blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
01ed2276aaa8ccf051e68654900f77f99150ae15
4de03eecadc4c69caf792f4773571c2f6dbe9d68
/tests/seahub/share/views/test_send_shared_link.py
c265c943065929d26d603cb4f387bfa7dd71b7aa
[ "Apache-2.0" ]
permissive
Tr-1234/seahub
c1663dfd12f7584f24c160bcf2a83afdbe63a9e2
ed255e0566de054b5570218cb39cc320e99ffa44
refs/heads/master
2022-12-23T16:20:13.138757
2020-10-01T04:13:42
2020-10-01T04:13:42
300,138,290
0
0
Apache-2.0
2020-10-01T04:11:41
2020-10-01T04:11:40
null
UTF-8
Python
false
false
3,204
py
from mock import patch from django.core import mail from django.core.urlresolvers import reverse from django.test import override_settings from seahub.profile.models import Profile from seahub.profile.utils import refresh_cache from seahub.test_utils import BaseTestCase class SendSharedLinkTest(BaseTestCase): def setUp(self): mail.outbox = [] @override_settings(DEFAULT_FROM_EMAIL='[email protected]') @patch('seahub.share.views.IS_EMAIL_CONFIGURED', True) def test_can_send(self): self.login_as(self.user) resp = self.client.post(reverse('send_shared_link'), { 'email': self.user.email, 'file_shared_link': 'http://xxx', 'file_shared_name': 'xxx', 'file_shared_type': 'd', 'extra_msg': '' }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(200, resp.status_code) self.assertEqual(len(mail.outbox), 1) assert '<a href="http://xxx">http://xxx</a>' in mail.outbox[0].body assert mail.outbox[0].from_email == '[email protected]' @patch('seahub.share.views.REPLACE_FROM_EMAIL', True) @patch('seahub.share.views.ADD_REPLY_TO_HEADER', True) @patch('seahub.share.views.IS_EMAIL_CONFIGURED', True) @patch('seahub.utils.IS_EMAIL_CONFIGURED', True) def test_can_send_from_replyto_rewrite(self): self.login_as(self.user) resp = self.client.post(reverse('send_shared_link'), { 'email': self.user.email, 'file_shared_link': 'http://xxx', 'file_shared_name': 'xxx', 'file_shared_type': 'd', 'extra_msg': '' }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(200, resp.status_code) self.assertEqual(len(mail.outbox), 1) assert '<a href="http://xxx">http://xxx</a>' in mail.outbox[0].body assert mail.outbox[0].from_email == self.user.email assert mail.outbox[0].extra_headers['Reply-to'] == self.user.email @patch('seahub.share.views.REPLACE_FROM_EMAIL', True) @patch('seahub.share.views.ADD_REPLY_TO_HEADER', True) @patch('seahub.share.views.IS_EMAIL_CONFIGURED', True) @patch('seahub.utils.IS_EMAIL_CONFIGURED', True) def test_can_send_from_replyto_rewrite_contact_email(self): self.login_as(self.user) nickname = 'Testuser' contact_email= '[email protected]' p = Profile.objects.add_or_update(self.user.email, nickname=nickname) p.contact_email = contact_email p.save() refresh_cache(self.user.email) resp = self.client.post(reverse('send_shared_link'), { 'email': self.user.email, 'file_shared_link': 'http://xxx', 'file_shared_name': 'xxx', 'file_shared_type': 'd', 'extra_msg': '' }, HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertEqual(200, resp.status_code) self.assertEqual(len(mail.outbox), 1) assert '<a href="http://xxx">http://xxx</a>' in mail.outbox[0].body assert mail.outbox[0].from_email == contact_email assert mail.outbox[0].extra_headers['Reply-to'] == contact_email
775b26f16fa53c27ec712bf92cfb31553c92f19d
e24511af0fdf299130fdf1e27b7eda1e35064e7c
/app/coupon/apps.py
bab96066b77b4592b0cf454c6ef51fa085d53a67
[]
no_license
amitbhalla/lms
623dc6764dba5ee67a7f30d3882b7917b6441c2e
0810a875008b371a7bd3996742ad3b04ce037b14
refs/heads/main
2023-07-19T12:12:40.570958
2021-09-17T16:55:29
2021-09-17T16:55:29
405,055,595
0
0
null
null
null
null
UTF-8
Python
false
false
144
py
from django.apps import AppConfig class CouponConfig(AppConfig): default_auto_field = "django.db.models.BigAutoField" name = "coupon"
84340a119e8fdb72320174077f9aa1c0605ca64f
9d566e153a254390ed758f4e945781899b6dcd07
/03_django/02_django_crud/articles/views.py
e9c78e872870c579df912051bc9513f1f01afb88
[]
no_license
baambox5/TIL
6f1b0fdc342ed29b85a68404b916fc6f4cace7bf
0419779ccbf506a1e89d581b98658dd07b78388c
refs/heads/master
2023-01-13T01:14:08.125234
2020-01-17T14:36:34
2020-01-17T14:36:34
195,918,108
0
0
null
2023-01-07T11:27:08
2019-07-09T02:31:02
Jupyter Notebook
UTF-8
Python
false
false
2,964
py
from IPython import embed from django.core.exceptions import ValidationError from django.shortcuts import render, redirect from .models import Article, Comment # Create your views here. def index(request): # articles = Article.objects.all() articles = Article.objects.order_by('-pk') # DB가 변경(가능한 권장) # articles = Article.objects.all()[::-1] # python이 변경 context = {'articles': articles,} return render(request, 'articles/index.html', context) def create(request): # CREATE if request.method == 'POST': title = request.POST.get('title') content = request.POST.get('content') image = request.FILES.get('image') # 1 # article = Article() # article.title = title # article.content = content # article.save() # 2 article = Article(title=title, content=content, image=image) article.save() # 3 # Article.objects.create(title=title, content=content) return redirect(article) # 메인 페이지 # return redirect('/articles/', article.pk) # NEW else: return render(request, 'articles/create.html') def detail(request, article_pk): article = Article.objects.get(pk=article_pk) comments = article.comment_set.all() context = {'article': article, 'comments': comments,} return render(request, 'articles/detail.html', context) def delete(request, article_pk): article = Article.objects.get(pk=article_pk) if request.method == 'POST': article.delete() return redirect('articles:index') else: return redirect(article) def update(request, article_pk): article = Article.objects.get(pk=article_pk) if request.method == 'POST': article.title = request.POST.get('title') article.content = request.POST.get('content') article.image = request.FILES.get('image') article.save() return redirect(article) else: context = {'article': article,} return render(request, 'articles/update.html', context) def comments_create(request, article_pk): # 댓글을 달 게시글 article = Article.objects.get(pk=article_pk) if request.method == 'POST': # form에서 넘어온 댓글 정보 content = request.POST.get('content') # 댓글 생성 및 저장 comment = Comment(article=article, content=content) comment.save() return redirect(article) # return redirect('articles:detail', article.pk) # return redirect('articles:detail' article_pk) else: return redirect(article) def comments_delete(request, article_pk, comment_pk): # article = Article.objects.get(pk=article_pk) if request.method == 'POST': comment = Comment.objects.get(pk=comment_pk) comment.delete() # return redirect(article) return redirect('articles:detail', article_pk)
a3cf7cefbf7e8537e0c1fe7a704c4158e33f881b
39e03684081b27311385a0ab31afcc2e09883e5c
/configs/reppoints/bbox_r50_grid_center_fpn_1x.py
f971b5b7b8c78a6abca727e7015b96d085b5f33b
[ "MIT", "Python-2.0" ]
permissive
witnessai/MMSceneGraph
8d0b2011a946ddcced95fbe15445b7f4da818509
bc5e0f3385205404c712ae9f702a61a3191da0a1
refs/heads/master
2023-08-12T06:54:00.551237
2021-10-12T03:04:21
2021-10-12T03:04:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,462
py
# model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( type='RepPointsDetector', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, num_outs=5, norm_cfg=norm_cfg), bbox_head=dict( type='RepPointsHead', num_classes=81, in_channels=256, feat_channels=256, point_feat_channels=256, stacked_convs=3, num_points=9, gradient_mul=0.1, point_strides=[8, 16, 32, 64, 128], point_base_scale=4, norm_cfg=norm_cfg, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5), loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0), transform_method='minmax', use_grid_points=True)) # training and testing settings train_cfg = dict( init=dict( assigner=dict(type='PointAssigner', scale=4, pos_num=1), allowed_border=-1, pos_weight=-1, debug=False), refine=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) test_cfg = dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/bbox_r50_grid_center_fpn_1x' load_from = None resume_from = None workflow = [('train', 1)]
848b91f09b40a31a3b9e5798f08cb9dc68841a53
bd8b3d43a465b26f0d86a3007b41d6a3c22345a6
/svsutils/iterators/__init__.py
6bde41920adb8b8446e1ce7254e5cba9a485b1fe
[]
no_license
nathanin/svsutils
aed5d361ff4716390e093d6bab6bf3cc6dd69a9b
5789c3e589ce9244b21a24d6cdc3909bc4e04517
refs/heads/master
2020-06-25T06:06:37.019860
2019-12-17T05:08:35
2019-12-17T05:08:35
199,225,548
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
from .iterator_factory import PythonIterator, TensorflowIterator __all__ = [ 'PythonIterator', 'TensorflowIterator' ]
0187aa1b8fa9854b1f253d952bda031992f4b423
20a3cc1106fa86fc2d45cd1728cc87d5db97e1f7
/old/pddbm/bug3.py
7d0a81d444b74c37e2e621dc7a08f50608b54c18
[]
no_license
sarahboufelja54/galatea
f5664f0b3117629b2c5bbe078a1bd52bb5e359e6
002a9f2905868be25b71770190fb2d5eda11c861
refs/heads/master
2020-12-04T13:45:07.697189
2018-12-12T16:27:09
2018-12-12T16:27:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,268
py
import numpy as np from sklearn.svm import SVC import time rng = np.random.RandomState([1,2,3]) m = 1000 n = 1000 X = rng.randn(m,n) w = rng.randn(n) b = rng.randn(1) y = (np.dot(X,w) + b ) > 0 t1 = time.time() svm = SVC(kernel = 'linear', C = 1.0).fit(X,y) t2 = time.time() print 'train time ',t2 - t1 t1 = time.time() y1 = svm.predict(X) t2 = time.time() print 'predict time ',t2 - t1 print '# support vectors:',svm.n_support_ print 'predict time per support vector:',(t2-t1)/float(svm.n_support_.sum()) coef = svm.coef_[0,:] orig_coef = svm.coef_ t1 = time.time() f = - np.dot(X, orig_coef.T) + svm.intercept_ y2 = f < 0 print y.shape print y2.shape print (y2 == y).shape quit(-1) t2 = time.time() print 'dot product time',t2 -t1 print 'class 1 prevalence ',y.mean() print 'predict accuracy ',(y1 == y).mean() print 'dot product accuracy ',(y2 == y).mean() print 'predict and dot agreement rate',(y1 == y2).mean() coefs = svm.dual_coef_ assert len(coefs.shape) == 2 assert coefs.shape[0] == 1 coefs = coefs[0,:] w = np.dot(svm.support_vectors_.T, coefs) assert np.allclose(w,-coef) f = np.dot(X,w) + b y3 = (f < 0) print 'agreement rate with my method: ',(y3 == y1).mean() print 'dot prod between sklearn coef_ and my coef_: ',np.dot(w,svm.coef_[0,:])
244651275300889c2f7a9b4928af9c1940ad6614
4be9a5bdb8e051001b78c8f127ccc1a7f85c14e7
/bugzilla/migrations/0002_auto_20170205_1515.py
6b518a7b30a1bea8b1cda0d937046f6fe0febbe5
[]
no_license
quentin-david/heimdall
f72a85606e7ab53683df2023ef5eaba762198211
84a429ee52e1891bc2ee4eb07a084dff209c789c
refs/heads/master
2021-01-21T10:26:28.895663
2017-07-21T19:19:46
2017-07-21T19:19:46
83,432,596
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-02-05 15:15 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bugzilla', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='bugzilla', options={'ordering': ['-date_update']}, ), migrations.AlterField( model_name='bugzilla', name='state', field=models.CharField(choices=[('open', 'Open'), ('close', 'Close'), ('info', 'Info')], max_length=15), ), ]
2eeceb42de2ea27fde10e7e6d5c08914488ee6c5
b4da2201d2df789e28472aeded28720d5269ade5
/Komodo-Edit-7/lib/mozilla/components/koLintService.py
4e543d65bce81928a8d67a2192aeee69c031327d
[]
no_license
AeonSaber/first_app
5ad89d4fb05d7662e2a39ce68176f43f1e618bf0
522fdfa6d33419fd49e431766fff85b40d21e78e
refs/heads/master
2020-06-12T17:22:09.786142
2013-09-09T23:57:51
2013-09-09T23:57:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
30,788
py
#!python # ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License # Version 1.1 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the # License for the specific language governing rights and limitations # under the License. # # The Original Code is Komodo code. # # The Initial Developer of the Original Code is ActiveState Software Inc. # Portions created by ActiveState Software Inc are Copyright (C) 2000-2007 # ActiveState Software Inc. All Rights Reserved. # # Contributor(s): # ActiveState Software Inc # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** import os, sys import threading import time import urllib2 from xpcom import components, nsError, ServerException, COMException from xpcom._xpcom import PROXY_SYNC, PROXY_ALWAYS, PROXY_ASYNC, getProxyForObject from xpcom.server import WrapObject, UnwrapObject from koLintResult import KoLintResult, getProxiedEffectivePrefs from koLintResults import koLintResults import logging log = logging.getLogger("koLintService") #log.setLevel(logging.DEBUG) class RequestQueue: # This is a modification if Python's std Queue.Queue class: # - drop maxsize related stuff # - calls are always blocking # - add .prepend() and .remove_uid() def __init__(self): import thread self._init() self.mutex = thread.allocate_lock() self.esema = thread.allocate_lock() # if acquired, then queue is empty self.esema.acquire() def put(self, item): """Put an item into the queue.""" log.debug("in RequestQueue.put, acquiring mutex") self.mutex.acquire() log.debug("in RequestQueue.put, acquired mutex") try: was_empty = self._empty() self._append(item) # If we fail before here, the empty state has # not changed, so we can skip the release of esema if was_empty: log.debug("in RequestQueue.put, releasing esema") self.esema.release() finally: # Catching system level exceptions here (RecursionDepth, # OutOfMemory, etc) - so do as little as possible in terms # of Python calls. log.debug("in RequestQueue.put, releasing mutex") self.mutex.release() def prepend(self, item): """Prepend an item to the queue.""" log.debug("in RequestQueue.prepend, acquiring mutex") self.mutex.acquire() log.debug("in RequestQueue.prepend, acquired mutex") try: was_empty = self._empty() self._prepend(item) # If we fail before here, the empty state has # not changed, so we can skip the release of esema if was_empty: log.debug("in RequestQueue.prepend, releasing esema") self.esema.release() finally: # Catching system level exceptions here (RecursionDepth, # OutOfMemory, etc) - so do as little as possible in terms # of Python calls. log.debug("in RequestQueue.prepend, releasing mutex") self.mutex.release() def get(self): """Remove and return an item from the queue. Block if necessary until an item is available. """ log.debug("in RequestQueue.get, acquiring esema") self.esema.acquire() log.debug("in RequestQueue.get, acquired esema") log.debug("in RequestQueue.get, acquiring mutex") self.mutex.acquire() log.debug("in RequestQueue.get, acquired mutex") release_esema = 1 try: item = self._get() # Failure means empty state also unchanged - release_esema # remains true. release_esema = not self._empty() finally: if release_esema: log.debug("in RequestQueue.get, releasing esema") self.esema.release() log.debug("in RequestQueue.get, releasing mutex") self.mutex.release() return item def remove_uid(self, uid): """Remove all current requests with the given uid. Does not return anything. """ log.debug("in RequestQueue.remove_uid, acquiring esema") if not self.esema.acquire(0): # do not block to acquire lock # return if could not acquire: means queue is empty and # therefore do not have any items to remove log.debug("in RequestQueue.remove_uid, did not acquire esema") return log.debug("in RequestQueue.remove_uid, acquired mutex") log.debug("in RequestQueue.remove_uid, acquiring mutex") self.mutex.acquire() release_esema = 1 try: self._remove_uid(uid) # Failure means empty state also unchanged - release_esema # remains true. release_esema = not self._empty() finally: if release_esema: log.debug("in RequestQueue.remove_uid, releasing esema") self.esema.release() log.debug("in RequestQueue.remove_uid, releasing mutex") self.mutex.release() #---- Override these methods to implement other queue organizations # (e.g. stack or priority queue). These will only be called with # appropriate locks held. # Initialize the queue representation def _init(self): self.queue = [] # Check whether the queue is empty def _empty(self): return not self.queue # Put a new item in the queue def _append(self, item): self.queue.append(item) def _prepend(self, item): self.queue.insert(0, item) # Get an item from the queue def _get(self): item = self.queue[0] del self.queue[0] return item # Remove all requests with the given uid. def _remove_uid(self, uid): self.queue = [item for item in self.queue if hasattr(item, "uid") and item.uid != uid] class _GenericAggregator(object): _com_interfaces_ = [components.interfaces.koILinter] _reg_desc_ = "Komodo Generic Aggregate Linter" _reg_clsid_ = "{b68f4ff8-f37e-45d1-970e-88b964e7096d}" _reg_contractid_ = "@activestate.com/koGenericLinterAggregator;1" def initialize(self, languageName, koLintService): self._languageName = languageName self._koLintService = koLintService def lint(self, request): text = request.content.encode(request.encoding.python_encoding_name) return self.lint_with_text(request, text) def lint_with_text(self, request, text): linters = self._koLintService.getTerminalLintersForLanguage(self._languageName) finalLintResults = koLintResults() for linter in linters: try: newLintResults = UnwrapObject(linter).lint_with_text(request, text) except: log.exception("lint_with_text exception") else: if newLintResults and newLintResults.getNumResults(): if finalLintResults.getNumResults(): finalLintResults = finalLintResults.addResults(newLintResults) else: finalLintResults = newLintResults return finalLintResults class KoLintRequest: _com_interfaces_ = [components.interfaces.koILintRequest] _reg_desc_ = "Komodo Lint Request" _reg_clsid_ = "{845A872F-293F-4a82-8552-40849A92EC80}" _reg_contractid_ = "@activestate.com/koLintRequest;1" def __init__(self): self.rid = None self._koDoc = None self.uid = '' self.linterType = '' self.cwd = '' self.content = None self.encoding = None self.linter = None self.results = None self.errorString = '' @property def document(self): import warnings warnings.warn("`koILintRequest.document` was DEPRECATED in Komodo " "6.0.0b1, use `koILintRequest.koDoc`.", DeprecationWarning) return self.koDoc @property def koDoc(self): return self._koDoc def get_koDoc(self): return self._koDoc def set_koDoc(self, val): # Access to the koDoc *must* be from the main thread, otherwise # Komodo may crash! self._koDoc = getProxyForObject(1, components.interfaces.koIDocument, val, PROXY_ALWAYS | PROXY_SYNC) def describe(self): return "<KoLintRequest: %s on uid %s>" % (self.linterType, self.uid) class KoLintService: _com_interfaces_ = [components.interfaces.koILintService, components.interfaces.nsIObserver] _reg_desc_ = "Komodo Lint Management Service" _reg_clsid_ = "{9FD67601-CB60-411D-A212-ED21B3D25C15}" _reg_contractid_ = "@activestate.com/koLintService;1" def __init__(self): log.info("KoLintService.__init__()") self._linterCache = {} # mapping of linterCID to koILinter instance self.requests = RequestQueue() # an item of None is the quit sentinel self._shuttingDown = 0 self.manager = threading.Thread(target=self.run, name="Linter") self.manager.setDaemon(True) self.manager.start() self._wrapped = WrapObject(self, components.interfaces.nsIObserver) _observerSvc = components.classes["@mozilla.org/observer-service;1"].\ getService(components.interfaces.nsIObserverService) _observerSvc.addObserver(self._wrapped, 'xpcom-shutdown', 1) self._prefs = components.classes["@activestate.com/koPrefService;1"].\ getService(components.interfaces.koIPrefService).prefs # dict of { 'terminals' => array of linters, 'aggregators' => array of linters } self._linterCIDsByLanguageName = {} # Init it now, pay the price of walking through the categories now... catman = components.classes["@mozilla.org/categorymanager;1"].\ getService(components.interfaces.nsICategoryManager) categoryName = 'category-komodo-linter-aggregator' names = catman.enumerateCategory(categoryName) while names.hasMoreElements(): nameObj = names.getNext() rawName, fixedName = self._getCategoryNameFromNameObj(nameObj) cid = catman.getCategoryEntry(categoryName, rawName) if not self._linterCIDsByLanguageName.has_key(fixedName): self._linterCIDsByLanguageName[fixedName] = {'terminals':[], 'aggregator':cid} else: log.warn("Possible Problem: more than one entry for linter aggregator %s (was %s), now %s", name, self._linterCIDsByLanguageName[fixedName]['aggregator'], cid) self._linterCIDsByLanguageName[fixedName]['aggregator'] = cid categoryName = 'category-komodo-linter' names = catman.enumerateCategory(categoryName) while names.hasMoreElements(): nameObj = names.getNext() rawName, fixedName = self._getCategoryNameFromNameObj(nameObj) idx = fixedName.find("&type=") if idx == -1: languageName = fixedName else: languageName = fixedName[:idx] cid = catman.getCategoryEntry(categoryName, rawName) if not self._linterCIDsByLanguageName.has_key(languageName): self._linterCIDsByLanguageName[languageName] = {'terminals':[], 'aggregator':None} self._linterCIDsByLanguageName[languageName]['terminals'].append(cid) #log.debug("Loaded these linters: %s", self._linterCIDsByLanguageName) def _getCategoryNameFromNameObj(self, nameObj): nameObj.QueryInterface(components.interfaces.nsISupportsCString) rawName = nameObj.data try: fixedName = urllib2.unquote(rawName) except: fixedName = rawName return rawName, fixedName def getLinter_CID_ForLanguage(self, languageName): return self._getLinterCIDByLanguageName(languageName) def observe(self, subject, topic, data): #print "file status service observed %r %s %s" % (subject, topic, data) if topic == 'xpcom-shutdown': log.debug("file status got xpcom-shutdown, unloading"); self.terminate() def terminate(self): log.info("KoLintService.terminate()") self.requests.prepend(None) # prepend the quit sentinel self._shuttingDown = 1 # Do NOT attempt to .join() the manager thread because it is nigh on # impossible to avoid all possible deadlocks. def getTerminalLintersForLanguage(self, languageName): return [self._getLinterByCID(cid) for cid in self._linterCIDsByLanguageName[languageName]['terminals']] GENERIC_LINTER_AGGREGATOR_CID = "@activestate.com/koGenericLinterAggregator;1" def _getLinterCIDByLanguageName(self, languageName): try: linters = self._linterCIDsByLanguageName[languageName] except KeyError: self._linterCIDsByLanguageName[languageName] = {'aggregator':None, 'terminals':[], 'generated':True} return None # If there's no explicit aggregator, return the first terminal linter. # If there isn't one, throw the ItemError all the way to top-level if linters['aggregator'] is not None: return linters['aggregator'] if len(linters['terminals']) != 1: if len(linters['terminals']) == 0: if not linters.get('generated', False): log.error("No terminal linters for lang %s", languageName) return None # Create a generic aggregator for this language. linters['aggregator'] = (self.GENERIC_LINTER_AGGREGATOR_CID + ":" + languageName) return linters['aggregator'] return linters['terminals'][0] def getLinterForLanguage(self, languageName): """Return a koILinter XPCOM component of the given linterCID. This method cache's linter instances. If there is no such linter then an exception is raised. Note that aggregators are favored over terminal linters. """ linterCID = self._getLinterCIDByLanguageName(languageName) if linterCID is None: return None return self._getLinterByCID(linterCID) def _getLinterByCID(self, linterCID): if linterCID not in self._linterCache: try: if linterCID.startswith(self.GENERIC_LINTER_AGGREGATOR_CID): languageName = linterCID[len(self.GENERIC_LINTER_AGGREGATOR_CID) + 1:] linter = components.classes[self.GENERIC_LINTER_AGGREGATOR_CID].createInstance(components.interfaces.koILinter) UnwrapObject(linter).initialize(languageName, self) elif linterCID not in components.classes.keys(): linter = None else: linter = components.classes[linterCID].createInstance(components.interfaces.koILinter) except COMException, ex: errmsg = "Internal Error creating a linter with CID '%s': %s"\ % (linterCID, ex) raise ServerException(nsError.NS_ERROR_UNEXPECTED, errmsg) self._linterCache[linterCID] = linter return self._linterCache[linterCID] def addRequest(self, request): """Add the given request to the queue. If there is an error (e.g. bogus linterType) an exception is raised. """ log.info("KoLintService.addRequest(%s)", request.describe()) # Fill out the request (because document access and component # creation must often be done in the main thread). request.content = request.koDoc.buffer request.encoding = request.koDoc.encoding if request.linterType: request.linter = self.getLinterForLanguage(request.linterType) self.requests.put(request) def cancelPendingRequests(self, uid): log.info("KoLintService.cancelPendingRequests(uid='%s')", uid) self.requests.remove_uid(uid) # This does nothing to stop the reporting of results from a # possible _currently running_ lint request for this uid. # This is currently handled on the JavaScript side via the # koILintRequest.rid attribute. def _getEncodingLintResults(self, content, encoding): """Return lint results for encoding errors in the given document. "content" is the document content as a unicode string "encoding" is the currently selected encoding for the document Returns a koLintResults instance. """ try: encodedString = content.encode(encoding.python_encoding_name, "strict") except UnicodeError, ex: pass # errors are handled after the try/except/else block else: return koLintResults() # no encoding errors # Find the specific errors by encoding with "replace" and finding # where those replacements were. escapedContent = content.replace('?', 'X') encodedString = escapedContent.encode(encoding.python_encoding_name, "replace") offset = 0 indeces = [] while 1: index = encodedString.find('?', offset) if index == -1: break indeces.append(index) offset = index + 1 log.debug("encoding errors at indeces %s", indeces) results = koLintResults() lines = content.splitlines(1) # keep line terminators offset = 0 # the current offset in the document for i in range(len(lines)): line = lines[i] while indeces and indeces[0] < offset + len(line): index = indeces.pop(0) # this index is on this line r = KoLintResult() r.description = "This character cannot be represented with "\ "the current encoding: '%s'"\ % encoding.python_encoding_name r.lineStart = i+1 r.lineEnd = i+1 r.columnStart = index - offset + 1 r.columnEnd = r.columnStart + 1 log.debug("encoding error: index=%d: %d,%d-%d,%d", index, r.lineStart, r.columnStart, r.lineEnd, r.columnEnd) r.severity = r.SEV_ERROR results.addResult(r) if not indeces: break offset += len(line) else: raise ValueError("Did not find line and column for one or " "more indeces in content: %s" % indeces) return results def _addMixedEOLWarnings(self, results, content, expectedEOL): """Add lint results (at the WARNING level) for each line that has an unexpected EOL. "results" in a koILintResults to which to add mixed EOL results. "content" is the content to analyze "expectedEOL" is the currently configured EOL for the document, this must be on of the EOL_LF, EOL_CR, EOL_CRLF constants. """ import eollib mixedEOLs = eollib.getMixedEOLLineNumbers(content, expectedEOL) if not mixedEOLs: return def collapseContinuousLineNumbers(lineNos): """Return a collapsed group of continuous line numbers.""" results = [] start = -10 last = -10 for lineNo in lineNos: if lineNo == last+1: pass else: if start >= 0: results.append((start, last)) start = lineNo last = lineNo if start >= 0: results.append((start, last)) return results # Add a warning lint result for each such line. expectedEOLStr = eollib.eol2eolPref[expectedEOL] lines = content.splitlines(1) # For performance reasons, we collapse groups of continuous line # numbers into the one line result - bug 92733. for lineStart, lineEnd in collapseContinuousLineNumbers(mixedEOLs): r = KoLintResult() r.description = "This line does not end with the expected "\ "EOL: '%s' (select View | View EOL Markers)"\ % expectedEOLStr r.lineStart = lineStart+1 r.lineEnd = lineEnd+1 r.columnStart = 1 r.columnEnd = len(lines[lineEnd]) + 1 r.severity = r.SEV_WARNING results.addResult(r) # When a new panel is added for a language in # pref-syntax-checking.xul, we'll need to pull the generic marker # out of any documents that adopted it. We can either do it when # we open the doc (although we have to wait until we know its language), # but this way we only check when we're about to lint. # # Also, it's too bad that doc prefs aren't versioned. _no_longer_generic_languages = ["Python3", "HTML5"] def _passesGenericCheck(self, request): prefs = request.koDoc.prefs languageName = request.koDoc.language genericCheck = "genericLinter:" + languageName if not prefs.hasPref(genericCheck): return True if languageName in self._no_longer_generic_languages: prefs.deletePref(genericCheck) return True return prefs.getBooleanPref(genericCheck) def run(self): """Process lint requests serially until told to stop. Before the requested linter is run on a document it is first checked for encoding problems (i.e. encoding is not sufficient for current content). """ TIME_LINTS = False log.info("manager thread: start") while 1: try: # wait for next request request = self.requests.get() # quit if request is the quit sentinel if request is None: log.info("manager thread: quit sentinel") break # process the request if TIME_LINTS: startlint = time.clock() log.info("manager thread: process request: %r", request) try: # Look for encoding errors first. results = self._getEncodingLintResults(request.content, request.encoding) if TIME_LINTS: endencodinglint = time.clock() # If there were no encoding errors, try the # requested linter. if not results.getNumResults() and request.linter: #XXX This is where context-sensitive linting args should # be passed in, but linters don't support this yet. log.debug("manager thread: call linter.lint(request)") try: if self._passesGenericCheck(request): results = request.linter.lint(request) #results = UnwrapObject(request.linter).lint(request) # This makes a red statusbar icon go green, but it # might not be what we always want. # Needs more investigation. #if results is None: # results = koLintResults() except: log.exception("Unexpected error while linting") # This makes a red statusbar icon go green, but it # might not be what we always want. # Needs more investigation. #if results is None: # results = koLintResults() log.debug("manager thread: linter.lint(request) returned") if TIME_LINTS: endlintlint = time.clock() prefset = getProxiedEffectivePrefs(request) if prefset.getBooleanPref("lintEOLs"): # Also look for mixed-line endings warnings. self._addMixedEOLWarnings(results, request.content, request.koDoc.new_line_endings) if TIME_LINTS: endeollint = time.clock() print "lint of '%s': encoding=%.3fs lint=%.3fs eol=%.3fs"\ % (request.koDoc.baseName, endencodinglint-startlint, endlintlint-endencodinglint, endeollint-endlintlint) request.results = results except (ServerException, COMException), ex: request.errorString = str(ex) except: # Any exceptions that are not ServerException or # COMException are unexpected internal errors. try: err = "unexpected internal error checking '%s' with '%s' linter"\ % (request.koDoc.baseName, request.linterType) log.exception(err) request.errorString = err except: err = "Unexpected error in koLintService.run" log.error(err) request.errorString = err else: log.info("manager thread: lint results for uid %s: %r", request.uid, results) # Notify of request completion # Note: this is not guaranteed to properly guard the proxy # call because a context switch could happen in between the # condition check and body. That is ok though. At worst it # will raise an exception that will be trapped just below. # The point is to catch the common case. I am pretty sure # that there is no way to do this properly without going # to great lengths. if not self._shuttingDown: try: # Proxy this so the worker thread can report results on this iface. lintBufferProxy = getProxyForObject(1, components.interfaces.koILintBuffer, request.lintBuffer, PROXY_ALWAYS | PROXY_SYNC) lintBufferProxy.reportResults(request) except COMException, ex: # Ignore this error, which will happen if results # are reported after the buffer has gone away (i.e. # the file owning that buffer was closed): # Traceback (most recent call last): # File "...\koLintService.py", line 370, in run # request.lintBuffer.reportResults(request) # File "<XPCOMObject method 'reportResults'>", line 3, in reportResults # Exception: 0x80570021 () errno = ex.args[0] if errno == 0x80570021: pass else: raise except: # Something bad happened, but don't let this thread die. log.exception("unexpected error in the linting thread") log.info("manager thread: end") if __name__ == "__main__": logging.basicConfig() import pprint class TestRequest: def __init__(self, uid): self.uid = uid def __repr__(self): return "<TestRequest: uid=%s>" % self.uid q = RequestQueue() if 0: q.put(TestRequest("id_1")) q.remove_uid("id_1") print "item:" sys.stdout.flush() print q.get() if 1: q.put(TestRequest("id_1")) q.put(TestRequest("id_2")) pprint.pprint(q.queue) print "item: ", q.get() q.put(TestRequest("id_3")) q.put(TestRequest("id_4")) q.put(TestRequest("id_3")) q.prepend(None) pprint.pprint(q.queue) q.remove_uid("id_3") pprint.pprint(q.queue) q.remove_uid("id_3") sys.stdout.flush() pprint.pprint(q.queue) q.remove_uid("id_4") pprint.pprint(q.queue) print "item: ", q.get() print "item: ", q.get() pprint.pprint(q.queue)
7b0c4083d029a92441704bd296c1aef0ebbf84f2
2d4ab8e3ea9fd613ec0ae0c1956b68874c9b5f06
/tests/pipelines/cnv_calling/test_xhmm_pca.py
e9dc13feb4ca41c6220481e9e7105e1e72bce443
[]
no_license
biocodices/paip
4abd39cbbd372a68592da87177c70c403d5a661d
040a62c11e5bae306e2de4cc3e0a78772ee580b3
refs/heads/master
2021-01-17T20:48:28.642255
2019-07-26T14:30:58
2019-07-26T14:30:58
62,604,413
1
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
from unittest.mock import MagicMock import pytest from paip.pipelines.cnv_calling.xhmm_pca import XhmmPCA, EmptyInputMatrix @pytest.fixture def task(cohort_task_factory): return cohort_task_factory(XhmmPCA) def test_check_matrix(task): # NOTE: Run this test before the next one, because the tested method # check_matrix() will be mocked in test_run(). empty_matrix = pytest.helpers.file('empty_matrix.txt') with pytest.raises(EmptyInputMatrix): task.check_matrix(empty_matrix) def test_run(task, mock_rename): check_matrix = MagicMock() task.check_matrix = check_matrix task.run() check_matrix.assert_called_once() (command, ), kwargs = task.run_command.call_args assert 'xhmm --PCA' in command assert 'DATA.filtered_centered.RD.txt' in command assert 'DATA-temp.RD_PCA' in command assert mock_rename.call_count == 3 assert 'DATA-temp.RD_PCA' in mock_rename.call_args[0][0] assert 'DATA.RD_PCA' in mock_rename.call_args[0][1]
7df75a268c13f4de545db13ec51df02cd9cdbda5
ddcc89dc88961f37d50c0f9d893f265bf34afdb3
/test/test_simple_module_pass.py
f6be33ae365cbfb62819b6d08a8740fcd1ff5120
[ "Unlicense", "LicenseRef-scancode-unknown-license-reference", "NCSA", "LicenseRef-scancode-public-domain" ]
permissive
mulle-nat/property-syntax-modernizer
f351319314a0216e5e241fa03f9d95a3764a6590
93445534221840d0df6cfb2d2f4ceb73f37ac962
refs/heads/master
2020-08-07T08:57:02.149734
2019-10-07T12:46:11
2019-10-07T12:46:11
213,381,270
0
0
Unlicense
2019-10-07T13:11:51
2019-10-07T12:47:05
C++
UTF-8
Python
false
false
442
py
import sys, unittest from tools import SamplesTestCase OUTPUT_FOR_GLOBALS = '''\ Found global named "gfloat": type = float* Found global named "gppfloat": type = float*** Found global named "gint": type = i32* ''' PROG = 'simple_module_pass' class TestSimpleModulePass(SamplesTestCase): def test_on_globals(self): self.assertSampleOutput([PROG], 'globals.ll', OUTPUT_FOR_GLOBALS) if __name__ == '__main__': unittest.main()
015c735e062ac63dde157d1b06e700b8009e14ce
8a1241ac8ad91672aec81c878f2165a7678a1ad6
/Web/Applications/Visualizer/server/pv_web_visualizer.py
84ef98ae22d8c269ffca4d47cdd4e0a31d3dd2f0
[ "MIT", "LicenseRef-scancode-paraview-1.2", "Apache-2.0", "LicenseRef-scancode-protobuf", "BSD-3-Clause" ]
permissive
lmynsberge/ParaView
d9fbd0f4da197bc96172be8697ced76fe73852bf
2a68ee496949becf499742dfdbecb41b1eda81a7
refs/heads/master
2021-01-22T16:18:25.241194
2013-11-11T15:01:02
2013-11-11T15:01:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,203
py
r""" This module is a ParaViewWeb server application. The following command line illustrate how to use it:: $ pvpython .../pv_web_visualizer.py --data-dir /.../path-to-your-data-directory --data-dir is used to list that directory on the server and let the client choose a file to load. --load-file try to load the file relative to data-dir if any. --ds-host None Host name where pvserver has been started --ds-port 11111 Port number to use to connect to pvserver --rs-host None Host name where renderserver has been started --rs-port 22222 Port number to use to connect to the renderserver Any ParaViewWeb executable script come with a set of standard arguments that can be overriden if need be:: --port 8080 Port number on which the HTTP server will listen to. --content /path-to-web-content/ Directory that you want to server as static web content. By default, this variable is empty which mean that we rely on another server to deliver the static content and the current process only focus on the WebSocket connectivity of clients. --authKey vtkweb-secret Secret key that should be provided by the client to allow it to make any WebSocket communication. The client will assume if none is given that the server expect "vtkweb-secret" as secret key. """ # import to process args import os # import paraview modules. from paraview.web import wamp as pv_wamp from paraview.web import protocols as pv_protocols from vtk.web import server try: import argparse except ImportError: # since Python 2.6 and earlier don't have argparse, we simply provide # the source for the same as _argparse and we use it instead. import _argparse as argparse # ============================================================================= # Create custom Pipeline Manager class to handle clients requests # ============================================================================= class _PipelineManager(pv_wamp.PVServerProtocol): dataDir = None authKey = "vtkweb-secret" dsHost = None dsPort = 11111 rsHost = None rsPort = 11111 fileToLoad = None def initialize(self): # Bring used components self.registerVtkWebProtocol(pv_protocols.ParaViewWebStartupRemoteConnection(_PipelineManager.dsHost, _PipelineManager.dsPort, _PipelineManager.rsHost, _PipelineManager.rsPort)) self.registerVtkWebProtocol(pv_protocols.ParaViewWebStateLoader(_PipelineManager.fileToLoad)) self.registerVtkWebProtocol(pv_protocols.ParaViewWebPipelineManager(_PipelineManager.dataDir, _PipelineManager.fileToLoad)) self.registerVtkWebProtocol(pv_protocols.ParaViewWebMouseHandler()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebViewPort()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebViewPortImageDelivery()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebViewPortGeometryDelivery()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebTimeHandler()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebRemoteConnection()) self.registerVtkWebProtocol(pv_protocols.ParaViewWebFileManager(_PipelineManager.dataDir)) # Update authentication key to use self.updateSecret(_PipelineManager.authKey) # ============================================================================= # Main: Parse args and start server # ============================================================================= if __name__ == "__main__": # Create argument parser parser = argparse.ArgumentParser(description="ParaView/Web Pipeline Manager web-application") # Add default arguments server.add_arguments(parser) # Add local arguments parser.add_argument("--data-dir", default=os.getcwd(), help="path to data directory to list", dest="path") parser.add_argument("--load-file", default=None, help="File to load if any based on data-dir base path", dest="file") parser.add_argument("--ds-host", default=None, help="Hostname to connect to for DataServer", dest="dsHost") parser.add_argument("--ds-port", default=11111, type=int, help="Port number to connect to for DataServer", dest="dsPort") parser.add_argument("--rs-host", default=None, help="Hostname to connect to for RenderServer", dest="rsHost") parser.add_argument("--rs-port", default=11111, type=int, help="Port number to connect to for RenderServer", dest="rsPort") # Exctract arguments args = parser.parse_args() # Configure our current application _PipelineManager.authKey = args.authKey _PipelineManager.dataDir = args.path _PipelineManager.dsHost = args.dsHost _PipelineManager.dsPort = args.dsPort _PipelineManager.rsHost = args.rsHost _PipelineManager.rsPort = args.rsPort if args.file: _PipelineManager.fileToLoad = args.path + '/' + args.file # Start server server.start_webserver(options=args, protocol=_PipelineManager)
aa80166792010844c80020d87de369afec96d42a
5eff9df4d276e83c68ce843d58868499858f701a
/Leetcode - FB/p0350.py
3780986eb5c2d856d4e29deeeacac48b9f10fdf7
[]
no_license
arunraman/Code-Katas
b6723deb00caed58f0c9a1cafdbe807e39e96961
7fe3582fa6acf59a2620fe73e1e14bd8635bbee8
refs/heads/master
2023-03-04T17:27:44.037145
2023-03-02T21:09:53
2023-03-02T21:09:53
25,232,784
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
class p0349(object): def intersectiontwoArrays(self, nums1, nums2): dict1 = dict() for i in nums1: if i not in dict1: dict1[i] = 1 else: dict1[i] += 1 ret = [] for i in nums2: if i in dict1 and dict1[i] > 0: ret.append(i) dict1[i] -= 1 return ret S = p0349() print S.intersectiontwoArrays([1, 2, 2, 1], [2, 2])
205e2c6f3f8e1f3fd358d21e4ccbb1da32701a93
021a3dff055d4b3e40aafc63f0029dc280466233
/db_scripts/curw_fcst/rfield/gen_rfield_kelani_basin_parallelized_optimized.py
e2bed1eb35b657a3592bea9d212fe72a3c8b6482
[]
no_license
shadhini/curw_helpers
45efe90d887c702b3a3f5877163647e220d230e4
101d896f8b589b478ef146b5b4dd99ec24f2dc84
refs/heads/master
2021-07-03T02:53:13.398052
2020-10-28T03:39:58
2020-10-28T03:39:58
185,217,580
0
0
null
null
null
null
UTF-8
Python
false
false
6,854
py
