on_done) print(status(a, b)) # [('N/A', 2), ('N/A', 0)] b.callback(4) print(status(a, b)) # [('N/A', 2), (4, 0)] a.callback(3) # b_callback called with arg = 3 # on_done called with arg = 4 print(status(a, b)) # [(4, 0), (None, 0)] def demo_defer5(): def on_done(arg): print("on_done called with arg =", arg) return arg dfds = [defer.Deferred() for i in range(5)] defer.DeferredList(dfds).addCallback(on_done) for i in range(5): dfds[i].callback(i) # on_done called with arg = [(True, 0), (True, 1), (True, 2), (True, 3), (True, 4)] # on_done 要等到列表中所有延迟都触发(调用`callback(...)`)后调用 def demo_reactor1(): def done(arg): print("Done", arg) def defer_task(): print("Start") d = defer.Deferred() time.sleep(3) d.callback("123") return d def stop(): reactor.stop() defer_task().addCallback(done) reactor.callLater(0, stop) reactor.run() def demo_reactor2(): def done(arg): print("Done", arg) def all_done(arg): print("All done", arg) def defer_task(i): print("Start", i) d = defer.Deferred() d.addCallback(done) time.sleep(2) d.callback(i) return d def stop(): print("Stop reactor") reactor.stop() dfds = defer.DeferredList([defer_task(i) for i in range(5)]) dfds.addCallback(all_done) reactor.callLater(0, stop) reactor.run() def demo_reactor3(): def done(arg): print("Done", arg) def all_done(arg): print("All done", arg) print("Stop reactor") reactor.stop() def defer_task(i): print("Start", i) return task.deferLater(reactor, 2, done, i) dfds = defer.DeferredList([defer_task(i) for i in range(5)]) dfds.addBoth(all_done) # dfds.addCallback(all_done) # reactor.callLater(5, stop) reactor.run() def demo_treq_get(url): def get_done(response): print("get response:", response) reactor.stop() treq.get(url).addCallback(get_done) reactor.run() def main(): @defer.inlineCallbacks def my_task1(): print("Start task1") url = "http://www.baidu.com" d = treq.get(url.encode('utf-8')) d.addCallback(parse) yield d def my_task2(): print("Start task2") return task.deferLater(reactor, 2, parse, "200") @defer.inlineCallbacks # need use `yield` def my_task3(): print("Start task3") yield task.deferLater(reactor, 2, parse, "400") def parse(response): print("parse response:", response) def all_done(arg): print("All done", arg) reactor.stop() dfds = defer.DeferredList([my_task1(), my_task2(), my_task3(), ]) dfds.addBoth(all_done) reactor.run() if __name__ == "__main__": # demo_defer1() # demo_defer2() # demo_defer3() # demo_defer4() # demo_defer5() # demo_reactor1() # demo_reactor2() # demo_reactor3() # demo_treq_get('http://www.baidu.com') main()
c98bf9af78911012a5d580d8fab568dc0dd4d262
5aa0e5f32d529c3321c28d37b0a12a8cf69cfea8
/client/gui_lib/GUIElement.py
9e1b3576bea5c0ed0b0177d38d061da26e549710
[]
no_license
sheepsy90/survive
26495f1ff2d8247fbb9470882f8be9f5272e7f2c
0eddf637be0eacd34415761b78fc2c9d50bc1528
refs/heads/master
2021-01-09T05:55:16.546762
2017-02-03T20:15:28
2017-02-03T20:15:28
80,864,391
1
0
null
null
null
null
UTF-8
Python
false
false
1,463
py
import pygame class GUIElement(object): TEXT = 2 BUTTON = 1 def __init__(self, name, rect): self.name = name self.x, self.y, self.width, self.height = rect self.is_hover = False self.gui_handler = None self.focus = False self.visible = True self.z_order = 0 self.titleFont = pygame.font.Font('resources/fonts/VENUSRIS.ttf', 64) def set_zorder(self, order): self.z_order = order def get_zorder(self): return self.z_order def get_name(self): return self.name def set_hover_state(self, mx, my): if self.x <= mx <= self.width+self.x and self.y <= my <= self.height+self.y: self.is_hover = True else: self.is_hover = False def update(self, mx, my, mouse_buttons, events): self.set_hover_state(mx, my) def get_rect(self): return pygame.Rect(self.x, self.y, self.width, self.height) def is_hover_active(self): return self.is_hover def draw(self, renderer): raise NotImplementedError def register_gui_handler(self, gui_handler): self.gui_handler = gui_handler def enable_focus(self): self.focus = True def disable_focus(self): self.focus = False def has_focus(self): return self.focus def set_visible(self, value): self.visible = value def is_visible(self): return self.visible
d6b7f74c1a8958d8c0d2b441c408b1a559b1d5a0
1d21b7bc9205c9c2acd8b8fd8ee75dec93e974d4
/qa/rpc-tests/p2p-acceptblock.py
db03aff39949a8e3e99ec7b3f0a24f9f5da34678
[ "MIT" ]
permissive
ZioFabry/LINC2
494d12be6034b7f5999960e3f3ed62f154be7ab8
a2e0e06cf68771a82bb1d4da30e0c914c8589bbe
refs/heads/master
2020-05-22T18:28:27.590171
2019-05-13T19:51:49
2019-05-13T19:51:49
186,471,965
0
0
MIT
2019-05-13T18:10:28
2019-05-13T18:10:27
null
UTF-8
Python
false
false
12,328
py
#!/usr/bin/env python2 # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase ''' AcceptBlockTest -- test processing of unrequested blocks. Since behavior differs when receiving unrequested blocks from whitelisted peers versus non-whitelisted peers, this tests the behavior of both (effectively two separate tests running in parallel). Setup: two nodes, node0 and node1, not connected to each other. Node0 does not whitelist localhost, but node1 does. They will each be on their own chain for this test. We have one NodeConn connection to each, test_node and white_node respectively. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance. 3. Mine a block that forks the previous block, and deliver to each node from corresponding peer. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more work than the tip. Node1 should process because this is coming from a whitelisted peer. 4. Send another block that builds on the forking block. Node0 should process this block but be stuck on the shorter chain, because it's missing an intermediate block. Node1 should reorg to this longer chain. 4b.Send 288 more blocks on the longer chain. Node0 should process all but the last block (too far ahead in height). Send all headers to Node1, and then send the last block in that chain. Node1 should accept the block because it's coming from a whitelisted peer. 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. ''' # TestNode: bare-bones "peer". Used mostly as a conduit for a test to sending # p2p messages to a node, generating the messages in the main testing logic. class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() def add_connection(self, conn): self.connection = conn # Track the last getdata message we receive (used in the test) def on_getdata(self, conn, message): self.last_getdata = message # Spin until verack message is received from the node. # We use this to signal that our test can begin. This # is called from the testing thread, so it needs to acquire # the global lock. def wait_for_verack(self): while True: with mininode_lock: if self.verack_received: return time.sleep(0.05) # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_pong(self, conn, message): self.last_pong = message # Sync up with the node after delivery of a block def sync_with_ping(self, timeout=30): self.connection.send_message(msg_ping(nonce=self.ping_counter)) received_pong = False sleep_time = 0.05 while not received_pong and timeout > 0: time.sleep(sleep_time) timeout -= sleep_time with mininode_lock: if self.last_pong.nonce == self.ping_counter: received_pong = True self.ping_counter += 1 return received_pong class AcceptBlockTest(BitcoinTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("LINCD", "lincd"), help="bitcoind binary to test") def setup_chain(self): initialize_chain_clean(self.options.tmpdir, 2) def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-debug"], binary=self.options.testbinary)) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1"], binary=self.options.testbinary)) def run_test(self): # Setup the p2p connections and start up the network thread. test_node = TestNode() # connects to node0 (not whitelisted) white_node = TestNode() # connects to node1 (whitelisted) connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], white_node)) test_node.add_connection(connections[0]) white_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here test_node.wait_for_verack() white_node.wait_for_verack() # 1. Have both nodes mine a block (leave IBD) [ n.generate(1) for n in self.nodes ] tips = [ int ("0x" + n.getbestblockhash() + "L", 0) for n in self.nodes ] # 2. Send one block that builds on each tip. # This should be accepted. blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in xrange(2): blocks_h2.append(create_block(tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) white_node.send_message(msg_block(blocks_h2[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 2) print "First height 2 block accepted by both nodes" # 3. Send another block that builds on the original tip. blocks_h2f = [] # Blocks at height 2 that fork off the main chain for i in xrange(2): blocks_h2f.append(create_block(tips[i], create_coinbase(2), blocks_h2[i].nTime+1)) blocks_h2f[i].solve() test_node.send_message(msg_block(blocks_h2f[0])) white_node.send_message(msg_block(blocks_h2f[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h2f[0].hash: assert_equal(x['status'], "headers-only") for x in self.nodes[1].getchaintips(): if x['hash'] == blocks_h2f[1].hash: assert_equal(x['status'], "valid-headers") print "Second height 2 block accepted only from whitelisted peer" # 4. Now send another block that builds on the forking chain. blocks_h3 = [] for i in xrange(2): blocks_h3.append(create_block(blocks_h2f[i].sha256, create_coinbase(3), blocks_h2f[i].nTime+1)) blocks_h3[i].solve() test_node.send_message(msg_block(blocks_h3[0])) white_node.send_message(msg_block(blocks_h3[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] # Since the earlier block was not processed by node0, the new block # can't be fully validated. for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h3[0].hash: assert_equal(x['status'], "headers-only") # But this block should be accepted by node0 since it has more work. try: self.nodes[0].getblock(blocks_h3[0].hash) print "Unrequested more-work block accepted from non-whitelisted peer" except: raise AssertionError("Unrequested more work block was not processed") # Node1 should have accepted and reorged. assert_equal(self.nodes[1].getblockcount(), 3) print "Successfully reorged to length 3 chain from whitelisted peer" # 4b. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node0. Node1 should process the tip if # we give it the headers chain leading to the tip. tips = blocks_h3 headers_message = msg_headers() all_blocks = [] # node0's blocks for j in xrange(2): for i in xrange(288): next_block = create_block(tips[j].sha256, create_coinbase(i + 4), tips[j].nTime+1) next_block.solve() if j==0: test_node.send_message(msg_block(next_block)) all_blocks.append(next_block) else: headers_message.headers.append(CBlockHeader(next_block)) tips[j] = next_block time.sleep(2) for x in all_blocks: try: self.nodes[0].getblock(x.hash) if x == all_blocks[287]: raise AssertionError("Unrequested block too far-ahead should have been ignored") except: if x == all_blocks[287]: print "Unrequested block too far-ahead not processed" else: raise AssertionError("Unrequested block with more work should have been accepted") headers_message.headers.pop() # Ensure the last block is unrequested white_node.send_message(headers_message) # Send headers leading to tip white_node.send_message(msg_block(tips[1])) # Now deliver the tip try: white_node.sync_with_ping() self.nodes[1].getblock(tips[1].hash) print "Unrequested block far ahead of tip accepted from whitelisted peer" except: raise AssertionError("Unrequested block from whitelisted peer not accepted") # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). test_node.send_message(msg_block(blocks_h2f[0])) # Here, if the sleep is too short, the test could falsely succeed (if the # node hasn't processed the block by the time the sleep returns, and then # the node processes it and incorrectly advances the tip). # But this would be caught later on, when we verify that an inv triggers # a getdata request for this block. test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) print "Unrequested block that would complete more-work chain was ignored" # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_getdata = None test_node.send_message(msg_inv([CInv(2, blocks_h3[0].sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_getdata # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, blocks_h2f[0].sha256) print "Inv at tip triggered getdata for unprocessed block" # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(blocks_h2f[0])) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 290) print "Successfully reorged to longer chain from non-whitelisted peer" [ c.disconnect_node() for c in connections ] if __name__ == '__main__': AcceptBlockTest().main()
8bab37daf96d71aa280e74d681d7515f1291bf03
c9f67529e10eb85195126cfa9ada2e80a834d373
/lib/python3.5/site-packages/torch/distributions/geometric.py
1e4b121cd7b4cfcccd548bf86ff634e3392b7ebe
[ "Apache-2.0" ]
permissive
chilung/dllab-5-1-ngraph
10d6df73ea421bfaf998e73e514972d0cbe5be13
2af28db42d9dc2586396b6f38d02977cac0902a6
refs/heads/master
2022-12-17T19:14:46.848661
2019-01-14T12:27:07
2019-01-14T12:27:07
165,513,937
0
1
Apache-2.0
2022-12-08T04:59:31
2019-01-13T14:19:16
Python
UTF-8
Python
false
false
2,923
py
from numbers import Number import torch from torch.distributions import constraints from torch.distributions.distribution import Distribution from torch.distributions.utils import broadcast_all, probs_to_logits, logits_to_probs, lazy_property, _finfo from torch.nn.functional import binary_cross_entropy_with_logits class Geometric(Distribution): r""" Creates a Geometric distribution parameterized by `probs`, where `probs` is the probability of success of Bernoulli trials. It represents the probability that in k + 1 Bernoulli trials, the first k trials failed, before seeing a success. Samples are non-negative integers [0, inf). Example:: >>> m = Geometric(torch.tensor([0.3])) >>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0 2 [torch.FloatTensor of size 1] Args: probs (Number, Tensor): the probabilty of sampling `1`. Must be in range (0, 1] logits (Number, Tensor): the log-odds of sampling `1`. """ arg_constraints = {'probs': constraints.unit_interval} support = constraints.nonnegative_integer def __init__(self, probs=None, logits=None, validate_args=None): if (probs is None) == (logits is None): raise ValueError("Either `probs` or `logits` must be specified, but not both.") if probs is not None: self.probs, = broadcast_all(probs) if not self.probs.gt(0).all(): raise ValueError('All elements of probs must be greater than 0') else: self.logits, = broadcast_all(logits) probs_or_logits = probs if probs is not None else logits if isinstance(probs_or_logits, Number): batch_shape = torch.Size() else: batch_shape = probs_or_logits.size() super(Geometric, self).__init__(batch_shape, validate_args=validate_args) @property def mean(self): return 1. / self.probs - 1. @property def variance(self): return (1. / self.probs - 1.) / self.probs @lazy_property def logits(self): return probs_to_logits(self.probs, is_binary=True) @lazy_property def probs(self): return logits_to_probs(self.logits, is_binary=True) def sample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) with torch.no_grad(): u = self.probs.new(shape).uniform_(_finfo(self.probs).tiny, 1) return (u.log() / (-self.probs).log1p()).floor() def log_prob(self, value): if self._validate_args: self._validate_sample(value) value, probs = broadcast_all(value, self.probs.clone()) probs[(probs == 1) & (value == 0)] = 0 return value * (-probs).log1p() + self.probs.log() def entropy(self): return binary_cross_entropy_with_logits(self.logits, self.probs, reduce=False) / self.probs
3387a7b1ab5c092a4be3f73958c4f37a2aec6a5c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02683/s728076842.py
530d406c4a8a8bf681c980d60d4d26bc44d72770
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
import numpy as np n,m,x=map(int,input().split()) a=2**64 b=[np.array(list(map(int,input().split())),"i8")for i in range(n)] for i in range(2**n): c=bin(i)[2:] c="0"*(n-len(c))+c l=np.zeros(m) q=0 for j in range(n): if c[j]=="1": q+=b[j][0] l+=b[j][1:] if np.min(l)>=x: a=min(a,q) if a==2**64: print(-1) else: print(a)
59fafc2d56a1ca1d9d3712f7dfda2784a96c910b
71c331e4b1e00fa3be03b7f711fcb05a793cf2af
/QA-System-master/SpeechToText_test/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/recaptchaenterprise/v1/recaptchaenterprise_v1_client.py
79510bf7357cd70baba2a7b3f103d23cabd30234
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
iofh/QA-System
568228bb0c0adf9ec23b45cd144d61049e720002
af4a8f1b5f442ddf4905740ae49ed23d69afb0f6
refs/heads/master
2022-11-27T23:04:16.385021
2020-08-12T10:11:44
2020-08-12T10:11:44
286,980,492
0
0
null
null
null
null
UTF-8
Python
false
false
10,467
py
"""Generated client library for recaptchaenterprise version v1.""" # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.py import base_api from googlecloudsdk.third_party.apis.recaptchaenterprise.v1 import recaptchaenterprise_v1_messages as messages class RecaptchaenterpriseV1(base_api.BaseApiClient): """Generated client library for service recaptchaenterprise version v1.""" MESSAGES_MODULE = messages BASE_URL = 'https://recaptchaenterprise.googleapis.com/' MTLS_BASE_URL = 'https://recaptchaenterprise.mtls.googleapis.com/' _PACKAGE = 'recaptchaenterprise' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform'] _VERSION = 'v1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'RecaptchaenterpriseV1' _URL_VERSION = 'v1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new recaptchaenterprise handle.""" url = url or self.BASE_URL super(RecaptchaenterpriseV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_assessments = self.ProjectsAssessmentsService(self) self.projects_keys = self.ProjectsKeysService(self) self.projects = self.ProjectsService(self) class ProjectsAssessmentsService(base_api.BaseApiService): """Service class for the projects_assessments resource.""" _NAME = 'projects_assessments' def __init__(self, client): super(RecaptchaenterpriseV1.ProjectsAssessmentsService, self).__init__(client) self._upload_configs = { } def Annotate(self, request, global_params=None): r"""Annotates a previously created Assessment to provide additional information. on whether the event turned out to be authentic or fradulent. Args: request: (RecaptchaenterpriseProjectsAssessmentsAnnotateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1AnnotateAssessmentResponse) The response message. """ config = self.GetMethodConfig('Annotate') return self._RunMethod( config, request, global_params=global_params) Annotate.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/assessments/{assessmentsId}:annotate', http_method='POST', method_id='recaptchaenterprise.projects.assessments.annotate', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:annotate', request_field='googleCloudRecaptchaenterpriseV1AnnotateAssessmentRequest', request_type_name='RecaptchaenterpriseProjectsAssessmentsAnnotateRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1AnnotateAssessmentResponse', supports_download=False, ) def Create(self, request, global_params=None): r"""Creates an Assessment of the likelihood an event is legitimate. Args: request: (RecaptchaenterpriseProjectsAssessmentsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1Assessment) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/assessments', http_method='POST', method_id='recaptchaenterprise.projects.assessments.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/assessments', request_field='googleCloudRecaptchaenterpriseV1Assessment', request_type_name='RecaptchaenterpriseProjectsAssessmentsCreateRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1Assessment', supports_download=False, ) class ProjectsKeysService(base_api.BaseApiService): """Service class for the projects_keys resource.""" _NAME = 'projects_keys' def __init__(self, client): super(RecaptchaenterpriseV1.ProjectsKeysService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a new reCAPTCHA Enterprise key. Args: request: (RecaptchaenterpriseProjectsKeysCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1Key) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/keys', http_method='POST', method_id='recaptchaenterprise.projects.keys.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/keys', request_field='googleCloudRecaptchaenterpriseV1Key', request_type_name='RecaptchaenterpriseProjectsKeysCreateRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1Key', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes the specified key. Args: request: (RecaptchaenterpriseProjectsKeysDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleProtobufEmpty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/keys/{keysId}', http_method='DELETE', method_id='recaptchaenterprise.projects.keys.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='RecaptchaenterpriseProjectsKeysDeleteRequest', response_type_name='GoogleProtobufEmpty', supports_download=False, ) def Get(self, request, global_params=None): r"""Returns the specified key. Args: request: (RecaptchaenterpriseProjectsKeysGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1Key) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/keys/{keysId}', http_method='GET', method_id='recaptchaenterprise.projects.keys.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='RecaptchaenterpriseProjectsKeysGetRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1Key', supports_download=False, ) def List(self, request, global_params=None): r"""Returns the list of all keys that belong to a project. Args: request: (RecaptchaenterpriseProjectsKeysListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1ListKeysResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/keys', http_method='GET', method_id='recaptchaenterprise.projects.keys.list', ordered_params=['parent'], path_params=['parent'], query_params=['pageSize', 'pageToken'], relative_path='v1/{+parent}/keys', request_field='', request_type_name='RecaptchaenterpriseProjectsKeysListRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1ListKeysResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates the specified key. Args: request: (RecaptchaenterpriseProjectsKeysPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleCloudRecaptchaenterpriseV1Key) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/keys/{keysId}', http_method='PATCH', method_id='recaptchaenterprise.projects.keys.patch', ordered_params=['name'], path_params=['name'], query_params=['updateMask'], relative_path='v1/{+name}', request_field='googleCloudRecaptchaenterpriseV1Key', request_type_name='RecaptchaenterpriseProjectsKeysPatchRequest', response_type_name='GoogleCloudRecaptchaenterpriseV1Key', supports_download=False, ) class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(RecaptchaenterpriseV1.ProjectsService, self).__init__(client) self._upload_configs = { }
1b9d741b46cbdeed5b3a3bac485cf1c895171822
1d38c549c07f43cc26b7353ef95300b934eeed33
/setup.py
9475e9b22ed79c0c28f6d00f6eec5f19bf0269e4
[]
no_license
pooyagheyami/Adel3
a6354fbc5aa56a9c38a8b724c8d22bea689380a1
29e257e19fd6914de0e60c303871321e457a858b
refs/heads/master
2022-11-07T21:53:13.958369
2020-06-12T13:22:55
2020-06-12T13:22:55
271,803,177
0
0
null
null
null
null
UTF-8
Python
false
false
9,530
py
# ======================================================== # # File automagically generated by GUI2Exe version 0.5.3 # Copyright: (c) 2007-2012 Andrea Gavana # ======================================================== # # Let's start with some default (for me) imports... from distutils.core import setup from py2exe.build_exe import py2exe import glob import os import zlib import shutil # Remove the build folder shutil.rmtree("build", ignore_errors=True) class Target(object): """ A simple class that holds information on our executable file. """ def __init__(self, **kw): """ Default class constructor. Update as you need. """ self.__dict__.update(kw) # Ok, let's explain why I am doing that. # Often, data_files, excludes and dll_excludes (but also resources) # can be very long list of things, and this will clutter too much # the setup call at the end of this file. So, I put all the big lists # here and I wrap them using the textwrap module. data_files = [('GUI\AuiPanel', ['F:\\Adel2\\GUI\\AuiPanel\\__init__.pyc', 'F:\\Adel2\\GUI\\AuiPanel\\Rev.pyc', 'F:\\Adel2\\GUI\\AuiPanel\\Stat.pyc']), ('GUI\Edit', ['F:\\Adel2\\GUI\\Edit\\__init__.pyc', 'F:\\Adel2\\GUI\\Edit\\accsrh.pyc', 'F:\\Adel2\\GUI\\Edit\\buyit.pyc', 'F:\\Adel2\\GUI\\Edit\\EDA.pyc', 'F:\\Adel2\\GUI\\Edit\\Edacc.pyc', 'F:\\Adel2\\GUI\\Edit\\EDM.pyc', 'F:\\Adel2\\GUI\\Edit\\Edmolk6.pyc', 'F:\\Adel2\\GUI\\Edit\\Edmolk62.pyc', 'F:\\Adel2\\GUI\\Edit\\InAcc3.pyc', 'F:\\Adel2\\GUI\\Edit\\Pnl0.pyc', 'F:\\Adel2\\GUI\\Edit\\Specy.pyc']), ('Database', ['F:\\Adel2\\Database\\__init__.pyc', 'F:\\Adel2\\Database\\ABR.db', 'F:\\Adel2\\Database\\Company.db', 'F:\\Adel2\\Database\\DataGet.pyc', 'F:\\Adel2\\Database\\Main.db', 'F:\\Adel2\\Database\\MDataGet.pyc', 'F:\\Adel2\\Database\\Menu.db', 'F:\\Adel2\\Database\\MenuSet.pyc', 'F:\\Adel2\\Database\\Molk.db', 'F:\\Adel2\\Database\\wxsq2.pyc']), ('GUI', ['F:\\Adel2\\GUI\\__init__.pyc', 'F:\\Adel2\\GUI\\BG.pyc', 'F:\\Adel2\\GUI\\MainMenu.pyc', 'F:\\Adel2\\GUI\\proman.pyc', 'F:\\Adel2\\GUI\\window.pyc']), ('GUI\Input', ['F:\\Adel2\\GUI\\Input\\__init__.pyc', 'F:\\Adel2\\GUI\\Input\\accsrh.pyc', 'F:\\Adel2\\GUI\\Input\\buyit.pyc', 'F:\\Adel2\\GUI\\Input\\IAc.pyc', 'F:\\Adel2\\GUI\\Input\\IMK.pyc', 'F:\\Adel2\\GUI\\Input\\InAcc3.pyc', 'F:\\Adel2\\GUI\\Input\\InM6.pyc', 'F:\\Adel2\\GUI\\Input\\InMolk61.pyc', 'F:\\Adel2\\GUI\\Input\\InMolk62.pyc', 'F:\\Adel2\\GUI\\Input\\Pmenu.pyc', 'F:\\Adel2\\GUI\\Input\\Pnl0.pyc', 'F:\\Adel2\\GUI\\Input\\Specy.pyc']), ('GUI\Program', ['F:\\Adel2\\GUI\\Program\\quit.pyc', 'F:\\Adel2\\GUI\\Program\\DEF.pyc', 'F:\\Adel2\\GUI\\Program\\defin2.pyc', 'F:\\Adel2\\GUI\\Program\\Pnl0.pyc', 'F:\\Adel2\\GUI\\Program\\pro1.pyc', 'F:\\Adel2\\GUI\\Program\\proper.pyc']), ('GUI\Report', ['F:\\Adel2\\GUI\\Report\\__init__.pyc', 'F:\\Adel2\\GUI\\Report\\AD1.pyc', 'F:\\Adel2\\GUI\\Report\\ADftar.pyc', 'F:\\Adel2\\GUI\\Report\\buyit.pyc', 'F:\\Adel2\\GUI\\Report\\MD1.pyc', 'F:\\Adel2\\GUI\\Report\\MD2.pyc', 'F:\\Adel2\\GUI\\Report\\MDftar1.pyc', 'F:\\Adel2\\GUI\\Report\\MDftar4.pyc', 'F:\\Adel2\\GUI\\Report\\Pnl0.pyc', 'F:\\Adel2\\GUI\\Report\\RMolk61.pyc', 'F:\\Adel2\\GUI\\Report\\RMolk62.pyc', 'F:\\Adel2\\GUI\\Report\\Specy.pyc']), ('GUI\Develop', ['F:\\Adel2\\GUI\\Develop\\__init__.pyc', 'F:\\Adel2\\GUI\\Develop\\buyit.pyc', 'F:\\Adel2\\GUI\\Develop\\Pnl0.pyc']), ('GUI\Help', ['F:\\Adel2\\GUI\\Help\\__init__.pyc', 'F:\\Adel2\\GUI\\Help\\about.pyc', 'F:\\Adel2\\GUI\\Help\\Pnl0.pyc']), ('GUI\Connect', ['F:\\Adel2\\GUI\\Connect\\__init__.pyc', 'F:\\Adel2\\GUI\\Connect\\buyit.pyc', 'F:\\Adel2\\GUI\\Connect\\Pnl0.pyc']), ('Config', ['F:\\Adel2\\Config\\__init__.pyc', 'F:\\Adel2\\Config\\config.pyc', 'F:\\Adel2\\Config\\Init.pyc', 'F:\\Adel2\\Config\\program.ini']), ('Utility', ['F:\\Adel2\\Utility\\__init__.pyc', 'F:\\Adel2\\Utility\\Adaad2.pyc', 'F:\\Adel2\\Utility\\adadfa1', 'F:\\Adel2\\Utility\\B1.pyc', 'F:\\Adel2\\Utility\\barcode.png', 'F:\\Adel2\\Utility\\calcu.pyc', 'F:\\Adel2\\Utility\\calculator.bmp', 'F:\\Adel2\\Utility\\calfar01.pyc', 'F:\\Adel2\\Utility\\clacal3.pyc', 'F:\\Adel2\\Utility\\fakey.pyc'])] includes = ['khayyam', 'wx', 'wx.dataview', 'wx.lib'] excludes = ['_gtkagg', '_tkagg', 'bsddb', 'curses', 'email', 'pywin.debugger', 'pywin.debugger.dbgcon', 'pywin.dialogs', 'tcl', 'Tkconstants', 'Tkinter'] packages = ['Config', 'Database', 'GUI', 'GUI.AuiPanel', 'GUI.Connect', 'GUI.Develop', 'GUI.Edit', 'GUI.Help', 'GUI.Input', 'GUI.Program', 'GUI.Report', 'Utility'] dll_excludes = ['libgdk-win32-2.0-0.dll', 'libgobject-2.0-0.dll', 'tcl84.dll', 'tk84.dll'] icon_resources = [(1, 'F:\\Adel2\\Res\\Icons\\f4.ico'), (2, 'F:\\Adel2\\Res\\Icons\\U5.ico')] bitmap_resources = [(1, 'F:\\Adel2\\Utility\\calculator.bmp')] other_resources = [(4, 24, 'F:\\Adel2\\Res\\Pics\\B10.jpg'), (5, 24, 'F:\\Adel2\\Res\\Pics\\B11.jpg'), (6, 24, 'F:\\Adel2\\Res\\Pics\\B13.jpg'), (7, 24, 'F:\\Adel2\\Res\\Pics\\B14.jpg'), (8, 24, 'F:\\Adel2\\Res\\Pics\\B16.jpg'), (1, 24, 'F:\\Adel2\\Res\\Pics\\B6.jpg'), (2, 24, 'F:\\Adel2\\Res\\Pics\\B7.jpg'), (3, 24, 'F:\\Adel2\\Res\\Pics\\B8.jpg')] # This is a place where the user custom code may go. You can do almost # whatever you want, even modify the data_files, includes and friends # here as long as they have the same variable name that the setup call # below is expecting. # No custom code added # Ok, now we are going to build our target class. # I chose this building strategy as it works perfectly for me :-D GUI2Exe_Target_1 = Target( # what to build script = "mainpro.py", icon_resources = icon_resources, bitmap_resources = bitmap_resources, other_resources = other_resources, dest_base = "mainpro", version = "0.1", company_name = "Chashme", copyright = "Cheshme", name = "Py2Exe Sample File", ) # No custom class for UPX compression or Inno Setup script # That's serious now: we have all (or almost all) the options py2exe # supports. I put them all even if some of them are usually defaulted # and not used. Some of them I didn't even know about. setup( # No UPX or Inno Setup data_files = data_files, options = {"py2exe": {"compressed": 0, "optimize": 0, "includes": includes, "excludes": excludes, "packages": packages, "dll_excludes": dll_excludes, "bundle_files": 3, "dist_dir": "dist", "xref": False, "skip_archive": False, "ascii": False, "custom_boot_script": '', } }, zipfile = None, console = [], windows = [GUI2Exe_Target_1], service = [], com_server = [], ctypes_com_server = [] ) # This is a place where any post-compile code may go. # You can add as much code as you want, which can be used, for example, # to clean up your folders or to do some particular post-compilation # actions. # No post-compilation code added # And we are done. That's a setup script :-D
6bf0a913bcc4d96db71c5ad8e16ab1214ef394f8
51bd1f17a4e9942128b2c0824d397ebb74067e4c
/py_box3/mkm/chemkin/__init__.py
9f2981ce6f8ee408e5b347aef0ba9261ee2bc6fb
[]
no_license
jonlym/py_box
3290db8fab2ca97fbd348d02ae4a3319207ccfb0
ae5187a433ef654d6b96ee98ca7ab742d83d11d9
refs/heads/master
2021-01-19T05:42:10.056427
2018-12-20T18:44:01
2018-12-20T18:44:01
87,442,931
0
0
null
null
null
null
UTF-8
Python
false
false
12,054
py
# -*- coding: utf-8 -*- """ Created on Wed Nov 23 14:57:39 2016 @author: Jonathan Lym """ from py_box3.constants import T0, convert_unit from ase.io import read from py_box3.thermo.thermdat import Thermdat from py_box3.thermo.thermdats import Thermdats import numpy as np class Chemkin(object): def __init__(self, species = None, sites = None, reactions = None, BEPs = None, LSRs = None, DOEs = None, GAs = None, SAs = None, StatpQ = None, reactor_type = 1, n_runs = 1, multi_input = True, standard_T_and_P = True, Ts = [], Ps = [], Qs = [], SA_Vs = [], T_rise = 0., isothermal = True, linear_T_ramp = False, external_T = 923., heat_transfer_area_to_volume = 3.571, heat_transfer_coefficient = 0., TPD_ramp = 0., MARI = '', reactant = '', volume = 100., nnodes = 1, ttout = 1.e-2, rtime = 1.e-4, ntdec = 10., save_transient = False, set_equation_tolerance = True, absolute_tolerance = 1.e-10, relative_tolerance = 1.e-8, non_negative_composition = True, restart_max = 0, use_iterative_solver = False, upper_bandwidth = 0, lower_bandwidth = 0, use_coverage_effects = False, use_binding_energy_corrections = False, use_BEPs = False, use_LSRs = False, use_different_activation_energy = False, use_omega = False, omega = 0.5, T_ref = 1., reaction_path_analysis_mode = 1, verbose_reaction_path_analysis = False, reaction_path_analysis_T = 900., sensitivity_analysis = False, design_of_experiments = False): #Objects self.species = species self.sites = sites self.reactions = reactions self.BEPs = BEPs self.LSRs = LSRs self.DOEs = DOEs self.GAs = GAs self.SAs = SAs self.StatpQ = StatpQ #Reactor parameters self.reactor_type = reactor_type self.n_runs = n_runs self.multi_input = multi_input self.standard_T_and_P = standard_T_and_P self.Ts = Ts self.Ps = Ps self.Qs = Qs self.SA_Vs = SA_Vs self.T_rise = T_rise self.external_T = external_T self.heat_transfer_area_to_volume = heat_transfer_area_to_volume self.heat_transfer_coefficient = heat_transfer_coefficient self.TPD_ramp = TPD_ramp self.MARI = MARI self.reactant = reactant self.volume = volume #Reactor Options self.isothermal = isothermal self.linear_T_ramp = linear_T_ramp #Solver options self.nnodes = nnodes self.ttout = ttout self.rtime = rtime self.ntdec = ntdec self.save_transient = save_transient self.set_equation_tolerance = set_equation_tolerance self.absolute_tolerance = absolute_tolerance self.relative_tolerance = relative_tolerance self.non_negative_composition = non_negative_composition self.restart_max = restart_max self.use_iterative_solver = use_iterative_solver self.upper_bandwidth = upper_bandwidth self.lower_bandwidth = lower_bandwidth #Reaction options self.use_coverage_effects = use_coverage_effects self.use_binding_energy_corrections = use_binding_energy_corrections self.use_BEPs = use_BEPs self.use_LSRs = use_LSRs self.use_different_activation_energy = use_different_activation_energy self.use_omega = use_omega self.omega = omega self.T_ref = T_ref #Output options self.reaction_path_analysis_mode = reaction_path_analysis_mode self.verbose_reaction_path_analysis = verbose_reaction_path_analysis self.reaction_path_analysis_T = reaction_path_analysis_T self.sensitivity_analysis = sensitivity_analysis self.design_of_experiments = design_of_experiments @classmethod def from_INP(self, path = '.'): sites = Sites.from_surf_inp(path = os.path.join(path, 'surf.inp')) species = Species.from_thermdat(path = os.path.join(path, 'thermdat')) species.get_sites(path = os.path.join(path, 'surf.inp')) gas_reactions = Reactions.from_gas_inp(path = os.path.join(path, 'gas.inp')) surf_reactions = Reactions.from_surf_inp(path = os.path.join(path, 'surf.inp')) reactions = copy(gas_reactions).extend(copy(surf_reactions)) input_dict = self.read_tube_inp(path = os.path.join(path, 'tube.inp'), return_dict = True) #Optional Objects if tube_dict['use_BEPs']: input_dict['BEPs'] = BEPs.from_BEP_inp(path = os.path.join(path, 'BEP.inp')) if tube_dict['use_LSRs']: input_dict['LSRs'] = LSRs.from_Scale_inp(path = os.path.join(path, 'Scale.inp')) if tube_dict['design_of_experiments']: input_dict['DOEs'] = DOEs.from_DOE_inp(path = os.path.join(path, 'DOE.inp')) if tube_dict['use_GAs']: input_dict['GAs'] = GAs.from_GA_inp(path = os.path.join(path, 'GA.inp')) if tube_dict['sensitivity_analysis']: input_dict['SAs'] = SAs.from_SA_inp(path = os.path.join(path, 'SA.inp')) if tube_dict['use_binding_energy_corrections']: input_dict['StatpQ'] = StatpQ.from_StatpQ_inp(path = os.path.join(path, 'StatpQ.inp')) if tube_dict['multi_input']: (Ts, Ps, Qs, SA_Vs) = self.read_T_flow_inp(path = os.path.join(path, 'T_flow.inp')) if tube_dict['use_different_activation_energy']: reactions.read_EAs_inp(path = os.path.join(path, 'EAs.inp')) reactions.read_EAg_inp(path = os.path.join(path, 'EAg.inp')) return cls(species = species, sites = sites, reactions = reactions, **input_dict) def read_tube_inp(self, path = 'tube.inp', return_dict = True): tube_dict = dict() with open(path, 'r') as f_ptr: i = 0 for line in f_ptr: #Skip lines if '!' == line[0] or 'EOF' in line: continue data = [x for x in line.replace('\n', '').split(' ') if x != ''] if i == 0: tube_dict['reactor_type'] = int(data[0]) tube_dict['n_runs'] = int(data[1]) tube_dict['multi_input'] = char_to_boolean(data[2]) elif i == 1: tube_dict['standard_T_and_P'] = char_to_boolean(data[0]) tube_dict['Ts'] = [float(data[1])] tube_dict['Ps'] = [float(data[2])] tube_dict['Qs'] = [float(data[3])] tube_dict['SA_Vs'] = [float(data[4])] tube_dict['T_rise'] = float(data[5]) elif i == 2: tube_dict['isothermal'] = char_to_boolean(data[0]) tube_dict['linear_T_ramp'] = int(data[1]) elif i == 3: tube_dict['external_T'] = float(data[0]) tube_dict['heat_transfer_area_to_volume'] = float(data[1]) tube_dict['heat_transfer_coefficient'] = float(data[2]) tube_dict['TPD_ramp'] = float(data[3]) elif i == 4: tube_dict['MARI'] = data[0] tube_dict['reactant'] = data[1] elif i == 5: tube_dict['volume'] = float(data[0]) tube_dict['nnodes'] = int(data[1]) tube_dict['ttout'] = float(data[2]) tube_dict['rtime'] = float(data[3]) tube_dict['ntdec'] = int(data[4]) tube_dict['save_transient'] = char_to_boolean(data[5]) elif i == 6: tube_dict['set_equation_tolerance'] = char_to_boolean(data[0]) tube_dict['absolute_tolerance'] = float(data[1]) tube_dict['relative_tolerance'] = float(data[2]) tube_dict['non_negative_composition'] = char_to_boolean(data[3]) tube_dict['restart_max'] = int(data[4]) elif i == 7: if data[0] == '0': tube_dict['use_iterative_solver'] = False elif data[0] == '1': tube_dict['use_iterative_solver'] = True else: raise Exception('Invalid value for iSolver, {}'.format(data[0])) tube_dict['upper_bandwidth'] = int(data[1]) tube_dict['lower_bandwidth'] = int(data[2]) elif i == 8: tube_dict['use_coverage_effects'] = char_to_boolean(data[0]) tube_dict['use_binding_energy_corrections'] = char_to_boolean(data[1]) tube_dict['use_BEPs'] = char_to_boolean(data[2]) if data[3] == '0': tube_dict['use_LSRs'] = False elif data[3] == '3': tube_dict['use_LSRs'] = True else: raise Exception('Invalid value for iScale, {}'.format(data[3])) tube_dict['use_different_activation_energy'] = char_to_boolean(data[4]) tube_dict['use_omega'] = char_to_boolean(data[5]) tube_dict['omega'] = float(data[6]) tube_dict['T_ref'] = float(data[7]) elif i == 9: tube_dict['reaction_path_analysis_mode'] = int(data[0]) tube_dict['verbose_reaction_path_analysis'] = char_to_boolean(data[1]) tube_dict['reaction_path_analysis_T'] = float(data[2]) tube_dict['sensitivity_analysis'] = char_to_boolean(data[3]) tube_dict['design_of_experiments'] = char_to_boolean(data[4]) i += 1 return tube_dict def write_tube_inp(self, path = 'tube.inp'): lines = [] lines.append('!irxtr (0=UHV/mol. beam, 1=batch, 2=cstr, 3=pfr) nruns MultiInput') #lines.append('{}{}{}{}{}'.format(self.reactor_type)) lines.append('!lstp t[K] p[atm] velo[cm3/s] abyv[cm-1] trise[K]') lines.append('!liso(yes=T,no=F) itpd (0=no, 1=UHV, 2=High Pressure) (itpd overrides liso)') lines.append('!text aextbyv htc ramp [K/s]') lines.append('!MARI Reactant') lines.append('!rlen[cm3] nnodes ttout [s] rtime [s] ntdec ltra (F=only SS saved, T=transient saved)') lines.append('!ltol abstol reltol NonNeg(F/T: constraints off/on) restart_max (<=0 means no limit)') lines.append('!iSolver (0/1: iterative solver off/on) mu ml (upper/lower bandwidths for Krylov solver)') lines.append('!lcov lStatpQ lBEP iScale lEA lomega omega Tref_beta (0: Tref=300K; 1: Tref=1K)') lines.append('!mrpa verbose_rpa trpa lsen lDOE') lines.append('EOF') with open(path, 'w') as f_ptr: f_ptr.write(lines[0]) def char_to_boolean(character): if character.lower() == 't': return True elif character.lower() == 'f': return False else: raise Exception('Invalid character, {}'.format(character)) def boolean_to_char(boolean): if boolean: return 'T' else: return 'F'
6aaba7d662a21da85d2ba3e6b178f7ecf8d58cd2
e7b07f173a8bc0d36e046c15df7bbe3d18d49a33
/parse.py
9d1894ef9159fb1b51738dbba15b24d5bcb61bc0
[]
no_license
jcarbaugh/makeitwrk
82b6e8079b118e8d668b2e6858096a54da33d5a8
83801b19c120b4cf728b8342c4933fefe54b54d8
refs/heads/master
2020-04-06T04:55:56.785930
2011-08-26T19:09:27
2011-08-26T19:09:27
2,275,931
3
1
null
null
null
null
UTF-8
Python
false
false
4,029
py
#!/usr/bin/env python from struct import pack, unpack import sys CHUNK_TYPES = { 1: 'TRACK_CHUNK', 2: 'STREAM_CHUNK', 4: 'METER_CHUNK', 5: 'TEMPO_CHUNK', 6: 'SYSEX_CHUNK', 7: 'MEMRGN_CHUNK', 10: 'TIMEBASE_CHUNK', # variables 3: 'VARS_CHUNK', 26: 'VARS_CHUNK_VAR', # device stuff 33: 'DEVICES', # track stuff? 36: 'TRACK_NAME?', 54: 'TRACK_PORT', 45: 'TRACK_DATA?', 255: 'END_CHUNK', } def solomon(arr, parts): for i in range(0, parts * 8, 8): yield arr[i:i+8] def chunk_reader(wrkfile): if wrkfile.read(8) != b'CAKEWALK': raise ValueError('invalid file format') wrkfile.read(1) # byte I don't care about mm_version = wrkfile.read(2) major = ord(mm_version[1]) minor = ord(mm_version[0]) version = "%i.%i" % (major, minor) yield ('VERSION_CHUNK', 2, None, version) while 1: ch_type_data = wrkfile.read(1)[0] ch_type = CHUNK_TYPES.get(ch_type_data, ch_type_data) if ch_type == 'END_CHUNK': break ch_len = unpack('i', wrkfile.read(4))[0] ch_data_offset = wrkfile.tell() #print(ch_data_offset) ch_data = wrkfile.read(ch_len) yield (ch_type, ch_len, ch_data) yield ('END_CHUNK', None, None, None) wrkfile.close() if __name__ == '__main__': for chunk in chunk_reader(sys.stdin): print(chunk) # if chunk[0] == 'TRACK_NAME?': # (tnum, tname_len) = unpack('HB', chunk[2][:3]) # tname = chunk[2][3:3+tname_len].decode('utf-8') # print("[%02i] %s" % (tnum, tname)) # elif chunk[0] == 'TRACK_DATA?': # (tnum, schunks) = unpack('=HxH', chunk[2][:5]) # print(' ', '------------') # for s in solomon(chunk[2][7:], schunks): # print(' ', unpack('8B', s)) """ __TRACK_DATA__ #2 ?? CNT- ???? 16--------------- 0900 00 0700 0000 B649 009023641E00 D449 009028643C00 104A 00902B643C00 4C4A 009029643C00 884A 009023641E00 A64A 009023641E00 E24A 009023641E00 0900 00 0700 0000 1E4B 009023641E00 3C4B 009028643C00 784B 00902B643C00 B44B 009029643C00 F04B 009023641E00 0E4C 009023641E00 4A4C 009023641E00 (30, 75, 0, 144, 35, 100, 30, 0) submeasure . . . . measure. . . . ? . . . . ? . . . nt? . . ? . -----? ------------------------------------ 0000 00 0800 0000 E010 009045643C00 1C11 009045643C00 5811 00904C643C00 9411 009045643C00 D011 00904D643C00 0C12 00904C643C00 4812 009048643C00 8412 009045643C00 0200 00 1400 0000 8016 00902664E001 3417 009026643C00 7017 009026647800 E817 009026647800 2418 009026643C00 6018 00902264E001 1419 009022643C00 5019 009022647800 C819 009022647800041A009022643C00401A00901F64E001F41A00901F643C00301B00901F647800A81B00901F647800E41B00901F643C00201C00902164E001D41C009021643C00101D009021647800881D009021647800C41D009021643C00 __TRACK_NAME__ #2 L2 NAME* INSTRUMENT? 0000 05 4F7267616E FFFF 1500 FFFFFFFF 00000000000000 0A 0000000000 O R G A N 0100 0B 536C617020426173732031 FFFF 2500 FFFFFFFF 00000000000000 0A 0000010000 S L A P B A S S 1 0200 0B 536C617020426173732032 FFFF 2400 FFFFFFFF 00000000000000 FE 0000020000 S L A P B A S S 2 0300 0C 4869676820537472696E6773 FFFF 2C00 FFFFFFFF 00000000000000 0A 0000030000 H I G H S T R I N G S 0900 05 4472756D73 FFFF FFFF FFFFFFFF 00000000000000 0A 0000090000 D R U M S ------------------------------------------- 0000 05 4472756D73 FFFF FFFF FFFFFFFF 00000000000000 0A 0000090000 D R U M S """
602bf5ff185fae424574e01f0d60bafdc9fad426
9d032e9864ebda8351e98ee7950c34ce5168b3b6
/301.py
10f8978082ea2c4ee7bbac60f631a00e920d68cf
[]
no_license
snpushpi/P_solving
e0daa4809c2a3612ba14d7bff49befa7e0fe252b
9980f32878a50c6838613d71a8ee02f492c2ce2c
refs/heads/master
2022-11-30T15:09:47.890519
2020-08-16T02:32:49
2020-08-16T02:32:49
275,273,765
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
''' Remove the minimum number of invalid parentheses in order to make the input string valid. Return all possible results. Note: The input string may contain letters other than the parentheses ( and ). Example 1: Input: "()())()" Output: ["()()()", "(())()"] Example 2: Input: "(a)())()" Output: ["(a)()()", "(a())()"] Example 3: Input: ")(" Output: [""] ''' def validstring(string): count = 0 for char in string: if char=='(': count+=1 elif char==')': count-=1 if count<0: return False return (count==0) def main(input_string): l = len(input_string) queue = [input_string] visited = set() visited.add(input_string) level = False result = [] while queue: new_str = queue.pop(0) if validstring(new_str): result.append(new_str) level= True if level: continue for i in range(len(new_str)): if not (new_str[i]==')' or new_str[i]=='('): continue part_string = new_str[:i]+new_str[i+1:] if part_string not in visited: visited.add(part_string) queue.append(part_string) return result print(main("()())()"))
0285e95057b21742ade89d9041421eb988eb90fb
d79c152d072edd6631e22f886c8beaafe45aab04
/nicolock/products/rest_urls.py
d58d9a92a31372b447067ee3dd7508ef1d810182
[]
no_license
kabroncelli/Nicolock
764364de8aa146721b2678c14be808a452d7a363
4c4343a9117b7eba8cf1daf7241de549b9a1be3b
refs/heads/master
2020-03-11T11:02:43.074373
2018-04-18T17:38:33
2018-04-18T17:38:33
129,959,455
0
0
null
null
null
null
UTF-8
Python
false
false
690
py
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.conf.urls import url from . import rest_views as views urlpatterns = [ url( regex=r'^products/(?P<pk>\d+)/$', view=views.ProductDetail.as_view(), name='product-detail' ), url( regex=r'^products/(?P<pk>\d+)/like/$', view=views.ProductLike.as_view(), name='product-like' ), url( regex=r'^categories/$', view=views.CategoryList.as_view(), name='category-list' ), url( regex=r'^categories/(?P<pk>\d+)/$', view=views.CategoryDetail.as_view(), name='category-detail' ), ]
d3527c75633bd397f54893cab6262bed50e53879
d17d65a3ee48b307a46a0b95a05f04131668edbe
/TestSuite/runner.py
6a172fc2702d50f5b6f0558a2beab1d4f677a319
[]
no_license
qlcfj001/ui_test
28fa370a6f912b2ff9a551c681d35a452c57ee02
25020af19d84c9c2b1bad02aca89cc881e828bbb
refs/heads/master
2023-06-15T18:10:02.177702
2021-07-15T06:35:10
2021-07-15T06:35:10
386,012,875
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
from Page.Base import base from pageobjct.SearcH import Searchpage from selenium.webdriver.common.by import By #from TestSuite.Variablelayer.Variable import * import time import unittest leave='成都' leave_data="2021-07-20" arrive='北京' arrive_data='2021-07-30' aa=Searchpage() aa.search7(leave='成都',leave_data="2021-07-20",arrive='北京',arrive_data='2021-07-30')
a4d250d72f94be4c124927e70b0c139ad9f85f9d
f8fbf0b0cc919d7d4d7c79532cc5434552d75eb8
/docs/0.18.1/_static/notebooks/modeling.py
a5bdb272476813045d22aca2f06eddfb47942841
[]
no_license
adonath/gammapy-docs
ae8571c6aa76d231ac54c93fb3c8968f9f79993b
32b605d623abdcd2e82c30bcbf07ef30d259783a
refs/heads/main
2023-02-25T05:24:53.211005
2022-10-13T00:09:12
2022-10-13T00:11:33
550,476,516
0
0
null
2022-10-12T20:45:50
2022-10-12T20:45:49
null
UTF-8
Python
false
false
14,807
py
#!/usr/bin/env python # coding: utf-8 # # Modeling and fitting # # # ## Prerequisites # # - Knowledge of spectral analysis to produce 1D On-Off datasets, [see the following tutorial](spectrum_analysis.ipynb) # - Reading of pre-computed datasets [see the MWL tutorial](analysis_mwl.ipynb) # - General knowledge on statistics and optimization methods # # ## Proposed approach # # This is a hands-on tutorial to `~gammapy.modeling`, showing how the model, dataset and fit classes work together. As an example we are going to work with HESS data of the Crab Nebula and show in particular how to : # - perform a spectral analysis # - use different fitting backends # - acces covariance matrix informations and parameter errors # - compute likelihood profile # - compute confidence contours # # See also: [Models gallery tutorial](models.ipynb) and `docs/modeling/index.rst`. # # # ## The setup # In[ ]: import numpy as np from astropy import units as u import matplotlib.pyplot as plt import scipy.stats as st from gammapy.modeling import Fit from gammapy.datasets import Datasets, SpectrumDatasetOnOff from gammapy.modeling.models import LogParabolaSpectralModel, SkyModel from gammapy.visualization.utils import plot_contour_line from itertools import combinations # ## Model and dataset # # First we define the source model, here we need only a spectral model for which we choose a log-parabola # In[ ]: crab_spectrum = LogParabolaSpectralModel( amplitude=1e-11 / u.cm ** 2 / u.s / u.TeV, reference=1 * u.TeV, alpha=2.3, beta=0.2, ) crab_spectrum.alpha.max = 3 crab_spectrum.alpha.min = 1 crab_model = SkyModel(spectral_model=crab_spectrum, name="crab") # The data and background are read from pre-computed ON/OFF datasets of HESS observations, for simplicity we stack them together. # Then we set the model and fit range to the resulting dataset. # In[ ]: datasets = [] for obs_id in [23523, 23526]: dataset = SpectrumDatasetOnOff.from_ogip_files( f"$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{obs_id}.fits" ) datasets.append(dataset) dataset_hess = Datasets(datasets).stack_reduce(name="HESS") # Set model and fit range dataset_hess.models = crab_model e_min = 0.66 * u.TeV e_max = 30 * u.TeV dataset_hess.mask_fit = dataset_hess.counts.geom.energy_mask(e_min, e_max) # ## Fitting options # # # # First let's create a `Fit` instance: # In[ ]: fit = Fit([dataset_hess], store_trace=True) # By default the fit is performed using MINUIT, you can select alternative optimizers and set their option using the `optimize_opts` argument of the `Fit.run()` method. In addition we have specified to store the trace of parameter values of the fit. # # Note that, for now, covaraince matrix and errors are computed only for the fitting with MINUIT. However depending on the problem other optimizers can better perform, so somethimes it can be usefull to run a pre-fit with alternative optimization methods. # # For the "scipy" backend the available options are desribed in detail here: # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html # In[ ]: get_ipython().run_cell_magic('time', '', 'scipy_opts = {"method": "L-BFGS-B", "options": {"ftol": 1e-4, "gtol": 1e-05}}\nresult_scipy = fit.run(backend="scipy", optimize_opts=scipy_opts)') # For the "sherpa" backend you can choose the optimization algorithm between method = {"simplex", "levmar", "moncar", "gridsearch"}. # Those methods are described and compared in detail on http://cxc.cfa.harvard.edu/sherpa/methods/index.html. # The available options of the optimization methods are described on the following page https://cxc.cfa.harvard.edu/sherpa/methods/opt_methods.html # In[ ]: get_ipython().run_cell_magic('time', '', 'sherpa_opts = {"method": "simplex", "ftol": 1e-3, "maxfev": int(1e4)}\nresults_simplex = fit.run(backend="sherpa", optimize_opts=sherpa_opts)') # For the "minuit" backend see https://iminuit.readthedocs.io/en/latest/reference.html for a detailed description of the available options. If there is an entry ‘migrad_opts’, those options will be passed to [iminuit.Minuit.migrad](https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.migrad). Additionnaly you can set the fit tolerance using the [tol](https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.tol # ) option. The minimization will stop when the estimated distance to the minimum is less than 0.001*tol (by default tol=0.1). The [strategy](https://iminuit.readthedocs.io/en/latest/reference.html#iminuit.Minuit.strategy) option change the speed and accuracy of the optimizer: 0 fast, 1 default, 2 slow but accurate. If you want more reliable error estimates, you should run the final fit with strategy 2. # # In[ ]: get_ipython().run_cell_magic('time', '', 'minuit_opts = {"tol": 0.001, "strategy": 1}\nresult_minuit = fit.run(backend="minuit", optimize_opts=minuit_opts)') # ## Fit quality assessment # # There are various ways to check the convergence and quality of a fit. Among them: # # - Refer to the automatically-generated results dictionary # In[ ]: print(result_scipy) # In[ ]: print(results_simplex) # In[ ]: print(result_minuit) # - Check the trace of the fit e.g. in case the fit did not converge properly # In[ ]: result_minuit.trace # - Check that the fitted values and errors for all parameters are reasonable, and no fitted parameter value is "too close" - or even outside - its allowed min-max range # In[ ]: result_minuit.parameters.to_table() # - Plot fit statistic profiles for all fitted prameters, using `~gammapy.modeling.Fit.stat_profile()`. For a good fit and error estimate each profile should be parabolic # In[ ]: total_stat = result_minuit.total_stat for par in dataset_hess.models.parameters: if par.frozen is False: profile = fit.stat_profile(parameter=par) plt.plot( profile[f"{par.name}_scan"], profile["stat_scan"] - total_stat ) plt.xlabel(f"{par.unit}") plt.ylabel("Delta TS") plt.title(f"{par.name}: {par.value} +- {par.error}") plt.show() plt.close() # - Inspect model residuals. Those can always be accessed using `~Dataset.residuals()`, that will return an array in case a the fitted `Dataset` is a `SpectrumDataset` and a full cube in case of a `MapDataset`. For more details, we refer here to the dedicated fitting tutorials: [analysis_3d.ipynb](analysis_3d.ipynb) (for `MapDataset` fitting) and [spectrum_analysis.ipynb](spectrum_analysis.ipynb) (for `SpectrumDataset` fitting). # ## Covariance and parameters errors # # After the fit the covariance matrix is attached to the model. You can get the error on a specific parameter by accessing the `.error` attribute: # In[ ]: crab_model.spectral_model.alpha.error # As an example, this step is needed to produce a butterfly plot showing the envelope of the model taking into account parameter uncertainties. # In[ ]: energy_range = [1, 10] * u.TeV crab_spectrum.plot(energy_range=energy_range, energy_power=2) ax = crab_spectrum.plot_error(energy_range=energy_range, energy_power=2) # ## Confidence contours # # # In most studies, one wishes to estimate parameters distribution using observed sample data. # A 1-dimensional confidence interval gives an estimated range of values which is likely to include an unknown parameter. # A confidence contour is a 2-dimensional generalization of a confidence interval, often represented as an ellipsoid around the best-fit value. # # Gammapy offers two ways of computing confidence contours, in the dedicated methods `Fit.minos_contour()` and `Fit.stat_profile()`. In the following sections we will describe them. # An important point to keep in mind is: *what does a $N\sigma$ confidence contour really mean?* The answer is it represents the points of the parameter space for which the model likelihood is $N\sigma$ above the minimum. But one always has to keep in mind that **1 standard deviation in two dimensions has a smaller coverage probability than 68%**, and similarly for all other levels. In particular, in 2-dimensions the probability enclosed by the $N\sigma$ confidence contour is $P(N)=1-e^{-N^2/2}$. # ### Computing contours using `Fit.minos_contour()` # After the fit, MINUIT offers the possibility to compute the confidence confours. # gammapy provides an interface to this functionnality throught the `Fit` object using the `minos_contour` method. # Here we defined a function to automatize the contour production for the differents parameterer and confidence levels (expressed in term of sigma): # In[ ]: def make_contours(fit, result, npoints, sigmas): cts_sigma = [] for sigma in sigmas: contours = dict() for par_1, par_2 in combinations(["alpha", "beta", "amplitude"], r=2): contour = fit.minos_contour( result.parameters[par_1], result.parameters[par_2], numpoints=npoints, sigma=sigma, ) contours[f"contour_{par_1}_{par_2}"] = { par_1: contour[par_1].tolist(), par_2: contour[par_2].tolist(), } cts_sigma.append(contours) return cts_sigma # Now we can compute few contours. # In[ ]: get_ipython().run_cell_magic('time', '', 'sigma = [1, 2]\ncts_sigma = make_contours(fit, result_minuit, 10, sigma)') # Then we prepare some aliases and annotations in order to make the plotting nicer. # In[ ]: pars = { "phi": r"$\phi_0 \,/\,(10^{-11}\,{\rm TeV}^{-1} \, {\rm cm}^{-2} {\rm s}^{-1})$", "alpha": r"$\alpha$", "beta": r"$\beta$", } panels = [ { "x": "alpha", "y": "phi", "cx": (lambda ct: ct["contour_alpha_amplitude"]["alpha"]), "cy": ( lambda ct: np.array(1e11) * ct["contour_alpha_amplitude"]["amplitude"] ), }, { "x": "beta", "y": "phi", "cx": (lambda ct: ct["contour_beta_amplitude"]["beta"]), "cy": ( lambda ct: np.array(1e11) * ct["contour_beta_amplitude"]["amplitude"] ), }, { "x": "alpha", "y": "beta", "cx": (lambda ct: ct["contour_alpha_beta"]["alpha"]), "cy": (lambda ct: ct["contour_alpha_beta"]["beta"]), }, ] # Finally we produce the confidence contours figures. # In[ ]: fig, axes = plt.subplots(1, 3, figsize=(16, 5)) colors = ["m", "b", "c"] for p, ax in zip(panels, axes): xlabel = pars[p["x"]] ylabel = pars[p["y"]] for ks in range(len(cts_sigma)): plot_contour_line( ax, p["cx"](cts_sigma[ks]), p["cy"](cts_sigma[ks]), lw=2.5, color=colors[ks], label=f"{sigma[ks]}" + r"$\sigma$", ) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.legend() plt.tight_layout() # ### Computing contours using `Fit.stat_surface()` # This alternative method for the computation of confidence contours, although more time consuming than `Fit.minos_contour()`, is expected to be more stable. It consists of a generalization of `Fit.stat_profile()` to a 2-dimensional parameter space. The algorithm is very simple: # - First, passing two arrays of parameters values, a 2-dimensional discrete parameter space is defined; # - For each node of the parameter space, the two parameters of interest are frozen. This way, a likelihood value ($-2\mathrm{ln}\,\mathcal{L}$, actually) is computed, by either freezing (default) or fitting all nuisance parameters; # - Finally, a 2-dimensional surface of $-2\mathrm{ln}(\mathcal{L})$ values is returned. # Using that surface, one can easily compute a surface of $TS = -2\Delta\mathrm{ln}(\mathcal{L})$ and compute confidence contours. # # Let's see it step by step. # First of all, we can notice that this method is "backend-agnostic", meaning that it can be run with MINUIT, sherpa or scipy as fitting tools. Here we will stick with MINUIT, which is the default choice: # In[ ]: optimize_opts = {"backend": "minuit", "print_level": 0} # As an example, we can compute the confidence contour for the `alpha` and `beta` parameters of the `dataset_hess`. Here we define the parameter space: # In[ ]: result = result_minuit par_1 = result.parameters["alpha"] par_2 = result.parameters["beta"] x = par_1 y = par_2 x_values = np.linspace(1.55, 2.7, 20) y_values = np.linspace(-0.05, 0.55, 20) # Then we run the algorithm, by choosing `reoptimize=False` for the sake of time saving. In real life applications, we strongly recommend to use `reoptimize=True`, so that all free nuisance parameters will be fit at each grid node. This is the correct way, statistically speaking, of computing confidence contours, but is expected to be time consuming. # In[ ]: stat_surface = fit.stat_surface( x, y, x_values, y_values, reoptimize=False, **optimize_opts ) # In order to easily inspect the results, we can convert the $-2\mathrm{ln}(\mathcal{L})$ surface to a surface of statistical significance (in units of Gaussian standard deviations from the surface minimum): # In[ ]: # Compute TS TS = stat_surface["stat_scan"] - result.total_stat # In[ ]: # Compute the corresponding statistical significance surface gaussian_sigmas = np.sqrt(TS.T) # Notice that, as explained before, $1\sigma$ contour obtained this way will not contain 68% of the probability, but rather # In[ ]: # Compute the corresponding statistical significance surface # p_value = 1 - st.chi2(df=1).cdf(TS) # gaussian_sigmas = st.norm.isf(p_value / 2).T # Finally, we can plot the surface values together with contours: # In[ ]: fig, ax = plt.subplots(figsize=(8, 6)) # We choose to plot 1 and 2 sigma confidence contours levels = [1, 2] contours = plt.contour(gaussian_sigmas, levels=levels, colors="white") plt.clabel(contours, fmt="%.0f$\,\sigma$", inline=3, fontsize=15) im = plt.imshow( gaussian_sigmas, extent=[0, len(x_values) - 1, 0, len(y_values) - 1], origin="lower", ) fig.colorbar(im) plt.xticks(range(len(x_values)), np.around(x_values, decimals=2), rotation=45) plt.yticks(range(len(y_values)), np.around(y_values, decimals=2)); # Note that, if computed with `reoptimize=True`, this plot would be completely consistent with the third panel of the plot produced with `Fit.minos_contour` (try!). # Finally, it is always remember that confidence contours are approximations. In particular, when the parameter range boundaries are close to the contours lines, it is expected that the statistical meaning of the countours is not well defined. That's why we advise to always choose a parameter space that com contain the contours you're interested in. # In[ ]:
06d3b8b17c46a0ae3faf7387123f73c73bea8d78
4766d241bbc736e070f79a6ae6a919a8b8bb442d
/20200215Python-China/0094. Binary Tree Inorder Traversal.py
08893a77b8777c433e17edf90f755b8b4b58c958
[]
no_license
yangzongwu/leetcode
f7a747668b0b5606050e8a8778cc25902dd9509b
01f2edd79a1e922bfefecad69e5f2e1ff3a479e5
refs/heads/master
2021-07-08T06:45:16.218954
2020-07-18T10:20:24
2020-07-18T10:20:24
165,957,437
10
8
null
null
null
null
UTF-8
Python
false
false
733
py
''' Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 Output: [1,3,2] Follow up: Recursive solution is trivial, could you do it iteratively? ''' # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def inorderTraversal(self, root: TreeNode) -> List[int]: rep=[] self.getInOrderTra(root,rep) return rep def getInOrderTra(self,root,rep): if not root: return self.getInOrderTra(root.left,rep) rep.append(root.val) self.getInOrderTra(root.right,rep)
552fea4e7e4a404550ffa6236bc4c30f22f33e18
3f9f7c73bb2f9da31c586d2b64e2cc94f35239dc
/django-polls/polls/tests/test_models.py
94b7c24fbee98fcaf5c51ee69dd5ad670600b45b
[ "MIT" ]
permissive
jsterling23/DPY_Refresher
eb57e37d4bbad14143800719668b990b459fb56d
4646b7ebd79ba853f5ccc172183f41257cc12b60
refs/heads/master
2020-03-23T19:11:32.626731
2018-07-29T01:17:49
2018-07-29T01:17:49
141,959,227
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
from django.test import TestCase import datetime from django.utils import timezone from ..models import Question from django.urls import reverse class QuestionModelTests(TestCase): def test_was_published_recently_with_future_question(self): # method should return false for future dated questions. time = timezone.now() + datetime.timedelta(days=1, seconds=1) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_past_question(self): # method should return false for past dated questions. time = timezone.now() - datetime.timedelta(days=1, seconds=1) past_question = Question(pub_date=time) self.assertIs(past_question.was_published_recently(), False) def test_was_published_recently_with_current_question(self): # should return True for current question time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59) current_question = Question(pub_date=time) self.assertIs(current_question.was_published_recently(), True)
e5fefc6b8e0ec0d00e467d6808038193d92e8aa7
683b73e0c95c755a08e019529aed3ff1a8eb30f8
/machina/apps/forum_moderation/__init__.py
f1911a14dbd6195e896b647fa949fa08a0c6abce
[ "BSD-3-Clause" ]
permissive
DrJackilD/django-machina
b3a7be9da22afd457162e0f5a147a7ed5802ade4
76858921f2cd247f3c1faf4dc0d9a85ea99be3e1
refs/heads/master
2020-12-26T08:19:09.838794
2016-03-11T03:55:25
2016-03-11T03:55:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
# -*- coding: utf-8 -*- # Standard library imports # Third party imports # Local application / specific library imports default_app_config = 'machina.apps.forum_moderation.registry_config.ModerationRegistryConfig'
4ab4fec920df659a95a12694df60fd03dfca6791
08bfc8a1f8e44adc624d1f1c6250a3d9635f99de
/SDKs/swig/Examples/test-suite/python/abstract_virtual_runme.py
2a8411578017fc06324e210386ddd29a61e19eb8
[]
no_license
Personwithhat/CE_SDKs
cd998a2181fcbc9e3de8c58c7cc7b2156ca21d02
7afbd2f7767c9c5e95912a1af42b37c24d57f0d4
refs/heads/master
2020-04-09T22:14:56.917176
2019-07-04T00:19:11
2019-07-04T00:19:11
160,623,495
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
version https://git-lfs.github.com/spec/v1 oid sha256:fce41bedc93abe3933ce0f2546b68f02a08faf0778e211b1ba7b30a7f3909ed8 size 50
c7ebc6f32e1358ed20f23dc25b3df7d6a66daf88
4aeaca4c58858125e844aad1cd988182201b5120
/crane/files/timeHistoryParser.py
be957dd91e6668776b4c071a376eeffa2a646763
[]
no_license
tkarna/crane
f18442a010af0909b7f5af9358cf9080ca1dd1e4
b8313d0373d8206685d81aadccc425e432c6a010
refs/heads/master
2020-05-21T23:39:07.707777
2017-11-16T15:58:14
2017-11-16T15:58:14
53,163,424
1
2
null
null
null
null
UTF-8
Python
false
false
2,357
py
""" Read SELFE time history (.th) files to a data container. Jesse Lopez - 2016-04-15 """ import datetime import argparse import numpy as np from crane.data import timeArray from crane.data import dataContainer class thParser(object): def __init__(self, filename, start_time): self.filename = filename self.start_date = start_time self.time = None self.data = None def readFile(self): """Read time history file.""" th = np.loadtxt(self.filename) self.time = timeArray.simulationToEpochTime(th[:, 0], self.start_date) self.data = th[:, 1] def genDataContainer(self, variable='variable', station='bvao', depth='0', bracket='A', save=False): """Generate data container.""" x = y = z = 0 coordSys = '' meta = {} meta['tag'] = 'timeHistory' meta['variable'] = variable meta['location'] = station meta['msldepth'] = depth meta['bracket'] = bracket dc = dataContainer.dataContainer.fromTimeSeries( self.time, self.data, fieldNames=[variable], x=x, y=y, z=z, timeFormat='epoch', coordSys=coordSys, metaData=meta) if save: fname = './'+station+'_'+variable+'_'+'0'+'_'+self.start_date.strftime('%Y-%m-%d')+'.nc' print fname dc.saveAsNetCDF(fname) return dc def parseCommandLine(): parser = argparse.ArgumentParser(description='Read time history to dataContainer.') parser.add_argument('filepath', type=str, help='Path to time history file.') parser.add_argument('starttime', type=str, help='Start time of simulation YYYY-MM-DD') parser.add_argument('variable', type=str, help='Variable name (e.g. - salinity, temp, turbidity)') parser.add_argument('station', type=str, help='Station name (e.g. - saturn01, tpoin)') parser.add_argument('depth', type=str, help='Station depth (e.g. - 0.1, 4.0)') parser.add_argument('bracket', type=str, help='Bracket (e.g. - F, A, R)') args = parser.parse_args() st = datetime.datetime.strptime(args.starttime, '%Y-%m-%d') th = thParser(args.filepath, st) th.readFile() th.genDataContainer(args.variable, args.station, args.depth, args.bracket, True) if __name__ == '__main__': parseCommandLine()
075c8636339cb3b08aa5c4c3815994408a005e38
853d7bd91f4ba254fba0ff28f2e0a3eb2b74fa48
/errata_tool/release.py
b5c1211cb9a8c86556c758725ad9297bc11a9fbb
[ "MIT" ]
permissive
smunilla/errata-tool
b07614daeceda4a1bfc18ce59679be0a93bb084f
91bdfb17f15308b46298210fbb2fe5af786276bc
refs/heads/master
2020-04-10T00:18:12.471123
2018-11-19T17:33:02
2018-11-28T15:40:08
160,681,680
1
0
null
null
null
null
UTF-8
Python
false
false
6,800
py
from __future__ import print_function import sys from datetime import date from errata_tool import ErrataConnector from errata_tool.product import Product from errata_tool.product_version import ProductVersion from errata_tool.user import User class NoReleaseFoundError(Exception): pass class MultipleReleasesFoundError(Exception): pass class ReleaseCreationError(Exception): pass class Release(ErrataConnector): def __init__(self, **kwargs): if 'id' not in kwargs and 'name' not in kwargs: raise ValueError('missing release "id" or "name" kwarg') self.id = kwargs.get('id') self.name = kwargs.get('name') self.refresh() def refresh(self): url = self._url + '/api/v1/releases?' if self.id is not None: url += 'filter[id]=%s' % self.id elif self.name is not None: url += 'filter[name]=%s' % self.name result = self._get(url) if len(result['data']) < 1: raise NoReleaseFoundError() if len(result['data']) > 1: # it's possible to accidentally have identically named releases, # see engineering RT 461783 raise MultipleReleasesFoundError() self.data = result['data'][0] self.id = self.data['id'] self.name = self.data['attributes']['name'] self.description = self.data['attributes']['description'] self.type = self.data['attributes']['type'] self.is_active = self.data['attributes']['is_active'] self.enabled = self.data['attributes']['enabled'] self.blocker_flags = self.data['attributes']['blocker_flags'] self.is_pdc = self.data['attributes']['is_pdc'] self.product_versions = self.data['relationships']['product_versions'] self.url = self._url + '/release/show/%d' % self.id # For displaying in scripts/logs: self.edit_url = self._url + '/release/edit/%d' % self.id def advisories(self): """ Find all advisories for this release. :returns: a list of dicts, one per advisory. For example: [{ "id": 32972, "advisory_name": "RHSA-2018:0546", "product": "Red Hat Ceph Storage", "release": "rhceph-3.0", "synopsis": "Important: ceph security update", "release_date": None, "qe_owner": "[email protected]", "qe_group": "RHC (Ceph) QE", "status": "SHIPPED_LIVE", "status_time": "March 15, 2018 18:29" }] """ url = '/release/%d/advisories.json' % self.id return self._get(url) @classmethod def create(klass, name, product, product_versions, type, program_manager, default_brew_tag, blocker_flags, ship_date=None): """ Create a new release in the ET. See https://bugzilla.redhat.com/1401608 for background. Note this method enforces certain conventions: * Always disables PDC for a release * Always creates the releases as "enabled" * Always allows multiple advisories per package * Description is always the combination of the product's own description (for example "Red Hat Ceph Storage") with the number from the latter part of the release's name. So a new "rhceph-3.0" release will have a description "Red Hat Ceph Storage 3.0". :param name: short name for this release, eg "rhceph-3.0" :param product: short name, eg. "RHCEPH". :param product_versions: list of names, eg. ["RHEL-7-CEPH-3"] :param type: "Zstream" or "QuarterlyUpdate" :param program_manager: for example "anharris" (Drew Harris, Ceph PgM) :param default_brew_tag: for example "ceph-3.0-rhel-7-candidate" :param blocker_flags: for example, "ceph-3.0" :param ship_date: date formatted as strftime("%Y-%b-%d"). For example, "2017-Nov-17". If ommitted, the ship_date will be set to today's date. (This can always be updated later to match the ship date value in Product Pages.) """ product = Product(product) (_, number) = name.split('-', 1) description = '%s %s' % (product.description, number) program_manager = User(program_manager) product_version_ids = set([]) for pv_name in product_versions: pv = ProductVersion(pv_name) product_version_ids.add(pv.id) if ship_date is None: today = date.today() ship_date = today.strftime("%Y-%b-%d") et = ErrataConnector() url = et._url + '/release/create' payload = { 'type': type, 'release[allow_blocker]': 0, 'release[allow_exception]': 0, 'release[allow_pkg_dupes]': 1, 'release[allow_shadow]': 0, 'release[blocker_flags]': blocker_flags, 'release[default_brew_tag]': default_brew_tag, 'release[description]': description, 'release[enable_batching]': 0, 'release[enabled]': 1, 'release[is_deferred]': 0, 'release[is_pdc]': 0, 'release[name]': name, 'release[product_id]': product.id, 'release[product_version_ids][]': product_version_ids, 'release[program_manager_id]': program_manager.id, 'release[ship_date]': ship_date, 'release[type]': type, } result = et._post(url, data=payload) if (sys.version_info > (3, 0)): body = result.text else: # Found during live testing: # UnicodeEncodeError: 'ascii' codec can't encode character u'\xe1' # in position 44306: ordinal not in range(128) # Not sure why there was a non-ascii character in the ET's HTTP # response, but this fixes it. body = result.text.encode('utf-8') if result.status_code != 200: # help with debugging: print(body) result.raise_for_status() # We can get a 200 HTTP status_code here even when the POST failed to # create the release in the ET database. (This happens, for example, if # there are no Approved Components defined in Bugzilla for the release # flag, and the ET hits Bugzilla's XMLRPC::FaultException.) if 'field_errors' in body: print(body) raise ReleaseCreationError('see field_errors <div>') return klass(name=name)
b9470a6364fcb617b3b2bbeb23ef97dce22221d7
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
/optin_manager/src/python/openflow/common/utils/formfields.py
adec249dc39015d89a6d299354718c9fd0f8e896
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
dana-i2cat/felix
4a87af639e4c7db686bfa03f1ae4ce62711615e3
059ed2b3308bda2af5e1942dc9967e6573dd6a53
refs/heads/master
2021-01-02T23:12:43.840754
2016-02-04T10:04:24
2016-02-04T10:04:24
17,132,912
4
4
null
null
null
null
UTF-8
Python
false
false
388
py
''' Created on Jul 17, 2010 @author: jnaous ''' from django import forms from expedient.common.utils import validators class MACAddressField(forms.CharField): """ A MAC Address form field. """ default_error_messages = { 'invalid': u'Enter a valid MAC address in "xx:xx:xx:xx:xx:xx" format.', } default_validators = [validators.validate_mac_address]
22214c4cf02d9139ebf68302682f68b55190d51e
3a7adfdcf7a5048045c8e95a93369a1796cfd532
/conftest.py
377ddc7028f2964dd5cf5621a68dc74e7967e513
[ "BSD-3-Clause" ]
permissive
theGreenJedi/nixpy
e06025077d5d224a7d051532ebfbd48845339c58
40b5ecdaa9b074c7bf73137d1a94cb84fcbae5be
refs/heads/master
2022-02-01T15:14:22.133157
2019-06-03T09:10:57
2019-06-03T09:10:57
197,896,640
1
0
null
2019-07-20T07:37:03
2019-07-20T07:37:02
null
UTF-8
Python
false
false
808
py
import pytest import tempfile from nixio.test.xcompat.compile import maketests BINDIR = tempfile.mkdtemp(prefix="nixpy-tests-") def pytest_addoption(parser): parser.addoption("--nix-compat", action="store_true", default=False, help=("Run nix compatibility tests " "(requires NIX library)")) @pytest.fixture def bindir(request): return BINDIR def pytest_collection_modifyitems(config, items): if config.getoption("--nix-compat"): print("Compiling NIX compatibility tests") maketests(BINDIR) return skip_compat = pytest.mark.skip( reason="Use --nix-compat option to run compatibility tests" ) for item in items: if "compatibility" in item.keywords: item.add_marker(skip_compat)
6a337ebcad790f7341970c4a3e71d1686f6229c6
333b405c1775475ddfa9ed3f4fa05c06b4c2e3f2
/cv2/cvbackup/mycv_0.510464.py
c1b80110eb76fc4413a5cbbc9977af4cd86de47d
[]
no_license
daxiongshu/network
b77d5bb73dd353537f7687e61855d982cbd34464
842a778d310410ae39e58925257a9e9960ef560a
refs/heads/master
2020-04-15T16:11:31.101188
2016-02-16T01:32:21
2016-02-16T01:32:21
51,798,576
0
0
null
null
null
null
UTF-8
Python
false
false
4,405
py
from xgb_classifier import xgb_classifier import pandas as pd import numpy as np import pickle from sklearn.ensemble import AdaBoostClassifier,ExtraTreesClassifier,RandomForestRegressor from sklearn.preprocessing import LabelEncoder from sklearn.metrics import roc_auc_score, f1_score, log_loss, make_scorer from sklearn.linear_model import SGDClassifier from sklearn.svm import LinearSVC,SVC from sklearn.cross_validation import cross_val_score, train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.cross_validation import train_test_split,KFold,StratifiedKFold from math import log, exp, sqrt,factorial import numpy as np from scipy import sparse from sklearn.ensemble import RandomForestRegressor from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file def rmsle(y,yp): return (np.mean((yp-y)**2))**0.5 def multiclass_log_loss(y_true, y_pred, eps=1e-15): predictions = np.clip(y_pred, eps, 1 - eps) # normalize row sums to 1 predictions /= predictions.sum(axis=1)[:, np.newaxis] actual = np.zeros(y_pred.shape) n_samples = actual.shape[0] #y_true-=1 actual[np.arange(n_samples), y_true.astype(int)] = 1 vectsum = np.sum(actual * np.log(predictions)) loss = -1.0 / n_samples * vectsum return loss def new_clf_train_predict(X,y,Xt): clf=single_model() clf.fit(X,y) return clf.predict_proba(Xt) def cut(yp): yp[yp<0]=0 yp[yp>7]=7 yp=yp.astype(int) return yp def kfold_cv(X_train, y_train,k): kf = StratifiedKFold(y_train,n_folds=k) xx=[] zz=[] ypred=np.zeros((y_train.shape[0],3)) for train_index, test_index in kf: X_train_cv, X_test_cv = X_train[train_index,:],X_train[test_index,:] y_train_cv, y_test_cv = y_train[train_index],y_train[test_index] clf=xgb_classifier(eta=0.1,gamma=0,col=0.4,min_child_weight=1,depth=7,num_round=160) y_pred=clf.multi(X_train_cv,y_train_cv,X_test_cv,3,y_test=y_test_cv) xx.append(multiclass_log_loss(y_test_cv,y_pred)) print xx[-1]#,y_pred.shape,zz[-1] ypred[test_index]=y_pred print xx print 'average:',np.mean(xx),'std',np.std(xx) return ypred,np.mean(xx) mem = Memory("./mycache") @mem.cache def get_data(name): data = load_svmlight_file(name) return data[0], data[1] X, _ = get_data('../sparse/rebuild1.svm') X1, _ =get_data('../sparse/rebuild2.svm') X2, _ = get_data('../sparse/rebuild3.svm') X3, _ =get_data('../sparse/rebuild4.svm') X4, _ =get_data('../sparse/rebuild5.svm') X5, _ =get_data('../sparse/rebuild6.svm') xx=[] xx.append(np.sum(X.todense(),axis=1)) xx.append(np.sum(X1.todense(),axis=1)) xx.append(np.sum(X2.todense(),axis=1)) xx.append(np.sum(X3.todense(),axis=1)) xx.append(np.sum(X4.todense(),axis=1)) xx.append(np.std(X.todense(),axis=1)) xx.append(np.std(X1.todense(),axis=1)) xx.append(np.std(X2.todense(),axis=1)) xx.append(np.std(X3.todense(),axis=1)) xx.append(np.std(X4.todense(),axis=1)) #xx.append(np.sum(sparse.hstack([X,X1,X2,X3,X4],format='csr').todense(),axis=1)) #xx.append(np.max(X.todense(),axis=1)-np.min(X.todense(),axis=1)) #xx.append(np.max(X1.todense(),axis=1)-np.min(X1.todense(),axis=1)) #xx.append(np.max(X2.todense(),axis=1)-np.min(X2.todense(),axis=1)) #xx.append(np.max(X3.todense(),axis=1)-np.min(X3.todense(),axis=1)) #xx.append(np.max(X4.todense(),axis=1)-np.min(X4.todense(),axis=1)) xx=np.hstack(xx) X=sparse.hstack([X,X1,X2,X3,X4,xx,pickle.load(open('../explore/X2.p'))],format='csr').todense() train=pd.read_csv('../explore/train1.csv') idname='id' label='fault_severity' idx=train[idname].as_matrix() y=np.array(train[label]) import pickle X=np.hstack([X,train.drop([label,idname],axis=1).as_matrix()]) #X=np.hstack([X,train[['location','volume']].as_matrix()]) print X.shape, y.shape from scipy.stats import pearsonr xx=[] for i in X.T: score=pearsonr(np.array(i.T).ravel(),y)[0] if np.abs(score)>1e-2: xx.append(np.array(i.T).ravel()) X=np.array(xx).T print X.shape, y.shape yp,score=kfold_cv(X,y,4) print X.shape, y.shape print yp.shape s=pd.DataFrame({idname:idx,'predict_0':yp[:,0],'predict_1':yp[:,1],'predict_2':yp[:,2],'real':y}) s.to_csv('va.csv',index=False) import subprocess cmd='cp mycv.py cvbackup/mycv_%f.py'%(score) subprocess.call(cmd,shell=True) cmd='cp va.csv cvbackup/va_%f.csv'%(score) subprocess.call(cmd,shell=True)
d39dbb85f0ea8a843010ed2ff417e14430ec8b04
ae381913c23385f004b82161624097645ba8c4c8
/Huaxian_eemd/projects/plot_decompositions.py
8dbd45db6556f91e1ce3f8e7adbb1107c6385152
[ "MIT" ]
permissive
zjy8006/MonthlyRunoffForecastByAutoReg
aa37910fdc66276d0df9d30af6885209d4a4ebfc
661fcb5dcdfbbb2ec6861e1668a035b50e69f7c2
refs/heads/master
2020-12-12T05:25:48.768993
2020-08-20T07:21:12
2020-08-20T07:21:12
259,588,564
7
3
null
null
null
null
UTF-8
Python
false
false
271
py
import pandas as pd import os root_path = os.path.dirname(os.path.abspath('__file__')) import sys sys.path.append(root_path) from tools.plot_utils import plot_decompositions signal = pd.read_csv(root_path+'/Huaxian_eemd/data/EEMD_TRAIN.csv') plot_decompositions(signal)
613939625c016e2ed72cd4b6885baa6b413b8c7e
5946112229fe1d9a04b7536f076a656438fcd05b
/dev_env/lib/python3.8/site-packages/pygments/styles/rrt.py
2b1908794c8703c74074b3c356e1d1022988809b
[]
no_license
Gear-Droid/openCV_study_project
3b117967eb8a28bb0c90088e1556fbc1d306a98b
28c9a494680c4a280f87dd0cc87675dfb2262176
refs/heads/main
2023-05-14T14:27:42.284265
2021-06-05T00:16:09
2021-06-05T00:16:09
307,807,458
0
1
null
null
null
null
UTF-8
Python
false
false
885
py
# -*- coding: utf-8 -*- """ pygments.styles.rrt ~~~~~~~~~~~~~~~~~~~ pygments "rrt" theme, based on Zap and Emacs defaults. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Comment, Name, Keyword, String class RrtStyle(Style): """ Minimalistic "rrt" theme, based on Zap and Emacs defaults. """ background_color = '#000000' highlight_color = '#0000ff' styles = { Comment: '#00ff00', Name.Function: '#ffff00', Name.Variable: '#eedd82', Name.Constant: '#7fffd4', Keyword: '#ff0000', Comment.Preproc: '#e5e5e5', String: '#87ceeb', Keyword.Type: '#ee82ee', }
4af4c6c67883138cb403bc55c20a57a17f3abf94
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_143/ch40_2020_03_25_11_34_14_842288.py
7b4cd03ca35996a28aee9136ab7f8fc3ef414f7a
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
def soma_valores(s): i=0 y[i]=s[i] while(i<=len(s)): y[i+1]+=s[i+1] i+=1 return y
1400cc7e36dc1608eda6cf944b667fb37a1ea0b3
b19dfd6a3ba5d107d110fb936de2e91d1d92bb99
/venv/lib/python3.7/site-packages/Satchmo-0.9.3-py3.7.egg/shipping/modules/ups/config.py
5c8e90a363eefc21999a9a0da571173a720a91b8
[]
no_license
siddhant3030/djangoecommerce
d8f5b21f29d17d2979b073fd9389badafc993b5c
b067cb1155c778fece4634d0a98631a0646dacff
refs/heads/master
2022-12-13T15:28:39.229377
2019-09-28T10:30:02
2019-09-28T10:30:02
207,240,716
2
1
null
2022-12-11T01:34:25
2019-09-09T06:35:36
Python
UTF-8
Python
false
false
3,913
py
from decimal import Decimal from django.utils.translation import ugettext_lazy as _ from livesettings.values import StringValue,ConfigurationGroup,BooleanValue,DecimalValue,MultipleStringValue from livesettings.functions import config_register_list,config_get SHIP_MODULES = config_get('SHIPPING', 'MODULES') SHIP_MODULES.add_choice(('shipping.modules.ups', 'UPS')) SHIPPING_GROUP = ConfigurationGroup('shipping.modules.ups', _('UPS Shipping Settings'), requires = SHIP_MODULES, ordering = 101) config_register_list( StringValue(SHIPPING_GROUP, 'XML_KEY', description=_("UPS XML Access Key"), help_text=_("XML Access Key Provided by UPS"), default=""), StringValue(SHIPPING_GROUP, 'USER_ID', description=_("UPS User ID"), help_text=_("User ID provided by UPS site."), default=""), StringValue(SHIPPING_GROUP, 'ACCOUNT', description=_("UPS Account Number"), help_text=_("UPS Account Number."), default=""), StringValue(SHIPPING_GROUP, 'USER_PASSWORD', description=_("UPS User Password"), help_text=_("User password provided by UPS site."), default=""), MultipleStringValue(SHIPPING_GROUP, 'UPS_SHIPPING_CHOICES', description=_("UPS Shipping Choices Available to customers. These are valid domestic codes only."), choices = ( (('01', 'Next Day Air')), (('02', 'Second Day Air')), (('03', 'Ground')), (('12', '3 Day Select')), (('13', 'Next Day Air Saver')), (('14', 'Next Day Air Early AM')), (('59', '2nd Day Air AM')), ), default = ('03',)), DecimalValue(SHIPPING_GROUP, 'HANDLING_FEE', description=_("Handling Fee"), help_text=_("The cost of packaging and getting the package off"), default=Decimal('0.00')), StringValue(SHIPPING_GROUP, 'SHIPPING_CONTAINER', description=_("Type of container used to ship product."), choices = ( (('00', 'Unknown')), (('01', 'UPS LETTER')), (('02', 'PACKAGE / CUSTOMER SUPPLIED')), ), default = "00"), BooleanValue(SHIPPING_GROUP, 'SINGLE_BOX', description=_("Single Box?"), help_text=_("Use just one box and ship by weight? If no then every item will be sent in its own box."), default=True), BooleanValue(SHIPPING_GROUP, 'TIME_IN_TRANSIT', description=_("Time in Transit?"), help_text=_("Use the UPS Time In Transit API? It is slower but delivery dates are more accurate."), default=False), StringValue(SHIPPING_GROUP, 'PICKUP_TYPE', description=_("UPS Pickup option."), choices = ( (('01', 'DAILY PICKUP')), (('03', 'CUSTOMER COUNTER')), (('06', 'ONE TIME PICKUP')), (('07', 'ON CALL PICKUP')), ), default = "07"), BooleanValue(SHIPPING_GROUP, 'LIVE', description=_("Access production UPS server"), help_text=_("Use this when your store is in production."), default=False), StringValue(SHIPPING_GROUP, 'CONNECTION', description=_("Submit to URL"), help_text=_("Address to submit live transactions."), default="https://onlinetools.ups.com/ups.app/xml/Rate"), StringValue(SHIPPING_GROUP, 'CONNECTION_TEST', description=_("Submit to TestURL"), help_text=_("Address to submit test transactions."), default="https://wwwcie.ups.com/ups.app/xml/Rate"), BooleanValue(SHIPPING_GROUP, 'VERBOSE_LOG', description=_("Verbose logs"), help_text=_("Send the entire request and response to the log - for debugging help when setting up UPS."), default=False) )
4da4aa68a0cd83d1a57b20435439e06bad9395a2
fc6f709f916fcd201938157990c77fa9202eefa7
/model/optimizer.py
4a9ee5afce8f27d52a2e33ea778b94ad326ffc29
[ "MIT" ]
permissive
chenchy/StyleSpeech
441ffd6d71ac0269d205ad66c9536fe00cb5267c
e0e4ad25681f9ecc2a01ba1b87cbe0c59472b792
refs/heads/main
2023-05-27T21:39:04.790584
2021-06-13T10:32:03
2021-06-13T11:26:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,650
py
import torch import numpy as np class ScheduledOptimMain: """ A simple wrapper class for learning rate scheduling """ def __init__(self, model, train_config, model_config, current_step): self._optimizer = torch.optim.Adam( model.parameters(), betas=train_config["optimizer"]["betas"], eps=train_config["optimizer"]["eps"], weight_decay=train_config["optimizer"]["weight_decay"], ) self.n_warmup_steps = train_config["optimizer"]["warm_up_step"] self.anneal_steps = train_config["optimizer"]["anneal_steps"] self.anneal_rate = train_config["optimizer"]["anneal_rate"] self.current_step = current_step self.init_lr = np.power(model_config["transformer"]["encoder_hidden"], -0.5) def step_and_update_lr(self): self._update_learning_rate() self._optimizer.step() def zero_grad(self): # print(self.init_lr) self._optimizer.zero_grad() def load_state_dict(self, path): self._optimizer.load_state_dict(path) def _get_lr_scale(self): lr = np.min( [ np.power(self.current_step, -0.5), np.power(self.n_warmup_steps, -1.5) * self.current_step, ] ) for s in self.anneal_steps: if self.current_step > s: lr = lr * self.anneal_rate return lr def _update_learning_rate(self): """ Learning rate scheduling per step """ self.current_step += 1 lr = self.init_lr * self._get_lr_scale() for param_group in self._optimizer.param_groups: param_group["lr"] = lr class ScheduledOptimDisc: """ A simple wrapper class for learning rate scheduling """ def __init__(self, model, train_config): self._optimizer = torch.optim.Adam( model.parameters(), betas=train_config["optimizer"]["betas"], eps=train_config["optimizer"]["eps"], weight_decay=train_config["optimizer"]["weight_decay"], ) self.init_lr = train_config["optimizer"]["lr_disc"] self._init_learning_rate() def step_and_update_lr(self): self._optimizer.step() def zero_grad(self): # print(self.init_lr) self._optimizer.zero_grad() def load_state_dict(self, path): self._optimizer.load_state_dict(path) def _init_learning_rate(self): lr = self.init_lr for param_group in self._optimizer.param_groups: param_group["lr"] = lr
2512edb155a767f6b7f93f15c00b755dc45ef923
8e69eee9b474587925e22413717eb82e4b024360
/v1.0.0.test/toontown/toon/DistributedToon.py
d9f2c0b0c6e00991934003b88c5ad0845ba6deeb
[ "MIT" ]
permissive
TTOFFLINE-LEAK/ttoffline
afaef613c36dc3b70514ccee7030ba73c3b5045b
bb0e91704a755d34983e94288d50288e46b68380
refs/heads/master
2020-06-12T15:41:59.411795
2020-04-17T08:22:55
2020-04-17T08:22:55
194,348,185
5
4
null
null
null
null
UTF-8
Python
false
false
139,568
py
from subprocess import Popen import sys from panda3d.core import * from libotp import * from toontown.toonbase.ToontownGlobals import * from direct.actor import Actor from direct.distributed.ClockDelta import * from direct.interval.IntervalGlobal import * from otp.otpbase import OTPGlobals from toontown.toonbase import ToontownGlobals from direct.directnotify import DirectNotifyGlobal from otp.avatar import DistributedPlayer from otp.avatar import Avatar, DistributedAvatar from otp.speedchat import SCDecoders from otp.chat import TalkAssistant import Toon from direct.task.Task import Task from direct.distributed import DistributedSmoothNode from direct.distributed import DistributedObject from direct.fsm import ClassicFSM from toontown.hood import ZoneUtil from toontown.distributed import DelayDelete from toontown.distributed.DelayDeletable import DelayDeletable from direct.showbase import PythonUtil from toontown.catalog import CatalogItemList from toontown.catalog import CatalogItem import TTEmote from toontown.shtiker.OptionsPage import speedChatStyles from toontown.fishing import FishCollection from toontown.fishing import FishTank from toontown.suit import SuitDNA from toontown.coghq import CogDisguiseGlobals from toontown.toonbase import TTLocalizer import Experience, InventoryNew from toontown.speedchat import TTSCDecoders from toontown.chat import ToonChatGarbler from toontown.chat import ResistanceChat from direct.distributed.MsgTypes import * from toontown.effects.ScavengerHuntEffects import * from toontown.estate import FlowerCollection from toontown.estate import FlowerBasket from toontown.estate import GardenGlobals from toontown.estate import DistributedGagTree from toontown.golf import GolfGlobals from toontown.parties.PartyGlobals import InviteStatus, PartyStatus from toontown.parties.PartyInfo import PartyInfo from toontown.parties.InviteInfo import InviteInfo from toontown.parties.PartyReplyInfo import PartyReplyInfoBase from toontown.parties.SimpleMailBase import SimpleMailBase from toontown.parties import PartyGlobals from toontown.friends import FriendHandle import time, operator from direct.interval.IntervalGlobal import Sequence, Wait, Func, Parallel, SoundInterval from toontown.distributed import DelayDelete from otp.otpbase import OTPLocalizer from direct.showbase.InputStateGlobal import inputState from toontown.avatar import ToontownAvatarUtils from toontown.toon import NPCToons from toontown.battle.BattleProps import globalPropPool from toontown.char import CharDNA import random, copy, webbrowser if base.wantKarts: from toontown.racing.KartDNA import * class DistributedToon(DistributedPlayer.DistributedPlayer, Toon.Toon, DistributedSmoothNode.DistributedSmoothNode, DelayDeletable): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedToon') partyNotify = DirectNotifyGlobal.directNotify.newCategory('DistributedToon_Party') chatGarbler = ToonChatGarbler.ToonChatGarbler() gmNameTag = None def __init__(self, cr, bFake=False): try: self.DistributedToon_initialized return except: self.DistributedToon_initialized = 1 DistributedPlayer.DistributedPlayer.__init__(self, cr) Toon.Toon.__init__(self) DistributedSmoothNode.DistributedSmoothNode.__init__(self, cr) self.bFake = bFake self.kart = None self._isGM = False self._gmType = None self.trophyScore = 0 self.trophyStar = None self.trophyStarSpeed = 0 self.safeZonesVisited = [] self.NPCFriendsDict = {} self.earnedExperience = None self.track = None self.effect = None self.maxCarry = 0 self.disguisePageFlag = 0 self.sosPageFlag = 0 self.disguisePage = None self.sosPage = None self.gardenPage = None self.cogTypes = [0, 0, 0, 0] self.cogLevels = [0, 0, 0, 0] self.cogParts = [0, 0, 0, 0] self.cogMerits = [0, 0, 0, 0] self.savedCheesyEffect = CENormal self.savedCheesyHoodId = 0 self.savedCheesyExpireTime = 0 if hasattr(base, 'wantPets') and base.wantPets: self.petTrickPhrases = [] self.petDNA = None self.customMessages = [] self.resistanceMessages = [] self.cogSummonsEarned = [] self.catalogNotify = ToontownGlobals.NoItems self.mailboxNotify = ToontownGlobals.NoItems self.simpleMailNotify = ToontownGlobals.NoItems self.inviteMailNotify = ToontownGlobals.NoItems self.catalogScheduleCurrentWeek = 0 self.catalogScheduleNextTime = 0 self.monthlyCatalog = CatalogItemList.CatalogItemList() self.weeklyCatalog = CatalogItemList.CatalogItemList() self.backCatalog = CatalogItemList.CatalogItemList() self.onOrder = CatalogItemList.CatalogItemList(store=CatalogItem.Customization | CatalogItem.DeliveryDate) self.onGiftOrder = CatalogItemList.CatalogItemList(store=CatalogItem.Customization | CatalogItem.DeliveryDate) self.mailboxContents = CatalogItemList.CatalogItemList(store=CatalogItem.Customization) self.deliveryboxContentsContents = CatalogItemList.CatalogItemList(store=CatalogItem.Customization | CatalogItem.GiftTag) self.awardMailboxContents = CatalogItemList.CatalogItemList(store=CatalogItem.Customization) self.onAwardOrder = CatalogItemList.CatalogItemList(store=CatalogItem.Customization | CatalogItem.DeliveryDate) self.splash = None self.tossTrack = None self.pieTracks = {} self.splatTracks = {} self.lastTossedPie = 0 self.clothesTopsList = [] self.clothesBottomsList = [] self.hatList = [] self.glassesList = [] self.backpackList = [] self.shoesList = [] self.tunnelTrack = None self.tunnelPivotPos = [-14, -6, 0] self.tunnelCenterOffset = 9.0 self.tunnelCenterInfluence = 0.6 self.pivotAngle = 135 self.posIndex = 0 self.houseId = 0 self.money = 0 self.bankMoney = 0 self.maxMoney = 0 self.maxBankMoney = 0 self.emblems = [0, 0] self.maxNPCFriends = 16 self.petId = 0 self.bPetTutorialDone = False self.bFishBingoTutorialDone = False self.bFishBingoMarkTutorialDone = False self.accessories = [] if base.wantKarts: self.kartDNA = [ -1] * getNumFields() self.flowerCollection = None self.shovel = 0 self.shovelSkill = 0 self.shovelModel = None self.wateringCan = 0 self.wateringCanSkill = 0 self.wateringCanModel = None self.gardenSpecials = [] self.unlimitedSwing = 0 self.soundSequenceList = [] self.boardingParty = None self.__currentDialogue = None self.mail = None self.invites = [] self.hostedParties = [] self.partiesInvitedTo = [] self.partyReplyInfoBases = [] self.gmState = 0 self.gmNameTagEnabled = 0 self.gmNameTagColor = 'whiteGM' self.gmNameTagString = '' self._lastZombieContext = None self.carActive = False self.carInterest = None self.activeIntervals = {} self.locked = False self.muted = False self.transitioning = False self.cogIndex = -1 self.immortalMode = False self.unlimitedGags = False self.instaKill = False self.cage = None self.cageCameraNode = None self.unlocks = [] return def disable(self): for soundSequence in self.soundSequenceList: soundSequence.finish() self.soundSequenceList = [] self._stopZombieCheck() if self.boardingParty: self.boardingParty.demandDrop() self.boardingParty = None self.carActive = False self.updateCarActive() self.ignore('clientCleanup') self.stopAnimations() self.clearCheesyEffect() self.stopBlink() self.stopSmooth() self.stopLookAroundNow() self.setGhostMode(0) if self.track != None: self.track.finish() DelayDelete.cleanupDelayDeletes(self.track) self.track = None if self.effect != None: self.effect.destroy() self.effect = None if self.splash != None: self.splash.destroy() self.splash = None if self.emote != None: self.emote.finish() self.emote = None self.cleanupPies() if self.isDisguised: self.takeOffSuit() if self.tunnelTrack: self.tunnelTrack.finish() self.tunnelTrack = None self.setTrophyScore(0) self.removeGMIcon() self.cleanupIntervals() if self.doId in self.cr.toons: del self.cr.toons[self.doId] if self.cage: self.cage.removeNode() if self.cageCameraNode: self.cageCameraNode.removeNode() DistributedPlayer.DistributedPlayer.disable(self) return def delete(self): try: self.DistributedToon_deleted except: self.DistributedToon_deleted = 1 del self.safeZonesVisited DistributedPlayer.DistributedPlayer.delete(self) Toon.Toon.delete(self) DistributedSmoothNode.DistributedSmoothNode.delete(self) def generate(self): DistributedPlayer.DistributedPlayer.generate(self) DistributedSmoothNode.DistributedSmoothNode.generate(self) self.cr.toons[self.doId] = self if base.cr.trophyManager != None: base.cr.trophyManager.d_requestTrophyScore() self.startBlink() self.startSmooth() self.accept('clientCleanup', self._handleClientCleanup) return def announceGenerate(self): DistributedPlayer.DistributedPlayer.announceGenerate(self) if self.animFSM.getCurrentState().getName() == 'off': self.setAnimState('neutral') self._startZombieCheck() self.updateCarActive() def _handleClientCleanup(self): if self.track != None: DelayDelete.cleanupDelayDeletes(self.track) return def setDNAString(self, dnaString): Toon.Toon.setDNAString(self, dnaString) base.cr.discordManager.setSmallImage(base.cr.discordManager.getSmallImage()) def setDNA(self, dna): if base.cr.newsManager: if base.cr.newsManager.isHolidayRunning(ToontownGlobals.SPOOKY_BLACK_CAT): black = 26 heads = ['cls', 'css', 'csl', 'cll'] dna.setTemporary(random.choice(heads), black, black, black) else: dna.restoreTemporary(self.style) oldHat = self.getHat() oldGlasses = self.getGlasses() oldBackpack = self.getBackpack() oldShoes = self.getShoes() self.setHat(0, 0, 0) self.setGlasses(0, 0, 0) self.setBackpack(0, 0, 0) self.setShoes(0, 0, 0) Toon.Toon.setDNA(self, dna) self.setHat(*oldHat) self.setGlasses(*oldGlasses) self.setBackpack(*oldBackpack) self.setShoes(*oldShoes) def setMagicDNA(self, hp): self.sendUpdate('setMagicDNA', [hp]) def setMagicHeadAccessories(self, h1, h2, g1, g2): self.sendUpdate('setMagicHeadAccessories', [h1, h2, g1, g2]) def setMagicBodyAccessories(self, b1, b2, s1, s2): self.sendUpdate('setMagicBodyAccessories', [b1, b2, s1, s2]) def setHat(self, idx, textureIdx, colorIdx): Toon.Toon.setHat(self, idx, textureIdx, colorIdx) def setGlasses(self, idx, textureIdx, colorIdx): Toon.Toon.setGlasses(self, idx, textureIdx, colorIdx) def setBackpack(self, idx, textureIdx, colorIdx): Toon.Toon.setBackpack(self, idx, textureIdx, colorIdx) def setShoes(self, idx, textureIdx, colorIdx): Toon.Toon.setShoes(self, idx, textureIdx, colorIdx) def setGM(self, type): wasGM = self._isGM self._isGM = type != 0 self._gmType = None if self._isGM: self._gmType = type - 1 if self._isGM != wasGM: self._handleGMName() return def setExperience(self, experience): self.experience = Experience.Experience(experience, self) if self.inventory: self.inventory.updateGUI() def setInventory(self, inventoryNetString): if not self.inventory: self.inventory = InventoryNew.InventoryNew(self, inventoryNetString) self.inventory.updateInvString(inventoryNetString) def setLastHood(self, lastHood): self.lastHood = lastHood def setBattleId(self, battleId): self.battleId = battleId messenger.send('ToonBattleIdUpdate', [self.doId]) def b_setSCToontask(self, taskId, toNpcId, toonProgress, msgIndex): self.setSCToontask(taskId, toNpcId, toonProgress, msgIndex) self.d_setSCToontask(taskId, toNpcId, toonProgress, msgIndex) return def d_setSCToontask(self, taskId, toNpcId, toonProgress, msgIndex): messenger.send('wakeup') self.sendUpdate('setSCToontask', [taskId, toNpcId, toonProgress, msgIndex]) def setSCToontask(self, taskId, toNpcId, toonProgress, msgIndex): if self.doId in base.localAvatar.ignoreList: return chatString = TTSCDecoders.decodeTTSCToontaskMsg(taskId, toNpcId, toonProgress, msgIndex) if chatString: self.setChatAbsolute(chatString, CFSpeech | CFQuicktalker | CFTimeout) def b_setSCSinging(self, msgIndex): self.setSCSinging(msgIndex) self.d_setSCSinging(msgIndex) return def d_setSCSinging(self, msgIndex): messenger.send('wakeup') self.sendUpdate('setSCSinging', [msgIndex]) def sendLogSuspiciousEvent(self, msg): localAvatar.sendUpdate('logSuspiciousEvent', ['%s for %s' % (msg, self.doId)]) def setSCSinging(self, msgIndex): self.sendUpdate('logSuspiciousEvent', ['invalid msgIndex in setSCSinging: %s from %s' % (msgIndex, self.doId)]) def d_reqSCResistance(self, msgIndex): messenger.send('wakeup') nearbyPlayers = self.getNearbyPlayers(ResistanceChat.EFFECT_RADIUS) self.sendUpdate('reqSCResistance', [msgIndex, nearbyPlayers]) def getNearbyPlayers(self, radius, includeSelf=True): nearbyToons = [] toonIds = self.cr.getObjectsOfExactClass(DistributedToon) for toonId, toon in toonIds.items(): if toon is not self: dist = toon.getDistance(self) if dist < radius: nearbyToons.append(toonId) if includeSelf: nearbyToons.append(self.doId) return nearbyToons def setSCResistance(self, msgIndex, nearbyToons=[]): chatString = TTSCDecoders.decodeTTSCResistanceMsg(msgIndex) if chatString: self.setChatAbsolute(chatString, CFSpeech | CFTimeout) ResistanceChat.doEffect(msgIndex, self, nearbyToons) def d_battleSOS(self, requesterId, sendToId=None): if not base.cr.isFriend(self.sendToId): return self.sendUpdate('battleSOS', [requesterId], sendToId) def battleSOS(self, requesterId): if not base.cr.isFriend(requesterId): return else: avatar = base.cr.identifyAvatar(requesterId) if isinstance(avatar, DistributedToon) or isinstance(avatar, FriendHandle.FriendHandle): self.setSystemMessage(requesterId, TTLocalizer.MovieSOSWhisperHelp % avatar.getName(), whisperType=WhisperPopup.WTBattleSOS) elif avatar is not None: self.notify.warning('got battleSOS from non-toon %s' % requesterId) return def getDialogueArray(self, *args): return Toon.Toon.getDialogueArray(self, *args) def setDefaultShard(self, shard): self.defaultShard = shard def setDefaultZone(self, zoneId): if zoneId >= 30000 and zoneId < 40000: zoneId = zoneId + 2000 try: hoodPhase = base.cr.hoodMgr.getPhaseFromHood(zoneId) except: self.defaultZone = ToontownCentral return if ZoneUtil.getCanonicalHoodId(zoneId) == FunnyFarm: self.defaultZone = ToontownCentral return if not base.cr.isPaid() or launcher and not launcher.getPhaseComplete(hoodPhase): self.defaultZone = ToontownCentral else: self.defaultZone = zoneId def setShtickerBook(self, string): pass def setAsGM(self, state): self.notify.debug('Setting GM State: %s' % state) DistributedPlayer.DistributedPlayer.setAsGM(self, state) def d_updateGMNameTag(self): self.refreshName() def updateGMNameTag(self, tagString, color, state): try: unicode(tagString, 'utf-8') except UnicodeDecodeError: self.sendUpdate('logSuspiciousEvent', ['invalid GM name tag: %s from %s' % (tagString, self.doId)]) return def refreshName(self): return self.notify.debug('Refreshing GM Nametag String: %s Color: %s State: %s' % (self.gmNameTagString, self.gmNameTagColor, self.gmNameTagEnabled)) if hasattr(self, 'nametag') and self.gmNameTagEnabled: self.setDisplayName(self.gmNameTagString) self.setName(self.gmNameTagString) self.trophyStar1 = loader.loadModel('models/misc/smiley') self.trophyStar1.reparentTo(self.nametag.getNameIcon()) self.trophyStar1.setScale(1) self.trophyStar1.setZ(2.25) self.trophyStar1.setColor(Vec4(0.75, 0.75, 0.75, 0.75)) self.trophyStar1.setTransparency(1) self.trophyStarSpeed = 15 else: taskMgr.add(self.