#!/home/uwcc-admin/curw_rfield_extractor/venv/bin/python3 import traceback import pymysql import json import getopt import sys import os import re import multiprocessing as mp from datetime import datetime, timedelta # connection params HOST = "" USER = "" PASSWORD = "" DB ="" PORT = "" VALID_MODELS = ["WRF_A", "WRF_C", "WRF_E", "WRF_SE"] VALID_VERSIONS = ["v3", "v4", "4.0"] SIM_TAGS = ["evening_18hrs"] root_directory = '/var/www/html' bucket_root = '/mnt/disks/wrf_nfs' def read_attribute_from_config_file(attribute, config): """ :param attribute: key name of the config json file :param config: loaded json file :return: """ if attribute in config and (config[attribute]!=""): return config[attribute] else: print("{} not specified in config file.".format(attribute)) exit(1) def write_to_file(file_name, data): with open(file_name, 'w+') as f: f.write('\n'.join(data)) def create_rfield(connection, wrf_model, version, sim_tag, timestamp): # rfield = [['latitude', 'longitude', 'rainfall']] rfield = [] with connection.cursor() as cursor0: cursor0.callproc('get_d03_rfield_kelani_basin_rainfall', (wrf_model, version, sim_tag, timestamp)) results = cursor0.fetchall() for result in results: rfield.append('{}'.format(result.get('value'))) write_to_file('{}/wrf/{}/{}/rfield/kelani_basin/{}_{}_{}_rfield.txt' .format(root_directory, version, sim_tag, wrf_model, version, timestamp.strftime('%Y-%m-%d_%H-%M')), rfield) ############################# # Raw WRF RFIELD GENERATION # ############################# def gen_rfield_d03_kelani_basin(wrf_model, version, sim_tag): # remove outdated rfields try: os.system("sudo rm {}/wrf/{}/{}/rfield/kelani_basin/{}_{}_*".format(root_directory, version, sim_tag, wrf_model, version)) except Exception as e: traceback.print_exc() start_time = '' end_time = '' now = datetime.strptime((datetime.now()+timedelta(hours=5, minutes=30)).strftime('%Y-%m-%d 00:00:00'), '%Y-%m-%d %H:%M:%S') try: # Connect to the database connection = pymysql.connect(host=HOST, user=USER, password=PASSWORD, db=DB, cursorclass=pymysql.cursors.DictCursor) # Extract timeseries start time and end time with connection.cursor() as cursor1: cursor1.callproc('get_TS_start_end', (wrf_model, version, sim_tag)) result = cursor1.fetchone() start_time = result.get('start') end_time = result.get('end') if end_time > (now + timedelta(days=1)): # Extract rfields timestamp = start_time while timestamp <= end_time: create_rfield(connection=connection, wrf_model=wrf_model, version=version, sim_tag=sim_tag, timestamp=timestamp) timestamp = datetime.strptime(str(timestamp), '%Y-%m-%d %H:%M:%S') + timedelta(minutes=15) return True except Exception as ex: traceback.print_exc() return False finally: connection.close() print("Process finished") def usage(): usageText = """ Usage: python gen_rfield_kelani_basin_parallelized_optimized_with_past_future.py -m WRF_X1,WRF_X2,WRF_X3 -v vX -s "evening_18hrs" -h --help Show usage -m --wrf_model List of WRF models (e.g. WRF_A, WRF_E). Compulsory arg -v --version WRF model version (e.g. v4, v3). Compulsory arg -s --sim_tag Simulation tag (e.g. evening_18hrs). Compulsory arg """ print(usageText) if __name__=="__main__": my_pool = None try: wrf_models = None version = None sim_tag = None try: opts, args = getopt.getopt(sys.argv[1:], "h:m:v:s:", ["help", "wrf_model=", "version=", "sim_tag="]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit() elif opt in ("-m", "--wrf_model"): wrf_models = arg.strip() elif opt in ("-v", "--version"): version = arg.strip() elif opt in ("-s", "--sim_tag"): sim_tag = arg.strip() print(wrf_models, version, sim_tag) print(VALID_MODELS, VALID_VERSIONS, SIM_TAGS) # load connection parameters config = json.loads(open('/home/uwcc-admin/curw_rfield_extractor/db_config.json').read()) # connection params HOST = read_attribute_from_config_file('host', config) USER = read_attribute_from_config_file('user', config) PASSWORD = read_attribute_from_config_file('password', config) DB = read_attribute_from_config_file('db', config) PORT = read_attribute_from_config_file('port', config) wrf_model_list = wrf_models.split(',') for wrf_model in wrf_model_list: if wrf_model is None or wrf_model not in VALID_MODELS: usage() exit(1) if version is None or version not in VALID_VERSIONS: usage() exit(1) if sim_tag is None or sim_tag not in SIM_TAGS: usage() exit(1) rfield_home = "{}/wrf/{}/{}/rfield/kelani_basin".format(root_directory, version, sim_tag) try: os.makedirs(rfield_home) except FileExistsError: # directory already exists pass gfs_data_hour =re.findall(r'\d+', sim_tag)[0] bucket_rfield_home = "{}/wrf/{}/{}/rfield/kelani_basin".format(bucket_root, version, gfs_data_hour) try: os.makedirs(bucket_rfield_home) except FileExistsError: # directory already exists pass # copy file containing xy coordinates to the rfield home try: os.system("cp kelani_basin_xy.csv {}/xy.csv".format(rfield_home)) except Exception: pass mp_pool = mp.Pool(mp.cpu_count()) results = mp_pool.starmap(gen_rfield_d03_kelani_basin, [(wrf_model, version, sim_tag) for wrf_model in wrf_model_list]) # results = mp_pool.starmap_async(gen_rfield_d03_kelani_basin, # [(wrf_model, version, sim_tag) for wrf_model in wrf_model_list]).get() print("results: ", results) except Exception as e: print('JSON config data loading error.') traceback.print_exc() finally: if my_pool is not None: mp_pool.close() os.system("tar -czvf {}/rfield.tar.gz {}/*".format(bucket_rfield_home, rfield_home))
d1f9c5d8fe6a52dd2e130204f45e94850dfa5e0f
33f86c1678d2f5e15da77885e0bf770f405201a4
/tcamp/local_settings.example.py
b5b48f86971536c25ec25d5c61d13c2805a1304e
[ "BSD-3-Clause" ]
permissive
imclab/tcamp
5410c9549ed7731575e7312acfed7b8e4cd0c58d
111cabab90b2c8cf651ee480520bc43a33f30844
refs/heads/master
2021-01-18T12:15:58.484183
2014-03-05T21:36:00
2014-03-05T21:36:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,832
py
DEBUG = True ADMINS = ( ('', ''), ) MANAGERS = ADMINS INTERNAL_IPS = ('127.0.0.1', ) SECRET_KEY = '' DATABASES = { 'local': { 'ENGINE': '', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. }, 'staging': { 'ENGINE': '', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. }, 'production': { 'ENGINE': '', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } DATABASES['default'] = DATABASES['local'] FAVICON = '' APPLE_TOUCH_ICON = '' SHARING_IMAGE = '' FB_APP_ID = '' GOOGLE_ANALYTICS_ID = '' AWS_ACCESS_KEY_ID = '' AWS_SECRET_ACCESS_KEY = '' ASSET_SITE_VERSION = '1.0' COMPRESS_URL = '' COMPRESS_STORAGE = '' STATICFILES_STORAGE = COMPRESS_STORAGE STATIC_URL = COMPRESS_URL POSTMARK_API_KEY = '' POSTMARK_SENDER = '' GOOGLEAUTH_DOMAIN = '' GOOGLEAUTH_REALM = '' TWITTER_CONSUMER_KEY = '' TWITTER_CONSUMER_SECRET = '' FACEBOOK_APP_ID = '' FACEBOOK_API_SECRET = '' GOOGLE_OAUTH2_CLIENT_ID = '' GOOGLE_OAUTH2_CLIENT_SECRET = '' GITHUB_APP_ID = '' GITHUB_API_SECRET = '' DISQUS_CLIENT_ID = '' DISQUS_CLIENT_SECRET = '' AKISMET_KEY = '' TWITTER_CONSUMER_KEY = '' TWITTER_CONSUMER_SECRET = '' TWITTER_ACCESS_KEY = '' TWITTER_ACCESS_SECRET = '' DISQUS_SHORTNAME = '' BRAINSTORM_USE_DISQUS = True BRAINSTORM_LOGIN_OPTIONS = ( ('Twitter', '/login/twitter/'), ('Facebook', '/login/facebook/'), ('Google', '/login/google-oauth2/'), ('Github', '/login/github/'), ) VARNISH_MANAGEMENT_ADDRS = () TWILIO_ACCOUNT_SID = '' TWILIO_AUTH_TOKEN = '' RAVEN_CONFIG = { 'dsn': '', }
af0ff074d35191259400a9937db81997e7772ffd
d52cb4c2e880875944b14da0b8a9542235942ac8
/geeksforgeeks/heap/6_Find_median_in_stream.py
521a8f79468f59a0c175f5766c7681ae8d0a619c
[]
no_license
saparia-data/data_structure
fbd61535b68f92143b2cb2679377c0f56f424670
2e8700cfdaeefe0093e5b4fb2704b1abcd300d02
refs/heads/master
2023-05-08T18:54:52.250941
2021-06-04T05:44:29
2021-06-04T05:44:29
296,071,146
1
0
null
null
null
null
UTF-8
Python
false
false
3,382
py
''' Given an input stream of N integers. The task is to insert these numbers into a new stream and find the median of the stream formed by each insertion of X to the new stream. Example 1: Input: N = 4 X[] = 5,15,1,3 Output: 5 10 5 4 Explanation:Flow in stream : 5, 15, 1, 3 5 goes to stream --> median 5 (5) 15 goes to stream --> median 10 (5,15) 1 goes to stream --> median 5 (5,15,1) 3 goes to stream --> median 4 (5,15,1 3) ''' import heapq min_heap = [] max_heap = [] def balanceHeaps(): ''' use globals min_heap and max_heap, as per declared in driver code use heapify modules , already imported by driver code Balance the two heaps size , such that difference is not more than one. ''' if abs(len(min_heap)-len(max_heap)) <= 1: return # already balanced # take out one element from top of heap with greater size, and push in other heap if len(min_heap)>len(max_heap): # min_heap has more data value_top = heapq.heappop(min_heap) # push in max heap, using negative as it is implemented on min heap heapq.heappush(max_heap,-1*value_top) # value inserted in max heap else: # take from max heap and insert in min heap value_top = -1* heapq.heappop(max_heap) # negate it to get original value heapq.heappush(min_heap,value_top) # insert value in min heap return def getMedian(): ''' use globals min_heap and max_heap, as per declared in driver code use heapify modules , already imported by driver code :return: return the median of the data received till now. ''' # cases with odd number of elements in data if len(max_heap)>len(min_heap): # return the element from top of max_heap value = heapq.heappop(max_heap) heapq.heappush(max_heap,value) # push element back in max heap return (-1*value) elif len(min_heap)>len(max_heap): # return the top element from min heap value = heapq.heappop(min_heap) heapq.heappush(min_heap,value) return value else: # the number of elements is even in data, return the average of the two values val_min = heapq.heappop(min_heap) val_max = -1*heapq.heappop(max_heap) # push these values back in the heap heapq.heappush(min_heap,val_min) heapq.heappush(max_heap,-1*val_max) return ((val_max+val_min)//2) # return the average of the two def insertHeaps(x): ''' use globals min_heap and max_heap, as per declared in driver code use heapify modules , already imported by driver code :param x: value to be inserted :return: None ''' # if top of min heap is less than x, x belongs in upper half least_upperhalf = heapq.heappop(min_heap) if len(min_heap) else -1 # minimum element of upper half or -1 if empty # if popped, push in min_heap again if least_upperhalf!=-1: heapq.heappush(min_heap,least_upperhalf) if x >= least_upperhalf : heapq.heappush(min_heap,x) # insert in min_heap else: # x belongs in lower half # as this is a max_heap implemented on heapq, hence negative of x will be inserted to maintain # max heap property. heapq.heappush(max_heap,-1*x) arr = [5,15,1,3] n = len(arr) for i in range(n): insertHeaps(arr[i]) balanceHeaps() print(getMedian())
a15aa9381f0639460207512eace0c0e66ea54b4b
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/222/users/4327/codes/1602_2049.py
1ce019700e7801903c6df341e812f94f4b2cb946
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
302
py
# Teste seu codigo aos poucos. # Nao teste tudo no final, pois fica mais dificil de identificar erros. # Nao se intimide com as mensagens de erro. Elas ajudam a corrigir seu codigo. x=int(input("informe o dividendo: " )) y=int(input("informe o divisor: " )) print (x) print (y) print (x//y) print (x%y)
eaa1694453e2fb1d8f4e20c3a6a0852dc8c2f92c
bec66ec0c920939547466b2b8f9d65813d560d1d
/noxious/__init__.py
f007d1198e0435f72d773eb479f29a48d9534092
[]
no_license
mbr/noxious
cbb3be2ca725a0282db390520306da7ebba75339
6c48fe84867d80614defa6bdce4d4640ce657ae5
refs/heads/master
2023-06-06T20:42:08.079423
2015-08-30T10:54:52
2015-08-30T10:54:52
41,625,389
0
1
null
null
null
null
UTF-8
Python
false
false
1,557
py
import xml.etree.ElementTree as ET def from_file(fn): tree = ET.parse(fn) return Noxious(tree.getroot()) class Noxious(object): def __init__(self, elem, parent=None): self._parent = parent self._elem = elem def _all(self): return [self.__class__(sibling) for sibling in self._parent._elem.findall(self._elem.tag)] def _get_path(self): path = [] tag = self while tag: path.insert(0, tag._elem.tag) tag = tag._parent root = path.pop(0) return root + ''.join('[{!r}]'.format(p) for p in path) def _text(self): return self._elem.text def __add__(self, other): return str(self) + other def __bool__(self): e = self._elem return bool(e.text or list(e)) def __float__(self): return float(str(self)) def __int__(self): return int(str(self)) def __getitem__(self, name): child = self._elem.find(name) if child is None: raise KeyError('No child {} on {!r}'.format(name, self)) return self.__class__(child, self) def __getattr__(self, name): if name not in self._elem.attrib: raise AttributeError('No attribute {} on {!r}'.format(name, self)) return self._elem.attrib[name] # py2: __nonzero__ = __bool__ def __radd__(self, other): return other + str(self) def __str__(self): return self._text() def __repr__(self): return self._get_path()
4b2654ba6bffd9e20cf44a960e8ed5166476ba81
749aca95edfaad9e7d8b84dc2c6f62038595efc3
/mandala.py
dac1d0eae959c6a652cc1f391088ca60e9419b56
[]
no_license
xmduhan/mandala
efe72b116ec829457cd2286b88b4544d5538861c
eafea6c9ebd0ca913c070f0bf2cbf72a6566b0a7
refs/heads/master
2021-06-30T16:30:49.410637
2017-09-20T09:44:53
2017-09-20T09:44:53
104,153,412
0
0
null
null
null
null
UTF-8
Python
false
false
3,494
py
#!/usr/bin/env python # encoding: utf-8 import dataset from pyfiglet import Figlet from termcolor import cprint from prompt_toolkit import prompt as _prompt from prompt_toolkit.history import InMemoryHistory from itertools import count from treelib import Tree from pandas import DataFrame history = InMemoryHistory() db = dataset.connect('sqlite:///db.sqlite') table = db['relation'] db.begin() def commit(): """ """ db.commit() db.begin() print u'保存成功!' def rollback(): """ """ db.rollback() db.begin() print u'操作撤销' def save(w0, w1): """ """ table.insert({'w0': w0, 'w1': w1}) # print u'%s --> %s: ' % (w0, w1) cprint(' |-- ', 'green', end='') cprint('%s --> %s: ' % (w0, w1), color='blue', end='') cprint('+1', 'red') def prompt(text): return _prompt(text, history=history).strip() def star(w0=None): """ """ if w0 is None: w0 = prompt(u'关键词:') if len(w0) == 0: return for i in count(start=1, step=1): w1 = prompt(u'%s --> (%d):' % (w0, i)) if len(w1) == 0: break save(w0, w1) def chain(w0=None): """ """ if w0 is None: w0 = prompt(u'关键词:') if len(w0) == 0: return for i in count(start=1, step=1): w1 = prompt(u'%s --> (%d):' % (w0, i)) if len(w1) == 0: break save(w0, w1) w0 = w1 def readLevel(): while True: levelString = prompt(u'最大递归级数(3):') if len(levelString) == 0: levelString = 3 try: level = int(levelString) return level except Exception: print u'输入有误, 必须是整数!' def lookup(): """ """ w0 = prompt(u'关键字:') level = readLevel() qs = db.query('select w0, w1, count(*) n from relation group by w0, w1') df = DataFrame(list(qs)) tree = Tree() tree.create_node(w0, w0) appendList = [] def append(w0, level=5): if w0 in appendList or level == 0: return appendList.append(w0) for i, row in df[df['w0'] == w0].iterrows(): w1 = row['w1'] n = row['n'] # print w0, '-->', w1 if w1 not in tree: title = '%s[%d]' % (w1, n) tree.create_node(title, w1, parent=w0) else: # 出现循环 title = '%s[%d](*)' % (w1, n) tree.create_node(title, i, parent=w0) append(w1, level - 1) append(w0, level) tree.show() def quit(): """ """ print u'再见!' db.rollback() exit() def help(): """ """ print u'star: 星型添加' print u'chain: 链式添加' print u'commit: 保存' print u'rollback: 取消' print u'lookup: 查找' print u'quit: 退出' print u'help: 帮助' commands = { 'star': star, 'chain': chain, 'lookup': lookup, 'commit': commit, 'rollback': rollback, 'quit': quit, 'help': help, } def main(): """ """ # 打印logo f = Figlet(font='slant') print f.renderText('Mandala') # 读取并执行命令 try: while True: cmd = prompt(u'mandala>') if cmd in commands: commands[cmd]() else: print u'无效命令' except KeyboardInterrupt: quit() if __name__ == "__main__": main()
35da38996a54cfbccf733b5859960068514b4714
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2332/60592/271480.py
f602a8c01f31dbba291aa53971306002fff48fef
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
630
py
base = int(input()) tar = int(input()) res = 0 fun = [] te = 0 tem = tar while tem != 0: i = 0 if tem == 1: te += 1 break mark = 0 while mark <= tem: mark = pow(base,i) i+=1 te+=i-3 mark/=base tem-=mark if tem!= 0: te+=1 fun.append(te) te = 0 tem = tar while tem != 0: i = 0 if tem == 1 or tem == -1: te+=1 break mark = 0 while mark < abs(tem): mark = pow(base,i) i+=1 te+=i-2 if tem < 0: tem+=mark elif tem>0: tem-=mark if tem != 0: te+=1 fun.append(te) print(min(fun))
516a6530d09f3f2717a8b0cf0e85c849bb9f4ad0
f63907d2115becd64704ef1881f3bfcb7ba9047d
/sandbox/test/testTemplate.py
91ba4b483092ee7a004dca1be860007bfd13cdaa
[]
no_license
AseiSugiyama/NZMATH-Python3
d456610f72071a654531583228e439ffa8a4db0c
f65b176be2e58fafa0eea91f399c9ab17f3f478b
refs/heads/master
2020-05-21T07:26:51.434191
2019-04-27T09:52:18
2019-04-27T09:52:18
185,959,644
2
0
null
null
null
null
UTF-8
Python
false
false
989
py
import unittest import sandbox.hoge as hoge class HogeTest (unittest.TestCase): """ Test classes must inherite unittest.TestCase. They have name suffixed with 'Test'. """ def setUp(self): """ setUp is run before each test method run. """ pass def tearDown(self): """ tearDown is run after each test method run. """ pass def testHuga(self): """ Every test method have name prefixed with 'test'. """ # asserting something self.assert_(hoge.ishoge(), "optional message string") # asserting equality self.assertEqual(1, hoge.huga) # The following part is always unedited. def suite(suffix="Test"): suite = unittest.TestSuite() all_names = globals() for name in all_names: if name.endswith(suffix): suite.addTest(unittest.makeSuite(all_names[name], "test")) return suite if __name__ == '__main__': runner = unittest.TextTestRunner() runner.run(suite())
[ "devnull@localhost" ]
devnull@localhost
2b900473f8ebad3774236008a4ce12609bd077c4
c4af67db4c523d20f2d55aef90ba77db1fb53c38
/validation/tests/test_validation.py
c1128b9d609b6db323abf0d49d809d2207be7177
[]
no_license
dtgit/dtedu
e59b16612d7d9ea064026bf80a44657082ef45a3
d787885fe7ed0de6f9e40e9b05d852a0e9d60677
refs/heads/master
2020-04-06T05:22:50.025074
2009-04-08T20:13:20
2009-04-08T20:13:20
171,351
1
0
null
null
null
null
UTF-8
Python
false
false
3,060
py
from Testing import ZopeTestCase from Products.Archetypes.tests.atsitetestcase import ATSiteTestCase from Testing.ZopeTestCase import doctest from Products.validation import validation class TestValidation(ATSiteTestCase): def test_inNumericRange(self): v = validation.validatorFor('inNumericRange') self.failUnlessEqual(v(10, 1, 20), 1) self.failUnlessEqual(v('10', 1, 20), 1) self.failIfEqual(v(0, 4, 5), 1) def test_isPrintable(self): v = validation.validatorFor('isPrintable') self.failUnlessEqual(v('text'), 1) self.failIfEqual(v('\u203'), 1) self.failIfEqual(v(10), 1) def test_isSSN(self): v = validation.validatorFor('isSSN') self.failUnlessEqual(v('111223333'), 1) self.failUnlessEqual(v('111-22-3333', ignore=r'-'), 1) def test_isUSPhoneNumber(self): v = validation.validatorFor('isUSPhoneNumber') self.failUnlessEqual(v('(212) 555-1212', ignore=r'[\s\(\)\-]'), 1) self.failUnlessEqual(v('2125551212', ignore=r'[\s\(\)\-]'), 1) self.failUnlessEqual(v('(212) 555-1212'), 1) def test_isURL(self): v = validation.validatorFor('isURL') self.failUnlessEqual(v('http://foo.bar:8080/manage'), 1) self.failUnlessEqual(v('https://foo.bar:8080/manage'), 1) self.failUnlessEqual(v('irc://[email protected]:6667/#plone'), 1) self.failUnlessEqual(v('fish://tiran:password@myserver/~/'), 1) self.failIfEqual(v('http://\n'), 1) self.failIfEqual(v('../foo/bar'), 1) def test_isEmail(self): v = validation.validatorFor('isEmail') self.failUnlessEqual(v('[email protected]'), 1) self.failIfEqual(v('@foo.bar'), 1) self.failIfEqual(v('me'), 1) def test_isMailto(self): v = validation.validatorFor('isMailto') self.failUnlessEqual(v('mailto:[email protected]'), 1) self.failIfEqual(v('[email protected]'), 1) self.failIfEqual(v('mailto:@foo.bar'), 1) self.failIfEqual(v('@foo.bar'), 1) self.failIfEqual(v('mailto:'), 1) self.failIfEqual(v('me'), 1) def test_isUnixLikeName(self): v = validation.validatorFor('isUnixLikeName') self.failUnlessEqual(v('abcd'), 1) self.failUnless(v('a_123456'), 1) self.failIfEqual(v('123'), 1) self.failIfEqual(v('ab.c'), 1) self.failIfEqual(v('ab,c'), 1) self.failIfEqual(v('aaaaaaaab'), 1) # too long def test_isValidId(self): v = validation.validatorFor("isValidId") self.failIfEqual(v("a b", object()), 1) # TODO: more tests require a site def test_suite(): from unittest import TestSuite, makeSuite suite = TestSuite() suite.addTest(makeSuite(TestValidation)) doctests = ( 'Products.validation.validators.ExpressionValidator', ) for module in doctests: suite.addTest(doctest.DocTestSuite(module)) return suite
edd7334352747e1e9b08be0af986b1239e3ee6fe
5a25edcf994a760688dc7c933e8071bf4ff24df3
/exercises/ja/solution_01_08_01.py
01762ddd77ee431a33af88413c4449ddfc5b02bc
[ "CC-BY-NC-4.0", "MIT" ]
permissive
heyMP/spacy-course
8762990ed6179011680730d9c24d5d34c0a8d954
3740c717f0d1090b01c1b0fe23f8e30af3bf0101
refs/heads/master
2022-11-07T21:52:15.479840
2020-06-25T18:13:44
2020-06-25T18:13:44
275,202,487
1
0
MIT
2020-06-26T16:39:32
2020-06-26T16:39:31
null
UTF-8
Python
false
false
476
py
import spacy nlp = spacy.load("en_core_web_sm") text = "It’s official: Apple is the first U.S. public company to reach a $1 trillion market value" # テキストを処理 doc = nlp(text) for token in doc: # トークンの文字列、品詞タグ、依存関係ラベルを取得 token_text = token.text token_pos = token.pos_ token_dep = token.dep_ # フォーマットしてプリント print(f"{token_text:<12}{token_pos:<10}{token_dep:<10}")
2f7b555b8a023acfc59b3616b78949d6bc53ab5f
3349a0d44da04fd9fae7728ce1315ccf0c82285e
/556A - case of zeroes and ones.py
c96ebf9ebc0e1aad3e01b362c37be5bd17da4cdb
[]
no_license
umairnsr87/Data_Structures_Python
959848e546fd4f98959bc14470c26ce91bfb5c9c
05b5803521ed2ec7f64d95f08e2f014471dfdfd4
refs/heads/master
2023-07-18T12:11:55.245699
2023-07-16T17:01:09
2023-07-16T17:01:09
294,360,086
0
0
null
2023-07-16T17:01:10
2020-09-10T09:11:11
Python
UTF-8
Python
false
false
567
py
from collections import Counter test = int(input()) strings = input() # time complexity:O(n) # while '01' or '10' in strings: # if '01' in strings: # strings = strings.replace('01', '') # elif '10' in strings: # strings = strings.replace('10', '') # else: # break # # print(len(strings)) # time complexity:O(1) x = Counter(strings) if (x['0'] == x['1']) and (x['0'] + x['1']) == len(strings): print(0) elif not x['1'] or not x['0']: print(len(strings)) else: a = min(x['0'], x['1']) print(len(strings) - 2 * a)
d8068915b32c07cb896a8397d6b917f876d3b5fe
4549c02dac55f2b8ed113ddacf95264630d91698
/Predict/__init__.py
022ca012e6428d9d89aadfa04b3b27bb059bca6b
[]
no_license
kiminh/GPA
43077bb59797a096e3660b226642c5fe091a9663
29c5ffd8d7aa1bc3ebe6d83d1e55a997a04e4b60
refs/heads/master
2021-02-10T20:45:35.581410
2020-01-14T08:59:00
2020-01-14T08:59:00
244,417,955
1
0
null
2020-03-02T16:23:00
2020-03-02T16:23:00
null
UTF-8
Python
false
false
98
py
# -*- coding: utf-8 -*- # @Time : 2019/11/19 10:58 # @Author : zxl # @FileName: __init__.py.py
e607164ee72ed5d0071b455388700dbe366a225e
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_windlasses.py
6ee113296ad40900fcef0fed2db7fb643eaa9caf
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
#calss header class _WINDLASSES(): def __init__(self,): self.name = "WINDLASSES" self.definitions = windlass self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['windlass']
8c8e0126b4969636ebe2d414567e598beb70bf2c
e9a9955da9bee9be6580f1b1a75f97a1f99d0289
/login/migrations/0016_auto_20190803_1452.py
eb4f2ea18f1fff82b8ba290db60a29457a52f715
[]
no_license
Manjunatha1997/project_IT
bdb36142256b9d4eb1b75a76994d801dd3c33013
fe58a30d033d4f4ed818c0282a802fafcf3aaff5
refs/heads/master
2021-02-28T04:17:13.872903
2020-03-07T15:48:49
2020-03-07T15:48:49
245,661,299
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
# Generated by Django 2.1.7 on 2019-08-03 14:52 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('login', '0015_auto_20190803_0435'), ] operations = [ migrations.AlterField( model_name='profile', name='dob', field=models.DateField(default=datetime.datetime(2019, 8, 3, 14, 52, 29, 693918)), ), migrations.AlterField( model_name='profile', name='doj', field=models.DateField(default=datetime.datetime(2019, 8, 3, 14, 52, 29, 693948)), ), ]
f17669184ef2e9e58cc9613ffd6e8add89126ea3
09e8c92187ff8d7a726727041e2dd80850dcce3d
/leetcode/028_implement_strStr_TRICKY.py
7154dcc9281455ccd29a545cb11042da6c8c43ad
[]
no_license
kakru/puzzles
6dd72bd0585f526e75d026f3ba2446b0c14f60e0
b91bdf0e68605f7e517446f8a00b1e0f1897c24d
refs/heads/master
2020-04-09T09:47:31.341475
2019-05-03T21:24:41
2019-05-03T21:24:41
160,246,660
0
0
null
null
null
null
UTF-8
Python
false
false
1,846
py
#/usr/bin/env python3 import unittest class Solution: def strStr(self, haystack, needle): """ :type haystack: str :type needle: str :rtype: int """ h_len = len(haystack) n_len = len(needle) i = 0 while i <= h_len - n_len: if haystack[i:i+n_len] == needle: return i i += 1 return -1 # # There is a problem with a step by step solution it's easy to forget about: # haystack="mississippi", needle="issippi" # mississippi # issippi --> X # mississippi # issippi --> OK # the loop index on the haystack cannot go back to 0 !! class BasicTest(unittest.TestCase): def test_1(self): input_ = "hello", "ll" expected_output = 2 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) def test_2(self): input_ = "helo", "ll" expected_output = -1 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) def test_3(self): input_ = "abc", "" expected_output = 0 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) def test_4(self): input_ = "abc"*100000, "cab" expected_output = 2 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) def test_5(self): input_ = "a", "a" expected_output = 0 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) def test_6(self): input_ = "mississippi", "issippi" expected_output = 4 output = Solution().strStr(*input_) self.assertEqual(output, expected_output) if __name__ == '__main__': unittest.main(verbosity=2)
ea641622136b336a1f7196b18e51f101df6df097
d45bb44b0dfabfeff37c21a6ac0be1362782e39a
/utils/import_bookmarks.py
ea763b006243bdea76577f71ce07e8fba1168997
[]
no_license
SyJarvis/BookmarkManager
c25f9df8cb0d0719de805f8080a7ae78c5ac529c
dc3baf06fd47c4514b148134ee3d3fa03f7f1571
refs/heads/master
2023-03-26T17:14:17.776441
2021-03-21T14:58:58
2021-03-21T14:58:58
322,634,112
1
0
null
null
null
null
UTF-8
Python
false
false
647
py
from pyquery import PyQuery as pq class BookmarksTodb(): def __init__(self, filename='utils/bookmarks_2020_5_5_win.html'): with open(filename, 'r+', encoding='utf-8') as file: self.html = file.read() self.doc = pq(self.html) def get_cage_list(self): cage_li = [] items = self.doc('H3') for cage in items: cage_li.append(cage.text) return cage_li def get_url_list(self): lis = self.doc('A').items() datas = [] for li in lis: url_params = {} url_params['url'] = li.attr('href') url_params['title'] = li.text() print(url_params) datas.append(url_params) return datas
44f7d5e6d9055b7acb7c3147d5e6aa735fc3ce3e
a09e70355b756bd5cba55246e17eb0480af6257b
/examples/ble_demo_central.py
eb56a9cb9b54270e50eb0709aed3104e43dfecc4
[ "MIT" ]
permissive
devoh747/Adafruit_CircuitPython_BLE
9735381dc3481661af54ac32d89ec40e006edc5b
7566483e2dbdb1bf6c71d5629a2ed37b113c7cff
refs/heads/master
2020-08-09T04:14:59.774817
2019-10-10T21:11:07
2019-10-10T21:11:07
213,995,226
0
0
MIT
2019-10-09T18:33:32
2019-10-09T18:33:32
null
UTF-8
Python
false
false
1,319
py
""" Demonstration of a Bluefruit BLE Central. Connects to the first BLE UART peripheral it finds. Sends Bluefruit ColorPackets, read from three potentiometers, to the peripheral. """ import time import board from analogio import AnalogIn #from adafruit_bluefruit_connect.packet import Packet # Only the packet classes that are imported will be known to Packet. from adafruit_bluefruit_connect.color_packet import ColorPacket from adafruit_ble.scanner import Scanner from adafruit_ble.uart_client import UARTClient def scale(value): """Scale an value from 0-65535 (AnalogIn range) to 0-255 (RGB range)""" return int(value / 65535 * 255) scanner = Scanner() uart_client = UARTClient() a3 = AnalogIn(board.A3) a4 = AnalogIn(board.A4) a5 = AnalogIn(board.A5) while True: uart_addresses = [] # Keep trying to find a UART peripheral while not uart_addresses: uart_addresses = uart_client.scan(scanner) uart_client.connect(uart_addresses[0], 5) while uart_client.connected: r = scale(a3.value) g = scale(a4.value) b = scale(a5.value) color = (r, g, b) print(color) color_packet = ColorPacket(color) try: uart_client.write(color_packet.to_bytes()) except OSError: pass time.sleep(0.3)
3652ed9c9aa0576a74edaf5107cd392b4e4156b3
85c873074683ce54ab6056c42ca745f672867d72
/quora/lstm_lvm/model.py
415184aa3fd978ae5dcc8e9172689184ed6ff217
[]
no_license
jihunchoi/cross-sentence-lvm-public
46dbbec5c5cba3db38d42437f7f30dd4e4659fab
c48f890dc994fb538b47bea864c5bc3d182b622e
refs/heads/master
2022-11-25T08:19:14.639728
2020-07-28T05:25:51
2020-07-28T05:25:51
283,109,097
1
0
null
null
null
null
UTF-8
Python
false
false
13,256
py
from typing import Any, Dict, Optional, Union, List import torch from torch import nn from torch.distributions import Categorical from torch.nn import functional from allennlp.common.params import Params from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.modules.feedforward import FeedForward from allennlp.modules.token_embedders import Embedding from allennlp.modules.seq2seq_encoders import PytorchSeq2SeqWrapper from allennlp.modules.seq2vec_encoders import PytorchSeq2VecWrapper from allennlp.nn.activations import Activation from allennlp.nn.util import ( get_text_field_mask, sequence_cross_entropy_with_logits ) from allennlp.training.metrics import CategoricalAccuracy from modules.code_generators import GaussianCodeGenerator, VmfCodeGenerator from utils.metrics import ScalarMetric class SeparatedQuoraModel(Model): _NUM_LABELS = 2 def __init__(self, params: Params, vocab: Vocabulary) -> None: super().__init__(vocab=vocab) enc_hidden_dim = params.pop_int('enc_hidden_dim', 300) gen_hidden_dim = params.pop_int('gen_hidden_dim', 300) disc_hidden_dim = params.pop_int('disc_hidden_dim', 1200) disc_num_layers = params.pop_int('disc_num_layers', 1) code_dist_type = params.pop_choice( 'code_dist_type', ['gaussian', 'vmf'], default_to_first_choice=True) code_dim = params.pop_int('code_dim', 300) tie_embedding = params.pop_bool('tie_embedding', False) emb_dropout = params.pop_float('emb_dropout', 0.0) disc_dropout = params.pop_float('disc_dropout', 0.0) l2_weight = params.pop_float('l2_weight', 0.0) self.emb_dropout = nn.Dropout(emb_dropout) self.disc_dropout = nn.Dropout(disc_dropout) self._l2_weight = l2_weight self._token_embedder = Embedding.from_params( vocab=vocab, params=params.pop('token_embedder')) self._encoder = PytorchSeq2VecWrapper( nn.LSTM(input_size=self._token_embedder.get_output_dim(), hidden_size=enc_hidden_dim, batch_first=True)) self._generator = PytorchSeq2SeqWrapper( nn.LSTM(input_size=(self._token_embedder.get_output_dim() + code_dim), hidden_size=gen_hidden_dim, batch_first=True)) self._generator_projector = nn.Linear( in_features=self._generator.get_output_dim(), out_features=vocab.get_vocab_size()) if tie_embedding: self._generator_projector.weight = self._token_embedder.weight if code_dist_type == 'vmf': vmf_kappa = params.pop_int('vmf_kappa', 150) self._code_generator = VmfCodeGenerator( input_dim=self._encoder.get_output_dim(), code_dim=code_dim, kappa=vmf_kappa) elif code_dist_type == 'gaussian': self._code_generator = GaussianCodeGenerator( input_dim=self._encoder.get_output_dim(), code_dim=code_dim) else: raise ValueError('Unknown code_dist_type') self._discriminator = FeedForward( input_dim=2 * self._code_generator.get_output_dim(), hidden_dims=[disc_hidden_dim]*disc_num_layers + [self._NUM_LABELS], num_layers=disc_num_layers + 1, activations=[Activation.by_name('relu')()] * disc_num_layers + [Activation.by_name('linear')()], dropout=disc_dropout) self._kl_weight = 1.0 self._discriminator_weight = params.pop_float( 'discriminator_weight', 0.1) self._gumbel_temperature = 1.0 # Metrics self._metrics = { 'generator_loss': ScalarMetric(), 'kl_divergence': ScalarMetric(), 'discriminator_accuracy': CategoricalAccuracy(), 'discriminator_loss': ScalarMetric(), 'loss': ScalarMetric() } def get_regularization_penalty(self): sum_sq = sum(p.pow(2).sum() for p in self.parameters()) l2_norm = sum_sq.sqrt() return self.l2_weight * l2_norm @property def l2_weight(self): return self._l2_weight @property def kl_weight(self): return self._kl_weight @kl_weight.setter def kl_weight(self, value): self._kl_weight = value @property def discriminator_weight(self): return self._discriminator_weight @discriminator_weight.setter def discriminator_weight(self, value): self._discriminator_weight = value def embed(self, tokens: torch.Tensor) -> torch.Tensor: return self._token_embedder(tokens) def encode(self, inputs: torch.Tensor, mask: torch.Tensor, drop_start_token: bool = True) -> torch.Tensor: if drop_start_token: inputs = inputs[:, 1:] mask = mask[:, 1:] enc_hidden = self._encoder(inputs.contiguous(), mask) return enc_hidden def sample_code_and_compute_kld(self, hidden: torch.Tensor) -> torch.Tensor: return self._code_generator(hidden) def discriminate(self, premise_hidden: torch.Tensor, hypothesis_hidden: torch.Tensor) -> torch.Tensor: disc_input = torch.cat( [premise_hidden + hypothesis_hidden, (premise_hidden - hypothesis_hidden).abs()], dim=-1) disc_input = self.disc_dropout(disc_input) disc_logits = self._discriminator(disc_input) return disc_logits def construct_generator_inputs(self, embeddings: torch.Tensor, code: torch.Tensor) -> torch.Tensor: batch_size, max_length, _ = embeddings.shape code_expand = code.unsqueeze(1).expand( batch_size, max_length, -1) inputs = torch.cat([embeddings, code_expand], dim=-1) return inputs def generate(self, code: torch.Tensor, max_length: torch.Tensor) -> torch.Tensor: start_index = self.vocab.get_token_index('<s>') end_index = self.vocab.get_token_index('</s>') pad_index = 0 done = torch.zeros_like(max_length).long() max_max_length = max_length.max().item() prev_word = (torch.empty_like(done).long().unsqueeze(1) .fill_(start_index)) generated = [] self._generator.stateful = True self._generator.reset_states() for t in range(max_max_length): if done.byte().all(): break prev_word_emb = self.embed(prev_word) input_t = self.construct_generator_inputs( embeddings=prev_word_emb, code=code) hidden_t = self._generator(input_t, 1 - done.unsqueeze(1)) pred_t = self._generator_projector(hidden_t).argmax(2) pred_t.masked_fill_(done.byte(), pad_index) generated.append(pred_t) done.masked_fill_(pred_t.eq(end_index).squeeze(1), 1) done.masked_fill_(max_length.le(t + 1), 1) prev_word = pred_t self._generator.stateful = False generated = torch.cat(generated, dim=1) return generated def convert_to_readable_text(self, generated: torch.Tensor) -> List[List[str]]: sequences = [seq.cpu().tolist() for seq in generated.unbind(0)] readable_sequences = [] for seq in sequences: readable_seq = [] for word_index in seq: if word_index != 0: word = self.vocab.get_token_from_index(word_index) readable_seq.append(word) readable_sequences.append(readable_seq) return readable_sequences def compute_generator_loss(self, embeddings: torch.Tensor, code: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: inputs = self.construct_generator_inputs( embeddings=embeddings, code=code) hiddens = self._generator(inputs.contiguous(), mask) logits = self._generator_projector(hiddens) weights = mask.float() loss = sequence_cross_entropy_with_logits( logits=logits, targets=targets.contiguous(), weights=weights, average=None) return loss def forward(self, premise: Dict[str, torch.Tensor], hypothesis: Dict[str, torch.Tensor], label: Optional[torch.Tensor] = None) -> Dict[str, Any]: """ premise and hypothesis are padded with the BOS and the EOS token. """ pre_mask = get_text_field_mask(premise) hyp_mask = get_text_field_mask(hypothesis) pre_tokens = premise['tokens'] hyp_tokens = hypothesis['tokens'] pre_token_embs = self.embed(pre_tokens) hyp_token_embs = self.embed(hyp_tokens) pre_token_embs = self.emb_dropout(pre_token_embs) hyp_token_embs = self.emb_dropout(hyp_token_embs) output_dict = {} pre_hidden = self.encode( inputs=pre_token_embs, mask=pre_mask, drop_start_token=True) hyp_hidden = self.encode( inputs=hyp_token_embs, mask=hyp_mask, drop_start_token=True) pre_code, pre_kld = self.sample_code_and_compute_kld(pre_hidden) hyp_code, hyp_kld = self.sample_code_and_compute_kld(hyp_hidden) pre_kld = pre_kld.mean() hyp_kld = hyp_kld.mean() pre_gen_mask = pre_mask[:, 1:] hyp_gen_mask = hyp_mask[:, 1:] pre_gen_loss = self.compute_generator_loss( embeddings=pre_token_embs[:, :-1], code=pre_code, targets=pre_tokens[:, 1:], mask=pre_gen_mask) hyp_gen_loss = self.compute_generator_loss( embeddings=hyp_token_embs[:, :-1], code=hyp_code, targets=hyp_tokens[:, 1:], mask=hyp_gen_mask) pre_gen_loss = pre_gen_loss.mean() hyp_gen_loss = hyp_gen_loss.mean() gen_loss = pre_gen_loss + hyp_gen_loss kld = pre_kld + hyp_kld loss = gen_loss + self.kl_weight*kld if label is not None: disc_logits = self.discriminate(premise_hidden=pre_code, hypothesis_hidden=hyp_code) disc_loss = functional.cross_entropy( input=disc_logits, target=label) loss = loss + self.discriminator_weight*disc_loss output_dict['discriminator_loss'] = disc_loss self._metrics['discriminator_loss'](disc_loss) self._metrics['discriminator_accuracy']( predictions=disc_logits, gold_labels=label) output_dict['generator_loss'] = gen_loss output_dict['kl_divergence'] = kld output_dict['loss'] = loss self._metrics['generator_loss'](gen_loss) self._metrics['kl_divergence'](kld) self._metrics['loss'](loss) return output_dict def get_metrics(self, reset: bool = False ) -> Dict[str, Union[float, Dict[str, float]]]: metrics = {k: v.get_metric(reset=reset) for k, v in self._metrics.items()} metrics['kl_weight'] = self.kl_weight metrics['discriminator_weight'] = self.discriminator_weight return metrics def test_labeled(): from pprint import pprint params = Params({ 'token_embedder': { 'num_embeddings': 4, 'embedding_dim': 3 }, 'code_dist_type': 'vmf', 'vmf_kappa': 100 }) vocab = Vocabulary() while True: vocab_size = vocab.get_vocab_size() if vocab_size == 4: break vocab.add_token_to_namespace('a' + str(vocab_size)) model = SeparatedQuoraModel(params=params, vocab=vocab) premise = {'tokens': torch.randint(low=0, high=4, size=(5, 6))} hypothesis = {'tokens': torch.randint(low=0, high=4, size=(5, 7))} label = torch.randint(low=0, high=3, size=(5,)) output = model(premise=premise, hypothesis=hypothesis, label=label) pprint(output) pprint(model.get_metrics()) def test_unlabeled(): from pprint import pprint params = Params({ 'token_embedder': { 'num_embeddings': 4, 'embedding_dim': 3 }, 'code_dist_type': 'gaussian' }) vocab = Vocabulary() while True: vocab_size = vocab.get_vocab_size() if vocab_size == 4: break vocab.add_token_to_namespace('a' + str(vocab_size)) model = SeparatedQuoraModel(params=params, vocab=vocab) premise = {'tokens': torch.randint(low=0, high=4, size=(5, 6))} hypothesis = {'tokens': torch.randint(low=0, high=4, size=(5, 7))} output = model(premise=premise, hypothesis=hypothesis, label=None) pprint(output) pprint(model.get_metrics()) if __name__ == '__main__': test_labeled() test_unlabeled()
26abf2b58ee4ed7a69f2c069c5026e46fd6d5427
419873dd3b7412f704b1a7907b64a60b44cedf39
/python/树/103. 二叉树的锯齿形层次遍历.py
b3b9739640c5bbaeecf8e7c3f913e970275761a9
[]
no_license
Weless/leetcode
0585c5bfa260713f44dabc51fa58ebf8a10e7814
0566622daa5849f7deb0cfdc6de2282fb3127f4c
refs/heads/master
2021-11-13T07:59:20.299920
2021-10-25T02:09:53
2021-10-25T02:09:53
203,720,668
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None from typing import List class Solution: def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]: if not root: return [] from collections import deque queue = deque() queue.append(root) res = [] level = 1 while queue: tmp = [] for _ in range(len(queue)): node = queue.popleft() tmp.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) if level % 2 == 0: res.append(tmp[::-1]) else: res.append(tmp) level += 1 return res
0a912a7112a0beabf813cc00fba1cdb7c2e3daad
d35167f7ab29813d926bd702fa652090556befdf
/generated/test_facebookresearch_TimeSformer.py
7cf65f94103dda891ae436570da86b4a73b849eb
[]
no_license
jansel/pytorch-jit-paritybench
65e5311d43daf5065beac52a68488ce188199fa8
7e55a422588c1d1e00f35a3d3a3ff896cce59e18
refs/heads/master
2023-08-12T04:43:16.669114
2023-06-08T17:36:32
2023-06-08T17:36:32
270,464,378
35
15
null
2023-06-08T17:36:34
2020-06-07T23:42:50
Python
UTF-8
Python
false
false
111,676
py