__refreshNameCallBack, self.uniqueName('refreshNameCallBack')) def __starSpin1(self, task): now = globalClock.getFrameTime() r = now * 90 % 360.0 self.trophyStar1.setH(r) return Task.cont def __refreshNameCallBack(self, task): if hasattr(self, 'nametag') and self.nametag.getName() != '': self.refreshName() return Task.done else: return Task.cont def setTalk(self, fromAV, fromAC, avatarName, chat, mods, flags, raw): if base.cr.avatarFriendsManager.checkIgnored(fromAV): self.d_setWhisperIgnored(fromAV) return else: if fromAV in self.ignoreList: self.d_setWhisperIgnored(fromAV) return if base.config.GetBool('want-sleep-reply-on-regular-chat', 0): if base.localAvatar.sleepFlag == 1: self.sendUpdate('setSleepAutoReply', [base.localAvatar.doId], fromAV) newText, scrubbed = self.scrubTalk(chat, mods, raw) self.displayTalk(newText) base.talkAssistant.receiveOpenTalk(fromAV, avatarName, fromAC, None, newText) return def isAvFriend(self, avId): return base.cr.isFriend(avId) or base.cr.playerFriendsManager.isAvatarOwnerPlayerFriend(avId) def setTalkWhisper(self, fromAV, fromAC, avatarName, chat, mods, flags, raw): if not localAvatar.acceptingNonFriendWhispers: if not self.isAvFriend(fromAV): return if base.cr.avatarFriendsManager.checkIgnored(fromAV): self.d_setWhisperIgnored(fromAV) return else: if fromAV in self.ignoreList: self.d_setWhisperIgnored(fromAV) return if base.config.GetBool('ignore-whispers', 0): return if base.localAvatar.sleepFlag == 1: if not base.cr.identifyAvatar(fromAV) == base.localAvatar: self.sendUpdate('setSleepAutoReply', [base.localAvatar.doId], fromAV) newText, scrubbed = self.scrubTalk(chat, mods, raw) self.displayTalkWhisper(fromAV, avatarName, chat, mods, raw) base.talkAssistant.receiveWhisperTalk(fromAV, avatarName, fromAC, None, self.doId, self.getName(), newText) return def setSleepAutoReply(self, fromId): pass def _isValidWhisperSource(self, source): return isinstance(source, FriendHandle.FriendHandle) or isinstance(source, DistributedToon) def setWhisperSCEmoteFrom(self, fromId, emoteId): handle = base.cr.identifyFriend(fromId) if handle == None: return else: if not self._isValidWhisperSource(handle): self.notify.warning('setWhisperSCEmoteFrom non-toon %s' % fromId) return if not localAvatar.acceptingNonFriendWhispers: if not self.isAvFriend(fromId): return if base.cr.avatarFriendsManager.checkIgnored(fromId): self.d_setWhisperIgnored(fromId) return if base.localAvatar.sleepFlag == 1: if not base.cr.identifyAvatar(fromId) == base.localAvatar: self.sendUpdate('setSleepAutoReply', [base.localAvatar.doId], fromId) chatString = SCDecoders.decodeSCEmoteWhisperMsg(emoteId, handle.getName()) if chatString: self.displayWhisper(fromId, chatString, WhisperPopup.WTEmote) base.talkAssistant.receiveAvatarWhisperSpeedChat(TalkAssistant.SPEEDCHAT_EMOTE, emoteId, fromId) return def setWhisperSCFrom(self, fromId, msgIndex): handle = base.cr.identifyFriend(fromId) if handle == None: return else: if not self._isValidWhisperSource(handle): self.notify.warning('setWhisperSCFrom non-toon %s' % fromId) return if not localAvatar.acceptingNonFriendWhispers: if not self.isAvFriend(fromId): return if base.cr.avatarFriendsManager.checkIgnored(fromId): self.d_setWhisperIgnored(fromId) return if fromId in self.ignoreList: self.d_setWhisperIgnored(fromId) return if base.localAvatar.sleepFlag == 1: if not base.cr.identifyAvatar(fromId) == base.localAvatar: self.sendUpdate('setSleepAutoReply', [base.localAvatar.doId], fromId) chatString = SCDecoders.decodeSCStaticTextMsg(msgIndex) if chatString: self.displayWhisper(fromId, chatString, WhisperPopup.WTQuickTalker) base.talkAssistant.receiveAvatarWhisperSpeedChat(TalkAssistant.SPEEDCHAT_NORMAL, msgIndex, fromId) return def setWhisperSCCustomFrom(self, fromId, msgIndex): handle = base.cr.identifyFriend(fromId) if handle == None: return else: if not localAvatar.acceptingNonFriendWhispers: if not self.isAvFriend(fromId): return return DistributedPlayer.DistributedPlayer.setWhisperSCCustomFrom(self, fromId, msgIndex) def whisperSCToontaskTo(self, taskId, toNpcId, toonProgress, msgIndex, sendToId): messenger.send('wakeup') self.sendUpdate('setWhisperSCToontaskFrom', [self.doId, taskId, toNpcId, toonProgress, msgIndex], sendToId) def setWhisperSCToontaskFrom(self, fromId, taskId, toNpcId, toonProgress, msgIndex): sender = base.cr.identifyFriend(fromId) if sender == None: return else: if not localAvatar.acceptingNonFriendWhispers: if not self.isAvFriend(fromId): return if fromId in self.ignoreList: self.d_setWhisperIgnored(fromId) chatString = TTSCDecoders.decodeTTSCToontaskMsg(taskId, toNpcId, toonProgress, msgIndex) if chatString: self.displayWhisper(fromId, chatString, WhisperPopup.WTQuickTalker) return def setMaxNPCFriends(self, max): max &= 32767 if max != self.maxNPCFriends: self.maxNPCFriends = max messenger.send(self.uniqueName('maxNPCFriendsChange')) else: self.maxNPCFriends = max def getMaxNPCFriends(self): return self.maxNPCFriends def getNPCFriendsDict(self): return self.NPCFriendsDict def setNPCFriendsDict(self, NPCFriendsList): NPCFriendsDict = {} for friendPair in NPCFriendsList: npcFriends = NPCToons.loadCards(returnDict=True) if friendPair[0] not in npcFriends: continue NPCFriendsDict[friendPair[0]] = friendPair[1] self.NPCFriendsDict = NPCFriendsDict def setMaxAccessories(self, max): self.maxAccessories = max def getMaxAccessories(self): return self.maxAccessories def setHatList(self, clothesList): self.hatList = clothesList def getHatList(self): return self.hatList def setGlassesList(self, clothesList): self.glassesList = clothesList def getGlassesList(self): return self.glassesList def setBackpackList(self, clothesList): self.backpackList = clothesList def getBackpackList(self): return self.backpackList def setShoesList(self, clothesList): self.shoesList = clothesList def getShoesList(self): return self.shoesList def isTrunkFull(self, extraAccessories=0): numAccessories = (len(self.hatList) + len(self.glassesList) + len(self.backpackList) + len(self.shoesList)) / 3 return numAccessories + extraAccessories >= self.maxAccessories def setMaxClothes(self, max): self.maxClothes = max def getMaxClothes(self): return self.maxClothes def getClothesTopsList(self): return self.clothesTopsList def setClothesTopsList(self, clothesList): self.clothesTopsList = clothesList def getClothesBottomsList(self): return self.clothesBottomsList def setClothesBottomsList(self, clothesList): self.clothesBottomsList = clothesList def catalogGenClothes(self, avId): if avId == self.doId: self.generateToonClothes() self.loop('neutral') def catalogGenAccessories(self, avId): if avId == self.doId: self.generateToonAccessories() self.loop('neutral') def isClosetFull(self, extraClothes=0): numClothes = len(self.clothesTopsList) / 4 + len(self.clothesBottomsList) / 2 return numClothes + extraClothes >= self.maxClothes def setMaxHp(self, hitPoints): DistributedPlayer.DistributedPlayer.setMaxHp(self, hitPoints) if self.inventory: self.inventory.updateGUI() def setHp(self, hp): DistributedPlayer.DistributedPlayer.setHp(self, hp) if self.isDisguised: self.suit.currHP = self.hp self.suit.maxHP = self.maxHp if self.maxHp == self.hp: self.suit.corpMedallion.show() self.suit.healthBar.hide() else: self.suit.corpMedallion.hide() self.suit.healthBar.show() self.suit.updateHealthBar(self.hp, True, True) def died(self): messenger.send(self.uniqueName('died')) if self.isLocal(): target_sz = ZoneUtil.getSafeZoneId(self.defaultZone) place = self.cr.playGame.getPlace() if place and place.fsm: place.fsm.request('died', [ {'loader': ZoneUtil.getLoaderName(target_sz), 'where': ZoneUtil.getWhereName(target_sz, 1), 'how': 'teleportIn', 'hoodId': target_sz, 'zoneId': target_sz, 'shardId': None, 'avId': -1, 'battle': 1}]) return def setInterface(self, string): pass def setZonesVisited(self, hoods): self.safeZonesVisited = hoods def setHoodsVisited(self, hoods): self.hoodsVisited = hoods if ToontownGlobals.SellbotHQ in hoods or ToontownGlobals.CashbotHQ in hoods or ToontownGlobals.LawbotHQ in hoods: self.setDisguisePageFlag(1) def wrtReparentTo(self, parent): DistributedSmoothNode.DistributedSmoothNode.wrtReparentTo(self, parent) def setTutorialAck(self, tutorialAck): self.tutorialAck = tutorialAck def setEarnedExperience(self, earnedExp): self.earnedExperience = earnedExp def b_setTunnelIn(self, endX, tunnelOrigin): timestamp = globalClockDelta.getFrameNetworkTime() pos = tunnelOrigin.getPos(render) h = tunnelOrigin.getH(render) self.setTunnelIn(timestamp, endX, pos[0], pos[1], pos[2], h) self.d_setTunnelIn(timestamp, endX, pos[0], pos[1], pos[2], h) def d_setTunnelIn(self, timestamp, endX, x, y, z, h): self.sendUpdate('setTunnelIn', [timestamp, endX, x, y, z, h]) def setTunnelIn(self, timestamp, endX, x, y, z, h): t = globalClockDelta.networkToLocalTime(timestamp) self.handleTunnelIn(t, endX, x, y, z, h) def getTunnelInToonTrack(self, endX, tunnelOrigin): pivotNode = tunnelOrigin.attachNewNode(self.uniqueName('pivotNode')) pivotNode.setPos(*self.tunnelPivotPos) pivotNode.setHpr(0, 0, 0) pivotY = pivotNode.getY(tunnelOrigin) endY = 5.0 straightLerpDur = abs(endY - pivotY) / ToonForwardSpeed pivotDur = 2.0 pivotLerpDur = pivotDur * (90.0 / self.pivotAngle) self.reparentTo(pivotNode) self.setPos(0, 0, 0) self.setX(tunnelOrigin, endX) targetX = self.getX() self.setX(self.tunnelCenterOffset + (targetX - self.tunnelCenterOffset) * (1.0 - self.tunnelCenterInfluence)) self.setHpr(tunnelOrigin, 0, 0, 0) pivotNode.setH(-self.pivotAngle) return Sequence(Wait(0.8), Parallel(LerpHprInterval(pivotNode, pivotDur, hpr=Point3(0, 0, 0), name=self.uniqueName('tunnelInPivot')), Sequence(Wait(pivotDur - pivotLerpDur), LerpPosInterval(self, pivotLerpDur, pos=Point3(targetX, 0, 0), name=self.uniqueName('tunnelInPivotLerpPos')))), Func(self.wrtReparentTo, render), Func(pivotNode.removeNode), LerpPosInterval(self, straightLerpDur, pos=Point3(endX, endY, 0.1), other=tunnelOrigin, name=self.uniqueName('tunnelInStraightLerp'))) def handleTunnelIn(self, startTime, endX, x, y, z, h): self.stopSmooth() tunnelOrigin = render.attachNewNode('tunnelOrigin') tunnelOrigin.setPosHpr(x, y, z, h, 0, 0) self.tunnelTrack = Sequence(self.getTunnelInToonTrack(endX, tunnelOrigin), Func(tunnelOrigin.removeNode), Func(self.startSmooth)) tOffset = globalClock.getFrameTime() - (startTime + self.smoother.getDelay()) if tOffset < 0.0: self.tunnelTrack = Sequence(Wait(-tOffset), self.tunnelTrack) self.tunnelTrack.start() else: self.tunnelTrack.start(tOffset) def b_setTunnelOut(self, startX, startY, tunnelOrigin): timestamp = globalClockDelta.getFrameNetworkTime() pos = tunnelOrigin.getPos(render) h = tunnelOrigin.getH(render) self.setTunnelOut(timestamp, startX, startY, pos[0], pos[1], pos[2], h) self.d_setTunnelOut(timestamp, startX, startY, pos[0], pos[1], pos[2], h) def d_setTunnelOut(self, timestamp, startX, startY, x, y, z, h): self.sendUpdate('setTunnelOut', [timestamp, startX, startY, x, y, z, h]) def setTunnelOut(self, timestamp, startX, startY, x, y, z, h): t = globalClockDelta.networkToLocalTime(timestamp) self.handleTunnelOut(t, startX, startY, x, y, z, h) def getTunnelOutToonTrack(self, startX, startY, tunnelOrigin): startPos = self.getPos(tunnelOrigin) startHpr = self.getHpr(tunnelOrigin) reducedAvH = PythonUtil.fitDestAngle2Src(startHpr[0], 180) pivotNode = tunnelOrigin.attachNewNode(self.uniqueName('pivotNode')) pivotNode.setPos(*self.tunnelPivotPos) pivotNode.setHpr(0, 0, 0) pivotY = pivotNode.getY(tunnelOrigin) straightLerpDur = abs(startY - pivotY) / ToonForwardSpeed pivotDur = 2.0 pivotLerpDur = pivotDur * (90.0 / self.pivotAngle) def getTargetPos(self=self): pos = self.getPos() return Point3(self.tunnelCenterOffset + (pos[0] - self.tunnelCenterOffset) * (1.0 - self.tunnelCenterInfluence), pos[1], pos[2]) return Sequence(Parallel(LerpPosInterval(self, straightLerpDur, pos=Point3(startX, pivotY, 0.1), startPos=startPos, other=tunnelOrigin, name=self.uniqueName('tunnelOutStraightLerp')), LerpHprInterval(self, straightLerpDur * 0.8, hpr=Point3(reducedAvH, 0, 0), startHpr=startHpr, other=tunnelOrigin, name=self.uniqueName('tunnelOutStraightLerpHpr'))), Func(self.wrtReparentTo, pivotNode), Parallel(LerpHprInterval(pivotNode, pivotDur, hpr=Point3(-self.pivotAngle, 0, 0), name=self.uniqueName('tunnelOutPivot')), LerpPosInterval(self, pivotLerpDur, pos=getTargetPos, name=self.uniqueName('tunnelOutPivotLerpPos'))), Func(self.wrtReparentTo, render), Func(pivotNode.removeNode)) def handleTunnelOut(self, startTime, startX, startY, x, y, z, h): tunnelOrigin = render.attachNewNode('tunnelOrigin') tunnelOrigin.setPosHpr(x, y, z, h, 0, 0) self.tunnelTrack = Sequence(Func(self.stopSmooth), self.getTunnelOutToonTrack(startX, startY, tunnelOrigin), Func(self.detachNode), Func(tunnelOrigin.removeNode)) tOffset = globalClock.getFrameTime() - (startTime + self.smoother.getDelay()) if tOffset < 0.0: self.tunnelTrack = Sequence(Wait(-tOffset), self.tunnelTrack) self.tunnelTrack.start() else: self.tunnelTrack.start(tOffset) def enterTeleportOut(self, *args, **kw): Toon.Toon.enterTeleportOut(self, *args, **kw) if self.track: self.track.delayDelete = DelayDelete.DelayDelete(self, 'enterTeleportOut') def exitTeleportOut(self): if self.track != None: DelayDelete.cleanupDelayDeletes(self.track) Toon.Toon.exitTeleportOut(self) return def b_setAnimState(self, animName, animMultiplier=1.0, callback=None, extraArgs=[]): self.d_setAnimState(animName, animMultiplier, None, extraArgs) self.setAnimState(animName, animMultiplier, None, None, callback, extraArgs) return def d_setAnimState(self, animName, animMultiplier=1.0, timestamp=None, extraArgs=[]): timestamp = globalClockDelta.getFrameNetworkTime() self.sendUpdate('setAnimState', [animName, animMultiplier, timestamp]) def setAnimState(self, animName, animMultiplier=1.0, timestamp=None, animType=None, callback=None, extraArgs=[]): if not animName or animName == 'None': return if timestamp == None: ts = 0.0 else: ts = globalClockDelta.localElapsedTime(timestamp) if base.config.GetBool('check-invalid-anims', True): if animMultiplier > 1.0 and animName in ('neutral', ): animMultiplier = 1.0 if self.animFSM.getStateNamed(animName): self.animFSM.request(animName, [animMultiplier, ts, callback, extraArgs]) self.cleanupPieInHand() return def b_setEmoteState(self, animIndex, animMultiplier): self.setEmoteState(animIndex, animMultiplier) self.d_setEmoteState(animIndex, animMultiplier) def d_setEmoteState(self, animIndex, animMultiplier): timestamp = globalClockDelta.getFrameNetworkTime() self.sendUpdate('setEmoteState', [animIndex, animMultiplier, timestamp]) def setEmoteState(self, animIndex, animMultiplier, timestamp=None): if animIndex == TTEmote.EmoteClear: return else: if timestamp == None: ts = 0.0 else: ts = globalClockDelta.localElapsedTime(timestamp) callback = None extraArgs = [] extraArgs.insert(0, animIndex) self.doEmote(animIndex, animMultiplier, ts, callback, extraArgs) return def setCogStatus(self, cogStatusList): self.cogs = cogStatusList def setCogCount(self, cogCountList): self.cogCounts = cogCountList if hasattr(self, 'suitPage'): self.suitPage.updatePage() def setCogRadar(self, radar): self.cogRadar = radar if hasattr(self, 'suitPage'): self.suitPage.updateCogRadarButtons(radar) def setBuildingRadar(self, radar): self.buildingRadar = radar if hasattr(self, 'suitPage'): self.suitPage.updateBuildingRadarButtons(radar) def setCogTypes(self, types): self.cogTypes = types if self.disguisePage: self.disguisePage.updatePage() def setCogLevels(self, levels): self.cogLevels = levels if self.disguisePage: self.disguisePage.updatePage() def getCogLevels(self): return self.cogLevels def setCogParts(self, parts): self.cogParts = parts if self.disguisePage: self.disguisePage.updatePage() def getCogParts(self): return self.cogParts def setCogMerits(self, merits): self.cogMerits = merits if self.disguisePage: self.disguisePage.updatePage() def readyForPromotion(self, dept): merits = base.localAvatar.cogMerits[dept] totalMerits = CogDisguiseGlobals.getTotalMerits(self, dept) if merits >= totalMerits: return 1 else: return 0 def setCogIndex(self, index, cogType=0): self.cogIndex = (index, cogType) if self.cogIndex[0] == -1: if self.isDisguised: self.takeOffSuit() else: if -1 <= index <= 3: cogIndex = self.cogTypes[index] + SuitDNA.suitsPerDept * index cog = SuitDNA.suitHeadTypes[cogIndex] else: cog = SuitDNA.extraSuitsIndex2Head.get(index) if cogType in ToontownGlobals.PutOnSuitRental: self.putOnSuit(index, cogType=cogType, rental=True) else: self.putOnSuit(cog, cogType=cogType) def getCogIndex(self): return self.cogIndex def setCharIndex(self, index): if index == -1: if self.isClassicChar: self.becomeToon() else: self.becomeChar(index) def setTPose(self): if self.isDisguised: self.updateToonDNA(self.style, 1, True) self.generateToonAccessories() suitType = self.suit.style.name cogType = self.isCog if self.suit.isRental: index = ToontownGlobals.CogDepts.index(self.suit.style.dept) self.putOnSuit(suitType=index, setDisplayName=True, cogType=cogType, rental=True, tpose=True) else: self.putOnSuit(suitType=suitType, setDisplayName=True, cogType=cogType, tpose=True) elif self.isClassicChar: charType = CharDNA.charTypes.index(self.char.style.name) self.becomeChar(charType, True) else: self.updateToonDNA(self.style, 1, True) self.generateToonAccessories() def setMuzzle(self, muzzle): self.hideNormalMuzzle() self.hideSurpriseMuzzle() self.hideSadMuzzle() self.hideSmileMuzzle() self.hideAngryMuzzle() self.hideLaughMuzzle() if muzzle == 0: self.showNormalMuzzle() elif muzzle == 1: self.showSurpriseMuzzle() elif muzzle == 2: self.showSadMuzzle() elif muzzle == 3: self.showSmileMuzzle() elif muzzle == 4: self.showAngryMuzzle() elif muzzle == 5: self.showLaughMuzzle() def setEyes(self, eyes): Toon.Toon.setEyes(self, eyes) def isCog(self): if self.cogIndex[0] == -1: return 0 else: return 1 def setDisguisePageFlag(self, flag): if flag and hasattr(self, 'book'): self.loadDisguisePages() self.disguisePageFlag = flag def setSosPageFlag(self, flag): if flag and hasattr(self, 'book'): self.loadSosPages() self.sosPageFlag = flag def setFishCollection(self, genusList, speciesList, weightList): self.fishCollection = FishCollection.FishCollection() self.fishCollection.makeFromNetLists(genusList, speciesList, weightList) def getFishCollection(self): return self.fishCollection def setMaxFishTank(self, maxTank): self.maxFishTank = maxTank def getMaxFishTank(self): return self.maxFishTank def setFishTank(self, genusList, speciesList, weightList): self.fishTank = FishTank.FishTank() self.fishTank.makeFromNetLists(genusList, speciesList, weightList) messenger.send(self.uniqueName('fishTankChange')) def getFishTank(self): return self.fishTank def isFishTankFull(self): return len(self.fishTank) >= self.maxFishTank def setFishingRod(self, rodId): self.fishingRod = rodId def getFishingRod(self): return self.fishingRod def setFishingTrophies(self, trophyList): self.fishingTrophies = trophyList def getFishingTrophies(self): return self.fishingTrophies def setQuests(self, flattenedQuests): questList = [] questLen = 5 for i in xrange(0, len(flattenedQuests), questLen): questList.append(flattenedQuests[i:i + questLen]) self.quests = questList if self == base.localAvatar: messenger.send('questsChanged') def setQuestCarryLimit(self, limit): self.questCarryLimit = limit if self == base.localAvatar: messenger.send('questsChanged') def getQuestCarryLimit(self): return self.questCarryLimit def d_requestDeleteQuest(self, questDesc): self.sendUpdate('requestDeleteQuest', [list(questDesc)]) def setMaxCarry(self, maxCarry): self.maxCarry = maxCarry if self.inventory: self.inventory.updateGUI() def getMaxCarry(self): return self.maxCarry def setCheesyEffect(self, effect, hoodId, expireTime): self.savedCheesyEffect = effect self.savedCheesyHoodId = hoodId self.savedCheesyExpireTime = expireTime if self == base.localAvatar: self.notify.debug('setCheesyEffect(%s, %s, %s)' % (effect, hoodId, expireTime)) if effect != ToontownGlobals.CENormal: serverTime = time.time() + self.cr.getServerDelta() duration = expireTime * 60 - serverTime if duration < 0: self.notify.debug('effect should have expired %s ago.' % PythonUtil.formatElapsedSeconds(-duration)) else: self.notify.debug('effect will expire in %s.' % PythonUtil.formatElapsedSeconds(duration)) if self.activeState == DistributedObject.ESGenerated: self.reconsiderCheesyEffect(lerpTime=0.5) else: self.reconsiderCheesyEffect() def reconsiderCheesyEffect(self, lerpTime=0): effect = self.savedCheesyEffect hoodId = self.savedCheesyHoodId if not self.cr.areCheesyEffectsAllowed(): effect = CENormal if hoodId != 0: try: currentHoodId = base.cr.playGame.hood.id except: currentHoodId = None if hoodId == 1: if currentHoodId == ToontownGlobals.ToontownCentral: effect = CENormal elif currentHoodId != None and currentHoodId != hoodId: effect = CENormal if self.ghostMode: effect = CEGhost self.applyCheesyEffect(effect, lerpTime=lerpTime) return def setGhostMode(self, flag): if self.ghostMode != flag: self.ghostMode = flag if not hasattr(self, 'cr'): return if self.activeState <= DistributedObject.ESDisabled: self.notify.debug('not applying cheesy effect to disabled Toon') elif self.activeState == DistributedObject.ESGenerating: self.reconsiderCheesyEffect() elif self.activeState == DistributedObject.ESGenerated: self.reconsiderCheesyEffect(lerpTime=0.5) else: self.notify.warning('unknown activeState: %s' % self.activeState) self.showNametag2d() self.showNametag3d() if hasattr(self, 'collNode'): if self.ghostMode: self.collNode.setCollideMask(ToontownGlobals.GhostBitmask) else: self.collNode.setCollideMask(ToontownGlobals.WallBitmask | ToontownGlobals.PieBitmask) if self.isLocal(): if self.ghostMode: self.useGhostControls() else: self.useWalkControls() if hasattr(base, 'wantPets') and base.wantPets: def setPetTrickPhrases(self, petTricks): self.petTrickPhrases = petTricks if self.isLocal(): messenger.send('petTrickPhrasesChanged') def setCustomMessages(self, customMessages): self.customMessages = customMessages if self.isLocal(): messenger.send('customMessagesChanged') def setResistanceMessages(self, resistanceMessages): self.resistanceMessages = resistanceMessages if self.isLocal(): messenger.send('resistanceMessagesChanged') def getResistanceMessageCharges(self, textId): msgs = self.resistanceMessages for i in xrange(len(msgs)): if msgs[i][0] == textId: return msgs[i][1] return 0 def setCatalogSchedule(self, currentWeek, nextTime): self.catalogScheduleCurrentWeek = currentWeek self.catalogScheduleNextTime = nextTime if self.isLocal(): self.notify.debug('setCatalogSchedule(%s, %s)' % (currentWeek, nextTime)) if nextTime: serverTime = time.time() + self.cr.getServerDelta() duration = nextTime * 60 - serverTime self.notify.debug('next catalog in %s.' % PythonUtil.formatElapsedSeconds(duration)) def setCatalog(self, monthlyCatalog, weeklyCatalog, backCatalog): self.monthlyCatalog = CatalogItemList.CatalogItemList(monthlyCatalog) self.weeklyCatalog = CatalogItemList.CatalogItemList(weeklyCatalog) self.backCatalog = CatalogItemList.CatalogItemList(backCatalog) if self.catalogNotify == ToontownGlobals.NewItems: self.catalogNotify = ToontownGlobals.OldItems def setCatalogNotify(self, catalogNotify, mailboxNotify): if len(self.weeklyCatalog) + len(self.monthlyCatalog) == 0: catalogNotify = ToontownGlobals.NoItems if len(self.mailboxContents) == 0: mailboxNotify = ToontownGlobals.NoItems self.catalogNotify = catalogNotify self.mailboxNotify = mailboxNotify if self.isLocal(): self.gotCatalogNotify = 1 self.refreshOnscreenButtons() print 'local' def setDeliverySchedule(self, onOrder): self.onOrder = CatalogItemList.CatalogItemList(onOrder, store=CatalogItem.Customization | CatalogItem.DeliveryDate) if self == base.localAvatar: nextTime = self.onOrder.getNextDeliveryDate() if nextTime != None: serverTime = time.time() + self.cr.getServerDelta() duration = nextTime * 60 - serverTime self.notify.debug('next delivery in %s.' % PythonUtil.formatElapsedSeconds(duration)) messenger.send('setDeliverySchedule-%s' % self.doId) return def setMailboxContents(self, mailboxContents): self.mailboxContents = CatalogItemList.CatalogItemList(mailboxContents, store=CatalogItem.Customization) messenger.send('setMailboxContents-%s' % self.doId) def setAwardSchedule(self, onOrder): self.onAwardOrder = CatalogItemList.CatalogItemList(onOrder, store=CatalogItem.Customization | CatalogItem.DeliveryDate) if self == base.localAvatar: nextTime = self.onAwardOrder.getNextDeliveryDate() if nextTime != None: serverTime = time.time() + self.cr.getServerDelta() duration = nextTime * 60 - serverTime self.notify.debug('next delivery in %s.' % PythonUtil.formatElapsedSeconds(duration)) messenger.send('setAwardSchedule-%s' % self.doId) return def setAwardMailboxContents(self, awardMailboxContents): self.notify.debug('Setting awardMailboxContents to %s.' % awardMailboxContents) self.awardMailboxContents = CatalogItemList.CatalogItemList(awardMailboxContents, store=CatalogItem.Customization) self.notify.debug('awardMailboxContents is %s.' % self.awardMailboxContents) messenger.send('setAwardMailboxContents-%s' % self.doId) def setAwardNotify(self, awardNotify): self.notify.debug('setAwardNotify( %s )' % awardNotify) self.awardNotify = awardNotify if self.isLocal(): self.gotCatalogNotify = 1 self.refreshOnscreenButtons() def setGiftSchedule(self, onGiftOrder): self.onGiftOrder = CatalogItemList.CatalogItemList(onGiftOrder, store=CatalogItem.Customization | CatalogItem.DeliveryDate) if self == base.localAvatar: nextTime = self.onGiftOrder.getNextDeliveryDate() if nextTime != None: serverTime = time.time() + self.cr.getServerDelta() duration = nextTime * 60 - serverTime self.notify.debug('next delivery in %s.' % PythonUtil.formatElapsedSeconds(duration)) return def playSplashEffect(self, x, y, z): if localAvatar.zoneId not in [ToontownGlobals.DonaldsDock, ToontownGlobals.OutdoorZone] and (not hasattr(localAvatar, 'inEstate') or localAvatar.inEstate != 1): if random.random() < 0.1: self.sendLogSuspiciousEvent('AvatarHackWarning! playing hacked splash effect') return from toontown.effects import Splash if self.splash == None: self.splash = Splash.Splash(render) self.splash.setPos(x, y, z) self.splash.setScale(2) self.splash.play() place = base.cr.playGame.getPlace() if place: if hasattr(place.loader, 'submergeSound'): base.playSfx(place.loader.submergeSound, node=self) return def d_playSplashEffect(self, x, y, z): self.sendUpdate('playSplashEffect', [x, y, z]) def setTrackAccess(self, trackArray): self.trackArray = trackArray if self.inventory: self.inventory.updateGUI() def getTrackAccess(self): return self.trackArray def hasTrackAccess(self, track): return self.trackArray[track] def setTrackProgress(self, trackId, progress): self.trackProgressId = trackId self.trackProgress = progress if hasattr(self, 'trackPage'): self.trackPage.updatePage() def getTrackProgress(self): return [ self.trackProgressId, self.trackProgress] def getTrackProgressAsArray(self, maxLength=15): shifts = map(operator.rshift, maxLength * [self.trackProgress], xrange(maxLength - 1, -1, -1)) digits = map(operator.mod, shifts, maxLength * [2]) digits.reverse() return digits def setTeleportAccess(self, teleportZoneArray): self.teleportZoneArray = teleportZoneArray def getTeleportAccess(self): return self.teleportZoneArray def hasTeleportAccess(self, zoneId): return zoneId in self.teleportZoneArray def setQuestHistory(self, questList): self.questHistory = questList def getQuestHistory(self): return self.questHistory def setRewardHistory(self, rewardTier, rewardList): self.rewardTier = rewardTier self.rewardHistory = rewardList def getRewardHistory(self): return ( self.rewardTier, self.rewardHistory) def doSmoothTask(self, task): self.smoother.computeAndApplySmoothPosHpr(self, self) self.setSpeed(self.smoother.getSmoothForwardVelocity(), self.smoother.getSmoothRotationalVelocity()) return Task.cont def d_setParent(self, parentToken): DistributedSmoothNode.DistributedSmoothNode.d_setParent(self, parentToken) def setEmoteAccess(self, bits): self.emoteAccess = bits if self == base.localAvatar: messenger.send('emotesChanged') def b_setHouseId(self, id): self.setHouseId(id) self.d_setHouseId(id) def d_setHouseId(self, id): self.sendUpdate('setHouseId', [id]) def setHouseId(self, id): self.houseId = id def getHouseId(self): return self.houseId def setPosIndex(self, index): self.posIndex = index def getPosIndex(self): return self.posIndex def b_setSpeedChatStyleIndex(self, index): realIndexToSend = 0 if type(index) == type(0) and 0 <= index and index < len(speedChatStyles): realIndexToSend = index else: base.cr.centralLogger.writeClientEvent('Hacker alert b_setSpeedChatStyleIndex invalid') self.setSpeedChatStyleIndex(realIndexToSend) self.d_setSpeedChatStyleIndex(realIndexToSend) return def d_setSpeedChatStyleIndex(self, index): realIndexToSend = 0 if type(index) == type(0) and 0 <= index and index < len(speedChatStyles): realIndexToSend = index else: base.cr.centralLogger.writeClientEvent('Hacker alert d_setSpeedChatStyleIndex invalid') self.sendUpdate('setSpeedChatStyleIndex', [realIndexToSend]) def setSpeedChatStyleIndex(self, index): realIndexToUse = 0 if type(index) == type(0) and 0 <= index and index < len(speedChatStyles): realIndexToUse = index else: base.cr.centralLogger.writeClientEvent('Hacker victim setSpeedChatStyleIndex invalid attacking toon = %d' % self.doId) self.speedChatStyleIndex = realIndexToUse nameKey, arrowColor, rolloverColor, frameColor = speedChatStyles[realIndexToUse] self.nametag.setQtColor(VBase4(frameColor[0], frameColor[1], frameColor[2], 1)) if self.isLocal(): messenger.send('SpeedChatStyleChange', []) def getSpeedChatStyleIndex(self): return self.speedChatStyleIndex def setMaxMoney(self, maxMoney): self.maxMoney = maxMoney def getMaxMoney(self): return self.maxMoney def setMoney(self, money): if money != self.money: self.money = money messenger.send(self.uniqueName('moneyChange'), [self.money]) def getMoney(self): return self.money def setMaxBankMoney(self, maxMoney): self.maxBankMoney = maxMoney def getMaxBankMoney(self): return self.maxBankMoney def setBankMoney(self, money): self.bankMoney = money messenger.send(self.uniqueName('bankMoneyChange'), [self.bankMoney]) def getBankMoney(self): return self.bankMoney def getTotalMoney(self): return self.getBankMoney() + self.getMoney() def setEmblems(self, emblems): if self.emblems != emblems: self.emblems = emblems messenger.send(self.uniqueName('emblemsChange'), [self.emblems]) def getEmblems(self): return self.emblems def isEnoughEmblemsToBuy(self, itemEmblemPrices): for emblemIndex, emblemPrice in enumerate(itemEmblemPrices): if emblemIndex >= len(self.emblems): return False if self.emblems[emblemIndex] < emblemPrice: return False return True def isEnoughMoneyAndEmblemsToBuy(self, moneyPrice, itemEmblemPrices): if self.getTotalMoney() < moneyPrice: return False for emblemIndex, emblemPrice in enumerate(itemEmblemPrices): if emblemIndex >= len(self.emblems): return False if self.emblems[emblemIndex] < emblemPrice: return False return True def presentPie(self, x, y, z, h, p, r, timestamp32): if self.numPies <= 0: return else: if not launcher.getPhaseComplete(5): return lastTossTrack = Sequence() if self.tossTrack: lastTossTrack = self.tossTrack tossTrack = None ts = globalClockDelta.localElapsedTime(timestamp32, bits=32) ts -= self.smoother.getDelay() ival = self.getPresentPieInterval(x, y, z, h, p, r) if ts > 0: startTime = ts lastTossTrack.finish() else: ival = Sequence(Wait(-ts), ival) lastTossTrack.finish() startTime = 0 ival = Sequence(ival) ival.start(startTime) self.tossTrack = ival return def tossPie(self, x, y, z, h, p, r, sequence, power, timestamp32): if self.numPies <= 0: return else: if self.numPies != ToontownGlobals.FullPies: self.setNumPies(self.numPies - 1) self.lastTossedPie = globalClock.getFrameTime() if not launcher.getPhaseComplete(5): return lastTossTrack = Sequence() if self.tossTrack: lastTossTrack = self.tossTrack tossTrack = None lastPieTrack = Sequence() if sequence in self.pieTracks: lastPieTrack = self.pieTracks[sequence] del self.pieTracks[sequence] ts = globalClockDelta.localElapsedTime(timestamp32, bits=32) ts -= self.smoother.getDelay() toss, pie, flyPie = self.getTossPieInterval(x, y, z, h, p, r, power) if ts > 0: startTime = ts lastTossTrack.finish() lastPieTrack.finish() else: toss = Sequence(Wait(-ts), toss) pie = Sequence(Wait(-ts), pie) lastTossTrack.finish() lastPieTrack.finish() startTime = 0 self.tossTrack = toss toss.start(startTime) pie = Sequence(pie, Func(self.pieFinishedFlying, sequence)) self.pieTracks[sequence] = pie pie.start(startTime) return def pieFinishedFlying(self, sequence): if sequence in self.pieTracks: del self.pieTracks[sequence] def pieFinishedSplatting(self, sequence): if sequence in self.splatTracks: del self.splatTracks[sequence] def pieSplat(self, x, y, z, sequence, pieCode, timestamp32): if self.isLocal(): return elapsed = globalClock.getFrameTime() - self.lastTossedPie if elapsed > 30: return if not launcher.getPhaseComplete(5): return lastPieTrack = Sequence() if sequence in self.pieTracks: lastPieTrack = self.pieTracks[sequence] del self.pieTracks[sequence] if sequence in self.splatTracks: lastSplatTrack = self.splatTracks[sequence] del self.splatTracks[sequence] lastSplatTrack.finish() ts = globalClockDelta.localElapsedTime(timestamp32, bits=32) ts -= self.smoother.getDelay() splat = self.getPieSplatInterval(x, y, z, pieCode) splat = Sequence(Func(messenger.send, 'pieSplat', [self, pieCode]), splat) if ts > 0: startTime = ts lastPieTrack.finish() else: splat = Sequence(Wait(-ts), splat) startTime = 0 splat = Sequence(splat, Func(self.pieFinishedSplatting, sequence)) self.splatTracks[sequence] = splat splat.start(startTime) def cleanupPies(self): for track in self.pieTracks.values(): track.finish() self.pieTracks = {} for track in self.splatTracks.values(): track.finish() self.splatTracks = {} self.cleanupPieInHand() def cleanupPieInHand(self): if self.tossTrack: self.tossTrack.finish() self.tossTrack = None self.cleanupPieModel() return def setNumPies(self, numPies): self.numPies = numPies if self.isLocal(): self.updatePieButton() if numPies == 0: self.interruptPie() def setPieType(self, pieType): self.pieType = pieType if self.isLocal(): self.updatePieButton() def setTrophyScore(self, score): self.trophyScore = score if self.trophyStar != None: self.trophyStar.removeNode() self.trophyStar = None if self.trophyStarSpeed != 0: taskMgr.remove(self.uniqueName('starSpin')) self.trophyStarSpeed = 0 if hasattr(self, 'gmIcon') and self.gmIcon: return else: if self.trophyScore >= ToontownGlobals.TrophyStarLevels[4]: self.trophyStar = loader.loadModel('phase_3.5/models/gui/name_star') self.trophyStar.reparentTo(self.nametag.getNameIcon()) self.trophyStar.setScale(2) self.trophyStar.setZ(2) self.trophyStar.setColor(ToontownGlobals.TrophyStarColors[4]) self.trophyStarSpeed = 15 if self.trophyScore >= ToontownGlobals.TrophyStarLevels[5]: taskMgr.add(self.__starSpin, self.uniqueName('starSpin')) elif self.trophyScore >= ToontownGlobals.TrophyStarLevels[2]: self.trophyStar = loader.loadModel('phase_3.5/models/gui/name_star') self.trophyStar.reparentTo(self.nametag.getNameIcon()) self.trophyStar.setScale(1.5) self.trophyStar.setZ(1.6) self.trophyStar.setColor(ToontownGlobals.TrophyStarColors[2]) self.trophyStarSpeed = 10 if self.trophyScore >= ToontownGlobals.TrophyStarLevels[3]: taskMgr.add(self.__starSpin, self.uniqueName('starSpin')) elif self.trophyScore >= ToontownGlobals.TrophyStarLevels[0]: self.trophyStar = loader.loadModel('phase_3.5/models/gui/name_star') self.trophyStar.reparentTo(self.nametag.getNameIcon()) self.trophyStar.setScale(1.5) self.trophyStar.setZ(1.6) self.trophyStar.setColor(ToontownGlobals.TrophyStarColors[0]) self.trophyStarSpeed = 8 if self.trophyScore >= ToontownGlobals.TrophyStarLevels[1]: taskMgr.add(self.__starSpin, self.uniqueName('starSpin')) return def __starSpin(self, task): now = globalClock.getFrameTime() r = now * self.trophyStarSpeed % 360.0 self.trophyStar.setR(r) return Task.cont def getZoneId(self): place = base.cr.playGame.getPlace() if place: return place.getZoneId() else: return return def getRequestID(self): return CLIENT_GET_AVATAR_DETAILS def announceBingo(self): self.setChatAbsolute(TTLocalizer.FishBingoBingo, CFSpeech | CFTimeout) def squish(self, damage, noAnim=False): if self == base.localAvatar: if not noAnim: base.cr.playGame.getPlace().fsm.request('squished') self.stunToon() self.setZ(self.getZ(render) + 0.025) def d_squish(self, damage): self.sendUpdate('squish', [damage]) def b_squish(self, damage, noAnim=False): if not self.isStunned: self.squish(damage, noAnim) self.d_squish(damage) self.playDialogueForString('!') def getShadowJoint(self): return Toon.Toon.getShadowJoint(self) if base.wantKarts: def hasKart(self): return self.kartDNA[KartDNA.bodyType] != -1 def getKartDNA(self): return self.kartDNA def setTickets(self, numTickets): self.tickets = numTickets def getTickets(self): return self.tickets def getAccessoryByType(self, accType): return self.kartDNA[accType] def setCurrentKart(self, avId): self.kartId = avId def releaseKart(self): self.kartId = None return def setKartBodyType(self, bodyType): self.kartDNA[KartDNA.bodyType] = bodyType def getKartBodyType(self): return self.kartDNA[KartDNA.bodyType] def setKartBodyColor(self, bodyColor): self.kartDNA[KartDNA.bodyColor] = bodyColor def getKartBodyColor(self): return self.kartDNA[KartDNA.bodyColor] def setKartAccessoryColor(self, accColor): self.kartDNA[KartDNA.accColor] = accColor def getKartAccessoryColor(self): return self.kartDNA[KartDNA.accColor] def setKartEngineBlockType(self, ebType): self.kartDNA[KartDNA.ebType] = ebType def getKartEngineBlockType(self): return self.kartDNA[KartDNA.ebType] def setKartSpoilerType(self, spType): self.kartDNA[KartDNA.spType] = spType def getKartSpoilerType(self): return self.kartDNA[KartDNA.spType] def setKartFrontWheelWellType(self, fwwType): self.kartDNA[KartDNA.fwwType] = fwwType def getKartFrontWheelWellType(self): return self.kartDNA[KartDNA.fwwType] def setKartBackWheelWellType(self, bwwType): self.kartDNA[KartDNA.bwwType] = bwwType def getKartBackWheelWellType(self): return self.kartDNA[KartDNA.bwwType] def setKartRimType(self, rimsType): self.kartDNA[KartDNA.rimsType] = rimsType def setKartDecalType(self, decalType): self.kartDNA[KartDNA.decalType] = decalType def getKartDecalType(self): return self.kartDNA[KartDNA.decalType] def getKartRimType(self): return self.kartDNA[KartDNA.rimsType] def setKartAccessoriesOwned(self, accessories): while len(accessories) < 16: accessories.append(-1) self.accessories = accessories def getKartAccessoriesOwned(self): owned = copy.deepcopy(self.accessories) while InvalidEntry in owned: owned.remove(InvalidEntry) return owned def requestKartDNAFieldUpdate(self, dnaField, fieldValue): self.notify.debug('requestKartDNAFieldUpdate - dnaField %s, fieldValue %s' % (dnaField, fieldValue)) self.sendUpdate('updateKartDNAField', [dnaField, fieldValue]) def requestAddOwnedAccessory(self, accessoryId): self.notify.debug('requestAddOwnedAccessor - purchased accessory %s' % accessoryId) self.sendUpdate('addOwnedAccessory', [accessoryId]) def requestRemoveOwnedAccessory(self, accessoryId): self.notify.debug('requestRemoveOwnedAccessor - removed accessory %s' % accessoryId) self.sendUpdate('removeOwnedAccessory', [accessoryId]) def setKartingTrophies(self, trophyList): self.kartingTrophies = trophyList def getKartingTrophies(self): return self.kartingTrophies def setKartingHistory(self, history): self.kartingHistory = history def getKartingHistory(self): return self.kartingHistory def setKartingPersonalBest(self, bestTimes): self.kartingPersonalBest = bestTimes def getKartingPersonalBest(self): return self.kartingPersonalBest def setKartingPersonalBest2(self, bestTimes2): self.kartingPersonalBest2 = bestTimes2 def getKartingPersonalBest2(self): return self.kartingPersonalBest2 def getKartingPersonalBestAll(self): return self.kartingPersonalBest + self.kartingPersonalBest2 if hasattr(base, 'wantPets') and base.wantPets: def setPetId(self, petId): self.petId = petId if petId == 0: self.petDNA = None elif self.isLocal(): base.cr.addPetToFriendsMap() return def getPetId(self): return self.petId def getPetId(self): return self.petId def hasPet(self): return self.petId != 0 def b_setPetTutorialDone(self, bDone): self.d_setPetTutorialDone(bDone) self.setPetTutorialDone(bDone) def d_setPetTutorialDone(self, bDone): self.sendUpdate('setPetTutorialDone', [bDone]) def setPetTutorialDone(self, bDone): self.bPetTutorialDone = bDone def b_setFishBingoTutorialDone(self, bDone): self.d_setFishBingoTutorialDone(bDone) self.setFishBingoTutorialDone(bDone) def d_setFishBingoTutorialDone(self, bDone): self.sendUpdate('setFishBingoTutorialDone', [bDone]) def setFishBingoTutorialDone(self, bDone): self.bFishBingoTutorialDone = bDone def b_setFishBingoMarkTutorialDone(self, bDone): self.d_setFishBingoMarkTutorialDone(bDone) self.setFishBingoMarkTutorialDone(bDone) def d_setFishBingoMarkTutorialDone(self, bDone): self.sendUpdate('setFishBingoMarkTutorialDone', [bDone]) def setFishBingoMarkTutorialDone(self, bDone): self.bFishBingoMarkTutorialDone = bDone def b_setPetMovie(self, petId, flag): self.d_setPetMovie(petId, flag) self.setPetMovie(petId, flag) def d_setPetMovie(self, petId, flag): self.sendUpdate('setPetMovie', [petId, flag]) def setPetMovie(self, petId, flag): pass def lookupPetDNA(self): if self.petId and not self.petDNA: from toontown.pets import PetDetail PetDetail.PetDetail(self.petId, self.__petDetailsLoaded) def __petDetailsLoaded(self, pet): self.petDNA = pet.style def trickOrTreatTargetMet(self, beanAmount): if self.effect: self.effect.stop() self.effect = TrickOrTreatTargetEffect(beanAmount) self.effect.play() def trickOrTreatMilestoneMet(self): if self.effect: self.effect.stop() self.effect = TrickOrTreatMilestoneEffect() self.effect.play() def winterCarolingTargetMet(self, beanAmount): if self.effect: self.effect.stop() self.effect = WinterCarolingEffect(beanAmount) self.effect.play() def d_reqCogSummons(self, type, suitIndex): if type == 'single': pass elif type == 'building': pass elif type == 'invasion': pass self.sendUpdate('reqCogSummons', [type, suitIndex]) def cogSummonsResponse(self, returnCode, suitIndex, doId): messenger.send('cog-summons-response', [returnCode, suitIndex, doId]) def setCogSummonsEarned(self, cogSummonsEarned): self.cogSummonsEarned = cogSummonsEarned def getCogSummonsEarned(self): return self.cogSummonsEarned def hasCogSummons(self, suitIndex, type=None): summons = self.getCogSummonsEarned() curSetting = summons[suitIndex] if type == 'single': return curSetting & 1 if type == 'building': return curSetting & 2 if type == 'invasion': return curSetting & 4 return curSetting def setFlowerCollection(self, speciesList, varietyList): self.flowerCollection = FlowerCollection.FlowerCollection() self.flowerCollection.makeFromNetLists(speciesList, varietyList) def getFlowerCollection(self): return self.flowerCollection def setMaxFlowerBasket(self, maxFlowerBasket): self.maxFlowerBasket = maxFlowerBasket def getMaxFlowerBasket(self): return self.maxFlowerBasket def isFlowerBasketFull(self): return len(self.flowerBasket) >= self.maxFlowerBasket def setFlowerBasket(self, speciesList, varietyList): self.flowerBasket = FlowerBasket.FlowerBasket() self.flowerBasket.makeFromNetLists(speciesList, varietyList) messenger.send('flowerBasketUpdated') def getFlowerBasket(self): return self.flowerBasket def setShovel(self, shovelId): self.shovel = shovelId def attachShovel(self): self.shovelModel = self.getShovelModel() self.shovelModel.reparentTo(self.rightHand) return self.shovelModel def detachShovel(self): if self.shovelModel: self.shovelModel.removeNode() def getShovelModel(self): shovels = loader.loadModel('phase_5.5/models/estate/shovels') shovelId = ['A', 'B', 'C', 'D'][self.shovel] shovel = shovels.find('**/shovel' + shovelId) shovel.setH(-90) shovel.setP(216) shovel.setX(0.2) shovel.detachNode() shovels.removeNode() return shovel def setShovelSkill(self, skillLevel): self.shovelSkill = skillLevel def getBoxCapability(self): return GardenGlobals.getShovelPower(self.shovel, self.shovelSkill) def setWateringCan(self, wateringCanId): self.wateringCan = wateringCanId def attachWateringCan(self): self.wateringCanModel = self.getWateringCanModel() self.wateringCanModel.reparentTo(self.rightHand) return self.wateringCanModel def detachWateringCan(self): if self.wateringCanModel: self.wateringCanModel.removeNode() def getWateringCanModel(self): scalePosHprsTable = ((0.25, 0.1, 0, 0.2, -90, -125, -45), (0.2, 0.0, 0.25, 0.2, -90, -125, -45), (0.2, 0.2, 0.1, 0.2, -90, -125, -45), (0.2, 0.0, 0.25, 0.2, -90, -125, -45)) cans = loader.loadModel('phase_5.5/models/estate/watering_cans') canId = ['A', 'B', 'C', 'D'][self.wateringCan] can = cans.find('**/water_can' + canId) can.setScale(scalePosHprsTable[self.wateringCan][0]) can.setPos(scalePosHprsTable[self.wateringCan][1], scalePosHprsTable[self.wateringCan][2], scalePosHprsTable[self.wateringCan][3]) can.setHpr(scalePosHprsTable[self.wateringCan][4], scalePosHprsTable[self.wateringCan][5], scalePosHprsTable[self.wateringCan][6]) can.detachNode() cans.removeNode() if hasattr(base, 'rwc'): if base.rwc: if hasattr(self, 'wateringCan2'): self.wateringCan2.removeNode() self.wateringCan2 = can.copyTo(self.rightHand) else: self.wateringCan2.removeNode() return can def setWateringCanSkill(self, skillLevel): self.wateringCanSkill = skillLevel def setGardenSpecials(self, specials): self.gardenSpecials = specials if hasattr(self, 'gardenPage') and self.gardenPage: self.gardenPage.updatePage() def getGardenSpecials(self): return self.gardenSpecials def getMyTrees(self): treeDict = self.cr.getObjectsOfClass(DistributedGagTree.DistributedGagTree) trees = [] for tree in treeDict.values(): if tree.getOwnerId() == self.doId: trees.append(tree) if not trees: pass return trees def isTreePlanted(self, track, level): trees = self.getMyTrees() for tree in trees: if tree.gagTrack == track and tree.gagLevel == level: return True return False def doIHaveRequiredTrees(self, track, level): trees = self.getMyTrees() trackAndLevelList = [] for tree in trees: trackAndLevelList.append((tree.gagTrack, tree.gagLevel)) haveRequired = True for curLevel in xrange(level): testTuple = ( track, curLevel) if testTuple not in trackAndLevelList: haveRequired = False break return haveRequired def setTrackBonusLevel(self, trackArray): self.trackBonusLevel = trackArray if self.inventory: self.inventory.updateGUI() def getTrackBonusLevel(self, track=None): if track == None: return self.trackBonusLevel else: return self.trackBonusLevel[track] return def checkGagBonus(self, track, level): trackBonus = self.getTrackBonusLevel(track) return trackBonus >= level def setGardenTrophies(self, trophyList): self.gardenTrophies = trophyList def getGardenTrophies(self): return self.gardenTrophies def useSpecialResponse(self, returnCode): messenger.send('use-special-response', [returnCode]) def setGardenStarted(self, bStarted): self.gardenStarted = bStarted def getGardenStarted(self): return self.gardenStarted def sendToGolfCourse(self, zoneId): print 'sending to golfCourse' hoodId = self.cr.playGame.hood.hoodId golfRequest = {'loader': 'safeZoneLoader', 'where': 'golfcourse', 'how': 'teleportIn', 'hoodId': hoodId, 'zoneId': zoneId, 'shardId': None, 'avId': -1} base.cr.playGame.getPlace().requestLeave(golfRequest) return def getGolfTrophies(self): return self.golfTrophies def getGolfCups(self): return self.golfCups def setGolfHistory(self, history): self.golfHistory = history self.golfTrophies = GolfGlobals.calcTrophyListFromHistory(self.golfHistory) self.golfCups = GolfGlobals.calcCupListFromHistory(self.golfHistory) if hasattr(self, 'book'): self.addGolfPage() def getGolfHistory(self): return self.golfHistory def hasPlayedGolf(self): retval = False for historyValue in self.golfHistory: if historyValue: retval = True break return retval def setPackedGolfHoleBest(self, packedHoleBest): unpacked = GolfGlobals.unpackGolfHoleBest(packedHoleBest) self.setGolfHoleBest(unpacked) def setGolfHoleBest(self, holeBest): self.golfHoleBest = holeBest def getGolfHoleBest(self): return self.golfHoleBest def setGolfCourseBest(self, courseBest): self.golfCourseBest = courseBest def getGolfCourseBest(self): return self.golfCourseBest def setUnlimitedSwing(self, unlimitedSwing): self.unlimitedSwing = unlimitedSwing def getUnlimitedSwing(self): return self.unlimitedSwing def getPinkSlips(self): if hasattr(self, 'pinkSlips'): return self.pinkSlips else: return 0 def setPinkSlips(self, pinkSlips): self.pinkSlips = pinkSlips def setAccess(self, access): self.setGameAccess(access) self.setDisplayName(self.getName()) def setGameAccess(self, access): self.gameAccess = access def getGameAccess(self): if hasattr(self, 'gameAccess'): return self.gameAccess else: return 0 def setDisplayName(self, str): if not self.isDisguised: self.setFancyNametag(name=str) else: self.removeFancyNametag() Avatar.Avatar.setDisplayName(self, str) def setFancyNametag(self, name=None): if name == None: name = self.getName() if self.getNametagStyle() == 100: self.setFont(ToontownGlobals.getToonFont()) else: self.setFont(ToontownGlobals.getNametagFont(self.getNametagStyle())) Avatar.Avatar.setDisplayName(self, name) self.setFont(ToontownGlobals.getToonFont()) return def removeFancyNametag(self): self.nametag.clearShadow() def getNametagStyle(self): if hasattr(self, 'nametagStyle'): return self.nametagStyle else: return 0 def setNametagStyle(self, nametagStyle): if base.config.GetBool('want-nametag-avids', 0): nametagStyle = 0 self.nametagStyle = nametagStyle self.setDisplayName(self.getName()) def getAvIdName(self): paidStr = PythonUtil.choice(self.getGameAccess() == OTPGlobals.AccessFull, 'P', 'F') return '%s\n%s (%s)' % (self.getName(), self.doId, paidStr) def getTTSVolume(self): avatarPos = self.getPos(base.localAvatar) result = int(round((avatarPos[0] + avatarPos[1]) / 2)) if result > 100: result = 100 elif result < 0: result = 0 volumeList = range(100, -1, -1) return volumeList[result] def playCurrentDialogue(self, dialogue, chatFlags, interrupt=1): reality = False if chatFlags & CFExclaim == 512: reality = True if interrupt and self.__currentDialogue is not None: self.__currentDialogue.stop() self.__currentDialogue = dialogue if dialogue: base.playSfx(dialogue, node=self) elif chatFlags & CFSpeech != 0 or chatFlags & CFExclaim == 512: if self.nametag.getNumChatPages() > 0: self.playDialogueForString(self.nametag.getChat(), exclaim=reality) if self.soundChatBubble != None: base.playSfx(self.soundChatBubble, node=self) elif self.nametag.getChatStomp() > 0: self.playDialogueForString(self.nametag.getStompText(), self.nametag.getStompDelay(), exclaim=reality) return def playDialogueForString(self, chatString, delay=0.0, exclaim=False): if len(chatString) == 0: return searchString = chatString.lower() if searchString.find(OTPLocalizer.DialogSpecial) >= 0: type = 'special' elif searchString.find(OTPLocalizer.DialogExclamation) >= 0 or exclaim: type = 'exclamation' elif searchString.find(OTPLocalizer.DialogQuestion) >= 0: type = 'question' elif random.randint(0, 1): type = 'statementA' else: type = 'statementB' stringLength = len(chatString) if stringLength <= OTPLocalizer.DialogLength1: length = 1 elif stringLength <= OTPLocalizer.DialogLength2: length = 2 elif stringLength <= OTPLocalizer.DialogLength3: length = 3 else: length = 4 self.playDialogue(type, length, chatString, delay) def playDialogue(self, type, length, chatString='', delay=0.0): if base.textToSpeech: chatString = chatString.replace('WLDisplay', '') soundSequence = Sequence(Wait(delay), Func(self.playTTS, chatString)) self.soundSequenceList.append(soundSequence) soundSequence.start() self.cleanUpSoundList() return else: dialogueArray = self.getDialogueArray() if dialogueArray == None: return sfxIndex = None if type == 'statementA' or type == 'statementB': if length == 1: sfxIndex = 0 elif length == 2: sfxIndex = 1 elif length >= 3: sfxIndex = 2 elif type == 'question': sfxIndex = 3 elif type == 'exclamation': sfxIndex = 4 elif type == 'special': sfxIndex = 5 else: self.notify.error('unrecognized dialogue type: ', type) if sfxIndex != None and sfxIndex < len(dialogueArray) and dialogueArray[sfxIndex] != None: soundSequence = Sequence(Wait(delay), SoundInterval(dialogueArray[sfxIndex], node=None, listenerNode=base.localAvatar, loop=0, volume=1.0)) self.soundSequenceList.append(soundSequence) soundSequence.start() self.cleanUpSoundList() return def playTTS(self, chatString): try: animalType = self.style.getType() if self.getTTSVolume() == 0: return if sys.platform == 'darwin': if animalType in ToontownGlobals.Species2Voice.keys(): voice = ToontownGlobals.Species2Voice[animalType] else: voice = ToontownGlobals.DefaultVoice Popen(['say', voice, chatString]) else: if animalType in ToontownGlobals.Species2Pitch.keys(): pitch = '-p' + str(ToontownGlobals.Species2Pitch[animalType]) else: pitch = '-p' + str(ToontownGlobals.DefaultPitch) volume = '-a' + str(self.getTTSVolume()) Popen([base.textToSpeechPath, pitch, volume, '-ven', chatString]) return except: base.resetTextToSpeech() self.setSystemMessage(0, TTLocalizer.TextToSpeechWarning) return def cleanUpSoundList(self): removeList = [] for soundSequence in self.soundSequenceList: if soundSequence.isStopped(): removeList.append(soundSequence) for soundSequence in removeList: self.soundSequenceList.remove(soundSequence) def sendLogMessage(self, message): self.sendUpdate('logMessage', [message]) def setChatAbsolute(self, chatString, chatFlags, dialogue=None, interrupt=1, quiet=0): DistributedAvatar.DistributedAvatar.setChatAbsolute(self, chatString, chatFlags, dialogue, interrupt) def setChatMuted(self, chatString, chatFlags, dialogue=None, interrupt=1, quiet=0): self.nametag.setChat(chatString, chatFlags) self.playCurrentDialogue(dialogue, chatFlags - CFSpeech, interrupt) def displayTalk(self, chatString, mods=None): flags = CFSpeech | CFTimeout if base.talkAssistant.isThought(chatString): flags = CFThought chatString = base.talkAssistant.removeThoughtPrefix(chatString) elif base.talkAssistant.isExclaim(chatString): flags = CFExclaim | CFTimeout chatString = base.talkAssistant.removeExclaimPrefix(chatString) self.nametag.setChat(chatString, flags) if base.toonChatSounds: self.playCurrentDialogue(None, flags, interrupt=1) return def setMail(self, mail): DistributedToon.partyNotify.debug('setMail called with %d mail items' % len(mail)) self.mail = [] for i in xrange(len(mail)): oneMailItem = mail[i] newMail = SimpleMailBase(*oneMailItem) self.mail.append(newMail) def setSimpleMailNotify(self, simpleMailNotify): DistributedToon.partyNotify.debug('setSimpleMailNotify( %s )' % simpleMailNotify) self.simpleMailNotify = simpleMailNotify if self.isLocal(): self.gotCatalogNotify = 1 self.refreshOnscreenButtons() def setInviteMailNotify(self, inviteMailNotify): DistributedToon.partyNotify.debug('setInviteMailNotify( %s )' % inviteMailNotify) self.inviteMailNotify = inviteMailNotify if self.isLocal(): self.gotCatalogNotify = 1 self.refreshOnscreenButtons() def setInvites(self, invites): DistributedToon.partyNotify.debug('setInvites called passing in %d invites.' % len(invites)) self.invites = [] for i in xrange(len(invites)): oneInvite = invites[i] newInvite = InviteInfo(*oneInvite) self.invites.append(newInvite) def updateInviteMailNotify(self): invitesInMailbox = self.getInvitesToShowInMailbox() newInvites = 0 readButNotRepliedInvites = 0 for invite in invitesInMailbox: if invite.status == PartyGlobals.InviteStatus.NotRead: newInvites += 1 elif invite.status == PartyGlobals.InviteStatus.ReadButNotReplied: readButNotRepliedInvites += 1 if __dev__: partyInfo = self.getOnePartyInvitedTo(invite.partyId) if not partyInfo: self.notify.error('party info not found in partiesInvtedTo, partyId = %s' % str(invite.partyId)) if newInvites: self.setInviteMailNotify(ToontownGlobals.NewItems) elif readButNotRepliedInvites: self.setInviteMailNotify(ToontownGlobals.OldItems) else: self.setInviteMailNotify(ToontownGlobals.NoItems) def getInvitesToShowInMailbox(self): result = [] for invite in self.invites: appendInvite = True if invite.status == InviteStatus.Accepted or invite.status == InviteStatus.Rejected: appendInvite = False if appendInvite: partyInfo = self.getOnePartyInvitedTo(invite.partyId) if not partyInfo: appendInvite = False if appendInvite: if partyInfo.status == PartyGlobals.PartyStatus.Cancelled: appendInvite = False if appendInvite: endDate = partyInfo.endTime.date() curDate = base.cr.toontownTimeManager.getCurServerDateTime().date() if endDate < curDate: appendInvite = False if appendInvite: result.append(invite) return result def getNumInvitesToShowInMailbox(self): result = len(self.getInvitesToShowInMailbox()) return result def setHostedParties(self, hostedParties): DistributedToon.partyNotify.debug('setHostedParties called passing in %d parties.' % len(hostedParties)) self.hostedParties = [] for i in xrange(len(hostedParties)): hostedInfo = hostedParties[i] newParty = PartyInfo(*hostedInfo) self.hostedParties.append(newParty) def setPartiesInvitedTo(self, partiesInvitedTo): DistributedToon.partyNotify.debug('setPartiesInvitedTo called passing in %d parties.' % len(partiesInvitedTo)) self.partiesInvitedTo = [] for i in xrange(len(partiesInvitedTo)): partyInfo = partiesInvitedTo[i] newParty = PartyInfo(*partyInfo) self.partiesInvitedTo.append(newParty) self.updateInviteMailNotify() def getOnePartyInvitedTo(self, partyId): result = None for i in xrange(len(self.partiesInvitedTo)): partyInfo = self.partiesInvitedTo[i] if partyInfo.partyId == partyId: result = partyInfo break return result def getInviteForPartyId(self, partyId): result = None for invite in self.invites: if invite.partyId == partyId: result = invite break return result def setPartyReplies(self, replies): DistributedToon.partyNotify.debug('setPartyReplies called passing in %d parties.' % len(replies)) self.partyReplyInfoBases = [] for i in xrange(len(replies)): partyReply = replies[i] repliesForOneParty = PartyReplyInfoBase(*partyReply) self.partyReplyInfoBases.append(repliesForOneParty) def setPartyCanStart(self, partyId): DistributedToon.partyNotify.debug('setPartyCanStart called passing in partyId=%s' % partyId) for partyInfo in self.hostedParties: if partyInfo.partyId == partyId: partyInfo.status = PartyGlobals.PartyStatus.CanStart from toontown.shtiker import EventsPage if hasattr(self, 'eventsPage') and base.localAvatar.book.entered and base.localAvatar.book.isOnPage(self.eventsPage) and self.eventsPage.getMode() == EventsPage.EventsPage_Host: base.localAvatar.eventsPage.loadHostedPartyInfo() if hasattr(self, 'displaySystemClickableWhisper'): self.displaySystemClickableWhisper(0, TTLocalizer.PartyCanStart, whisperType=WhisperPopup.WTSystem) else: self.setSystemMessage(0, TTLocalizer.PartyCanStart) def setPartyStatus(self, partyId, newStatus): DistributedToon.partyNotify.debug('setPartyCanStatus called passing in partyId=%s status=%s' % (partyId, newStatus)) found = False for partyInfo in self.hostedParties: if partyInfo.partyId == partyId: partyInfo.status = newStatus found = True break for partyInfo in self.partiesInvitedTo: if partyInfo.partyId == partyId: partyInfo.status = newStatus found = True from toontown.shtiker import EventsPage if hasattr(self, 'eventsPage') and base.localAvatar.book.entered and base.localAvatar.book.isOnPage(self.eventsPage) and self.eventsPage.getMode() == EventsPage.EventsPage_Invited: base.localAvatar.eventsPage.loadInvitations() if newStatus == PartyStatus.Started and hasattr(self, 'displaySystemClickableWhisper'): invite = self.getInviteForPartyId(partyId) if invite: name = ' ' host = base.cr.identifyAvatar(partyInfo.hostId) if host: name = host.getName() if invite.status == InviteStatus.Accepted: displayStr = TTLocalizer.PartyHasStartedAcceptedInvite % TTLocalizer.GetPossesive(name) self.displaySystemClickableWhisper(-1, displayStr, whisperType=WhisperPopup.WTSystem) else: displayStr = TTLocalizer.PartyHasStartedNotAcceptedInvite % TTLocalizer.GetPossesive(name) self.setSystemMessage(partyInfo.hostId, displayStr, whisperType=WhisperPopup.WTSystem) break if not found: self.notify.warning("setPartyCanStart can't find partyId=% status=%d" % (partyId, newStatus)) def announcePartyStarted(self, partyId): DistributedToon.partyNotify.debug('announcePartyStarted') return for partyReplyInfo in self.partyReplyInfoBases: if partyReplyInfo.partyId == partyId: for singleReply in partyReplyInfo.replies: toonId = singleReply.inviteeId if base.cr.isFriend(toonId): if base.cr.isFriendOnline(toonId): if singleReply.status == InviteStatus.Accepted: self.whisperSCTo(5302, toonId, 0) else: self.whisperSCTo(5302, toonId, 0) def updateInvite(self, inviteKey, newStatus): DistributedToon.partyNotify.debug('updateInvite( inviteKey=%d, newStatus=%s )' % (inviteKey, InviteStatus.getString(newStatus))) for invite in self.invites: if invite.inviteKey == inviteKey: invite.status = newStatus self.updateInviteMailNotify() break def updateReply(self, partyId, inviteeId, newStatus): DistributedToon.partyNotify.debug('updateReply( partyId=%d, inviteeId=%d, newStatus=%s )' % (partyId, inviteeId, InviteStatus.getString(newStatus))) for partyReplyInfoBase in self.partyReplyInfoBases: if partyReplyInfoBase.partyId == partyId: for reply in partyReplyInfoBase.replies: if reply.inviteeId == inviteeId: reply.status = newStatus break def scrubTalk(self, message, mods, raw): scrubbed = 0 text = copy.copy(message) for mod in mods: index = mod[0] length = mod[1] - mod[0] + 1 newText = text[0:index] + length * '\x07' + text[index + length:] text = newText for friendId, flags in self.friendsList: if flags & ToontownGlobals.FriendChat: text = copy.copy(raw) if not self.isLocal() and self.playerType in [NametagGroup.CCNormal, NametagGroup.CCFreeChat]: text = copy.copy(raw) words = text.split(' ') newwords = [] i = 0 for word in words: if word == '': newwords.append(word) elif word == '.' and len(words) == 1: newwords.append(word) elif (word.startswith('.') or word.startswith('!')) and len(word) > 1 and i == 0: if word[0] == '\x07' or len(word) > 1 and word[1] == '\x07': newwords.append(word[0] + '\x01WLDisplay\x01' + self.chatGarbler.garbleSingle(self, word) + '\x02') else: flag = 0 for friendId, flags in self.friendsList: if not flags & ToontownGlobals.FriendChat: flag = 1 if flag: newwords.append(word[0] + '\x01WLDisplay\x01' + word[1:] + '\x02') else: newwords.append(word) scrubbed = 1 elif word[0] == '\x07' or len(word) > 1 and word[1] == '\x07': newwords.append('\x01WLDisplay\x01' + self.chatGarbler.garbleSingle(self, word) + '\x02') scrubbed = 1 elif base.whiteList.isWord(word): newwords.append(word) else: flag = 0 for friendId, flags in self.friendsList: if not flags & ToontownGlobals.FriendChat: flag = 1 if flag: scrubbed = 1 newwords.append('\x01WLDisplay\x01' + word + '\x02') else: newwords.append(word) i += 1 newText = (' ').join(newwords) return ( newText, scrubbed) def replaceBadWords(self, text): words = text.split(' ') newwords = [] for word in words: if word == '': newwords.append(word) elif word[0] == '\x07': newwords.append('\x01WLRed\x01' + self.chatGarbler.garbleSingle(self, word) + '\x02') elif base.whiteList.isWord(word): newwords.append(word) else: newwords.append('\x01WLRed\x01' + word + '\x02') newText = (' ').join(newwords) return newText def toonUp(self, hpGained, hasInteractivePropBonus=False): if self.hp == None or hpGained < 0: return oldHp = self.hp if self.hp + hpGained <= 0: self.hp += hpGained else: self.hp = min(max(self.hp, 0) + hpGained, self.maxHp) hpGained = self.hp - max(oldHp, 0) if hpGained > 0: self.showHpText(hpGained, hasInteractivePropBonus=hasInteractivePropBonus) self.hpChange(quietly=0) return def showHpText(self, number, bonus=0, scale=1, hasInteractivePropBonus=False): if self.HpTextEnabled and not self.ghostMode: if number != 0: if self.hpText: self.hideHpText() self.HpTextGenerator.setFont(OTPGlobals.getSignFont()) if number < 0: self.HpTextGenerator.setText(str(number)) else: hpGainedStr = '+' + str(number) if hasInteractivePropBonus: hpGainedStr += '\n' + TTLocalizer.InteractivePropTrackBonusTerms[0] self.HpTextGenerator.setText(hpGainedStr) self.HpTextGenerator.clearShadow() self.HpTextGenerator.setAlign(TextNode.ACenter) if bonus == 1: r = 1.0 g = 1.0 b = 0 a = 1 elif bonus == 2: r = 1.0 g = 0.5 b = 0 a = 1 elif number < 0: r = 0.9 g = 0 b = 0 a = 1 else: r = 0 g = 0.9 b = 0 a = 1 self.HpTextGenerator.setTextColor(r, g, b, a) self.hpTextNode = self.HpTextGenerator.generate() self.hpText = self.attachNewNode(self.hpTextNode) self.hpText.setScale(scale) self.hpText.setBillboardPointEye() self.hpText.setBin('fixed', 100) self.hpText.setPos(0, 0, self.height / 2) seq = Sequence(self.hpText.posInterval(1.0, Point3(0, 0, self.height + 1.5), blendType='easeOut'), Wait(0.85), self.hpText.colorInterval(0.1, Vec4(r, g, b, 0)), Func(self.hideHpText)) seq.start() def setAnimPlayRate(self, rate): if self.getIsTransformed(): actor = self.getActiveTransformation() actor.setPlayRate(rate, self.playingAnim) else: self.setPlayRate(rate, self.playingAnim) if rate == 1: self.forcedRate = -1 else: self.forcedRate = rate def setName(self, name='unknownDistributedAvatar'): DistributedPlayer.DistributedPlayer.setName(self, name) self._handleGMName(name) base.cr.discordManager.setSmallImageText(base.cr.discordManager.getSmallImageText()) def _handleGMName(self, name=None): if not name: name = self.name self.setDisplayName(name) if self._isGM: self.setGMIcon(self._gmType) else: self.removeGMIcon() self.setNametagStyle(self.getNametagStyle()) def setGMIcon(self, gmType=None): if hasattr(self, 'gmIcon') and self.gmIcon: return if not gmType: gmType = self._gmType iconInfo = ( ('phase_3.5/models/gui/tt_m_gui_gm_toontroop_whistle', '**/*whistleIcon*', 'phase_3.5/maps/gamegui_palette_3clla_1.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toonResistance_fist', '**/*fistIcon*', 'phase_3.5/maps/gamegui_palette_3clla_1.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toontroop_getConnected', '**/*whistleIcon*', 'phase_3.5/maps/gamegui_palette_3clla_1.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toontroop_whistle', '**/*whistleIcon*', 'phase_3.5/maps/gamegui_palette_3clla_2.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toonResistance_fist', '**/*fistIcon*', 'phase_3.5/maps/gamegui_palette_3clla_2.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toontroop_getConnected', '**/*whistleIcon*', 'phase_3.5/maps/gamegui_palette_3clla_2.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toonResistance_fist', '**/*fistIcon*', 'phase_3.5/maps/gamegui_palette_3clla_3.jpg', 4), ('phase_3.5/models/gui/tt_m_gui_gm_toontroop_getConnected', '**/*whistleIcon*', 'phase_3.5/maps/gamegui_palette_3clla_3.jpg', 4)) if gmType > len(iconInfo) - 1: return modelName, searchString, texture, scale = iconInfo[gmType] icons = loader.loadModel(modelName) self.gmIcon = icons.find(searchString) ts = self.gmIcon.findTextureStage('*') tex = loader.loadTexture(texture) self.gmIcon.setTexture(ts, tex, 1) self.gmIcon.setScale(scale) self.gmIcon.reparentTo(self.nametag.getNameIcon()) self.setTrophyScore(self.trophyScore) self.gmIcon.setZ(-2.5) self.gmIcon.setY(0.0) self.gmIcon.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.gmIcon.setTransparency(1) self.gmIconInterval = LerpHprInterval(self.gmIcon, 3.0, Point3(0, 0, 0), Point3(-360, 0, 0)) self.gmIconInterval.loop() def setGMPartyIcon(self): gmType = self._gmType iconInfo = ('phase_3.5/models/gui/tt_m_gui_gm_toonResistance_fist', 'phase_3.5/models/gui/tt_m_gui_gm_toontroop_whistle', 'phase_3.5/models/gui/tt_m_gui_gm_toonResistance_fist', 'phase_3.5/models/gui/tt_m_gui_gm_toontroop_getConnected') if gmType > len(iconInfo) - 1: return self.gmIcon = loader.loadModel(iconInfo[gmType]) self.gmIcon.reparentTo(self.nametag.getNameIcon()) self.gmIcon.setScale(3.25) self.setTrophyScore(self.trophyScore) self.gmIcon.setZ(1.0) self.gmIcon.setY(0.0) self.gmIcon.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.gmIcon.setTransparency(1) self.gmIconInterval = LerpHprInterval(self.gmIcon, 3.0, Point3(0, 0, 0), Point3(-360, 0, 0)) self.gmIconInterval.loop() def removeGMIcon(self): if hasattr(self, 'gmIconInterval') and self.gmIconInterval: self.gmIconInterval.finish() del self.gmIconInterval if hasattr(self, 'gmIcon') and self.gmIcon: self.gmIcon.detachNode() del self.gmIcon def _startZombieCheck(self): self._zombieCheckSerialGen = SerialNumGen(random.randrange(2147483648L)) taskMgr.doMethodLater(2.0 + 60.0 * random.random(), self._doZombieCheck, self._getZombieCheckTaskName()) def _stopZombieCheck(self): taskMgr.remove(self._getZombieCheckTaskName()) def _getZombieCheckTaskName(self): return self.uniqueName('zombieCheck') def _doZombieCheck(self, task=None): self._lastZombieContext = self._zombieCheckSerialGen.next() self.cr.timeManager.checkAvOnDistrict(self, self._lastZombieContext) taskMgr.doMethodLater(60.0, self._doZombieCheck, self._getZombieCheckTaskName()) def _zombieCheckResult(self, context, present): if context == self._lastZombieContext: print '_zombieCheckResult[%s]: %s' % (self.doId, present) if not present: self.notify.warning('hiding av %s because they are not on the district!' % self.doId) self.setParent(OTPGlobals.SPHidden) def setFriendsList(self, friendsList): DistributedPlayer.DistributedPlayer.setFriendsList(self, friendsList) for friendId, trueFriend in self.friendsList: if ( friendId, trueFriend) in self.oldFriendsList: continue friend = self.cr.doId2do.get(friendId) if friend: base.cr.ttoffFriendsManager.friendOnline(friendId, 0, 0, False) for friendPair in self.oldFriendsList: if friendPair in self.friendsList: continue if type(friendPair) == tuple: friendId = friendPair[0] else: friendId = friendPair friend = self.cr.doId2do.get(friendId) if not friend: continue if hasattr(base.localAvatar, 'inEstate') and base.localAvatar.inEstate: base.cr.estateMgr.removeFriend(self.getDoId(), friendId) def setImmortalMode(self, flag): self.immoralMode = flag messenger.send(self.uniqueName('magicWordChange'), [1, flag]) def getImmortalMode(self): return self.immortalMode def setUnlimitedGags(self, flag): self.unlimitedGags = flag messenger.send(self.uniqueName('magicWordChange'), [0, flag]) def getUnlimitedGags(self): return self.unlimitedGags def setInstaKill(self, flag): self.instaKill = flag messenger.send(self.uniqueName('magicWordChange'), [2, flag]) def getInstaKill(self): return self.instaKill def setRun(self): if self.isLocal(): inputState.set('debugRunning', inputState.isSet('debugRunning') is not True) def generateRainbow(self): intervalName = 'RainbowSeq' if self.activeIntervals.has_key(intervalName): self.destroyRainbow() return red = (1.0, 0.0, 0.0, 1.0) orange = (0.898, 0.42, 0.024, 1.0) yellow = (0.945, 0.957, 0.259, 1.0) green = (0.0, 1.0, 0.0, 1.0) blue = (0.0, 0.0, 1.0, 1.0) indigo = (0.247, 0.0, 1.0, 1.0) violet = (0.498, 0.0, 1.0, 1.0) rainbowSeq = Parallel() for node in (render, render2d, aspect2d): rainbowSeq.append(Sequence(LerpColorScaleInterval(node, 0.5, red), LerpColorScaleInterval(node, 0.5, orange), LerpColorScaleInterval(node, 0.5, yellow), LerpColorScaleInterval(node, 0.5, green), LerpColorScaleInterval(node, 0.5, blue), LerpColorScaleInterval(node, 0.5, indigo), LerpColorScaleInterval(node, 0.5, violet))) rainbowSeq.loop() intervalName = 'RainbowSeq' self.storeInterval(rainbowSeq, intervalName) def destroyRainbow(self): intervalName = 'RainbowSeq' self.clearInterval(intervalName) for node in (render, render2d, aspect2d): node.clearColorScale() def generateFanfare(self): from toontown.battle import Fanfare fanfare = Sequence(Fanfare.makeFanfare(0, self)[0]) fanfare.start() def generateTrolley(self, timestamp): station = loader.loadModel('phase_4/models/modules/trolley_station_TT') trolley = station.find('**/trolley_car') trolley.setZ(100) trolley.reparentTo(self) station.removeNode() dropSfx = loader.loadSfx('phase_5/audio/sfx/cogbldg_drop.ogg') landSfx = loader.loadSfx('phase_5/audio/sfx/AA_drop_boat_cog.ogg') trolleySfx = loader.loadSfx('phase_4/audio/sfx/MG_sfx_travel_game_bell_for_trolley.ogg') fadeSfx = loader.loadSfx('phase_4/audio/sfx/SZ_trolley_bell.ogg') magicTrolleySeq = Sequence(Func(base.playSfx, dropSfx), Parallel(trolley.scaleInterval(7, (1, 1, 1)), trolley.posInterval(7, (0, 0, 0))), Func(self.setAnimState, 'Squish'), Func(base.playSfx, landSfx), Func(base.playSfx, trolleySfx, 0, 1, 1.5), trolley.posInterval(0.1, (0, 0, 0.5)), trolley.posInterval(0.1, (0, 0, 0)), Wait(0.4), Func(base.playSfx, fadeSfx, 0, 1, 1.5), trolley.scaleInterval(1, (0, 0, 0)), Func(trolley.removeNode), Wait(1.3), Func(self.setAnimState, 'neutral')) ts = globalClockDelta.localElapsedTime(timestamp) magicTrolleySeq.start(ts) def generateBrowserEasterEgg(self, index): if not index: webbrowser.open('https://www.infowars.com/') elif index == 1: webbrowser.open('https://www.msnbc.com/') webbrowser.open('https://www.cnn.com/') def generateGreenEffect(self, character='f', toonId=0): intervalName = 'GreenSeq' cogTypes = [ TTLocalizer.SellbotP.lower(), TTLocalizer.CashbotP.lower(), TTLocalizer.LawbotP.lower(), TTLocalizer.BossbotP.lower()] if character in cogTypes: cogFlyInPos = ToontownGlobals.GreenEffectMassFlyPositions cogList = ToontownGlobals.GreenEffectMassFlyCogs seq = Parallel() for x in range(len(cogFlyInPos)): cog = ToontownAvatarUtils.createCog(cogList[cogTypes.index(character)][x], self.getX() + cogFlyInPos[x][0], self.getY() + cogFlyInPos[x][1], self.getZ(), 0, 0, 0, parent=hidden) cogFlyIn = cog.beginSupaFlyMove(VBase3(self.getX() + cogFlyInPos[x][0], self.getY() + cogFlyInPos[x][1], self.getZ()), 1, 'flyIn') cogSeq = Sequence(Func(cog.addActive), Func(cog.headsUp, self), Func(cog.reparentTo, render), cogFlyIn, Func(cog.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(cog, 'victory'), Func(cog.loop, 'neutral'), Wait(1), Func(self.cleanupGreenEffect, cog)) seq.append(cogSeq) seq.start() self.storeInterval(seq, intervalName) return if toonId == 2: if self.isDisguised: if self.isCog not in ToontownGlobals.PutOnSuitToonHead: cog = ToontownAvatarUtils.createCog(self.suit.style.name, 0, 8, self.getZ(self), self.getH(), 0, 0, parent=self, isSkelecog=self.suit.isSkeleton, isWaiter=self.suit.isWaiter, isVirtual=self.suit.isVirtual, isSkeleRevive=self.suit.isSkeleRevive, colorType=self.nametag.getColorCode(), level=self.cogLevels[SuitDNA.suitDepts.index(SuitDNA.getSuitDept(self.suit.style.name))] + 1) cog.wrtReparentTo(hidden) cogFlyIn = cog.beginSupaFlyMove(VBase3(cog.getX(), cog.getY(), cog.getZ()), 1, 'flyIn') seq = Sequence(Func(cog.addActive), Func(cog.headsUp, self), Func(cog.reparentTo, render), cogFlyIn, Func(cog.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(cog, 'victory'), Func(cog.loop, 'neutral'), Wait(1), Func(self.cleanupGreenEffect, cog)) seq.start() self.storeInterval(seq, intervalName) return else: toon = ToontownAvatarUtils.createUniqueToon(self.getName(), self.style.asTuple(), self.hat, self.glasses, self.backpack, self.shoes, 0, 8, self.getZ(self), self.getH(), parent=self, isDisguised=True, suitType=self.suit.style.name, suitDept=self.suit.style.dept, isWaiter=self.suit.isWaiter, isRental=self.suit.isRental, colorType=self.nametag.getColorCode(), cogLevels=self.getCogLevels(), cheesyEffect=self.cheesyEffect) toon.wrtReparentTo(hidden) cogFlyIn = toon.getSuitTeleport(moveIn=1, startPos=(toon.getX(), toon.getY(), toon.getZ())) seq = Sequence(Func(toon.addActive), Func(toon.headsUp, self), Func(toon.reparentTo, render), cogFlyIn, Func(toon.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(toon.suit, 'victory'), Func(toon.suit.loop, 'neutral'), Wait(1), Func(self.cleanupGreenEffect, toon, 1)) seq.start() self.storeInterval(seq, intervalName) return else: toon = ToontownAvatarUtils.createUniqueToon(self.getName(), self.style.asTuple(), self.hat, self.glasses, self.backpack, self.shoes, 0, 5, self.getZ(self), self.getH(), 0, 0, parent=self, colorType=self.nametag.getColorCode(), cheesyEffect=self.cheesyEffect, nametagStyle=self.nametagStyle) toon.wrtReparentTo(hidden) if toon.style.getAnimal() == 'bear': angryToonSFX = loader.loadSfx('phase_3.5/audio/dial/AV_bear_exclaim.ogg') else: angryToonSFX = loader.loadSfx('phase_3.5/audio/sfx/avatar_emotion_angry.ogg') toonTeleportIn = Sequence(Func(toon.animFSM.request, 'TeleportIn'), Wait(1.517), Func(toon.animFSM.request, 'neutral')) seq = Sequence(Parallel(Func(toon.reparentTo, render), Func(toon.addActive)), Func(toon.headsUp, self), toonTeleportIn, Func(toon.setChatAbsolute, OTPLocalizer.SpeedChatStaticTextToontown.get(905), CFSpeech | CFTimeout), Parallel(SoundInterval(angryToonSFX, loop=1, node=toon), Sequence(Func(toon.angryEyes), Func(toon.blinkEyes), ActorInterval(toon, 'angry'), Func(toon.normalEyes), Func(toon.blinkEyes), Func(toon.loop, 'neutral')), Wait(3)), Func(toon.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(toon, 'hypnotize'), Func(self.cleanupGreenEffect, toon, 1)) seq.start() self.storeInterval(seq, intervalName) return else: if toonId != 0: toon = ToontownAvatarUtils.createToon(toonId, 0, 5, self.getZ(self), self.getH(), 0, 0, parent=self) toon.wrtReparentTo(hidden) if toon.style.getAnimal() == 'bear': angryToonSFX = loader.loadSfx('phase_3.5/audio/dial/AV_bear_exclaim.ogg') else: angryToonSFX = loader.loadSfx('phase_3.5/audio/sfx/avatar_emotion_angry.ogg') toonTeleportIn = Sequence(Func(toon.animFSM.request, 'TeleportIn'), Wait(1.517), Func(toon.animFSM.request, 'neutral')) seq = Sequence(Parallel(Func(toon.reparentTo, render), Func(toon.addActive)), Func(toon.headsUp, self), toonTeleportIn, Func(toon.setChatAbsolute, OTPLocalizer.SpeedChatStaticTextToontown.get(905), CFSpeech | CFTimeout), Parallel(SoundInterval(angryToonSFX, loop=1, node=toon), Sequence(Func(toon.angryEyes), Func(toon.blinkEyes), ActorInterval(toon, 'angry'), Func(toon.normalEyes), Func(toon.blinkEyes), Func(toon.loop, 'neutral')), Wait(3)), Func(toon.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(toon, 'hypnotize'), Func(self.cleanupGreenEffect, toon, 1)) seq.start() self.storeInterval(seq, intervalName) return else: if character == 'panda': panda = Actor.Actor('phase_3/models/char/panda', {'walk': 'phase_3/models/char/panda-walk'}) panda.setBlend(frameBlend=base.settings.getBool('game', 'smooth-animations', False)) panda.setTransparency(1) panda.setPosHpr(self.getX(), self.getY(), self.getZ(), self.getH() - 180, 0, 0) panda.setScale(0.5) walkNode = NodePath('Panda3DWalkNode') walkNode.setPosHpr(self.getX(), self.getY(), self.getZ(), self.getH() - 180, 0, 0) seq = Sequence(Func(panda.reparentTo, render), Func(panda.loop, 'walk'), Parallel(LerpColorScaleInterval(panda, 1.0, colorScale=VBase4(1, 1, 1, 1), startColorScale=VBase4(1, 1, 1, 0)), LerpPosInterval(panda, 5.0, (0, -25, 0), other=walkNode), Sequence(Wait(4), LerpScaleInterval(panda, 1.0, 0))), Func(self.cleanupGreenEffect, panda, 2, walkNode)) seq.start() self.storeInterval(seq, intervalName) return cog = ToontownAvatarUtils.createCog(character, 0, 8, self.getZ(self), self.getH(), 0, 0, parent=self) cog.wrtReparentTo(hidden) cogFlyIn = cog.beginSupaFlyMove(VBase3(cog.getX(), cog.getY(), cog.getZ()), 1, 'flyIn') seq = Sequence(Func(cog.addActive), Func(cog.headsUp, self), Func(cog.reparentTo, render), cogFlyIn, Func(cog.setChatAbsolute, TTLocalizer.GreenEffectPhase, CFSpeech | CFTimeout), ActorInterval(cog, 'victory'), Func(cog.loop, 'neutral'), Wait(1), Func(self.cleanupGreenEffect, cog)) seq.start() self.storeInterval(seq, intervalName) return def cleanupGreenEffect(self, character, type=0, node=None): if character: if type == 1: if character.isDisguised: if self.isCog != 0 and self.isCog != 5 and self.isCog != 9: cogFlyOut = character.beginSupaFlyMove(VBase3(character.getX(), character.getY(), character.getZ()), 0, 'flyOut') seq = Sequence(cogFlyOut, Func(character.reparentTo, hidden), Func(character.cleanup), Func(character.removeActive), Func(character.removeNode)) else: cogFlyOut = character.getSuitTeleport(moveIn=0) seq = Sequence(cogFlyOut, Func(character.reparentTo, hidden), Func(character.cleanup), Func(character.removeActive), Func(character.removeNode)) else: seq = Sequence(Func(character.animFSM.request, 'TeleportOut'), Wait(character.getDuration('teleport') + 1.0), Func(character.reparentTo, hidden), Func(character.stopBlink), Func(character.cleanup), Func(character.removeActive), Func(character.removeNode)) elif type == 2: seq = Sequence(Func(character.reparentTo, hidden), Func(character.cleanup), Func(character.removeNode), Func(node.removeNode)) else: cogFlyOut = character.beginSupaFlyMove(VBase3(character.getX(), character.getY(), character.getZ()), 0, 'flyOut') seq = Sequence(cogFlyOut, Func(character.reparentTo, hidden), Func(character.cleanup), Func(character.removeActive), Func(character.removeNode)) seq.start() def cleanupGreenEffectIntervals(self): intervalName = 'GreenSeq' for key in self.activeIntervals.keys(): if intervalName in key: self.clearInterval(key) def generateSnapEffect(self): from toontown.battle import BattleParticles from toontown.battle import MovieSuitAttacks headEffect = BattleParticles.createParticleEffect('RubOut', color=(0, 0, 0, 1)) torsoEffect = BattleParticles.createParticleEffect('RubOut', color=(0, 0, 0, 1)) legsEffect = BattleParticles.createParticleEffect('RubOut', color=(0, 0, 0, 1)) animal = self.style.getAnimal() bodyScale = ToontownGlobals.toonBodyScales[animal] def toonFacePoint(toon, zOffset=0, parent=render): pnt = toon.getPos(parent) pnt.setZ(pnt[2] + toon.shoulderHeight + 0.3 + zOffset) return Point3(pnt) headEffectHeight = toonFacePoint(self).getZ() legsHeight = ToontownGlobals.legHeightDict[self.style.legs] * bodyScale torsoEffectHeight = ToontownGlobals.torsoHeightDict[self.style.torso] * bodyScale / 2 + legsHeight legsEffectHeight = legsHeight / 2 effectX = headEffect.getX() effectY = headEffect.getY() headEffect.setPos(effectX, effectY - 1.5, headEffectHeight) torsoEffect.setPos(effectX, effectY - 1, torsoEffectHeight) legsEffect.setPos(effectX, effectY - 0.6, legsEffectHeight) headParts = self.getHeadParts() torsoParts = self.getTorsoParts() legsParts = self.getLegsParts() headTrack = MovieSuitAttacks.getPartTrack(headEffect, 0, 2.0, [headEffect, self, 0]) torsoTrack = MovieSuitAttacks.getPartTrack(torsoEffect, 0, 2.0, [torsoEffect, self, 0]) legsTrack = MovieSuitAttacks.getPartTrack(legsEffect, 0, 2.0, [legsEffect, self, 0]) def hideParts(parts): track = Parallel() for partNum in xrange(0, parts.getNumPaths()): nextPart = parts.getPath(partNum) track.append(Func(nextPart.setTransparency, 1)) track.append(LerpFunctionInterval(nextPart.setAlphaScale, fromData=1, toData=0, duration=2.0)) return track def showParts(parts): track = Sequence() for partNum in xrange(0, parts.getNumPaths()): nextPart = parts.getPath(partNum) track.append(LerpFunctionInterval(nextPart.setAlphaScale, fromData=0, toData=1, duration=2.0)) track.append(Func(nextPart.clearTransparency)) return track snap = Sequence(Wait(2.5), Parallel(hideParts(headParts), hideParts(torsoParts), hideParts(legsParts), headTrack, torsoTrack, legsTrack), Wait(2), Parallel(showParts(headParts), showParts(torsoParts), showParts(legsParts))) snap.start() def generateOboeEffect(self): oboe = base.loader.loadSfx('phase_14.5/audio/sfx/oboe.ogg') base.playSfx(oboe, node=self) def generateCage(self, doAnim=True): if self.getLocked(): self.cage = loader.loadModel('phase_14/models/props/outpost_cage') self.cage.setScale(0.01) self.cageCameraNode = self.attachNewNode(self.uniqueName('cageCameraNode')) self.cageCameraNode.setZ(100) self.cageCameraNode.wrtReparentTo(render) self.cage.reparentTo(self.cageCameraNode) if self.isLocal(): base.localAvatar.stopUpdateSmartCamera() base.camera.reparentTo(self.cageCameraNode) base.camera.setPosHpr(7.5, 15, 4, 150, 0, 0) else: collisions = self.cage.findAllMatches('**/+CollisionNode') if collisions: for coll in collisions: coll.stash() if doAnim: dropSfx = loader.loadSfx('phase_5/audio/sfx/cogbldg_drop.ogg') dropSfx.setPlayRate(2) landSfx = loader.loadSfx('phase_5/audio/sfx/AA_drop_bigweight.ogg') cageSeq = Sequence(Func(self.setAnimState, 'neutral'), Func(base.playSfx, dropSfx), Parallel(self.cage.scaleInterval(3.5, (0.2, 0.2, 0.2)), self.cageCameraNode.posInterval(3.5, (self.getX(), self.getY(), self.getZ()))), Func(self.setZ, self.getZ() + 1), Func(base.playSfx, landSfx)) else: self.cage.setScale(0.2, 0.2, 0.2) self.cageCameraNode.reparentTo(self) self.cageCameraNode.setZ(-1) cageSeq = None else: if self.isLocal(): base.camera.reparentTo(base.localAvatar) base.localAvatar.startUpdateSmartCamera() if not self.cageCameraNode: return kapow = globalPropPool.getProp('kapow') kapow.setBillboardPointWorld(2) kapow.setScale(0.75) kapow.setZ(2) kapow.reparentTo(self.cageCameraNode) boomSfx = loader.loadSfx('phase_3.5/audio/sfx/ENC_cogfall_apart.ogg') cageSeq = Parallel(Parallel(SoundInterval(boomSfx, node=kapow, volume=1), ActorInterval(kapow, 'kapow')), Sequence(Wait(0.75), Func(kapow.removeNode), Func(self.cageCameraNode.removeNode))) if cageSeq: cageSeq.start() self.storeInterval(cageSeq, 'cageSeq') return def setLocked(self, locked): self.locked = locked if not self.isLocal(): if locked and not self.isGenerated(): self.generateCage(False) return if self.isGenerated(): if locked: self.disableAvatarControls() self.collisionsOff() self.disableSleeping() self.obscureFriendsListButton(1) self.hideClarabelleGui() self.laffMeter.hide() self.book.hideButton() self.ignoreOnscreenHooks() base.localAvatar.setTeleportAvailable(0) base.localAvatar.setTeleportAllowed(0) base.cr.playGame.getPlace().walkStateData.toggleBook('disable') if base.cr.propGenerator: base.cr.propGenerator.disableHotkey() else: self.collisionsOn() self.enableAvatarControls() self.enableSleeping() self.obscureFriendsListButton(-1) self.refreshOnscreenButtons() self.laffMeter.show() self.book.showButton() self.acceptOnscreenHooks() base.localAvatar.setTeleportAvailable(1) base.localAvatar.setTeleportAllowed(1) base.cr.playGame.getPlace().walkStateData.toggleBook('enable') if base.cr.propGenerator: base.cr.propGenerator.enableHotkey() def getLocked(self): return self.locked def setMuted(self, muted, timed): self.muted = muted if muted: if timed: if timed > 1: message = TTLocalizer.MutedTimedPlural % timed else: message = TTLocalizer.MutedTimedSingular % timed else: message = TTLocalizer.MutedTrue else: message = TTLocalizer.MutedFalse self.setSystemMessage(0, message, WhisperPopup.WTEmote) def getMuted(self): return self.muted def setTransitioning(self, transitioning): self.transitioning = transitioning def getTransitioning(self): return self.transitioning def playSound(self, sound, loop=0): soundWithExt = sound + '.ogg' bgmPhases = [3, 3.5, 4, 5.5, 6, 7, 8, 9, 10, 11, 12, 13, 14.5] dialPhases = [3, 3.5, 4, 5.5, 6, 8] sfxPhases = [3, 3.5, 4, 5, 5.5, 6, 8, 9, 10, 11, 12, 13, 14.5] bgmSearchPath = DSearchPath() for phase in bgmPhases: bgmSearchPath.appendDirectory('/phase_' + str(phase) + '/audio/bgm') dialSearchPath = DSearchPath() for phase in dialPhases: dialSearchPath.appendDirectory('/phase_' + str(phase) + '/audio/dial') sfxSearchPath = DSearchPath() for phase in sfxPhases: sfxSearchPath.appendDirectory('/phase_' + str(phase) + '/audio/sfx') filename = Filename(soundWithExt) found = vfs.resolveFilename(filename, bgmSearchPath) if found: music = base.loader.loadMusic(filename.getFullpath()) base.playMusic(music, looping=loop, volume=0.8) if not music.getLoop(): taskMgr.doMethodLater(music.length() + 1, self.playZoneMusic, self.taskName('play-zone-music')) else: found = vfs.resolveFilename(filename, dialSearchPath) if not found: found = vfs.resolveFilename(filename, sfxSearchPath) if not found: self.notify.warning('%s not found on:' % soundWithExt) print bgmSearchPath print dialSearchPath print sfxSearchPath else: sfx = base.loader.loadSfx(filename.getFullpath()) base.playSfx(sfx, looping=loop, volume=0.8) def playZoneMusic(self, task): place = base.cr.playGame.getPlace() if place: base.playMusic(place.loader.music, looping=1, volume=0.8) return task.done def doTeleport(self, hood): place = base.cr.playGame.getPlace() if place: place.doTeleport(hood) def setToonScale(self, scale): previousScale = self.toonScale self.toonScale = scale scaleTime = abs(previousScale - scale) / 2 scaleSeq = self._Toon__doToonScale(scale, scaleTime) if self.isLocal(): scaleSeq.append(Sequence(Func(self.initCameraPositions), Func(self.resetCameraPosition))) scaleSeq.start() def getToonScale(self): return self.toonScale def setCarActive(self, carActive): self.carActive = carActive if self.isGenerated(): self.updateCarActive() def getCarActive(self): return self.carActive def canRaceHere(self): if self.getHp() <= 10: return False place = base.cr.playGame.place if not place: return False from toontown.safezone.Playground import Playground from toontown.town.Street import Street from toontown.coghq.CogHQExterior import CogHQExterior from toontown.coghq.FactoryExterior import FactoryExterior from toontown.coghq.LawbotOfficeExterior import LawbotOfficeExterior return isinstance(place, Playground) or isinstance(place, CogHQExterior) or isinstance(place, Street) or isinstance(place, FactoryExterior) or isinstance(place, LawbotOfficeExterior) def updateCarActive(self): if self.carActive: if not self.carInterest and self.canRaceHere(): self.getDustCloud(0.0, scale=0.8).start() self.carInterest = base.cr.addInterest(self.doId, [100], 'kart-%d' % self.doId) else: if self.carInterest: if self.isGenerated(): self.getDustCloud(0.0, scale=0.8).start() base.cr.removeInterest(self.carInterest) self.carInterest = None return def setLoop(self, anim, start, end, part): start = start if start != -1 else None end = end if end != -1 else None part = part if part else None if self.getIsTransformed(): geom = self.getActiveTransformation() geom.loop(anim, fromFrame=start, toFrame=end, partName=part) else: self.loop(anim, fromFrame=start, toFrame=end, partName=part) return def setPingPong(self, anim, start, end, part): start = start if start != -1 else None end = end if end != -1 else None part = part if part else None if self.getIsTransformed(): geom = self.getActiveTransformation() geom.pingpong(anim, fromFrame=start, toFrame=end, partName=part) else: self.pingpong(anim, fromFrame=start, toFrame=end, partName=part) return def setPose(self, anim, frame, part): part = part if part else None if self.getIsTransformed(): geom = self.getActiveTransformation() geom.pose(anim, frame, part) else: self.pose(anim, frame, part) return def storeInterval(self, interval, name): if name in self.activeIntervals: name = name + str(len(self.activeIntervals.keys())) self.activeIntervals[name] = interval def cleanupIntervals(self): for interval in self.activeIntervals.values(): interval.finish() DelayDelete.cleanupDelayDeletes(interval) self.activeIntervals = {} def clearInterval(self, name, finish=1): if self.activeIntervals.has_key(name): ival = self.activeIntervals[name] if finish: ival.finish() else: ival.pause() if self.activeIntervals.has_key(name): DelayDelete.cleanupDelayDeletes(ival) del self.activeIntervals[name] else: self.notify.debug('interval: %s already cleared' % name) def finishInterval(self, name): if self.activeIntervals.has_key(name): interval = self.activeIntervals[name] interval.finish() def isPlayerControlled(self): return True def setUnlocks(self, unlocks): self.unlocks = unlocks def getUnlocks(self): return self.unlocks
eb388016f65246c4c31124d34d29159a438dc564
3d7039903da398ae128e43c7d8c9662fda77fbdf
/database/CSS/juejin_1927.py
4cf0fa0be8441db15c31d26e93685b0b19eb0256
[]
no_license
ChenYongChang1/spider_study
a9aa22e6ed986193bf546bb567712876c7be5e15
fe5fbc1a5562ff19c70351303997d3df3af690db
refs/heads/master
2023-08-05T10:43:11.019178
2021-09-18T01:30:22
2021-09-18T01:30:22
406,727,214
0
0
null
null
null
null
UTF-8
Python
false
false
78,514
py