import sys _module = sys.modules[__name__] del sys setup = _module timesformer = _module config = _module defaults = _module datasets = _module build = _module cv2_transform = _module decoder = _module kinetics = _module loader = _module multigrid_helper = _module ssv2 = _module transform = _module utils = _module video_container = _module models = _module batchnorm_helper = _module build = _module conv2d_same = _module custom_video_model_builder = _module features = _module head_helper = _module helpers = _module linear = _module losses = _module nonlocal_helper = _module operators = _module optimizer = _module resnet_helper = _module stem_helper = _module video_model_builder = _module vit = _module vit_utils = _module ava_eval_helper = _module ava_evaluation = _module label_map_util = _module metrics = _module np_box_list = _module np_box_list_ops = _module np_box_mask_list = _module np_box_mask_list_ops = _module np_box_ops = _module np_mask_ops = _module object_detection_evaluation = _module per_image_evaluation = _module standard_fields = _module benchmark = _module bn_helper = _module c2_model_loading = _module checkpoint = _module distributed = _module env = _module logging = _module lr_policy = _module meters = _module metrics = _module misc = _module multigrid = _module multiprocessing = _module parser = _module weight_init_helper = _module visualization = _module tensorboard_vis = _module utils = _module run_net = _module submit = _module test_net = _module train_net = _module visualization = _module from _paritybench_helpers import _mock_config, patch_functional from unittest.mock import mock_open, MagicMock from torch.autograd import Function from torch.nn import Module import abc, collections, copy, enum, functools, inspect, itertools, logging, math, matplotlib, numbers, numpy, pandas, queue, random, re, scipy, sklearn, string, tensorflow, time, torch, torchaudio, torchtext, torchvision, types, typing, uuid, warnings import numpy as np from torch import Tensor patch_functional() open = mock_open() yaml = logging = sys = argparse = MagicMock() ArgumentParser = argparse.ArgumentParser _global_config = args = argv = cfg = config = params = _mock_config() argparse.ArgumentParser.return_value.parse_args.return_value = _global_config yaml.load.return_value = _global_config sys.argv = _global_config __version__ = '1.0.0' xrange = range wraps = functools.wraps import math import numpy as np import random import torch import torchvision.io as io import torch.utils.data import itertools from torch.utils.data._utils.collate import default_collate from torch.utils.data.distributed import DistributedSampler from torch.utils.data.sampler import RandomSampler from torch.utils.data.sampler import Sampler from itertools import chain as chain import logging import time from collections import defaultdict from functools import partial import torch.distributed as dist import torch.nn as nn from torch.autograd.function import Function import torch.nn.functional as F from typing import Tuple from typing import Optional from typing import List from collections import OrderedDict from copy import deepcopy from typing import Dict from typing import Callable import torch.utils.model_zoo as model_zoo from torch import nn as nn from torch import einsum from torch.nn.modules.module import Module from torch.nn.modules.activation import MultiheadAttention from torch.nn import ReplicationPad3d import copy import warnings from itertools import repeat import functools from collections import deque from sklearn.metrics import average_precision_score from matplotlib import pyplot as plt from torch import nn import logging as log import matplotlib.pyplot as plt from torch.utils.tensorboard import SummaryWriter from torchvision.utils import make_grid from sklearn.metrics import confusion_matrix import scipy.io class SubBatchNorm3d(nn.Module): """ The standard BN layer computes stats across all examples in a GPU. In some cases it is desirable to compute stats across only a subset of examples (e.g., in multigrid training https://arxiv.org/abs/1912.00998). SubBatchNorm3d splits the batch dimension into N splits, and run BN on each of them separately (so that the stats are computed on each subset of examples (1/N of batch) independently. During evaluation, it aggregates the stats from all splits into one BN. """ def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args['num_features'] if args.get('affine', True): self.affine = True args['affine'] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args['num_features'] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2).view(n, -1).sum(0) / n return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: self.bn.running_mean.data, self.bn.running_var.data = self._get_aggregated_mean_std(self.split_bn.running_mean, self.split_bn.running_var, self.num_splits) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x class GroupGather(Function): """ GroupGather performs all gather on each of the local process/ GPU groups. """ @staticmethod def forward(ctx, input, num_sync_devices, num_groups): """ Perform forwarding, gathering the stats across different process/ GPU group. """ ctx.num_sync_devices = num_sync_devices ctx.num_groups = num_groups input_list = [torch.zeros_like(input) for k in range(du.get_local_size())] dist.all_gather(input_list, input, async_op=False, group=du._LOCAL_PROCESS_GROUP) inputs = torch.stack(input_list, dim=0) if num_groups > 1: rank = du.get_local_rank() group_idx = rank // num_sync_devices inputs = inputs[group_idx * num_sync_devices:(group_idx + 1) * num_sync_devices] inputs = torch.sum(inputs, dim=0) return inputs @staticmethod def backward(ctx, grad_output): """ Perform backwarding, gathering the gradients across different process/ GPU group. """ grad_output_list = [torch.zeros_like(grad_output) for k in range(du.get_local_size())] dist.all_gather(grad_output_list, grad_output, async_op=False, group=du._LOCAL_PROCESS_GROUP) grads = torch.stack(grad_output_list, dim=0) if ctx.num_groups > 1: rank = du.get_local_rank() group_idx = rank // ctx.num_sync_devices grads = grads[group_idx * ctx.num_sync_devices:(group_idx + 1) * ctx.num_sync_devices] grads = torch.sum(grads, dim=0) return grads, None, None class NaiveSyncBatchNorm3d(nn.BatchNorm3d): def __init__(self, num_sync_devices, **args): """ Naive version of Synchronized 3D BatchNorm. Args: num_sync_devices (int): number of device to sync. args (list): other arguments. """ self.num_sync_devices = num_sync_devices if self.num_sync_devices > 0: assert du.get_local_size() % self.num_sync_devices == 0, (du.get_local_size(), self.num_sync_devices) self.num_groups = du.get_local_size() // self.num_sync_devices else: self.num_sync_devices = du.get_local_size() self.num_groups = 1 super(NaiveSyncBatchNorm3d, self).__init__(**args) def forward(self, input): if du.get_local_size() == 1 or not self.training: return super().forward(input) assert input.shape[0] > 0, 'SyncBatchNorm does not support empty inputs' C = input.shape[1] mean = torch.mean(input, dim=[0, 2, 3, 4]) meansqr = torch.mean(input * input, dim=[0, 2, 3, 4]) vec = torch.cat([mean, meansqr], dim=0) vec = GroupGather.apply(vec, self.num_sync_devices, self.num_groups) * (1.0 / self.num_sync_devices) mean, meansqr = torch.split(vec, C) var = meansqr - mean * mean self.running_mean += self.momentum * (mean.detach() - self.running_mean) self.running_var += self.momentum * (var.detach() - self.running_var) invstd = torch.rsqrt(var + self.eps) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape(1, -1, 1, 1, 1) bias = bias.reshape(1, -1, 1, 1, 1) return input * scale + bias def get_same_padding(x: int, k: int, s: int, d: int): return max((int(math.ceil(x // s)) - 1) * s + (k - 1) * d + 1 - x, 0) def pad_same(x, k, s, d=(1, 1), value=0): ih, iw = x.size()[-2:] pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw, k[1], s[1], d[1]) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2], value=value) return x def conv2d_same(x, weight: torch.Tensor, bias: Optional[torch.Tensor]=None, stride: Tuple[int, int]=(1, 1), padding: Tuple[int, int]=(0, 0), dilation: Tuple[int, int]=(1, 1), groups: int=1): x = pad_same(x, weight.shape[-2:], stride, dilation) return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) class Conv2dSame(nn.Conv2d): """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(Conv2dSame, self).__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) def forward(self, x): return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class FeatureInfo: def __init__(self, feature_info: List[Dict], out_indices: Tuple[int]): prev_reduction = 1 for fi in feature_info: assert 'num_chs' in fi and fi['num_chs'] > 0 assert 'reduction' in fi and fi['reduction'] >= prev_reduction prev_reduction = fi['reduction'] assert 'module' in fi self.out_indices = out_indices self.info = feature_info def from_other(self, out_indices: Tuple[int]): return FeatureInfo(deepcopy(self.info), out_indices) def get(self, key, idx=None): """ Get value by key at specified index (indices) if idx == None, returns value for key at each output index if idx is an integer, return value for that feature module index (ignoring output indices) if idx is a list/tupple, return value for each module index (ignoring output indices) """ if idx is None: return [self.info[i][key] for i in self.out_indices] if isinstance(idx, (tuple, list)): return [self.info[i][key] for i in idx] else: return self.info[idx][key] def get_dicts(self, keys=None, idx=None): """ return info dicts for specified keys (or all if None) at specified indices (or out_indices if None) """ if idx is None: if keys is None: return [self.info[i] for i in self.out_indices] else: return [{k: self.info[i][k] for k in keys} for i in self.out_indices] if isinstance(idx, (tuple, list)): return [(self.info[i] if keys is None else {k: self.info[i][k] for k in keys}) for i in idx] else: return self.info[idx] if keys is None else {k: self.info[idx][k] for k in keys} def channels(self, idx=None): """ feature channels accessor """ return self.get('num_chs', idx) def reduction(self, idx=None): """ feature reduction (output stride) accessor """ return self.get('reduction', idx) def module_name(self, idx=None): """ feature module name accessor """ return self.get('module', idx) def __getitem__(self, item): return self.info[item] def __len__(self): return len(self.info) def _get_feature_info(net, out_indices): feature_info = getattr(net, 'feature_info') if isinstance(feature_info, FeatureInfo): return feature_info.from_other(out_indices) elif isinstance(feature_info, (list, tuple)): return FeatureInfo(net.feature_info, out_indices) else: assert False, 'Provided feature_info is not valid' def _get_return_layers(feature_info, out_map): module_names = feature_info.module_name() return_layers = {} for i, name in enumerate(module_names): return_layers[name] = out_map[i] if out_map is not None else feature_info.out_indices[i] return return_layers def _module_list(module, flatten_sequential=False): ml = [] for name, module in module.named_children(): if flatten_sequential and isinstance(module, nn.Sequential): for child_name, child_module in module.named_children(): combined = [name, child_name] ml.append(('_'.join(combined), '.'.join(combined), child_module)) else: ml.append((name, name, module)) return ml class FeatureDictNet(nn.ModuleDict): """ Feature extractor with OrderedDict return Wrap a model and extract features as specified by the out indices, the network is partially re-built from contained modules. There is a strong assumption that the modules have been registered into the model in the same order as they are used. There should be no reuse of the same nn.Module more than once, including trivial modules like `self.relu = nn.ReLU`. Only submodules that are directly assigned to the model class (`model.feature1`) or at most one Sequential container deep (`model.features.1`, with flatten_sequent=True) can be captured. All Sequential containers that are directly assigned to the original model will have their modules assigned to this module with the name `model.features.1` being changed to `model.features_1` Arguments: model (nn.Module): model from which we will extract the features out_indices (tuple[int]): model output indices to extract features for out_map (sequence): list or tuple specifying desired return id for each out index, otherwise str(index) is used feature_concat (bool): whether to concatenate intermediate features that are lists or tuples vs select element [0] flatten_sequential (bool): whether to flatten sequential modules assigned to model """ def __init__(self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): super(FeatureDictNet, self).__init__() self.feature_info = _get_feature_info(model, out_indices) self.concat = feature_concat self.return_layers = {} return_layers = _get_return_layers(self.feature_info, out_map) modules = _module_list(model, flatten_sequential=flatten_sequential) remaining = set(return_layers.keys()) layers = OrderedDict() for new_name, old_name, module in modules: layers[new_name] = module if old_name in remaining: self.return_layers[new_name] = str(return_layers[old_name]) remaining.remove(old_name) if not remaining: break assert not remaining and len(self.return_layers) == len(return_layers), f'Return layers ({remaining}) are not present in model' self.update(layers) def _collect(self, x) ->Dict[str, torch.Tensor]: out = OrderedDict() for name, module in self.items(): x = module(x) if name in self.return_layers: out_id = self.return_layers[name] if isinstance(x, (tuple, list)): out[out_id] = torch.cat(x, 1) if self.concat else x[0] else: out[out_id] = x return out def forward(self, x) ->Dict[str, torch.Tensor]: return self._collect(x) class FeatureListNet(FeatureDictNet): """ Feature extractor with list return See docstring for FeatureDictNet above, this class exists only to appease Torchscript typing constraints. In eager Python we could have returned List[Tensor] vs Dict[id, Tensor] based on a member bool. """ def __init__(self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, feature_concat=False, flatten_sequential=False): super(FeatureListNet, self).__init__(model, out_indices=out_indices, out_map=out_map, feature_concat=feature_concat, flatten_sequential=flatten_sequential) def forward(self, x) ->List[torch.Tensor]: return list(self._collect(x).values()) class FeatureHooks: """ Feature Hook Helper This module helps with the setup and extraction of hooks for extracting features from internal nodes in a model by node name. This works quite well in eager Python but needs redesign for torcscript. """ def __init__(self, hooks, named_modules, out_map=None, default_hook_type='forward'): modules = {k: v for k, v in named_modules} for i, h in enumerate(hooks): hook_name = h['module'] m = modules[hook_name] hook_id = out_map[i] if out_map else hook_name hook_fn = partial(self._collect_output_hook, hook_id) hook_type = h['hook_type'] if 'hook_type' in h else default_hook_type if hook_type == 'forward_pre': m.register_forward_pre_hook(hook_fn) elif hook_type == 'forward': m.register_forward_hook(hook_fn) else: assert False, 'Unsupported hook type' self._feature_outputs = defaultdict(OrderedDict) def _collect_output_hook(self, hook_id, *args): x = args[-1] if isinstance(x, tuple): x = x[0] self._feature_outputs[x.device][hook_id] = x def get_output(self, device) ->Dict[str, torch.tensor]: output = self._feature_outputs[device] self._feature_outputs[device] = OrderedDict() return output class FeatureHookNet(nn.ModuleDict): """ FeatureHookNet Wrap a model and extract features specified by the out indices using forward/forward-pre hooks. If `no_rewrite` is True, features are extracted via hooks without modifying the underlying network in any way. If `no_rewrite` is False, the model will be re-written as in the FeatureList/FeatureDict case by folding first to second (Sequential only) level modules into this one. FIXME this does not currently work with Torchscript, see FeatureHooks class """ def __init__(self, model, out_indices=(0, 1, 2, 3, 4), out_map=None, out_as_dict=False, no_rewrite=False, feature_concat=False, flatten_sequential=False, default_hook_type='forward'): super(FeatureHookNet, self).__init__() assert not torch.jit.is_scripting() self.feature_info = _get_feature_info(model, out_indices) self.out_as_dict = out_as_dict layers = OrderedDict() hooks = [] if no_rewrite: assert not flatten_sequential if hasattr(model, 'reset_classifier'): model.reset_classifier(0) layers['body'] = model hooks.extend(self.feature_info.get_dicts()) else: modules = _module_list(model, flatten_sequential=flatten_sequential) remaining = {f['module']: (f['hook_type'] if 'hook_type' in f else default_hook_type) for f in self.feature_info.get_dicts()} for new_name, old_name, module in modules: layers[new_name] = module for fn, fm in module.named_modules(prefix=old_name): if fn in remaining: hooks.append(dict(module=fn, hook_type=remaining[fn])) del remaining[fn] if not remaining: break assert not remaining, f'Return layers ({remaining}) are not present in model' self.update(layers) self.hooks = FeatureHooks(hooks, model.named_modules(), out_map=out_map) def forward(self, x): for name, module in self.items(): x = module(x) out = self.hooks.get_output(x.device) return out if self.out_as_dict else list(out.values()) class ResNetBasicHead(nn.Module): """ ResNe(X)t 3D head. This layer performs a fully-connected projection during training, when the input size is 1x1x1. It performs a convolutional projection during testing when the input size is larger than 1x1x1. If the inputs are from multiple different pathways, the inputs will be concatenated after pooling. """ def __init__(self, dim_in, num_classes, pool_size, dropout_rate=0.0, act_func='softmax'): """ The `__init__` method of any subclass should also contain these arguments. ResNetBasicHead takes p pathways as input where p in [1, infty]. Args: dim_in (list): the list of channel dimensions of the p inputs to the ResNetHead. num_classes (int): the channel dimensions of the p outputs to the ResNetHead. pool_size (list): the list of kernel sizes of p spatial temporal poolings, temporal pool kernel size, spatial pool kernel size, spatial pool kernel size in order. dropout_rate (float): dropout rate. If equal to 0.0, perform no dropout. act_func (string): activation function to use. 'softmax': applies softmax on the output. 'sigmoid': applies sigmoid on the output. """ super(ResNetBasicHead, self).__init__() assert len({len(pool_size), len(dim_in)}) == 1, 'pathway dimensions are not consistent.' self.num_pathways = len(pool_size) for pathway in range(self.num_pathways): if pool_size[pathway] is None: avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1)) else: avg_pool = nn.AvgPool3d(pool_size[pathway], stride=1) self.add_module('pathway{}_avgpool'.format(pathway), avg_pool) if dropout_rate > 0.0: self.dropout = nn.Dropout(dropout_rate) self.projection = nn.Linear(sum(dim_in), num_classes, bias=True) if act_func == 'softmax': self.act = nn.Softmax(dim=4) elif act_func == 'sigmoid': self.act = nn.Sigmoid() else: raise NotImplementedError('{} is not supported as an activationfunction.'.format(act_func)) def forward(self, inputs): assert len(inputs) == self.num_pathways, 'Input tensor does not contain {} pathway'.format(self.num_pathways) pool_out = [] for pathway in range(self.num_pathways): m = getattr(self, 'pathway{}_avgpool'.format(pathway)) pool_out.append(m(inputs[pathway])) x = torch.cat(pool_out, 1) x = x.permute((0, 2, 3, 4, 1)) if hasattr(self, 'dropout'): x = self.dropout(x) x = self.projection(x) if not self.training: x = self.act(x) x = x.mean([1, 2, 3]) x = x.view(x.shape[0], -1) return x class X3DHead(nn.Module): """ X3D head. This layer performs a fully-connected projection during training, when the input size is 1x1x1. It performs a convolutional projection during testing when the input size is larger than 1x1x1. If the inputs are from multiple different pathways, the inputs will be concatenated after pooling. """ def __init__(self, dim_in, dim_inner, dim_out, num_classes, pool_size, dropout_rate=0.0, act_func='softmax', inplace_relu=True, eps=1e-05, bn_mmt=0.1, norm_module=nn.BatchNorm3d, bn_lin5_on=False): """ The `__init__` method of any subclass should also contain these arguments. X3DHead takes a 5-dim feature tensor (BxCxTxHxW) as input. Args: dim_in (float): the channel dimension C of the input. num_classes (int): the channel dimensions of the output. pool_size (float): a single entry list of kernel size for spatiotemporal pooling for the TxHxW dimensions. dropout_rate (float): dropout rate. If equal to 0.0, perform no dropout. act_func (string): activation function to use. 'softmax': applies softmax on the output. 'sigmoid': applies sigmoid on the output. inplace_relu (bool): if True, calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. bn_lin5_on (bool): if True, perform normalization on the features before the classifier. """ super(X3DHead, self).__init__() self.pool_size = pool_size self.dropout_rate = dropout_rate self.num_classes = num_classes self.act_func = act_func self.eps = eps self.bn_mmt = bn_mmt self.inplace_relu = inplace_relu self.bn_lin5_on = bn_lin5_on self._construct_head(dim_in, dim_inner, dim_out, norm_module) def _construct_head(self, dim_in, dim_inner, dim_out, norm_module): self.conv_5 = nn.Conv3d(dim_in, dim_inner, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=False) self.conv_5_bn = norm_module(num_features=dim_inner, eps=self.eps, momentum=self.bn_mmt) self.conv_5_relu = nn.ReLU(self.inplace_relu) if self.pool_size is None: self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1)) else: self.avg_pool = nn.AvgPool3d(self.pool_size, stride=1) self.lin_5 = nn.Conv3d(dim_inner, dim_out, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=(0, 0, 0), bias=False) if self.bn_lin5_on: self.lin_5_bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt) self.lin_5_relu = nn.ReLU(self.inplace_relu) if self.dropout_rate > 0.0: self.dropout = nn.Dropout(self.dropout_rate) self.projection = nn.Linear(dim_out, self.num_classes, bias=True) if self.act_func == 'softmax': self.act = nn.Softmax(dim=4) elif self.act_func == 'sigmoid': self.act = nn.Sigmoid() else: raise NotImplementedError('{} is not supported as an activationfunction.'.format(self.act_func)) def forward(self, inputs): assert len(inputs) == 1, 'Input tensor does not contain 1 pathway' x = self.conv_5(inputs[0]) x = self.conv_5_bn(x) x = self.conv_5_relu(x) x = self.avg_pool(x) x = self.lin_5(x) if self.bn_lin5_on: x = self.lin_5_bn(x) x = self.lin_5_relu(x) x = x.permute((0, 2, 3, 4, 1)) if hasattr(self, 'dropout'): x = self.dropout(x) x = self.projection(x) if not self.training: x = self.act(x) x = x.mean([1, 2, 3]) x = x.view(x.shape[0], -1) return x class Linear(nn.Linear): def forward(self, input: torch.Tensor) ->torch.Tensor: if torch.jit.is_scripting(): bias = self.bias if self.bias is not None else None return F.linear(input, self.weight, bias=bias) else: return F.linear(input, self.weight, self.bias) class Nonlocal(nn.Module): """ Builds Non-local Neural Networks as a generic family of building blocks for capturing long-range dependencies. Non-local Network computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. More details in the paper: https://arxiv.org/pdf/1711.07971.pdf """ def __init__(self, dim, dim_inner, pool_size=None, instantiation='softmax', zero_init_final_conv=False, zero_init_final_norm=True, norm_eps=1e-05, norm_momentum=0.1, norm_module=nn.BatchNorm3d): """ Args: dim (int): number of dimension for the input. dim_inner (int): number of dimension inside of the Non-local block. pool_size (list): the kernel size of spatial temporal pooling, temporal pool kernel size, spatial pool kernel size, spatial pool kernel size in order. By default pool_size is None, then there would be no pooling used. instantiation (string): supports two different instantiation method: "dot_product": normalizing correlation matrix with L2. "softmax": normalizing correlation matrix with Softmax. zero_init_final_conv (bool): If true, zero initializing the final convolution of the Non-local block. zero_init_final_norm (bool): If true, zero initializing the final batch norm of the Non-local block. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(Nonlocal, self).__init__() self.dim = dim self.dim_inner = dim_inner self.pool_size = pool_size self.instantiation = instantiation self.use_pool = False if pool_size is None else any(size > 1 for size in pool_size) self.norm_eps = norm_eps self.norm_momentum = norm_momentum self._construct_nonlocal(zero_init_final_conv, zero_init_final_norm, norm_module) def _construct_nonlocal(self, zero_init_final_conv, zero_init_final_norm, norm_module): self.conv_theta = nn.Conv3d(self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0) self.conv_phi = nn.Conv3d(self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0) self.conv_g = nn.Conv3d(self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0) self.conv_out = nn.Conv3d(self.dim_inner, self.dim, kernel_size=1, stride=1, padding=0) self.conv_out.zero_init = zero_init_final_conv self.bn = norm_module(num_features=self.dim, eps=self.norm_eps, momentum=self.norm_momentum) self.bn.transform_final_bn = zero_init_final_norm if self.use_pool: self.pool = nn.MaxPool3d(kernel_size=self.pool_size, stride=self.pool_size, padding=[0, 0, 0]) def forward(self, x): x_identity = x N, C, T, H, W = x.size() theta = self.conv_theta(x) if self.use_pool: x = self.pool(x) phi = self.conv_phi(x) g = self.conv_g(x) theta = theta.view(N, self.dim_inner, -1) phi = phi.view(N, self.dim_inner, -1) g = g.view(N, self.dim_inner, -1) theta_phi = torch.einsum('nct,ncp->ntp', (theta, phi)) if self.instantiation == 'softmax': theta_phi = theta_phi * self.dim_inner ** -0.5 theta_phi = nn.functional.softmax(theta_phi, dim=2) elif self.instantiation == 'dot_product': spatial_temporal_dim = theta_phi.shape[2] theta_phi = theta_phi / spatial_temporal_dim else: raise NotImplementedError('Unknown norm type {}'.format(self.instantiation)) theta_phi_g = torch.einsum('ntg,ncg->nct', (theta_phi, g)) theta_phi_g = theta_phi_g.view(N, self.dim_inner, T, H, W) p = self.conv_out(theta_phi_g) p = self.bn(p) return x_identity + p class SwishEfficient(torch.autograd.Function): """Swish activation function: x * sigmoid(x).""" @staticmethod def forward(ctx, x): result = x * torch.sigmoid(x) ctx.save_for_backward(x) return result @staticmethod def backward(ctx, grad_output): x = ctx.saved_variables[0] sigmoid_x = torch.sigmoid(x) return grad_output * (sigmoid_x * (1 + x * (1 - sigmoid_x))) class Swish(nn.Module): """Swish activation function: x * sigmoid(x).""" def __init__(self): super(Swish, self).__init__() def forward(self, x): return SwishEfficient.apply(x) class SE(nn.Module): """Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid.""" def _round_width(self, width, multiplier, min_width=8, divisor=8): """ Round width of filters based on width multiplier Args: width (int): the channel dimensions of the input. multiplier (float): the multiplication factor. min_width (int): the minimum width after multiplication. divisor (int): the new width should be dividable by divisor. """ if not multiplier: return width width *= multiplier min_width = min_width or divisor width_out = max(min_width, int(width + divisor / 2) // divisor * divisor) if width_out < 0.9 * width: width_out += divisor return int(width_out) def __init__(self, dim_in, ratio, relu_act=True): """ Args: dim_in (int): the channel dimensions of the input. ratio (float): the channel reduction ratio for squeeze. relu_act (bool): whether to use ReLU activation instead of Swish (default). divisor (int): the new width should be dividable by divisor. """ super(SE, self).__init__() self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1)) dim_fc = self._round_width(dim_in, ratio) self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True) self.fc1_act = nn.ReLU() if relu_act else Swish() self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True) self.fc2_sig = nn.Sigmoid() def forward(self, x): x_in = x for module in self.children(): x = module(x) return x_in * x class BasicTransform(nn.Module): """ Basic transformation: Tx3x3, 1x3x3, where T is the size of temporal kernel. """ def __init__(self, dim_in, dim_out, temp_kernel_size, stride, dim_inner=None, num_groups=1, stride_1x1=None, inplace_relu=True, eps=1e-05, bn_mmt=0.1, norm_module=nn.BatchNorm3d, block_idx=0): """ Args: dim_in (int): the channel dimensions of the input. dim_out (int): the channel dimension of the output. temp_kernel_size (int): the temporal kernel sizes of the first convolution in the basic block. stride (int): the stride of the bottleneck. dim_inner (None): the inner dimension would not be used in BasicTransform. num_groups (int): number of groups for the convolution. Number of group is always 1 for BasicTransform. stride_1x1 (None): stride_1x1 will not be used in BasicTransform. inplace_relu (bool): if True, calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(BasicTransform, self).__init__() self.temp_kernel_size = temp_kernel_size self._inplace_relu = inplace_relu self._eps = eps self._bn_mmt = bn_mmt self._construct(dim_in, dim_out, stride, norm_module) def _construct(self, dim_in, dim_out, stride, norm_module): self.a = nn.Conv3d(dim_in, dim_out, kernel_size=[self.temp_kernel_size, 3, 3], stride=[1, stride, stride], padding=[int(self.temp_kernel_size // 2), 1, 1], bias=False) self.a_bn = norm_module(num_features=dim_out, eps=self._eps, momentum=self._bn_mmt) self.a_relu = nn.ReLU(inplace=self._inplace_relu) self.b = nn.Conv3d(dim_out, dim_out, kernel_size=[1, 3, 3], stride=[1, 1, 1], padding=[0, 1, 1], bias=False) self.b_bn = norm_module(num_features=dim_out, eps=self._eps, momentum=self._bn_mmt) self.b_bn.transform_final_bn = True def forward(self, x): x = self.a(x) x = self.a_bn(x) x = self.a_relu(x) x = self.b(x) x = self.b_bn(x) return x class X3DTransform(nn.Module): """ X3D transformation: 1x1x1, Tx3x3 (channelwise, num_groups=dim_in), 1x1x1, augmented with (optional) SE (squeeze-excitation) on the 3x3x3 output. T is the temporal kernel size (defaulting to 3) """ def __init__(self, dim_in, dim_out, temp_kernel_size, stride, dim_inner, num_groups, stride_1x1=False, inplace_relu=True, eps=1e-05, bn_mmt=0.1, dilation=1, norm_module=nn.BatchNorm3d, se_ratio=0.0625, swish_inner=True, block_idx=0): """ Args: dim_in (int): the channel dimensions of the input. dim_out (int): the channel dimension of the output. temp_kernel_size (int): the temporal kernel sizes of the middle convolution in the bottleneck. stride (int): the stride of the bottleneck. dim_inner (int): the inner dimension of the block. num_groups (int): number of groups for the convolution. num_groups=1 is for standard ResNet like networks, and num_groups>1 is for ResNeXt like networks. stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise apply stride to the 3x3 conv. inplace_relu (bool): if True, calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. dilation (int): size of dilation. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. se_ratio (float): if > 0, apply SE to the Tx3x3 conv, with the SE channel dimensionality being se_ratio times the Tx3x3 conv dim. swish_inner (bool): if True, apply swish to the Tx3x3 conv, otherwise apply ReLU to the Tx3x3 conv. """ super(X3DTransform, self).__init__() self.temp_kernel_size = temp_kernel_size self._inplace_relu = inplace_relu self._eps = eps self._bn_mmt = bn_mmt self._se_ratio = se_ratio self._swish_inner = swish_inner self._stride_1x1 = stride_1x1 self._block_idx = block_idx self._construct(dim_in, dim_out, stride, dim_inner, num_groups, dilation, norm_module) def _construct(self, dim_in, dim_out, stride, dim_inner, num_groups, dilation, norm_module): str1x1, str3x3 = (stride, 1) if self._stride_1x1 else (1, stride) self.a = nn.Conv3d(dim_in, dim_inner, kernel_size=[1, 1, 1], stride=[1, str1x1, str1x1], padding=[0, 0, 0], bias=False) self.a_bn = norm_module(num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt) self.a_relu = nn.ReLU(inplace=self._inplace_relu) self.b = nn.Conv3d(dim_inner, dim_inner, [self.temp_kernel_size, 3, 3], stride=[1, str3x3, str3x3], padding=[int(self.temp_kernel_size // 2), dilation, dilation], groups=num_groups, bias=False, dilation=[1, dilation, dilation]) self.b_bn = norm_module(num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt) use_se = True if (self._block_idx + 1) % 2 else False if self._se_ratio > 0.0 and use_se: self.se = SE(dim_inner, self._se_ratio) if self._swish_inner: self.b_relu = Swish() else: self.b_relu = nn.ReLU(inplace=self._inplace_relu) self.c = nn.Conv3d(dim_inner, dim_out, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False) self.c_bn = norm_module(num_features=dim_out, eps=self._eps, momentum=self._bn_mmt) self.c_bn.transform_final_bn = True def forward(self, x): for block in self.children(): x = block(x) return x class BottleneckTransform(nn.Module): """ Bottleneck transformation: Tx1x1, 1x3x3, 1x1x1, where T is the size of temporal kernel. """ def __init__(self, dim_in, dim_out, temp_kernel_size, stride, dim_inner, num_groups, stride_1x1=False, inplace_relu=True, eps=1e-05, bn_mmt=0.1, dilation=1, norm_module=nn.BatchNorm3d, block_idx=0): """ Args: dim_in (int): the channel dimensions of the input. dim_out (int): the channel dimension of the output. temp_kernel_size (int): the temporal kernel sizes of the first convolution in the bottleneck. stride (int): the stride of the bottleneck. dim_inner (int): the inner dimension of the block. num_groups (int): number of groups for the convolution. num_groups=1 is for standard ResNet like networks, and num_groups>1 is for ResNeXt like networks. stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise apply stride to the 3x3 conv. inplace_relu (bool): if True, calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. dilation (int): size of dilation. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(BottleneckTransform, self).__init__() self.temp_kernel_size = temp_kernel_size self._inplace_relu = inplace_relu self._eps = eps self._bn_mmt = bn_mmt self._stride_1x1 = stride_1x1 self._construct(dim_in, dim_out, stride, dim_inner, num_groups, dilation, norm_module) def _construct(self, dim_in, dim_out, stride, dim_inner, num_groups, dilation, norm_module): str1x1, str3x3 = (stride, 1) if self._stride_1x1 else (1, stride) self.a = nn.Conv3d(dim_in, dim_inner, kernel_size=[self.temp_kernel_size, 1, 1], stride=[1, str1x1, str1x1], padding=[int(self.temp_kernel_size // 2), 0, 0], bias=False) self.a_bn = norm_module(num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt) self.a_relu = nn.ReLU(inplace=self._inplace_relu) self.b = nn.Conv3d(dim_inner, dim_inner, [1, 3, 3], stride=[1, str3x3, str3x3], padding=[0, dilation, dilation], groups=num_groups, bias=False, dilation=[1, dilation, dilation]) self.b_bn = norm_module(num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt) self.b_relu = nn.ReLU(inplace=self._inplace_relu) self.c = nn.Conv3d(dim_inner, dim_out, kernel_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], bias=False) self.c_bn = norm_module(num_features=dim_out, eps=self._eps, momentum=self._bn_mmt) self.c_bn.transform_final_bn = True def forward(self, x): x = self.a(x) x = self.a_bn(x) x = self.a_relu(x) x = self.b(x) x = self.b_bn(x) x = self.b_relu(x) x = self.c(x) x = self.c_bn(x) return x class ResBlock(nn.Module): """ Residual block. """ def __init__(self, dim_in, dim_out, temp_kernel_size, stride, trans_func, dim_inner, num_groups=1, stride_1x1=False, inplace_relu=True, eps=1e-05, bn_mmt=0.1, dilation=1, norm_module=nn.BatchNorm3d, block_idx=0, drop_connect_rate=0.0): """ ResBlock class constructs redisual blocks. More details can be found in: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." https://arxiv.org/abs/1512.03385 Args: dim_in (int): the channel dimensions of the input. dim_out (int): the channel dimension of the output. temp_kernel_size (int): the temporal kernel sizes of the middle convolution in the bottleneck. stride (int): the stride of the bottleneck. trans_func (string): transform function to be used to construct the bottleneck. dim_inner (int): the inner dimension of the block. num_groups (int): number of groups for the convolution. num_groups=1 is for standard ResNet like networks, and num_groups>1 is for ResNeXt like networks. stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise apply stride to the 3x3 conv. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. dilation (int): size of dilation. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. drop_connect_rate (float): basic rate at which blocks are dropped, linearly increases from input to output blocks. """ super(ResBlock, self).__init__() self._inplace_relu = inplace_relu self._eps = eps self._bn_mmt = bn_mmt self._drop_connect_rate = drop_connect_rate self._construct(dim_in, dim_out, temp_kernel_size, stride, trans_func, dim_inner, num_groups, stride_1x1, inplace_relu, dilation, norm_module, block_idx) def _construct(self, dim_in, dim_out, temp_kernel_size, stride, trans_func, dim_inner, num_groups, stride_1x1, inplace_relu, dilation, norm_module, block_idx): if dim_in != dim_out or stride != 1: self.branch1 = nn.Conv3d(dim_in, dim_out, kernel_size=1, stride=[1, stride, stride], padding=0, bias=False, dilation=1) self.branch1_bn = norm_module(num_features=dim_out, eps=self._eps, momentum=self._bn_mmt) self.branch2 = trans_func(dim_in, dim_out, temp_kernel_size, stride, dim_inner, num_groups, stride_1x1=stride_1x1, inplace_relu=inplace_relu, dilation=dilation, norm_module=norm_module, block_idx=block_idx) self.relu = nn.ReLU(self._inplace_relu) def _drop_connect(self, x, drop_ratio): """Apply dropconnect to x""" keep_ratio = 1.0 - drop_ratio mask = torch.empty([x.shape[0], 1, 1, 1, 1], dtype=x.dtype, device=x.device) mask.bernoulli_(keep_ratio) x.div_(keep_ratio) x.mul_(mask) return x def forward(self, x): f_x = self.branch2(x) if self.training and self._drop_connect_rate > 0.0: f_x = self._drop_connect(f_x, self._drop_connect_rate) if hasattr(self, 'branch1'): x = self.branch1_bn(self.branch1(x)) + f_x else: x = x + f_x x = self.relu(x) return x def get_trans_func(name): """ Retrieves the transformation module by name. """ trans_funcs = {'bottleneck_transform': BottleneckTransform, 'basic_transform': BasicTransform, 'x3d_transform': X3DTransform} assert name in trans_funcs.keys(), "Transformation function '{}' not supported".format(name) return trans_funcs[name] class ResStage(nn.Module): """ Stage of 3D ResNet. It expects to have one or more tensors as input for single pathway (C2D, I3D, Slow), and multi-pathway (SlowFast) cases. More details can be found here: Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast networks for video recognition." https://arxiv.org/pdf/1812.03982.pdf """ def __init__(self, dim_in, dim_out, stride, temp_kernel_sizes, num_blocks, dim_inner, num_groups, num_block_temp_kernel, nonlocal_inds, nonlocal_group, nonlocal_pool, dilation, instantiation='softmax', trans_func_name='bottleneck_transform', stride_1x1=False, inplace_relu=True, norm_module=nn.BatchNorm3d, drop_connect_rate=0.0): """ The `__init__` method of any subclass should also contain these arguments. ResStage builds p streams, where p can be greater or equal to one. Args: dim_in (list): list of p the channel dimensions of the input. Different channel dimensions control the input dimension of different pathways. dim_out (list): list of p the channel dimensions of the output. Different channel dimensions control the input dimension of different pathways. temp_kernel_sizes (list): list of the p temporal kernel sizes of the convolution in the bottleneck. Different temp_kernel_sizes control different pathway. stride (list): list of the p strides of the bottleneck. Different stride control different pathway. num_blocks (list): list of p numbers of blocks for each of the pathway. dim_inner (list): list of the p inner channel dimensions of the input. Different channel dimensions control the input dimension of different pathways. num_groups (list): list of number of p groups for the convolution. num_groups=1 is for standard ResNet like networks, and num_groups>1 is for ResNeXt like networks. num_block_temp_kernel (list): extent the temp_kernel_sizes to num_block_temp_kernel blocks, then fill temporal kernel size of 1 for the rest of the layers. nonlocal_inds (list): If the tuple is empty, no nonlocal layer will be added. If the tuple is not empty, add nonlocal layers after the index-th block. dilation (list): size of dilation for each pathway. nonlocal_group (list): list of number of p nonlocal groups. Each number controls how to fold temporal dimension to batch dimension before applying nonlocal transformation. https://github.com/facebookresearch/video-nonlocal-net. instantiation (string): different instantiation for nonlocal layer. Supports two different instantiation method: "dot_product": normalizing correlation matrix with L2. "softmax": normalizing correlation matrix with Softmax. trans_func_name (string): name of the the transformation function apply on the network. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. drop_connect_rate (float): basic rate at which blocks are dropped, linearly increases from input to output blocks. """ super(ResStage, self).__init__() assert all(num_block_temp_kernel[i] <= num_blocks[i] for i in range(len(temp_kernel_sizes))) self.num_blocks = num_blocks self.nonlocal_group = nonlocal_group self._drop_connect_rate = drop_connect_rate self.temp_kernel_sizes = [((temp_kernel_sizes[i] * num_blocks[i])[:num_block_temp_kernel[i]] + [1] * (num_blocks[i] - num_block_temp_kernel[i])) for i in range(len(temp_kernel_sizes))] assert len({len(dim_in), len(dim_out), len(temp_kernel_sizes), len(stride), len(num_blocks), len(dim_inner), len(num_groups), len(num_block_temp_kernel), len(nonlocal_inds), len(nonlocal_group)}) == 1 self.num_pathways = len(self.num_blocks) self._construct(dim_in, dim_out, stride, dim_inner, num_groups, trans_func_name, stride_1x1, inplace_relu, nonlocal_inds, nonlocal_pool, instantiation, dilation, norm_module) def _construct(self, dim_in, dim_out, stride, dim_inner, num_groups, trans_func_name, stride_1x1, inplace_relu, nonlocal_inds, nonlocal_pool, instantiation, dilation, norm_module): for pathway in range(self.num_pathways): for i in range(self.num_blocks[pathway]): trans_func = get_trans_func(trans_func_name) res_block = ResBlock(dim_in[pathway] if i == 0 else dim_out[pathway], dim_out[pathway], self.temp_kernel_sizes[pathway][i], stride[pathway] if i == 0 else 1, trans_func, dim_inner[pathway], num_groups[pathway], stride_1x1=stride_1x1, inplace_relu=inplace_relu, dilation=dilation[pathway], norm_module=norm_module, block_idx=i, drop_connect_rate=self._drop_connect_rate) self.add_module('pathway{}_res{}'.format(pathway, i), res_block) if i in nonlocal_inds[pathway]: nln = Nonlocal(dim_out[pathway], dim_out[pathway] // 2, nonlocal_pool[pathway], instantiation=instantiation, norm_module=norm_module) self.add_module('pathway{}_nonlocal{}'.format(pathway, i), nln) def forward(self, inputs): output = [] for pathway in range(self.num_pathways): x = inputs[pathway] for i in range(self.num_blocks[pathway]): m = getattr(self, 'pathway{}_res{}'.format(pathway, i)) x = m(x) if hasattr(self, 'pathway{}_nonlocal{}'.format(pathway, i)): nln = getattr(self, 'pathway{}_nonlocal{}'.format(pathway, i)) b, c, t, h, w = x.shape if self.nonlocal_group[pathway] > 1: x = x.permute(0, 2, 1, 3, 4) x = x.reshape(b * self.nonlocal_group[pathway], t // self.nonlocal_group[pathway], c, h, w) x = x.permute(0, 2, 1, 3, 4) x = nln(x) if self.nonlocal_group[pathway] > 1: x = x.permute(0, 2, 1, 3, 4) x = x.reshape(b, t, c, h, w) x = x.permute(0, 2, 1, 3, 4) output.append(x) return output class ResNetBasicStem(nn.Module): """ ResNe(X)t 3D stem module. Performs spatiotemporal Convolution, BN, and Relu following by a spatiotemporal pooling. """ def __init__(self, dim_in, dim_out, kernel, stride, padding, inplace_relu=True, eps=1e-05, bn_mmt=0.1, norm_module=nn.BatchNorm3d): """ The `__init__` method of any subclass should also contain these arguments. Args: dim_in (int): the channel dimension of the input. Normally 3 is used for rgb input, and 2 or 3 is used for optical flow input. dim_out (int): the output dimension of the convolution in the stem layer. kernel (list): the kernel size of the convolution in the stem layer. temporal kernel size, height kernel size, width kernel size in order. stride (list): the stride size of the convolution in the stem layer. temporal kernel stride, height kernel size, width kernel size in order. padding (int): the padding size of the convolution in the stem layer, temporal padding size, height padding size, width padding size in order. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(ResNetBasicStem, self).__init__() self.kernel = kernel self.stride = stride self.padding = padding self.inplace_relu = inplace_relu self.eps = eps self.bn_mmt = bn_mmt self._construct_stem(dim_in, dim_out, norm_module) def _construct_stem(self, dim_in, dim_out, norm_module): self.conv = nn.Conv3d(dim_in, dim_out, self.kernel, stride=self.stride, padding=self.padding, bias=False) self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt) self.relu = nn.ReLU(self.inplace_relu) self.pool_layer = nn.MaxPool3d(kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.pool_layer(x) return x class X3DStem(nn.Module): """ X3D's 3D stem module. Performs a spatial followed by a depthwise temporal Convolution, BN, and Relu following by a spatiotemporal pooling. """ def __init__(self, dim_in, dim_out, kernel, stride, padding, inplace_relu=True, eps=1e-05, bn_mmt=0.1, norm_module=nn.BatchNorm3d): """ The `__init__` method of any subclass should also contain these arguments. Args: dim_in (int): the channel dimension of the input. Normally 3 is used for rgb input, and 2 or 3 is used for optical flow input. dim_out (int): the output dimension of the convolution in the stem layer. kernel (list): the kernel size of the convolution in the stem layer. temporal kernel size, height kernel size, width kernel size in order. stride (list): the stride size of the convolution in the stem layer. temporal kernel stride, height kernel size, width kernel size in order. padding (int): the padding size of the convolution in the stem layer, temporal padding size, height padding size, width padding size in order. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(X3DStem, self).__init__() self.kernel = kernel self.stride = stride self.padding = padding self.inplace_relu = inplace_relu self.eps = eps self.bn_mmt = bn_mmt self._construct_stem(dim_in, dim_out, norm_module) def _construct_stem(self, dim_in, dim_out, norm_module): self.conv_xy = nn.Conv3d(dim_in, dim_out, kernel_size=(1, self.kernel[1], self.kernel[2]), stride=(1, self.stride[1], self.stride[2]), padding=(0, self.padding[1], self.padding[2]), bias=False) self.conv = nn.Conv3d(dim_out, dim_out, kernel_size=(self.kernel[0], 1, 1), stride=(self.stride[0], 1, 1), padding=(self.padding[0], 0, 0), bias=False, groups=dim_out) self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt) self.relu = nn.ReLU(self.inplace_relu) def forward(self, x): x = self.conv_xy(x) x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def get_stem_func(name): """ Retrieves the stem module by name. """ trans_funcs = {'x3d_stem': X3DStem, 'basic_stem': ResNetBasicStem} assert name in trans_funcs.keys(), "Transformation function '{}' not supported".format(name) return trans_funcs[name] class VideoModelStem(nn.Module): """ Video 3D stem module. Provides stem operations of Conv, BN, ReLU, MaxPool on input data tensor for one or multiple pathways. """ def __init__(self, dim_in, dim_out, kernel, stride, padding, inplace_relu=True, eps=1e-05, bn_mmt=0.1, norm_module=nn.BatchNorm3d, stem_func_name='basic_stem'): """ The `__init__` method of any subclass should also contain these arguments. List size of 1 for single pathway models (C2D, I3D, Slow and etc), list size of 2 for two pathway models (SlowFast). Args: dim_in (list): the list of channel dimensions of the inputs. dim_out (list): the output dimension of the convolution in the stem layer. kernel (list): the kernels' size of the convolutions in the stem layers. Temporal kernel size, height kernel size, width kernel size in order. stride (list): the stride sizes of the convolutions in the stem layer. Temporal kernel stride, height kernel size, width kernel size in order. padding (list): the paddings' sizes of the convolutions in the stem layer. Temporal padding size, height padding size, width padding size in order. inplace_relu (bool): calculate the relu on the original input without allocating new memory. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. stem_func_name (string): name of the the stem function applied on input to the network. """ super(VideoModelStem, self).__init__() assert len({len(dim_in), len(dim_out), len(kernel), len(stride), len(padding)}) == 1, 'Input pathway dimensions are not consistent.' self.num_pathways = len(dim_in) self.kernel = kernel self.stride = stride self.padding = padding self.inplace_relu = inplace_relu self.eps = eps self.bn_mmt = bn_mmt self._construct_stem(dim_in, dim_out, norm_module, stem_func_name) def _construct_stem(self, dim_in, dim_out, norm_module, stem_func_name): trans_func = get_stem_func(stem_func_name) for pathway in range(len(dim_in)): stem = trans_func(dim_in[pathway], dim_out[pathway], self.kernel[pathway], self.stride[pathway], self.padding[pathway], self.inplace_relu, self.eps, self.bn_mmt, norm_module) self.add_module('pathway{}_stem'.format(pathway), stem) def forward(self, x): assert len(x) == self.num_pathways, 'Input tensor does not contain {} pathway'.format(self.num_pathways) for pathway in range(len(x)): m = getattr(self, 'pathway{}_stem'.format(pathway)) x[pathway] = m(x[pathway]) return x class FuseFastToSlow(nn.Module): """ Fuses the information from the Fast pathway to the Slow pathway. Given the tensors from Slow pathway and Fast pathway, fuse information from Fast to Slow, then return the fused tensors from Slow and Fast pathway in order. """ def __init__(self, dim_in, fusion_conv_channel_ratio, fusion_kernel, alpha, eps=1e-05, bn_mmt=0.1, inplace_relu=True, norm_module=nn.BatchNorm3d): """ Args: dim_in (int): the channel dimension of the input. fusion_conv_channel_ratio (int): channel ratio for the convolution used to fuse from Fast pathway to Slow pathway. fusion_kernel (int): kernel size of the convolution used to fuse from Fast pathway to Slow pathway. alpha (int): the frame rate ratio between the Fast and Slow pathway. eps (float): epsilon for batch norm. bn_mmt (float): momentum for batch norm. Noted that BN momentum in PyTorch = 1 - BN momentum in Caffe2. inplace_relu (bool): if True, calculate the relu on the original input without allocating new memory. norm_module (nn.Module): nn.Module for the normalization layer. The default is nn.BatchNorm3d. """ super(FuseFastToSlow, self).__init__() self.conv_f2s = nn.Conv3d(dim_in, dim_in * fusion_conv_channel_ratio, kernel_size=[fusion_kernel, 1, 1], stride=[alpha, 1, 1], padding=[fusion_kernel // 2, 0, 0], bias=False) self.bn = norm_module(num_features=dim_in * fusion_conv_channel_ratio, eps=eps, momentum=bn_mmt) self.relu = nn.ReLU(inplace_relu) def forward(self, x): x_s = x[0] x_f = x[1] fuse = self.conv_f2s(x_f) fuse = self.bn(fuse) fuse = self.relu(fuse) x_s_fuse = torch.cat([x_s, fuse], 1) return [x_s_fuse, x_f] _MODEL_STAGE_DEPTH = {(50): (3, 4, 6, 3), (101): (3, 4, 23, 3)} _POOL1 = {'c2d': [[2, 1, 1]], 'c2d_nopool': [[1, 1, 1]], 'i3d': [[2, 1, 1]], 'i3d_nopool': [[1, 1, 1]], 'slow': [[1, 1, 1]], 'slowfast': [[1, 1, 1], [1, 1, 1]], 'x3d': [[1, 1, 1]]} _TEMPORAL_KERNEL_BASIS = {'c2d': [[[1]], [[1]], [[1]], [[1]], [[1]]], 'c2d_nopool': [[[1]], [[1]], [[1]], [[1]], [[1]]], 'i3d': [[[5]], [[3]], [[3, 1]], [[3, 1]], [[1, 3]]], 'i3d_nopool': [[[5]], [[3]], [[3, 1]], [[3, 1]], [[1, 3]]], 'slow': [[[1]], [[1]], [[1]], [[3]], [[3]]], 'slowfast': [[[1], [5]], [[1], [3]], [[1], [3]], [[3], [3]], [[3], [3]]], 'x3d': [[[5]], [[3]], [[3]], [[3]], [[3]]]} def get_norm(cfg): """ Args: cfg (CfgNode): model building configs, details are in the comments of the config file. Returns: nn.Module: the normalization layer. """ if cfg.BN.NORM_TYPE == 'batchnorm': return nn.BatchNorm3d elif cfg.BN.NORM_TYPE == 'sub_batchnorm': return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS) elif cfg.BN.NORM_TYPE == 'sync_batchnorm': return partial(NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN.NUM_SYNC_DEVICES) else: raise NotImplementedError('Norm type {} is not supported'.format(cfg.BN.NORM_TYPE)) class SlowFast(nn.Module): """ SlowFast model builder for SlowFast network. Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast networks for video recognition." https://arxiv.org/pdf/1812.03982.pdf """ def __init__(self, cfg): """ The `__init__` method of any subclass should also contain these arguments. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ super(SlowFast, self).__init__() self.norm_module = get_norm(cfg) self.enable_detection = cfg.DETECTION.ENABLE self.num_pathways = 2 self._construct_network(cfg) init_helper.init_weights(self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN) def _construct_network(self, cfg): """ Builds a SlowFast model. The first pathway is the Slow pathway and the second pathway is the Fast pathway. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ assert cfg.MODEL.ARCH in _POOL1.keys() pool_size = _POOL1[cfg.MODEL.ARCH] assert len({len(pool_size), self.num_pathways}) == 1 assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys() d2, d3, d4, d5 = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH] num_groups = cfg.RESNET.NUM_GROUPS width_per_group = cfg.RESNET.WIDTH_PER_GROUP dim_inner = num_groups * width_per_group out_dim_ratio = cfg.SLOWFAST.BETA_INV // cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH] self.s1 = stem_helper.VideoModelStem(dim_in=cfg.DATA.INPUT_CHANNEL_NUM, dim_out=[width_per_group, width_per_group // cfg.SLOWFAST.BETA_INV], kernel=[temp_kernel[0][0] + [7, 7], temp_kernel[0][1] + [7, 7]], stride=[[1, 2, 2]] * 2, padding=[[temp_kernel[0][0][0] // 2, 3, 3], [temp_kernel[0][1][0] // 2, 3, 3]], norm_module=self.norm_module) self.s1_fuse = FuseFastToSlow(width_per_group // cfg.SLOWFAST.BETA_INV, cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO, cfg.SLOWFAST.FUSION_KERNEL_SZ, cfg.SLOWFAST.ALPHA, norm_module=self.norm_module) self.s2 = resnet_helper.ResStage(dim_in=[width_per_group + width_per_group // out_dim_ratio, width_per_group // cfg.SLOWFAST.BETA_INV], dim_out=[width_per_group * 4, width_per_group * 4 // cfg.SLOWFAST.BETA_INV], dim_inner=[dim_inner, dim_inner // cfg.SLOWFAST.BETA_INV], temp_kernel_sizes=temp_kernel[1], stride=cfg.RESNET.SPATIAL_STRIDES[0], num_blocks=[d2] * 2, num_groups=[num_groups] * 2, num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[0], nonlocal_inds=cfg.NONLOCAL.LOCATION[0], nonlocal_group=cfg.NONLOCAL.GROUP[0], nonlocal_pool=cfg.NONLOCAL.POOL[0], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, dilation=cfg.RESNET.SPATIAL_DILATIONS[0], norm_module=self.norm_module) self.s2_fuse = FuseFastToSlow(width_per_group * 4 // cfg.SLOWFAST.BETA_INV, cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO, cfg.SLOWFAST.FUSION_KERNEL_SZ, cfg.SLOWFAST.ALPHA, norm_module=self.norm_module) for pathway in range(self.num_pathways): pool = nn.MaxPool3d(kernel_size=pool_size[pathway], stride=pool_size[pathway], padding=[0, 0, 0]) self.add_module('pathway{}_pool'.format(pathway), pool) self.s3 = resnet_helper.ResStage(dim_in=[width_per_group * 4 + width_per_group * 4 // out_dim_ratio, width_per_group * 4 // cfg.SLOWFAST.BETA_INV], dim_out=[width_per_group * 8, width_per_group * 8 // cfg.SLOWFAST.BETA_INV], dim_inner=[dim_inner * 2, dim_inner * 2 // cfg.SLOWFAST.BETA_INV], temp_kernel_sizes=temp_kernel[2], stride=cfg.RESNET.SPATIAL_STRIDES[1], num_blocks=[d3] * 2, num_groups=[num_groups] * 2, num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[1], nonlocal_inds=cfg.NONLOCAL.LOCATION[1], nonlocal_group=cfg.NONLOCAL.GROUP[1], nonlocal_pool=cfg.NONLOCAL.POOL[1], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, dilation=cfg.RESNET.SPATIAL_DILATIONS[1], norm_module=self.norm_module) self.s3_fuse = FuseFastToSlow(width_per_group * 8 // cfg.SLOWFAST.BETA_INV, cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO, cfg.SLOWFAST.FUSION_KERNEL_SZ, cfg.SLOWFAST.ALPHA, norm_module=self.norm_module) self.s4 = resnet_helper.ResStage(dim_in=[width_per_group * 8 + width_per_group * 8 // out_dim_ratio, width_per_group * 8 // cfg.SLOWFAST.BETA_INV], dim_out=[width_per_group * 16, width_per_group * 16 // cfg.SLOWFAST.BETA_INV], dim_inner=[dim_inner * 4, dim_inner * 4 // cfg.SLOWFAST.BETA_INV], temp_kernel_sizes=temp_kernel[3], stride=cfg.RESNET.SPATIAL_STRIDES[2], num_blocks=[d4] * 2, num_groups=[num_groups] * 2, num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[2], nonlocal_inds=cfg.NONLOCAL.LOCATION[2], nonlocal_group=cfg.NONLOCAL.GROUP[2], nonlocal_pool=cfg.NONLOCAL.POOL[2], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, dilation=cfg.RESNET.SPATIAL_DILATIONS[2], norm_module=self.norm_module) self.s4_fuse = FuseFastToSlow(width_per_group * 16 // cfg.SLOWFAST.BETA_INV, cfg.SLOWFAST.FUSION_CONV_CHANNEL_RATIO, cfg.SLOWFAST.FUSION_KERNEL_SZ, cfg.SLOWFAST.ALPHA, norm_module=self.norm_module) self.s5 = resnet_helper.ResStage(dim_in=[width_per_group * 16 + width_per_group * 16 // out_dim_ratio, width_per_group * 16 // cfg.SLOWFAST.BETA_INV], dim_out=[width_per_group * 32, width_per_group * 32 // cfg.SLOWFAST.BETA_INV], dim_inner=[dim_inner * 8, dim_inner * 8 // cfg.SLOWFAST.BETA_INV], temp_kernel_sizes=temp_kernel[4], stride=cfg.RESNET.SPATIAL_STRIDES[3], num_blocks=[d5] * 2, num_groups=[num_groups] * 2, num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[3], nonlocal_inds=cfg.NONLOCAL.LOCATION[3], nonlocal_group=cfg.NONLOCAL.GROUP[3], nonlocal_pool=cfg.NONLOCAL.POOL[3], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, dilation=cfg.RESNET.SPATIAL_DILATIONS[3], norm_module=self.norm_module) if cfg.DETECTION.ENABLE: self.head = head_helper.ResNetRoIHead(dim_in=[width_per_group * 32, width_per_group * 32 // cfg.SLOWFAST.BETA_INV], num_classes=cfg.MODEL.NUM_CLASSES, pool_size=[[cfg.DATA.NUM_FRAMES // cfg.SLOWFAST.ALPHA // pool_size[0][0], 1, 1], [cfg.DATA.NUM_FRAMES // pool_size[1][0], 1, 1]], resolution=[[cfg.DETECTION.ROI_XFORM_RESOLUTION] * 2] * 2, scale_factor=[cfg.DETECTION.SPATIAL_SCALE_FACTOR] * 2, dropout_rate=cfg.MODEL.DROPOUT_RATE, act_func=cfg.MODEL.HEAD_ACT, aligned=cfg.DETECTION.ALIGNED) else: head = head_helper.ResNetBasicHead(dim_in=[width_per_group * 32, width_per_group * 32 // cfg.SLOWFAST.BETA_INV], num_classes=cfg.MODEL.NUM_CLASSES, pool_size=[None, None] if cfg.MULTIGRID.SHORT_CYCLE else [[cfg.DATA.NUM_FRAMES // cfg.SLOWFAST.ALPHA // pool_size[0][0], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][1], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][2]], [cfg.DATA.NUM_FRAMES // pool_size[1][0], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[1][1], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[1][2]]], dropout_rate=cfg.MODEL.DROPOUT_RATE, act_func=cfg.MODEL.HEAD_ACT) self.head_name = 'head{}'.format(cfg.TASK) self.add_module(self.head_name, head) def forward(self, x, bboxes=None): x = self.s1(x) x = self.s1_fuse(x) x = self.s2(x) x = self.s2_fuse(x) for pathway in range(self.num_pathways): pool = getattr(self, 'pathway{}_pool'.format(pathway)) x[pathway] = pool(x[pathway]) x = self.s3(x) x = self.s3_fuse(x) x = self.s4(x) x = self.s4_fuse(x) x = self.s5(x) head = getattr(self, self.head_name) if self.enable_detection: x = head(x, bboxes) else: x = head(x) return x class ResNet(nn.Module): """ ResNet model builder. It builds a ResNet like network backbone without lateral connection (C2D, I3D, Slow). Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. "SlowFast networks for video recognition." https://arxiv.org/pdf/1812.03982.pdf Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. "Non-local neural networks." https://arxiv.org/pdf/1711.07971.pdf """ def __init__(self, cfg): """ The `__init__` method of any subclass should also contain these arguments. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ super(ResNet, self).__init__() self.norm_module = get_norm(cfg) self.enable_detection = cfg.DETECTION.ENABLE self.num_pathways = 1 self._construct_network(cfg) init_helper.init_weights(self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN) def _construct_network(self, cfg): """ Builds a single pathway ResNet model. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ assert cfg.MODEL.ARCH in _POOL1.keys() pool_size = _POOL1[cfg.MODEL.ARCH] assert len({len(pool_size), self.num_pathways}) == 1 assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys() d2, d3, d4, d5 = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH] num_groups = cfg.RESNET.NUM_GROUPS width_per_group = cfg.RESNET.WIDTH_PER_GROUP dim_inner = num_groups * width_per_group temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH] self.s1 = stem_helper.VideoModelStem(dim_in=cfg.DATA.INPUT_CHANNEL_NUM, dim_out=[width_per_group], kernel=[temp_kernel[0][0] + [7, 7]], stride=[[1, 2, 2]], padding=[[temp_kernel[0][0][0] // 2, 3, 3]], norm_module=self.norm_module) self.s2 = resnet_helper.ResStage(dim_in=[width_per_group], dim_out=[width_per_group * 4], dim_inner=[dim_inner], temp_kernel_sizes=temp_kernel[1], stride=cfg.RESNET.SPATIAL_STRIDES[0], num_blocks=[d2], num_groups=[num_groups], num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[0], nonlocal_inds=cfg.NONLOCAL.LOCATION[0], nonlocal_group=cfg.NONLOCAL.GROUP[0], nonlocal_pool=cfg.NONLOCAL.POOL[0], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, stride_1x1=cfg.RESNET.STRIDE_1X1, inplace_relu=cfg.RESNET.INPLACE_RELU, dilation=cfg.RESNET.SPATIAL_DILATIONS[0], norm_module=self.norm_module) for pathway in range(self.num_pathways): pool = nn.MaxPool3d(kernel_size=pool_size[pathway], stride=pool_size[pathway], padding=[0, 0, 0]) self.add_module('pathway{}_pool'.format(pathway), pool) self.s3 = resnet_helper.ResStage(dim_in=[width_per_group * 4], dim_out=[width_per_group * 8], dim_inner=[dim_inner * 2], temp_kernel_sizes=temp_kernel[2], stride=cfg.RESNET.SPATIAL_STRIDES[1], num_blocks=[d3], num_groups=[num_groups], num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[1], nonlocal_inds=cfg.NONLOCAL.LOCATION[1], nonlocal_group=cfg.NONLOCAL.GROUP[1], nonlocal_pool=cfg.NONLOCAL.POOL[1], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, stride_1x1=cfg.RESNET.STRIDE_1X1, inplace_relu=cfg.RESNET.INPLACE_RELU, dilation=cfg.RESNET.SPATIAL_DILATIONS[1], norm_module=self.norm_module) self.s4 = resnet_helper.ResStage(dim_in=[width_per_group * 8], dim_out=[width_per_group * 16], dim_inner=[dim_inner * 4], temp_kernel_sizes=temp_kernel[3], stride=cfg.RESNET.SPATIAL_STRIDES[2], num_blocks=[d4], num_groups=[num_groups], num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[2], nonlocal_inds=cfg.NONLOCAL.LOCATION[2], nonlocal_group=cfg.NONLOCAL.GROUP[2], nonlocal_pool=cfg.NONLOCAL.POOL[2], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, stride_1x1=cfg.RESNET.STRIDE_1X1, inplace_relu=cfg.RESNET.INPLACE_RELU, dilation=cfg.RESNET.SPATIAL_DILATIONS[2], norm_module=self.norm_module) self.s5 = resnet_helper.ResStage(dim_in=[width_per_group * 16], dim_out=[width_per_group * 32], dim_inner=[dim_inner * 8], temp_kernel_sizes=temp_kernel[4], stride=cfg.RESNET.SPATIAL_STRIDES[3], num_blocks=[d5], num_groups=[num_groups], num_block_temp_kernel=cfg.RESNET.NUM_BLOCK_TEMP_KERNEL[3], nonlocal_inds=cfg.NONLOCAL.LOCATION[3], nonlocal_group=cfg.NONLOCAL.GROUP[3], nonlocal_pool=cfg.NONLOCAL.POOL[3], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, stride_1x1=cfg.RESNET.STRIDE_1X1, inplace_relu=cfg.RESNET.INPLACE_RELU, dilation=cfg.RESNET.SPATIAL_DILATIONS[3], norm_module=self.norm_module) if self.enable_detection: self.head = head_helper.ResNetRoIHead(dim_in=[width_per_group * 32], num_classes=cfg.MODEL.NUM_CLASSES, pool_size=[[cfg.DATA.NUM_FRAMES // pool_size[0][0], 1, 1]], resolution=[[cfg.DETECTION.ROI_XFORM_RESOLUTION] * 2], scale_factor=[cfg.DETECTION.SPATIAL_SCALE_FACTOR], dropout_rate=cfg.MODEL.DROPOUT_RATE, act_func=cfg.MODEL.HEAD_ACT, aligned=cfg.DETECTION.ALIGNED) else: head = head_helper.ResNetBasicHead(dim_in=[width_per_group * 32], num_classes=cfg.MODEL.NUM_CLASSES, pool_size=[None, None] if cfg.MULTIGRID.SHORT_CYCLE else [[cfg.DATA.NUM_FRAMES // pool_size[0][0], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][1], cfg.DATA.TRAIN_CROP_SIZE // 32 // pool_size[0][2]]], dropout_rate=cfg.MODEL.DROPOUT_RATE, act_func=cfg.MODEL.HEAD_ACT) self.head_name = 'head{}'.format(cfg.TASK) self.add_module(self.head_name, head) def forward(self, x, bboxes=None): x = self.s1(x) x = self.s2(x) for pathway in range(self.num_pathways): pool = getattr(self, 'pathway{}_pool'.format(pathway)) x[pathway] = pool(x[pathway]) x = self.s3(x) x = self.s4(x) x = self.s5(x) head = getattr(self, self.head_name) if self.enable_detection: x = head(x, bboxes) else: x = head(x) return x class X3D(nn.Module): """ X3D model builder. It builds a X3D network backbone, which is a ResNet. Christoph Feichtenhofer. "X3D: Expanding Architectures for Efficient Video Recognition." https://arxiv.org/abs/2004.04730 """ def __init__(self, cfg): """ The `__init__` method of any subclass should also contain these arguments. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ super(X3D, self).__init__() self.norm_module = get_norm(cfg) self.enable_detection = cfg.DETECTION.ENABLE self.num_pathways = 1 exp_stage = 2.0 self.dim_c1 = cfg.X3D.DIM_C1 self.dim_res2 = self._round_width(self.dim_c1, exp_stage, divisor=8) if cfg.X3D.SCALE_RES2 else self.dim_c1 self.dim_res3 = self._round_width(self.dim_res2, exp_stage, divisor=8) self.dim_res4 = self._round_width(self.dim_res3, exp_stage, divisor=8) self.dim_res5 = self._round_width(self.dim_res4, exp_stage, divisor=8) self.block_basis = [[1, self.dim_res2, 2], [2, self.dim_res3, 2], [5, self.dim_res4, 2], [3, self.dim_res5, 2]] self._construct_network(cfg) init_helper.init_weights(self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN) def _round_width(self, width, multiplier, min_depth=8, divisor=8): """Round width of filters based on width multiplier.""" if not multiplier: return width width *= multiplier min_depth = min_depth or divisor new_filters = max(min_depth, int(width + divisor / 2) // divisor * divisor) if new_filters < 0.9 * width: new_filters += divisor return int(new_filters) def _round_repeats(self, repeats, multiplier): """Round number of layers based on depth multiplier.""" multiplier = multiplier if not multiplier: return repeats return int(math.ceil(multiplier * repeats)) def _construct_network(self, cfg): """ Builds a single pathway X3D model. Args: cfg (CfgNode): model building configs, details are in the comments of the config file. """ assert cfg.MODEL.ARCH in _POOL1.keys() assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys() d2, d3, d4, d5 = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH] num_groups = cfg.RESNET.NUM_GROUPS width_per_group = cfg.RESNET.WIDTH_PER_GROUP dim_inner = num_groups * width_per_group w_mul = cfg.X3D.WIDTH_FACTOR d_mul = cfg.X3D.DEPTH_FACTOR dim_res1 = self._round_width(self.dim_c1, w_mul) temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH] self.s1 = stem_helper.VideoModelStem(dim_in=cfg.DATA.INPUT_CHANNEL_NUM, dim_out=[dim_res1], kernel=[temp_kernel[0][0] + [3, 3]], stride=[[1, 2, 2]], padding=[[temp_kernel[0][0][0] // 2, 1, 1]], norm_module=self.norm_module, stem_func_name='x3d_stem') dim_in = dim_res1 for stage, block in enumerate(self.block_basis): dim_out = self._round_width(block[1], w_mul) dim_inner = int(cfg.X3D.BOTTLENECK_FACTOR * dim_out) n_rep = self._round_repeats(block[0], d_mul) prefix = 's{}'.format(stage + 2) s = resnet_helper.ResStage(dim_in=[dim_in], dim_out=[dim_out], dim_inner=[dim_inner], temp_kernel_sizes=temp_kernel[1], stride=[block[2]], num_blocks=[n_rep], num_groups=[dim_inner] if cfg.X3D.CHANNELWISE_3x3x3 else [num_groups], num_block_temp_kernel=[n_rep], nonlocal_inds=cfg.NONLOCAL.LOCATION[0], nonlocal_group=cfg.NONLOCAL.GROUP[0], nonlocal_pool=cfg.NONLOCAL.POOL[0], instantiation=cfg.NONLOCAL.INSTANTIATION, trans_func_name=cfg.RESNET.TRANS_FUNC, stride_1x1=cfg.RESNET.STRIDE_1X1, norm_module=self.norm_module, dilation=cfg.RESNET.SPATIAL_DILATIONS[stage], drop_connect_rate=cfg.MODEL.DROPCONNECT_RATE * (stage + 2) / (len(self.block_basis) + 1)) dim_in = dim_out self.add_module(prefix, s) if self.enable_detection: NotImplementedError else: spat_sz = int(math.ceil(cfg.DATA.TRAIN_CROP_SIZE / 32.0)) self.head = head_helper.X3DHead(dim_in=dim_out, dim_inner=dim_inner, dim_out=cfg.X3D.DIM_C5, num_classes=cfg.MODEL.NUM_CLASSES, pool_size=[cfg.DATA.NUM_FRAMES, spat_sz, spat_sz], dropout_rate=cfg.MODEL.DROPOUT_RATE, act_func=cfg.MODEL.HEAD_ACT, bn_lin5_on=cfg.X3D.BN_LIN5) def forward(self, x, bboxes=None): for module in self.children(): x = module(x) return x class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, with_qkv=True): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.with_qkv = with_qkv if self.with_qkv: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_drop = nn.Dropout(attn_drop) def forward(self, x): B, N, C = x.shape if self.with_qkv: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] else: qkv = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q, k, v = qkv, qkv, qkv attn = q @ k.transpose(-2, -1) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) if self.with_qkv: x = self.proj(x) x = self.proj_drop(x) return x def drop_path(x, drop_prob: float=0.0, training: bool=False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.1, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attention_type='divided_space_time'): super().__init__() self.attention_type = attention_type assert attention_type in ['divided_space_time', 'space_only', 'joint_space_time'] self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) if self.attention_type == 'divided_space_time': self.temporal_norm1 = norm_layer(dim) self.temporal_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.temporal_fc = nn.Linear(dim, dim) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, B, T, W): num_spatial_tokens = (x.size(1) - 1) // T H = num_spatial_tokens // W if self.attention_type in ['space_only', 'joint_space_time']: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x elif self.attention_type == 'divided_space_time': xt = x[:, 1:, :] xt = rearrange(xt, 'b (h w t) m -> (b h w) t m', b=B, h=H, w=W, t=T) res_temporal = self.drop_path(self.temporal_attn(self.temporal_norm1(xt))) res_temporal = rearrange(res_temporal, '(b h w) t m -> b (h w t) m', b=B, h=H, w=W, t=T) res_temporal = self.temporal_fc(res_temporal) xt = x[:, 1:, :] + res_temporal init_cls_token = x[:, 0, :].unsqueeze(1) cls_token = init_cls_token.repeat(1, T, 1) cls_token = rearrange(cls_token, 'b t m -> (b t) m', b=B, t=T).unsqueeze(1) xs = xt xs = rearrange(xs, 'b (h w t) m -> (b t) (h w) m', b=B, h=H, w=W, t=T) xs = torch.cat((cls_token, xs), 1) res_spatial = self.drop_path(self.attn(self.norm1(xs))) cls_token = res_spatial[:, 0, :] cls_token = rearrange(cls_token, '(b t) m -> b t m', b=B, t=T) cls_token = torch.mean(cls_token, 1, True) res_spatial = res_spatial[:, 1:, :] res_spatial = rearrange(res_spatial, '(b t) (h w) m -> b (h w t) m', b=B, h=H, w=W, t=T) res = res_spatial x = xt x = torch.cat((init_cls_token, x), 1) + torch.cat((cls_token, res), 1) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def _ntuple(n): def parse(x): if isinstance(x, container_abcs.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = img_size[1] // patch_size[1] * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, T, H, W = x.shape x = rearrange(x, 'b c t h w -> (b t) c h w') x = self.proj(x) W = x.size(-1) x = x.flatten(2).transpose(1, 2) return x, T, W def _no_grad_trunc_normal_(tensor, mean, std, a, b): def norm_cdf(x): return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if mean < a - 2 * std or mean > b + 2 * std: warnings.warn('mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.', stacklevel=2) with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): """Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\\mathcal{N}(\\text{mean}, \\text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \\leq \\text{mean} \\leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class VisionTransformer(nn.Module): """ Vision Transformere """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, hybrid_backbone=None, norm_layer=nn.LayerNorm, num_frames=8, attention_type='divided_space_time', dropout=0.0): super().__init__() self.attention_type = attention_type self.depth = depth self.dropout = nn.Dropout(dropout) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) if self.attention_type != 'space_only': self.time_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.time_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)] self.blocks = nn.ModuleList([Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, attention_type=self.attention_type) for i in range(self.depth)]) self.norm = norm_layer(embed_dim) self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=0.02) trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) if self.attention_type == 'divided_space_time': i = 0 for m in self.blocks.modules(): m_str = str(m) if 'Block' in m_str: if i > 0: nn.init.constant_(m.temporal_fc.weight, 0) nn.init.constant_(m.temporal_fc.bias, 0) i += 1 def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'time_embed'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x, T, W = self.patch_embed(x) cls_tokens = self.cls_token.expand(x.size(0), -1, -1) x = torch.cat((cls_tokens, x), dim=1) if x.size(1) != self.pos_embed.size(1): pos_embed = self.pos_embed cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1) other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2) P = int(other_pos_embed.size(2) ** 0.5) H = x.size(1) // W other_pos_embed = other_pos_embed.reshape(1, x.size(2), P, P) new_pos_embed = F.interpolate(other_pos_embed, size=(H, W), mode='nearest') new_pos_embed = new_pos_embed.flatten(2) new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) x = x + new_pos_embed else: x = x + self.pos_embed x = self.pos_drop(x) if self.attention_type != 'space_only': cls_tokens = x[:B, 0, :].unsqueeze(1) x = x[:, 1:] x = rearrange(x, '(b t) n m -> (b n) t m', b=B, t=T) if T != self.time_embed.size(1): time_embed = self.time_embed.transpose(1, 2) new_time_embed = F.interpolate(time_embed, size=T, mode='nearest') new_time_embed = new_time_embed.transpose(1, 2) x = x + new_time_embed else: x = x + self.time_embed x = self.time_drop(x) x = rearrange(x, '(b n) t m -> b (n t) m', b=B, t=T) x = torch.cat((cls_tokens, x), dim=1) for blk in self.blocks: x = blk(x, B, T, W) if self.attention_type == 'space_only': x = rearrange(x, '(b t) n m -> b t n m', b=B, t=T) x = torch.mean(x, 1) x = self.norm(x) return x[:, 0] def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def _conv_filter(state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: if v.shape[-1] != patch_size: patch_size = v.shape[-1] v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict IMAGENET_DEFAULT_MEAN = 0.485, 0.456, 0.406 IMAGENET_DEFAULT_STD = 0.229, 0.224, 0.225 def _cfg(url='', **kwargs): return {'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': 0.9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs} default_cfgs = {'vit_base_patch16_224': _cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))} _logger = logging.getLogger(__name__) def load_state_dict(checkpoint_path, use_ema=False): if checkpoint_path and os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict_key = 'state_dict' if isinstance(checkpoint, dict): if use_ema and 'state_dict_ema' in checkpoint: state_dict_key = 'state_dict_ema' if state_dict_key and state_dict_key in checkpoint: new_state_dict = OrderedDict() for k, v in checkpoint[state_dict_key].items(): name = k[7:] if k.startswith('module') else k new_state_dict[name] = v state_dict = new_state_dict elif 'model_state' in checkpoint: state_dict_key = 'model_state' new_state_dict = OrderedDict() for k, v in checkpoint[state_dict_key].items(): name = k[6:] if k.startswith('model') else k new_state_dict[name] = v state_dict = new_state_dict else: state_dict = checkpoint _logger.info("Loaded {} from checkpoint '{}'".format(state_dict_key, checkpoint_path)) return state_dict else: _logger.error("No checkpoint found at '{}'".format(checkpoint_path)) raise FileNotFoundError() def load_pretrained(model, cfg=None, num_classes=1000, in_chans=3, filter_fn=None, img_size=224, num_frames=8, num_patches=196, attention_type='divided_space_time', pretrained_model='', strict=True): if cfg is None: cfg = getattr(model, 'default_cfg') if cfg is None or 'url' not in cfg or not cfg['url']: _logger.warning('Pretrained model URL is invalid, using random initialization.') return if len(pretrained_model) == 0: state_dict = model_zoo.load_url(cfg['url'], progress=False, map_location='cpu') else: try: state_dict = load_state_dict(pretrained_model)['model'] except: state_dict = load_state_dict(pretrained_model) if filter_fn is not None: state_dict = filter_fn(state_dict) if in_chans == 1: conv1_name = cfg['first_conv'] _logger.info('Converting first conv (%s) pretrained weights from 3 to 1 channel' % conv1_name) conv1_weight = state_dict[conv1_name + '.weight'] conv1_type = conv1_weight.dtype conv1_weight = conv1_weight.float() O, I, J, K = conv1_weight.shape if I > 3: assert conv1_weight.shape[1] % 3 == 0 conv1_weight = conv1_weight.reshape(O, I // 3, 3, J, K) conv1_weight = conv1_weight.sum(dim=2, keepdim=False) else: conv1_weight = conv1_weight.sum(dim=1, keepdim=True) conv1_weight = conv1_weight state_dict[conv1_name + '.weight'] = conv1_weight elif in_chans != 3: conv1_name = cfg['first_conv'] conv1_weight = state_dict[conv1_name + '.weight'] conv1_type = conv1_weight.dtype conv1_weight = conv1_weight.float() O, I, J, K = conv1_weight.shape if I != 3: _logger.warning('Deleting first conv (%s) from pretrained weights.' % conv1_name) del state_dict[conv1_name + '.weight'] strict = False else: _logger.info('Repeating first conv (%s) weights in channel dim.' % conv1_name) repeat = int(math.ceil(in_chans / 3)) conv1_weight = conv1_weight.repeat(1, repeat, 1, 1)[:, :in_chans, :, :] conv1_weight *= 3 / float(in_chans) conv1_weight = conv1_weight state_dict[conv1_name + '.weight'] = conv1_weight classifier_name = cfg['classifier'] if num_classes == 1000 and cfg['num_classes'] == 1001: classifier_weight = state_dict[classifier_name + '.weight'] state_dict[classifier_name + '.weight'] = classifier_weight[1:] classifier_bias = state_dict[classifier_name + '.bias'] state_dict[classifier_name + '.bias'] = classifier_bias[1:] elif num_classes != state_dict[classifier_name + '.weight'].size(0): del state_dict[classifier_name + '.weight'] del state_dict[classifier_name + '.bias'] strict = False if num_patches + 1 != state_dict['pos_embed'].size(1): pos_embed = state_dict['pos_embed'] cls_pos_embed = pos_embed[0, 0, :].unsqueeze(0).unsqueeze(1) other_pos_embed = pos_embed[0, 1:, :].unsqueeze(0).transpose(1, 2) new_pos_embed = F.interpolate(other_pos_embed, size=num_patches, mode='nearest') new_pos_embed = new_pos_embed.transpose(1, 2) new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1) state_dict['pos_embed'] = new_pos_embed if 'time_embed' in state_dict and num_frames != state_dict['time_embed'].size(1): time_embed = state_dict['time_embed'].transpose(1, 2) new_time_embed = F.interpolate(time_embed, size=num_frames, mode='nearest') state_dict['time_embed'] = new_time_embed.transpose(1, 2) if attention_type == 'divided_space_time': new_state_dict = state_dict.copy() for key in state_dict: if 'blocks' in key and 'attn' in key: new_key = key.replace('attn', 'temporal_attn') if not new_key in state_dict: new_state_dict[new_key] = state_dict[key] else: new_state_dict[new_key] = state_dict[new_key] if 'blocks' in key and 'norm1' in key: new_key = key.replace('norm1', 'temporal_norm1') if not new_key in state_dict: new_state_dict[new_key] = state_dict[key] else: new_state_dict[new_key] = state_dict[new_key] state_dict = new_state_dict model.load_state_dict(state_dict, strict=False) class vit_base_patch16_224(nn.Module): def __init__(self, cfg, **kwargs): super(vit_base_patch16_224, self).__init__() self.pretrained = True patch_size = 16 self.model = VisionTransformer(img_size=cfg.DATA.TRAIN_CROP_SIZE, num_classes=cfg.MODEL.NUM_CLASSES, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-06), drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, num_frames=cfg.DATA.NUM_FRAMES, attention_type=cfg.TIMESFORMER.ATTENTION_TYPE, **kwargs) self.attention_type = cfg.TIMESFORMER.ATTENTION_TYPE self.model.default_cfg = default_cfgs['vit_base_patch16_224'] self.num_patches = cfg.DATA.TRAIN_CROP_SIZE // patch_size * (cfg.DATA.TRAIN_CROP_SIZE // patch_size) pretrained_model = cfg.TIMESFORMER.PRETRAINED_MODEL if self.pretrained: load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=cfg.DATA.TRAIN_CROP_SIZE, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) def forward(self, x): x = self.model(x) return x class TimeSformer(nn.Module): def __init__(self, img_size=224, patch_size=16, num_classes=400, num_frames=8, attention_type='divided_space_time', pretrained_model='', **kwargs): super(TimeSformer, self).__init__() self.pretrained = True self.model = VisionTransformer(img_size=img_size, num_classes=num_classes, patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-06), drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, num_frames=num_frames, attention_type=attention_type, **kwargs) self.attention_type = attention_type self.model.default_cfg = default_cfgs['vit_base_patch' + str(patch_size) + '_224'] self.num_patches = img_size // patch_size * (img_size // patch_size) if self.pretrained: load_pretrained(self.model, num_classes=self.model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter, img_size=img_size, num_frames=num_frames, num_patches=self.num_patches, attention_type=self.attention_type, pretrained_model=pretrained_model) def forward(self, x): x = self.model(x) return x import torch from torch.nn import MSELoss, ReLU from _paritybench_helpers import _mock_config, _mock_layer, _paritybench_base, _fails_compile TESTCASES = [ # (nn.Module, init_args, forward_args, jit_compiles) (BasicTransform, lambda: ([], {'dim_in': 4, 'dim_out': 4, 'temp_kernel_size': 4, 'stride': 1}), lambda: ([torch.rand([4, 4, 4, 4, 4])], {}), True), (BottleneckTransform, lambda: ([], {'dim_in': 4, 'dim_out': 4, 'temp_kernel_size': 4, 'stride': 1, 'dim_inner': 4, 'num_groups': 1}), lambda: ([torch.rand([4, 4, 4, 4, 4])], {}), True), (Conv2dSame, lambda: ([], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (DropPath, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (Linear, lambda: ([], {'in_features': 4, 'out_features': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Mlp, lambda: ([], {'in_features': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Nonlocal, lambda: ([], {'dim': 4, 'dim_inner': 4}), lambda: ([torch.rand([4, 4, 4, 4, 4])], {}), False), (ResNetBasicStem, lambda: ([], {'dim_in': 4, 'dim_out': 4, 'kernel': 4, 'stride': 1, 'padding': 4}), lambda: ([torch.rand([4, 4, 4, 4, 4])], {}), True), (SE, lambda: ([], {'dim_in': 4, 'ratio': 4}), lambda: ([torch.rand([4, 4, 4, 4])], {}), True), (Swish, lambda: ([], {}), lambda: ([torch.rand([4, 4, 4, 4])], {}), False), (X3DTransform, lambda: ([], {'dim_in': 4, 'dim_out': 4, 'temp_kernel_size': 4, 'stride': 1, 'dim_inner': 4, 'num_groups': 1}), lambda: ([torch.rand([4, 4, 4, 4, 4])], {}), False), ] class Test_facebookresearch_TimeSformer(_paritybench_base): def test_000(self): self._check(*TESTCASES[0]) def test_001(self): self._check(*TESTCASES[1]) def test_002(self): self._check(*TESTCASES[2]) def test_003(self): self._check(*TESTCASES[3]) def test_004(self): self._check(*TESTCASES[4]) def test_005(self): self._check(*TESTCASES[5]) def test_006(self): self._check(*TESTCASES[6]) def test_007(self): self._check(*TESTCASES[7]) def test_008(self): self._check(*TESTCASES[8]) def test_009(self): self._check(*TESTCASES[9]) def test_010(self): self._check(*TESTCASES[10])
9fde6b1cc14c9a979633c4f2df97f24dca4d78bb
84290c584128de3e872e66dc99b5b407a7a4612f
/Supervised Learning with scikit-learn/Preprocessing and pipelines/Centering and scaling.py
c21eb26fe58bf9a8d53c990a24d3b0ab871dee0b
[]
no_license
BautizarCodigo/DataAnalyticEssentials
91eddc56dd1b457e9e3e1e3db5fbbb2a85d3b789
7f5f3d8936dd4945ee0fd854ef17f04a04eb7b57
refs/heads/main
2023-04-11T04:42:17.977491
2021-03-21T19:05:17
2021-03-21T19:05:17
349,784,608
0
1
null
null
null
null
UTF-8
Python
false
false
504
py
# Import scale from sklearn.preprocessing import scale # Scale the features: X_scaled X_scaled = scale(X) # Print the mean and standard deviation of the unscaled features print("Mean of Unscaled Features: {}".format(np.mean(X))) print("Standard Deviation of Unscaled Features: {}".format(np.std(X))) # Print the mean and standard deviation of the scaled features print("Mean of Scaled Features: {}".format(np.mean(X_scaled))) print("Standard Deviation of Scaled Features: {}".format(np.std(X_scaled)))
a8ba14a006fb88ac5415201cfab9678983738d9d
b47f2e3f3298388b1bcab3213bef42682985135e
/experiments/fdtd-2d/tmp_files/2238.py
6dfcdd1cd9629a3c959c2e3b61310de6617d05bf
[ "BSD-2-Clause" ]
permissive
LoopTilingBenchmark/benchmark
29cc9f845d323431e3d40e878cbfc6d1aad1f260
52a3d2e70216552a498fd91de02a2fa9cb62122c
refs/heads/master
2020-09-25T09:45:31.299046
2019-12-04T23:25:06
2019-12-04T23:25:06
225,975,074
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/fdtd-2d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/fdtd-2d/tmp_files/2238.c') procedure('kernel_fdtd_2d') loop(0) known(' nx > 1 ') known(' ny > 1 ') tile(1,2,20,2) tile(1,4,16,4) tile(2,2,20,2) tile(2,4,16,4) tile(3,2,20,2) tile(3,4,16,4)
bd6651931aed58d7bfd2c1949c7dea3b99edfd6c
b685036280331fa50fcd87f269521342ec1b437b
/src/data_mining_demo/py_shuJuWaJue_ruMen_yu_ShiJian/chapter3/demo2.py
7e2ee679470b22f9af507b2f12f77a6431309659
[]
no_license
chenqing666/myML_DM_Test
f875cb5b2a92e81bc3de2a0070c0185b7eacac89
5ac38f7872d94ca7cedd4f5057bb93732b5edbad
refs/heads/master
2022-02-26T01:52:06.293025
2019-09-20T06:35:25
2019-09-20T06:35:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
import pickle import numpy as np import pandas as pd datafile = "./cleanedData.dai" with open(datafile, 'rb') as file: dataset = pickle.load(file) print(dataset.head())