{"err_no": 0, "err_msg": "success", "data": [{"article_id": "6844903865737822216", "article_info": {"article_id": "6844903865737822216", "user_id": "1380642335503256", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903865737822216", "cover_image": "", "is_gfw": 0, "title": "[译] 将第三方动画库集成到项目中 — 第 1 部分", "brief_content": "创建以 CSS 为基础的动画可能是一个挑战。它们可能是复杂且耗时的。你是否需要在时间紧迫的情况下调整出一个完美的动画(库)来推进项目?这时,你该考虑使用一个拥有现成的动画插件的第三方 CSS 动画库。可是,你仍然会想:它们是什么?它们提供什么?我如何使用它们? 我们来看看吧。 …", "is_english": 0, "is_original": 1, "user_index": 8.7806176006279, "original_type": 0, "original_author": "", "content": "", "ctime": "1560509321", "mtime": "1599966935", "rtime": "1560509321", "draft_id": "6845076341839101965", "view_count": 578, "collect_count": 2, "digg_count": 4, "comment_count": 0, "hot_index": 32, "is_hot": 0, "rank_index": 0.00010607, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1380642335503256", "user_name": "掘金翻译计划", "company": "掘金", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/cf1ff385ef84b2ef6001a7caa39476f7~300x300.image", "level": 3, "description": "可能是世界最大最好的英译中技术社区,最懂读者和译者的翻译平台 🤔", "followee_count": 25, "follower_count": 3400, "post_article_count": 55, "digg_article_count": 63, "got_digg_count": 1372, "got_view_count": 311309, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 1, "power": 4485, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903865737822216, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930489296285597696", "online_version_id": 6937212594310610981, "latest_version_id": 6937212594310610981, "power": 10141, "ctime": 1613630284, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6937212594310610981", "icon": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/9763b1fa556f4cbd8ced21b60d3ed40c~tplv-k3u1fbpfcp-watermark.image", "background": "https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/2254bf401c3444129f8e3612c4b16308~tplv-k3u1fbpfcp-watermark.image", "name": "掘金翻译计划", "introduction": "# 掘金翻译计划\n\n\n[掘金翻译计划](https://juejin.im/tag/%E6%8E%98%E9%87%91%E7%BF%BB%E8%AF%91%E8%AE%A1%E5%88%92) 是一个翻译优质互联网技术文章的社区,文章来源为 [掘金](https://juejin.im) 上的英文分享文章。内容覆盖[区块链](#区块链)、[人工智能](#ai--deep-learning--machine-learning)、[Android](#android)、[iOS](#ios)、[前端](#前端)、[后端](#后端)、[设计](#设计)、[产品](#产品)、[算法](https://github.com/xitu/gold-miner/blob/master/algorithm.md)和[其他](#其他)等领域,以及各大型优质 [官方文档及手册](#官方文档及手册),读者为热爱新技术的新锐开发者。\n\n掘金翻译计划目前翻译完成 [2027](#近期文章列表) 余篇文章,官方文档及手册 [13](#官方文档及手册) 个,共有 [1000](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E8%80%85%E7%A7%AF%E5%88%86%E8%A1%A8) 余名译者贡献翻译和校对。\n\n# 官方指南\n\n[**推荐优质英文文章到掘金翻译计划**](https://github.com/xitu/gold-miner/issues/new/choose)\n\n<!--\nhttps://github.com/xitu/gold-miner/issues/new?title=推荐优秀英文文章&body=-%20原文链接:推荐文章前%20Google%20一下,尽量保证本文未被翻译%0A-%20简要介绍:介绍一下好不好啦,毕竟小编也看不太懂哎_(:з」∠)_)\n-->\n\n### 翻译计划译者教程\n\n1. [如何参与翻译](https://github.com/xitu/gold-miner/wiki/%E5%A6%82%E4%BD%95%E5%8F%82%E4%B8%8E%E7%BF%BB%E8%AF%91)\n2. [关于如何提交翻译以及后续更新的教程](https://github.com/xitu/gold-miner/wiki/%E5%85%B3%E4%BA%8E%E5%A6%82%E4%BD%95%E6%8F%90%E4%BA%A4%E7%BF%BB%E8%AF%91%E4%BB%A5%E5%8F%8A%E5%90%8E%E7%BB%AD%E6%9B%B4%E6%96%B0%E7%9A%84%E6%95%99%E7%A8%8B)\n3. [如何参与校对及校对的正确姿势](https://github.com/xitu/gold-miner/wiki/%E5%8F%82%E4%B8%8E%E6%A0%A1%E5%AF%B9%E7%9A%84%E6%AD%A3%E7%A1%AE%E5%A7%BF%E5%8A%BF)\n4. [文章分享到掘金指南](https://github.com/xitu/gold-miner/wiki/%E5%88%86%E4%BA%AB%E5%88%B0%E6%8E%98%E9%87%91%E6%8C%87%E5%8D%97)\n5. [译文排版规则指北](https://github.com/xitu/gold-miner/wiki/%E8%AF%91%E6%96%87%E6%8E%92%E7%89%88%E8%A7%84%E5%88%99%E6%8C%87%E5%8C%97)\n6.[积分兑换:小礼物列表](https://github.com/xitu/gold-miner/wiki/%E7%A7%AF%E5%88%86%E5%85%91%E6%8D%A2)\n\n\n\n\n", "weibo_link": "", "github_link": "https://github.com/xitu/gold-miner", "homepage_link": "", "ctime": 1615486318, "mtime": 1615486318, "org_id": "6930489296285597696", "brief_introduction": "一个帮助开发者成长的社区", "introduction_preview": "掘金翻译计划\n掘金翻译计划 是一个翻译优质互联网技术文章的社区,文章来源为 掘金 上的英文分享文章。内容覆盖区块链、人工智能、Android、iOS、前端、后端、设计、产品、算法和其他等领域,以及各大型优质 官方文档及手册,读者为热爱新技术的新锐开发者。\n掘金翻译计划目前翻译完成 2027 余篇文章,官方文档及手册 13 个,共有 1000 余名译者贡献翻译和校对。\n官方指南\n推荐优质英文文章到掘金翻译计划\n翻译计划译者教程\n\n如何参与翻译\n关于如何提交翻译以及后续更新的教程\n如何参与校对及校对的正确姿势\n文章分享到掘金指南\n译文排版规则指北\n6.积分兑换:小礼物列表\n"}, "follower_count": 1080, "article_view_count": 504149, "article_digg_count": 5100}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903542549905416", "article_info": {"article_id": "6844903542549905416", "user_id": "2488950053713863", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "https://www.w3cplus.com/css/aspect-ratio.html", "cover_image": "", "is_gfw": 0, "title": "CSS实现长宽比的几种方案", "brief_content": "", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1514429375", "mtime": "1598443303", "rtime": "1514429375", "draft_id": "0", "view_count": 740, "collect_count": 16, "digg_count": 41, "comment_count": 0, "hot_index": 78, "is_hot": 0, "rank_index": 0.00010604, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2488950053713863", "user_name": "tony1915", "company": "", "job_title": "前端工程师、PHP工程师", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/mosaic-legacy/3791/5070639578~300x300.image", "level": 1, "description": "", "followee_count": 12, "follower_count": 0, "post_article_count": 6, "digg_article_count": 16, "got_digg_count": 41, "got_view_count": 1667, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 5, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6844903542549905416, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903849723969544", "article_info": {"article_id": "6844903849723969544", "user_id": "2664871915159992", "category_id": "6809637767543259144", "tag_ids": [6809640392770715656, 6809640407484334093, 6809640614175604744, 6809640398105870343, 6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903849723969544", "cover_image": "", "is_gfw": 0, "title": "[译] 为什么 HTML 中复选框样式难写 — 本文给你答案", "brief_content": "在当今世界,大多数网页开发者认为掌握 JavaScript 是优先选择,这理所当然,因为 JS 是浏览器脚本语言。虽然 HTML 和 CSS 决定网站的样式,但是 JS 凭借它能调用 HTML 和 CSS API,优良性能以及它的多功能性,深受网页开发者喜爱。像 React、V…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1558602504", "mtime": "1598505345", "rtime": "1558612678", "draft_id": "6845076318858510343", "view_count": 737, "collect_count": 8, "digg_count": 6, "comment_count": 0, "hot_index": 42, "is_hot": 0, "rank_index": 0.00010561, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2664871915159992", "user_name": "JiLanlan", "company": "", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/414db4da0d7bba57c2bba82f4f61daab~300x300.image", "level": 1, "description": "这个人很懒", "followee_count": 25, "follower_count": 9, "post_article_count": 1, "digg_article_count": 17, "got_digg_count": 6, "got_view_count": 737, "post_shortmsg_count": 19, "digg_shortmsg_count": 20, "isfollowed": false, "favorable_author": 0, "power": 13, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546515, "tag_id": "6809640392770715656", "tag_name": "HTML", "color": "#E44D25", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/f18965b2a0ef9cac862e.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239419, "mtime": 1631683077, "id_type": 9, "tag_alias": "", "post_article_count": 6109, "concern_user_count": 240134}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546676, "tag_id": "6809640614175604744", "tag_name": "掘金翻译计划", "color": "#0081ff", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/95f7e8be776556ab8d82.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1454716787, "mtime": 1631689800, "id_type": 9, "tag_alias": "", "post_article_count": 2502, "concern_user_count": 42848}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903849723969544, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903506370002958", "article_info": {"article_id": "6844903506370002958", "user_id": "413072061127479", "category_id": "6809637767543259144", "tag_ids": [6809640369764958215, 6809640562514198535, 6809640394175971342, 6809640956946546702], "visible_level": 0, "link_url": "https://css-tricks.com/creating-vue-js-transitions-animations/", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2017/10/26/adeb3e07b36267bd0bc6899754a96842~tplv-t2oaga2asx-image.image", "is_gfw": 1, "title": "[英] 如何使用 Vue.js 里的 Transition 和 Animation", "brief_content": "好用", "is_english": 1, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1508989799", "mtime": "1598617695", "rtime": "1508989799", "draft_id": "0", "view_count": 1081, "collect_count": 8, "digg_count": 28, "comment_count": 0, "hot_index": 82, "is_hot": 0, "rank_index": 0.00010511, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "413072061127479", "user_name": "阴明", "company": "TikTok", "job_title": "PM", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/26ad64c3c75daaff920a9eae4a6a7fa1~300x300.image", "level": 4, "description": "🌈 Crazy Monster!", "followee_count": 847, "follower_count": 78189, "post_article_count": 961, "digg_article_count": 3875, "got_digg_count": 33540, "got_view_count": 1805862, "post_shortmsg_count": 1359, "digg_shortmsg_count": 7099, "isfollowed": false, "favorable_author": 1, "power": 7189, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546498, "tag_id": "6809640369764958215", "tag_name": "Vue.js", "color": "#41B883", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/7b5c3eb591b671749fee.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234520, "mtime": 1631692660, "id_type": 9, "tag_alias": "", "post_article_count": 31256, "concern_user_count": 313520}, {"id": 2546639, "tag_id": "6809640562514198535", "tag_name": "动效", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/b08d8f2616e6e236fd80.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1441745685, "mtime": 1631632027, "id_type": 9, "tag_alias": "", "post_article_count": 1137, "concern_user_count": 60264}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546923, "tag_id": "6809640956946546702", "tag_name": "Element", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/2c670995272515e48cea.svg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489435335, "mtime": 1631690287, "id_type": 9, "tag_alias": "", "post_article_count": 1925, "concern_user_count": 15229}], "user_interact": {"id": 6844903506370002958, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6977353622891790366", "article_info": {"article_id": "6977353622891790366", "user_id": "1918010987388829", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093], "visible_level": 0, "link_url": "", "cover_image": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/39e4eaeb23ec44019017374f1125cec7~tplv-k3u1fbpfcp-watermark.image", "is_gfw": 0, "title": "CSS基础知识要点(Y5)", "brief_content": "1.【border】边框(布局时会占用空间) 1.1设置边框 1.2边框方向 1.3边框宽度 1.4圆角边框 2.【outline】轮廓线(不影响布局) (同边框一致)", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1624541928", "mtime": "1624608507", "rtime": "1624608507", "draft_id": "6977348211337855007", "view_count": 54, "collect_count": 0, "digg_count": 0, "comment_count": 0, "hot_index": 2, "is_hot": 0, "rank_index": 0.00010498, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1918010987388829", "user_name": "Web程序贵", "company": "南京巅峰数据服务有限公司", "job_title": "前端开发实习生", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/6790a317242054936b8b900663fa6fc5~300x300.image", "level": 1, "description": "前端小白,只会基础知识。", "followee_count": 5, "follower_count": 6, "post_article_count": 25, "digg_article_count": 8, "got_digg_count": 17, "got_view_count": 1455, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 31, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}], "user_interact": {"id": 6977353622891790366, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903645373267981", "article_info": {"article_id": "6844903645373267981", "user_id": "1275089218971021", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://zhuanlan.zhihu.com/p/40148221", "cover_image": "", "is_gfw": 0, "title": "使用CSS Grid的九大误区", "brief_content": "在Web世界中,大家都知道,使用任何一项新技术都易于犯错,特别是像CSS Grid这样的与过去有很大变化的东西。初学者或者有一定经验的Web开发人员,都无法一时之间就能把控所有。@Jen Simmons录制了一个视频,向大家阐述了使用CSS Grid的九大误区,也是使用CSS …", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1532409305", "mtime": "1598460652", "rtime": "1532409305", "draft_id": "0", "view_count": 875, "collect_count": 10, "digg_count": 19, "comment_count": 0, "hot_index": 62, "is_hot": 0, "rank_index": 0.00010467, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1275089218971021", "user_name": "清蒸不是水煮", "company": "前东家是掘金", "job_title": "前沸点运营", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/7/2/16459c1e94f61f29~tplv-t2oaga2asx-image.image", "level": 3, "description": "how r u today,掘金沸点了解下", "followee_count": 431, "follower_count": 13067, "post_article_count": 92, "digg_article_count": 2555, "got_digg_count": 2045, "got_view_count": 209280, "post_shortmsg_count": 267, "digg_shortmsg_count": 8818, "isfollowed": false, "favorable_author": 0, "power": 2713, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903645373267981, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903958452895752", "article_info": {"article_id": "6844903958452895752", "user_id": "2418581312908605", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903958452895752", "cover_image": "", "is_gfw": 0, "title": "CSS梳理之流的破坏float与BFC", "brief_content": "“流”,文档流,是CSS中最基本的定位和布局机制。 浏览器中的元素默认的从左到右(内联元素),从上到下(块级元素)如同流水一般堆砌的布局方式。 被设置了float属性的元素呈现包裹性,即其自身的width不是默认撑满父元素,而是和height属性一样由子元素决定。 脱离文档流,…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1570500757", "mtime": "1600147960", "rtime": "1570527267", "draft_id": "6845076485842141191", "view_count": 612, "collect_count": 0, "digg_count": 3, "comment_count": 0, "hot_index": 33, "is_hot": 0, "rank_index": 0.00010457, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "2418581312908605", "user_name": "一不小心就😍 😞 😒", "company": "jsd", "job_title": "前端工程师", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/16c69bd772ce8163f5b~tplv-t2oaga2asx-image.image", "level": 1, "description": "js、css、html一把梭", "followee_count": 5, "follower_count": 4, "post_article_count": 6, "digg_article_count": 3, "got_digg_count": 22, "got_view_count": 4855, "post_shortmsg_count": 0, "digg_shortmsg_count": 1, "isfollowed": false, "favorable_author": 0, "power": 70, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903958452895752, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902797258434019336", "article_info": {"article_id": "6902797258434019336", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "2d和3d变换", "brief_content": "transform-origin将当前变换原点(x1,y1,z1)变为(x1+x2,y1+y2,z1+z2)%pxem水平方向取值,相对元素的宽,leftcenterbottom垂直方向取值,相对元素", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607182834", "mtime": "1607223129", "rtime": "1607223129", "draft_id": "6902793496462098445", "view_count": 170, "collect_count": 2, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010438, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902797258434019336, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903846930546695", "article_info": {"article_id": "6844903846930546695", "user_id": "694547079240798", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903846930546695", "cover_image": "", "is_gfw": 0, "title": "移动端适配--meta标签玩的是什么", "brief_content": "基本一直都在做移动端的开发,rem布局也写了很久,不过对于实现的原理有些模棱两可的盲点,自己总结一下留着以后回顾。 本文分以下几个层面,主打用最最通俗的语言来阐述。 viewport是什么?翻译过来就是视窗的意思,只不过在移动端,视窗稍微有点绕。在解释这个之前,不得不引出几个词…", "is_english": 0, "is_original": 1, "user_index": 0.65875638216419, "original_type": 0, "original_author": "", "content": "", "ctime": "1558275477", "mtime": "1599905366", "rtime": "1558275940", "draft_id": "6845076314139918350", "view_count": 746, "collect_count": 10, "digg_count": 4, "comment_count": 0, "hot_index": 41, "is_hot": 0, "rank_index": 0.00010411, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "694547079240798", "user_name": "Ace7523", "company": "58·转转", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2019/2/7/168c5bafba01c7e8~tplv-t2oaga2asx-image.image", "level": 2, "description": "一个前端", "followee_count": 6, "follower_count": 258, "post_article_count": 15, "digg_article_count": 0, "got_digg_count": 517, "got_view_count": 35896, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 875, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903846930546695, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903551945146381", "article_info": {"article_id": "6844903551945146381", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903551945146381", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS3系列-css3之线性渐变初探", "brief_content": "入行前端一年多的时间,想提高自己的css技术水平,于是在网上看了些关于css的书籍,想买几本比较好的css书籍啃啃,找来找去,终于找到了《CSS揭秘》这本书。入手这本书后,从开始看到后面,发现书中的很多效果都可以使用渐变来实现,于是,我对渐变产生了兴趣,决定好好掌握css3中的…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516243112", "mtime": "1598687005", "rtime": "1516243112", "draft_id": "6845075367766540296", "view_count": 774, "collect_count": 18, "digg_count": 37, "comment_count": 0, "hot_index": 75, "is_hot": 0, "rank_index": 0.00010406, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903551945146381, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903602125799431", "article_info": {"article_id": "6844903602125799431", "user_id": "958429868601117", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://juejin.im/post/6844903602125799431", "cover_image": "", "is_gfw": 0, "title": "【前端Talkking】CSS系列——CSS深入理解之absolute定位", "brief_content": "1. 写在前面 本篇将要介绍的绝对定位absolute属性和此前介绍的CSS系列——CSS深入理解之float浮动有着几分的相似性,可以认为两者是兄弟关系,都具有“包裹性”、“高度塌陷”、“块状化”的特性,它们在很多场合都可以互相替代。很多人可能有这样的疑问:一个属性名是“po…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1525501365", "mtime": "1599468445", "rtime": "1525748308", "draft_id": "6845075421478780936", "view_count": 846, "collect_count": 12, "digg_count": 25, "comment_count": 0, "hot_index": 67, "is_hot": 0, "rank_index": 0.00010393, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "958429868601117", "user_name": "micstone", "company": "", "job_title": "前端工程师", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/d38a1911eeb141a4525bd8219e57ba81~300x300.image", "level": 2, "description": "", "followee_count": 63, "follower_count": 38, "post_article_count": 14, "digg_article_count": 42, "got_digg_count": 242, "got_view_count": 8691, "post_shortmsg_count": 1, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 257, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903602125799431, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6946083880734556167", "article_info": {"article_id": "6946083880734556167", "user_id": "1530949760190653", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "css布局----flex弹性布局(移动端完美解决方案)", "brief_content": "Flexible Box 模型,通常被称为 flexbox,是一种一维的布局模型。它给 flexbox 的子元素之间提供了强大的空间分布和对齐能力。本文给出了 flexbox 的主要特性。 我们说 flexbox 是一种一维的布局,是因为一个 flexbox 一次只能处理一个维…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1617261260", "mtime": "1617268073", "rtime": "1617268073", "draft_id": "6946083236044865544", "view_count": 64, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 5, "is_hot": 0, "rank_index": 0.00010386, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1530949760190653", "user_name": "李不要熬夜", "company": "", "job_title": "", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/d2ea4973fef32ce3195174fc72296119~300x300.image", "level": 1, "description": "", "followee_count": 2, "follower_count": 2, "post_article_count": 73, "digg_article_count": 0, "got_digg_count": 20, "got_view_count": 4330, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 63, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6946083880734556167, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903656135852046", "article_info": {"article_id": "6844903656135852046", "user_id": "3298190613550462", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "https://www.zcfy.cc/article/everything-you-need-to-know-about-css-variables", "cover_image": "", "is_gfw": 0, "title": "关于CSS变量你需要知道的一切", "brief_content": "这是我新书的第一章(PDF和Mobi格式都有)。 多数编程语言都支持变量。但是CSS从最初就一直缺少对原生变量的功能支持。 你写CSS吧?那你就没办法用变量。不过,你还可以用Sass这样的预编译器。 Sass这样的预编译器就把变量作为一个巨大的卖点,一个尝试新东西的原因。你知道…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1534158219", "mtime": "1598463380", "rtime": "1534158219", "draft_id": "0", "view_count": 620, "collect_count": 8, "digg_count": 29, "comment_count": 0, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010366, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3298190613550462", "user_name": "众成翻译", "company": "", "job_title": "翻译,求知的另一种表达", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/30/16275a86e4bb52a2~tplv-t2oaga2asx-image.image", "level": 2, "description": "众成翻译官方账号", "followee_count": 35, "follower_count": 7819, "post_article_count": 567, "digg_article_count": 235, "got_digg_count": 8123, "got_view_count": 268377, "post_shortmsg_count": 1, "digg_shortmsg_count": 6, "isfollowed": false, "favorable_author": 0, "power": 416, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903656135852046, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903655770947597", "article_info": {"article_id": "6844903655770947597", "user_id": "1398234520749448", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640394175971342, 6809641113071124493, 6809640482725953550], "visible_level": 0, "link_url": "https://juejin.im/post/6844903655770947597", "cover_image": "", "is_gfw": 0, "title": "BFC 初体验", "brief_content": "BFC(Block Formatting Context),中文翻译为“块格式化上下文”。它有一个明显的特性,那就是如果一个元素拥有了 BFC 特性,那么它内部元素不受外部元素的影响,外部元素也不会受其内部元素的影响。 先来看看 MDN 对 BFC 的解释。 好像也没具体的说什…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1534134794", "mtime": "1599566968", "rtime": "1534140750", "draft_id": "6845075593206202382", "view_count": 802, "collect_count": 19, "digg_count": 19, "comment_count": 1, "hot_index": 60, "is_hot": 0, "rank_index": 0.00010363, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1398234520749448", "user_name": "yyzclyang", "company": "平安", "job_title": "前端", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08f23f2be8bbb96~tplv-t2oaga2asx-image.image", "level": 3, "description": "", "followee_count": 1, "follower_count": 51, "post_article_count": 27, "digg_article_count": 2, "got_digg_count": 675, "got_view_count": 40454, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 1079, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2547036, "tag_id": "6809641113071124493", "tag_name": "容器", "color": "", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/153024333442233331e5dd27e1829e0d4f73b714ce46b.jpg~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1530152271, "mtime": 1631452898, "id_type": 9, "tag_alias": "docker", "post_article_count": 2140, "concern_user_count": 4343}, {"id": 2546581, "tag_id": "6809640482725953550", "tag_name": "程序员", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/63baec1130bde0284e98.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1438712834, "mtime": 1631686409, "id_type": 9, "tag_alias": "", "post_article_count": 16341, "concern_user_count": 275512}], "user_interact": {"id": 6844903655770947597, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6902063717236604936", "article_info": {"article_id": "6902063717236604936", "user_id": "4195392104709821", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "box-shadow和text-shadow", "brief_content": "box盒模型定义参考文章:https://zhuanlan.zhihu.com/p/291489867盒子内部盒子外部content-box(标准盒模型)boxWidth=width+border2+", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1607012831", "mtime": "1607057355", "rtime": "1607057355", "draft_id": "6902062718887395341", "view_count": 167, "collect_count": 1, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010347, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4195392104709821", "user_name": "moonlightop", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/user-avatar/c69001f5df60f71b0dea1a46c99115d5~300x300.image", "level": 1, "description": "一个前端小白", "followee_count": 62, "follower_count": 3, "post_article_count": 32, "digg_article_count": 40, "got_digg_count": 19, "got_view_count": 3597, "post_shortmsg_count": 0, "digg_shortmsg_count": 19, "isfollowed": false, "favorable_author": 0, "power": 55, "study_point": 1130, "university": {"university_id": "6888594362209402887", "name": "广州大学", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 2, "select_event_count": 0, "select_online_course_count": 0, "identity": 1, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6902063717236604936, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903568923688967", "article_info": {"article_id": "6844903568923688967", "user_id": "3562073403955902", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342, 6809640407484334093, 6809640381920051207, 6809640625856577549], "visible_level": 0, "link_url": "https://www.liayal.com/article/5a96599bca0de01ec9713c43", "cover_image": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/gold-user-assets/2018/3/2/161e571ddff83cc6~tplv-t2oaga2asx-image.image", "is_gfw": 0, "title": "初探CSS Grid布局", "brief_content": "在CSS3中纳入的Flex Box布局给前端开发者带来了极大的便利,它的强大是有目共睹的。很多以前需要以前复查代码实现的布局,现在通过 Flex Box 很容易就实现。而在下一版本的CSS规范中正在讨论纳入一个更加强大的布局系统,它就是今天要说的: CSS Grid Layou…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1519972901", "mtime": "1598689120", "rtime": "1520219199", "draft_id": "0", "view_count": 812, "collect_count": 15, "digg_count": 30, "comment_count": 1, "hot_index": 71, "is_hot": 0, "rank_index": 0.0001031, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3562073403955902", "user_name": "MaelWeb", "company": "记小栈", "job_title": "Web攻城狮", "avatar_large": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/mirror-assets/168e08807ec8e0f3c6b~tplv-t2oaga2asx-image.image", "level": 0, "description": "游走在技术与艺术的边缘地带,偶是一枚前端攻城狮!", "followee_count": 3, "follower_count": 3, "post_article_count": 13, "digg_article_count": 10, "got_digg_count": 236, "got_view_count": 10228, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 0, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}, {"id": 2546683, "tag_id": "6809640625856577549", "tag_name": "浏览器", "color": "#47ebc7", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/baf3558e2acdfa623201.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1460153459, "mtime": 1631677186, "id_type": 9, "tag_alias": "", "post_article_count": 3341, "concern_user_count": 28324}], "user_interact": {"id": 6844903568923688967, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6859685285127520269", "article_info": {"article_id": "6859685285127520269", "user_id": "1011206429616429", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/1f473330ce8d4127a0219a933de1f60f~tplv-k3u1fbpfcp-zoom-1.image", "is_gfw": 0, "title": "Re:从零开始の CSS 学习笔记——布局(下)", "brief_content": "container 中的子元素,与列数一一对应。且默认只占据第一行。所以添加 border 后 效果如下图所示", "is_english": 0, "is_original": 1, "user_index": 1.419022582702909, "original_type": 0, "original_author": "", "content": "", "ctime": "1597144973", "mtime": "1597210097", "rtime": "1597210097", "draft_id": "6859683107088531469", "view_count": 255, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 14, "is_hot": 0, "rank_index": 0.000103, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "1011206429616429", "user_name": "SamRock", "company": "", "job_title": "随缘更新", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/7b99cc610e9bcf77091bfbe7c6414a2e~300x300.image", "level": 2, "description": "这人在尝试成为段子手/键盘侠/杠精失败后,终于回来老老实实的搬砖了 ~", "followee_count": 16, "follower_count": 29, "post_article_count": 38, "digg_article_count": 2, "got_digg_count": 58, "got_view_count": 12004, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 178, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6859685285127520269, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6901614433013858318", "article_info": {"article_id": "6901614433013858318", "user_id": "3799550220589549", "category_id": "6809637767543259144", "tag_ids": [6809640394175971342], "visible_level": 0, "link_url": "", "cover_image": "", "is_gfw": 0, "title": "CSS盒模型", "brief_content": "在 CSS 中,所有的元素都被一个个的“盒子(box)”包围。每一个盒子包括内容(content)、内边距(padding)、边框(border)、外边距(margin),这些元素共同组成盒模型。", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1606907364", "mtime": "1606972920", "rtime": "1606963918", "draft_id": "6901488070235947022", "view_count": 178, "collect_count": 0, "digg_count": 2, "comment_count": 0, "hot_index": 10, "is_hot": 0, "rank_index": 0.00010296, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "3799550220589549", "user_name": "远方的朋友", "company": "", "job_title": "", "avatar_large": "https://sf1-ttcdn-tos.pstatp.com/img/mosaic-legacy/3793/3131589739~300x300.image", "level": 1, "description": "", "followee_count": 1, "follower_count": 0, "post_article_count": 23, "digg_article_count": 1, "got_digg_count": 5, "got_view_count": 1269, "post_shortmsg_count": 0, "digg_shortmsg_count": 0, "isfollowed": false, "favorable_author": 0, "power": 17, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6901614433013858318, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903552637206535", "article_info": {"article_id": "6844903552637206535", "user_id": "4388906147515367", "category_id": "6809637767543259144", "tag_ids": [6809640407484334093, 6809640858137133064, 6809640394175971342, 6809640381920051207], "visible_level": 0, "link_url": "https://juejin.im/post/6844903552637206535", "cover_image": "", "is_gfw": 0, "title": "奇舞周刊第 244 期:Web 前端中的 AR 开发技术", "brief_content": "“在使用 React Native 开发中,我们熟练的采用 JavaScript 的方式发送请求的方式发送一个请求到服务端,但是处理这个请求的过程其实和处理 Web 应用中发送的请求的过程是不一样的。” 科普文一篇,前端方向的 AR 技术总结。 “我们需要明确的一点是: 重构不…", "is_english": 0, "is_original": 1, "user_index": 0, "original_type": 0, "original_author": "", "content": "", "ctime": "1516349545", "mtime": "1598444833", "rtime": "1516349545", "draft_id": "6845075368387280904", "view_count": 765, "collect_count": 9, "digg_count": 36, "comment_count": 0, "hot_index": 74, "is_hot": 0, "rank_index": 0.0001028, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "4388906147515367", "user_name": "奇舞精选", "company": "奇虎360", "job_title": "前端", "avatar_large": "https://sf6-ttcdn-tos.pstatp.com/img/user-avatar/8235463c80ecb19922c8ee10c40a1ca6~300x300.image", "level": 4, "description": "《奇舞精选》是由奇舞团维护的前端技术社区。除周五外,每天向大家推荐一篇前端相关技术文章,每周五向大家推送汇总的奇舞周刊。", "followee_count": 17, "follower_count": 7188, "post_article_count": 35, "digg_article_count": 39, "got_digg_count": 6416, "got_view_count": 246181, "post_shortmsg_count": 0, "digg_shortmsg_count": 5, "isfollowed": false, "favorable_author": 1, "power": 8858, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 1, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546852, "tag_id": "6809640858137133064", "tag_name": "ECharts", "color": "#000000", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/31cb8ecaf02c4a8f966b.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489098685, "mtime": 1631675169, "id_type": 9, "tag_alias": "", "post_article_count": 882, "concern_user_count": 13707}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}, {"id": 2546507, "tag_id": "6809640381920051207", "tag_name": "Chrome", "color": "#4586F2", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/084db5f7bc6a239be270.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432234593, "mtime": 1631675564, "id_type": 9, "tag_alias": "", "post_article_count": 2663, "concern_user_count": 131553}], "user_interact": {"id": 6844903552637206535, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": {"org_type": 1, "org_id": "6930504142150434824", "online_version_id": 6932281596162605059, "latest_version_id": 6932281596162605059, "power": 20675, "ctime": 1613635306, "mtime": 1631692819, "audit_status": 2, "status": 0, "org_version": {"version_id": "6932281596162605059", "icon": "https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/067e419907a94f4aa1099af8d9ba3ed5~tplv-k3u1fbpfcp-watermark.image", "background": "https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/051403ec6e1c482fa371dea0ab6b6475~tplv-k3u1fbpfcp-watermark.image", "name": "奇舞团", "introduction": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。", "weibo_link": "http://weibo.com/u/2565405913", "github_link": "", "homepage_link": "https://75.team/", "ctime": 1614052668, "mtime": 1614052668, "org_id": "6930504142150434824", "brief_introduction": "360奇舞团(奇虎75Team)是奇虎360公司技术中台前端工程师 + 部分特约嘉宾 组成的一个前端团队。 在这里,我们一起工作学习、一起沉淀、一起分享、一起为前端贡献影响。 开放是我们的特色,快乐是我们的使命。", "introduction_preview": "奇舞团(75.team)是360集团最大的大前端团队,代表集团参与W3C和Ecma会员(TC39)工作,拥有Web前端、服务端、Android、iOS、设计等岗位人员,旗下的品牌和产品有SpriteJS、ThinkJS、MeshJS、Chimee、Firekylin、QMap、QCharts、JARVIS、QiShare、aTaller、声享、即视、众成翻译、奇舞学院、奇舞周刊等。\n奇舞团是一个向内赋能的团队。我们为新人设定合适的成长计划和方案,提供工程师、培训师和翻译官等多种角色定位,提供丰富的专业力、通用力和领导力培训课程;\n奇舞团是一个产生影响的团队。我们通过奇舞周刊传播Web前端技术,通过QiShare传播移动端技术,通过众成翻译传播高质量图书内容,通过成员和业务传播团队文化。\n奇舞团是一个开放和欢乐的团队,有着丰富和浓厚的团队文化。 每周一晚上,我们在泛前端分享会上交流知识; 每月末周四下午,我们在员工生日趴上喝茶吃瓜; 每月末周五上午,我们在周会上总结工作和认识新人; 每季度末,我们在颁奖会上为季度之星鼓掌; 每季度,我们都有机会在大草原上策马,在轰趴馆里玩耍,在农家院里打牌,携手朝山顶出发; 在每年7月5日,我们会拍一张全家福。"}, "follower_count": 8019, "article_view_count": 894502, "article_digg_count": 11730}, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}, {"article_id": "6844903590843121671", "article_info": {"article_id": "6844903590843121671", "user_id": "800100193937240", "category_id": "6809637767543259144", "tag_ids": [6809640837895585805, 6809640398105870343, 6809640407484334093, 6809640394175971342], "visible_level": 0, "link_url": "https://codeburst.io/front-end-v-back-end-explained-by-waiting-tables-at-a-restaurant-174000a4498d", "cover_image": "", "is_gfw": 0, "title": "只要你去过餐厅就能理解的前后端通俗解释", "brief_content": "If you have ever visited a sit-down restaurant, then you can understand the difference between front-end and back-end in web development. W…", "is_english": 0, "is_original": 0, "user_index": 0, "original_type": 1, "original_author": "", "content": "", "ctime": "1523602862", "mtime": "1599463623", "rtime": "1523604632", "draft_id": "0", "view_count": 818, "collect_count": 8, "digg_count": 24, "comment_count": 4, "hot_index": 68, "is_hot": 0, "rank_index": 0.00010279, "status": 2, "verify_status": 1, "audit_status": 2, "mark_content": ""}, "author_user_info": {"user_id": "800100193937240", "user_name": "误入理工科的疯子", "company": "", "job_title": "前端", "avatar_large": "https://sf3-ttcdn-tos.pstatp.com/img/user-avatar/a48c3088705b3cb173ade00b5f3974a4~300x300.image", "level": 2, "description": "我们生活中最大的现实就是超现实", "followee_count": 1, "follower_count": 185, "post_article_count": 18, "digg_article_count": 50, "got_digg_count": 261, "got_view_count": 35314, "post_shortmsg_count": 0, "digg_shortmsg_count": 4, "isfollowed": false, "favorable_author": 0, "power": 515, "study_point": 0, "university": {"university_id": "0", "name": "", "logo": ""}, "major": {"major_id": "0", "parent_id": "0", "name": ""}, "student_status": 0, "select_event_count": 0, "select_online_course_count": 0, "identity": 0, "is_select_annual": false, "select_annual_rank": 0, "annual_list_type": 0, "extraMap": {}, "is_logout": 0}, "category": {"category_id": "6809637767543259144", "category_name": "前端", "category_url": "frontend", "rank": 2, "back_ground": "https://lc-mhke0kuv.cn-n1.lcfile.com/8c95587526f346c0.png", "icon": "https://lc-mhke0kuv.cn-n1.lcfile.com/1c40f5eaba561e32.png", "ctime": 1457483942, "mtime": 1432503190, "show_type": 3, "item_type": 2, "promote_tag_cap": 4, "promote_priority": 2}, "tags": [{"id": 2546837, "tag_id": "6809640837895585805", "tag_name": "服务器", "color": "#a3abad", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/be1879c7e9983dab0049.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1489042149, "mtime": 1631666741, "id_type": 9, "tag_alias": "", "post_article_count": 10408, "concern_user_count": 20830}, {"id": 2546519, "tag_id": "6809640398105870343", "tag_name": "JavaScript", "color": "#616161", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/5d70fd6af940df373834.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1435884803, "mtime": 1631692583, "id_type": 9, "tag_alias": "", "post_article_count": 67405, "concern_user_count": 398956}, {"id": 2546526, "tag_id": "6809640407484334093", "tag_name": "前端", "color": "#60ADFF", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/bac28828a49181c34110.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 1, "ctime": 1435971546, "mtime": 1631692835, "id_type": 9, "tag_alias": "", "post_article_count": 88828, "concern_user_count": 527704}, {"id": 2546516, "tag_id": "6809640394175971342", "tag_name": "CSS", "color": "#244DE4", "icon": "https://p1-jj.byteimg.com/tos-cn-i-t2oaga2asx/leancloud-assets/66de0c4eb9d10130d5bf.png~tplv-t2oaga2asx-image.image", "back_ground": "", "show_navi": 0, "ctime": 1432239426, "mtime": 1631688735, "id_type": 9, "tag_alias": "", "post_article_count": 14981, "concern_user_count": 297034}], "user_interact": {"id": 6844903590843121671, "omitempty": 2, "user_id": 0, "is_digg": false, "is_follow": false, "is_collect": false}, "org": {"org_info": null, "org_user": null, "is_followed": false}, "req_id": "2021091516045801020402403015006738"}], "cursor": "eyJ2IjoiNzAwNzgwMzIxNDc1ODE1MDE3NSIsImkiOjQyMjB9", "count": 4601, "has_more": true}
5b8aced9977d9f12adf0d4b703c3e25b1e55c899
e16911f1fae7bf90f405e055e0f90731ae8c8042
/etc/st2packgen/files/actions/lib/k8sbase.py
89df63259b4fbf47136ae2a8cdf29077dfb9461e
[]
no_license
bobhenkel/stackstorm-kubernetes
87136448434b1a6c821cfeb757f88833ca8ecf02
32b8538597bc5290a18cefadbf98fea7f8bb38bd
refs/heads/master
2021-04-25T22:06:36.392650
2017-11-02T04:30:02
2017-11-02T04:30:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,242
py
from __future__ import absolute_import from pyswagger.core import BaseClient from requests import Session, Request import six import json import base64 class Client(BaseClient): # declare supported schemes here __schemes__ = set(['http', 'https']) def __init__(self, config=None, auth=None, send_opt=None, extraheaders=None): """ constructor :param auth pyswagger.SwaggerAuth: auth info used when requesting :param send_opt dict: options used in requests.send, ex verify=False """ super(Client, self).__init__(auth) if send_opt is None: send_opt = {} self.__s = Session() self.__send_opt = send_opt self.extraheaders = extraheaders auth = base64.b64encode(config['user'] + ":" + config['password']) self.authhead = {"authorization": "Basic " + auth} def request(self, req_and_resp, opt): # passing to parent for default patching behavior, # applying authorizations, ...etc. req, resp = super(Client, self).request(req_and_resp, opt) req.prepare(scheme=self.prepare_schemes(req).pop(), handle_files=False) req._patch(opt) file_obj = [] def append(name, obj): f = obj.data or open(obj.filename, 'rb') if 'Content-Type' in obj.header: file_obj.append((name, (obj.filename, f, obj.header['Content-Type']))) else: file_obj.append((name, (obj.filename, f))) for k, v in six.iteritems(req.files): if isinstance(v, list): for vv in v: append(k, vv) else: append(k, v) rq = Request( method=req.method.upper(), url=req.url, params=req.query, data=req.data, headers=req.header, files=file_obj ) rq = self.__s.prepare_request(rq) rq.headers.update(self.authhead) rs = self.__s.send(rq, stream=True, **self.__send_opt) myresp = {} myresp['status'] = rs.status_code myresp['data'] = json.loads(rs.content.rstrip()) # myresp['headers'] = rs.headers return myresp
c06bcf0c5bf8278caf07c0496ba1c817c184ba8d
3d2e5d1092acccfb73c07d68b6beeffc44b3f776
/imitation/src/environments/simulation/pybullet_env.py
10ef9e12e56c2333e0813282dd5bdfe598ed1611
[]
no_license
MatthijsBiondina/WorldModels
f6cbcfe5349da7119329ef10831810d1b85c9d02
ab468f1aa978e3aa4e05174db24922085d1e33b1
refs/heads/master
2022-12-22T11:54:46.040828
2020-09-23T11:41:48
2020-09-23T11:41:48
248,212,491
0
0
null
null
null
null
UTF-8
Python
false
false
2,560
py
import gym import pybulletgym import numpy as np from src.environments.general.environment_template import Environment from src.utils import config as cfg _ = pybulletgym PREP_VECTORS = {'InvertedPendulumSwingupPyBulletEnv-v0': np.array([1, 0.2, 1, 1, 0.067], dtype=np.float16)} def preprocess_observation(obs): """ :param obs: unprocessed observation :return: normalized observation """ return np.clip(obs * PREP_VECTORS[cfg.env_name], -1., 1.) class SimEnv(Environment): def __init__(self, save_loc: str): super().__init__(save_loc) self.env = gym.make(cfg.env_name) self.t = 0 self.actions = [np.zeros(self.action_size)] * cfg.latency def reset(self): """ Reset environment :return: observation at t=0 """ self.t = 0 self.actions = [np.zeros(self.action_size)] * cfg.latency return preprocess_observation(self.env.reset()) def step(self, action: np.ndarray): """ Perform action and observe next state. Action is repeated 'action_repeat' times. :param action: the action to take :return: next observation, reward, terminal state """ obs, done = None, None reward = 0 self.actions.append(action) for k in range(cfg.action_repeat): obs, reward_k, done, _ = self.env.step(self.actions[0]) reward += reward_k done = done or self.t == cfg.max_episode_length if done: break self.actions.pop(0) return preprocess_observation(obs), reward, done def render(self) -> np.ndarray: """ Renders the environment to RGB array :return: frame capture of environment """ return self.env.render(mode='rgb_array') def close(self): """ Cleanup :return: n/a """ self.env.close() def sample_random_action(self) -> np.ndarray: """ Sample an action randomly from a uniform distribution over all valid actions :return: random action """ return self.env.action_space.sample() @property def obs_size(self) -> int: """ GETTER METHOD :return: size of observations in this environment """ return self.env.observation_space.shape[0] @property def action_size(self): """ GETTER METHOD :return: size of actions in this environment """ return self.env.action_space.shape[0]
c8a58abf83afbf6366b65b7dc1ee8f6a5d6ef831
24ffbd64e1892ab633ca785e969ccef43f17a9f2
/picomotor/devices/h2_yr.py
efa1098cd7f197e7875e4fee3720cf40bfa6fb58
[]
no_license
yesrgang/labrad_tools.srq
e29fcbfc4f5228955de1faddab6a66df52ccdd03
0dfbf2609d2f7a7e499167decedb0d9ea3677978
refs/heads/master
2021-06-18T19:59:21.448762
2021-02-04T22:03:49
2021-02-04T22:03:49
155,478,765
0
0
null
null
null
null
UTF-8
Python
false
false
155
py
from picomotor.devices.nf8742.device import NF8742 class Motor(NF8742): socket_address = ('192.168.1.20', 23) controller_axis = 4 Device = Motor
cf26d52e9926a5a057a1fb70657bda084f53ef49
60b1f668808de2b82c2fcb62b07b45bb165219f2
/egoi-api/models/form.py
4e4d4d5517af495318cbbc38c7b97704ef21786d
[]
no_license
andersonmiguel/Egoi
6d37bf7a3a7555e764f7a6e792b3ef1c68fe8e20
b5f59f9b33ea94e170f4e7e26c6a37a78d2874c2
refs/heads/master
2022-06-21T07:18:44.920786
2020-05-04T17:29:02
2020-05-04T17:29:02
261,250,618
0
0
null
null
null
null
UTF-8
Python
false
false
13,120
py
# coding: utf-8 """ APIv3 (Beta) # Introduction Just a quick peek!!! This is our new version of API. Remember, it is not stable yet!!! But we invite you play with it and give us your feedback ;) # Getting Started E-goi can be integrated with many environments and programming languages via our REST API. We've created a developer focused portal to give your organization a clear and quick overview of how to integrate with E-goi. The developer portal focuses on scenarios for integration and flow of events. We recommend familiarizing yourself with all of the content in the developer portal, before start using our rest API. The E-goi APIv3 is served over HTTPS. To ensure data privacy, unencrypted HTTP is not supported. Request data is passed to the API by POSTing JSON objects to the API endpoints with the appropriate parameters. BaseURL = api.egoiapp.com # RESTful Services This API supports 5 HTTP methods: * <b>GET</b>: The HTTP GET method is used to **read** (or retrieve) a representation of a resource. * <b>POST</b>: The POST verb is most-often utilized to **create** new resources. * <b>PATCH</b>: PATCH is used for **modify** capabilities. The PATCH request only needs to contain the changes to the resource, not the complete resource * <b>PUT</b>: PUT is most-often utilized for **update** capabilities, PUT-ing to a known resource URI with the request body containing the newly-updated representation of the original resource. * <b>DELETE</b>: DELETE is pretty easy to understand. It is used to **delete** a resource identified by a URI. # Authentication We use a custom authentication method, you will need a apikey that you can find in your account settings. Below you will see a curl example to get your account information: #!/bin/bash curl -X GET 'https://api.egoiapp.com/my-account' \\ -H 'accept: application/json' \\ -H 'Apikey: <YOUR_APY_KEY>' Here you can see a curl Post example with authentication: #!/bin/bash curl -X POST 'http://api.egoiapp.com/tags' \\ -H 'accept: application/json' \\ -H 'Apikey: <YOUR_APY_KEY>' \\ -H 'Content-Type: application/json' \\ -d '{`name`:`Your custom tag`,`color`:`#FFFFFF`}' # SDK Get started quickly with E-goi with our integration tools. Our SDK is a modern open source library that makes it easy to integrate your application with E-goi services. * <b><a href='https://github.com/E-goi/sdk-java'>Java</a></b> * <b><a href='https://github.com/E-goi/sdk-php'>PHP</a></b> * <b><a href='https://github.com/E-goi/sdk-python'>Python</a></b> <security-definitions/> # noqa: E501 The version of the OpenAPI document: 3.0.0-beta Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from egoi-api.configuration import Configuration class Form(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'form_id': 'int', 'internal_title': 'str', 'title': 'str', 'language': 'Language', 'list_id': 'int', 'default': 'bool', 'owner': 'int', 'status': 'str', 'created': 'datetime', 'updated': 'datetime' } attribute_map = { 'form_id': 'form_id', 'internal_title': 'internal_title', 'title': 'title', 'language': 'language', 'list_id': 'list_id', 'default': 'default', 'owner': 'owner', 'status': 'status', 'created': 'created', 'updated': 'updated' } def __init__(self, form_id=None, internal_title='$request.body#/title', title=None, language=None, list_id=None, default=None, owner=None, status=None, created=None, updated=None, local_vars_configuration=None): # noqa: E501 """Form - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._form_id = None self._internal_title = None self._title = None self._language = None self._list_id = None self._default = None self._owner = None self._status = None self._created = None self._updated = None self.discriminator = None if form_id is not None: self.form_id = form_id if internal_title is not None: self.internal_title = internal_title self.title = title if language is not None: self.language = language if list_id is not None: self.list_id = list_id if default is not None: self.default = default if owner is not None: self.owner = owner if status is not None: self.status = status if created is not None: self.created = created if updated is not None: self.updated = updated @property def form_id(self): """Gets the form_id of this Form. # noqa: E501 :return: The form_id of this Form. # noqa: E501 :rtype: int """ return self._form_id @form_id.setter def form_id(self, form_id): """Sets the form_id of this Form. :param form_id: The form_id of this Form. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and form_id is not None and form_id < 1): # noqa: E501 raise ValueError("Invalid value for `form_id`, must be a value greater than or equal to `1`") # noqa: E501 self._form_id = form_id @property def internal_title(self): """Gets the internal_title of this Form. # noqa: E501 Internal title of the form # noqa: E501 :return: The internal_title of this Form. # noqa: E501 :rtype: str """ return self._internal_title @internal_title.setter def internal_title(self, internal_title): """Sets the internal_title of this Form. Internal title of the form # noqa: E501 :param internal_title: The internal_title of this Form. # noqa: E501 :type: str """ self._internal_title = internal_title @property def title(self): """Gets the title of this Form. # noqa: E501 Title of the form # noqa: E501 :return: The title of this Form. # noqa: E501 :rtype: str """ return self._title @title.setter def title(self, title): """Sets the title of this Form. Title of the form # noqa: E501 :param title: The title of this Form. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and title is None: # noqa: E501 raise ValueError("Invalid value for `title`, must not be `None`") # noqa: E501 self._title = title @property def language(self): """Gets the language of this Form. # noqa: E501 :return: The language of this Form. # noqa: E501 :rtype: Language """ return self._language @language.setter def language(self, language): """Sets the language of this Form. :param language: The language of this Form. # noqa: E501 :type: Language """ self._language = language @property def list_id(self): """Gets the list_id of this Form. # noqa: E501 :return: The list_id of this Form. # noqa: E501 :rtype: int """ return self._list_id @list_id.setter def list_id(self, list_id): """Sets the list_id of this Form. :param list_id: The list_id of this Form. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and list_id is not None and list_id < 1): # noqa: E501 raise ValueError("Invalid value for `list_id`, must be a value greater than or equal to `1`") # noqa: E501 self._list_id = list_id @property def default(self): """Gets the default of this Form. # noqa: E501 True if this is the default form in the list, false otherwise # noqa: E501 :return: The default of this Form. # noqa: E501 :rtype: bool """ return self._default @default.setter def default(self, default): """Sets the default of this Form. True if this is the default form in the list, false otherwise # noqa: E501 :param default: The default of this Form. # noqa: E501 :type: bool """ self._default = default @property def owner(self): """Gets the owner of this Form. # noqa: E501 :return: The owner of this Form. # noqa: E501 :rtype: int """ return self._owner @owner.setter def owner(self, owner): """Sets the owner of this Form. :param owner: The owner of this Form. # noqa: E501 :type: int """ if (self.local_vars_configuration.client_side_validation and owner is not None and owner < 1): # noqa: E501 raise ValueError("Invalid value for `owner`, must be a value greater than or equal to `1`") # noqa: E501 self._owner = owner @property def status(self): """Gets the status of this Form. # noqa: E501 Status of the form # noqa: E501 :return: The status of this Form. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this Form. Status of the form # noqa: E501 :param status: The status of this Form. # noqa: E501 :type: str """ allowed_values = ["active", "unpublished", "cloned", "deleted"] # noqa: E501 if self.local_vars_configuration.client_side_validation and status not in allowed_values: # noqa: E501 raise ValueError( "Invalid value for `status` ({0}), must be one of {1}" # noqa: E501 .format(status, allowed_values) ) self._status = status @property def created(self): """Gets the created of this Form. # noqa: E501 The date and time # noqa: E501 :return: The created of this Form. # noqa: E501 :rtype: datetime """ return self._created @created.setter def created(self, created): """Sets the created of this Form. The date and time # noqa: E501 :param created: The created of this Form. # noqa: E501 :type: datetime """ self._created = created @property def updated(self): """Gets the updated of this Form. # noqa: E501 The date and time # noqa: E501 :return: The updated of this Form. # noqa: E501 :rtype: datetime """ return self._updated @updated.setter def updated(self, updated): """Sets the updated of this Form. The date and time # noqa: E501 :param updated: The updated of this Form. # noqa: E501 :type: datetime """ self._updated = updated def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Form): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Form): return True return self.to_dict() != other.to_dict()
092db6afd0b046dcf1485a91be052fd57d5c502e
a177931c2914cc9820c578add9d57aa6c75084ce
/tips/customHTML/test_genTABHTML.py
cfd92464403354ae73e44a3df5bc666a81d2eb93
[]
no_license
zhangshoug/others
45d94f96701362cb077eb994c27295247a6fb712
3a8a8366f2598a5e88b44d18d346e81f4eef659e
refs/heads/master
2022-12-18T22:37:13.505543
2020-09-28T08:54:28
2020-09-28T08:54:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,021
py
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: test_genTABHTML Description : tab css style test Author : pchaos date: 2019/9/9 ------------------------------------------------- Change Activity: 2019/9/9: ------------------------------------------------- """ import unittest from unittest import TestCase from .genTabHTML import genTABHTML class TestGenTABHTML(TestCase): def test_genHTML(self): # 需要生成的文件名list。模板文件为:template.html,模板数据文件名为:需要生成的文件名+".ini" flist = ["main.htm", "main_tech.htm", "hacker.html"] # inifile = '{}.ini'.format(flist[0]) renderList = [] for fn in flist: inifile = '{}.ini'.format(fn) gh = genTABHTML() # gh.outputFilename = fn gh.outputFilename = "test" gh.iniFilename = inifile try: templateFile = "customHTML/template.tab.table.html" of, render = gh.genHTML(None, # of, render = gh.genHTML("a{}".format(fn), title=fn.split(".")[0], prettify=False, template=templateFile) except Exception as e: templateFile = "template.tab.table.html" of, render = gh.genHTML(None, # of, render = gh.genHTML("a{}".format(fn), title=fn.split(".")[0], prettify=False, template=templateFile) print("输出文件完成 {}".format(of)) # print(render) self.assertTrue(len(render) > 100) renderList.append(render) print(renderList) # main inifile = '{}.ini'.format(flist[0]) gh = genTABHTML() # gh.outputFilename = fn gh.iniFilename = inifile try: templateFile = "template.tab.html" render = gh.renders(renderList, prettify=True, # template="customHTML/template.tab.html", template=templateFile, title="Main") except Exception as e: templateFile = "customHTML/template.tab.html" render = gh.renders(renderList, prettify=True, # template="customHTML/template.tab.html", template=templateFile, title="Main") saveText = "" for r in render: saveText += r gh.save('main.htm', saveText) print("输出文件完成 {}".format(render)) if __name__ == '__main__': unittest.main()
6b7ec47b7dfaed08aeefb1d1ec11acaff71addf7
447e9ec821dc7505cc9b73fb7abeb220fe2b3a86
/rvpy/logistic.py
2d66e011e93fb9f8e4dc0e7ab086276b4445ba04
[ "MIT" ]
permissive
timbook/rvpy
ecd574f91ed50fd47b6ead8517954f01e33c03a7
301fd61df894d4b300176e287bf9e725378c38eb
refs/heads/master
2020-03-19T04:01:49.283213
2018-12-18T19:21:07
2018-12-18T19:21:07
135,788,512
1
0
MIT
2018-12-18T19:21:08
2018-06-02T04:55:39
Python
UTF-8
Python
false
false
3,722
py
import numpy as np from math import log, exp from scipy.stats import logistic, fisk from . import distribution class Logistic(distribution.Distribution): """ Logistic Distribution using the following parameterization: f(x | loc, scale) = exp(-z) / (s * (1 + exp(-z))^2) where z = (x - loc) / scale Parameters ---------- loc : float, positive Location parameter scale : float, positive Scale parameter Methods ------- exp() Transforms self to LogLogistic Relationships ------------- Let X be Logistic, a, b float. Then: * aX + b is Logistic * exp(X) is Log-Logistic """ def __init__(self, loc=0, scale=1): """ Parameters ---------- loc : float, positive Location parameter scale : float, positive Scale parameter """ assert scale > 0, "scale parameter must be positive" # Parameters self.loc = loc self.scale = scale # Scipy backend self.sp = logistic(loc=loc, scale=scale) super().__init__() def __repr__(self): return f"Logistic(loc={self.loc}, scale={self.scale})" def __add__(self, other): if isinstance(other, (int, float)): return Logistic(self.loc + other, self.scale) else: raise TypeError(f"Can't add or subtract objects of type {type(other)} to Logistic") def __mul__(self, other): if isinstance(other, (int, float)): return Logistic(other * self.loc, other * self.scale) else: raise TypeError(f"Can't multiply objects of type {type(other)} by Logistic") def __truediv__(self, other): if isinstance(other, (int, float)): return self.__mul__(1/other) else: raise TypeError(f"Can't divide objects of type {type(other)} by Logistic") def exp(self): return LogLogistic(alpha=exp(self.loc), beta=1/self.scale) # TODO: Gumbel - Gumbel = Logistic class LogLogistic(distribution.Distribution): """ LogLogistic Distribution using the following parameterization: f(x | a, b) = (b/a) * (x/a)^(b-1) / (1 + (x/a)^b)^2 Parameters ---------- alpha : float, positive Scale parameter beta : float, positive Shape parameter Methods ------- log() Transforms self to Logistic Relationships ------------- Let X be LogLogistic, k > 0 float. Then: * kX is LogLogistic * log(X) is Logistic """ def __init__(self, alpha, beta): """ Parameters ---------- alpha : float, positive Scale parameter beta : float, positive Shape parameter """ assert alpha > 0, "alpha must be positive" assert beta > 0, "alpha must be positive" # Parameters self.alpha = alpha self.beta = beta # Scipy backend self.sp = fisk(c=beta, scale=alpha) super().__init__() def __repr__(self): return f"LogLogistic(alpha={self.alpha}, beta={self.beta})" def __mul__(self, other): if isinstance(other, (int, float)): return LogLogistic(other*self.alpha, self.beta) else: raise TypeError(f"Can't multiply objects of type {type(other)} by LogLogistic") def __truediv__(self, other): if isinstance(other, (int, float)): return self.__mul__(1/other) else: raise TypeError(f"Can't divide objects of type {type(other)} by LogLogistic") def log(self): return Logistic(loc=np.log(self.alpha), scale=1/self.beta)
df016bf13355458c6083ae6c2005a1cebd3ceecb
7b6313d1c4e0e8a5bf34fc8ac163ad446bc69354
/datastructure and algorithms/[hackerrank]The Hurdle Race.py
5bcab2ab43d0415da1bf267cba2ff15bee29380b
[]
no_license
menuka-maharjan/competitive_programming
c6032ae3ddcbc974e0e62744989a2aefa30864b2
22d0cea0f96d8bd6dc4d81b146ba20ea627022dd
refs/heads/master
2023-05-01T05:23:09.641733
2021-05-23T16:22:21
2021-05-23T16:22:21
332,250,476