71b2e819f9b87e7fec810e93dc2fb3d1006ac89d
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_combos.py
cac18802b80f0f4ecc83aabd2e7d23ba1ed8481a
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.nouns._combo import _COMBO #calss header class _COMBOS(_COMBO, ): def __init__(self,): _COMBO.__init__(self) self.name = "COMBOS" self.specie = 'nouns' self.basic = "combo" self.jsondata = {}
82812f0cb1ad89fee4e2c4ad453429f5b4e8cc8f
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_118/619.py
85060cf54efea0ef148ad0160403ca71cbb9b978
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
# -*- coding: utf-8 -*- import sys def is_palindrome(num): s1 = str(num) s2 = s1[::-1] return s1 == s2 fair_numbers = [] for i in range(pow(10, 7)+1): if is_palindrome(i): num = i*i if is_palindrome(num): fair_numbers.append(num) N = int(sys.stdin.readline()) for T in range(1, N+1): min_val, max_val = map(int, sys.stdin.readline().strip().split()) ans = 0 for num in fair_numbers: if num < min_val: continue if num > max_val: break ans += 1 print 'Case #%(T)s: %(ans)s' % locals()
c0056aa85383d670add5f74e627672b310c662ce
a867b1c9da10a93136550c767c45e0d8c98f5675
/G_LC_1055_ShortestWaytoFormString.py
057fd0b488c0696e709603ccc3d5993c1b5d2c98
[]
no_license
Omkar02/FAANG
f747aacc938bf747129b8ff35b6648fb265d95b6
ee9b245aa83ea58aa67954ab96442561dbe68d06
refs/heads/master
2023-03-25T19:45:08.153403
2021-03-28T07:13:08
2021-03-28T07:13:08
280,783,785
1
0
null
null
null
null
UTF-8
Python
false
false
835
py
# import __main__ as main # from Helper.TimerLogger import CodeTimeLogging # fileName = main.__file__ # fileName = fileName.split('\\')[-1] # CodeTimeLogging(Flag='F', filename=fileName, Tag='String', Difficult='Medium') def shotestWaytoFormString(scr, target): numMinString = 0 remaning = target while len(remaning) != 0: subsequence = "" i = j = 0 while i < len(scr) and j < len(remaning): if scr[i] == remaning[j]: subsequence += remaning[j] j += 1 i += 1 if len(subsequence) == 0: return -1 numMinString += 1 remaning = remaning[len(subsequence):] return numMinString scr = "abc" target = "abcbc" scr = "abc" target = "abcdbc" a = [1, 2, 3, 4, 5] print(shotestWaytoFormString(scr, target))
3ef7e25a59a3ca2672554115318f33e31822fd25
e5dc27e634aba70bcd1b3acea74fed84ddccf837
/plugins/modules/template_project.py
432a757ecb62ba97acf49d326d6c97cb68fe269b
[]
no_license
jejrichardson/dnacenter-ansible
264d1b52227d4bf78ad175494763cff9e7881f34
f10078ef8323bda4b542e71bcecf4f80a7fe0609
refs/heads/master
2023-01-28T09:54:57.449459
2020-12-09T23:15:49
2020-12-09T23:15:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,792
py
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2020, Rafael Campos <[email protected]> # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) ANSIBLE_METADATA = { "metadata_version": "0.0.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = r""" --- module: template_project short_description: Manage TemplateProject objects of ConfigurationTemplates description: - Returns the projects in the system. - Creates a new project. - Updates an existing project. - Deletes an existing Project. version_added: '1.0' author: Rafael Campos (@racampos) options: name: description: - Name of project to be searched. - ProjectDTO's name. type: str createTime: description: - ProjectDTO's createTime. type: int description: description: - ProjectDTO's description. type: str id: description: - ProjectDTO's id. type: str lastUpdateTime: description: - ProjectDTO's lastUpdateTime. type: int tags: description: - ProjectDTO's tags (list of strings). type: list templates: description: - ProjectDTO's templates. type: dict project_id: description: - ProjectId path parameter. - Required for state delete. type: str requirements: - dnacentersdk seealso: # Reference by module name - module: cisco.dnac.plugins.module_utils.definitions.template_project # Reference by Internet resource - name: TemplateProject reference description: Complete reference of the TemplateProject object model. link: https://developer.cisco.com/docs/dna-center/api/1-3-3-x # Reference by Internet resource - name: TemplateProject reference description: SDK reference. link: https://dnacentersdk.readthedocs.io/en/latest/api/api.html#v2-1-1-summary """ EXAMPLES = r""" - name: get_projects cisco.dnac.template_project: state: query # required name: SomeValue # string register: query_result - name: create_project cisco.dnac.template_project: state: create # required createTime: 1 # integer description: SomeValue # string id: SomeValue # string lastUpdateTime: 1 # integer name: SomeValue # string tags: - SomeValue # string templates: None - name: update_project cisco.dnac.template_project: state: update # required createTime: 1 # integer description: SomeValue # string id: SomeValue # string lastUpdateTime: 1 # integer name: SomeValue # string tags: - SomeValue # string templates: None - name: delete_project cisco.dnac.template_project: state: delete # required project_id: SomeValue # string, required """ RETURN = """ get_projects: description: Returns the projects in the system. returned: always type: dict contains: payload: description: It is the template project's payload. returned: always type: list contains: name: description: It is the template project's name. returned: always type: str sample: '<name>' id: description: It is the template project's id. returned: always type: str sample: '478012' templates: description: It is the template project's templates. returned: always type: list contains: name: description: It is the template project's name. returned: always type: str sample: '<name>' composite: description: It is the template project's composite. returned: always type: bool sample: false id: description: It is the template project's id. returned: always type: str sample: '478012' create_project: description: Creates a new project. returned: success type: dict contains: response: description: ProjectDTO's response. returned: success type: dict contains: taskId: description: It is the template project's taskId. returned: success type: dict url: description: It is the template project's url. returned: success type: str sample: '<url>' version: description: ProjectDTO's version. returned: success type: str sample: '1.0' update_project: description: Updates an existing project. returned: changed type: dict contains: response: description: ProjectDTO's response. returned: changed type: dict contains: taskId: description: It is the template project's taskId. returned: changed type: dict url: description: It is the template project's url. returned: changed type: str sample: '<url>' version: description: ProjectDTO's version. returned: changed type: str sample: '1.0' delete_project: description: Deletes an existing Project. returned: success type: dict contains: response: description: Response, property of the response body. returned: success type: dict contains: taskId: description: It is the template project's taskId. returned: success type: dict url: description: It is the template project's url. returned: success type: str sample: '<url>' version: description: Version, property of the response body. returned: success type: str sample: '1.0' """
ce4cb92d76d50fbd63accaff41bd8af8bbd952e1
0f9b6a33a5e2ce627db75d1bcc34bc3f3674335b
/sctf/2018/catchthebug/exploit.py
10ff19c7084f606481adcd2e34de7136bf30a20a
[]
no_license
hnoson/writeups
359a33b03286bab19359ad9b089e6f3bfe4fb708
05550e3c462108f6c5ba0b69f65694e2eb1dc9b3
refs/heads/master
2021-10-07T18:21:26.041101
2021-10-03T10:22:31
2021-10-03T10:22:31
119,823,623
7
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
#!/usr/bin/env python from pwn import * def catch(name): while True: s.sendlineafter('>> ', '1') s.recvline() if s.recvline(False) == 'There is no bug =(': continue s.sendafter('>> ', name) break def inspect(num): s.sendlineafter('>> ', '2') ret = [] for i in range(num): s.recvuntil('==\n') ret.append((s.recvline(False), len(s.recvuntil('=')) - 2)) return ret def submit(title = 'A' * 0x40, subtitle = 'A' * 0x80, body = 'A' * 0x100, tag = 'A' * 8, password = 'A' * 8): s.sendlineafter('>> ', '3') s.sendafter('title\n', title) s.sendafter('subtitle\n', subtitle) if len(body) < 0x100: body += '\n' s.sendafter('body\n', body) if len(tag) < 8: tag += '\n' s.sendafter('tag\n', tag) s.sendafter('password\n', password) if __name__ == '__main__': # context.log_level = 'DEBUG' if len(sys.argv) == 1: s = process('./bug_3e99623da36874fd424a4e237866e301d292aa66') # s = process('./bug_3e99623da36874fd424a4e237866e301d292aa66', env = {'LD_PRELOAD': './libc-2.26.so_cc8df6278e095fcc4ca8a98e1f1c69c04db30a4c'}) else: s = remote('catchthebug.eatpwnnosleep.com', 55555) libc = ELF('./libc-2.26.so_cc8df6278e095fcc4ca8a98e1f1c69c04db30a4c') one_gadgets = [0x47c46, 0x47c9a, 0xfccde, 0xfdb8e] catch('%p\n') catch('AAAA') catch('AAAA') res = inspect(3) libc_base = int(res[0][0], 16) - libc.symbols['_IO_2_1_stdout_'] - 131 log.info('libc base: %#x' % libc_base) length = 8 * 3 + sum([l for _, l in res]) + 0x40 + 0x80 log.info('report length: %#x' % length) if length < 0x618: print 'try again' exit(0) body = 'A' * (0x708 - length) body += p64(libc_base + 0x608040 + 3840 - len(body) - 0x9) tag = p64(libc_base + one_gadgets[2]) submit(body = body, tag = tag) s.interactive()
85614f4b027e1a236f12c98d6e2f0dbb9b39b778
2425ad0e81a695eb126b31f2ccf82dfd478851c3
/tests/test_ets.py
d8636cb441a212b3bfaa502b4e83c50a972f032f
[ "MIT" ]
permissive
jhavl/ropy
62ab28297ae7e4ee6076009777d28aff98fdb2a2
38b12369530253a16c22ef1f5be0bcb75053ffd8
refs/heads/master
2021-01-07T20:39:00.899851
2020-11-29T10:35:24
2020-11-29T10:35:24
241,814,788
17
3
MIT
2020-04-29T05:36:43
2020-02-20T06:55:34
Python
UTF-8
Python
false
false
22,573
py
#!/usr/bin/env python3 """ Created on Fri May 1 14:04:04 2020 @author: Jesse Haviland """ import numpy.testing as nt import numpy as np import ropy as rp import unittest import spatialmath as sm class TestETS(unittest.TestCase): def test_panda(self): panda = rp.Panda() qz = np.array([0, 0, 0, 0, 0, 0, 0]) qr = panda.qr nt.assert_array_almost_equal(panda.qr, qr) nt.assert_array_almost_equal(panda.qz, qz) nt.assert_array_almost_equal( panda.gravity, np.array([[0], [0], [9.81]])) def test_q(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) panda.q = q1 nt.assert_array_almost_equal(panda.q, q1) panda.q = q2 nt.assert_array_almost_equal(panda.q, q2) panda.q = q3 nt.assert_array_almost_equal(np.expand_dims(panda.q, 0), q3) def test_getters(self): panda = rp.Panda() panda.qdd = np.ones((7, 1)) panda.qd = np.ones((1, 7)) panda.qdd = panda.qd panda.qd = panda.qdd def test_control_type(self): panda = rp.Panda() panda.control_type = 'v' self.assertEqual(panda.control_type, 'v') def test_base(self): panda = rp.Panda() pose = sm.SE3() panda.base = pose.A nt.assert_array_almost_equal(np.eye(4), panda.base.A) panda.base = pose nt.assert_array_almost_equal(np.eye(4), panda.base.A) # def test_str(self): # panda = rp.Panda() # ans = '\nPanda (Franka Emika): 7 axis, RzRzRzRzRzRzRz, ETS\n'\ # 'Elementary Transform Sequence:\n'\ # '[tz(0.333), Rz(q0), Rx(-90), Rz(q1), Rx(90), tz(0.316), '\ # 'Rz(q2), tx(0.0825), Rx(90), Rz(q3), tx(-0.0825), Rx(-90), '\ # 'tz(0.384), Rz(q4), Rx(90), Rz(q5), tx(0.088), Rx(90), '\ # 'tz(0.107), Rz(q6)]\n'\ # 'tool: t = (0, 0, 0.103), RPY/xyz = (0, 0, -45) deg' # self.assertEqual(str(panda), ans) # def test_str_ets(self): # panda = rp.Panda() # ans = '[tz(0.333), Rz(q0), Rx(-90), Rz(q1), Rx(90), tz(0.316), '\ # 'Rz(q2), tx(0.0825), Rx(90), Rz(q3), tx(-0.0825), Rx(-90), '\ # 'tz(0.384), Rz(q4), Rx(90), Rz(q5), tx(0.088), Rx(90), '\ # 'tz(0.107), Rz(q6)]' # self.assertEqual(str(panda.ets), ans) def test_fkine(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) ans = np.array([ [-0.50827907, -0.57904589, 0.63746234, 0.44682295], [0.83014553, -0.52639462, 0.18375824, 0.16168396], [0.22915229, 0.62258699, 0.74824773, 0.96798113], [0., 0., 0., 1.] ]) panda.q = q1 nt.assert_array_almost_equal(panda.fkine().A, ans) nt.assert_array_almost_equal(panda.fkine(q2).A, ans) nt.assert_array_almost_equal(panda.fkine(q3).A, ans) nt.assert_array_almost_equal(panda.fkine(q3).A, ans) self.assertRaises(TypeError, panda.fkine, 'Wfgsrth') def test_fkine_traj(self): panda = rp.Panda() q = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) qq = np.c_[q, q, q, q] ans = np.array([ [-0.50827907, -0.57904589, 0.63746234, 0.44682295], [0.83014553, -0.52639462, 0.18375824, 0.16168396], [0.22915229, 0.62258699, 0.74824773, 0.96798113], [0., 0., 0., 1.] ]) TT = panda.fkine(qq) nt.assert_array_almost_equal(TT[0].A, ans) nt.assert_array_almost_equal(TT[1].A, ans) nt.assert_array_almost_equal(TT[2].A, ans) nt.assert_array_almost_equal(TT[3].A, ans) def test_allfkine(self): pm = rp.PandaMDH() p = rp.Panda() q = [1, 2, 3, 4, 5, 6, 7] p.q = q pm.q = q p.allfkine() r2 = pm.allfkine() for i in range(7): nt.assert_array_almost_equal(p.ets[i]._fk.A, r2[i].A) p.allfkine(q) for i in range(7): nt.assert_array_almost_equal(p.ets[i]._fk.A, r2[i].A) def test_jacob0(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) q4 = np.expand_dims(q1, 1) ans = np.array([ [-1.61683957e-01, 1.07925929e-01, -3.41453006e-02, 3.35029257e-01, -1.07195463e-02, 1.03187865e-01, 0.00000000e+00], [4.46822947e-01, 6.25741987e-01, 4.16474664e-01, -8.04745724e-02, 7.78257566e-02, -1.17720983e-02, 0.00000000e+00], [0.00000000e+00, -2.35276631e-01, -8.20187641e-02, -5.14076923e-01, -9.98040745e-03, -2.02626953e-01, 0.00000000e+00], [1.29458954e-16, -9.85449730e-01, 3.37672585e-02, -6.16735653e-02, 6.68449878e-01, -1.35361558e-01, 6.37462344e-01], [9.07021273e-18, 1.69967143e-01, 1.95778638e-01, 9.79165111e-01, 1.84470262e-01, 9.82748279e-01, 1.83758244e-01], [1.00000000e+00, -2.26036604e-17, 9.80066578e-01, -1.93473657e-01, 7.20517510e-01, -1.26028049e-01, 7.48247732e-01] ]) panda.q = q1 nt.assert_array_almost_equal(panda.jacob0(), ans) nt.assert_array_almost_equal(panda.jacob0(q2), ans) nt.assert_array_almost_equal(panda.jacob0(q3), ans) nt.assert_array_almost_equal(panda.jacob0(q4), ans) self.assertRaises(TypeError, panda.jacob0, 'Wfgsrth') def test_hessian0(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) q4 = np.expand_dims(q1, 1) ans = np.array([ [ [-4.46822947e-01, -6.25741987e-01, -4.16474664e-01, 8.04745724e-02, -7.78257566e-02, 1.17720983e-02, 0.00000000e+00], [-6.25741987e-01, -3.99892968e-02, -1.39404950e-02, -8.73761859e-02, -1.69634134e-03, -3.44399243e-02, 0.00000000e+00], [-4.16474664e-01, -1.39404950e-02, -4.24230421e-01, -2.17748413e-02, -7.82283735e-02, -2.81325889e-02, 0.00000000e+00], [8.04745724e-02, -8.73761859e-02, -2.17748413e-02, -5.18935898e-01, 5.28476698e-03, -2.00682834e-01, 0.00000000e+00], [-7.78257566e-02, -1.69634134e-03, -7.82283735e-02, 5.28476698e-03, -5.79159088e-02, -2.88966443e-02, 0.00000000e+00], [1.17720983e-02, -3.44399243e-02, -2.81325889e-02, -2.00682834e-01, -2.88966443e-02, -2.00614904e-01, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00] ], [ [-1.61683957e-01, 1.07925929e-01, -3.41453006e-02, 3.35029257e-01, -1.07195463e-02, 1.03187865e-01, 0.00000000e+00], [1.07925929e-01, -2.31853293e-01, -8.08253690e-02, -5.06596965e-01, -9.83518983e-03, -1.99678676e-01, 0.00000000e+00], [-3.41453006e-02, -8.08253690e-02, -3.06951191e-02, 3.45709946e-01, -1.01688580e-02, 1.07973135e-01, 0.00000000e+00], [3.35029257e-01, -5.06596965e-01, 3.45709946e-01, -9.65242924e-02, 1.45842251e-03, -3.24608603e-02, 0.00000000e+00], [-1.07195463e-02, -9.83518983e-03, -1.01688580e-02, 1.45842251e-03, -1.05221866e-03, 2.09794626e-01, 0.00000000e+00], [1.03187865e-01, -1.99678676e-01, 1.07973135e-01, -3.24608603e-02, 2.09794626e-01, -4.04324654e-02, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00] ], [ [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, -6.34981134e-01, -4.04611266e-01, 2.23596800e-02, -7.48714002e-02, -5.93773551e-03, 0.00000000e+00], [0.00000000e+00, -4.04611266e-01, 2.07481281e-02, -6.83089775e-02, 4.72662062e-03, -2.05994912e-02, 0.00000000e+00], [0.00000000e+00, 2.23596800e-02, -6.83089775e-02, -3.23085806e-01, 5.69641385e-03, -1.00311930e-01, 0.00000000e+00], [0.00000000e+00, -7.48714002e-02, 4.72662062e-03, 5.69641385e-03, 5.40000550e-02, -2.69041502e-02, 0.00000000e+00], [0.00000000e+00, -5.93773551e-03, -2.05994912e-02, -1.00311930e-01, -2.69041502e-02, -9.98142073e-02, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00] ], [ [-9.07021273e-18, -2.77555756e-17, -2.77555756e-17, -1.11022302e-16, -2.77555756e-17, 0.00000000e+00, -2.77555756e-17], [-1.69967143e-01, -1.97756387e-17, 4.11786040e-17, -1.48932398e-16, -5.07612940e-17, -8.38219650e-17, -4.90138154e-17], [-1.95778638e-01, 1.66579116e-01, -1.38777878e-17, 1.04083409e-17, -1.38777878e-17, 3.46944695e-18, 0.00000000e+00], [-9.79165111e-01, -3.28841647e-02, -9.97525009e-01, -4.16333634e-17, -1.14491749e-16, 1.38777878e-17, -6.24500451e-17], [-1.84470262e-01, 1.22464303e-01, -3.97312016e-02, 7.41195745e-01, -2.77555756e-17, 1.12757026e-16, 2.77555756e-17], [-9.82748279e-01, -2.14206274e-02, -9.87832342e-01, 6.67336352e-02, -7.31335770e-01, 2.08166817e-17, -6.07153217e-17], [-1.83758244e-01, 1.27177529e-01, -3.36043908e-02, 7.68210453e-01, 5.62842325e-03, 7.58497864e-01, 0.00000000e+00] ], [ [1.29458954e-16, -1.11022302e-16, 8.67361738e-17, -4.16333634e-17, 5.55111512e-17, 2.77555756e-17, 5.55111512e-17], [-9.85449730e-01, -6.36381327e-17, -1.02735399e-16, -1.83043043e-17, -5.63484308e-17, 8.08886307e-18, 1.07112702e-18], [3.37672585e-02, 9.65806345e-01, 8.32667268e-17, -2.55871713e-17, 1.07552856e-16, 2.08166817e-17, -5.20417043e-18], [-6.16735653e-02, -1.90658563e-01, -5.39111251e-02, -6.59194921e-17, -2.77555756e-17, 2.38524478e-17, -4.16333634e-17], [6.68449878e-01, 7.10033786e-01, 6.30795483e-01, -8.48905588e-02, 0.00000000e+00, 3.46944695e-17, 2.77555756e-17], [-1.35361558e-01, -1.24194307e-01, -1.28407717e-01, 1.84162966e-02, -1.32869389e-02, 2.77555756e-17, -2.08166817e-17], [6.37462344e-01, 7.37360525e-01, 5.99489263e-01, -7.71850655e-02, -4.08633244e-02, 2.09458434e-02, 0.00000000e+00] ], [ [0.00000000e+00, -6.59521910e-17, -1.31033786e-16, -1.92457571e-16, 1.54134782e-17, -7.69804929e-17, 1.11140361e-17], [0.00000000e+00, -2.77555756e-17, 7.15573434e-17, 1.65666092e-16, 1.38777878e-17, -8.67361738e-18, 3.46944695e-17], [0.00000000e+00, -1.98669331e-01, 8.67361738e-18, -1.46584134e-16, 6.02816408e-17, -3.12250226e-17, 6.11490025e-17], [0.00000000e+00, -9.54435515e-01, 4.51380881e-02, 1.38777878e-17, 1.08420217e-16, 3.46944695e-18, 6.24500451e-17], [0.00000000e+00, -2.95400686e-01, -1.24639152e-01, -6.65899738e-01, -4.85722573e-17, -5.20417043e-18, -5.55111512e-17], [0.00000000e+00, -9.45442009e-01, 5.96856167e-02, 7.19317248e-02, 6.81888149e-01, -2.77555756e-17, 1.04083409e-17], [0.00000000e+00, -2.89432165e-01, -1.18596498e-01, -6.35513913e-01, 5.24032975e-03, -6.51338823e-01, 0.00000000e+00] ] ]) panda.q = q1 nt.assert_array_almost_equal(panda.hessian0(), ans) nt.assert_array_almost_equal(panda.hessian0(q2), ans) nt.assert_array_almost_equal(panda.hessian0(q3), ans) nt.assert_array_almost_equal(panda.hessian0(q4), ans) nt.assert_array_almost_equal(panda.hessian0(J0=panda.jacob0(q1)), ans) nt.assert_array_almost_equal(panda.hessian0( q1, J0=panda.jacob0(q1)), ans) # self.assertRaises(ValueError, panda.hessian0) self.assertRaises(ValueError, panda.hessian0, [1, 3]) self.assertRaises(TypeError, panda.hessian0, 'Wfgsrth') self.assertRaises( ValueError, panda.hessian0, [1, 3], np.array([1, 5])) self.assertRaises(TypeError, panda.hessian0, [1, 3], 'qwe') def test_manipulability(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) q4 = np.expand_dims(q1, 1) ans = 0.006559178039088341 panda.q = q1 nt.assert_array_almost_equal(panda.manipulability(), ans) nt.assert_array_almost_equal(panda.manipulability(q2), ans) nt.assert_array_almost_equal(panda.manipulability(q3), ans) nt.assert_array_almost_equal(panda.manipulability(q4), ans) # self.assertRaises(ValueError, panda.manipulability) self.assertRaises(TypeError, panda.manipulability, 'Wfgsrth') self.assertRaises( ValueError, panda.manipulability, [1, 3], np.array([1, 5])) self.assertRaises(TypeError, panda.manipulability, [1, 3], 'qwe') def test_jacobm(self): panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) q2 = [1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9] q3 = np.expand_dims(q1, 0) q4 = np.expand_dims(q1, 1) ans = np.array([ [1.27080875e-17], [2.38242538e-02], [6.61029519e-03], [8.18202121e-03], [7.74546204e-04], [-1.10885380e-02], [0.00000000e+00] ]) panda.q = q1 nt.assert_array_almost_equal(panda.jacobm(), ans) nt.assert_array_almost_equal(panda.jacobm(q2), ans) nt.assert_array_almost_equal(panda.jacobm(q3), ans) nt.assert_array_almost_equal(panda.jacobm(q4), ans) nt.assert_array_almost_equal(panda.jacobm(J=panda.jacob0(q1)), ans) # self.assertRaises(ValueError, panda.jacobm) self.assertRaises(TypeError, panda.jacobm, 'Wfgsrth') self.assertRaises(ValueError, panda.jacobm, [1, 3], np.array([1, 5])) self.assertRaises(TypeError, panda.jacobm, [1, 3], 'qwe') self.assertRaises( TypeError, panda.jacobm, [1, 3], panda.jacob0(q1), [1, 2, 3]) self.assertRaises( ValueError, panda.jacobm, [1, 3], panda.jacob0(q1), np.array([1, 2, 3])) def test_jacobev(self): pdh = rp.PandaMDH() panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) panda.q = q1 nt.assert_array_almost_equal(panda.jacobev(), pdh.jacobev(q1)) def test_jacob0v(self): pdh = rp.PandaMDH() panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) panda.q = q1 nt.assert_array_almost_equal(panda.jacob0v(), pdh.jacob0v(q1)) def test_jacobe(self): pdh = rp.PandaMDH() panda = rp.Panda() q1 = np.array([1.4, 0.2, 1.8, 0.7, 0.1, 3.1, 2.9]) panda.q = q1 nt.assert_array_almost_equal(panda.jacobe(), pdh.jacobe(q1)) nt.assert_array_almost_equal(panda.jacobe(q1), pdh.jacobe(q1)) def test_init(self): l0 = rp.ELink() l1 = rp.ELink() r = rp.ETS([l0, l1], base=sm.SE3.Rx(1.3), base_link=l1, ee_link=l0) r.base_link = l1 r.base_link = 0 r.ee_link = 1 with self.assertRaises(TypeError): rp.ETS(l0, base=sm.SE3.Rx(1.3)) with self.assertRaises(TypeError): rp.ETS([1, 2], base=sm.SE3.Rx(1.3)) def test_dict(self): panda = rp.PandaURDF() panda.to_dict() wx = rp.wx250s() wx.to_dict() def test_fkdict(self): panda = rp.PandaURDF() fkd = panda.fk_dict() for i in range(len(panda.ets)): nt.assert_array_almost_equal( panda.ets[i]._fk.t, fkd['links'][i]['t']) def test_qlim(self): panda = rp.PandaURDF() self.assertEqual(panda.qlim.shape[0], 2) self.assertEqual(panda.qlim.shape[1], panda.n) def test_manuf(self): panda = rp.PandaURDF() self.assertIsInstance(panda.manuf, str) def test_complex(self): l0 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.TRx()]) l1 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.TRy()], parent=l0) l2 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.TRz()], parent=l1) l3 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.Ttx()], parent=l2) l4 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.Tty()], parent=l3) l5 = rp.ELink([rp.ET.Ttx(0.1), rp.ET.Ttz()], parent=l4) r = rp.ETS([l0, l1, l2, l3, l4, l5]) r.q = [1, 2, 3, 1, 2, 3] ans = np.array([ [-0., 0.08752679, -0.74761985, 0.41198225, 0.05872664, 0.90929743], [1.46443609, 2.80993063, 0.52675075, -0.68124272, -0.64287284, 0.35017549], [-1.04432, -1.80423571, -2.20308833, 0.60512725, -0.76371834, -0.2248451], [1., 0., 0.90929743, 0., 0., 0.], [0., 0.54030231, 0.35017549, 0., 0., 0.], [0., 0.84147098, -0.2248451, 0., 0., 0.] ]) nt.assert_array_almost_equal(r.jacob0(), ans) # def test_plot(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot(block=False) # e.close() # def test_plot_complex(self): # l0 = rp.ET.TRz() # l1 = rp.ET.Ttx() # l2 = rp.ET.TRy() # l3 = rp.ET.Ttz(1) # l4 = rp.ET.TRx() # E = rp.ETS([l0, l1, l2, l3, l4]) # e = E.plot(block=False) # e.step(0) # e.close() # def test_teach(self): # l0 = rp.ET.TRz() # l1 = rp.ET.Ttx() # l2 = rp.ET.TRy() # l3 = rp.ET.Ttz(1) # l4 = rp.ET.TRx() # E = rp.ETS([l0, l1, l2, l3, l4]) # e = E.teach(block=False, q=[1, 2, 3, 4]) # e.close() # def test_plot_traj(self): # panda = rp.Panda() # q = np.random.rand(7, 3) # e = panda.plot(block=False, q=q, dt=0) # e.close() def test_control_type2(self): panda = rp.Panda() panda.control_type = 'p' with self.assertRaises(ValueError): panda.control_type = 'z' # def test_plot_vellipse(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot_vellipse(block=False, limits=[1, 2, 1, 2, 1, 2]) # e.close() # e = panda.plot_vellipse( # block=False, q=panda.qr, centre='ee', opt='rot') # e.step(0) # e.close() # with self.assertRaises(TypeError): # panda.plot_vellipse(vellipse=10) # with self.assertRaises(ValueError): # panda.plot_vellipse(centre='ff') # def test_plot_fellipse(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot_fellipse(block=False, limits=[1, 2, 1, 2, 1, 2]) # e.close() # e = panda.plot_fellipse( # block=False, q=panda.qr, centre='ee', opt='rot') # e.step(0) # e.close() # with self.assertRaises(TypeError): # panda.plot_fellipse(fellipse=10) # with self.assertRaises(ValueError): # panda.plot_fellipse(centre='ff') # def test_plot_with_vellipse(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot(block=False, vellipse=True) # e.close() # def test_plot_with_fellipse(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot(block=False, fellipse=True) # e.close() # def test_plot2(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.plot2(block=False, name=True) # e.close() # def test_plot2_traj(self): # panda = rp.Panda() # q = np.random.rand(7, 3) # e = panda.plot2(block=False, q=q, dt=0) # e.close() # def test_teach2(self): # panda = rp.Panda() # panda.q = panda.qr # e = panda.teach(block=False) # e.close() # e2 = panda.teach2(block=False, q=panda.qr) # e2.close() if __name__ == '__main__': unittest.main()
88bd31ecc6bd237466ec96a185b1d943f4ead144
2d060eb9c7126b8963adcad857daa6e39c6ac75f
/Resist.py
12e4f998383248c49443c1a4b9fc74c578754390
[]
no_license
easy-rpg/Filler
43ce36980156f4ffd9597d822e9fa6c19105d892
55cddbbb21ac508f64b98ceedbc30c680d4c4951
refs/heads/master
2020-03-15T01:38:51.069870
2016-09-03T07:12:55
2016-09-03T07:12:55
131,898,370
0
0
null
null
null
null
UTF-8
Python
false
false
560
py
import abc class Resist_Boa(object): """docstring for """ __metaclass__ = abc.ABCMeta valores = [2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12] @abc.abstractmethod def __str__(self): raise NotImplementedError('users must define __str__ to use this base class') class Resist_Ruim(object): """docstring for """ __metaclass__ = abc.ABCMeta valores = [0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] @abc.abstractmethod def __str__(self): raise NotImplementedError('users must define __str__ to use this base class')
1c29302c75eba77721ac08ae1689249996414741
5864e86954a221d52d4fa83a607c71bacf201c5a
/eve/client/script/ui/station/fitting/stanceSlot.py
4f84e19f8e8023622408b00954931ab6ab6a422f
[]
no_license
connoryang/1v1dec
e9a2303a01e5a26bf14159112b112be81a6560fd
404f2cebf13b311e754d45206008918881496370
refs/heads/master
2021-05-04T02:34:59.627529
2016-10-19T08:56:26
2016-10-19T08:56:26
71,334,417
0
0
null
null
null
null
UTF-8
Python
false
false
1,646
py
#Embedded file name: e:\jenkins\workspace\client_SERENITY\branches\release\SERENITY\eve\client\script\ui\station\fitting\stanceSlot.py from carbonui.primitives.container import Container from eve.client.script.ui.inflight import shipstance import carbonui.const as uiconst class StanceSlots(Container): def __init__(self, **kw): super(StanceSlots, self).__init__(**kw) def _GetAngles(self): return [ 258 - i * 10 for i in xrange(3) ] def ApplyAttributes(self, attributes): Container.ApplyAttributes(self, attributes) self.controller = attributes.controller typeID = attributes.typeID if typeID is None: typeID = sm.GetService('invCache').GetInventoryFromId(attributes.shipID).GetItem().typeID self.shipstances = [] for angle in self._GetAngles(): pos = attributes.angleToPos(angle) newPos = (pos[0], pos[1], 32, 32) self.shipstances.append(shipstance.ShipStanceFittingButton(shipID=attributes.shipID, typeID=typeID, parent=self, pos=newPos, align=uiconst.TOPLEFT, controller=self.controller)) def ShowStances(self, shipID, typeID): btnControllerClass = self.controller.GetStanceBtnControllerClass() shipStanceButtonsArgs = btnControllerClass().get_ship_stance_buttons_args(typeID, shipID) for idx, kwargs in enumerate(shipStanceButtonsArgs): stanceButton = self.shipstances[idx] stanceButton.SetAsStance(shipID, typeID, kwargs['stanceID'], kwargs['stance']) def GetStanceContainers(self): return self.shipstances
09da3887cf75a54b9d1965126cebae0ddf5f6475
6929f9696a8f90b3778d449a199cee8891f3f739
/python_core/deligating_to_parent_class_and_slots.py
c23b6fab9843575d3946b69e50da5f32471b0dc8
[]
no_license
chemplife/Python
881d492a4271fb2b423f2dd611eaac53a0efdc34
7fdfbf442a915e4f41506503baad4345a52d1e86
refs/heads/master
2022-12-31T20:00:22.475985
2020-10-19T20:14:43
2020-10-19T20:14:43
305,503,403
0
0
null
null
null
null
UTF-8
Python
false
false
6,720
py
''' super().method()/attribute -> To deligate things back to the parent class. -> Use this only when you have the same named function in the child as well.. Because Python anyways will look uo the heirarchy if it does not find the method in Child-class. Eg: class A: def b(): class B(A): def c(): return self.b() <- is same as -> return super().b() <- Because 'class B'' does not have 'def b()' of its own. self: binds the instance of the object to the method anywhere in the herarchy. ** if the 'Parent-Class' has '__init__(seld, name)' method that takes in an argument and the 'Child-Class' does not have a '__init__(self)' defined: -> 'Child-Class' instance need that argument (name) because it is inheritied from the 'Parent Class' ''' class Person: def hello(self): print('In Person Class: ', self) class Student(Person): def hello(self): print('In Student Class: ', self) super().hello() p = Person() s = Student() p.hello() print('\n') # Looks at the address of 'self'.. it is the same in 'Person Class' as it is for 'Student Class' s.hello() print('\n\n-------------------------------- Combined Example: Property/Inheritance/Deligate/Caching --------------------------------') from math import pi from numbers import Real class Circle: def __init__(self, r): self.radius = r self._area = None self._perimeter = None @property def radius(self): return self._r @radius.setter def radius(self, r): if isinstance(r, Real) and r > 0: self._r = r self._area = None self._perimeter = None else: raise ValueError('Radius must be a Positive Real Number.') @property def area(self): if self._area is None: self._area = pi * self.radius **2 return self._area @property def perimeter(self): if self._perimeter is None: self._perimeter = 2 * pi * self.radius return self._perimeter class UnitCircle(Circle): def __init__(self): super().__init__(1) u = UnitCircle() print('UnitCircle Radius:', u.radius) print('UnitCircle Area:', u.area) print('UnitCircle Perimeter:', u.perimeter) #But this will work.. u.radius = 10 print('\nProblem: UnitCircle Radius:', u.radius) # To make the Radius for Unit-Circle read-only.. class UnitCircle_1(Circle): def __init__(self): super().__init__(1) @property def radius(self): return self.radius # return super().radius ;; will work the same. # Now it will not work... even without setting u1.radius=10.. Because now, the 'self.radius' in 'circle.__init__()' does not take any argument. # ** we cannot call the 'radius.setter' from outside of the class. # u1 = UnitCircle_1() # u1.radius = 10 # print('\nProblem: UnitCircle_1 Radius:', u1.radius) # To fix, this, we need to make the 'self.radius' in 'circle.__init__()' call a method to set radius.. class Circle: def __init__(self, r): self._set_radius(r) self._area = None self._perimeter = None @property def radius(self): return self._r def _set_radius(self, r): if isinstance(r, Real) and r > 0: self._r = r self._area = None self._perimeter = None else: raise ValueError('Radius must be a Positive Real Number.') @radius.setter def radius(self, r): self._set_radius(r) @property def area(self): if self._area is None: self._area = pi * self.radius **2 return self._area @property def perimeter(self): if self._perimeter is None: self._perimeter = 2 * pi * self.radius return self._perimeter class UnitCircle_1(Circle): def __init__(self): super().__init__(1) @property def radius(self): return super().radius u = UnitCircle_1() print('\n') print('UnitCircle Radius:', u.radius) print('UnitCircle Area:', u.area) print('UnitCircle Perimeter:', u.perimeter) #Now this will not work.. # u.radius = 10 # print('\nProblem: UnitCircle Radius:', u.radius) print('\n\n------------------------------------------- Slots -------------------------------------------\n') ''' Class inherently use 'DICTIONARY' to store all the attributes. But when we have a lot of instances of the class.. it will create a lot of memory-overhead.. To do it in a better 'memory-efficient-way'.. SLOTS are used Slots- more compact datastructe that Python. We need to tell slots what all attributes we will have in advance. __slots__ = ('x', 'y') ('x', 'y') -> Iterable.. __slots__ -> tells Python that don't use dictionary.. use slots.. Now, Both of these will give error -> obj.__dict__ : Attribute Error -> vars(obj) : Tyoe Error But -> dir(obj) : will tell us about 'x' and 'y' Slots V/S Dict -> Slots are 'Memory-Effecient' : Save 10 times the memory compared to Dict. -> Slots are 'Time-Effecient' : Runs 30% faster then Dict. -> Slots: Cannot add attributes (Monkey-Patching) during the program.. Dict, we can add attributes on the fly.. ''' class Location: __slots__ = 'name', '_longitude', '_latitude' def __init__(self, name, *, longitude, latitude): self._longitude = longitude self._latitude = latitude self.name = name @property def longitude(self): return self._longitude @property def latitude(self): return self._latitude print('Location Dict: ', Location.__dict__) Location.map_service = 'Google Maps' print('\nLocation Dict after Attribute Addition: ', Location.__dict__) #But we don't have Instance-Dictionary l = Location('Delhi', longitude=100, latitude=72) # print('\nLocation Instance Dict: ', l.__dict__) print('\n\n--------------------------- Slots with Single Inheritance ---------------------------\n') ''' -> 'Child-Class' will use the 'slots' FROM 'Parent-Class' if present. But 'Child-Class' will have its own '__dict__' to store attributes. -> 'Child-Class' can have 'slots' even if 'Parent-Class' DON'T have it. 'Child-Class' will still have a '__dict__' to store attributes. -> If Child-Class also needs to have 'Slots', mention those in the 'Child-Class' which are not in 'Parent-Class'.. Don't re-mention attributes. -> If re-mentioned: -> In future updates from Python it will break (It is marked to have a 'check-on' in future.) -> It hides the Parent Attribute and can cause problems. -> Increase memeory overhead due to re-mentioning.. ************************ How to use both 'Slots' and '__dict__'? -> __slots__ = 'attributes', .. , '__dict__' -> Now, we can add more attributes during run-time.. (__dict__ is not dropped..) -> Nowly added attributes will get stored in '__dict__' and not in 'slots' ''' class Person: __slots__ = 'name' class Student(Person): pass p = Person() s = Student() s.name = 'Alex' print('Student Instance Dict: ', s.__dict__) s.age = 18 print('\nStudent Instance Dict: ', s.__dict__) # This will not work #print('Person Instance Dict: ', p.__dict__)
d022d56454d570a5b887704c79d4d2843271f345
576cc83449e10fd3f98281970c46016ea7a5aea2
/OpenCV拟合与特征点识别/模板匹配角度.py
78abfbc17a54a507b14bd408976b16d378badf18
[]
no_license
HotView/PycharmProjects
215ab9edd341e3293daebcf86d97537f8cd28d75
61393fe5ba781a8c1216a5cbe7e0d06149a10190
refs/heads/master
2020-06-02T07:41:53.608742
2019-11-13T08:31:57
2019-11-13T08:31:57
191,085,178
3
2
null
null
null
null
UTF-8
Python
false
false
171
py
import math a = math.atan(2/3) c = math.atan(1) print(c*180/math.pi) print(a*180/math.pi) #theta1 =math.tanh((a)) #print(theta1) b = math.atan(6/2) print(b*180/math.pi)
cce1e5cc0fba01f33051132e3981e03cec379801
a070182e6443995031340802e74d1e65a85bdca3
/bluelog/utils.py
4975d944d9c5eebe4486d47ab3fea78ee7fa681c
[]
no_license
huazhicai/bluelog
f86a042a5f3ada46515920c45a0b1452a40d4ad9
c2a46ac25cbba4ecf7d4e0985ef9010ddae34c01
refs/heads/master
2020-04-04T16:33:27.910658
2019-01-03T09:59:52
2019-01-03T09:59:52
156,082,797
0
0
null
null
null
null
UTF-8
Python
false
false
670
py
try: from urlparse import urlparse, urljoin except ImportError: from urllib.parse import urlparse, urljoin from flask import request, redirect, url_for def is_safe_url(target): ref_url = urlparse(request.host_url) test_url = urlparse(urljoin(request.host_url, target)) return test_url.scheme in ('http', 'https') and ref_url.netloc == test_url.netloc def redirect_back(default='blog.index', **kwargs): for target in request.args.get('next'), request.referrer: if not target: continue if is_safe_url(target): return redirect(target) return redirect(url_for(default, **kwargs))
d69a39808d6f68572bc01c15f5e876462397f0eb
4dac40a30e7bbb86ab829fed0cb6f12ff7fa0216
/djwiki/wiki/models.py
0e7d732c83f68d3e3e9fb72063d8346168ff24ae
[]
no_license
gzpgg3x/pythonDiary
cc039b716c810f99d5a12b0f4167a711cd6ea18f
0c3af53dc635d5ff40adad89dce146d6684e162e
refs/heads/master
2021-01-10T19:55:41.130511
2013-04-21T04:37:10
2013-04-21T04:37:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
201
py
from django.db import models class Page(models.Model): name = models.CharField(max_length=40, unique=True) content = models.TextField() def __unicode__(self): return self.name
26952bdc611861509bd368811c1b243e394f7d45
a32049cdf8cb3403e8e54ddd661f8bb506cca99b
/first_project/first_app/urls.py
f627fd5ffdf7c929f3138c22f3c628b8dc0cf27b
[]
no_license
akhileshvvn/django-deployment-example
5a3beb8205f2905c99808e983baaf0f8a7a23772
45317bb6166527054541e52c8a986f44342ea958
refs/heads/master
2022-04-15T08:17:02.615307
2020-04-11T07:54:19
2020-04-11T07:54:19
254,815,719
0
0
null
null
null
null
UTF-8
Python
false
false
501
py
from django.urls import path,re_path from django.conf.urls import url from . import views #TEMPLATE TAGGING app_name = 'first_app' urlpatterns = [ re_path(r'^index/', views.index, name=''), re_path(r'formindex/',views.form_name_view,name='form_name'), re_path(r'^relative/$',views.relative,name = 'relative'), re_path(r'^other/$',views.other,name='other'), re_path(r'^register/$',views.register,name='register'), re_path(r'^user_login/$',views.user_login,name='user_login') ]
7e5fc8246ba12f67b9efe8fe1433a80bbd6460fe
d4fe66ef7b5bc1745aeb4054b30575fb25a053f4
/setup.py
d838e226a7de7b9cd782061fb6f64b3134bc06cc
[ "Apache-2.0" ]
permissive
jay-johnson/antinex-client
796c753bc9df8498f25dca994920b26d8828a940
76a3cfbe8a8d174d87aba37de3d8acaf8c4864ba
refs/heads/master
2021-04-15T15:55:39.670061
2020-09-04T19:49:15
2020-09-04T19:49:15
126,577,469
6
0
null
null
null
null
UTF-8
Python
false
false
3,053
py
import os import sys import warnings import unittest try: from setuptools import setup except ImportError: from distutils.core import setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to pytest")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = '' def run_tests(self): import shlex # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) """ https://packaging.python.org/guides/making-a-pypi-friendly-readme/ check the README.rst works on pypi as the long_description with: twine check dist/* """ long_description = open('README.rst').read() cur_path, cur_script = os.path.split(sys.argv[0]) os.chdir(os.path.abspath(cur_path)) install_requires = [ "colorlog", "coverage", "flake8", "matplotlib", "numpy", "pandas", "pep8", "pipenv", "pycodestyle", "pylint", "recommonmark", "requests", "seaborn", "sphinx", "sphinx-autobuild", "sphinx_rtd_theme", "spylunking", "tox", "tqdm", "unittest2", "mock" ] if sys.version_info < (3, 5): warnings.warn( "Less than Python 3.5 is not supported.", DeprecationWarning) # Do not import antinex_client module here, since deps may not be installed sys.path.insert(0, os.path.join(os.path.dirname(__file__), "antinex_client")) setup( name="antinex-client", cmdclass={"test": PyTest}, version="1.3.6", description=("AntiNex Python client"), long_description_content_type='text/x-rst', long_description=long_description, author="Jay Johnson", author_email="[email protected]", url="https://github.com/jay-johnson/antinex-client", packages=[ "antinex_client", "antinex_client.scripts", "antinex_client.log" ], package_data={}, install_requires=install_requires, test_suite="setup.antinex_client_test_suite", tests_require=[ "pytest" ], scripts=[ "./antinex_client/scripts/ai", "./antinex_client/scripts/ai_env_predict.py", "./antinex_client/scripts/ai_get_prepared_dataset.py", "./antinex_client/scripts/ai_get_job.py", "./antinex_client/scripts/ai_get_results.py", "./antinex_client/scripts/ai_prepare_dataset.py", "./antinex_client/scripts/ai_train_dnn.py" ], use_2to3=True, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", ])
63f124f199d2e152e2fc67618693c424f3febbb7
d458b72b4d0e5c51446bb8b9f8a6276015dfb594
/math/0x02-calculus/10-matisse.py
88cf330d9c797d23e8f981fda83e54f60879e7f5
[]
no_license
mecomontes/Machine-Learning-projects
d6588cfaa7d020d3fae0fb74f6550c9e84500578
50e1828b58bb58eecfd3a142501b37fe701f4e49
refs/heads/main
2023-07-14T12:30:19.792332
2021-08-29T15:33:16
2021-08-29T15:33:16
376,129,791
1
0
null
null
null
null
UTF-8
Python
false
false
808
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 8 9:34:16 2020 @author: Robinson Montes """ def poly_derivative(poly): """ Function that find the derivate of a polynomial Arguments: - poly(list of integers): polynomial to calculate the derivate Return: List of coefficients representing the derivative of the polynomial """ if poly is None or poly == [] or type(poly) is not list: return None derivate = [] i = 0 while i < len(poly): if type(poly[i]) not in (int, float): return None elif len(poly) == 1: derivate.append(0) else: if i == 0: i += 1 continue derivate.append(poly[i]*i) i += 1 return derivate
b49d41c660d323470c0b91f8b0625757281eccd0
1be96ee96f3b33469ca073c4f32884cb7230106b
/python3_cron_scripts/libs3/ZoneManager.py
0531dbedb4a08f885bbf76e4b6fa355e672c65fc
[ "Apache-2.0" ]
permissive
vishnurajkv/Marinus
3305478038fba8b0ea15dafa2219df9f4df21e9b
331ba1dc2e99ae99df6c9d93063a852eec41d578
refs/heads/master
2020-06-29T10:58:50.196807
2019-07-26T20:48:47
2019-07-26T20:48:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,583
py
#!/usr/bin/python3 # Copyright 2018 Adobe. All rights reserved. # This file is licensed to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ This class mostly exists because almost every script needs to do a get_distinct_zones Having it centralized, means that the included and excluded status' can be managed in one place. """ from pymongo import MongoClient from datetime import datetime from tld import get_fld class ZoneManager(object): # A status of confirmed typically means it was entered by a human CONFIRMED = "confirmed" # A status of unconfirmed means that it was added via automation # It has not been revied by a human UNCONFIRMED = "unconfirmed" # A status of false positive means that a human identified that automation made a mistake FALSE_POSITIVE = "false_positive" # A status of expired means that the automation believes that the domain is no longer registered EXPIRED = "expired" # The MongoConnector mongo_connector = None # The zone collection zone_collection = None def __init__(self, mongo_connector): """ Initialize the MongoDB Connector """ self.mongo_connector = mongo_connector self.zone_collection = mongo_connector.get_zone_connection() def _check_valid_status(self, status): if status != ZoneManager.EXPIRED and status != ZoneManager.FALSE_POSITIVE and \ status != ZoneManager.CONFIRMED and status!= ZoneManager.UNCONFIRMED: print("ERROR: Bad status value") return False return True @staticmethod def get_distinct_zones(mongo_connector, includeAll = False): """ This is the most common usage of get zones where the caller wants just the list of active zones. This returns the list of zones as an array of strings rather than the complete JSON objects """ zones_collection = mongo_connector.get_zone_connection() if includeAll: zone_results = mongo_connector.perform_distinct(zones_collection, 'zone') else: zone_results = mongo_connector.perform_distinct(zones_collection, 'zone', {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone.find(".") >= 0: zones.append(zone) return zones @staticmethod def get_reversed_zones(mongo_connector): """ Retrieve the list of active zones and then reverse them to match the Common Crawl format """ zones_collection = mongo_connector.get_zone_connection() zone_results = mongo_connector.perform_distinct(zones_collection, 'zone', {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone.find("."): zone_parts = zone.split(".") # The vertices.txt entries from common_crawl are in reverse order (e.g. org.example.www) # To string match faster, the zones are stored in a reverse format prior to matching. # This avoids having to reverse each entry in the file which is less efficient. rev_zone = "" for part in zone_parts: rev_zone = part + "." + rev_zone rev_zone = rev_zone[:-1] zones.append(rev_zone) return zones @staticmethod def get_zones_by_source(mongo_connector, source, includeAll=False): """ Returns a list of zones based on the provided reporting source """ zone_collection = mongo_connector.get_zone_connection() if includeAll: zones = mongo_connector.perform_distinct(zone_collection, 'zone', { 'reporting_sources.source': source}) else: zones = mongo_connector.perform_distinct(zone_collection, 'zone', { 'reporting_sources.source': source, 'status': {'$nin': [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) return zones @staticmethod def get_zones(mongo_connector, includeAll=False): """ This is will return the full zones object for all active zones. This returns the complete json objects for the matching descriptions """ zones_collection = mongo_connector.get_zone_connection() if includeAll: zone_results = mongo_connector.perform_find(zones_collection, {}) else: zone_results = mongo_connector.perform_find(zones_collection, {'status': {"$nin": [ZoneManager.FALSE_POSITIVE, ZoneManager.EXPIRED]}}) zones = [] for zone in zone_results: if zone['zone'].find(".") >= 0: zones.append(zone) return zones @staticmethod def get_root_domain(value, zone=None): """ Get the root domain (FLD) for the provided value """ res = get_fld(value, fix_protocol=True, fail_silently=True) if res is None: return zone return res def get_zone(self, zone): """ Fetch the full individual zone record. This is not a staticmethod since it would probably be called repeatedly. """ return self.mongo_connector.perform_find(self.zone_collection, {'zone': zone}) def get_zones_by_status(self, status): """ This returns the list of zones associated with the provided status. This returns the list of zones as an array of strings rather than the complete JSON objects """ if not self._check_valid_status(status): return zone_results = self.mongo_connector.perform_distinct(self.zone_collection, 'zone', {'status': status}) zones = [] for zone in zone_results: if zone.find(".") >= 0: zones.append(zone) return zones def set_status(self, zone, status, caller): """ Set a zone to expired. """ if self.zone_collection.find({'zone': zone}).count() == 0: print("ERROR: Invalid zone!") return if status != ZoneManager.EXPIRED and status != ZoneManager.FALSE_POSITIVE and \ status != ZoneManager.CONFIRMED and status!= ZoneManager.UNCONFIRMED: print("ERROR: Bad status value!") return if caller is None or caller == "": print("ERROR: Please provide a caller value!") return now = datetime.now() note = caller + " set to " + status + " on " + str(now) self.zone_collection.update({"zone": zone}, {"$set": {"status": status, "updated": now}, "$addToSet": {"notes": note}}) def add_note(self, zone, note): """ In the future, there should probably be restrictions on note length. For now, it is not set until more information on usage is available. """ self.zone_collection.update({"zone": zone}, {"$addToSet": {"notes": note}})
33302759c219b9a3b1fe2347ecb502a4dace1d4d
fc0150b1fd6ba0efd6746a34ffa8cba01640d10e
/Programming Basics with Python - април 2018/04. Complex-Conditions/02. Small Shop.py
f98d0d795257e24d58dfce9db983b1cd9ca6dbeb
[]
no_license
vgrozev/SofUni_Python_hmwrks
7554d90f93b83d58e386c92dac355573c8cda848
b10a941a0195ea069e698b319f293f5b4a660547
refs/heads/master
2021-06-08T19:40:27.009205
2019-11-24T17:19:31
2019-11-24T17:19:31
95,629,443
3
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
product = input().lower() town = input().lower() quantity = float(input()) total = 0.0 if town == 'sofia': if product == 'coffee': total = quantity * 0.50 elif product == 'peanuts': total = quantity * 1.60 elif product == 'beer': total = quantity * 1.20 elif product == 'water': total = quantity * 0.80 else: # product == 'sweets' total = quantity * 1.45 elif town == 'plovdiv': if product == 'coffee': total = quantity * 0.40 elif product == 'peanuts': total = quantity * 1.50 elif product == 'beer': total = quantity * 1.15 elif product == 'water': total = quantity * 0.70 else: # product == 'sweets' total = quantity * 1.30 else: # town == 'Varna' if product == 'coffee': total = quantity * 0.45 elif product == 'peanuts': total = quantity * 1.55 elif product == 'beer': total = quantity * 1.10 elif product == 'water': total = quantity * 0.70 else: # product == 'sweets' total = quantity * 1.35 print("{0:.2f}".format(total))
2d6e5705b0d6fc9452a7eef4f715005355db0acf
0067290f8a2c5c367eee2e76f7ec743719d5b59c
/one/two/migrations/0002_auto_20170802_1924.py
02ba77ac66799d0a3867254c03ad5115c12deb5d
[]
no_license
8880/Django
d81da8f410845676606eb148a609f56792a14b1b
469fe07475c2f7c6e2d1ba1e2119b59550f154e6
refs/heads/master
2021-01-16T17:54:58.393384
2017-08-19T02:55:11
2017-08-19T02:55:11
100,019,134
1
0
null
null
null
null
UTF-8
Python
false
false
2,264
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-08-02 11:24 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('two', '0001_initial'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField(verbose_name='\u8bc4\u8bba\u5185\u5bb9')), ('username', models.CharField(blank=True, max_length=30, null=True, verbose_name='\u7528\u6237\u540d')), ('email', models.EmailField(blank=True, max_length=50, null=True, verbose_name='\u90ae\u7bb1\u5730\u5740')), ('url', models.URLField(blank=True, max_length=100, null=True, verbose_name='\u4e2a\u4eba\u7f51\u9875\u5730\u5740')), ('date_publish', models.DateTimeField(auto_now_add=True, verbose_name='\u53d1\u5e03\u65f6\u95f4')), ], options={ 'verbose_name': '\u8bc4\u8bba', 'verbose_name_plural': '\u8bc4\u8bba', }, ), migrations.AlterModelOptions( name='article', options={'ordering': ['-id'], 'verbose_name': '\u6587\u7ae0', 'verbose_name_plural': '\u6587\u7ae0'}, ), migrations.AddField( model_name='comment', name='article', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='two.Article', verbose_name='\u6587\u7ae0'), ), migrations.AddField( model_name='comment', name='pid', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='two.Comment', verbose_name='\u7236\u7ea7\u8bc4\u8bba'), ), migrations.AddField( model_name='comment', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='\u7528\u6237'), ), ]
[ "klous530.outlook.com" ]
klous530.outlook.com
a4e3c2a78a101ae2c35ecf31315de44d777b253f
89cd8b77ad5171c336cc60b2133fe6468a6cb53f
/Module01_CZ/day7_data_struct_str/04-代码/day7/125_字符串高级操作(判断型).py
8f356536eabd5e44cafbc8624e413494095895a0
[ "MIT" ]
permissive
fenglihanxiao/Python
75178f6b6b0c53345e1ed54226ea645216572d6c
872baf3a3a5ee42740161152605ca2b1ddf4cd30
refs/heads/master
2021-05-23T18:49:20.656433
2020-04-29T01:06:21
2020-04-29T01:06:21
253,199,073
0
0
null
null
null
null
UTF-8
Python
false
false
272
py
""" 演示字符串判断型操作 """ # str1 = "\n" # print(str1.islower()) # print(str1.isupper()) name = "张三丰" print(name.startswith("张三")) filename="1.jpge" if filename.endswith(".jpg") or filename.endswith(".png") : print("该文件是一个图片")
a268ef38a2861b114ef4f65c5e31730ade40cc92
7f68bbb3fd328a4d6bbabecb44305987d8cbbfc4
/django/django-intro/home/workspace/PROJECT8/movies/forms.py
96b211b33850d9d51473be7e05a26ff57cb8c511
[]
no_license
seunghoon2334/TIL
c84f9f9e68c8ccc7a1625222fe61f40739774730
51cfbad2d9b80a37b359716fca561c2a5c5b48b3
refs/heads/master
2022-12-18T18:20:19.210587
2019-11-26T03:14:23
2019-11-26T03:14:23
162,101,369
0
0
null
2022-11-22T03:59:16
2018-12-17T08:51:53
C
UTF-8
Python
false
false
491
py
from django import forms from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit from .models import Movie # modelform class MovieForm(forms.ModelForm): class Meta: model = Movie fields = '__all__' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_method = 'POST' self.helper.add_input(Submit('Submit', '제출!'))
5837d24747eb111593c4fdc4fdb16c2048efb91e
d3e6d6555b0314936902727af36de2f1b7432bf8
/linked-list-cycle/linked-list-cycle.py
af4d1032682c25c061b7019097dc1288fceab653
[]
no_license
fly2rain/LeetCode
624b1e06e1aa3174dfb5c81834b58cc8fd7ad073
4ddb5a051c6e2051f016a675fd2f5d566c800c2a
refs/heads/master
2021-01-18T03:12:22.402044
2015-12-28T04:31:19
2015-12-28T04:31:19
85,842,050
0
1
null
2017-03-22T15:05:20
2017-03-22T15:05:19
null
UTF-8
Python
false
false
771
py
from utils import ListNode class Solution(object): def hasCycle(self, head): """ :type head: ListNode :rtype: bool """ if not head: return False prev, current = head, head.next head.next = None while current: if current == head: return True next = current.next current.next = prev prev, current = current, next return False if __name__ == '__main__': head = ListNode.build_linked_list([1, 2, 3, 4, 5]) head.next.next.next.next = head.next.next print Solution().hasCycle(head) head2 = ListNode.build_linked_list([1, 2, 3, 4, 5]) print Solution().hasCycle(head2) print Solution().hasCycle(None)
d313ac27c05892907d934359fa7a177b2f5f2fff
633944f913050debf0764c2a29cf3e88f912670e
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/site-packages/pip/_internal/vcs/__init__.py
4b25ec2e4255710878140a71bd637c31b9cea887
[ "BSD-3-Clause", "bzip2-1.0.6", "SunPro", "Apache-2.0" ]
permissive
bopopescu/V8-lgtm
0474c2ff39baf754f556ef57619ceae93e7320fd
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
refs/heads/master
2022-02-16T19:10:54.008520
2019-09-25T07:51:13
2019-09-25T07:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
../../../../../../../.cipd/pkgs/2/_current/lib/python3.8/site-packages/pip/_internal/vcs/__init__.py
31a9922a9cadf18a73fa0c106cd377bfb6696751
08a68e32dc80f99a37a30ddbbf943337546cc3d5
/.history/count/urls_20200419191412.py
5d8ed271bfc7e1cb0268e075f7a2e8934d978eed
[]
no_license
Space20001/word-count-project
dff1b4b44d2f7230070eef0d95dd968b655d92f7
795b5e8ad5c59109e96bf7a8e9192efaefa7770e
refs/heads/master
2022-04-20T17:54:05.511449
2020-04-20T15:25:46
2020-04-20T15:25:46
257,327,368
0
0
null
null
null
null
UTF-8
Python
false
false
132
py
from django.urls import path from . import views urlpatterns = [ path('', views.home), path('', views.about), ]
d3ef5ccaa99988559bd5fde97a0082c970a270a1
1548ce77537dcd50ab04b0eaee050b5d30553e23
/autotabular/algorithms/ctr/xdfm.py
003e7cba0a5433e271cb0403bed753da731ebcad
[ "Apache-2.0" ]
permissive
Shamoo100/AutoTabular
4a20e349104246bf825ebceae33dca0a79928f2e
7d71bf01d2b7d84fcf5f65c9f45c5cea1255d8a2
refs/heads/main
2023-08-13T21:34:34.329888
2021-10-02T07:06:00
2021-10-02T07:06:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,338
py
import torch from autotabular.algorithms.ctr.layer import CompressedInteractionNetwork, FeaturesEmbedding, FeaturesLinear, MultiLayerPerceptron class ExtremeDeepFactorizationMachineModel(torch.nn.Module): """A pytorch implementation of xDeepFM. Reference: J Lian, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems, 2018. """ def __init__(self, field_dims, embed_dim, mlp_dims, dropout, cross_layer_sizes, split_half=True): super().__init__() self.embedding = FeaturesEmbedding(field_dims, embed_dim) self.embed_output_dim = len(field_dims) * embed_dim self.cin = CompressedInteractionNetwork( len(field_dims), cross_layer_sizes, split_half) self.mlp = MultiLayerPerceptron(self.embed_output_dim, mlp_dims, dropout) self.linear = FeaturesLinear(field_dims) def forward(self, x): """ :param x: Long tensor of size ``(batch_size, num_fields)`` """ embed_x = self.embedding(x) x = self.linear(x) + self.cin(embed_x) + self.mlp( embed_x.view(-1, self.embed_output_dim)) return torch.sigmoid(x.squeeze(1))
ba4a59497f41ffefe8c698f0a65012b2d35d88e6
b5aeb0f8b8efc77d77842237a80cce90e529ac5f
/config/settings.py
04b0faaaab467f76b64edc86c9631e42ab3f4de5
[]
no_license
Pillin/POC-Django-Cooker
b078502d403a90cc57c4691265235ce855c8d75e
e6ad88564d3045af4a418234a927970f928e3c58
refs/heads/master
2022-12-12T15:02:41.410674
2019-09-30T03:41:28
2019-09-30T03:41:28
210,078,139
1
0
null
2022-12-08T05:22:06
2019-09-22T02:13:33
Python
UTF-8
Python
false
false
4,361
py
""" Django settings for nora project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ENV = environ.Env() ENV.read_env(os.path.join(BASE_DIR, '.env')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = ENV('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = ENV('DEBUG') ALLOWED_HOSTS = [] BASE_URL = ENV('BASE_URL') # Application definition INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'django_extensions', 'users', 'commons', 'meals', 'tags', 'plates', 'menus', 'distributions', 'deliveries' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] REST_FRAMEWORK = { # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': ( 'rest_framework.permissions.IsAuthenticated', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_jwt.authentication.JSONWebTokenAuthentication', 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.BasicAuthentication', ), } # Authentication Settings AUTH_USER_MODEL = 'users.User' ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ] }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': ENV.db() } DATABASES['default']['TEST'] = { 'NAME': 'nora_test' } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'es-cl' TIME_ZONE = 'Etc/GMT+4' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ CSRF_USE_SESSIONS = True STATIC_URL = '/static/' LOGIN_REDIRECT_URL = '/home/' LOGIN_URL = '/login/' CSRF_COOKIE_SECURE = True DATE_FORMAT = '%d/%m/%Y' TIME_FORMAT = '%H:%M:%S' SLACK_SERVICE_URL = 'https://hooks.slack.com/services/' # CELERY COMFIGURATION BROKER_URL = 'redis://localhost:6379' CELERY_RESULT_BACKEND = 'redis://localhost:6379' CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TIMEZONE = 'Etc/GMT+4' CELERY_ALWAYS_EAGER = False
e569fc7fc6e893e1d228b1d7e4971dcb65008fb8
45cc3880f3444276cebb0a7f91d3b146cd27b9d0
/beeprint/printer.py
63fe4de1510c7695ba066e8687e34780d93a7b3e
[]
no_license
aijikl/beeprint
056aa84ff73da93c50143c83bed0fdf54bd37ee5
0380a942c0ad56ab219a51c728b4244a9b49f405
refs/heads/master
2021-01-20T04:25:26.858124
2017-04-04T06:50:36
2017-04-04T06:50:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
# -*- coding:utf-8 -*- from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from __future__ import division import sys import traceback import types import inspect from io import StringIO from .utils import pyv if pyv == 2: # avoid throw [UnicodeEncodeError: 'ascii' codec can't encode characters] # exceptions, without these lines, the sys.getdefaultencoding() returns ascii from imp import reload reload(sys) sys.setdefaultencoding('utf-8') from . import constants as C from .utils import print_exc_plus from .models.block import Block, Context from .config import Config from .debug_kit import print_obj_path def pp(o, output=True, max_depth=5, indent=2, width=80, sort_keys=True, config=None, **kwargs): """print data beautifully """ if config: config = config.clone() else: config = Config() assert max_depth > 0 config.max_depth = max_depth assert indent > 0 config.indent_char = u' '*indent assert width >= 0 config.string_break_width = width config.dict_ordered_key_enable = bool(sort_keys) for k, v in kwargs.items(): if getattr(config, k): setattr(config, k, v) if not output: config.stream = None try: res = str(Block(config, Context(obj=o))) except: print_obj_path() raise if config.debug_level != 0: if config.debug_delay: print(config.debug_stream.getvalue()) if not output: return res
fcaf8123dd2fd421f5fc4ee011401898730fd1c1
be0f3dfbaa2fa3d8bbe59229aef3212d032e7dd1
/Gauss_v45r10p1/Gen/DecFiles/options/11114095.py
04981cbb389888968150d038dc6a792df1581176
[]
no_license
Sally27/backup_cmtuser_full
34782102ed23c6335c48650a6eaa901137355d00
8924bebb935b96d438ce85b384cfc132d9af90f6
refs/heads/master
2020-05-21T09:27:04.370765
2018-12-12T14:41:07
2018-12-12T14:41:07
185,989,173
0
0
null
null
null
null
UTF-8
Python
false
false
1,637
py
# file /home/hep/ss4314/cmtuser/Gauss_v45r10p1/Gen/DecFiles/options/11114095.py generated: Wed, 25 Jan 2017 15:25:18 # # Event Type: 11114095 # # ASCII decay Descriptor: [B0 -> K+ pi- (Higgs0 -> mu+ mu-)]cc # from Configurables import Generation Generation().EventType = 11114095 Generation().SampleGenerationTool = "SignalRepeatedHadronization" from Configurables import SignalRepeatedHadronization Generation().addTool( SignalRepeatedHadronization ) Generation().SignalRepeatedHadronization.ProductionTool = "PythiaProduction" from Configurables import ToolSvc from Configurables import EvtGenDecay ToolSvc().addTool( EvtGenDecay ) ToolSvc().EvtGenDecay.UserDecayFile = "$DECFILESROOT/dkfiles/Bd_KpiDarkBoson2MuMu,m=250MeV,t=100ps,DecProdCut.dec" Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb" Generation().SignalRepeatedHadronization.SignalPIDList = [ 511,-511 ] from Gauss.Configuration import * from Configurables import LHCb__ParticlePropertySvc as ParticlePropertySvc from Configurables import Gauss, PrintMCTree, PrintMCDecayTreeTool, HistogramPersistencySvc, NTupleSvc, DumpHepMCDecay, DumpHepMCTree, GaussMonitor__CheckLifeTimeHepMC, GaussMonitor__CheckLifeTimeMC, GiGa, GiGaPhysListModular, GiGaHiggsParticles, GenerationToSimulation, PythiaProduction ParticlePropertySvc().Particles = [ "H_10 87 25 0.0 0.250 1.0000e-10 Higgs0 25 0.000000e+000" ] ApplicationMgr().ExtSvc += [ ParticlePropertySvc() ] gigaHiggsPart = GiGaHiggsParticles() gigaHiggsPart.Higgses = ["H_10"] # H_10, H_20, H_30 GiGaPhysListModular("ModularPL").PhysicsConstructors += [ gigaHiggsPart ]#
56fcd9d7569cd87ba0cc217a1be8e88301bac6f5
361ac3fcf36d80c792b60b7e2284cb1dc8d77944
/osa03-16_sanojen_ensimmaiset_kirjaimet/test/test_sanojen_ensimmaiset_kirjaimet.py
bd5cdde1c62e7f1ca35d82db216518e44c552e43
[]
no_license
darkismus/mooc-ohjelmointi-21
48cc20391db4240104549d4f3834a67c77976f6d
5f72dd9cff78704a2a0f5bc1cc18c7740ce50c51
refs/heads/main
2023-08-01T03:35:13.244978
2021-09-14T10:49:37
2021-09-14T10:49:37
368,469,947
0
0
null
null
null
null
UTF-8
Python
false
false
3,507
py
import unittest from unittest.mock import patch from tmc import points from tmc.utils import load_module, reload_module, get_stdout from functools import reduce exercise = 'src.sanojen_ensimmaiset_kirjaimet' def outputs_equal(str1 : str, str2 : str) -> bool: return str1.lower() == str2.lower() def get_correct(s : str) -> str: return "\n".join([x[0] for x in s.split()]) @points('3.sanojen_ensimmaiset_kirjaimet') class SanojenEnsimmaisetKirjaimetTest(unittest.TestCase): @classmethod def setUpClass(cls): with patch('builtins.input', return_value = "x"): cls.module = load_module(exercise, 'fi') def test_lyhyet_lauseet(self): words = ["Heipparallaa", "Terve kaikille", "Moi vaan kaikille", "Simsalabim, sanoi taikuri", "Mitäpä tässä hötkyilemään", "Vielä yksi testilause tässä"] for testcase in words: with patch('builtins.input', return_value = testcase): try: reload_module(self.module) except: self.assertFalse(True, f"varmista että ohjelmasti toimii syötteellä\n{testcase}") output_all = get_stdout() output = [x.strip() for x in output_all.split("\n") if len(x.strip()) > 0] correct = get_correct(testcase) len_correct = len(correct.split("\n")) self.assertFalse(len(output_all)==0, "Ohjelmasi ei tulosta mitään syötteellä " + testcase) self.assertTrue(len(output) == len_correct, "Ohjelmasi tulostaa syötteellä ({}) {} rivin sijasta {} riviä: \n{}". format(testcase, len_correct, len(output), output_all)) self.assertTrue(outputs_equal(output_all, correct), "Ohjelmasi tuloste\n{}\nei vastaa oikeaa tulostetta \n{} \nsyötteellä ({})". format(output_all, correct, testcase)) def test_pidemmat_lauseet(self): words = ["Mitäpä tässä turhia jaarittelemaan, vaan jaarittelenpa tovin sittenkin.", "Tässäpä vähän pidempi testilause: nähdään samantien miten hyvin ohjelma toimii", "Otetaanpa vielä yksi testi tähän loppuun: tässä lauseessa onkin aika paljon sanoja."] for testcase in words: with patch('builtins.input', return_value = testcase): try: reload_module(self.module) except: self.assertFalse(True, f"varmista että ohjelmasti toimii syötteellä\n{testcase}") output_all = get_stdout() output = [x.strip() for x in output_all.split("\n") if len(x.strip()) > 0] correct = get_correct(testcase) len_correct = len(correct.split("\n")) self.assertFalse(len(output_all)==0, "Ohjelmasi ei tulosta mitään syötteellä " + testcase) self.assertTrue(len(output) == len_correct, "Ohjelmasi tulostaa syötteellä ({}) {} rivin sijasta {} riviä: \n{}". format(testcase, len_correct, len(output), output_all)) self.assertTrue(outputs_equal(output_all, correct), "Ohjelmasi tuloste\n{}\nei vastaa oikeaa tulostetta \n{} \nsyötteellä ({})". format(output_all, correct, testcase)) if __name__ == '__main__': unittest.main()
0519b9a6c3d736fd51361e9def7cf66c291409c5
915ac708aeac53125f29bef90c2c047eaed4940e
/Anaconda/Scripts/rst2xetex.py
2d9179a588e56dbef11208ccd0ed3621286f9cc3
[]
no_license
bopopescu/newGitTest
c8c480ddd585ef416a5ccb63cbc43e3019f92534
5a19f7d01d417a34170a8f760a76e6a8bb7c9274
refs/heads/master
2021-05-31T17:00:26.656450
2016-06-08T06:43:52
2016-06-08T06:43:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
#!C:\aroot\stage\python.exe # $Id: rst2xetex.py 7038 2011-05-19 09:12:02Z milde $ # Author: Guenter Milde # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing XeLaTeX source code. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates XeLaTeX documents from standalone reStructuredText ' 'sources. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='xetex', description=description)
48f6fab3b18bb1659f37d45e12c7ea01398ed32a
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_bunts.py
41d450a12d291732d8830616446e29d1957fe2d2
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
214
py
#calss header class _BUNTS(): def __init__(self,): self.name = "BUNTS" self.definitions = bunt self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['bunt']
e662722fad68cff102487d6ba08454d41807ad11
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/detection/YOLOX_Dynamic_ID4069_for_PyTorch/yolox/layers/fast_coco_eval_api.py
55bfa28a1c06813d48ff90862908a7655239001e
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
6,464
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ #!/usr/bin/env python3 # -*- coding:utf-8 -*- # This file comes from # https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/fast_eval_api.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # Copyright (c) Megvii Inc. All rights reserved. import copy import time import numpy as np from pycocotools.cocoeval import COCOeval from .jit_ops import FastCOCOEvalOp class COCOeval_opt(COCOeval): """ This is a slightly modified version of the original COCO API, where the functions evaluateImg() and accumulate() are implemented in C++ to speedup evaluation """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.module = FastCOCOEvalOp().load() def evaluate(self): """ Run per image evaluation on given images and store results in self.evalImgs_cpp, a datastructure that isn't readable from Python but is used by a c++ implementation of accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure self.evalImgs because this datastructure is a computational bottleneck. :return: None """ tic = time.time() print("Running per image evaluation...") p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = "segm" if p.useSegm == 1 else "bbox" print( "useSegm (deprecated) is not None. Running {} evaluation".format( p.iouType ) ) print("Evaluate annotation type *{}*".format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == "segm" or p.iouType == "bbox": computeIoU = self.computeIoU elif p.iouType == "keypoints": computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds } maxDet = p.maxDets[-1] # <<<< Beginning of code differences with original COCO API def convert_instances_to_cpp(instances, is_det=False): # Convert annotations for a list of instances in an image to a format that's fast # to access in C++ instances_cpp = [] for instance in instances: instance_cpp = self.module.InstanceAnnotation( int(instance["id"]), instance["score"] if is_det else instance.get("score", 0.0), instance["area"], bool(instance.get("iscrowd", 0)), bool(instance.get("ignore", 0)), ) instances_cpp.append(instance_cpp) return instances_cpp # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++ ground_truth_instances = [ [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds] for imgId in p.imgIds ] detected_instances = [ [ convert_instances_to_cpp(self._dts[imgId, catId], is_det=True) for catId in p.catIds ] for imgId in p.imgIds ] ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds] if not p.useCats: # For each image, flatten per-category lists into a single list ground_truth_instances = [ [[o for c in i for o in c]] for i in ground_truth_instances ] detected_instances = [ [[o for c in i for o in c]] for i in detected_instances ] # Call C++ implementation of self.evaluateImgs() self._evalImgs_cpp = self.module.COCOevalEvaluateImages( p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances, ) self._evalImgs = None self._paramsEval = copy.deepcopy(self.params) toc = time.time() print("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic)) # >>>> End of code differences with original COCO API def accumulate(self): """ Accumulate per image evaluation results and store the result in self.eval. Does not support changing parameter settings from those used by self.evaluate() """ print("Accumulating evaluation results...") tic = time.time() if not hasattr(self, "_evalImgs_cpp"): print("Please run evaluate() first") self.eval = self.module.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp) # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections self.eval["recall"] = np.array(self.eval["recall"]).reshape( self.eval["counts"][:1] + self.eval["counts"][2:] ) # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X # num_area_ranges X num_max_detections self.eval["precision"] = np.array(self.eval["precision"]).reshape( self.eval["counts"] ) self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"]) toc = time.time() print( "COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic) )
fe484f2dbfa7363e12c93e00a34759692e113a73
f4b8c90c1349c8740c1805f7b6b0e15eb5db7f41
/test/test_term_session_item.py
7867f29a7aa4a6fd2bb993565b40f161db7abf86
[]
no_license
CalPolyResDev/StarRezAPI
012fb8351159f96a81352d6c7bfa36cd2d7df13c
b184e1863c37ff4fcf7a05509ad8ea8ba825b367
refs/heads/master
2021-01-25T10:29:37.966602
2018-03-15T01:01:35
2018-03-15T01:01:35
123,355,501
2
1
null
null
null
null
UTF-8
Python
false
false
1,044
py
# coding: utf-8 """ StarRez API This is a way to connect with the StarRez API. We are not the developers of the StarRez API, we are just an organization that uses it and wanted a better way to connect to it. # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import starrez_client from starrez_client.models.term_session_item import TermSessionItem # noqa: E501 from starrez_client.rest import ApiException class TestTermSessionItem(unittest.TestCase): """TermSessionItem unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTermSessionItem(self): """Test TermSessionItem""" # FIXME: construct object with mandatory attributes with example values # model = starrez_client.models.term_session_item.TermSessionItem() # noqa: E501 pass if __name__ == '__main__': unittest.main()
2f9bdc29452a2db1226f3a1ca5aab9fbdac5e5d6
6d0364f7aca2ea76444299d84d467a55b8dfabde
/tests/toranj/test-100-mcu-power-state.py
4cba5896a9f0a28e51ca54be48ff0350a5037d02
[ "LicenseRef-scancode-warranty-disclaimer", "BSD-3-Clause" ]
permissive
particle-iot/openthread
b862853867a75a591bcb3dae8f70c2ac9c35eaba
668256290d1c48319b0b96d41559efb48dcc0821
refs/heads/master
2020-03-13T13:02:45.358306
2019-07-09T11:38:23
2019-07-09T11:38:23
131,131,221
1
0
BSD-3-Clause
2019-05-19T03:42:57
2018-04-26T09:19:12
C++
UTF-8
Python
false
false
9,901
py
#!/usr/bin/env python # # Copyright (c) 2018, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import time import wpan from wpan import verify #----------------------------------------------------------------------------------------------------------------------- # Test description: Testing controlling of NCP's MCU power state test_name = __file__[:-3] if __file__.endswith('.py') else __file__ print '-' * 120 print 'Starting \'{}\''.format(test_name) #----------------------------------------------------------------------------------------------------------------------- # Creating `wpan.Nodes` instances node = wpan.Node() #----------------------------------------------------------------------------------------------------------------------- # Init all nodes wpan.Node.init_all_nodes() #----------------------------------------------------------------------------------------------------------------------- # Test implementation # Verify that state is ON after a reset verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check power state wpantund property get and set WAIT_TIME = 5 def check_wpan_is_in_offline_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) def check_wpan_is_in_deep_sleep_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_DEEP_SLEEP) def check_wpan_is_in_commissioned_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_COMMISSIONED) def check_wpan_is_in_associated_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) def check_wpan_is_in_associating_state(): verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATING) node.form("mcu-power-state") verify(node.is_associated()) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'low-power') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'on') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, 'lp') # special short-form string for low-power verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) # Verify that `wpantund` will restore the user-set value after NCP reset node.reset() time.sleep(1) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Check the `wpantund` state changes between "deep-sleep" and "offline" node.leave() verify(not node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) # Setting the power state to `low-power` should change wpantund state to `DEEP_SLEEP` node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) # Verify that reading/getting a property does not impact the wpantund state. node.get(wpan.WPAN_THREAD_RLOC16) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_DEEP_SLEEP) # Setting the power state to `on` should change wpantund state to `OFFLINE` node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify the behavior of `begin-low-power` wpanctl command node.wpanctl('begin-low-power') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) # Check the `wpantund` state changes between "offline:commissioned" and "deep-sleep" node.form("test-network") node.set('Daemon:AutoAssociateAfterReset','0') # Verify that issuing a `begin-low-power` when in "associated" state # does not change the state. node.wpanctl('begin-low-power') verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_ASSOCIATED) # After reset, power state should remain `LOW_POWER` (wpantund would restore the value # on NCP) and since "AutoAssociateAfterReset" is disabled, wpantund state should # be `DEEP_SLEEP`. node.reset() wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) wpan.verify_within(check_wpan_is_in_commissioned_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_ON) node.leave() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify sleep behavior after disabling `wpantund` ("Daemon:Enabled" property) when state is "offline" verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) verify(node.get(wpan.WPAN_STATE) == wpan.STATE_OFFLINE) verify(node.get('Daemon:Enabled') == 'true') # Disabling `wpantund` should put the NCP to deep sleep node.set('Daemon:Enabled', 'false'); verify(node.get('Daemon:Enabled') == 'false') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) # Enabling `wpantund` should update the `MCU_POWER_STATE` back to `ON`. node.set('Daemon:Enabled', 'true'); wpan.verify_within(check_wpan_is_in_offline_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify sleep behavior after disabling `wpantund` ("Daemon:Enabled" property) when state is "associated" node.form("disable-test") verify(node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.set('Daemon:Enabled', 'false'); verify(node.get('Daemon:Enabled') == 'false') wpan.verify_within(check_wpan_is_in_deep_sleep_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.set('Daemon:Enabled', 'true'); wpan.verify_within(check_wpan_is_in_commissioned_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_ON) node.leave() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Verify `AutoAssociateAfterReset` behavior after reset from "deep-sleep" (but commissioned). node.set('Daemon:AutoAssociateAfterReset', '1') node.set(wpan.WPAN_NCP_MCU_POWER_STATE, wpan.MCU_POWER_STATE_LOW_POWER) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.form("resume-test") verify(node.is_associated()) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) node.reset() # After reset, power state should remain `LOW_POWER` (wpantund would restore the value # on NCP) and wpantund state should start as "deep-sleep" but since AutoAssociateAfterReset # is enabled, network should be recovered. wpan.verify_within(check_wpan_is_in_associating_state, WAIT_TIME) verify(node.get(wpan.WPAN_NCP_MCU_POWER_STATE) == wpan.MCU_POWER_STATE_LOW_POWER) #----------------------------------------------------------------------------------------------------------------------- # Test finished wpan.Node.finalize_all_nodes() print '\'{}\' passed.'.format(test_name)
415935edef31996e2b359804e324f5f7b3d48614
ab9b75fcdd2b7352968886e5ed41ee7788216226
/src/gamesbyexample/stickyhands.py
a1af5601756ea83263f3a20e8dd2bb26220102ac
[ "MIT" ]
permissive
mgocken/PythonStdioGames
d7b48cafbc33a027548cab08ad08aea6c0c81abd
036d2f142581fb74a38400721aecce15a695e1bc
refs/heads/master
2020-09-29T18:35:34.589307
2019-12-06T00:15:46
2019-12-06T00:15:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,528
py
# Sticky Hands, by Al Sweigart [email protected] # A jewel-stealing, movement puzzle game. __version__ = 1 # Inspired by Herding Cats https://w.itch.io/herding-cats # TODO - Enter R to reset the entire level. import copy, os, sys # Setup the constants: WALL = chr(9608) FACE = chr(9786) DIAMOND = chr(9830) CHAR_MAP = {'#': WALL, '@': FACE, '$': DIAMOND, ' ': ' '} # TODO add comment # Display the title banner and instructions: print('''Sticky Hands: A diamond collecting game. By Al Sweigart [email protected] Pick up diamonds by standing next to them. Stuck diamonds also become sticky. Try to stick every diamond in the level. Enter WASD letters to move, numbers to switch levels, U to undo a move, or "quit" to quit the game. You can enter multiple WASD or U letters to make several moves at once. ''') # Load each level from stickyhandslevels.txt if not os.path.exists('stickyhandslevels.txt'): print('Download the level file from https://github.com/asweigart/PythonStdioGames/blob/master/src/stickyhandslevels.txt') sys.exit() ALL_LEVELS = [] with open('stickyhandslevels.txt') as levelFile: currentLevelFromFile = {'width': 0, 'height': 0, 'diamonds': 0} # Each level is represented by a dictionary. y = 0 for line in levelFile.readlines(): if line.startswith(';'): continue # Ignore comments in the level file. if line == '\n': if currentLevelFromFile == {'width': 0, 'height': 0, 'diamonds': 0}: continue # Ignore this line, and continue to the next line. # Finished with the current level: ALL_LEVELS.append(currentLevelFromFile) currentLevelFromFile = {'width': 0, 'height': 0, 'diamonds': 0} y = 0 # Reset y back to 0. continue # Add the line to the current level. # We use line[:-1] so we don't include the newline: for x, levelChar in enumerate(line[:-1]): currentLevelFromFile[(x, y)] = levelChar # Keep track of how many diamonds are in the level: if levelChar == '$': currentLevelFromFile['diamonds'] += 1 y += 1 if len(line) - 1 > currentLevelFromFile['width']: currentLevelFromFile['width'] = len(line) - 1 if y > currentLevelFromFile['height']: currentLevelFromFile['height'] = y def drawLevel(levelNum, levelData): # Draw the current level. print('Level #' + str(levelNum + 1), 'of', len(ALL_LEVELS)) for y in range(levelData['height']): for x in range(levelData['width']): prettyChar = CHAR_MAP[levelData.get((x, y), ' ')] print(prettyChar, end='') print() def getPlayerBlobPoints(levelData, playerx, playery): playerBlob = [(playerx, playery)] pointsToCheck = [(playerx, playery)] alreadyCheckedPoints = [] while len(pointsToCheck) > 0: x, y = pointsToCheck.pop() alreadyCheckedPoints.append((x, y)) if (x - 1, y) not in alreadyCheckedPoints and levelData[(x - 1, y)] == '$': playerBlob.append((x - 1, y)) pointsToCheck.append((x - 1, y)) if (x + 1, y) not in alreadyCheckedPoints and levelData[(x + 1, y)] == '$': playerBlob.append((x + 1, y)) pointsToCheck.append((x + 1, y)) if (x, y - 1) not in alreadyCheckedPoints and levelData[(x, y - 1)] == '$': playerBlob.append((x, y - 1)) pointsToCheck.append((x, y - 1)) if (x, y + 1) not in alreadyCheckedPoints and levelData[(x, y + 1)] == '$': playerBlob.append((x, y + 1)) pointsToCheck.append((x, y + 1)) return playerBlob currentLevelNumber = 0 currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] while True: # Main game loop. drawLevel(currentLevelNumber, currentLevel) # Get the input from the player: moves = input('Enter moves> ').upper() if moves == 'QUIT': print('Thanks for playing!') sys.exit() if moves.isdecimal(): if not (1 <= int(moves) < len(ALL_LEVELS)): print('Enter a level number between 1 and', len(ALL_LEVELS)) continue # Change the current level: currentLevelNumber = int(moves) - 1 currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] continue # Validate the input; make sure it only has W, A, S, D, or U: movesAreValid = True for move in moves: if move not in ('W', 'A', 'S', 'D', 'U'): movesAreValid = False print(move, 'is not a valid move.') break if not movesAreValid: continue # Carry out the moves: for move in moves: # Find the player position: for position, character in currentLevel.items(): if character == '@': playerx, playery = position if move == 'U': if len(undoStack) == 1: continue # Can't undo past the first move. undoStack.pop() # Remove the last item from the undoStack list. currentLevel = copy.copy(undoStack[-1]) continue if move == 'W': movex, movey = 0, -1 elif move == 'A': movex, movey = -1, 0 elif move == 'S': movex, movey = 0, 1 elif move == 'D': movex, movey = 1, 0 playerBlob = getPlayerBlobPoints(currentLevel, playerx, playery) blobCanMove = True for blobPoint in playerBlob: blobx, bloby = blobPoint[0], blobPoint[1] moveToSpace = currentLevel.get((blobx + movex, bloby + movey), ' ') # If the move-to space is a wall, don't move at all: if moveToSpace == '#': blobCanMove = False break if blobCanMove: newBlobPoints = [] for blobPoint in playerBlob: blobx, bloby = blobPoint[0], blobPoint[1] # If the move-to space is empty or a goal, just move there: if currentLevel[(blobx, bloby)] == '@': currentLevel[(blobx, bloby)] = ' ' newBlobPoints.append((blobx + movex, bloby + movey, '@')) elif currentLevel[(blobx, bloby)] == '$': currentLevel[(blobx, bloby)] = ' ' newBlobPoints.append((blobx + movex, bloby + movey, '$')) for newBlobPoint in newBlobPoints: # Set the player's new position: currentLevel[(newBlobPoint[0], newBlobPoint[1])] = newBlobPoint[2] # TODO - refactor this. # Save the state of the level for the undo feature: undoStack.append(copy.copy(currentLevel)) # Check if the player has finished the level: levelIsSolved = False playerBlob = getPlayerBlobPoints(currentLevel, playerx + movex, playery + movey) if len(playerBlob) - 1 == currentLevel['diamonds']: levelIsSolved = True if levelIsSolved: drawLevel(currentLevelNumber, currentLevel) print('Level complete!') input('Press Enter to continue...') currentLevelNumber = (currentLevelNumber + 1) % len(ALL_LEVELS) currentLevel = copy.copy(ALL_LEVELS[currentLevelNumber]) undoStack = [copy.copy(currentLevel)] break # Don't carry out any remaining moves.