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
nk=input().split() n=int(nk[0]) k=int(nk[1]) l=list(map(int,input().rstrip().split())) x=max(l) if((x-k)>=0): print(x-k) else: print(0)
85596fb3ff870c316d4d7b3553f515d5d673f9b9
2bb90b620f86d0d49f19f01593e1a4cc3c2e7ba8
/pardus/tags/2007/desktop/kde/autostart/actions.py
5bd7b2827ebfb6bdfc4093743e2fb7ed2daacc96
[]
no_license
aligulle1/kuller
bda0d59ce8400aa3c7ba9c7e19589f27313492f7
7f98de19be27d7a517fe19a37c814748f7e18ba6
refs/heads/master
2021-01-20T02:22:09.451356
2013-07-23T17:57:58
2013-07-23T17:57:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
286
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 2. # See the file http://www.gnu.org/copyleft/gpl.txt. from pisi.actionsapi import kde def setup(): kde.configure() def build(): kde.make() def install(): kde.install()
677993bbfd1033c8a7be8606b387754616bdceda
853d4cec42071b76a80be38c58ffe0fbf9b9dc34
/venv/Lib/site-packages/networkx/algorithms/isomorphism/tests/test_tree_isomorphism.py
3082365a4bb61f2d8c99fcddb56c72e2af1d0aeb
[]
no_license
msainTesting/TwitterAnalysis
5e1646dbf40badf887a86e125ef30a9edaa622a4
b1204346508ba3e3922a52380ead5a8f7079726b
refs/heads/main
2023-08-28T08:29:28.924620
2021-11-04T12:36:30
2021-11-04T12:36:30
424,242,582
0
0
null
null
null
null
UTF-8
Python
false
false
7,443
py
import networkx as nx import random import time from networkx.classes.function import is_directed from networkx.algorithms.isomorphism.tree_isomorphism import ( rooted_tree_isomorphism, tree_isomorphism, ) # have this work for graph # given two trees (either the directed or undirected) # transform t2 according to the isomorphism # and confirm it is identical to t1 # randomize the order of the edges when constructing def check_isomorphism(t1, t2, isomorphism): # get the name of t1, given the name in t2 mapping = {v2: v1 for (v1, v2) in isomorphism} # these should be the same d1 = is_directed(t1) d2 = is_directed(t2) assert d1 == d2 edges_1 = [] for (u, v) in t1.edges(): if d1: edges_1.append((u, v)) else: # if not directed, then need to # put the edge in a consistent direction if u < v: edges_1.append((u, v)) else: edges_1.append((v, u)) edges_2 = [] for (u, v) in t2.edges(): # translate to names for t1 u = mapping[u] v = mapping[v] if d2: edges_2.append((u, v)) else: if u < v: edges_2.append((u, v)) else: edges_2.append((v, u)) return sorted(edges_1) == sorted(edges_2) def test_hardcoded(): print("hardcoded test") # define a test problem edges_1 = [ ("a", "b"), ("a", "c"), ("a", "d"), ("b", "e"), ("b", "f"), ("e", "j"), ("e", "k"), ("c", "g"), ("c", "h"), ("g", "m"), ("d", "i"), ("f", "l"), ] edges_2 = [ ("v", "y"), ("v", "z"), ("u", "x"), ("q", "u"), ("q", "v"), ("p", "t"), ("n", "p"), ("n", "q"), ("n", "o"), ("o", "r"), ("o", "s"), ("s", "w"), ] # there are two possible correct isomorphisms # it currently returns isomorphism1 # but the second is also correct isomorphism1 = [ ("a", "n"), ("b", "q"), ("c", "o"), ("d", "p"), ("e", "v"), ("f", "u"), ("g", "s"), ("h", "r"), ("i", "t"), ("j", "y"), ("k", "z"), ("l", "x"), ("m", "w"), ] # could swap y and z isomorphism2 = [ ("a", "n"), ("b", "q"), ("c", "o"), ("d", "p"), ("e", "v"), ("f", "u"), ("g", "s"), ("h", "r"), ("i", "t"), ("j", "z"), ("k", "y"), ("l", "x"), ("m", "w"), ] t1 = nx.Graph() t1.add_edges_from(edges_1) root1 = "a" t2 = nx.Graph() t2.add_edges_from(edges_2) root2 = "n" isomorphism = sorted(rooted_tree_isomorphism(t1, root1, t2, root2)) # is correct by hand assert (isomorphism == isomorphism1) or (isomorphism == isomorphism2) # check algorithmically assert check_isomorphism(t1, t2, isomorphism) # try again as digraph t1 = nx.DiGraph() t1.add_edges_from(edges_1) root1 = "a" t2 = nx.DiGraph() t2.add_edges_from(edges_2) root2 = "n" isomorphism = sorted(rooted_tree_isomorphism(t1, root1, t2, root2)) # is correct by hand assert (isomorphism == isomorphism1) or (isomorphism == isomorphism2) # check algorithmically assert check_isomorphism(t1, t2, isomorphism) # randomly swap a tuple (a,b) def random_swap(t): (a, b) = t if random.randint(0, 1) == 1: return (a, b) else: return (b, a) # given a tree t1, create a new tree t2 # that is isomorphic to t1, with a known isomorphism # and test that our algorithm found the right one def positive_single_tree(t1): assert nx.is_tree(t1) nodes1 = [n for n in t1.nodes()] # get a random permutation of this nodes2 = nodes1.copy() random.shuffle(nodes2) # this is one isomorphism, however they may be multiple # so we don't necessarily get this one back someisomorphism = [(u, v) for (u, v) in zip(nodes1, nodes2)] # map from old to new map1to2 = {u: v for (u, v) in someisomorphism} # get the edges with the transformed names edges2 = [random_swap((map1to2[u], map1to2[v])) for (u, v) in t1.edges()] # randomly permute, to ensure we're not relying on edge order somehow random.shuffle(edges2) # so t2 is isomorphic to t1 t2 = nx.Graph() t2.add_edges_from(edges2) # lets call our code to see if t1 and t2 are isomorphic isomorphism = tree_isomorphism(t1, t2) # make sure we got a correct solution # although not necessarily someisomorphism assert len(isomorphism) > 0 assert check_isomorphism(t1, t2, isomorphism) # run positive_single_tree over all the # non-isomorphic trees for k from 4 to maxk # k = 4 is the first level that has more than 1 non-isomorphic tree # k = 13 takes about 2.86 seconds to run on my laptop # larger values run slow down significantly # as the number of trees grows rapidly def test_positive(maxk=14): print("positive test") for k in range(2, maxk + 1): start_time = time.time() trial = 0 for t in nx.nonisomorphic_trees(k): positive_single_tree(t) trial += 1 print(k, trial, time.time() - start_time) # test the trivial case of a single node in each tree # note that nonisomorphic_trees doesn't work for k = 1 def test_trivial(): print("trivial test") # back to an undirected graph t1 = nx.Graph() t1.add_node("a") root1 = "a" t2 = nx.Graph() t2.add_node("n") root2 = "n" isomorphism = rooted_tree_isomorphism(t1, root1, t2, root2) assert isomorphism == [("a", "n")] assert check_isomorphism(t1, t2, isomorphism) # test another trivial case where the two graphs have # different numbers of nodes def test_trivial_2(): print("trivial test 2") edges_1 = [("a", "b"), ("a", "c")] edges_2 = [("v", "y")] t1 = nx.Graph() t1.add_edges_from(edges_1) t2 = nx.Graph() t2.add_edges_from(edges_2) isomorphism = tree_isomorphism(t1, t2) # they cannot be isomorphic, # since they have different numbers of nodes assert isomorphism == [] # the function nonisomorphic_trees generates all the non-isomorphic # trees of a given size. Take each pair of these and verify that # they are not isomorphic # k = 4 is the first level that has more than 1 non-isomorphic tree # k = 11 takes about 4.76 seconds to run on my laptop # larger values run slow down significantly # as the number of trees grows rapidly def test_negative(maxk=11): print("negative test") for k in range(4, maxk + 1): test_trees = list(nx.nonisomorphic_trees(k)) start_time = time.time() trial = 0 for i in range(len(test_trees) - 1): for j in range(i + 1, len(test_trees)): trial += 1 assert tree_isomorphism(test_trees[i], test_trees[j]) == [] print(k, trial, time.time() - start_time)
a3c03bb30d7ab9d2444696500ece8c13bfd13edd
2fabea234735beefc980b77b213fcb0dfb394980
/tensorflow_probability/python/math/sparse_test.py
aca018215524f5574b3df657c781c4d51d85533d
[ "Apache-2.0" ]
permissive
tarrou/probability
0eee452b525a6e6b3c7c98d467468e47f07e861b
d4d80a1c04ad0b3e98758ebc3f7f82887274384d
refs/heads/master
2020-08-08T11:16:42.441268
2019-12-06T17:35:17
2019-12-06T17:35:17
213,819,828
0
0
Apache-2.0
2019-10-09T04:20:19
2019-10-09T04:20:19
null
UTF-8
Python
false
false
6,549
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for sparse ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_case from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import def _assert_sparse_tensor_value(test_case_instance, expected, actual): test_case_instance.assertEqual(np.int64, np.array(actual.indices).dtype) test_case_instance.assertAllEqual(expected.indices, actual.indices) test_case_instance.assertEqual( np.array(expected.values).dtype, np.array(actual.values).dtype) test_case_instance.assertAllEqual(expected.values, actual.values) test_case_instance.assertEqual(np.int64, np.array(actual.dense_shape).dtype) test_case_instance.assertAllEqual(expected.dense_shape, actual.dense_shape) @test_util.run_all_in_graph_and_eager_modes class SparseTest(test_case.TestCase): # Copied (with modifications) from: # tensorflow/contrib/layers/python/ops/sparse_ops.py. def test_dense_to_sparse_1d(self): st = tfp.math.dense_to_sparse([1, 0, 2, 0]) result = self.evaluate(st) self.assertEqual(result.indices.dtype, np.int64) self.assertEqual(result.values.dtype, np.int32) self.assertEqual(result.dense_shape.dtype, np.int64) self.assertAllEqual([[0], [2]], result.indices) self.assertAllEqual([1, 2], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_1d_float(self): st = tfp.math.dense_to_sparse([1.5, 0.0, 2.3, 0.0]) result = self.evaluate(st) self.assertEqual(result.indices.dtype, np.int64) self.assertEqual(result.values.dtype, np.float32) self.assertEqual(result.dense_shape.dtype, np.int64) self.assertAllEqual([[0], [2]], result.indices) self.assertAllClose([1.5, 2.3], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_1d_bool(self): st = tfp.math.dense_to_sparse([True, False, True, False]) result = self.evaluate(st) self.assertEqual(result.indices.dtype, np.int64) self.assertEqual(result.values.dtype, np.bool) self.assertEqual(result.dense_shape.dtype, np.int64) self.assertAllEqual([[0], [2]], result.indices) self.assertAllEqual([True, True], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_1d_str(self): st = tfp.math.dense_to_sparse([b'qwe', b'', b'ewq', b'']) result = self.evaluate(st) self.assertEqual(result.indices.dtype, np.int64) self.assertEqual(result.values.dtype, np.object) self.assertEqual(result.dense_shape.dtype, np.int64) self.assertAllEqual([[0], [2]], result.indices) self.assertAllEqual([b'qwe', b'ewq'], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_1d_str_special_ignore(self): st = tfp.math.dense_to_sparse( [b'qwe', b'', b'ewq', b''], ignore_value=b'qwe') result = self.evaluate(st) self.assertEqual(result.indices.dtype, np.int64) self.assertEqual(result.values.dtype, np.object) self.assertEqual(result.dense_shape.dtype, np.int64) self.assertAllEqual([[1], [2], [3]], result.indices) self.assertAllEqual([b'', b'ewq', b''], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_2d(self): st = tfp.math.dense_to_sparse([[1, 2, 0, 0], [3, 4, 5, 0]]) result = self.evaluate(st) self.assertAllEqual([[0, 0], [0, 1], [1, 0], [1, 1], [1, 2]], result.indices) self.assertAllEqual([1, 2, 3, 4, 5], result.values) self.assertAllEqual([2, 4], result.dense_shape) def test_dense_to_sparse_3d(self): st = tfp.math.dense_to_sparse( [[[1, 2, 0, 0], [3, 4, 5, 0]], [[7, 8, 0, 0], [9, 0, 0, 0]]]) result = self.evaluate(st) self.assertAllEqual( [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 2], [1, 0, 0], [1, 0, 1], [1, 1, 0]], result.indices) self.assertAllEqual([1, 2, 3, 4, 5, 7, 8, 9], result.values) self.assertAllEqual([2, 2, 4], result.dense_shape) def test_dense_to_sparse_unknown_1d_shape(self): tensor = tf1.placeholder_with_default( np.array([0, 100, 0, 3], np.int32), shape=[None]) st = tfp.math.dense_to_sparse(tensor) result = self.evaluate(st) self.assertAllEqual([[1], [3]], result.indices) self.assertAllEqual([100, 3], result.values) self.assertAllEqual([4], result.dense_shape) def test_dense_to_sparse_unknown_3d_shape(self): tensor = tf1.placeholder_with_default( np.array([[[1, 2, 0, 0], [3, 4, 5, 0]], [[7, 8, 0, 0], [9, 0, 0, 0]]], np.int32), shape=[None, None, None]) st = tfp.math.dense_to_sparse(tensor) result = self.evaluate(st) self.assertAllEqual( [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 2], [1, 0, 0], [1, 0, 1], [1, 1, 0]], result.indices) self.assertAllEqual([1, 2, 3, 4, 5, 7, 8, 9], result.values) self.assertAllEqual([2, 2, 4], result.dense_shape) def test_dense_to_sparse_unknown_rank(self): ph = tf1.placeholder_with_default( np.array([[1, 2, 0, 0], [3, 4, 5, 0]], np.int32), shape=None) st = tfp.math.dense_to_sparse(ph) result = self.evaluate(st) self.assertAllEqual( [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2]], result.indices) self.assertAllEqual([1, 2, 3, 4, 5], result.values) self.assertAllEqual([2, 4], result.dense_shape) if __name__ == '__main__': tf.test.main()
f37f65c77fc2cbe630313fe9779572d9243628eb
96aa2367affe0dff353e1aaac8713ded087c5f68
/utils/spiderPlot_SA.py
335ed09082b623795670281ed3731ae77c81e7d3
[ "Apache-2.0" ]
permissive
NMTHydro/Recharge
0fcca9a72b631d6c3834c62b84dfb096da6cb210
bbc1a05add92064acffeffb19f04e370b99a7918
refs/heads/develop
2020-05-21T17:39:37.702622
2020-04-08T17:10:40
2020-04-08T17:10:40
60,631,952
8
1
null
2016-10-26T17:01:21
2016-06-07T17:13:30
Python
UTF-8
Python
false
false
5,333
py
# =============================================================================== # Copyright 2016 dgketchum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance # with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # =================================IMPORTS======================================= import os import matplotlib.pyplot as plt from matplotlib import rc from numpy import linspace, array, add, multiply, set_printoptions from pandas import read_pickle, set_option, options def round_to_value(number, roundto): return round(number / roundto) * roundto rc('mathtext', default='regular') set_option('display.max_rows', None) set_option('display.max_columns', None) set_option('display.width', None) set_option('display.precision', 3) options.display.float_format = '${:,.2f}'.format set_printoptions(threshold=3000, edgeitems=5000, precision=3) set_option('display.height', None) set_option('display.max_rows', None) TEMPS = range(-5, 6) ALL_PCT = [x * 0.1 for x in range(5, 16)] ndvi_range = linspace(0.9, 1.7, 11) NDVI_RANGE = array([round_to_value(x, 0.05) for x in ndvi_range]) def make_spider_plot(dataframe, ndvi, all_pct, temps, fig_path=None, show=False): display_pct = [(int(x)) for x in add(multiply(all_pct, 100.0), -100)] dfs = os.listdir(dataframe) print 'pickled dfs: {}'.format(dfs) filename = '_basic_sensitivity_2.pkl' if filename in dfs: df = read_pickle(os.path.join(dataframe, filename)) df.to_csv(os.path.join(fig_path, 'sample_df_basic_2.csv')) pass print df xx = 1 for index, row in df.iterrows(): fig = plt.figure(xx, figsize=(20, 10)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() ax3 = ax1.twiny() fig.subplots_adjust(bottom=0.2) print 'shape temps: {}, shape row[0]: {}'.format(len(temps), len(row[0])) ax2.plot(temps, row[0], 'black', label='Temperature (+/- 5 deg C)', marker='8') ax1.plot(display_pct, row[1], 'blue', label='Precipitation (+/- 50%)', marker='8') ax1.plot(display_pct, row[2], 'purple', label='Reference Evapotranspiration (+/- 50%)', marker='8') ax1.plot(display_pct, row[3], 'brown', label='Total Available Water (+/- 50%)', marker='8') ax3.plot(ndvi, row[4], 'green', linestyle='-.', label='Normalized Density Vegetation\n' ' Index Conversion Factor (0.9 - 1.8)', marker='8') ax1.plot(display_pct, row[5], 'red', label='Soil Hydraulic Conductivity (+/- 50%)', marker='8') ax1.set_xlabel(r"Parameter Change (%)", fontsize=16) ax1.set_ylabel(r"Total Recharge in 14-Year Simulation (mm)", fontsize=16) ax2.set_xlabel(r"Temperature Change (C)", fontsize=16) ax2.xaxis.set_ticks_position("bottom") ax2.xaxis.set_label_position("bottom") ax2.spines["bottom"].set_position(("axes", -0.15)) ax2.set_frame_on(True) ax2.patch.set_visible(False) for sp in ax2.spines.itervalues(): sp.set_visible(False) ax2.spines['bottom'].set_visible(True) ax3.set_xlabel(r"NDVI to Crop Coefficient Conversion Factor", fontsize=16) ax3.xaxis.set_ticks_position("top") ax3.xaxis.set_label_position("top") # ax3.spines["top"].set_position(("axes", 1.0)) ax3.set_frame_on(True) ax3.patch.set_visible(False) for sp in ax3.spines.itervalues(): sp.set_visible(False) ax3.spines['top'].set_visible(True) plt.title('Variation of ETRM Pysical Parameters at {}'.format(str(index).replace('_', ' ')), y=1.08, fontsize=20) handle1, label1 = ax1.get_legend_handles_labels() handle2, label2 = ax2.get_legend_handles_labels() handle3, label3 = ax3.get_legend_handles_labels() handles, labels = handle1 + handle2 + handle3, label1 + label2 + label3 ax1.legend(handles, labels, loc=0) if show: plt.show() # if fig_path: # plt.savefig(os.path.join(fig_path, '{}_spider'.format(index)), dpi=600, ext='jpg', close=True, # verbose=True) plt.close(fig) if __name__ == '__main__': root = os.path.join('F:\\', 'ETRM_Inputs') sensitivity = os.path.join(root, 'sensitivity_analysis') pickles = os.path.join(sensitivity, 'pickled') figure_save_path = os.path.join(sensitivity, 'figures') make_spider_plot(pickles, NDVI_RANGE, ALL_PCT, TEMPS, figure_save_path, show=True) # ========================== EOF ==============================================
516e00001cc17c4e8ab48673154d9f69351bbfe1
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/models/task_run_request.py
2f2ed7a707c8b543f090be7f386215b7b75e10ce
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
1,824
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .run_request import RunRequest class TaskRunRequest(RunRequest): """The parameters for a task run request. All required parameters must be populated in order to send to Azure. :param is_archive_enabled: The value that indicates whether archiving is enabled for the run or not. Default value: False . :type is_archive_enabled: bool :param type: Required. Constant filled by server. :type type: str :param task_name: Required. The name of task against which run has to be queued. :type task_name: str :param values: The collection of overridable values that can be passed when running a task. :type values: list[~azure.mgmt.containerregistry.v2018_09_01.models.SetValue] """ _validation = { 'type': {'required': True}, 'task_name': {'required': True}, } _attribute_map = { 'is_archive_enabled': {'key': 'isArchiveEnabled', 'type': 'bool'}, 'type': {'key': 'type', 'type': 'str'}, 'task_name': {'key': 'taskName', 'type': 'str'}, 'values': {'key': 'values', 'type': '[SetValue]'}, } def __init__(self, **kwargs): super(TaskRunRequest, self).__init__(**kwargs) self.task_name = kwargs.get('task_name', None) self.values = kwargs.get('values', None) self.type = 'TaskRunRequest'
1b5849466318aa075976375e01fa22fddd690edc
531c47c15b97cbcb263ec86821d7f258c81c0aaf
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_08_01/operations/_network_interface_load_balancers_operations.py
e42bd6eccf89e6b11dbf117b8ae8f3bcc1bcf2ca
[ "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later", "MIT" ]
permissive
YijunXieMS/azure-sdk-for-python
be364d3b88204fd3c7d223df23756386ff7a3361
f779de8e53dbec033f98f976284e6d9491fd60b3
refs/heads/master
2021-07-15T18:06:28.748507
2020-09-04T15:48:52
2020-09-04T15:48:52
205,457,088
1
2
MIT
2020-06-16T16:38:15
2019-08-30T21:08:55
Python
UTF-8
Python
false
false
5,600
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class NetworkInterfaceLoadBalancersOperations(object): """NetworkInterfaceLoadBalancersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str network_interface_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.NetworkInterfaceLoadBalancerListResult"] """List all load balancers in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkInterfaceLoadBalancerListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2019_08_01.models.NetworkInterfaceLoadBalancerListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceLoadBalancerListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('NetworkInterfaceLoadBalancerListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/loadBalancers'} # type: ignore
9070f9ba6596fb792ae2d17601a5a9c0581820c3
fd8405ac0a5d062907c153f2f2e3569571366539
/irbisbooks/core/urls.py
17e44ae4a60722f69bb0d5da5d79b7b2b8dec070
[]
no_license
ri-gilfanov/irbis-books
aab471833035ae51088bccfb0806b863aaba3468
0b2a32013ab7f0c0d167e0864a7cb858e8e75add
refs/heads/master
2021-01-25T13:19:07.818513
2018-03-02T09:47:06
2018-03-02T09:47:06
121,642,933
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
from django.urls import path from . import views urlpatterns = [ path('', views.book_search, name='book_search'), path('book_download/', views.book_download, name='book_download'), ]
b103132e0bee93fd37295128ccea5a1e416e708e
3cdb4faf34d8375d6aee08bcc523adadcb0c46e2
/web/env/lib/python3.6/site-packages/django/db/models/sql/compiler.py
27b8cc343b29121d30713bacbde5e9dfc595aef5
[ "MIT", "GPL-3.0-only" ]
permissive
rizwansoaib/face-attendence
bc185d4de627ce5adab1cda7da466cb7a5fddcbe
59300441b52d32f3ecb5095085ef9d448aef63af
refs/heads/master
2020-04-25T23:47:47.303642
2019-09-12T14:26:17
2019-09-12T14:26:17
173,157,284
45
12
MIT
2020-02-11T23:47:55
2019-02-28T17:33:14
Python
UTF-8
Python
false
false
67,037
py
import collections import functools import re import warnings from itertools import chain from django.core.exceptions import EmptyResultSet, FieldError from django.db.models.constants import LOOKUP_SEP from django.db.models.expressions import OrderBy, Random, RawSQL, Ref from django.db.models.query_utils import QueryWrapper, select_related_descend from django.db.models.sql.constants import ( CURSOR, GET_ITERATOR_CHUNK_SIZE, MULTI, NO_RESULTS, ORDER_DIR, SINGLE, ) from django.db.models.sql.query import Query, get_order_dir from django.db.transaction import TransactionManagementError from django.db.utils import DatabaseError, NotSupportedError from django.utils.deprecation import RemovedInDjango30Warning from django.utils.inspect import func_supports_parameter FORCE = object() class SQLCompiler: def __init__(self, query, connection, using): self.query = query self.connection = connection self.using = using self.quote_cache = {'*': '*'} # The select, klass_info, and annotations are needed by QuerySet.iterator() # these are set as a side-effect of executing the query. Note that we calculate # separately a list of extra select columns needed for grammatical correctness # of the query, but these columns are not included in self.select. self.select = None self.annotation_col_map = None self.klass_info = None self.ordering_parts = re.compile(r'(.*)\s(ASC|DESC)(.*)') def setup_query(self): if all(self.query.alias_refcount[a] == 0 for a in self.query.alias_map): self.query.get_initial_alias() self.select, self.klass_info, self.annotation_col_map = self.get_select() self.col_count = len(self.select) def pre_sql_setup(self): """ Do any necessary class setup immediately prior to producing SQL. This is for things that can't necessarily be done in __init__ because we might not have all the pieces in place at that time. """ self.setup_query() order_by = self.get_order_by() self.where, self.having = self.query.where.split_having() extra_select = self.get_extra_select(order_by, self.select) self.has_extra_select = bool(extra_select) group_by = self.get_group_by(self.select + extra_select, order_by) return extra_select, order_by, group_by def get_group_by(self, select, order_by): """ Return a list of 2-tuples of form (sql, params). The logic of what exactly the GROUP BY clause contains is hard to describe in other words than "if it passes the test suite, then it is correct". """ # Some examples: # SomeModel.objects.annotate(Count('somecol')) # GROUP BY: all fields of the model # # SomeModel.objects.values('name').annotate(Count('somecol')) # GROUP BY: name # # SomeModel.objects.annotate(Count('somecol')).values('name') # GROUP BY: all cols of the model # # SomeModel.objects.values('name', 'pk').annotate(Count('somecol')).values('pk') # GROUP BY: name, pk # # SomeModel.objects.values('name').annotate(Count('somecol')).values('pk') # GROUP BY: name, pk # # In fact, the self.query.group_by is the minimal set to GROUP BY. It # can't be ever restricted to a smaller set, but additional columns in # HAVING, ORDER BY, and SELECT clauses are added to it. Unfortunately # the end result is that it is impossible to force the query to have # a chosen GROUP BY clause - you can almost do this by using the form: # .values(*wanted_cols).annotate(AnAggregate()) # but any later annotations, extra selects, values calls that # refer some column outside of the wanted_cols, order_by, or even # filter calls can alter the GROUP BY clause. # The query.group_by is either None (no GROUP BY at all), True # (group by select fields), or a list of expressions to be added # to the group by. if self.query.group_by is None: return [] expressions = [] if self.query.group_by is not True: # If the group by is set to a list (by .values() call most likely), # then we need to add everything in it to the GROUP BY clause. # Backwards compatibility hack for setting query.group_by. Remove # when we have public API way of forcing the GROUP BY clause. # Converts string references to expressions. for expr in self.query.group_by: if not hasattr(expr, 'as_sql'): expressions.append(self.query.resolve_ref(expr)) else: expressions.append(expr) # Note that even if the group_by is set, it is only the minimal # set to group by. So, we need to add cols in select, order_by, and # having into the select in any case. for expr, _, _ in select: cols = expr.get_group_by_cols() for col in cols: expressions.append(col) for expr, (sql, params, is_ref) in order_by: # Skip References to the select clause, as all expressions in the # select clause are already part of the group by. if not expr.contains_aggregate and not is_ref: expressions.extend(expr.get_source_expressions()) having_group_by = self.having.get_group_by_cols() if self.having else () for expr in having_group_by: expressions.append(expr) result = [] seen = set() expressions = self.collapse_group_by(expressions, having_group_by) for expr in expressions: sql, params = self.compile(expr) if (sql, tuple(params)) not in seen: result.append((sql, params)) seen.add((sql, tuple(params))) return result def collapse_group_by(self, expressions, having): # If the DB can group by primary key, then group by the primary key of # query's main model. Note that for PostgreSQL the GROUP BY clause must # include the primary key of every table, but for MySQL it is enough to # have the main table's primary key. if self.connection.features.allows_group_by_pk: # Determine if the main model's primary key is in the query. pk = None for expr in expressions: # Is this a reference to query's base table primary key? If the # expression isn't a Col-like, then skip the expression. if (getattr(expr, 'target', None) == self.query.model._meta.pk and getattr(expr, 'alias', None) == self.query.base_table): pk = expr break # If the main model's primary key is in the query, group by that # field, HAVING expressions, and expressions associated with tables # that don't have a primary key included in the grouped columns. if pk: pk_aliases = { expr.alias for expr in expressions if hasattr(expr, 'target') and expr.target.primary_key } expressions = [pk] + [ expr for expr in expressions if expr in having or ( getattr(expr, 'alias', None) is not None and expr.alias not in pk_aliases ) ] elif self.connection.features.allows_group_by_selected_pks: # Filter out all expressions associated with a table's primary key # present in the grouped columns. This is done by identifying all # tables that have their primary key included in the grouped # columns and removing non-primary key columns referring to them. # Unmanaged models are excluded because they could be representing # database views on which the optimization might not be allowed. pks = { expr for expr in expressions if hasattr(expr, 'target') and expr.target.primary_key and expr.target.model._meta.managed } aliases = {expr.alias for expr in pks} expressions = [ expr for expr in expressions if expr in pks or getattr(expr, 'alias', None) not in aliases ] return expressions def get_select(self): """ Return three values: - a list of 3-tuples of (expression, (sql, params), alias) - a klass_info structure, - a dictionary of annotations The (sql, params) is what the expression will produce, and alias is the "AS alias" for the column (possibly None). The klass_info structure contains the following information: - The base model of the query. - Which columns for that model are present in the query (by position of the select clause). - related_klass_infos: [f, klass_info] to descent into The annotations is a dictionary of {'attname': column position} values. """ select = [] klass_info = None annotations = {} select_idx = 0 for alias, (sql, params) in self.query.extra_select.items(): annotations[alias] = select_idx select.append((RawSQL(sql, params), alias)) select_idx += 1 assert not (self.query.select and self.query.default_cols) if self.query.default_cols: cols = self.get_default_columns() else: # self.query.select is a special case. These columns never go to # any model. cols = self.query.select if cols: select_list = [] for col in cols: select_list.append(select_idx) select.append((col, None)) select_idx += 1 klass_info = { 'model': self.query.model, 'select_fields': select_list, } for alias, annotation in self.query.annotation_select.items(): annotations[alias] = select_idx select.append((annotation, alias)) select_idx += 1 if self.query.select_related: related_klass_infos = self.get_related_selections(select) klass_info['related_klass_infos'] = related_klass_infos def get_select_from_parent(klass_info): for ki in klass_info['related_klass_infos']: if ki['from_parent']: ki['select_fields'] = (klass_info['select_fields'] + ki['select_fields']) get_select_from_parent(ki) get_select_from_parent(klass_info) ret = [] for col, alias in select: try: sql, params = self.compile(col, select_format=True) except EmptyResultSet: # Select a predicate that's always False. sql, params = '0', () ret.append((col, (sql, params), alias)) return ret, klass_info, annotations def get_order_by(self): """ Return a list of 2-tuples of form (expr, (sql, params, is_ref)) for the ORDER BY clause. The order_by clause can alter the select clause (for example it can add aliases to clauses that do not yet have one, or it can add totally new select clauses). """ if self.query.extra_order_by: ordering = self.query.extra_order_by elif not self.query.default_ordering: ordering = self.query.order_by else: ordering = (self.query.order_by or self.query.get_meta().ordering or []) if self.query.standard_ordering: asc, desc = ORDER_DIR['ASC'] else: asc, desc = ORDER_DIR['DESC'] order_by = [] for field in ordering: if hasattr(field, 'resolve_expression'): if not isinstance(field, OrderBy): field = field.asc() if not self.query.standard_ordering: field.reverse_ordering() order_by.append((field, False)) continue if field == '?': # random order_by.append((OrderBy(Random()), False)) continue col, order = get_order_dir(field, asc) descending = order == 'DESC' if col in self.query.annotation_select: # Reference to expression in SELECT clause order_by.append(( OrderBy(Ref(col, self.query.annotation_select[col]), descending=descending), True)) continue if col in self.query.annotations: # References to an expression which is masked out of the SELECT clause order_by.append(( OrderBy(self.query.annotations[col], descending=descending), False)) continue if '.' in field: # This came in through an extra(order_by=...) addition. Pass it # on verbatim. table, col = col.split('.', 1) order_by.append(( OrderBy( RawSQL('%s.%s' % (self.quote_name_unless_alias(table), col), []), descending=descending ), False)) continue if not self.query._extra or col not in self.query._extra: # 'col' is of the form 'field' or 'field1__field2' or # '-field1__field2__field', etc. order_by.extend(self.find_ordering_name( field, self.query.get_meta(), default_order=asc)) else: if col not in self.query.extra_select: order_by.append(( OrderBy(RawSQL(*self.query.extra[col]), descending=descending), False)) else: order_by.append(( OrderBy(Ref(col, RawSQL(*self.query.extra[col])), descending=descending), True)) result = [] seen = set() for expr, is_ref in order_by: if self.query.combinator: src = expr.get_source_expressions()[0] # Relabel order by columns to raw numbers if this is a combined # query; necessary since the columns can't be referenced by the # fully qualified name and the simple column names may collide. for idx, (sel_expr, _, col_alias) in enumerate(self.select): if is_ref and col_alias == src.refs: src = src.source elif col_alias: continue if src == sel_expr: expr.set_source_expressions([RawSQL('%d' % (idx + 1), ())]) break else: raise DatabaseError('ORDER BY term does not match any column in the result set.') resolved = expr.resolve_expression( self.query, allow_joins=True, reuse=None) sql, params = self.compile(resolved) # Don't add the same column twice, but the order direction is # not taken into account so we strip it. When this entire method # is refactored into expressions, then we can check each part as we # generate it. without_ordering = self.ordering_parts.search(sql).group(1) if (without_ordering, tuple(params)) in seen: continue seen.add((without_ordering, tuple(params))) result.append((resolved, (sql, params, is_ref))) return result def get_extra_select(self, order_by, select): extra_select = [] if self.query.distinct and not self.query.distinct_fields: select_sql = [t[1] for t in select] for expr, (sql, params, is_ref) in order_by: without_ordering = self.ordering_parts.search(sql).group(1) if not is_ref and (without_ordering, params) not in select_sql: extra_select.append((expr, (without_ordering, params), None)) return extra_select def quote_name_unless_alias(self, name): """ A wrapper around connection.ops.quote_name that doesn't quote aliases for table names. This avoids problems with some SQL dialects that treat quoted strings specially (e.g. PostgreSQL). """ if name in self.quote_cache: return self.quote_cache[name] if ((name in self.query.alias_map and name not in self.query.table_map) or name in self.query.extra_select or ( name in self.query.external_aliases and name not in self.query.table_map)): self.quote_cache[name] = name return name r = self.connection.ops.quote_name(name) self.quote_cache[name] = r return r def compile(self, node, select_format=False): vendor_impl = getattr(node, 'as_' + self.connection.vendor, None) if vendor_impl: sql, params = vendor_impl(self, self.connection) else: sql, params = node.as_sql(self, self.connection) if select_format is FORCE or (select_format and not self.query.subquery): return node.output_field.select_format(self, sql, params) return sql, params def get_combinator_sql(self, combinator, all): features = self.connection.features compilers = [ query.get_compiler(self.using, self.connection) for query in self.query.combined_queries if not query.is_empty() ] if not features.supports_slicing_ordering_in_compound: for query, compiler in zip(self.query.combined_queries, compilers): if query.low_mark or query.high_mark: raise DatabaseError('LIMIT/OFFSET not allowed in subqueries of compound statements.') if compiler.get_order_by(): raise DatabaseError('ORDER BY not allowed in subqueries of compound statements.') parts = () for compiler in compilers: try: # If the columns list is limited, then all combined queries # must have the same columns list. Set the selects defined on # the query on all combined queries, if not already set. if not compiler.query.values_select and self.query.values_select: compiler.query.set_values(( *self.query.extra_select, *self.query.values_select, *self.query.annotation_select, )) parts += (compiler.as_sql(),) except EmptyResultSet: # Omit the empty queryset with UNION and with DIFFERENCE if the # first queryset is nonempty. if combinator == 'union' or (combinator == 'difference' and parts): continue raise if not parts: raise EmptyResultSet combinator_sql = self.connection.ops.set_operators[combinator] if all and combinator == 'union': combinator_sql += ' ALL' braces = '({})' if features.supports_slicing_ordering_in_compound else '{}' sql_parts, args_parts = zip(*((braces.format(sql), args) for sql, args in parts)) result = [' {} '.format(combinator_sql).join(sql_parts)] params = [] for part in args_parts: params.extend(part) return result, params def as_sql(self, with_limits=True, with_col_aliases=False): """ Create the SQL for this query. Return the SQL string and list of parameters. If 'with_limits' is False, any limit/offset information is not included in the query. """ refcounts_before = self.query.alias_refcount.copy() try: extra_select, order_by, group_by = self.pre_sql_setup() for_update_part = None # Is a LIMIT/OFFSET clause needed? with_limit_offset = with_limits and (self.query.high_mark is not None or self.query.low_mark) combinator = self.query.combinator features = self.connection.features if combinator: if not getattr(features, 'supports_select_{}'.format(combinator)): raise NotSupportedError('{} is not supported on this database backend.'.format(combinator)) result, params = self.get_combinator_sql(combinator, self.query.combinator_all) else: distinct_fields, distinct_params = self.get_distinct() # This must come after 'select', 'ordering', and 'distinct' # (see docstring of get_from_clause() for details). from_, f_params = self.get_from_clause() where, w_params = self.compile(self.where) if self.where is not None else ("", []) having, h_params = self.compile(self.having) if self.having is not None else ("", []) result = ['SELECT'] params = [] if self.query.distinct: distinct_result, distinct_params = self.connection.ops.distinct_sql( distinct_fields, distinct_params, ) result += distinct_result params += distinct_params out_cols = [] col_idx = 1 for _, (s_sql, s_params), alias in self.select + extra_select: if alias: s_sql = '%s AS %s' % (s_sql, self.connection.ops.quote_name(alias)) elif with_col_aliases: s_sql = '%s AS %s' % (s_sql, 'Col%d' % col_idx) col_idx += 1 params.extend(s_params) out_cols.append(s_sql) result += [', '.join(out_cols), 'FROM', *from_] params.extend(f_params) if self.query.select_for_update and self.connection.features.has_select_for_update: if self.connection.get_autocommit(): raise TransactionManagementError('select_for_update cannot be used outside of a transaction.') if with_limit_offset and not self.connection.features.supports_select_for_update_with_limit: raise NotSupportedError( 'LIMIT/OFFSET is not supported with ' 'select_for_update on this database backend.' ) nowait = self.query.select_for_update_nowait skip_locked = self.query.select_for_update_skip_locked of = self.query.select_for_update_of # If it's a NOWAIT/SKIP LOCKED/OF query but the backend # doesn't support it, raise NotSupportedError to prevent a # possible deadlock. if nowait and not self.connection.features.has_select_for_update_nowait: raise NotSupportedError('NOWAIT is not supported on this database backend.') elif skip_locked and not self.connection.features.has_select_for_update_skip_locked: raise NotSupportedError('SKIP LOCKED is not supported on this database backend.') elif of and not self.connection.features.has_select_for_update_of: raise NotSupportedError('FOR UPDATE OF is not supported on this database backend.') for_update_part = self.connection.ops.for_update_sql( nowait=nowait, skip_locked=skip_locked, of=self.get_select_for_update_of_arguments(), ) if for_update_part and self.connection.features.for_update_after_from: result.append(for_update_part) if where: result.append('WHERE %s' % where) params.extend(w_params) grouping = [] for g_sql, g_params in group_by: grouping.append(g_sql) params.extend(g_params) if grouping: if distinct_fields: raise NotImplementedError('annotate() + distinct(fields) is not implemented.') order_by = order_by or self.connection.ops.force_no_ordering() result.append('GROUP BY %s' % ', '.join(grouping)) if having: result.append('HAVING %s' % having) params.extend(h_params) if self.query.explain_query: result.insert(0, self.connection.ops.explain_query_prefix( self.query.explain_format, **self.query.explain_options )) if order_by: ordering = [] for _, (o_sql, o_params, _) in order_by: ordering.append(o_sql) params.extend(o_params) result.append('ORDER BY %s' % ', '.join(ordering)) if with_limit_offset: result.append(self.connection.ops.limit_offset_sql(self.query.low_mark, self.query.high_mark)) if for_update_part and not self.connection.features.for_update_after_from: result.append(for_update_part) if self.query.subquery and extra_select: # If the query is used as a subquery, the extra selects would # result in more columns than the left-hand side expression is # expecting. This can happen when a subquery uses a combination # of order_by() and distinct(), forcing the ordering expressions # to be selected as well. Wrap the query in another subquery # to exclude extraneous selects. sub_selects = [] sub_params = [] for index, (select, _, alias) in enumerate(self.select, start=1): if not alias and with_col_aliases: alias = 'col%d' % index if alias: sub_selects.append("%s.%s" % ( self.connection.ops.quote_name('subquery'), self.connection.ops.quote_name(alias), )) else: select_clone = select.relabeled_clone({select.alias: 'subquery'}) subselect, subparams = select_clone.as_sql(self, self.connection) sub_selects.append(subselect) sub_params.extend(subparams) return 'SELECT %s FROM (%s) subquery' % ( ', '.join(sub_selects), ' '.join(result), ), tuple(sub_params + params) return ' '.join(result), tuple(params) finally: # Finally do cleanup - get rid of the joins we created above. self.query.reset_refcounts(refcounts_before) def get_default_columns(self, start_alias=None, opts=None, from_parent=None): """ Compute the default columns for selecting every field in the base model. Will sometimes be called to pull in related models (e.g. via select_related), in which case "opts" and "start_alias" will be given to provide a starting point for the traversal. Return a list of strings, quoted appropriately for use in SQL directly, as well as a set of aliases used in the select statement (if 'as_pairs' is True, return a list of (alias, col_name) pairs instead of strings as the first component and None as the second component). """ result = [] if opts is None: opts = self.query.get_meta() only_load = self.deferred_to_columns() start_alias = start_alias or self.query.get_initial_alias() # The 'seen_models' is used to optimize checking the needed parent # alias for a given field. This also includes None -> start_alias to # be used by local fields. seen_models = {None: start_alias} for field in opts.concrete_fields: model = field.model._meta.concrete_model # A proxy model will have a different model and concrete_model. We # will assign None if the field belongs to this model. if model == opts.model: model = None if from_parent and model is not None and issubclass( from_parent._meta.concrete_model, model._meta.concrete_model): # Avoid loading data for already loaded parents. # We end up here in the case select_related() resolution # proceeds from parent model to child model. In that case the # parent model data is already present in the SELECT clause, # and we want to avoid reloading the same data again. continue if field.model in only_load and field.attname not in only_load[field.model]: continue alias = self.query.join_parent_model(opts, model, start_alias, seen_models) column = field.get_col(alias) result.append(column) return result def get_distinct(self): """ Return a quoted list of fields to use in DISTINCT ON part of the query. This method can alter the tables in the query, and thus it must be called before get_from_clause(). """ result = [] params = [] opts = self.query.get_meta() for name in self.query.distinct_fields: parts = name.split(LOOKUP_SEP) _, targets, alias, joins, path, _, transform_function = self._setup_joins(parts, opts, None) targets, alias, _ = self.query.trim_joins(targets, joins, path) for target in targets: if name in self.query.annotation_select: result.append(name) else: r, p = self.compile(transform_function(target, alias)) result.append(r) params.append(p) return result, params def find_ordering_name(self, name, opts, alias=None, default_order='ASC', already_seen=None): """ Return the table alias (the name might be ambiguous, the alias will not be) and column name for ordering by the given 'name' parameter. The 'name' is of the form 'field1__field2__...__fieldN'. """ name, order = get_order_dir(name, default_order) descending = order == 'DESC' pieces = name.split(LOOKUP_SEP) field, targets, alias, joins, path, opts, transform_function = self._setup_joins(pieces, opts, alias) # If we get to this point and the field is a relation to another model, # append the default ordering for that model unless the attribute name # of the field is specified. if field.is_relation and opts.ordering and getattr(field, 'attname', None) != name: # Firstly, avoid infinite loops. already_seen = already_seen or set() join_tuple = tuple(getattr(self.query.alias_map[j], 'join_cols', None) for j in joins) if join_tuple in already_seen: raise FieldError('Infinite loop caused by ordering.') already_seen.add(join_tuple) results = [] for item in opts.ordering: results.extend(self.find_ordering_name(item, opts, alias, order, already_seen)) return results targets, alias, _ = self.query.trim_joins(targets, joins, path) return [(OrderBy(transform_function(t, alias), descending=descending), False) for t in targets] def _setup_joins(self, pieces, opts, alias): """ Helper method for get_order_by() and get_distinct(). get_ordering() and get_distinct() must produce same target columns on same input, as the prefixes of get_ordering() and get_distinct() must match. Executing SQL where this is not true is an error. """ alias = alias or self.query.get_initial_alias() field, targets, opts, joins, path, transform_function = self.query.setup_joins(pieces, opts, alias) alias = joins[-1] return field, targets, alias, joins, path, opts, transform_function def get_from_clause(self): """ Return a list of strings that are joined together to go after the "FROM" part of the query, as well as a list any extra parameters that need to be included. Subclasses, can override this to create a from-clause via a "select". This should only be called after any SQL construction methods that might change the tables that are needed. This means the select columns, ordering, and distinct must be done first. """ result = [] params = [] for alias in tuple(self.query.alias_map): if not self.query.alias_refcount[alias]: continue try: from_clause = self.query.alias_map[alias] except KeyError: # Extra tables can end up in self.tables, but not in the # alias_map if they aren't in a join. That's OK. We skip them. continue clause_sql, clause_params = self.compile(from_clause) result.append(clause_sql) params.extend(clause_params) for t in self.query.extra_tables: alias, _ = self.query.table_alias(t) # Only add the alias if it's not already present (the table_alias() # call increments the refcount, so an alias refcount of one means # this is the only reference). if alias not in self.query.alias_map or self.query.alias_refcount[alias] == 1: result.append(', %s' % self.quote_name_unless_alias(alias)) return result, params def get_related_selections(self, select, opts=None, root_alias=None, cur_depth=1, requested=None, restricted=None): """ Fill in the information needed for a select_related query. The current depth is measured as the number of connections away from the root model (for example, cur_depth=1 means we are looking at models with direct connections to the root model). """ def _get_field_choices(): direct_choices = (f.name for f in opts.fields if f.is_relation) reverse_choices = ( f.field.related_query_name() for f in opts.related_objects if f.field.unique ) return chain(direct_choices, reverse_choices, self.query._filtered_relations) related_klass_infos = [] if not restricted and cur_depth > self.query.max_depth: # We've recursed far enough; bail out. return related_klass_infos if not opts: opts = self.query.get_meta() root_alias = self.query.get_initial_alias() only_load = self.query.get_loaded_field_names() # Setup for the case when only particular related fields should be # included in the related selection. fields_found = set() if requested is None: restricted = isinstance(self.query.select_related, dict) if restricted: requested = self.query.select_related def get_related_klass_infos(klass_info, related_klass_infos): klass_info['related_klass_infos'] = related_klass_infos for f in opts.fields: field_model = f.model._meta.concrete_model fields_found.add(f.name) if restricted: next = requested.get(f.name, {}) if not f.is_relation: # If a non-related field is used like a relation, # or if a single non-relational field is given. if next or f.name in requested: raise FieldError( "Non-relational field given in select_related: '%s'. " "Choices are: %s" % ( f.name, ", ".join(_get_field_choices()) or '(none)', ) ) else: next = False if not select_related_descend(f, restricted, requested, only_load.get(field_model)): continue klass_info = { 'model': f.remote_field.model, 'field': f, 'reverse': False, 'local_setter': f.set_cached_value, 'remote_setter': f.remote_field.set_cached_value if f.unique else lambda x, y: None, 'from_parent': False, } related_klass_infos.append(klass_info) select_fields = [] _, _, _, joins, _, _ = self.query.setup_joins( [f.name], opts, root_alias) alias = joins[-1] columns = self.get_default_columns(start_alias=alias, opts=f.remote_field.model._meta) for col in columns: select_fields.append(len(select)) select.append((col, None)) klass_info['select_fields'] = select_fields next_klass_infos = self.get_related_selections( select, f.remote_field.model._meta, alias, cur_depth + 1, next, restricted) get_related_klass_infos(klass_info, next_klass_infos) if restricted: related_fields = [ (o.field, o.related_model) for o in opts.related_objects if o.field.unique and not o.many_to_many ] for f, model in related_fields: if not select_related_descend(f, restricted, requested, only_load.get(model), reverse=True): continue related_field_name = f.related_query_name() fields_found.add(related_field_name) join_info = self.query.setup_joins([related_field_name], opts, root_alias) alias = join_info.joins[-1] from_parent = issubclass(model, opts.model) and model is not opts.model klass_info = { 'model': model, 'field': f, 'reverse': True, 'local_setter': f.remote_field.set_cached_value, 'remote_setter': f.set_cached_value, 'from_parent': from_parent, } related_klass_infos.append(klass_info) select_fields = [] columns = self.get_default_columns( start_alias=alias, opts=model._meta, from_parent=opts.model) for col in columns: select_fields.append(len(select)) select.append((col, None)) klass_info['select_fields'] = select_fields next = requested.get(f.related_query_name(), {}) next_klass_infos = self.get_related_selections( select, model._meta, alias, cur_depth + 1, next, restricted) get_related_klass_infos(klass_info, next_klass_infos) fields_not_found = set(requested).difference(fields_found) for name in list(requested): # Filtered relations work only on the topmost level. if cur_depth > 1: break if name in self.query._filtered_relations: fields_found.add(name) f, _, join_opts, joins, _, _ = self.query.setup_joins([name], opts, root_alias) model = join_opts.model alias = joins[-1] from_parent = issubclass(model, opts.model) and model is not opts.model def local_setter(obj, from_obj): f.remote_field.set_cached_value(from_obj, obj) def remote_setter(obj, from_obj): setattr(from_obj, name, obj) klass_info = { 'model': model, 'field': f, 'reverse': True, 'local_setter': local_setter, 'remote_setter': remote_setter, 'from_parent': from_parent, } related_klass_infos.append(klass_info) select_fields = [] columns = self.get_default_columns( start_alias=alias, opts=model._meta, from_parent=opts.model, ) for col in columns: select_fields.append(len(select)) select.append((col, None)) klass_info['select_fields'] = select_fields next_requested = requested.get(name, {}) next_klass_infos = self.get_related_selections( select, opts=model._meta, root_alias=alias, cur_depth=cur_depth + 1, requested=next_requested, restricted=restricted, ) get_related_klass_infos(klass_info, next_klass_infos) fields_not_found = set(requested).difference(fields_found) if fields_not_found: invalid_fields = ("'%s'" % s for s in fields_not_found) raise FieldError( 'Invalid field name(s) given in select_related: %s. ' 'Choices are: %s' % ( ', '.join(invalid_fields), ', '.join(_get_field_choices()) or '(none)', ) ) return related_klass_infos def get_select_for_update_of_arguments(self): """ Return a quoted list of arguments for the SELECT FOR UPDATE OF part of the query. """ def _get_field_choices(): """Yield all allowed field paths in breadth-first search order.""" queue = collections.deque([(None, self.klass_info)]) while queue: parent_path, klass_info = queue.popleft() if parent_path is None: path = [] yield 'self' else: field = klass_info['field'] if klass_info['reverse']: field = field.remote_field path = parent_path + [field.name] yield LOOKUP_SEP.join(path) queue.extend( (path, klass_info) for klass_info in klass_info.get('related_klass_infos', []) ) result = [] invalid_names = [] for name in self.query.select_for_update_of: parts = [] if name == 'self' else name.split(LOOKUP_SEP) klass_info = self.klass_info for part in parts: for related_klass_info in klass_info.get('related_klass_infos', []): field = related_klass_info['field'] if related_klass_info['reverse']: field = field.remote_field if field.name == part: klass_info = related_klass_info break else: klass_info = None break if klass_info is None: invalid_names.append(name) continue select_index = klass_info['select_fields'][0] col = self.select[select_index][0] if self.connection.features.select_for_update_of_column: result.append(self.compile(col)[0]) else: result.append(self.quote_name_unless_alias(col.alias)) if invalid_names: raise FieldError( 'Invalid field name(s) given in select_for_update(of=(...)): %s. ' 'Only relational fields followed in the query are allowed. ' 'Choices are: %s.' % ( ', '.join(invalid_names), ', '.join(_get_field_choices()), ) ) return result def deferred_to_columns(self): """ Convert the self.deferred_loading data structure to mapping of table names to sets of column names which are to be loaded. Return the dictionary. """ columns = {} self.query.deferred_to_data(columns, self.query.get_loaded_field_names_cb) return columns def get_converters(self, expressions): converters = {} for i, expression in enumerate(expressions): if expression: backend_converters = self.connection.ops.get_db_converters(expression) field_converters = expression.get_db_converters(self.connection) if backend_converters or field_converters: convs = [] for conv in (backend_converters + field_converters): if func_supports_parameter(conv, 'context'): warnings.warn( 'Remove the context parameter from %s.