02e1b1ac9d7ca0fcf0fa59318c57df5d46403f9d
16809bf25066488f2f32f154dadef3e30c68ae68
/sine_wave.py
0ed35aeb1f8d136868fdb4c3053a10605cc1bcdf
[]
no_license
aidiary/signal_processing
0db6d1a9662ccd0fe232ccc461e9b27174c8ef88
4c1cb8ceee3a1527f38b8dbf9ffa1a737d06b577
refs/heads/master
2021-01-13T03:44:32.721301
2016-12-23T13:40:10
2016-12-23T13:40:10
77,221,395
1
2
null
null
null
null
UTF-8
Python
false
false
1,762
py
#coding: utf-8 import wave import struct import numpy as np from pylab import * def createSineWave (A, f0, fs, length): """振幅A、基本周波数f0、サンプリング周波数 fs、 長さlength秒の正弦波を作成して返す""" data = [] # [-1.0, 1.0]の小数値が入った波を作成 for n in arange(length * fs): # nはサンプルインデックス s = A * np.sin(2 * np.pi * f0 * n / fs) # 振幅が大きい時はクリッピング if s > 1.0: s = 1.0 if s < -1.0: s = -1.0 data.append(s) # [-32768, 32767]の整数値に変換 data = [int(x * 32767.0) for x in data] # plot(data[0:100]); show() # バイナリに変換 data = struct.pack("h" * len(data), *data) # listに*をつけると引数展開される return data def play (data, fs, bit): import pyaudio # ストリームを開く p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=int(fs), output= True) # チャンク単位でストリームに出力し音声を再生 chunk = 1024 sp = 0 # 再生位置ポインタ buffer = data[sp:sp+chunk] while buffer != '': stream.write(buffer) sp = sp + chunk buffer = data[sp:sp+chunk] stream.close() p.terminate() def save(data, fs, bit, filename): """波形データをWAVEファイルへ出力""" wf = wave.open(filename, "w") wf.setnchannels(1) wf.setsampwidth(bit / 8) wf.setframerate(fs) wf.writeframes(data) wf.close() if __name__ == "__main__" : data = createSineWave(0.25, 250, 8000.0, 1.0) play(data, 8000, 16) save(data, 8000, 16, "sine.wav")
deb27eae24f4cd46475211751438e904854e037a
fcdfe976c9ed60b18def889692a17dc18a8dd6d7
/ros/py_ros/kdl_test2.py
120f3dc29d4eeaee751accf468dd08397df344f3
[]
no_license
akihikoy/ay_test
4907470889c9bda11cdc84e8231ef3156fda8bd7
a24dfb720960bfedb94be3b4d147e37616e7f39a
refs/heads/master
2023-09-02T19:24:47.832392
2023-08-27T06:45:20
2023-08-27T06:45:20
181,903,332
6
3
null
null
null
null
UTF-8
Python
false
false
1,517
py
#!/usr/bin/python #\file kdl_test2.py #\brief certain python script #\author Akihiko Yamaguchi, [email protected] #\version 0.1 import numpy as np from kdl_kin import TKinematics if __name__=='__main__': np.set_printoptions(precision=3) print 'Testing TKinematics (robot_description == Yaskawa Motoman is assumed).' print 'Before executing this script, run:' print ' rosparam load `rospack find motoman_sia10f_support`/urdf/sia10f.urdf robot_description' kin= TKinematics(end_link='link_t') kin.print_robot_description() DoF= len(kin.joint_names) q0= [0.0]*DoF angles= {joint:q0[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x0= kin.forward_position_kinematics(angles) print 'q1=',np.array(q1) print 'x0= FK(q0)=',x0 import random q1= [3.0*(random.random()-0.5) for j in range(DoF)] angles= {joint:q1[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x1= kin.forward_position_kinematics(angles) print 'q1=',q1 print 'x1= FK(q1)=',x1 seed= [0.0]*DoF #seed= [3.0*(random.random()-0.5) for j in range(DoF)] q2= kin.inverse_kinematics(x1[:3], x1[3:], seed=seed, maxiter=2000, eps=1.0e-4) #, maxiter=500, eps=1.0e-6 print 'q2= IK(x1)=',q2 if q2 is not None: angles= {joint:q2[j] for j,joint in enumerate(kin.joint_names)} #Deserialize x2= kin.forward_position_kinematics(angles) print 'x2= FK(q2)=',x2 print 'x2==x1?', np.allclose(x2,x1) print '|x2-x1|=',np.linalg.norm(x2-x1) else: print 'Failed to solve IK.'
862323cdd250fded22470d58b5b961390e8c4680
88748ec85d537e4b50ba45a255a0dcc3c154116f
/tests/unit/test_poll.py
2810d41f352a9741f36504ab9e9b2f71976b5c96
[ "MIT" ]
permissive
byrgazov/vanilla
17c53843b1b2f6b5484e4ff8e2fab54123245cc0
2896ae049d9e58ef3b4008a869ebf481951d0780
refs/heads/master
2020-07-30T12:30:04.497223
2020-07-24T10:08:03
2020-07-24T10:08:03
210,235,284
0
0
MIT
2019-09-23T00:49:06
2019-09-23T00:49:06
null
UTF-8
Python
false
false
1,731
py
import os import vanilla.poll class TestPoll(object): def test_poll(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) assert poll.poll(timeout=0) == [] os.write(w, '1') assert poll.poll() == [(r, vanilla.poll.POLLIN)] # test event is cleared assert poll.poll(timeout=0) == [] # test event is reset on new write after read assert os.read(r, 4096) == '1' assert poll.poll(timeout=0) == [] os.write(w, '2') assert poll.poll() == [(r, vanilla.poll.POLLIN)] assert poll.poll(timeout=0) == [] # test event is reset on new write without read os.write(w, '3') assert poll.poll() == [(r, vanilla.poll.POLLIN)] assert poll.poll(timeout=0) == [] assert os.read(r, 4096) == '23' def test_write_close(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) poll.register(w, vanilla.poll.POLLOUT) assert poll.poll() == [(w, vanilla.poll.POLLOUT)] assert poll.poll(timeout=0) == [] os.close(w) assert poll.poll() == [(r, vanilla.poll.POLLERR)] assert poll.poll(timeout=0) == [] def test_read_close(self): poll = vanilla.poll.Poll() r, w = os.pipe() poll.register(r, vanilla.poll.POLLIN) poll.register(w, vanilla.poll.POLLOUT) assert poll.poll() == [(w, vanilla.poll.POLLOUT)] assert poll.poll(timeout=0) == [] os.close(r) got = poll.poll() assert got == [(w, vanilla.poll.POLLOUT), (w, vanilla.poll.POLLERR)] assert poll.poll(timeout=0) == []
c008d92d5264518d006a4ff9b43acef4f19e4c38
30b004cad2c14b47b5f66c3a4a0015e05ca4a27e
/contrib/data_safety_training/image_classification/submitter.py
920b60ad8fed2d7ff0b13d17001d8227f3b0abb8
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleFL
66c26f774eeadc25c12e74056ac389e0c1f61b84
dcc00c5dff62c3dd0092801f4e9b89d8c0957d3d
refs/heads/master
2023-08-07T22:05:24.806573
2023-03-21T01:15:10
2023-03-21T01:15:10
210,873,203
486
136
Apache-2.0
2023-07-26T22:30:57
2019-09-25T15:01:39
Python
UTF-8
Python
false
false
1,090
py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import zmq import socket import msgpack import os mission_dict = {"mission": "image classification", "image_size": [3, 32, 32]} #send request context = zmq.Context() zmq_socket = context.socket(zmq.REQ) zmq_socket.connect("tcp://127.0.0.1:60001") zmq_socket.send(msgpack.dumps(mission_dict)) #get and download encoder file = zmq_socket.recv() os.system("wget 127.0.0.1:8080/{}".format(file)) #data encoding os.system("python -u user.py > user.log") zmq_socket.send("complete")
a31688d8579cfce253b6dac4f680333340f6b0e4
0bde5f7f09aa537ed1f4828d4e5ebee66475918f
/h2o-py/tests/testdir_sklearn/pyunit_sklearn_params.py
2a70a91baafd68393e95b43969166ffea1f8a2ea
[ "Apache-2.0" ]
permissive
Winfredemalx54/h2o-3
d69f1c07e1f5d2540cb0ce5e6073415fa0780d32
dfb163c82ff3bfa6f88cdf02465a9bb4c8189cb7
refs/heads/master
2022-12-14T08:59:04.109986
2020-09-23T08:36:59
2020-09-23T08:36:59
297,947,978
2
0
Apache-2.0
2020-09-23T11:28:54
2020-09-23T11:28:54
null
UTF-8
Python
false
false
7,702
py
from __future__ import print_function import os, sys from sklearn.pipeline import Pipeline from h2o.sklearn import H2OAutoMLEstimator, H2OGradientBoostingEstimator, H2OScaler, H2OPCA sys.path.insert(1, os.path.join("..","..")) from tests import pyunit_utils seed = 2019 def test_all_params_are_visible_in_get_params(): pipeline = Pipeline([ ('standardize', H2OScaler(center=True, scale=False)), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingEstimator(ntrees=20, max_depth=5, seed=seed)) ]) params = pipeline.get_params() assert isinstance(params['standardize'], H2OScaler) assert params['standardize__center'] is True assert params['standardize__scale'] is False assert isinstance(params['pca'], H2OPCA) assert params['pca__k'] == 2 assert params['pca__seed'] == seed assert isinstance(params['estimator'], H2OGradientBoostingEstimator) assert params['estimator__ntrees'] == 20 assert params['estimator__max_depth'] == 5 assert params['estimator__seed'] == seed # also the ones that were not set explicitly assert params['pca__max_iterations'] is None assert params['estimator__learn_rate'] is None def test_all_params_can_be_set_using_set_params(): pipeline = Pipeline([ ('standardize', H2OScaler()), ('pca', H2OPCA()), ('estimator', H2OGradientBoostingEstimator()) ]) pipeline.set_params( standardize__center=True, standardize__scale=False, pca__k=2, pca__seed=seed, estimator__ntrees=20, estimator__max_depth=5, estimator__seed=seed ) assert isinstance(pipeline.named_steps.standardize, H2OScaler) assert pipeline.named_steps.standardize.center is True assert pipeline.named_steps.standardize.scale is False assert isinstance(pipeline.named_steps.pca, H2OPCA) assert pipeline.named_steps.pca.k == 2 assert pipeline.named_steps.pca.seed == seed assert isinstance(pipeline.named_steps.estimator, H2OGradientBoostingEstimator) assert pipeline.named_steps.estimator.ntrees == 20 assert pipeline.named_steps.estimator.max_depth == 5 assert pipeline.named_steps.estimator.seed == seed def test_all_params_are_accessible_as_properties(): pipeline = Pipeline([ ('standardize', H2OScaler(center=True, scale=False)), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingEstimator(ntrees=20, max_depth=5, seed=seed)) ]) assert isinstance(pipeline.named_steps.standardize, H2OScaler) assert pipeline.named_steps.standardize.center is True assert pipeline.named_steps.standardize.scale is False assert isinstance(pipeline.named_steps.pca, H2OPCA) assert pipeline.named_steps.pca.k == 2 assert pipeline.named_steps.pca.seed == seed assert isinstance(pipeline.named_steps.estimator, H2OGradientBoostingEstimator) assert pipeline.named_steps.estimator.ntrees == 20 assert pipeline.named_steps.estimator.max_depth == 5 assert pipeline.named_steps.estimator.seed == seed # also the ones that were not set explicitly assert pipeline.named_steps.pca.max_iterations is None assert pipeline.named_steps.estimator.learn_rate is None def test_all_params_can_be_set_as_properties(): pipeline = Pipeline([ ('standardize', H2OScaler()), ('pca', H2OPCA()), ('estimator', H2OGradientBoostingEstimator()) ]) pipeline.named_steps.standardize.center = True pipeline.named_steps.standardize.scale = False pipeline.named_steps.pca.k = 2 pipeline.named_steps.pca.seed = seed pipeline.named_steps.estimator.ntrees = 20 pipeline.named_steps.estimator.max_depth = 5 pipeline.named_steps.estimator.seed = seed params = pipeline.get_params() assert isinstance(params['standardize'], H2OScaler) assert params['standardize__center'] is True assert params['standardize__scale'] is False assert isinstance(params['pca'], H2OPCA) assert params['pca__k'] == 2 assert params['pca__seed'] == seed assert isinstance(params['estimator'], H2OGradientBoostingEstimator) assert params['estimator__ntrees'] == 20 assert params['estimator__max_depth'] == 5 assert params['estimator__seed'] == seed def test_params_conflicting_with_sklearn_api_are_still_available(): pca = H2OPCA() assert pca.transform != 'NONE' assert callable(pca.transform), "`transform` method from sklearn API has been replaced by a property" # conflicting param can be accessed normally using get_params() assert pca.get_params()['transform'] == 'NONE' # property is accessible directly using a trailing underscore assert pca.transform_ == 'NONE' pca = H2OPCA(transform='DEMEAN') assert callable(pca.transform), "`transform` method from sklearn API has been replaced by a property" assert pca.get_params()['transform'] == 'DEMEAN' assert pca.transform_ == 'DEMEAN' # conflicting param can be modified normally using set_params() pca.set_params(transform='DESCALE') assert pca.get_params()['transform'] == 'DESCALE' assert pca.transform_ == 'DESCALE' # conflicting property can be set directly using a trailing underscore pca.transform_ = 'NORMALIZE' assert pca.get_params()['transform'] == 'NORMALIZE' assert pca.transform_ == 'NORMALIZE' def test_params_are_correctly_passed_to_underlying_transformer(): pca = H2OPCA(seed=seed) pca.set_params(transform='DEMEAN', k=3) pca.model_id = "dummy" assert pca.estimator is None pca._make_estimator() # normally done when calling `fit` assert pca.estimator parms = pca.estimator._parms assert parms['seed'] == seed assert parms['transform'] == 'DEMEAN' assert parms['k'] == 3 assert parms['model_id'] == "dummy" assert parms['max_iterations'] is None def test_params_are_correctly_passed_to_underlying_estimator(): estimator = H2OGradientBoostingEstimator(seed=seed) estimator.set_params(max_depth=10, learn_rate=0.5) estimator.model_id = "dummy" assert estimator.estimator is None estimator._make_estimator() # normally done when calling `fit` real_estimator = estimator.estimator assert real_estimator parms = real_estimator._parms assert real_estimator.seed == parms['seed'] == seed assert real_estimator.max_depth == parms['max_depth'] == 10 assert real_estimator.learn_rate == parms['learn_rate'] == 0.5 assert real_estimator._id == parms['model_id'] == "dummy" assert real_estimator.training_frame == parms['training_frame'] is None def test_params_are_correctly_passed_to_underlying_automl(): estimator = H2OAutoMLEstimator(seed=seed) estimator.set_params(max_models=5, nfolds=0) estimator.project_name = "dummy" assert estimator.estimator is None estimator._make_estimator() # normally done when calling `fit` aml = estimator.estimator assert aml assert aml.build_control["stopping_criteria"]["seed"] == seed assert aml.build_control["stopping_criteria"]["max_models"] == 5 assert aml.build_control["nfolds"] == 0 assert aml.build_control["project_name"] == "dummy" pyunit_utils.run_tests([ test_all_params_are_visible_in_get_params, test_all_params_can_be_set_using_set_params, test_all_params_are_accessible_as_properties, test_all_params_can_be_set_as_properties, test_params_conflicting_with_sklearn_api_are_still_available, test_params_are_correctly_passed_to_underlying_transformer, test_params_are_correctly_passed_to_underlying_estimator, test_params_are_correctly_passed_to_underlying_automl, ])
e9d1caab6dde00c07ce3832efe253d9348ac4a88
940dcf18bb1db19610e29902c78ec703690c4297
/pygame/py002.py
17a13a71d3e9bdeacc203460516516e052a3e799
[]
no_license
Sahil4UI/PythonRegular11-12Dec2020
dc20e8d13d191801301d18d5b92f5775fe9c0674
0b22b1d8c703ac21a1f02c2b10f327bcb2e96460
refs/heads/main
2023-02-27T13:00:22.415199
2021-01-31T06:57:58
2021-01-31T06:57:58
318,424,644
0
0
null
null
null
null
UTF-8
Python
false
false
3,076
py
import random import pygame import time from pygame.locals import * pygame.init() H= 600 W=800 gameScreen= pygame.display.set_mode((W,H)) color= (255,255,255) red = (255 , 0 , 0 ) blue = (0,0,255) w=30 h=30 pygame.time.set_timer(USEREVENT,1000) frog=pygame.image.load("frog.png")#raw string-path frog = pygame.transform.scale(frog,(50,50)) audio = pygame.mixer.Sound("point.wav") def Score(counter): font=pygame.font.SysFont(None,30) #anti aliasing ->texture-> True text=font.render(f"Score : {counter}",True,blue) gameScreen.blit(text,(10,10)) def Snake(snakeList): for i in snakeList: pygame.draw.rect(gameScreen,red,[i[0],i[1],w,h]) def Timer(sec): font=pygame.font.SysFont(None,30) #anti aliasing ->texture-> True text=font.render(f"Time Left : {sec} seconds",True,blue) gameScreen.blit(text,(500,10)) def gameOver(): pass # font=pygame.font.SysFont(None,30) # #anti aliasing ->texture-> True # text=font.render(f"***GAME OVER***",True,blue) # gameScreen.blit(text,(500,10)) def main(): movex = 0 movey = 0 frogX = random.randint(0,W-50) frogY = random.randint(0,H-50) x=0 y=0 sec=20 counter=0 snakeList= [] snakeLength=1 while True: gameScreen.fill(color) for event in pygame.event.get(): if event.type==pygame.QUIT: pygame.quit() quit() elif event.type==pygame.USEREVENT: sec-=1 if event.type==pygame.KEYDOWN: if event.key == pygame.K_LEFT: movex=-1 movey=0 elif event.key == pygame.K_RIGHT: movex=1 movey=0 elif event.key==pygame.K_UP: movey=-1 movex=0 elif event.key==pygame.K_DOWN: movey=1 movex=0 # gameScreen.blit(image,(imageX,imageY)) snake = pygame.draw.rect(gameScreen,red,[x,y,w,h]) snakeList.append([x,y]) Snake(snakeList) frogRect = pygame.Rect([frogX,frogY,50,50]) gameScreen.blit(frog,(frogX,frogY)) x += movex y += movey if x>W-w: movex=-1 elif x<0: movex=1 if y>H-h: movey=-1 elif y<0: movey=1 Score(counter) Timer(sec) if sec <0: gameOver() if snakeLength<len(snakeList): del snakeList[0] if snake.colliderect(frogRect): frogX = random.randint(0,W-50) frogY = random.randint(0,H-50) counter+=1 audio.play() snakeLength+=20 pygame.display.update() main()
b540a1018ada187e4e6e105e8d050f936df3061b
f416ab3adfb5c641dc84022f918df43985c19a09
/problems/advent-of-code/2022/05/sol2.py
78cf7599b31d96f7b01fd8ad778ed956290eda79
[]
no_license
NicoKNL/coding-problems
a4656e8423e8c7f54be1b9015a9502864f0b13a5
4c8c8d5da3cdf74aefcfad4e82066c4a4beb8c06
refs/heads/master
2023-07-26T02:00:35.834440
2023-07-11T22:47:13
2023-07-11T22:47:13
160,269,601
1
0
null
null
null
null
UTF-8
Python
false
false
1,530
py
import sys def splitInput(lines): stack_data = [] moves = [] parsing_stack = True for line in lines: if not line: parsing_stack = False continue if parsing_stack: stack_data.append(line) else: moves.append(line) stack_count = int(stack_data[-1].split()[-1]) return stack_count, stack_data[:-1], moves def parseStacks(count, data): stacks = [[] for _ in range(count)] for row in data: print(row) for i, c in enumerate(range(1, len(row), 4)): if row[c].strip(): stacks[i].append(row[c]) stacks = [stack[::-1] for stack in stacks] return stacks def parseMoves(moves): for i in range(len(moves)): words = moves[i].split() move = [words[1], words[3], words[5]] # [count, from, to] move = list(map(int, move)) move[1] -= 1 # Use 0 based indexing move[2] -= 1 moves[i] = move def execute(moves, stacks): for (count, s, t) in moves: stacks[t].extend(stacks[s][-count:]) stacks[s] = stacks[s][:-count] if __name__ == "__main__": lines = [l[:-1] for l in sys.stdin] stack_count, stack_data, moves = splitInput(lines) stacks = parseStacks(stack_count, stack_data) parseMoves(moves) execute(moves, stacks) answer = [" " for _ in range(stack_count)] for i, stack in enumerate(stacks): if stack: answer[i] = stack[-1] print("".join(answer))
37be2dd7a036a0d6c20d49738fb4226536c20ac2
ff21f04b692891b13fa2ed49293e5d99fea742db
/hunt/scripts/job_spider.py
41015307bdb3af0ba459f972c27a7bd7b13714fd
[]
no_license
yangby-cryptape/job-hunter
3caf49c9290a077661c8e245565132e2a8671c05
1b58b2f23ac7d1aba08feaff29692adb8fe58161
refs/heads/master
2021-05-27T17:35:09.370516
2012-06-25T07:38:06
2012-06-25T07:38:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,263
py
#!/usr/bin/env python #coding=utf-8 import hashlib, urllib2, time, re from datetime import datetime from pyquery import PyQuery as pq from models import db, Occupational, Job, Company def get_headers(gzip=False): headers = { "User-Agent":"Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9.2.13) Gecko/20101203 Firefox/3.6.13", # "User-Agent": "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.13) Gecko/20101206 Ubuntu/10.10 (maverick) Firefox/3.6.13" "Accept":"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language":"zh-cn,zh;q=0.5", # "Accept-Encoding":"gzip,deflate", "Accept-Charset":"utf-8;q=0.7,*;q=0.7", "Keep-Alive":"115", "Connection":"keep-alive", # "Host":"", # "Referer":"", } if gzip: headers["Accept-Encoding"] = "gzip,deflate" return headers def getDomFromUrl(url): req = urllib2.Request( url = url, headers = get_headers()) try: request = urllib2.urlopen(req) source = request.read() request.close() except Exception, e: source = None print e ucontent = source.decode('utf-8') dom = pq(ucontent) return dom def getCompanyInfo(dom): '''获取一个公司的信息''' info_items = dom('.companyInfoItems') info_trs = info_items('.companyInfoTab tr') company_info = {} for tr in info_trs: tr = pq(tr) k = tr('td:eq(0)').text().split(u':')[0] v = tr('td:eq(1)').text() company_info[k] = v scale = company_info.get(u'公司规模') if scale: sh = re.search(r'(\d+)-(\d+)', scale) scale = sh.groups() if sh else (None, None) else: scale = (None, None) #### jcs = dom('.jobContact>div>div').find('div') # Job Contact for jc in jcs: jc = pq(jc) jctext = jc.text().split(u':') if len(jctext) == 2: k, v = jctext company_info[k] = v com = Company() com.name = info_items('.companyTitle').text() com.industry = company_info.get(u'公司行业') com.type = company_info.get(u'公司类型') com.address = company_info.get(u'公司地址') com.website = company_info.get(u'公司主页') com.scale_low, com.scale_high = scale com.email = None com.phone_num = None com.description = dom('.black12 tr:eq(2)').find('td').html() com.etag = '' return com def getJobInfo(dom, company): '''获取一个职位的招聘信息''' job_info = {} type_tr = dom('.jobInfoItems tr:eq(0)') trtext = type_tr.text() trtext = trtext.split(u':') if trtext else [] if len(trtext) == 2: k, v = trtext v = v.replace('/', ',') job_info[k] = v trs = dom('.jobInfoItems tr:gt(1)') for tr in trs: tr = pq(tr) tds = tr('td') for td in tds: td = pq(td) tdtext = td.text().split(u':') if len(tdtext) == 2: k, v = tdtext job_info[k] = v salary = job_info.get(u'职位月薪') if salary: sh = re.search(r'(\d+)-(\d+)', salary) salary = sh.groups() if sh else (None, None) else: salary = (None, None) quantity = job_info.get(u'招聘人数') if quantity: sh = re.search(r'(\d+)', quantity) quantity = sh.group(0) if sh else None job = Job() occ_type = job_info.get(u'职位类别') occ = Occupational.query.filter(Occupational.type==occ_type).first() if not occ: occ = Occupational() occ.name = 'FILL' occ.type = occ_type db.session.add(occ) job.occupational = occ job.type = job_info.get(u'工作性质') job.exp = job_info.get(u'工作经验') job.manage_exp = job_info.get(u'管理经验') job.quantity = quantity job.degree = job_info.get(u'最低学历') job.salary_low, job.salary_high = salary job.description = dom('.jobDes').html() job.etag = '' return job def getPage(page_num): time.sleep(0.6) dom = getDomFromUrl('http://sou.zhaopin.com/jobs/jobsearch_jobtype.aspx?bj=160000&sj=045%3B079&jl=%E6%9D%AD%E5%B7%9E&sb=1&sm=0&p=' + page_num) table = dom('#contentbox table:eq(1)') trs = table('tr:gt(0)') iseven = True for tr in trs: if iseven: tr = pq(tr) job_title = tr('#dvJobTit').text() job_url = tr('#dvJobTit a').attr('href') company_name = tr('#dvCompNM').text() company_url = tr('#dvCompNM a').attr('href') work_place = tr('td:eq(4)').text().split(' - ') work_city = work_place[0] work_area = work_place[1] if len(work_place) > 1 else None public_date = tr('td:eq(5)').text() time.sleep(0.6) job_detail_dom = getDomFromUrl(job_url) company = getCompanyInfo(job_detail_dom) company.zhaopin_url = company_url db.session.add(company) job = getJobInfo(job_detail_dom, company) job.company = company job.title = job_title job.work_city = work_city job.work_area = work_area job.public_date = public_date job.zhaopin_url = job_url db.session.add(job) db.session.commit() print datetime.now() print 'This is Job %d' % job.id iseven = not iseven total_page = dom('.pagehead .num:eq(1)').text() sh = re.search(r'(\d+)/(\d+)', total_page) current_page, total_page = sh.groups() if sh else (None, None) return int(current_page), int(total_page) def doSpider(): print datetime.now() print 'Start Get First page' current_page, total_page = getPage('1') print 'First page, Done!' print 'Total page: %d\n' % total_page for page_num in range(current_page+1, total_page+1): print datetime.now() print 'Start get page: [%d]' % page_num getPage(str(page_num)) print 'page: [%d], Done!\n' % page_num if __name__ == '__main__': print 'BEGIN TEST' doSpider() print 'TEST DONE'
521ea38335f0c6bebf7ef64a8d68203c32de69dc
f97cabce5c91238678e159387f03636d4deb90fb
/dajare/crawler_kaishaseikatsu_jp.py
c0bb1bb7c7b5cf459ec22cf9603ddf779b6d4b93
[]
no_license
vaaaaanquish/dajare-python
1daa8b4d31a9e3d5e1336d3b31693c1d491ed814
150132cef0333a94c9e286c4241af92c630cd7bd
refs/heads/master
2022-12-10T08:46:42.827279
2020-12-11T03:28:54
2020-12-11T03:28:54
242,304,312
16
3
null
2022-12-08T03:43:06
2020-02-22T08:09:23
Jupyter Notebook
UTF-8
Python
false
false
1,010
py
from tqdm import tqdm from dajare.crawler import Crawler class CrawlerKaishaseikatsuJp(Crawler): def run(self): output_list = self._run() self.output(output_list, 'dajare_kaishaseikatsu_jp.json') def _run(self): output_list = [] for i in tqdm(range(0, 2200, 100)): url = f'http://archives.kaishaseikatsu.jp/cgi-bin/kaisha2/board_r.cgi?type=kaisha_dajare&next={i}&range=100' bs = self.get_bs(url, encoding='shift-jis') for x in bs.find_all('tr', bgcolor="#FBFFB2"): output_list.append({ 'text': x.find('td').text, 'url': url, 'author': 'kaishaseikatsu', 'author_link': 'http://archives.kaishaseikatsu.jp', 'mean_score': 0., 'deviation_score': 0., 'category': [], 'tag': [], 'eval_list': [] }) return output_list
89a33a2d2fb2a28b98436986b935fd4cbc7f20a7
37fef592f365194c28579f95abd222cc4e1243ae
/streamlit/venv/venv/lib/python3.7/site-packages/plotly/graph_objs/splom/marker/colorbar/_tickformatstop.py
a3a8adde9676f505e52d3465cbd3ee72ce684873
[]
no_license
edimaudo/Python-projects
be61e0d3fff63fb7bd00513dbf1401e2c1822cfb
85d54badf82a0b653587a02e99daf389df62e012
refs/heads/master
2023-04-07T03:26:23.259959
2023-03-24T12:03:03
2023-03-24T12:03:03
72,611,253
4
3
null
2022-10-31T18:10:41
2016-11-02T06:37:17
null
UTF-8
Python
false
false
9,564
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickformatstop(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "splom.marker.colorbar" _path_str = "splom.marker.colorbar.tickformatstop" _valid_props = {"dtickrange", "enabled", "name", "templateitemname", "value"} # dtickrange # ---------- @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"] @dtickrange.setter def dtickrange(self, val): self["dtickrange"] = val # enabled # ------- @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"] @enabled.setter def enabled(self, val): self["enabled"] = val # name # ---- @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # templateitemname # ---------------- @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val # value # ----- @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"] @value.setter def value(self, val): self["value"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs, ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.splom.marker.c olorbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super(Tickformatstop, self).__init__("tickformatstops") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.splom.marker.colorbar.Tickformatstop constructor must be a dict or an instance of :class:`plotly.graph_objs.splom.marker.colorbar.Tickformatstop`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("dtickrange", None) _v = dtickrange if dtickrange is not None else _v if _v is not None: self["dtickrange"] = _v _v = arg.pop("enabled", None) _v = enabled if enabled is not None else _v if _v is not None: self["enabled"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("templateitemname", None) _v = templateitemname if templateitemname is not None else _v if _v is not None: self["templateitemname"] = _v _v = arg.pop("value", None) _v = value if value is not None else _v if _v is not None: self["value"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
879086db133bd1ab22783e38d697afc115869d4f
71c4a775c81179e920b72bdee87d9af3edfd4d99
/01_Sintaxe_Basica/10_dicionario.py
9ea3b3c107c7a83db1b023da9899d434b0a3d0f8
[]
no_license
frclasso/acate18122018
16f4169dbfb0eb8c25e253965642122e6095a211
98e4697d4e34c740a537a553b5ae6841159c58f7
refs/heads/master
2020-04-08T00:54:59.822648
2019-01-24T16:55:42
2019-01-24T16:55:42
158,873,478
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
#!/usr/bin/env python3 aluno = {'ID': 1223, 'Nome':'Patricia', 'Idade': 27, 'Curso': 'Sistemas de Informação', 'Turno':'Noturno' } print(f"ID: {aluno['ID']}") print(f"Nome: {aluno['Nome']}") print(f"Idade:{aluno['Idade']}") print() '''Atualizando valores existentes''' aluno['Idade'] = 28 print(aluno) print() '''Inserindo novo campo''' aluno['Matrícula'] = 8990020198 print(aluno) print() # Utilizando o metodo Update aluno.update({'Turno':'Diurno', 'Sobrenome':'Nunes', 'Telefone':'(48)555-333'}) print(aluno) print() '''Deletando items''' aluno.__delitem__('Idade') print(aluno) print() aluno.pop('Turno') print(aluno) print() del aluno['Matrícula'] print(aluno) print() '''Apagando todos os dados''' # aluno.clear() # print(aluno) # {} '''Deletando o dicionario em si''' # del aluno # print(aluno) # NameError: name 'aluno' is not defined '''Criando um dicionario vazio''' meuDic = {} print(meuDic) print(type(meuDic)) # print(f'Tamanho do dicionario: {len(aluno)} items.') '''Imprimindo um dicionario com as chaves - keys()''' print(aluno.keys()) '''Imprimindo um dicionario com os valores - values()''' print(aluno.values()) '''Imprimindo um dicionario com todos os items''' print(aluno.items())
01e192a4c835a3d6ec4c29d6fb66176e51359dcb
7c27898a5f85dedf0dbbb12451b6c635861dc197
/tornado_overview/chapter03/aiomysql_test.py
8c3375ad203593d54c3a67dc4692f73aa301b121
[]
no_license
Asunqingwen/Tornado_test_application
9323d3289fadf69e7b1e7685da8f631d0e88968f
4f3a9cda9fc081a8b83f06934bc480cd597d4ad8
refs/heads/master
2023-02-18T08:43:58.012236
2021-01-21T09:59:57
2021-01-21T09:59:57
330,935,556
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
import asyncio import aiomysql from tornado import gen, ioloop async def go(): pool = await aiomysql.create_pool(host='192.168.10.69', port=3306, user='root', password='root', db='message', charset="utf8") async with pool.acquire() as conn: async with conn.cursor() as cur: await cur.execute("SELECT * from message") value = await cur.fetchone() print(cur.description) print(value) pool.close() await pool.wait_closed() if __name__ == '__main__': io_loop = ioloop.IOLoop.current() io_loop.run_sync(go)
b5346db185ed928a79136d01fd3e7a44a8ff0b6e
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/PackDist/share/python/PackDistCommon.py
0833847cfd1065059cea672b676003e232021674
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
1,754
py
"""File: PackDistCommon.py Common classes and utility functions of the PackDist package. """ __author__ = 'Grigori Rybkine <[email protected]>' __version__ = '0.2.1' __date__ = 'Wed Oct 03 2012' __all__ = ['Error', 'InputError', 'CommandError', 'exitstatus'] import sys import os class Error(Exception): """Base class for exceptions in this module.""" def __str__(self): return ': '.join([str(arg) for arg in self.args]) def write(self, file = sys.stderr): print >> file, '%s: %s' % (self.__class__.__name__, self) class InputError(Error): """Exception raised for errors in the input. Attributes: expression() -- input expression in which the error occurred message() -- explanation of the error """ def __init__(self, expression, message): Error.__init__(self, expression, message) def expression(self): return self.args[0] def message(self): return self.args[1] class CommandError(Error): """Exception raised for errors executing shell commands. Attributes: args[0] -- shell command executing which the error occurred args[1] -- stderr and stdout of the command args[2] -- exit status of the command """ def __init__(self, cmd, output, sc = None): Error.__init__(self, cmd, output, sc) def exitstatus (status): """Return child exit status, if child terminated normally, None otherwise. Parameter status: child process status information as returned by os.wait(), or os.waitpid(), os.system(), close() method of file object returned by os.popen(), commands.getstatusoutput() """ if os.WIFEXITED(status): return os.WEXITSTATUS(status) else: return None
b0593bc623f07101fd1c4aac9dd0a4ebc0980eb2
955b968d46b4c436be55daf8aa1b8fc8fe402610
/ch04/set_window_size.py
110459bc02e4e910978194acc115ddfccc6554d7
[]
no_license
han-huang/python_selenium
1c8159fd1421b1f0e87cb0df20ae4fe82450f879
56f9f5e5687cf533c678a1c12e1ecaa4c50a7795
refs/heads/master
2020-03-09T02:24:48.882279
2018-04-07T15:06:18
2018-04-07T15:06:18
128,535,917
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from selenium import webdriver driver = webdriver.Firefox() driver.get("https://mail.google.com") # 參數字為像素點 print("設定瀏覽器寬480 高800顯示") driver.set_window_size(480, 800) # driver.quit()
[ "vagrant@LaravelDemoSite" ]
vagrant@LaravelDemoSite
87fa353d224bca02fb3655134746bec120ffc10b
90419da201cd4948a27d3612f0b482c68026c96f
/sdk/python/pulumi_azure_nextgen/compute/v20191201/gallery_application_version.py
09d6082a067f10eae575fb0b3681e034d10ed7c2
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
test-wiz-sec/pulumi-azure-nextgen
cd4bee5d70cb0d332c04f16bb54e17d016d2adaf
20a695af0d020b34b0f1c336e1b69702755174cc
refs/heads/master
2023-06-08T02:35:52.639773
2020-11-06T22:39:06
2020-11-06T22:39:06
312,993,761
0
0
Apache-2.0
2023-06-02T06:47:28
2020-11-15T09:04:00
null
UTF-8
Python
false
false
7,987
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['GalleryApplicationVersion'] class GalleryApplicationVersion(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, gallery_application_name: Optional[pulumi.Input[str]] = None, gallery_application_version_name: Optional[pulumi.Input[str]] = None, gallery_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, publishing_profile: Optional[pulumi.Input[pulumi.InputType['GalleryApplicationVersionPublishingProfileArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Specifies information about the gallery Application Version that you want to create or update. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] gallery_application_name: The name of the gallery Application Definition in which the Application Version is to be created. :param pulumi.Input[str] gallery_application_version_name: The name of the gallery Application Version to be created. Needs to follow semantic version name pattern: The allowed characters are digit and period. Digits must be within the range of a 32-bit integer. Format: <MajorVersion>.<MinorVersion>.<Patch> :param pulumi.Input[str] gallery_name: The name of the Shared Application Gallery in which the Application Definition resides. :param pulumi.Input[str] location: Resource location :param pulumi.Input[pulumi.InputType['GalleryApplicationVersionPublishingProfileArgs']] publishing_profile: The publishing profile of a gallery Image Version. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if gallery_application_name is None: raise TypeError("Missing required property 'gallery_application_name'") __props__['gallery_application_name'] = gallery_application_name if gallery_application_version_name is None: raise TypeError("Missing required property 'gallery_application_version_name'") __props__['gallery_application_version_name'] = gallery_application_version_name if gallery_name is None: raise TypeError("Missing required property 'gallery_name'") __props__['gallery_name'] = gallery_name if location is None: raise TypeError("Missing required property 'location'") __props__['location'] = location if publishing_profile is None: raise TypeError("Missing required property 'publishing_profile'") __props__['publishing_profile'] = publishing_profile if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['tags'] = tags __props__['name'] = None __props__['provisioning_state'] = None __props__['replication_status'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:compute/latest:GalleryApplicationVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20190301:GalleryApplicationVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20190701:GalleryApplicationVersion"), pulumi.Alias(type_="azure-nextgen:compute/v20200930:GalleryApplicationVersion")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(GalleryApplicationVersion, __self__).__init__( 'azure-nextgen:compute/v20191201:GalleryApplicationVersion', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'GalleryApplicationVersion': """ Get an existing GalleryApplicationVersion resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return GalleryApplicationVersion(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state, which only appears in the response. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publishingProfile") def publishing_profile(self) -> pulumi.Output['outputs.GalleryApplicationVersionPublishingProfileResponse']: """ The publishing profile of a gallery Image Version. """ return pulumi.get(self, "publishing_profile") @property @pulumi.getter(name="replicationStatus") def replication_status(self) -> pulumi.Output['outputs.ReplicationStatusResponse']: """ This is the replication status of the gallery Image Version. """ return pulumi.get(self, "replication_status") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