%s(). Support for it ' 'will be removed in Django 3.0.' % ( conv.__self__.__class__.__name__, conv.__name__, ), RemovedInDjango30Warning, ) conv = functools.partial(conv, context={}) convs.append(conv) converters[i] = (convs, expression) return converters def apply_converters(self, rows, converters): connection = self.connection converters = list(converters.items()) for row in map(list, rows): for pos, (convs, expression) in converters: value = row[pos] for converter in convs: value = converter(value, expression, connection) row[pos] = value yield row def results_iter(self, results=None, tuple_expected=False, chunked_fetch=False, chunk_size=GET_ITERATOR_CHUNK_SIZE): """Return an iterator over the results from executing this query.""" if results is None: results = self.execute_sql(MULTI, chunked_fetch=chunked_fetch, chunk_size=chunk_size) fields = [s[0] for s in self.select[0:self.col_count]] converters = self.get_converters(fields) rows = chain.from_iterable(results) if converters: rows = self.apply_converters(rows, converters) if tuple_expected: rows = map(tuple, rows) return rows def has_results(self): """ Backends (e.g. NoSQL) can override this in order to use optimized versions of "query has any results." """ # This is always executed on a query clone, so we can modify self.query self.query.add_extra({'a': 1}, None, None, None, None, None) self.query.set_extra_mask(['a']) return bool(self.execute_sql(SINGLE)) def execute_sql(self, result_type=MULTI, chunked_fetch=False, chunk_size=GET_ITERATOR_CHUNK_SIZE): """ Run the query against the database and return the result(s). The return value is a single data item if result_type is SINGLE, or an iterator over the results if the result_type is MULTI. result_type is either MULTI (use fetchmany() to retrieve all rows), SINGLE (only retrieve a single row), or None. In this last case, the cursor is returned if any query is executed, since it's used by subclasses such as InsertQuery). It's possible, however, that no query is needed, as the filters describe an empty set. In that case, None is returned, to avoid any unnecessary database interaction. """ result_type = result_type or NO_RESULTS try: sql, params = self.as_sql() if not sql: raise EmptyResultSet except EmptyResultSet: if result_type == MULTI: return iter([]) else: return if chunked_fetch: cursor = self.connection.chunked_cursor() else: cursor = self.connection.cursor() try: cursor.execute(sql, params) except Exception: # Might fail for server-side cursors (e.g. connection closed) cursor.close() raise if result_type == CURSOR: # Give the caller the cursor to process and close. return cursor if result_type == SINGLE: try: val = cursor.fetchone() if val: return val[0:self.col_count] return val finally: # done with the cursor cursor.close() if result_type == NO_RESULTS: cursor.close() return result = cursor_iter( cursor, self.connection.features.empty_fetchmany_value, self.col_count if self.has_extra_select else None, chunk_size, ) if not chunked_fetch and not self.connection.features.can_use_chunked_reads: try: # If we are using non-chunked reads, we return the same data # structure as normally, but ensure it is all read into memory # before going any further. Use chunked_fetch if requested. return list(result) finally: # done with the cursor cursor.close() return result def as_subquery_condition(self, alias, columns, compiler): qn = compiler.quote_name_unless_alias qn2 = self.connection.ops.quote_name for index, select_col in enumerate(self.query.select): lhs_sql, lhs_params = self.compile(select_col) rhs = '%s.%s' % (qn(alias), qn2(columns[index])) self.query.where.add( QueryWrapper('%s = %s' % (lhs_sql, rhs), lhs_params), 'AND') sql, params = self.as_sql() return 'EXISTS (%s)' % sql, params def explain_query(self): result = list(self.execute_sql()) # Some backends return 1 item tuples with strings, and others return # tuples with integers and strings. Flatten them out into strings. for row in result[0]: if not isinstance(row, str): yield ' '.join(str(c) for c in row) else: yield row class SQLInsertCompiler(SQLCompiler): return_id = False def field_as_sql(self, field, val): """ Take a field and a value intended to be saved on that field, and return placeholder SQL and accompanying params. Check for raw values, expressions, and fields with get_placeholder() defined in that order. When field is None, consider the value raw and use it as the placeholder, with no corresponding parameters returned. """ if field is None: # A field value of None means the value is raw. sql, params = val, [] elif hasattr(val, 'as_sql'): # This is an expression, let's compile it. sql, params = self.compile(val) elif hasattr(field, 'get_placeholder'): # Some fields (e.g. geo fields) need special munging before # they can be inserted. sql, params = field.get_placeholder(val, self, self.connection), [val] else: # Return the common case for the placeholder sql, params = '%s', [val] # The following hook is only used by Oracle Spatial, which sometimes # needs to yield 'NULL' and [] as its placeholder and params instead # of '%s' and [None]. The 'NULL' placeholder is produced earlier by # OracleOperations.get_geom_placeholder(). The following line removes # the corresponding None parameter. See ticket #10888. params = self.connection.ops.modify_insert_params(sql, params) return sql, params def prepare_value(self, field, value): """ Prepare a value to be used in a query by resolving it if it is an expression and otherwise calling the field's get_db_prep_save(). """ if hasattr(value, 'resolve_expression'): value = value.resolve_expression(self.query, allow_joins=False, for_save=True) # Don't allow values containing Col expressions. They refer to # existing columns on a row, but in the case of insert the row # doesn't exist yet. if value.contains_column_references: raise ValueError( 'Failed to insert expression "%s" on %s. F() expressions ' 'can only be used to update, not to insert.' % (value, field) ) if value.contains_aggregate: raise FieldError("Aggregate functions are not allowed in this query") if value.contains_over_clause: raise FieldError('Window expressions are not allowed in this query.') else: value = field.get_db_prep_save(value, connection=self.connection) return value def pre_save_val(self, field, obj): """ Get the given field's value off the given obj. pre_save() is used for things like auto_now on DateTimeField. Skip it if this is a raw query. """ if self.query.raw: return getattr(obj, field.attname) return field.pre_save(obj, add=True) def assemble_as_sql(self, fields, value_rows): """ Take a sequence of N fields and a sequence of M rows of values, and generate placeholder SQL and parameters for each field and value. Return a pair containing: * a sequence of M rows of N SQL placeholder strings, and * a sequence of M rows of corresponding parameter values. Each placeholder string may contain any number of '%s' interpolation strings, and each parameter row will contain exactly as many params as the total number of '%s's in the corresponding placeholder row. """ if not value_rows: return [], [] # list of (sql, [params]) tuples for each object to be saved # Shape: [n_objs][n_fields][2] rows_of_fields_as_sql = ( (self.field_as_sql(field, v) for field, v in zip(fields, row)) for row in value_rows ) # tuple like ([sqls], [[params]s]) for each object to be saved # Shape: [n_objs][2][n_fields] sql_and_param_pair_rows = (zip(*row) for row in rows_of_fields_as_sql) # Extract separate lists for placeholders and params. # Each of these has shape [n_objs][n_fields] placeholder_rows, param_rows = zip(*sql_and_param_pair_rows) # Params for each field are still lists, and need to be flattened. param_rows = [[p for ps in row for p in ps] for row in param_rows] return placeholder_rows, param_rows def as_sql(self): # We don't need quote_name_unless_alias() here, since these are all # going to be column names (so we can avoid the extra overhead). qn = self.connection.ops.quote_name opts = self.query.get_meta() result = ['INSERT INTO %s' % qn(opts.db_table)] fields = self.query.fields or [opts.pk] result.append('(%s)' % ', '.join(qn(f.column) for f in fields)) if self.query.fields: value_rows = [ [self.prepare_value(field, self.pre_save_val(field, obj)) for field in fields] for obj in self.query.objs ] else: # An empty object. value_rows = [[self.connection.ops.pk_default_value()] for _ in self.query.objs] fields = [None] # Currently the backends just accept values when generating bulk # queries and generate their own placeholders. Doing that isn't # necessary and it should be possible to use placeholders and # expressions in bulk inserts too. can_bulk = (not self.return_id and self.connection.features.has_bulk_insert) placeholder_rows, param_rows = self.assemble_as_sql(fields, value_rows) if self.return_id and self.connection.features.can_return_id_from_insert: if self.connection.features.can_return_ids_from_bulk_insert: result.append(self.connection.ops.bulk_insert_sql(fields, placeholder_rows)) params = param_rows else: result.append("VALUES (%s)" % ", ".join(placeholder_rows[0])) params = [param_rows[0]] col = "%s.%s" % (qn(opts.db_table), qn(opts.pk.column)) r_fmt, r_params = self.connection.ops.return_insert_id() # Skip empty r_fmt to allow subclasses to customize behavior for # 3rd party backends. Refs #19096. if r_fmt: result.append(r_fmt % col) params += [r_params] return [(" ".join(result), tuple(chain.from_iterable(params)))] if can_bulk: result.append(self.connection.ops.bulk_insert_sql(fields, placeholder_rows)) return [(" ".join(result), tuple(p for ps in param_rows for p in ps))] else: return [ (" ".join(result + ["VALUES (%s)" % ", ".join(p)]), vals) for p, vals in zip(placeholder_rows, param_rows) ] def execute_sql(self, return_id=False): assert not ( return_id and len(self.query.objs) != 1 and not self.connection.features.can_return_ids_from_bulk_insert ) self.return_id = return_id with self.connection.cursor() as cursor: for sql, params in self.as_sql(): cursor.execute(sql, params) if not return_id: return if self.connection.features.can_return_ids_from_bulk_insert and len(self.query.objs) > 1: return self.connection.ops.fetch_returned_insert_ids(cursor) if self.connection.features.can_return_id_from_insert: assert len(self.query.objs) == 1 return self.connection.ops.fetch_returned_insert_id(cursor) return self.connection.ops.last_insert_id( cursor, self.query.get_meta().db_table, self.query.get_meta().pk.column ) class SQLDeleteCompiler(SQLCompiler): def as_sql(self): """ Create the SQL for this query. Return the SQL string and list of parameters. """ assert len([t for t in self.query.alias_map if self.query.alias_refcount[t] > 0]) == 1, \ "Can only delete from one table at a time." qn = self.quote_name_unless_alias result = ['DELETE FROM %s' % qn(self.query.base_table)] where, params = self.compile(self.query.where) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(params) class SQLUpdateCompiler(SQLCompiler): def as_sql(self): """ Create the SQL for this query. Return the SQL string and list of parameters. """ self.pre_sql_setup() if not self.query.values: return '', () qn = self.quote_name_unless_alias values, update_params = [], [] for field, model, val in self.query.values: if hasattr(val, 'resolve_expression'): val = val.resolve_expression(self.query, allow_joins=False, for_save=True) if val.contains_aggregate: raise FieldError("Aggregate functions are not allowed in this query") if val.contains_over_clause: raise FieldError('Window expressions are not allowed in this query.') elif hasattr(val, 'prepare_database_save'): if field.remote_field: val = field.get_db_prep_save( val.prepare_database_save(field), connection=self.connection, ) else: raise TypeError( "Tried to update field %s with a model instance, %r. " "Use a value compatible with %s." % (field, val, field.__class__.__name__) ) else: val = field.get_db_prep_save(val, connection=self.connection) # Getting the placeholder for the field. if hasattr(field, 'get_placeholder'): placeholder = field.get_placeholder(val, self, self.connection) else: placeholder = '%s' name = field.column if hasattr(val, 'as_sql'): sql, params = self.compile(val) values.append('%s = %s' % (qn(name), placeholder % sql)) update_params.extend(params) elif val is not None: values.append('%s = %s' % (qn(name), placeholder)) update_params.append(val) else: values.append('%s = NULL' % qn(name)) table = self.query.base_table result = [ 'UPDATE %s SET' % qn(table), ', '.join(values), ] where, params = self.compile(self.query.where) if where: result.append('WHERE %s' % where) return ' '.join(result), tuple(update_params + params) def execute_sql(self, result_type): """ Execute the specified update. Return the number of rows affected by the primary update query. The "primary update query" is the first non-empty query that is executed. Row counts for any subsequent, related queries are not available. """ cursor = super().execute_sql(result_type) try: rows = cursor.rowcount if cursor else 0 is_empty = cursor is None finally: if cursor: cursor.close() for query in self.query.get_related_updates(): aux_rows = query.get_compiler(self.using).execute_sql(result_type) if is_empty and aux_rows: rows = aux_rows is_empty = False return rows def pre_sql_setup(self): """ If the update depends on results from other tables, munge the "where" conditions to match the format required for (portable) SQL updates. If multiple updates are required, pull out the id values to update at this point so that they don't change as a result of the progressive updates. """ refcounts_before = self.query.alias_refcount.copy() # Ensure base table is in the query self.query.get_initial_alias() count = self.query.count_active_tables() if not self.query.related_updates and count == 1: return query = self.query.chain(klass=Query) query.select_related = False query.clear_ordering(True) query._extra = {} query.select = [] query.add_fields([query.get_meta().pk.name]) super().pre_sql_setup() must_pre_select = count > 1 and not self.connection.features.update_can_self_select # Now we adjust the current query: reset the where clause and get rid # of all the tables we don't need (since they're in the sub-select). self.query.where = self.query.where_class() if self.query.related_updates or must_pre_select: # Either we're using the idents in multiple update queries (so # don't want them to change), or the db backend doesn't support # selecting from the updating table (e.g. MySQL). idents = [] for rows in query.get_compiler(self.using).execute_sql(MULTI): idents.extend(r[0] for r in rows) self.query.add_filter(('pk__in', idents)) self.query.related_ids = idents else: # The fast path. Filters and updates in one query. self.query.add_filter(('pk__in', query)) self.query.reset_refcounts(refcounts_before) class SQLAggregateCompiler(SQLCompiler): def as_sql(self): """ Create the SQL for this query. Return the SQL string and list of parameters. """ sql, params = [], [] for annotation in self.query.annotation_select.values(): ann_sql, ann_params = self.compile(annotation, select_format=FORCE) sql.append(ann_sql) params.extend(ann_params) self.col_count = len(self.query.annotation_select) sql = ', '.join(sql) params = tuple(params) sql = 'SELECT %s FROM (%s) subquery' % (sql, self.query.subquery) params = params + self.query.sub_params return sql, params def cursor_iter(cursor, sentinel, col_count, itersize): """ Yield blocks of rows from a cursor and ensure the cursor is closed when done. """ try: for rows in iter((lambda: cursor.fetchmany(itersize)), sentinel): yield rows if col_count is None else [r[:col_count] for r in rows] finally: cursor.close()
42d0987e6e1898a0e5f60a297e7db42a013fab6d
bcf332d2f6ef6970cfaa480400a112ecee3f16b8
/stage07-artist2/s1level42.py
c5f34c2ae0814db387a0d43027c8ee7cd714f9b1
[ "Unlicense" ]
permissive
skilstak/code-dot-org-python
e1907d29f3727060e5064a5eefd68a0f9f4f5c70
ba127124386ecfdc20bd84592b3c271f8205d748
refs/heads/master
2020-04-04T19:34:23.531210
2015-07-10T12:39:19
2015-07-10T12:39:19
26,862,410
7
4
null
2014-11-21T20:28:20
2014-11-19T13:24:30
Python
UTF-8
Python
false
false
465
py
"""Stage 7: Puzzle 8 of 11 Here's the solution to the previous puzzle. Can you add just 2 more lines of code to complete the drawing? """ import sys sys.path.append('..') import codestudio artist = codestudio.load('s1level42') artist.speed = 'faster' a = artist for count2 in range(10): artist.color = artist.random_color() for count in range(4): artist.move_forward(20) artist.turn_right(90) artist.move_forward(20) artist.check()
950b22a78a928e4427896cec1ba0d7c4cac4e011
6a4bfff7fcd78a0057401652c7f80d9a95a67267
/painless_redirects/tests/test_models.py
2f5b98013047caa595a23ef12657abfbbafe3877
[ "MIT" ]
permissive
benzkji/django-painless-redirects
25987ff984830be7e45b4d0af9a9cd0046beabe7
153721486b214ddd5365b6ac5769129562254dd5
refs/heads/master
2023-05-24T14:23:53.783400
2020-06-22T10:35:29
2020-06-22T10:35:29
22,944,463
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
"""Tests for the models of the painless_redirects app.""" from django.test import TestCase from . import factories class RedirectModelTestCase(TestCase): def test_model(self): obj = factories.RedirectFactory() self.assertTrue(obj.pk) def test_redirect_value(self): obj = factories.RedirectFactory() self.assertEqual(obj.redirect_value('http'), "/the-new-path/") obj.new_site = factories.SiteFactory() self.assertEqual(obj.redirect_value('https'), "https://%s/the-new-path/" % obj.new_site.domain)
9f99434b0414a1ef779501b64fddd6cde711ca08
93022749a35320a0c5d6dad4db476b1e1795e318
/issm/giaivins.py
8b3e6e1be28e45ec640be9f57bc01bb251bc69f2
[ "BSD-3-Clause" ]
permissive
pf4d/issm_python
78cd88e9ef525bc74e040c1484aaf02e46c97a5b
6bf36016cb0c55aee9bf3f7cf59694cc5ce77091
refs/heads/master
2022-01-17T16:20:20.257966
2019-07-10T17:46:31
2019-07-10T17:46:31
105,887,661
2
3
null
null
null
null
UTF-8
Python
false
false
2,277
py
from issm.fielddisplay import fielddisplay from issm.project3d import project3d from issm.checkfield import checkfield from issm.WriteData import WriteData class giaivins(object): """ GIA class definition Usage: giaivins=giaivins(); """ def __init__(self): # {{{ self.mantle_viscosity = float('NaN'); self.lithosphere_thickness = float('NaN'); self.cross_section_shape = 0; #set defaults self.setdefaultparameters() #}}} def __repr__(self): # {{{ string=' giaivins solution parameters:' string="%s\n%s"%(string,fielddisplay(self,'mantle_viscosity','mantle viscosity constraints (NaN means no constraint) (Pa s)')) string="%s\n%s"%(string,fielddisplay(self,'lithosphere_thickness','lithosphere thickness constraints (NaN means no constraint) (m)')) string="%s\n%s"%(string,fielddisplay(self,'cross_section_shape',"1: square-edged, 2: elliptical-edged surface")) return string #}}} def extrude(self,md): # {{{ self.mantle_viscosity=project3d(md,'vector',self.mantle_viscosity,'type','node') self.lithosphere_thickness=project3d(md,'vector',self.lithosphere_thickness,'type','node') return self #}}} def setdefaultparameters(self): # {{{ self.cross_section_shape=1; return self #}}} def checkconsistency(self,md,solution,analyses): # {{{ # Early return if ('GiaAnalysis' not in analyses): return md md = checkfield(md,'fieldname','gia.mantle_viscosity','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices],'>',0) md = checkfield(md,'fieldname','gia.lithosphere_thickness','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices],'>',0) md = checkfield(md,'fieldname','gia.cross_section_shape','numel',[1],'values',[1,2]) #be sure that if we are running a masstransport ice flow model coupled with giaivins, that thickness forcings #are not provided into the future. return md # }}} def marshall(self,prefix,md,fid): # {{{ WriteData(fid,prefix,'object',self,'fieldname','mantle_viscosity','format','DoubleMat','mattype',1); WriteData(fid,prefix,'object',self,'fieldname','lithosphere_thickness','format','DoubleMat','mattype',1,'scale',10.**3.); WriteData(fid,prefix,'object',self,'fieldname','cross_section_shape','format','Integer'); # }}}
fa4c4bebb84eeea7871eaf044e4ec0be599f769c
3d9506b859cdbf38a21549cd3d64b69ecde7674e
/GoogleCodeJam/2020KickstartRoundB/BusRoute.py
b7cceed2c849cd5b217cc8829a02467223137486
[]
no_license
bradykim7/Algorithm
1ae4c6e4e6d72687b660ddf0768a9174cc8d7b8c
053210a1205f4e62b367f85b65dcb60fcad74008
refs/heads/master
2022-06-25T04:46:55.265058
2022-06-17T08:08:52
2022-06-17T08:08:52
233,500,101
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
import sys; if __name__=='__main__': t = int(input()); for i in range(t): nd = input().split(); n=int(nd[0]); d=int(nd[1]); ans =d; x= list(map(int,input().rstrip().split())); for j in x: ans -= d % j print('Case #%d: %d'%(i+1,ans))
9d55ea5cb4addbc1cc6d2fe4e49086c6505e4551
a75f9cf4f03b01f8e7cc12d311434beca1b233e5
/vstools/writers.py
fbfa81a2230924a07bc92e36d66720df61542f97
[ "Apache-2.0" ]
permissive
libyal/vstools
3169dbf62be79eb309f9d23a06e068cb3bd1ed81
f251133b39131735576baad2077bc47821e9b99b
refs/heads/main
2023-04-13T06:54:29.549207
2023-04-10T10:41:06
2023-04-10T10:41:06
95,857,124
4
1
null
null
null
null
UTF-8
Python
false
false
75,608
py
# -*- coding: utf-8 -*- """Project and solution file writer classes.""" import abc import re from vstools import definitions class FileWriter(object): """File writer.""" def __init__(self, encoding='utf-8', end_of_line='\r\n'): """Initializes a file writer. Args: encoding (str): encoding. end_of_line (str): end of line. """ super(FileWriter, self).__init__() self._encoding = encoding self._end_of_line = end_of_line self._file = None def Close(self): """Closes the project file.""" self._file.close() def Open(self, filename): """Opens the project file. Args: filename (str): path of the file. """ # Using binary mode to make sure to write Windows/DOS end of lines. self._file = open(filename, 'wb') # pylint: disable=consider-using-with def WriteBinaryData(self, data): """Writes binary data. Args: data (bytes): binary data. """ self._file.write(data) def WriteLine(self, line): """Writes a line.""" line = ''.join([line, self._end_of_line]) line = line.encode(self._encoding) self.WriteBinaryData(line) def WriteLines(self, lines): """Writes lines.""" for line in lines: self.WriteLine(line) class VSProjectFileWriter(FileWriter): """Visual Studio project file writer.""" def __init__(self, encoding='utf-8', end_of_line='\r\n'): """Initializes a Visual Studio project file writer. Args: encoding (str): encoding. end_of_line (str): end of line. """ super(VSProjectFileWriter, self).__init__( encoding=encoding, end_of_line=end_of_line) @abc.abstractmethod def WriteFooter(self): """Writes a file footer.""" @abc.abstractmethod def WriteHeader(self): """Writes a file header.""" class VS2008ProjectFileWriter(VSProjectFileWriter): """Visual Studio 2008 project file writer.""" _CONFIGURATION_OPTIONS = [ ('ConfigurationType', 'output_type', False), ('CharacterSet', 'character_set', False), ('ManagedExtensions', 'managed_extensions', True), ('WholeProgramOptimization', 'whole_program_optimization', True), ] _TOOL_COMPILER_CONFIGURATION_OPTIONS = [ ('Optimization', 'optimization', True), ('AdditionalIncludeDirectories', 'include_directories', False), ('PreprocessorDefinitions', 'preprocessor_definitions', False), ('BasicRuntimeChecks', 'basic_runtime_checks', True), ('SmallerTypeCheck', 'smaller_type_check', True), ('RuntimeLibrary', 'runtime_library', False), ('UsePrecompiledHeader', 'precompiled_header', True), ('WarningLevel', 'warning_level', False), ('WarnAsError', 'warning_as_error', True), ('Detect64BitPortabilityProblems', 'detect_64bit_portability_problems', True), ('DebugInformationFormat', 'debug_information_format', True), ('CompileAs', 'compile_as', False), ] _TOOL_LIBRARIAN_CONFIGURATION_OPTIONS = [ ('OutputFile', 'librarian_output_file', False), ('ModuleDefinitionFile', 'librarian_module_definition_file', False), ('IgnoreAllDefaultLibraries', 'librarian_ignore_defaults', False), ] _TOOL_LINKER_CONFIGURATION_OPTIONS1 = [ # ('AdditionalDependencies', 'additional_dependencies', True), ('OutputFile', 'linker_output_file', True), ('LinkIncremental', 'link_incremental', True), ] _TOOL_LINKER_CONFIGURATION_OPTIONS2 = [ # ('AdditionalLibraryDirectories', 'library_directories', False), ('GenerateDebugInformation', 'generate_debug_information', True), ('SubSystem', 'sub_system', True), ('OptimizeReferences', 'optimize_references', True), ('EnableCOMDATFolding', 'enable_comdat_folding', True), ('RandomizedBaseAddress', 'randomized_base_address', True), ('DataExecutionPrevention', 'data_execution_prevention', True), ('TargetMachine', 'target_machine', True), ('ImportLibrary', 'import_library', True), ] def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2008ProjectFileWriter, self).__init__() self._version = 2008 def _WriteConfiguration(self, project_configuration): """Writes the project configuration. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine('\t\t<Configuration') self.WriteLine('\t\t\tName="{0:s}|{1:s}"'.format( project_configuration.name, project_configuration.platform)) self.WriteLines([ '\t\t\tOutputDirectory="$(SolutionDir)$(ConfigurationName)"', '\t\t\tIntermediateDirectory="$(ConfigurationName)"']) for definition, name, is_optional in self._CONFIGURATION_OPTIONS: self._WriteConfigurationOption( project_configuration, definition, name, is_optional, 3) self.WriteLine('\t\t\t>') tools = [ ('VCPreBuildEventTool', []), ('VCCustomBuildTool', []), ('VCXMLDataGeneratorTool', []), ('VCWebServiceProxyGeneratorTool', []), ('VCMIDLTool', []), ('VCCLCompilerTool', self._TOOL_COMPILER_CONFIGURATION_OPTIONS), ('VCManagedResourceCompilerTool', []), ('VCResourceCompilerTool', []), ('VCPreLinkEventTool', []), ] # TODO: add "librarian values set" to project configuration? if project_configuration.librarian_output_file: tool = ('VCLibrarianTool', self._TOOL_LIBRARIAN_CONFIGURATION_OPTIONS) tools.append(tool) for name, configuration_options in tools: self._WriteConfigurationTool( project_configuration, name, configuration_options) if project_configuration.linker_values_set: self._WriteConfigurationLinkerTool(project_configuration) tools = [('VCALinkTool', [])] if project_configuration.linker_values_set: tools.append(('VCManifestTool', [])) tools.extend([ ('VCXDCMakeTool', []), ('VCBscMakeTool', []), ('VCFxCopTool', []) ]) if project_configuration.linker_values_set: tools.append(('VCAppVerifierTool', [])) tools.append(('VCPostBuildEventTool', [])) for name, configuration_options in tools: self._WriteConfigurationTool( project_configuration, name, configuration_options) self.WriteLine('\t\t</Configuration>') def _WriteConfigurationLinkerTool(self, project_configuration): """Writes the project configuration linker tool. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteConfigurationToolHeader('VCLinkerTool') if project_configuration.additional_dependencies: self.WriteLine('\t\t\t\tAdditionalDependencies="{0:s}"'.format( ' '.join(sorted(project_configuration.additional_dependencies)))) for definition, name, is_optional in ( self._TOOL_LINKER_CONFIGURATION_OPTIONS1): self._WriteConfigurationOption( project_configuration, definition, name, is_optional, 4) library_directories = ['&quot;$(OutDir)&quot;'] library_directories.extend(project_configuration.library_directories) library_directories = ';'.join(library_directories) self.WriteLine('\t\t\t\tAdditionalLibraryDirectories="{0:s}"'.format( library_directories)) for definition, name, is_optional in ( self._TOOL_LINKER_CONFIGURATION_OPTIONS2): self._WriteConfigurationOption( project_configuration, definition, name, is_optional, 4) self._WriteConfigurationToolFooter() def _WriteConfigurationOption( self, project_configuration, definition, name, is_optional, indentation_level): """Parses a configuration option. An optional configuration option will not be written when its configuration value is not set. Args: project_configuration (VSProjectConfiguration): project configuration. definition (str): definition of the configuration value in file. name (str): name of the configuration value in the project information. is_optional (bool): True if the configuration option is optional. indentation_level (int): indentation level. """ configuration_value = getattr(project_configuration, name, '') if name == 'include_directories': configuration_value = ';'.join(configuration_value) if not is_optional or configuration_value: indentation = '\t' * indentation_level line = '{0:s}{1:s}="{2:s}"'.format( indentation, definition, configuration_value) self.WriteLine(line) def _WriteConfigurationTool( self, project_configuration, name, configuration_options): """Writes a project configuration tool. Args: project_configuration (VSProjectConfiguration): project configuration. name (str): name of the tool. configuration_options (list[tuple[str, str, bool]]): configuration options defined as a tuple of definition, name and is optional. """ self._WriteConfigurationToolHeader(name) # pylint: disable=redefined-argument-from-local for definition, name, is_optional in configuration_options: self._WriteConfigurationOption( project_configuration, definition, name, is_optional, 4) self._WriteConfigurationToolFooter() def _WriteConfigurationToolFooter(self): """Writes the project configuration tool footer.""" self.WriteLine('\t\t\t/>') def _WriteConfigurationToolHeader(self, name): """Writes the project configuration tool header. Args: name (str): name of the tool. """ self.WriteLines([ '\t\t\t<Tool', '\t\t\t\tName="{0:s}"'.format(name)]) def _WriteHeaderFiles(self, header_files): """Writes the header files. Args: header_files (list[str]): header filenames. """ self.WriteLines([ '\t\t<Filter', '\t\t\tName="Header Files"', '\t\t\tFilter="h;hpp;hxx;hm;inl;inc;xsd"', '\t\t\tUniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"', '\t\t\t>']) for filename in header_files: self.WriteLine('\t\t\t<File') self.WriteLine('\t\t\t\tRelativePath="{0:s}"'.format(filename)) self.WriteLines([ '\t\t\t\t>', '\t\t\t</File>']) self.WriteLine('\t\t</Filter>') def _WriteResourceFiles(self, resource_files): """Writes the resource files. Args: resource_files (list[str]): resource filenames. """ self.WriteLines([ '\t\t<Filter', '\t\t\tName="Resource Files"', ('\t\t\tFilter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;' 'resx;tiff;tif;png;wav"'), '\t\t\tUniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"', '\t\t\t>']) for filename in resource_files: self.WriteLine('\t\t\t<File') self.WriteLine('\t\t\t\tRelativePath="{0:s}"'.format(filename)) self.WriteLines([ '\t\t\t\t>', '\t\t\t</File>']) self.WriteLine('\t\t</Filter>') def _WriteSourceFiles(self, source_files): """Writes the source files. Args: source_files (list[str]): source filenames. """ self.WriteLines([ '\t\t<Filter', '\t\t\tName="Source Files"', '\t\t\tFilter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"', '\t\t\tUniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"', '\t\t\t>']) for filename in source_files: self.WriteLine('\t\t\t<File') self.WriteLine('\t\t\t\tRelativePath="{0:s}"'.format(filename)) self.WriteLines([ '\t\t\t\t>', '\t\t\t</File>']) self.WriteLine('\t\t</Filter>') def WriteConfigurations(self, project_configurations): """Writes the configurations. Args: project_configurations (VSConfigurations): configurations. """ self.WriteLine('\t<Configurations>') for project_configuration in project_configurations.GetSorted(): self._WriteConfiguration(project_configuration) self.WriteLine('\t</Configurations>') self.WriteLines([ '\t<References>', '\t</References>']) # pylint: disable=unused-argument def WriteDependencies(self, dependencies, solution_projects_by_guid): """Writes the dependencies. Args: dependencies (list[str]): GUIDs of the dependencies. solution_projects_by_guid (dict[str, VSSolutionProject]): projects per lower case GUID. """ return def WriteFiles(self, source_files, header_files, resource_files): """Writes the files. Args: source_files (list[str]): source filenames. header_files (list[str]): header filenames. resource_files (list[str]): resource filenames. """ self.WriteLine('\t<Files>') self._WriteSourceFiles(source_files) self._WriteHeaderFiles(header_files) self._WriteResourceFiles(resource_files) self.WriteLine('\t</Files>') self.WriteLines([ '\t<Globals>', '\t</Globals>']) def WriteFooter(self): """Writes a file footer.""" self.WriteLine('</VisualStudioProject>') def WriteHeader(self): """Writes a file header.""" self.WriteLine('<?xml version="1.0" encoding="Windows-1252"?>') # pylint: disable=unused-argument def WriteProjectConfigurations(self, project_configurations): """Writes the project configurations. Args: project_configurations (VSConfigurations): configurations. """ return def WriteProjectInformation(self, project_information): """Writes the project information. Args: project_information (VSProjectInformation): project information. """ self.WriteLines([ '<VisualStudioProject', '\tProjectType="Visual C++"', '\tVersion="9,00"']) self.WriteLine('\tName="{0:s}"'.format(project_information.name)) self.WriteLine('\tProjectGUID="{{{0:s}}}"'.format( project_information.guid.upper())) self.WriteLine( '\tRootNamespace="{0:s}"'.format(project_information.root_name_space)) if project_information.keyword: self.WriteLine( '\tKeyword="{0:s}"'.format(project_information.keyword)) # Also seen 196613. self.WriteLines([ '\tTargetFrameworkVersion="131072"', '\t>']) # TODO: handle platforms. self.WriteLines([ '\t<Platforms>', '\t\t<Platform', '\t\t\tName="Win32"', '\t\t/>', '\t</Platforms>']) self.WriteLines([ '\t<ToolFiles>', '\t</ToolFiles>']) class VS2010ProjectFileWriter(VSProjectFileWriter): """Visual Studio 2010 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2010ProjectFileWriter, self).__init__() self._project_file_version = '10.0.40219.1' self._tools_version = '4.0' self._version = 2010 def _WriteClCompileSection(self, project_configuration): """Writes the CLCompile section. Args: project_configuration (VSProjectConfiguration): project configuration. """ include_directories = ';'.join(project_configuration.include_directories) include_directories = re.sub(r'&quot;', r'', include_directories) if include_directories and include_directories[-1] != ';': include_directories = '{0:s};'.format( include_directories) include_directories = '{0:s}%(AdditionalIncludeDirectories)'.format( include_directories) preprocessor_definitions = project_configuration.preprocessor_definitions if preprocessor_definitions and preprocessor_definitions[-1] != ';': preprocessor_definitions = '{0:s};'.format(preprocessor_definitions) preprocessor_definitions = '{0:s}%(PreprocessorDefinitions)'.format( preprocessor_definitions) self.WriteLine(' <ClCompile>') if project_configuration.optimization != '': self.WriteLine(' <Optimization>{0:s}</Optimization>'.format( project_configuration.optimization_string)) if project_configuration.enable_intrinsic_functions != '': self.WriteLine(( ' <IntrinsicFunctions>{0:s}</IntrinsicFunctions>').format( project_configuration.enable_intrinsic_functions)) if project_configuration.whole_program_optimization: self.WriteLine(( ' <WholeProgramOptimization>{0:s}' '</WholeProgramOptimization>').format( project_configuration.whole_program_optimization_string)) self.WriteLine(( ' <AdditionalIncludeDirectories>{0:s}' '</AdditionalIncludeDirectories>').format(include_directories)) self.WriteLine(( ' <PreprocessorDefinitions>{0:s}' '</PreprocessorDefinitions>').format(preprocessor_definitions)) if project_configuration.basic_runtime_checks != '': self.WriteLine(( ' <BasicRuntimeChecks>{0:s}' '</BasicRuntimeChecks>').format( project_configuration.basic_runtime_checks_string)) if project_configuration.smaller_type_check != '': self.WriteLine(( ' <SmallerTypeCheck>{0:s}</SmallerTypeCheck>').format( project_configuration.smaller_type_check)) self.WriteLine(( ' <RuntimeLibrary>{0:s}</RuntimeLibrary>').format( project_configuration.runtime_librarian_string)) if project_configuration.enable_function_level_linking != '': self.WriteLine(( ' <FunctionLevelLinking>{0:s}</FunctionLevelLinking>').format( project_configuration.enable_function_level_linking)) if project_configuration.precompiled_header != '': # A value of 0 is represented by a new line. if project_configuration.precompiled_header == '0': self.WriteLines([ ' <PrecompiledHeader>', ' </PrecompiledHeader>']) else: self.WriteLine(( ' <PrecompiledHeader>{0:s}</PrecompiledHeader>').format( project_configuration.precompiled_header_string)) self.WriteLine(' <WarningLevel>{0:s}</WarningLevel>'.format( project_configuration.warning_level_string)) if project_configuration.warning_as_error: self.WriteLine(( ' <TreatWarningAsError>{0:s}' '</TreatWarningAsError>').format( project_configuration.warning_as_error)) if project_configuration.debug_information_format != '': # A value of 0 is represented by a new line. if project_configuration.debug_information_format == '0': self.WriteLines([ ' <DebugInformationFormat>', ' </DebugInformationFormat>']) else: self.WriteLine(( ' <DebugInformationFormat>{0:s}' '</DebugInformationFormat>').format( project_configuration.debug_information_format_string)) if project_configuration.compile_as: self.WriteLine(' <CompileAs>{0:s}</CompileAs>'.format( project_configuration.compile_as_string)) self.WriteLine(' </ClCompile>') def _WriteConfigurationPropertyGroup(self, project_configuration): """Writes the configuration property group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteConfigurationPropertyGroupHeader(project_configuration) self.WriteLine(' <ConfigurationType>{0:s}</ConfigurationType>'.format( project_configuration.output_type_string)) if project_configuration.character_set: self.WriteLine(' <CharacterSet>{0:s}</CharacterSet>'.format( project_configuration.character_set_string)) if project_configuration.managed_extensions == '1': self.WriteLine(' <CLRSupport>true</CLRSupport>') if project_configuration.whole_program_optimization: self.WriteLine(( ' <WholeProgramOptimization>{0:s}' '</WholeProgramOptimization>').format( project_configuration.whole_program_optimization_string)) platform_toolset = project_configuration.GetPlatformToolset(self._version) if platform_toolset: self.WriteLine(' <PlatformToolset>{0:s}</PlatformToolset>'.format( platform_toolset)) self._WriteConfigurationPropertyGroupFooter() def _WriteConfigurationPropertyGroupFooter(self): """Writes the configuration property group footer.""" self.WriteLine(' </PropertyGroup>') def _WriteConfigurationPropertyGroupHeader(self, project_configuration): """Writes the configuration property group header. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine(( ' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'" Label="Configuration">').format( project_configuration.name, project_configuration.platform)) def _WriteHeaderFiles(self, header_files): """Writes the header files. Args: header_files (list[str]): header filenames. """ if header_files: self.WriteLine(' <ItemGroup>') for filename in header_files: self.WriteLine(' <ClInclude Include="{0:s}" />'.format(filename)) self.WriteLine(' </ItemGroup>') def _WriteItemDefinitionGroup(self, project_configuration): """Writes the item definition group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteItemDefinitionGroupHeader(project_configuration) # Write the compiler specific section. self._WriteClCompileSection(project_configuration) # Write the librarian specific section. if project_configuration.librarian_output_file: self._WriteLibrarianSection(project_configuration) # Write the linker specific section. if (project_configuration.linker_values_set or project_configuration.output_type == ( definitions.OUTPUT_TYPE_APPLICATION)): self._WriteLinkerSection(project_configuration) self._WriteItemDefinitionGroupFooter() def _WriteItemDefinitionGroupFooter(self): """Writes the item definition group header.""" self.WriteLine(' </ItemDefinitionGroup>') def _WriteItemDefinitionGroupHeader(self, project_configuration): """Writes the item definition group header. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine(( ' <ItemDefinitionGroup Condition="\'$(Configuration)|' '$(Platform)\'==\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform)) def _WriteLibrarianSection(self, project_configuration): """Writes the librarian section. Args: project_configuration (VSProjectConfiguration): project configuration. """ librarian_output_file = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.librarian_output_file) self.WriteLines([ ' <Lib>', ' <OutputFile>{0:s}</OutputFile>'.format(librarian_output_file)]) if project_configuration.module_definition_file != '': self.WriteLine(( ' <ModuleDefinitionFile>{0:s}' '</ModuleDefinitionFile>').format( project_configuration.module_definition_file)) else: self.WriteLines([ ' <ModuleDefinitionFile>', ' </ModuleDefinitionFile>']) if project_configuration.librarian_ignore_defaults != '': self.WriteLine(( ' <IgnoreAllDefaultLibraries>{0:s}' '</IgnoreAllDefaultLibraries>').format( project_configuration.librarian_ignore_defaults)) self.WriteLine(' </Lib>') def _WriteLinkerSection(self, project_configuration): """Writes the linker section. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine(' <Link>') # Visual Studio will convert an empty additional dependencies value. if project_configuration.additional_dependencies: additional_dependencies = ';'.join( sorted(project_configuration.additional_dependencies)) additional_dependencies = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', additional_dependencies) if additional_dependencies and additional_dependencies[-1] != ';': additional_dependencies = '{0:s};'.format(additional_dependencies) additional_dependencies = '{0:s}%(AdditionalDependencies)'.format( additional_dependencies) self.WriteLine(( ' <AdditionalDependencies>{0:s}' '</AdditionalDependencies>').format( additional_dependencies)) if project_configuration.linker_output_file: linker_output_file = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.linker_output_file) self.WriteLine(' <OutputFile>{0:s}</OutputFile>'.format( linker_output_file)) if project_configuration.module_definition_file != '': self.WriteLine(( ' <ModuleDefinitionFile>{0:s}' '</ModuleDefinitionFile>').format( project_configuration.module_definition_file)) if project_configuration.library_directories: library_directories = ';'.join(project_configuration.library_directories) library_directories = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', library_directories) library_directories = re.sub(r'&quot;', r'', library_directories) if library_directories and library_directories[-1] != ';': library_directories = '{0:s};'.format(library_directories) library_directories = '{0:s}%(AdditionalLibraryDirectories)'.format( library_directories) self.WriteLine(( ' <AdditionalLibraryDirectories>{0:s}' '</AdditionalLibraryDirectories>').format( library_directories)) if project_configuration.generate_debug_information != '': self.WriteLine(( ' <GenerateDebugInformation>{0:s}' '</GenerateDebugInformation>').format( project_configuration.generate_debug_information)) if project_configuration.sub_system != '': self.WriteLine(' <SubSystem>{0:s}</SubSystem>'.format( project_configuration.sub_system_string)) if project_configuration.optimize_references == '0': self.WriteLines([ ' <OptimizeReferences>', ' </OptimizeReferences>']) elif project_configuration.optimize_references != '': self.WriteLine(( ' <OptimizeReferences>{0:s}</OptimizeReferences>').format( project_configuration.optimize_references_string)) if project_configuration.enable_comdat_folding == '0': self.WriteLines([ ' <EnableCOMDATFolding>', ' </EnableCOMDATFolding>']) elif project_configuration.enable_comdat_folding != '': self.WriteLine(( ' <EnableCOMDATFolding>{0:s}</EnableCOMDATFolding>').format( project_configuration.enable_comdat_folding_string)) if project_configuration.randomized_base_address != '': self.WriteLine(( ' <RandomizedBaseAddress>{0:s}' '</RandomizedBaseAddress>').format( project_configuration.randomized_base_address_string)) if project_configuration.fixed_base_address == '0': self.WriteLines([ ' <FixedBaseAddress>', ' </FixedBaseAddress>']) if project_configuration.data_execution_prevention != '': # A value of 0 is represented by a new line. if project_configuration.data_execution_prevention == '0': self.WriteLines([ ' <DataExecutionPrevention>', ' </DataExecutionPrevention>']) else: self.WriteLine(( ' <DataExecutionPrevention>{0:s}' '</DataExecutionPrevention>').format( project_configuration.data_execution_prevention_string)) if project_configuration.import_library: import_library = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.import_library) self.WriteLine(' <ImportLibrary>{0:s}</ImportLibrary>'.format( import_library)) if project_configuration.target_machine != '': self.WriteLine(' <TargetMachine>{0:s}</TargetMachine>'.format( project_configuration.target_machine_string)) self.WriteLine(' </Link>') def _WriteOutIntDirConditions( self, configuration_name, project_configurations): """Writes the OutDir and IntDir conditions. Args: configuration_name (str): name of the configuration. project_configurations (VSConfigurations): configurations. """ for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if len(project_configurations.platforms) == 1: self.WriteLine(( ' <OutDir Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">$(SolutionDir)$(Configuration)\\' '</OutDir>').format( project_configuration.name, project_configuration.platform)) else: self.WriteLine(( ' <OutDir Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">$(SolutionDir)$(Configuration)\\$(Platform)\\' '</OutDir>').format( project_configuration.name, project_configuration.platform)) for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if len(project_configurations.platforms) == 1: self.WriteLine(( ' <IntDir Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">$(Configuration)\\</IntDir>').format( project_configuration.name, project_configuration.platform)) else: self.WriteLine(( ' <IntDir Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">$(Configuration)\\$(Platform)\\</IntDir>').format( project_configuration.name, project_configuration.platform)) def _WriteOutIntDirPropertyGroups(self, project_configurations): """Writes the OutDir and IntDir property groups. Args: project_configurations (VSConfigurations): configurations. """ self.WriteLines([ ' <PropertyGroup>', ' <_ProjectFileVersion>{0:s}</_ProjectFileVersion>'.format( self._project_file_version)]) # Mimic Visual Studio behavior and output the configurations # in platforms by name. for configuration_name in sorted(project_configurations.names): self._WriteOutIntDirConditions(configuration_name, project_configurations) for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if project_configuration.link_incremental != '': self.WriteLine(( ' <LinkIncremental Condition="\'$(Configuration)|' '$(Platform)\'==\'{0:s}|{1:s}\'">{2:s}</LinkIncremental>').format( project_configuration.name, project_configuration.platform, project_configuration.link_incremental_string)) self.WriteLine(' </PropertyGroup>') def _WriteResourceFiles(self, resource_files): """Writes the resource files. Args: resource_files (list[str]): resource filenames. """ if resource_files: self.WriteLine(' <ItemGroup>') for filename in resource_files: self.WriteLine(' <ResourceCompile Include="{0:s}" />'.format( filename)) self.WriteLine(' </ItemGroup>') def _WriteSourceFiles(self, source_files): """Writes the source files. Args: source_files (list[str]): source filenames. """ if source_files: self.WriteLine(' <ItemGroup>') for filename in source_files: self.WriteLine(' <ClCompile Include="{0:s}" />'.format(filename)) self.WriteLine(' </ItemGroup>') def WriteConfigurations(self, project_configurations): """Writes the configurations. Args: project_configurations (VSConfigurations): configurations. """ self.WriteLine( ' <Import Project="$(VCTargetsPath)\\Microsoft.Cpp.Default.props" />') # Mimic Visual Studio behavior and output the configurations # in reverse order of name. for project_configuration in project_configurations.GetSorted(reverse=True): self._WriteConfigurationPropertyGroup(project_configuration) self.WriteLines([ ' <Import Project="$(VCTargetsPath)\\Microsoft.Cpp.props" />', ' <ImportGroup Label="ExtensionSettings">', ' </ImportGroup>']) # Mimic Visual Studio behavior and output the configurations # in reverse of name. for project_configuration in project_configurations.GetSorted(reverse=True): self.WriteLines([ (' <ImportGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'" Label="PropertySheets">'.format( project_configuration.name, project_configuration.platform)), (' <Import Project="$(UserRootDir)\\Microsoft.Cpp.$(Platform)' '.user.props" Condition="exists(\'$(UserRootDir)\\Microsoft.Cpp' '.$(Platform).user.props\')" Label="LocalAppDataPlatform" />'), ' </ImportGroup>']) self.WriteLine(' <PropertyGroup Label="UserMacros" />') self._WriteOutIntDirPropertyGroups(project_configurations) for project_configuration in project_configurations.GetSorted(): self._WriteItemDefinitionGroup(project_configuration) def WriteDependencies(self, dependencies, solution_projects_by_guid): """Writes the dependencies. Args: dependencies (list[str]): GUIDs of the dependencies. solution_projects_by_guid (dict[str, VSSolutionProject]): projects per lower case GUID. """ if dependencies: self.WriteLine(' <ItemGroup>') dependencies_by_name = {} # Mimic Visual Studio behavior and output the dependencies in order # of name (perhaps filename?). for dependency_guid in dependencies: dependency_project = solution_projects_by_guid[dependency_guid] dependencies_by_name[dependency_project.name] = dependency_project for dependency_name in sorted(dependencies_by_name): dependency_project = dependencies_by_name[dependency_name] dependency_filename = '..\\{0:s}.vcxproj'.format( dependency_project.filename) dependency_guid = dependency_project.guid.lower() self.WriteLines([ (' <ProjectReference Include="{0:s}">').format( dependency_filename), ' <Project>{{{0:s}}}</Project>'.format(dependency_guid), ' <ReferenceOutputAssembly>false</ReferenceOutputAssembly>', ' </ProjectReference>']) self.WriteLine(' </ItemGroup>') def WriteFiles(self, source_files, header_files, resource_files): """Writes the files. Args: source_files (list[str]): source filenames. header_files (list[str]): header filenames. resource_files (list[str]): resource filenames. """ self._WriteSourceFiles(source_files) self._WriteHeaderFiles(header_files) self._WriteResourceFiles(resource_files) def WriteFooter(self): """Writes a file footer.""" self.WriteLines([ ' <Import Project="$(VCTargetsPath)\\Microsoft.Cpp.targets" />', ' <ImportGroup Label="ExtensionTargets">', ' </ImportGroup>']) # The last line has no \r\n. self._file.write(b'</Project>') def WriteHeader(self): """Writes a file header.""" self._file.write(b'\xef\xbb\xbf') self.WriteLines([ '<?xml version="1.0" encoding="utf-8"?>', ('<Project DefaultTargets="Build" ToolsVersion="{0:s}" ' 'xmlns="http://schemas.microsoft.com/developer/msbuild/2003">').format( self._tools_version)]) def WriteProjectConfigurations(self, project_configurations): """Writes the project configurations. Args: project_configurations (VSConfigurations): configurations. """ self.WriteLine(' <ItemGroup Label="ProjectConfigurations">') for project_configuration in project_configurations.GetSorted(): self.WriteLine(' <ProjectConfiguration Include="{0:s}|{1:s}">'.format( project_configuration.name, project_configuration.platform)) self.WriteLine(' <Configuration>{0:s}</Configuration>'.format( project_configuration.name)) self.WriteLine(' <Platform>{0:s}</Platform>'.format( project_configuration.platform)) self.WriteLine(' </ProjectConfiguration>') self.WriteLine(' </ItemGroup>') def WriteProjectInformation(self, project_information): """Writes the project information. Args: project_information (VSProjectInformation): project information. """ self.WriteLine(' <PropertyGroup Label="Globals">') self.WriteLine(' <ProjectGuid>{{{0:s}}}</ProjectGuid>'.format( project_information.guid)) self.WriteLine(' <RootNamespace>{0:s}</RootNamespace>'.format( project_information.root_name_space)) if project_information.keyword: self.WriteLine(' <Keyword>{0:s}</Keyword>'.format( project_information.keyword)) self.WriteLine(' </PropertyGroup>') class VS2012ProjectFileWriter(VS2010ProjectFileWriter): """Visual Studio 2012 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2012ProjectFileWriter, self).__init__() self._project_file_version = '11.0.61030.0' self._tools_version = '4.0' self._version = 2012 def _WriteClCompileSection(self, project_configuration): """Writes the CLCompile section. Args: project_configuration (VSProjectConfiguration): project configuration. """ include_directories = ';'.join(project_configuration.include_directories) include_directories = re.sub(r'&quot;', r'', include_directories) if include_directories and include_directories[-1] != ';': include_directories = '{0:s};'.format( include_directories) include_directories = '{0:s}%(AdditionalIncludeDirectories)'.format( include_directories) preprocessor_definitions = project_configuration.preprocessor_definitions if preprocessor_definitions and preprocessor_definitions[-1] != ';': preprocessor_definitions = '{0:s};'.format(preprocessor_definitions) preprocessor_definitions = '{0:s}%(PreprocessorDefinitions)'.format( preprocessor_definitions) self.WriteLine(' <ClCompile>') if project_configuration.optimization != '': self.WriteLine(' <Optimization>{0:s}</Optimization>'.format( project_configuration.optimization_string)) if project_configuration.enable_intrinsic_functions != '': self.WriteLine(( ' <IntrinsicFunctions>{0:s}</IntrinsicFunctions>').format( project_configuration.enable_intrinsic_functions)) self.WriteLine(( ' <AdditionalIncludeDirectories>{0:s}' '</AdditionalIncludeDirectories>').format(include_directories)) self.WriteLine(( ' <PreprocessorDefinitions>{0:s}' '</PreprocessorDefinitions>').format(preprocessor_definitions)) if project_configuration.basic_runtime_checks != '': self.WriteLine(( ' <BasicRuntimeChecks>{0:s}' '</BasicRuntimeChecks>').format( project_configuration.basic_runtime_checks_string)) if project_configuration.smaller_type_check != '': self.WriteLine(( ' <SmallerTypeCheck>{0:s}</SmallerTypeCheck>').format( project_configuration.smaller_type_check)) self.WriteLine(( ' <RuntimeLibrary>{0:s}</RuntimeLibrary>').format( project_configuration.runtime_librarian_string)) if project_configuration.enable_function_level_linking != '': self.WriteLine(( ' <FunctionLevelLinking>{0:s}</FunctionLevelLinking>').format( project_configuration.enable_function_level_linking)) if project_configuration.precompiled_header != '': # A value of 0 is represented by an empty XML tag. if project_configuration.precompiled_header == '0': self.WriteLine(' <PrecompiledHeader />') else: self.WriteLine(( ' <PrecompiledHeader>{0:s}</PrecompiledHeader>').format( project_configuration.precompiled_header_string)) self.WriteLine(' <WarningLevel>{0:s}</WarningLevel>'.format( project_configuration.warning_level_string)) if project_configuration.warning_as_error: self.WriteLine(( ' <TreatWarningAsError>{0:s}' '</TreatWarningAsError>').format( project_configuration.warning_as_error)) if project_configuration.debug_information_format != '': # A value of 0 is represented by an empty XML tag. if project_configuration.debug_information_format == '0': self.WriteLine(' <DebugInformationFormat />') else: self.WriteLine(( ' <DebugInformationFormat>{0:s}' '</DebugInformationFormat>').format( project_configuration.debug_information_format_string)) if project_configuration.compile_as: self.WriteLine(' <CompileAs>{0:s}</CompileAs>'.format( project_configuration.compile_as_string)) self.WriteLine(' </ClCompile>') def _WriteConfigurationPropertyGroup(self, project_configuration): """Writes the configuration property group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteConfigurationPropertyGroupHeader(project_configuration) self.WriteLine(' <ConfigurationType>{0:s}</ConfigurationType>'.format( project_configuration.output_type_string)) platform_toolset = project_configuration.GetPlatformToolset(self._version) if platform_toolset: self.WriteLine(' <PlatformToolset>{0:s}</PlatformToolset>'.format( platform_toolset)) if project_configuration.character_set: self.WriteLine(' <CharacterSet>{0:s}</CharacterSet>'.format( project_configuration.character_set_string)) if project_configuration.managed_extensions == '1': self.WriteLine(' <CLRSupport>true</CLRSupport>') if project_configuration.whole_program_optimization: self.WriteLine(( ' <WholeProgramOptimization>{0:s}' '</WholeProgramOptimization>').format( project_configuration.whole_program_optimization_string)) self._WriteConfigurationPropertyGroupFooter() def _WriteItemDefinitionGroup(self, project_configuration): """Writes the item definition group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteItemDefinitionGroupHeader(project_configuration) # Write the compiler specific section. self._WriteClCompileSection(project_configuration) # Write the librarian specific section. if project_configuration.librarian_output_file: self._WriteLibrarianSection(project_configuration) # Write the linker specific section. if (project_configuration.linker_values_set or project_configuration.output_type == ( definitions.OUTPUT_TYPE_APPLICATION)): self._WriteLinkerSection(project_configuration) self._WriteItemDefinitionGroupFooter() def _WriteLibrarianSection(self, project_configuration): """Writes the librarian section. Args: project_configuration (VSProjectConfiguration): project configuration. """ librarian_output_file = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.librarian_output_file) self.WriteLines([ ' <Lib>', ' <OutputFile>{0:s}</OutputFile>'.format(librarian_output_file)]) if project_configuration.module_definition_file != '': self.WriteLine(( ' <ModuleDefinitionFile>{0:s}' '</ModuleDefinitionFile>').format( project_configuration.module_definition_file)) else: self.WriteLine(' <ModuleDefinitionFile />') if project_configuration.librarian_ignore_defaults != '': self.WriteLine(( ' <IgnoreAllDefaultLibraries>{0:s}' '</IgnoreAllDefaultLibraries>').format( project_configuration.librarian_ignore_defaults)) self.WriteLine(' </Lib>') def _WriteLinkerSection(self, project_configuration): """Writes the linker section. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine(' <Link>') # Visual Studio will convert an empty additional dependencies value. if project_configuration.additional_dependencies: additional_dependencies = ';'.join( sorted(project_configuration.additional_dependencies)) additional_dependencies = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', additional_dependencies) if additional_dependencies and additional_dependencies[-1] != ';': additional_dependencies = '{0:s};'.format(additional_dependencies) additional_dependencies = ( '{0:s}%(AdditionalDependencies)').format( additional_dependencies) self.WriteLine(( ' <AdditionalDependencies>{0:s}' '</AdditionalDependencies>').format( additional_dependencies)) if project_configuration.linker_output_file: linker_output_file = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.linker_output_file) self.WriteLine(' <OutputFile>{0:s}</OutputFile>'.format( linker_output_file)) if project_configuration.module_definition_file != '': self.WriteLine(( ' <ModuleDefinitionFile>{0:s}' '</ModuleDefinitionFile>').format( project_configuration.module_definition_file)) if project_configuration.library_directories: library_directories = ';'.join(project_configuration.library_directories) library_directories = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', library_directories) library_directories = re.sub(r'&quot;', r'', library_directories) if library_directories and library_directories[-1] != ';': library_directories = '{0:s};'.format(library_directories) library_directories = ( '{0:s}%(AdditionalLibraryDirectories)').format( library_directories) self.WriteLine(( ' <AdditionalLibraryDirectories>{0:s}' '</AdditionalLibraryDirectories>').format( library_directories)) if project_configuration.generate_debug_information != '': self.WriteLine(( ' <GenerateDebugInformation>{0:s}' '</GenerateDebugInformation>').format( project_configuration.generate_debug_information)) if project_configuration.sub_system != '': self.WriteLine(' <SubSystem>{0:s}</SubSystem>'.format( project_configuration.sub_system_string)) if project_configuration.optimize_references == '0': self.WriteLine(' <OptimizeReferences />') elif project_configuration.optimize_references != '': self.WriteLine(( ' <OptimizeReferences>{0:s}</OptimizeReferences>').format( project_configuration.optimize_references_string)) if project_configuration.enable_comdat_folding == '0': self.WriteLine(' <EnableCOMDATFolding />') elif project_configuration.enable_comdat_folding != '': self.WriteLine(( ' <EnableCOMDATFolding>{0:s}</EnableCOMDATFolding>').format( project_configuration.enable_comdat_folding_string)) if project_configuration.randomized_base_address != '': self.WriteLine(( ' <RandomizedBaseAddress>{0:s}' '</RandomizedBaseAddress>').format( project_configuration.randomized_base_address_string)) if project_configuration.fixed_base_address == '0': # A value of 0 is represented by an empty XML tag. self.WriteLine(' <FixedBaseAddress />') if project_configuration.data_execution_prevention != '': # A value of 0 is represented by an empty XML tag. if project_configuration.data_execution_prevention == '0': self.WriteLine(' <DataExecutionPrevention />') else: self.WriteLine(( ' <DataExecutionPrevention>{0:s}' '</DataExecutionPrevention>').format( project_configuration.data_execution_prevention_string)) if (project_configuration.target_machine != '' and project_configuration.linker_values_set): self.WriteLine(' <TargetMachine>{0:s}</TargetMachine>'.format( project_configuration.target_machine_string)) if project_configuration.import_library: import_library = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.import_library) self.WriteLine(' <ImportLibrary>{0:s}</ImportLibrary>'.format( import_library)) self.WriteLine(' </Link>') def _WriteOutIntDirConditions( self, configuration_name, project_configurations): """Writes the OutDir and IntDir conditions. Args: configuration_name (str): name of the configuration. project_configurations (VSConfigurations): configurations. """ for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if len(project_configurations.platforms) == 1: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), ' <OutDir>$(SolutionDir)$(Configuration)\\</OutDir>', ' <IntDir>$(Configuration)\\</IntDir>']) else: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), (' <OutDir>$(SolutionDir)$(Configuration)\\$(Platform)\\' '</OutDir>'), ' <IntDir>$(Configuration)\\$(Platform)\\</IntDir>']) if project_configuration.linker_values_set: self.WriteLine(' <LinkIncremental>false</LinkIncremental>') self.WriteLine(' </PropertyGroup>') def _WriteOutIntDirPropertyGroups(self, project_configurations): """Writes the OutDir and IntDir property groups. Args: project_configurations (VSConfigurations): configurations. """ self.WriteLines([ ' <PropertyGroup>', ' <_ProjectFileVersion>{0:s}</_ProjectFileVersion>'.format( self._project_file_version), ' </PropertyGroup>']) # Mimic Visual Studio behavior and output the configurations # in platforms by name. for configuration_name in sorted(project_configurations.names): self._WriteOutIntDirConditions(configuration_name, project_configurations) # for configuration_platform in sorted(project_configurations.platforms): # project_configuration = project_configurations.GetByIdentifier( # configuration_name, configuration_platform) # if project_configuration.link_incremental != '': # self.WriteLine(( # ' <LinkIncremental Condition="\'$(Configuration)|' # '$(Platform)\'==\'{0:s}|{1:s}\'">{2:s}' # '</LinkIncremental>').format( # project_configuration.name, project_configuration.platform, # project_configuration.link_incremental_string)) class VS2013ProjectFileWriter(VS2010ProjectFileWriter): """Visual Studio 2013 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2013ProjectFileWriter, self).__init__() self._project_file_version = '12.0.21005.1' self._tools_version = '12.0' self._version = 2013 class VS2015ProjectFileWriter(VS2012ProjectFileWriter): """Visual Studio 2015 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2015ProjectFileWriter, self).__init__() self._project_file_version = '14.0.25431.1' self._tools_version = '14.0' self._version = 2015 def _WriteOutIntDirConditions( self, configuration_name, project_configurations): """Writes the OutDir and IntDir conditions. Args: configuration_name (str): name of the configuration. project_configurations (VSConfigurations): configurations. """ for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if len(project_configurations.platforms) == 1: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), ' <OutDir>$(SolutionDir)$(Configuration)\\</OutDir>', ' <IntDir>$(Configuration)\\</IntDir>']) else: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), (' <OutDir>$(SolutionDir)$(Configuration)\\$(Platform)\\' '</OutDir>'), ' <IntDir>$(Configuration)\\$(Platform)\\</IntDir>']) self.WriteLine(' </PropertyGroup>') class VS2017ProjectFileWriter(VS2012ProjectFileWriter): """Visual Studio 2017 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2017ProjectFileWriter, self).__init__() self._project_file_version = '15.0.26730.3' self._tools_version = '15.0' self._version = 2017 def _WriteItemDefinitionGroup(self, project_configuration): """Writes the item definition group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteItemDefinitionGroupHeader(project_configuration) # Write the compiler specific section. self._WriteClCompileSection(project_configuration) # Write the librarian specific section. if project_configuration.librarian_output_file: self._WriteLibrarianSection(project_configuration) # Write the linker specific section. if (project_configuration.linker_values_set or project_configuration.output_type == ( definitions.OUTPUT_TYPE_APPLICATION)): self._WriteLinkerSection(project_configuration) self._WriteItemDefinitionGroupFooter() def _WriteLinkerSection(self, project_configuration): """Writes the linker section. Args: project_configuration (VSProjectConfiguration): project configuration. """ self.WriteLine(' <Link>') # Visual Studio will convert an empty additional dependencies value. if project_configuration.additional_dependencies: additional_dependencies = ';'.join( sorted(project_configuration.additional_dependencies)) additional_dependencies = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', additional_dependencies) if additional_dependencies and additional_dependencies[-1] != ';': additional_dependencies = '{0:s};'.format(additional_dependencies) additional_dependencies = '{0:s}%(AdditionalDependencies)'.format( additional_dependencies) self.WriteLine(( ' <AdditionalDependencies>{0:s}' '</AdditionalDependencies>').format( additional_dependencies)) if project_configuration.linker_output_file: linker_output_file = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.linker_output_file) self.WriteLine(' <OutputFile>{0:s}</OutputFile>'.format( linker_output_file)) if project_configuration.module_definition_file != '': self.WriteLine(( ' <ModuleDefinitionFile>{0:s}' '</ModuleDefinitionFile>').format( project_configuration.module_definition_file)) if project_configuration.library_directories: library_directories = ';'.join(project_configuration.library_directories) library_directories = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', library_directories) library_directories = re.sub(r'&quot;', r'', library_directories) if library_directories and library_directories[-1] != ';': library_directories = '{0:s};'.format(library_directories) library_directories = '{0:s}%(AdditionalLibraryDirectories)'.format( library_directories) self.WriteLine(( ' <AdditionalLibraryDirectories>{0:s}' '</AdditionalLibraryDirectories>').format( library_directories)) if project_configuration.generate_debug_information != '': self.WriteLine(( ' <GenerateDebugInformation>{0:s}' '</GenerateDebugInformation>').format( project_configuration.generate_debug_information)) if project_configuration.sub_system != '': self.WriteLine(' <SubSystem>{0:s}</SubSystem>'.format( project_configuration.sub_system_string)) if project_configuration.optimize_references == '0': self.WriteLines([ ' <OptimizeReferences>', ' </OptimizeReferences>']) elif project_configuration.optimize_references != '': self.WriteLine(( ' <OptimizeReferences>{0:s}</OptimizeReferences>').format( project_configuration.optimize_references_string)) if project_configuration.enable_comdat_folding == '0': self.WriteLines([ ' <EnableCOMDATFolding>', ' </EnableCOMDATFolding>']) elif project_configuration.enable_comdat_folding != '': self.WriteLine(( ' <EnableCOMDATFolding>{0:s}</EnableCOMDATFolding>').format( project_configuration.enable_comdat_folding_string)) if project_configuration.randomized_base_address != '': self.WriteLine(( ' <RandomizedBaseAddress>{0:s}' '</RandomizedBaseAddress>').format( project_configuration.randomized_base_address_string)) if project_configuration.fixed_base_address == '0': self.WriteLines([ ' <FixedBaseAddress>', ' </FixedBaseAddress>']) if project_configuration.data_execution_prevention != '': # A value of 0 is represented by a new line. if project_configuration.data_execution_prevention == '0': self.WriteLines([ ' <DataExecutionPrevention>', ' </DataExecutionPrevention>']) else: self.WriteLine(( ' <DataExecutionPrevention>{0:s}' '</DataExecutionPrevention>').format( project_configuration.data_execution_prevention_string)) if project_configuration.import_library: import_library = re.sub( r'[$][(]OutDir[)]\\', r'$(OutDir)', project_configuration.import_library) self.WriteLine(' <ImportLibrary>{0:s}</ImportLibrary>'.format( import_library)) if project_configuration.target_machine != '': self.WriteLine(' <TargetMachine>{0:s}</TargetMachine>'.format( project_configuration.target_machine_string)) if project_configuration.output_type != definitions.OUTPUT_TYPE_APPLICATION: self.WriteLine( ' <ImportLibrary>$(OutDir)$(ProjectName).lib</ImportLibrary>') self.WriteLine(' </Link>') def _WriteOutIntDirConditions( self, configuration_name, project_configurations): """Writes the OutDir and IntDir conditions. Args: configuration_name (str): name of the configuration. project_configurations (VSConfigurations): configurations. """ for configuration_platform in sorted(project_configurations.platforms): project_configuration = project_configurations.GetByIdentifier( configuration_name, configuration_platform) if len(project_configurations.platforms) == 1: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), ' <OutDir>$(SolutionDir)$(Configuration)\\</OutDir>', ' <IntDir>$(Configuration)\\</IntDir>']) else: self.WriteLines([ (' <PropertyGroup Condition="\'$(Configuration)|$(Platform)\'==' '\'{0:s}|{1:s}\'">').format( project_configuration.name, project_configuration.platform), (' <OutDir>$(SolutionDir)$(Configuration)\\$(Platform)\\' '</OutDir>'), ' <IntDir>$(Configuration)\\$(Platform)\\</IntDir>']) if project_configuration.output_type == ( definitions.OUTPUT_TYPE_APPLICATION): self.WriteLine(' <LinkIncremental>false</LinkIncremental>') self.WriteLine(' </PropertyGroup>') def WriteHeader(self): """Writes a file header.""" self.WriteLines([ '<?xml version="1.0" encoding="utf-8"?>', ('<Project DefaultTargets="Build" ToolsVersion="{0:s}" ' 'xmlns="http://schemas.microsoft.com/developer/msbuild/2003">').format( self._tools_version)]) class VS2019ProjectFileWriter(VS2017ProjectFileWriter): """Visual Studio 2019 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2019ProjectFileWriter, self).__init__() self._project_file_version = '16.0.33423.256' self._tools_version = '15.0' self._version = 2019 class VS2022ProjectFileWriter(VS2017ProjectFileWriter): """Visual Studio 2022 project file writer.""" def __init__(self): """Initializes a Visual Studio project file writer.""" super(VS2022ProjectFileWriter, self).__init__() self._project_file_version = '17.0.33516.290' self._tools_version = 'Current' self._version = 2022 def _WriteConfigurationPropertyGroup(self, project_configuration): """Writes the configuration property group. Args: project_configuration (VSProjectConfiguration): project configuration. """ self._WriteConfigurationPropertyGroupHeader(project_configuration) self.WriteLine(' <ConfigurationType>{0:s}</ConfigurationType>'.format( project_configuration.output_type_string)) self.WriteLine(' <PlatformToolset>v143</PlatformToolset>') if project_configuration.character_set: self.WriteLine(' <CharacterSet>{0:s}</CharacterSet>'.format( project_configuration.character_set_string)) if project_configuration.managed_extensions == '1': self.WriteLine(' <CLRSupport>true</CLRSupport>') if project_configuration.whole_program_optimization: self.WriteLine(( ' <WholeProgramOptimization>{0:s}' '</WholeProgramOptimization>').format( project_configuration.whole_program_optimization_string)) platform_toolset = project_configuration.GetPlatformToolset(self._version) if platform_toolset: self.WriteLine(' <PlatformToolset>{0:s}</PlatformToolset>'.format( platform_toolset)) self._WriteConfigurationPropertyGroupFooter() def WriteProjectInformation(self, project_information): """Writes the project information. Args: project_information (VSProjectInformation): project information. """ self.WriteLine(' <PropertyGroup Label="Globals">') self.WriteLine(' <VCProjectVersion>17.0</VCProjectVersion>') self.WriteLine(' <ProjectGuid>{{{0:s}}}</ProjectGuid>'.format( project_information.guid)) self.WriteLine(' <RootNamespace>{0:s}</RootNamespace>'.format( project_information.root_name_space)) if project_information.keyword: self.WriteLine(' <Keyword>{0:s}</Keyword>'.format( project_information.keyword)) self.WriteLine(' </PropertyGroup>') class VSSolutionFileWriter(FileWriter): """Visual Studio solution file writer.""" def _WriteProjectConfigurationPlatforms( self, solution_configurations, solution_projects): """Writes the project configuration platforms. Args: solution_configurations (VSConfigurations): configurations. solution_projects (list[VSSolutionProject]): projects. """ if solution_configurations.number_of_configurations > 0: self.WriteLine( '\tGlobalSection(ProjectConfigurationPlatforms) = postSolution') for configuration_platform in sorted(solution_configurations.platforms): for solution_project in solution_projects: for configuration_name in sorted(solution_configurations.names): configuration = solution_configurations.GetByIdentifier( configuration_name, configuration_platform) self.WriteLine(( '\t\t{{{0:s}}}.{1:s}|{2:s}.ActiveCfg = {1:s}|{2:s}').format( solution_project.guid.upper(), configuration.name, configuration.platform)) self.WriteLine(( '\t\t{{{0:s}}}.{1:s}|{2:s}.Build.0 = {1:s}|{2:s}').format( solution_project.guid.upper(), configuration.name, configuration.platform)) self.WriteLine('\tEndGlobalSection') # pylint: disable=unused-argument def _WriteSolutionConfigurationPlatforms( self, solution_configurations, solution_projects): """Writes the solution configuration platforms. Args: solution_configurations (VSConfigurations): configurations. solution_projects (list[VSSolutionProject]): projects. """ if solution_configurations.number_of_configurations > 0: self.WriteLine( '\tGlobalSection(SolutionConfigurationPlatforms) = preSolution') for configuration_platform in sorted(solution_configurations.platforms): for configuration_name in sorted(solution_configurations.names): configuration = solution_configurations.GetByIdentifier( configuration_name, configuration_platform) self.WriteLine('\t\t{0:s}|{1:s} = {0:s}|{1:s}'.format( configuration.name, configuration.platform)) self.WriteLine('\tEndGlobalSection') def _WriteSolutionProperties(self): """Writes the solution properties.""" self.WriteLines([ '\tGlobalSection(SolutionProperties) = preSolution', '\t\tHideSolutionNode = FALSE', '\tEndGlobalSection']) @abc.abstractmethod def WriteHeader(self): """Writes a file header.""" @abc.abstractmethod def WriteProject(self, solution_project): """Writes a project section. Args: solution_project (VSSolutionProject): project. """ def WriteProjects(self, solution_projects): """Writes the projects. Args: solution_projects (list[VSSolutionProject]): projects. """ for solution_project in solution_projects: self.WriteProject(solution_project) class VS2008SolutionFileWriter(VSSolutionFileWriter): """Visual Studio 2008 solution file writer.""" def WriteConfigurations(self, solution_configurations, solution_projects): """Writes the configurations. Args: solution_configurations (VSConfigurations): configurations. solution_projects (list[VSSolutionProject]): projects. """ self.WriteLine('Global') self._WriteSolutionConfigurationPlatforms( solution_configurations, solution_projects) self._WriteProjectConfigurationPlatforms( solution_configurations, solution_projects) self._WriteSolutionProperties() self.WriteLine('EndGlobal') def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 10.00', '# Visual C++ Express 2008']) def WriteProject(self, solution_project): """Writes a project section. Args: solution_project (VSSolutionProject): project. """ solution_project_filename = '{0:s}.vcproj'.format( solution_project.filename) self.WriteLine(( 'Project("{{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}}") = "{0:s}", ' '"{1:s}", "{{{2:s}}}"').format( solution_project.name, solution_project_filename, solution_project.guid.upper())) if solution_project.dependencies: self.WriteLine( '\tProjectSection(ProjectDependencies) = postProject') for dependency_guid in solution_project.dependencies: self.WriteLine('\t\t{{{0:s}}} = {{{0:s}}}'.format( dependency_guid.upper())) self.WriteLine('\tEndProjectSection') self.WriteLine('EndProject') class VS2010SolutionFileWriter(VSSolutionFileWriter): """Visual Studio 2010 solution file writer.""" def WriteConfigurations(self, solution_configurations, solution_projects): """Writes the configurations. Args: solution_configurations (VSConfigurations): configurations. solution_projects (list[VSSolutionProject]): projects. """ self.WriteLine('Global') self._WriteSolutionConfigurationPlatforms( solution_configurations, solution_projects) self._WriteProjectConfigurationPlatforms( solution_configurations, solution_projects) self._WriteSolutionProperties() self.WriteLine('EndGlobal') def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 11.00', '# Visual C++ Express 2010']) def WriteProject(self, solution_project): """Writes a project section. Args: solution_project (VSSolutionProject): project. """ solution_project_filename = '{0:s}.vcxproj'.format( solution_project.filename) self.WriteLine(( 'Project("{{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}}") = "{0:s}", ' '"{1:s}", "{{{2:s}}}"').format( solution_project.name, solution_project_filename, solution_project.guid.upper())) self.WriteLine('EndProject') class VS2012SolutionFileWriter(VS2010SolutionFileWriter): """Visual Studio 2012 solution file writer.""" def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio Express 2012 for Windows Desktop']) def WriteProject(self, solution_project): """Writes a project section. Args: solution_project (VSSolutionProject): project. """ solution_project_filename = '{0:s}.vcxproj'.format( solution_project.filename) self.WriteLine(( 'Project("{{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}}") = "{0:s}", ' '"{1:s}", "{{{2:s}}}"').format( solution_project.name, solution_project_filename, solution_project.guid.upper())) # TODO: what about: # '\tProjectSection(ProjectDependencies) = postProject' # '\t\t{%GUID%} = {%GUID}' # '\tEndProjectSection' self.WriteLine('EndProject') class VS2013SolutionFileWriter(VS2010SolutionFileWriter): """Visual Studio 2013 solution file writer.""" def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio Express 2013 for Windows Desktop', 'VisualStudioVersion = 12.0.21005.1', 'MinimumVisualStudioVersion = 10.0.40219.1']) class VS2015SolutionFileWriter(VS2010SolutionFileWriter): """Visual Studio 2015 solution file writer.""" def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio 14', 'VisualStudioVersion = 14.0.25420.1', 'MinimumVisualStudioVersion = 10.0.40219.1']) class VS2017SolutionFileWriter(VS2010SolutionFileWriter): """Visual Studio 2017 solution file writer.""" def _WriteExtensibilityGlobals(self): """Writes the extensibility globals.""" # TODO: determine if GUID is unique. self.WriteLines([ '\tGlobalSection(ExtensibilityGlobals) = postSolution', '\t\tSolutionGuid = {E41FC29C-7FE6-4F98-85AD-1ED968E86446}', '\tEndGlobalSection']) def WriteConfigurations(self, solution_configurations, solution_projects): """Writes the configurations. Args: solution_configurations (VSConfigurations): configurations. solution_projects (list[VSSolutionProject]): projects. """ self.WriteLine('Global') self._WriteSolutionConfigurationPlatforms( solution_configurations, solution_projects) self._WriteProjectConfigurationPlatforms( solution_configurations, solution_projects) self._WriteSolutionProperties() # self._WriteExtensibilityGlobals() self.WriteLine('EndGlobal') def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio 15', 'VisualStudioVersion = 15.0.26730.10', 'MinimumVisualStudioVersion = 10.0.40219.1']) class VS2019SolutionFileWriter(VS2017SolutionFileWriter): """Visual Studio 2019 solution file writer.""" def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio Version 16', 'VisualStudioVersion = 16.0.33423.256', 'MinimumVisualStudioVersion = 10.0.40219.1']) class VS2022SolutionFileWriter(VS2017SolutionFileWriter): """Visual Studio 2022 solution file writer.""" def WriteHeader(self): """Writes a file header.""" self.WriteBinaryData(b'\xef\xbb\xbf\r\n') self.WriteLines([ 'Microsoft Visual Studio Solution File, Format Version 12.00', '# Visual Studio Version 17', 'VisualStudioVersion = 17.5.33516.290', 'MinimumVisualStudioVersion = 10.0.40219.1'])
5b98146395ad29c6511925bbc47a3402f1251fa2
1e168ced1a4bdb53967021e082b98027aea9d38a
/1.알고리즘정리/정렬/삽입정렬.py
6e0f94afc79ed7d33b51a468d14c6182e85e3d68
[]
no_license
vvspearlvvs/CodingTest
3ebf921308570ac11eb87e6660048ccfcaf90ce4
fc61b71d955f73ef8710f792d008bc671614ef7a
refs/heads/main
2023-07-13T15:57:11.312519
2021-08-25T02:15:28
2021-08-25T02:15:28
354,232,513
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
#삽입정렬 arr = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8] for i in range(len(arr)): for j in range(i,0,-1): if arr[j]<arr[j-1]: #한칸씩 왼쪽으로 이동 arr[j],arr[j-1]=arr[j-1],arr[j] else: break print(arr) print("최종") print(arr)
8b0bcb3eb0687fab864e824994d9b70939870f5d
5bcee9248d0bdebb134c61b4d0a3f3113337a569
/lesson_0902/01_lists.py
816ff09874e0073dca2b2f3d1f0fd9d842bcbb7b
[]
no_license
100ballovby/6V_Lesson
c2edbc652ea2ebec07eeed60060c16ae4b4792e4
4b6dfda323a628558bd63bd5569960004fc335dd
refs/heads/master
2023-05-08T07:49:14.569854
2021-05-25T06:40:53
2021-05-25T06:40:53
330,888,686
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
''' Список - упорядоченная структура данных, заключенная в квадратные скобочки. Элементы разделены между собой запятой. Чтобы создать список, необходимо придумать ему имя, поставить знак принадлежности (=) и открыть квадратные скобки. список = [1, 26, 15, 5.6, 'привет, Андрей'] ''' cars = ['audi', 'mercedes', 'toyota', 'skoda', 'seat'] # хочу вывести весь список print(cars) # хочу вывести из списка тойоту print(cars[2]) print(cars[-1]) # вывести последний элемент списка import random # модуль рандом создает случайности print('My first car was', cars[random.randint(0, 4)]) # randint(a, b) - выдать случайное число (random int) # в диапазоне от a до b print(random.randint(-100, 100))
b6683e488f292d0548f63346115c9b555ac19d7a
b7c1e5d140c3c41e86f206047145f7f296fed53a
/Textbook/Chapter 5/pandasSeriesVsDataFrame.py
e8417f1cc0a8b2c5317aff757d4ee250887236df
[ "MIT" ]
permissive
jlcatonjr/Learn-Python-for-Stats-and-Econ
c2fbe29b324e70ceb832beafdd42d0accb37d9f9
194671592937562e08c92e0ef5f4793d4911701c
refs/heads/master
2023-05-11T17:17:05.934290
2023-05-10T20:12:10
2023-05-10T20:12:10
148,912,065
22
21
null
null
null
null
UTF-8
Python
false
false
300
py
#pandasSeriesVsDataFrame.py import numpy as np import pandas as pd dataDict = {"range":np.arange(10)} dataSeries = pd.Series(dataDict) print(dataSeries) print(dataSeries["range"]) dataDF=pd.DataFrame(dataDict) print(dataDF) print(dataDF["range"]) print(dataDF["range"][5:9]) #print(dataDF.loc[5:9])
7baa26a26fc7ed616e1f4cfa37d283d39e72ebf3
bbdd7f44884844cd0f7332d63945852dc2b53083
/mypy_drf_plugin/transformers/fields.py
f4f8a10b2f9cc833f0b0e6cedc3fe13340f2fdf9
[ "MIT" ]
permissive
private-forks/djangorestframework-stubs
e258e1dfc2af80fdf93322338ea3ce5452087e2d
18427718c913f3d23ef7a4636c8205df42999cf2
refs/heads/master
2020-04-25T09:11:04.067894
2019-02-24T22:25:03
2019-02-24T22:25:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,241
py
from mypy.nodes import TypeInfo, Var from mypy.plugin import FunctionContext from mypy.types import AnyType, Instance, Type, TypeOfAny from mypy_django_plugin import helpers def get_private_descriptor_type(type_info: TypeInfo, private_field_name: str, is_nullable: bool) -> Type: if not type_info.has_readable_member(private_field_name): return AnyType(TypeOfAny.unannotated) node = type_info.get(private_field_name).node if isinstance(node, Var): descriptor_type = node.type if is_nullable: descriptor_type = helpers.make_optional(descriptor_type) return descriptor_type return AnyType(TypeOfAny.unannotated) def fill_parameters_of_descriptor_methods_from_private_attributes(ctx: FunctionContext) -> Type: default_return_type = ctx.default_return_type if not isinstance(default_return_type, Instance): return default_return_type is_nullable = bool(helpers.parse_bool(helpers.get_argument_by_name(ctx, 'allow_null'))) get_type = get_private_descriptor_type(default_return_type.type, '_pyi_private_get_type', is_nullable=is_nullable) return helpers.reparametrize_instance(default_return_type, [get_type])
e02299e147fabe086c8864cff41d59b0059baa48
4da0c8906c9cd671e3a4bee3a6ee801a353e3d9a
/Water/Water/urls.py
8ce00454b8099894f86046e7d4be2dfd650f7cf9
[]
no_license
avpakh/GVK
2a5a699caa8a986a3fd0dadbe2160fc9da5bf193
ac8b8d8ad5cd5ef8485e98cd532a29cd420e0cae
refs/heads/master
2020-06-13T10:35:36.663668
2017-01-06T09:01:42
2017-01-06T09:01:42
75,392,559
0
0
null
null
null
null
UTF-8
Python
false
false
1,335
py
"""Water URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from watres import urls as watres_url from watstat import urls as watstat_url from watres import views from django.conf.urls.static import static from django.conf import settings from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^$',views.index_view), url(r'^watres/',include(watres_url)), url(r'^watstat/',include(watstat_url)), ] if settings.DEBUG: if settings.MEDIA_ROOT: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += staticfiles_urlpatterns()
64acd726fc80f2bd6451b0e36ae4cde1f625e944
8c2de4da068ba3ed3ce1adf0a113877385b7783c
/hyperion/torch/trainers/xvector_trainer.py
190b2a30b1c2f28d38d0c6999040ce4ae6a76f9f
[ "Apache-2.0" ]
permissive
hyperion-ml/hyperion
a024c718c4552ba3a03aae2c2ca1b8674eaebc76
c4c9eee0acab1ba572843373245da12d00dfffaa
refs/heads/master
2023-08-28T22:28:37.624139
2022-03-25T16:28:08
2022-03-25T16:28:08
175,275,679
55
20
Apache-2.0
2023-09-13T15:35:46
2019-03-12T18:40:19
Python
UTF-8
Python
false
false
5,015
py
""" Copyright 2019 Johns Hopkins University (Author: Jesus Villalba) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ import os from collections import OrderedDict as ODict import logging import torch import torch.nn as nn from ..utils import MetricAcc from .torch_trainer import TorchTrainer class XVectorTrainer(TorchTrainer): """Trainer to train x-vector style models. Attributes: model: x-Vector model object. optim: pytorch optimizer object or options dict epochs: max. number of epochs exp_path: experiment output path cur_epoch: current epoch grad_acc_steps: gradient accumulation steps to simulate larger batch size. device: cpu/gpu device metrics: extra metrics to compute besides cxe. lrsched: learning rate scheduler object or options dict loggers: LoggerList object, loggers write training progress to std. output and file. If None, it uses default loggers. ddp: if True use distributed data parallel training ddp_type: type of distributed data parallel in (ddp, oss_ddp, oss_shared_ddp) loss: if None, it uses cross-entropy train_mode: training mode in ['train', 'ft-full', 'ft-last-layer'] use_amp: uses mixed precision training. log_interval: number of optim. steps between log outputs use_tensorboard: use tensorboard logger use_wandb: use wandb logger wandb: wandb dictionary of options grad_clip: norm to clip gradients, if 0 there is no clipping grad_clip_norm: norm type to clip gradients swa_start: epoch to start doing swa swa_lr: SWA learning rate swa_anneal_epochs: SWA learning rate anneal epochs cpu_offload: CPU offload of gradients when using fully sharded ddp """ def __init__( self, model, optim={}, epochs=100, exp_path="./train", cur_epoch=0, grad_acc_steps=1, device=None, metrics=None, lrsched=None, loggers=None, ddp=False, ddp_type="ddp", loss=None, train_mode="train", use_amp=False, log_interval=10, use_tensorboard=False, use_wandb=False, wandb={}, grad_clip=0, grad_clip_norm=2, swa_start=0, swa_lr=1e-3, swa_anneal_epochs=10, cpu_offload=False, ): if loss is None: loss = nn.CrossEntropyLoss() super().__init__( model, loss, optim, epochs, exp_path, cur_epoch=cur_epoch, grad_acc_steps=grad_acc_steps, device=device, metrics=metrics, lrsched=lrsched, loggers=loggers, ddp=ddp, ddp_type=ddp_type, train_mode=train_mode, use_amp=use_amp, log_interval=log_interval, use_tensorboard=use_tensorboard, use_wandb=use_wandb, wandb=wandb, grad_clip=grad_clip, grad_clip_norm=grad_clip_norm, swa_start=swa_start, swa_lr=swa_lr, swa_anneal_epochs=swa_anneal_epochs, cpu_offload=cpu_offload, ) def train_epoch(self, data_loader): """Training epoch loop Args: data_loader: pytorch data loader returning features and class labels. """ self.model.update_loss_margin(self.cur_epoch) metric_acc = MetricAcc(device=self.device) batch_metrics = ODict() self.set_train_mode() for batch, (data, target) in enumerate(data_loader): self.loggers.on_batch_begin(batch) if batch % self.grad_acc_steps == 0: self.optimizer.zero_grad() data, target = data.to(self.device), target.to(self.device) batch_size = data.shape[0] with self.amp_autocast(): output = self.model(data, target, **self.amp_args) loss = self.loss(output, target).mean() / self.grad_acc_steps if self.use_amp: self.grad_scaler.scale(loss).backward() else: loss.backward() if (batch + 1) % self.grad_acc_steps == 0: if self.lr_scheduler is not None and not self.in_swa: self.lr_scheduler.on_opt_step() self.update_model() batch_metrics["loss"] = loss.item() * self.grad_acc_steps for k, metric in self.metrics.items(): batch_metrics[k] = metric(output, target) metric_acc.update(batch_metrics, batch_size) logs = metric_acc.metrics logs["lr"] = self._get_lr() self.loggers.on_batch_end(logs=logs, batch_size=batch_size) logs = metric_acc.metrics logs = ODict(("train_" + k, v) for k, v in logs.items()) logs["lr"] = self._get_lr() return logs
f352ec7987f6f9addb4cc8a333cc19463e602697
5332fef91e044555e605bb37cbef7c4afeaaadb0
/hy-data-analysis-with-python-2020/part02-e06_file_count/test/test_file_count.py
c7d3f00f44cd8f760c403784983ad6ec08d26a70
[]
no_license
nopomi/hy-data-analysis-python-2019
f3baa96bbe9b6ee7f0b3e6f6b8b0f3adfc3b6cc8
464685cb377cfdeee890a008fbfbd9ed6e3bcfd0
refs/heads/master
2021-07-10T16:16:56.592448
2020-08-16T18:27:38
2020-08-16T18:27:38
185,044,621
4
0
null
null
null
null
UTF-8
Python
false
false
1,560
py
#!/usr/bin/env python3 import sys import unittest from unittest.mock import patch from itertools import repeat from tmc import points from tmc.utils import load, get_out module_name="src.file_count" file_count = load(module_name, "file_count") main = load(module_name, "main") class FileCount(unittest.TestCase): @points('p02-06.1') def test_first(self): l, w, c = file_count("src/test.txt") self.assertEqual(l, 8, msg="Wrong number of lines for file 'test.txt'!") self.assertEqual(w, 105, msg="Wrong number of words for file 'test.txt'!") self.assertEqual(c, 647, msg="Wrong number of characters for file 'test.txt'!") @points('p02-06.1') def test_calls(self): with patch('builtins.open', side_effect=open) as o: file_count("src/test.txt") o.assert_called_once() @points('p02-06.2') def test_main(self): orig_argv = sys.argv n = 7 sys.argv[1:] = ["file%i" % i for i in range(n)] with patch('src.file_count.file_count', side_effect=repeat((0,0,0))) as fc: main() self.assertEqual(fc.call_count, n, msg="Wrong number of calls to function 'file_count' for %i command line parameters!" % n) result = get_out().split('\n') for i, line in enumerate(result): self.assertEqual(line.strip(), "0\t0\t0\tfile%i" % i, msg="Wrong result on line %i!" % i) sys.argv = orig_argv if __name__ == '__main__': unittest.main()
0340fad6844580f9a0ff3797769971efcc2f644a
52a4d869976a97498bdf56a8d0ff92cac138a136
/Bioinformatics Textbook Track/Chapter 1/rosalind_ba1d.py
4e6d4b0953bb2d76fa147c0368a4f8c3ded360aa
[]
no_license
aakibinesar/Rosalind
d726369a787d848cc378976b886189978a60a3a5
375bbdbfb16bf11b2f980701bbd0ba74a1605cdb
refs/heads/master
2022-08-18T09:36:00.941080
2020-05-24T18:49:38
2020-05-24T18:49:38
264,722,651
0
0
null
2020-05-17T17:51:03
2020-05-17T17:40:59
null
UTF-8
Python
false
false
747
py
def occurrences(genome, sub): """ :param genome: genome for processing :param sub: pattern for which we find indexes of occurnces :return: list of indexes """ start = 0 indexes = [] while True: start = genome.find(sub, start) if start > 0: indexes.append(start) else: break start += 1 return indexes def read_data_from(file_name): with open(file_name, "r") as file: pattern = file.readline().strip() genome = file.readline().strip() return genome, pattern if __name__ == "__main__": genome, pattern = read_data_from("rosalind_ba1d.txt") indexes = occurrences(genome, pattern) for ind in indexes: print ind,
f1c755702c61d3a4c3f5e88391da6a3096250b2f
5399dd4580ea3f528753bc8b52a981743d62f8bb
/keras/keras36_hist3_wine.py
6844fef8e2c4a5ad39b62167985de24abdf45314
[]
no_license
iwillbeaprogramer/Study
3ac7c118ffe3981d78b4ad263cb62432eae13970
3bfe571da5bbfc545b994e5878e217f9306bde14
refs/heads/main
2023-05-07T16:31:05.564973
2021-05-27T14:50:00
2021-05-27T14:50:00
324,044,441
8
1
null
null
null
null
UTF-8
Python
false
false
1,733
py
from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler,OneHotEncoder from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.callbacks import EarlyStopping import matplotlib.pyplot as plt early_stopping = EarlyStopping(monitor='loss',patience=10) datasets = load_wine() x = datasets.data y = datasets.target encoder = OneHotEncoder() y = encoder.fit_transform(y.reshape(-1,1)).toarray() x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2) x_train,x_val,y_train,y_val = train_test_split(x_train,y_train,test_size=0.2) scaler = MinMaxScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.fit_transform(x_test) x_val = scaler.fit_transform(x_val) model = Sequential() model.add(Dense(128,activation='relu',input_dim=13)) model.add(Dense(64,activation='relu')) model.add(Dense(32,activation='relu')) model.add(Dense(16,activation='relu')) model.add(Dense(8,activation='relu')) model.add(Dense(3,activation='softmax')) model.compile(loss = 'categorical_crossentropy',optimizer='adam',metrics=['accuracy']) hist = model.fit(x_train,y_train,validation_data=(x_val,y_val),epochs=300,batch_size=4) loss = model.evaluate(x_test,y_test,batch_size=4) y_pred = model.predict(x_test) print('loss : ',loss[0],'\naccuracy : ',loss[1]) ''' DNN loss : 3.391478821868077e-05 accuracy : 1.0 ''' plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) plt.plot(hist.history['accuracy']) plt.plot(hist.history['val_accuracy']) plt.title('loss & acc') plt.ylabel('loss, acc') plt.xlabel('epochs') plt.legend(['train_loss','val_loss','train_acc','val_acc']) plt.show()