8e4baaae320644a77b9d51ae74ea221201759574
1825283527f5a479204708feeaf55f4ab6d1290b
/leetcode/segmented-tree/leon.py
9b86c455efa6252c088d2e4fb3ac6b44b59e8988
[]
no_license
frankieliu/problems
b82c61d3328ffcc1da2cbc95712563355f5d44b5
911c6622448a4be041834bcab25051dd0f9209b2
refs/heads/master
2023-01-06T14:41:58.044871
2019-11-24T03:47:22
2019-11-24T03:47:22
115,065,956
1
0
null
2023-01-04T07:25:52
2017-12-22T02:06:57
HTML
UTF-8
Python
false
false
6,843
py
# https://github.com/yuexihan/leonLPST/blob/master/leonLPST.py from __future__ import division from six.moves import xrange class LPSTree: """ LPSTree(n[, value=None[, reducef=None[, modulo=None]]]) -> new LPSTree Build a new LPSTree with n elements. If value is provided, all elements are set to value, otherwise 0. Default reduce function is sum. Can alse be set to max or min. If modulo is provide, modulo operation will be donw automatically. """ def __init__(self, n, value=None, reducef=None, modulo=None): if n <= 0: raise ValueError("n most be greater than 0") self.n = n size = 1; while(size < n): size *= 2 size *= 2 self.size = size self.tree = [None] * size self.boolset = [False] * size self.booladd = [False] * size self.lazyset = [None] * size self.lazyadd = [None] * size self.modulo = modulo if not reducef: reducef = sum if reducef == sum: self.nodef = (lambda val, n: val*n) elif reducef == max or reducef == min: self.nodef = (lambda val, n: val) else: raise ValueError("reducef can only be sum, max or min") if self.modulo: self.reducef = lambda x: reducef(x) % self.modulo else: self.reducef = reducef if value != None: array = [value] * n else: array = [0] * n def construct(tree, array, sleft, sright, v): if sleft+1 == sright: tree[v] = array[sleft] return tree[v] smid = (sleft + sright) // 2 tree[v] = self.reducef((construct(tree, array, sleft, smid, 2*v+1), construct(tree, array, smid, sright, 2*v+2))) # if self.modulo: # tree[v] %= self.modulo # print tree return tree[v] construct(self.tree, array, 0, n, 0) def __len__(self): return self.n def _lazypropagate(self, v, vleft, vright): tree = self.tree boolset = self.boolset booladd = self.booladd lazyset = self.lazyset lazyadd = self.lazyadd vmid = (vleft + vright) // 2 # print tree, v, tree[2*v+1], boolset[v], booladd[v] if boolset[v]: tree[2*v+1] = self.nodef(lazyset[v], vmid-vleft) tree[2*v+2] = self.nodef(lazyset[v], vright-vmid) if self.modulo: tree[2*v+1] %= self.modulo tree[2*v+2] %= self.modulo boolset[2*v+1] = boolset[2*v+2] = True booladd[2*v+1] = booladd[2*v+2] = False lazyset[2*v+1] = lazyset[2*v+2] = lazyset[v] boolset[v] = False if booladd[v]: tree[2*v+1] += self.nodef(lazyadd[v], vmid-vleft) tree[2*v+2] += self.nodef(lazyadd[v], vright-vmid) if self.modulo: tree[2*v+1] %= self.modulo tree[2*v+2] %= self.modulo if booladd[2*v+1]: lazyadd[2*v+1] += lazyadd[v] else: booladd[2*v+1] = True lazyadd[2*v+1] = lazyadd[v] if booladd[2*v+2]: lazyadd[2*v+2] += lazyadd[v] else: booladd[2*v+2] = True lazyadd[2*v+2] = lazyadd[v] booladd[v] = False # print tree, v, tree[2*v+1] def get(self, start, stop): """ LPSTree.get(start, stop) -> value You can assume it same as reduce(reducef, tree[start:stop]). """ n = self.n if not(start < stop and start >=0 and stop <= n): raise IndexError(start, stop) tree = self.tree boolset = self.boolset booladd = self.booladd lazyset = self.lazyset lazyadd = self.lazyadd def _get(sleft, sright, v, vleft, vright): # print v, start, stop, vleft, vright, tree if sleft>=vright or sright <= vleft: return if sleft<=vleft and sright >= vright: # if self.modulo: # tree[v] %= self.modulo return tree[v] vmid = (vleft + vright) // 2 self._lazypropagate(v, vleft, vright) # print v, start, stop, vleft, vright, tree return self.reducef([x for x in (_get(sleft, sright, 2*v+1, vleft, vmid), _get(sleft, sright, 2*v+2, vmid, vright)) if x != None]) return _get(start, stop, 0, 0, n) def set(self, start, stop, value): """ LPSTRee.set(start, stop, value) Set all elements in [start, stop) to value. """ n = self.n if not(start < stop and start >=0 and stop <= n): raise IndexError(start, stop) tree = self.tree boolset = self.boolset booladd = self.booladd lazyset = self.lazyset lazyadd = self.lazyadd def _set(sleft, sright, v, vleft, vright, value): # print v, start, stop, vleft, vright, value, tree if sleft >= vright or sright <= vleft: return if sleft <= vleft and sright >= vright: tree[v] = self.nodef(value, vright-vleft) if self.modulo: tree[v] %= self.modulo boolset[v] = True booladd[v] = False lazyset[v] = value # print v, tree, tree[v], tree[v] % self.modulo return vmid = (vleft + vright) // 2 self._lazypropagate(v, vleft, vright) _set(sleft, sright, 2*v+1, vleft, vmid, value) _set(sleft, sright, 2*v+2, vmid, vright, value) tree[v] = self.reducef((tree[2*v+1], tree[2*v+2])) # if self.modulo: # tree[v] %= self.modulo # print v, start, stop, vleft, vright, value, tree _set(start, stop, 0, 0, n, value) def add(self, start, stop, diff): """ LPSTRee.add(start, stop, diff) Add diff to all elements in [start, stop). """ n = self.n if not(start < stop and start >=0 and stop <= n): raise IndexError(start, stop) tree = self.tree boolset = self.boolset booladd = self.booladd lazyset = self.lazyset lazyadd = self.lazyadd def _add(sleft, sright, v, vleft, vright, diff): if sleft >= vright or sright <= vleft: return if sleft <= vleft and sright >= vright: tree[v] += self.nodef(diff, vright-vleft) if self.modulo: tree[v] %= self.modulo if booladd[v]: lazyadd[v] += diff else: booladd[v] = True lazyadd[v] = diff return vmid = (vleft + vright) // 2 self._lazypropagate(v, vleft, vright) _add(sleft, sright, 2*v+1, vleft, vmid, diff) _add(sleft, sright, 2*v+2, vmid, vright, diff) tree[v] = self.reducef((tree[2*v+1], tree[2*v+2])) # if self.modulo: # tree[v] %= self.modulo _add(start, stop, 0, 0, n, diff) def __getitem__(self, index): return self.get(index, index+1) def __setitem__(self, index, value): self.set(index, index+1, value) def __repr__(self): return repr([self[x] for x in xrange(self.n)]) def tolist(self): """ LPSTree.tolist() -> a list object Return a list containing all the elements in LPSTree. """ return [self[x] for x in xrange(self.n)] if __name__ == '__main__': tree = LPSTree(10, reducef=max) # tree = LPSTree(10, modulo=2) # tree = LPSTree(10) print tree.n, tree.size print tree.get(0, 10) print tree[0], tree[1] tree[9] = 20 print tree print tree.get(0, 10) tree.set(1,5,5) print tree tree.add(1, 10, 12) print tree tree.set(0, 3, 5) tree.add(0, 4, 2) print tree tree.set(0, 10, 0) print tree tree.add(1, 9, -10) print tree print tree.get(8, 9) tree.set(0, 3, 9) print tree tree = LPSTree(10, reducef=max) print tree # tree.set(0, 10, 0) # help(tree.set) tree.set(1, 9, -10) print tree
43a228606e02826830759f5f40418f92e634af34
19892b65355f7661cf5e42d2f749904788c1a7d0
/dailyfresh/daily_fresh/utils/mixin.py
6174e5aba8081e3b2cf0368084ea7f0853225db5
[]
no_license
BinXiaoEr/daily_fresh
35902cb6753851a14517265db3738a008610c7d8
d8bdc10e80b6b8e2be5f85f6a8293fb1f4695e1d
refs/heads/master
2021-07-09T16:06:34.809134
2020-08-04T01:51:34
2020-08-04T01:51:34
181,276,905
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
from django.contrib.auth.decorators import login_required class LoginRequiredMixin(object): @classmethod def as_view(cls, **initkwargs): # 调用父类的as_view view = super(LoginRequiredMixin, cls).as_view(**initkwargs) return login_required(view)
b05acce5674d36ac8d553f00d5fe010f2061fbdf
612325535126eaddebc230d8c27af095c8e5cc2f
/depot_tools/external_bin/gsutil/gsutil_4.15/gsutil/third_party/boto/tests/unit/dynamodb/test_types.py
e3b913d7eb4a7e8789aa9a1becd8cefa58b17d6a
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
TrellixVulnTeam/proto-quic_1V94
1a3a03ac7a08a494b3d4e9857b24bb8f2c2cd673
feee14d96ee95313f236e0f0e3ff7719246c84f7
refs/heads/master
2023-04-01T14:36:53.888576
2019-10-17T02:23:04
2019-10-17T02:23:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,427
py
#!/usr/bin/env python # Copyright (c) 2012 Amazon.com, Inc. or its affiliates. All Rights Reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # from decimal import Decimal from tests.compat import unittest from boto.compat import six from boto.dynamodb import types from boto.dynamodb.exceptions import DynamoDBNumberError class TestDynamizer(unittest.TestCase): def setUp(self): pass def test_encoding_to_dynamodb(self): dynamizer = types.Dynamizer() self.assertEqual(dynamizer.encode('foo'), {'S': 'foo'}) self.assertEqual(dynamizer.encode(54), {'N': '54'}) self.assertEqual(dynamizer.encode(Decimal('1.1')), {'N': '1.1'}) self.assertEqual(dynamizer.encode(set([1, 2, 3])), {'NS': ['1', '2', '3']}) self.assertIn(dynamizer.encode(set(['foo', 'bar'])), ({'SS': ['foo', 'bar']}, {'SS': ['bar', 'foo']})) self.assertEqual(dynamizer.encode(types.Binary(b'\x01')), {'B': 'AQ=='}) self.assertEqual(dynamizer.encode(set([types.Binary(b'\x01')])), {'BS': ['AQ==']}) self.assertEqual(dynamizer.encode(['foo', 54, [1]]), {'L': [{'S': 'foo'}, {'N': '54'}, {'L': [{'N': '1'}]}]}) self.assertEqual(dynamizer.encode({'foo': 'bar', 'hoge': {'sub': 1}}), {'M': {'foo': {'S': 'bar'}, 'hoge': {'M': {'sub': {'N': '1'}}}}}) self.assertEqual(dynamizer.encode(None), {'NULL': True}) self.assertEqual(dynamizer.encode(False), {'BOOL': False}) def test_decoding_to_dynamodb(self): dynamizer = types.Dynamizer() self.assertEqual(dynamizer.decode({'S': 'foo'}), 'foo') self.assertEqual(dynamizer.decode({'N': '54'}), 54) self.assertEqual(dynamizer.decode({'N': '1.1'}), Decimal('1.1')) self.assertEqual(dynamizer.decode({'NS': ['1', '2', '3']}), set([1, 2, 3])) self.assertEqual(dynamizer.decode({'SS': ['foo', 'bar']}), set(['foo', 'bar'])) self.assertEqual(dynamizer.decode({'B': 'AQ=='}), types.Binary(b'\x01')) self.assertEqual(dynamizer.decode({'BS': ['AQ==']}), set([types.Binary(b'\x01')])) self.assertEqual(dynamizer.decode({'L': [{'S': 'foo'}, {'N': '54'}, {'L': [{'N': '1'}]}]}), ['foo', 54, [1]]) self.assertEqual(dynamizer.decode({'M': {'foo': {'S': 'bar'}, 'hoge': {'M': {'sub': {'N': '1'}}}}}), {'foo': 'bar', 'hoge': {'sub': 1}}) self.assertEqual(dynamizer.decode({'NULL': True}), None) self.assertEqual(dynamizer.decode({'BOOL': False}), False) def test_float_conversion_errors(self): dynamizer = types.Dynamizer() # When supporting decimals, certain floats will work: self.assertEqual(dynamizer.encode(1.25), {'N': '1.25'}) # And some will generate errors, which is why it's best # to just use Decimals directly: with self.assertRaises(DynamoDBNumberError): dynamizer.encode(1.1) def test_non_boolean_conversions(self): dynamizer = types.NonBooleanDynamizer() self.assertEqual(dynamizer.encode(True), {'N': '1'}) def test_lossy_float_conversions(self): dynamizer = types.LossyFloatDynamizer() # Just testing the differences here, specifically float conversions: self.assertEqual(dynamizer.encode(1.1), {'N': '1.1'}) self.assertEqual(dynamizer.decode({'N': '1.1'}), 1.1) self.assertEqual(dynamizer.encode(set([1.1])), {'NS': ['1.1']}) self.assertEqual(dynamizer.decode({'NS': ['1.1', '2.2', '3.3']}), set([1.1, 2.2, 3.3])) class TestBinary(unittest.TestCase): def test_good_input(self): data = types.Binary(b'\x01') self.assertEqual(b'\x01', data) self.assertEqual(b'\x01', bytes(data)) def test_non_ascii_good_input(self): # Binary data that is out of ASCII range data = types.Binary(b'\x88') self.assertEqual(b'\x88', data) self.assertEqual(b'\x88', bytes(data)) @unittest.skipUnless(six.PY2, "Python 2 only") def test_bad_input(self): with self.assertRaises(TypeError): types.Binary(1) @unittest.skipUnless(six.PY3, "Python 3 only") def test_bytes_input(self): data = types.Binary(1) self.assertEqual(data, b'\x00') self.assertEqual(data.value, b'\x00') @unittest.skipUnless(six.PY2, "Python 2 only") def test_unicode_py2(self): # It's dirty. But remains for backward compatibility. data = types.Binary(u'\x01') self.assertEqual(data, b'\x01') self.assertEqual(bytes(data), b'\x01') # Delegate to built-in b'\x01' == u'\x01' # In Python 2.x these are considered equal self.assertEqual(data, u'\x01') # Check that the value field is of type bytes self.assertEqual(type(data.value), bytes) @unittest.skipUnless(six.PY3, "Python 3 only") def test_unicode_py3(self): with self.assertRaises(TypeError): types.Binary(u'\x01') if __name__ == '__main__': unittest.main()
7321ac8c981ab9abb728e9c05fe1a2576ef0d878
3c327aa333bbeafacb8d5bd253814776ffcd0012
/df_user/urls.py
bf6fcb54488289e42e7484712a3e096f56b612be
[]
no_license
1635848644/shopping
c5d0a1dd2eb5716ece76045d6c2c261ca0f4db18
d820e828eeed3911ea7741e4f11f4c6d83e993c6
refs/heads/master
2023-04-07T20:12:30.382805
2018-10-05T15:08:40
2018-10-05T15:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
#coding=utf-8 from django.conf.urls import url from df_user import views urlpatterns=[ url('register/',views.register), url('login/',views.login), url('logout/',views.logout), url('addHarvsetAddress/',views.addHarvsetAddress), url('user_center_info/',views.user_center_info), url('user_center_order/',views.user_center_order), url('user_center_site/',views.user_center_site), ]
8fd82a02b96ef6922c7ccd498e793df6876f3f49
46c2418ecfcf3c7034a267364185208a665be583
/edb/tools/docs/cli.py
2c9295564c14536c42a30b9de2055cc410bdcb02
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
jankeromnes/edgedb
3434549fb0731632ed7adb7fcb329480dee50d91
40ea3317fe5bfec76d7b46f7b706a4cb8a0d9f94
refs/heads/master
2022-02-24T04:56:19.238048
2019-05-10T12:24:40
2019-06-17T10:29:09
185,984,093
0
0
Apache-2.0
2022-01-28T09:00:32
2019-05-10T12:24:55
Python
UTF-8
Python
false
false
1,466
py
# # This source file is part of the EdgeDB open source project. # # Copyright 2018-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from edb.edgeql.pygments import EdgeQLLexer from sphinx import domains as s_domains from sphinx.directives import code as s_code from . import shared class CLISynopsisDirective(s_code.CodeBlock): has_content = True optional_arguments = 0 required_arguments = 0 option_spec = {} def run(self): self.arguments = ['cli-synopsis'] return super().run() class CLIDomain(s_domains.Domain): name = "cli" label = "Command Line Interface" directives = { 'synopsis': CLISynopsisDirective, } def setup_domain(app): app.add_lexer("cli", EdgeQLLexer()) app.add_lexer("cli-synopsis", EdgeQLLexer()) app.add_role( 'cli:synopsis', shared.InlineCodeRole('cli-synopsis')) app.add_domain(CLIDomain)
81b968c9d9e14ff5772ae28bead91e71f66173d8
50e2012ecea8307e278d1132ca0094adb940aff2
/lib/review/my_process/my_multiprocessing.py
a299b8a3185df0bb568f1c9bc93484f95d15cfcb
[]
no_license
Lewescaiyong/my_library
6689cae2db4aaa980b4bd5ed9f21691eefbff2fe
35d0d29097823ccef74fa29ca8756a7f59ceeb78
refs/heads/master
2020-11-25T09:20:56.484275
2019-12-17T10:58:20
2019-12-17T10:58:20
228,593,219
1
0
null
null
null
null
UTF-8
Python
false
false
182
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import multiprocessing from multiprocessing.dummy import Pool pool1 = multiprocessing.Pool() pool2 = Pool() pool1.map() pool2.map()
1308c8f92d220ac7b01c451288da34696bcbe3f8
c52ea8af6a4d3c32a0557c39d683a4d01b2188db
/ch10_dash_cytoscape_basic/layout/dash_cyto_grid_option_curve_style.py
00701dcffe65b44108634f361e1dafb4d3efea61
[ "MIT" ]
permissive
plotly-dash-book/plotly-dash-book
dcde031766d17adf6fc670c8aec9c8d4e267eeb7
cc54f7ac6066a741f733facbd002222a87746e02
refs/heads/master
2022-06-27T02:46:25.502190
2022-06-08T03:21:23
2022-06-08T03:21:23
197,512,189
30
18
MIT
2021-05-31T04:47:36
2019-07-18T04:36:50
Jupyter Notebook
UTF-8
Python
false
false
1,531
py
import dash import dash_cytoscape as cyto import dash_html_components as html app = dash.Dash(__name__) # ノードを17個定義 nodes = [{"data": {"id": x, "label": f"{x}"}} for x in range(17)] # エッジを定義 edges = [ {"data": {"source": 0, "target": 1}}, {"data": {"source": 0, "target": 2}}, {"data": {"source": 0, "target": 3}}, {"data": {"source": 0, "target": 4}}, {"data": {"source": 2, "target": 3}}, {"data": {"source": 3, "target": 4}}, {"data": {"source": 4, "target": 5}}, {"data": {"source": 5, "target": 1}}, {"data": {"source": 1, "target": 6}}, {"data": {"source": 2, "target": 7}}, {"data": {"source": 2, "target": 8}}, {"data": {"source": 3, "target": 9}}, {"data": {"source": 4, "target": 10}}, {"data": {"source": 4, "target": 11}}, {"data": {"source": 4, "target": 12}}, {"data": {"source": 5, "target": 13}}, {"data": {"source": 5, "target": 14}}, {"data": {"source": 6, "target": 15}}, ] elements = nodes + edges cyto_compo = cyto.Cytoscape( id="dash_cyto_layout", style={"width": "400px", "height": "400px"}, layout={"name": "grid", "rows": 3, "columns": 6}, elements=elements, stylesheet=[ {"selector": "node", "style": {"content": "data(label)"}}, # エッジのカーブのスタイルを曲線にする {"selector": "edge", "style": {"curve-style": "unbundled-bezier"}}, ], ) app.layout = html.Div([cyto_compo]) if __name__ == "__main__": app.run_server(debug=True)
805e778f090eb8a26dac37e6725197e259091f56
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/KLke67efuam6ajLrt_2.py
1dc365bb23d969b5f0f0d4e85f8e8ff90a1cf504
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
1,765
py
""" An **out-shuffle** , also known as an _out faro shuffle_ or a _perfect shuffle_ , is a controlled method for shuffling playing cards. It is performed by splitting the deck into two equal halves and interleaving them together perfectly, with the condition that the top card of the deck remains in place. Using an array to represent a deck of cards, an out-shuffle looks like: [1, 2, 3, 4, 5, 6, 7, 8] ➞ [1, 5, 2, 6, 3, 7, 4, 8] // Card 1 remains in the first position. If we repeat the process, the deck eventually returns to original order. Shuffle 1: [1, 2, 3, 4, 5, 6, 7, 8] ➞ [1, 5, 2, 6, 3, 7, 4, 8] Shuffle 2: [1, 5, 2, 6, 3, 7, 4, 8] ➞ [1, 3, 5, 7, 2, 4, 6, 8] Shuffle 3: [1, 3, 5, 7, 2, 4, 6, 8] ➞ [1, 2, 3, 4, 5, 6, 7, 8] // Back where we started. Write a function that takes a positive even integer representing the number of the cards in a deck, and returns the number of out-shuffles required to return the deck to its original order. ### Examples shuffle_count(8) ➞ 3 shuffle_count(14) ➞ 12 shuffle_count(52) ➞ 8 ### Notes * The number of cards is always **even** and **greater than one**. Thus, the smallest possible deck size is **two**. * A **recursive** version of this challenge can be found via this [link](https://edabit.com/challenge/EXNAxFGgDDtE3SbQf). """ def shuffle_count(num): half = num // 2 deck = list(range(num)) left, right = deck[:half], deck[half:] deck_s = [right[i // 2] if i % 2 else left[i // 2] for i in range(num)] count = 1 while deck_s != deck: left, right = deck_s[:half], deck_s[half:] deck_s = [right[i // 2] if i % 2 else left[i // 2] for i in range(num)] count += 1 return count
50845d3ddab1ec682e0f345e3c75c1ba47438990
ed872a0efb1db283f48176474e22f4c4ad31db79
/src/accounts/migrations/0019_fix_socail_auth.py
ceffd3defcff51b96d673f95e0fffd2933671048
[]
no_license
barontxu/djbookru
34c2bf90e5d3542e4cbd2f3e600e1c0a12795d35
388bff0491e961f8efdf3cabd6c47d9fa2988547
refs/heads/master
2021-01-16T20:39:33.949315
2014-06-20T12:22:56
2014-06-20T12:22:56
23,031,683
1
0
null
null
null
null
UTF-8
Python
false
false
9,111
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): depends_on = ( ('social_auth', '0002_auto__add_unique_nonce_timestamp_salt_server_url__add_unique_associati'), ) def forwards(self, orm): "Write your forwards methods here." orm['social_auth.UserSocialAuth'].objects.filter(provider='google').delete() def backwards(self, orm): "Write your backwards methods here." models = { 'accounts.achievement': { 'Meta': {'object_name': 'Achievement'}, 'active_icon': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'inactive_icon': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}) }, 'accounts.announcement': { 'Meta': {'object_name': 'Announcement'}, 'content': ('django.db.models.fields.TextField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '300'}) }, 'accounts.emailconfirmation': { 'Meta': {'object_name': 'EmailConfirmation'}, 'confirmation_key': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'sent': ('django.db.models.fields.DateTimeField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.User']"}) }, 'accounts.user': { 'Meta': {'object_name': 'User', '_ormbases': ['auth.User']}, 'achievements': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['accounts.Achievement']", 'through': "orm['accounts.UserAchievement']", 'symmetrical': 'False'}), 'biography': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'homepage': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'is_valid_email': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_comments_read': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_doc_comments_read': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'lat': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'lng': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'signature': ('django.db.models.fields.TextField', [], {'max_length': '1024', 'blank': 'True'}), 'user_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'primary_key': 'True'}) }, 'accounts.userachievement': { 'Meta': {'unique_together': "(('user', 'achievement'),)", 'object_name': 'UserAchievement'}, 'achievement': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.Achievement']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'note': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['accounts.User']"}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '75'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'social_auth.association': { 'Meta': {'unique_together': "(('server_url', 'handle'),)", 'object_name': 'Association'}, 'assoc_type': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'handle': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'issued': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'lifetime': ('django.db.models.fields.IntegerField', [], {}), 'secret': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'server_url': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'social_auth.nonce': { 'Meta': {'unique_together': "(('server_url', 'timestamp', 'salt'),)", 'object_name': 'Nonce'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'salt': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'server_url': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'timestamp': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}) }, 'social_auth.usersocialauth': { 'Meta': {'unique_together': "(('provider', 'uid'),)", 'object_name': 'UserSocialAuth'}, 'extra_data': ('social_auth.fields.JSONField', [], {'default': "'{}'"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'uid': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'social_auth'", 'to': "orm['accounts.User']"}) } } complete_apps = ['social_auth', 'accounts'] symmetrical = True
be18a828d415817294724c04ce3bef696dac9a91
d9af3a98a0864de7ebb0cfd1675a052779e46bf2
/transformer_split/vae_model.py
e94ea7dccaf8599afbe98b4b7e286dfb52f4a1af
[ "MIT" ]
permissive
fredericgo/rl_morph_pytorch
eafc36128e60296743a42b25d417efe17128ac93
743cd82d82c16c8d52e5265b6cc5cdf490cb8945
refs/heads/main
2023-07-11T05:51:43.914695
2021-08-09T02:54:06
2021-08-09T02:54:06
344,523,334
0
0
null
null
null
null
UTF-8
Python
false
false
9,741
py
import os import torch import torch.nn as nn from torch.nn import functional as F import torch.optim as optim import numpy as np from transformer_split.encoders import PoseEncoder from transformer_split.decoder import Decoder from transformer_split.discriminator import Discriminator def kl_divergence(mu, logvar): return - 0.5 * (1 + logvar - mu.pow(2) - logvar.exp()).mean() def mse_loss(input, target): return (input - target).pow(2).mean() def frange_cycle_linear(start, stop, n_epoch, n_cycle=4, ratio=0.5): L = np.ones(n_epoch) period = n_epoch/n_cycle step = (stop-start)/(period*ratio) # linear schedule for c in range(n_cycle): v , i = start , 0 while v <= stop and (int(i+c*period) < n_epoch): L[int(i+c*period)] = v v += step i += 1 return L class VAE_Model(nn.Module): def __init__(self, args): super(VAE_Model, self).__init__() enc = PoseEncoder( root_size=args.root_size, feature_size=args.dim_per_limb, latent_size=args.latent_dim, batch_size=args.batch_size, ninp=args.attention_embedding_size, nhead=args.attention_heads, nhid=args.attention_hidden_size, nlayers=args.attention_layers, max_num_limbs=args.max_num_limbs, dropout=args.dropout_rate ) decoder = Decoder( root_size=args.root_size, feature_size=args.dim_per_limb, latent_size=args.latent_dim, batch_size=args.batch_size, ninp=args.attention_embedding_size, nhead=args.attention_heads, nhid=args.attention_hidden_size, nlayers=args.attention_layers, max_num_limbs=args.max_num_limbs, dropout=args.dropout_rate ) discriminator = Discriminator( root_size=args.root_size, feature_size=args.dim_per_limb, max_num_limbs=args.max_num_limbs ) self.add_module("enc", enc) self.add_module("decoder", decoder) self.add_module("discriminator", discriminator) self.batch_size = args.batch_size self.latent_dim = args.latent_dim encoder_parameters = list(self.enc.parameters()) self.auto_encoder_optimizer = optim.Adam( encoder_parameters + list(self.decoder.parameters()), lr=args.ae_lr, ) self.discriminator_optimizer = optim.Adam( list(self.discriminator.parameters()), lr=args.lr, ) self.generator_optimizer = optim.Adam( encoder_parameters + list(self.decoder.parameters()), lr=args.lr, ) self.beta = args.beta self.device = torch.device("cuda" if args.cuda else "cpu") self.root_size = args.root_size self.discriminator_limiting_accuracy = args.discriminator_limiting_accuracy self.gp_weight = args.gradient_penalty self.beta_schedule = frange_cycle_linear(0, args.beta, args.epochs, 4, 1) def _gradient_penalty(self, D, real_data, generated_data): real_data = torch.cat(real_data, dim=-1) generated_data = torch.cat(generated_data, dim=-1) batch_size = real_data.size()[0] d = int(real_data.size()[1] / 2) # Calculate interpolation alpha = torch.rand(batch_size, 1, device=real_data.device, requires_grad=True) alpha = alpha.expand_as(real_data) alpha = alpha.to(generated_data.device) interpolated = alpha * real_data.data + (1 - alpha) * generated_data.data interpolated = torch.split(interpolated, [d, d], dim=-1) # Calculate probability of interpolated examples prob_interpolated = D(*interpolated) # Calculate gradients of probabilities with respect to examples gradients = torch.autograd.grad(outputs=prob_interpolated, inputs=interpolated, grad_outputs=torch.ones(prob_interpolated.size(), device=real_data.device), create_graph=True, retain_graph=True)[0] # Gradients have shape (batch_size, num_channels, img_width, img_height), # so flatten to easily take norm per example in batch gradients = gradients.view(batch_size, -1) # Derivatives of the gradient close to 0 can cause problems because of # the square root, so manually calculate norm and add epsilon gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12) # Return gradient penalty return ((gradients_norm - 1) ** 2).mean() def split_root_body(self, x): x_root = x[:, :self.root_size] x_body = x[:, self.root_size:] return x_root, x_body def transfer(self, x, structure): x_root, x_body = self.split_root_body(x) zp, zc, mean, logvar = self.enc(x_body) xr = self.decoder(zp, zc, structure) xr = torch.cat([x_root, xr], dim=-1) return xr def train_recon(self, x1, x2, structure, epoch): self.auto_encoder_optimizer.zero_grad() x1_root, x1_body = self.split_root_body(x1) x2_root, x2_body = self.split_root_body(x2) zp_1, zc_1, mean, logvar = self.enc(x1_body) zp_2, zc_2, mean, logvar = self.enc(x2_body) x1_r_body = self.decoder(zp_1, zc_2, structure) x2_r_body = self.decoder(zp_2, zc_1, structure) kl_loss = kl_divergence(mean, logvar).mean() rec_loss1 = mse_loss(x1_r_body, x1_body) rec_loss2 = mse_loss(x2_r_body, x2_body) reconstruction_loss = rec_loss1 + rec_loss2 loss = reconstruction_loss + self.beta_schedule[epoch] * kl_loss loss.backward() torch.nn.utils.clip_grad_norm_(self.parameters(), 0.5) self.auto_encoder_optimizer.step() return rec_loss1, rec_loss1, kl_loss, self.beta_schedule[epoch], mean.mean(), logvar.mean() def train_generator(self, x1, x3, structure3, epoch): self.generator_optimizer.zero_grad() x1_root, x1_body = self.split_root_body(x1) x3_root, x3_body = self.split_root_body(x3) # zc: class content zp_1, zc, mean, logvar = self.enc(x1_body) xr_13 = self.decoder(zp_1, zc, structure3) kl_loss = kl_divergence(mean, logvar).mean() # True labels true_labels = torch.ones(self.batch_size, dtype=torch.long, device=x1.device) d1 = self.discriminator(x3_body, xr_13) gen_loss_1 = F.cross_entropy(d1, true_labels) z_random = torch.normal(0, 1, size=(self.batch_size, self.latent_dim), device=x1.device) xr_r3 = self.decoder(z_random, zc, structure3) d2 = self.discriminator(x3_body, xr_r3) gen_loss_2 = F.cross_entropy(d2, true_labels) generator_loss = gen_loss_1 + gen_loss_2 + self.beta_schedule[epoch]* kl_loss generator_loss.backward() self.generator_optimizer.step() return gen_loss_1, gen_loss_2, kl_loss def train_discriminator(self, x1, x2, x3, structure3): self.discriminator_optimizer.zero_grad() x1_root, x1_body = self.split_root_body(x1) x2_root, x2_body = self.split_root_body(x2) x2_root, x3_body = self.split_root_body(x3) true_labels = torch.ones(self.batch_size, dtype=torch.long, device=x1.device) d_real = self.discriminator(x2_body, x3_body) disc_loss_real = F.cross_entropy(d_real, true_labels) fake_labels = torch.zeros(self.batch_size, dtype=torch.long, device=x1.device) zp_1, zc, mean, logvar = self.enc(x1_body) xr_13 = self.decoder(zp_1, zc, structure3) d_fake = self.discriminator(x3_body, xr_13) disc_loss_fake = F.cross_entropy(d_fake, fake_labels) #gp = self.gp_weight * self._gradient_penalty(self.discriminator, # (x2_body, x3_body), # (x2_body, xr_13)) discriminator_loss = disc_loss_real + disc_loss_fake #+ gp discriminator_loss.backward() # calculate discriminator accuracy for this step target_true_labels = torch.cat((true_labels, fake_labels), dim=0) discriminator_predictions = torch.cat((d_real, d_fake), dim=0) _, discriminator_predictions = torch.max(discriminator_predictions, 1) discriminator_accuracy = (discriminator_predictions.data == target_true_labels.long() ).sum().item() / (self.batch_size * 2) if discriminator_accuracy < self.discriminator_limiting_accuracy: self.discriminator_optimizer.step() return discriminator_loss, discriminator_accuracy def save_model(self, path): model_path = os.path.join(path, 'vae_model') torch.save({ "encoder": self.enc.state_dict(), "decoder": self.decoder.state_dict(), "discriminator": self.discriminator.state_dict(), }, model_path) def load_model(self, path): model_path = os.path.join(path, 'vae_model') data = torch.load(model_path) self.enc.load_state_dict(data['encoder']) self.decoder.load_state_dict(data['decoder']) self.discriminator.load_state_dict(data['discriminator'])
a6be9d570514b770b12cd026d69be6ad9174e1eb
7c246e0046136c7ab200ebf5a7e8fe772bd0738b
/02_django/css01/css/urls.py
de2d2f568f2315ed7bcf65c575c4dcfdb29a1fdd
[]
no_license
name-chichi/KDT-BigData
d6d87557945b6dc5c3dd7126a718f6de147f6d7b
6bac43fdaf0b0be94996f2fab65f59916d500395
refs/heads/main
2023-06-30T07:04:54.296238
2021-07-30T03:09:54
2021-07-30T03:09:54
374,502,002
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
"""config URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from css import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.home, name='home'), path('html5', views.html5, name='html5'), ]
93adf05fb8e78616581a275936e16a2c12ad1582
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/Clutter/ZoomActionPrivate.py
30f46ad6d498ed3b8d07dbaaa947fec7334f3b73
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
4,403
py
# encoding: utf-8 # module gi.repository.Clutter # from /usr/lib64/girepository-1.0/Clutter-1.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gi.repository.Atk as __gi_repository_Atk import gi.repository.GObject as __gi_repository_GObject import gobject as __gobject class ZoomActionPrivate(__gi.Struct): # no doc def __delattr__(self, *args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(self, *args, **kwargs): # real signature unknown """ Default dir() implementation. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(self, *args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(self, *args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(self, *args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __setattr__(self, *args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(self, *args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(self, *args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(self, *args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass def __weakref__(self, *args, **kwargs): # real signature unknown pass __class__ = None # (!) real value is "<class 'gi.types.StructMeta'>" __dict__ = None # (!) real value is "mappingproxy({'__info__': StructInfo(ZoomActionPrivate), '__module__': 'gi.repository.Clutter', '__gtype__': <GType void (4)>, '__dict__': <attribute '__dict__' of 'ZoomActionPrivate' objects>, '__weakref__': <attribute '__weakref__' of 'ZoomActionPrivate' objects>, '__doc__': None})" __gtype__ = None # (!) real value is '<GType void (4)>' __info__ = StructInfo(ZoomActionPrivate)
49b7c6233cb3d031e79f2710167aae956de76e29
55a281d728541773e6eda896599c0cc48dfe5156
/Advanced/venv/Scripts/easy_install-script.py
8e473e4d78117e10d75b080582317f8367fd492a
[]
no_license
dhariskov/python-advanced
c0bebd937f3849dd62ae2834cbdf9f8100b2bb56
4725070c960d3c234ed2f20ff2156e2f89514a02
refs/heads/master
2022-12-04T22:40:18.485552
2020-08-28T08:29:25
2020-08-28T08:29:25
288,775,775
0
0
null
null
null
null
UTF-8
Python
false
false
450
py
#!C:\Users\Acer\PycharmProjects\Advanced\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
f636068a81116528616e1f63c07c412447c94e49
c5be6a92f216957d340474b58507606a38c10f5f
/course-files/tutorials/tutorial04/answers/drawings/d5.py
e0e46a2f538962b9b15a80780794e0fa647bfa31
[]
no_license
eecs110/winter2019
0b314c35e886b8099368ed7dfd51b707ab73c0c2
f4107207ca1c9c10b78bdbb74fd82410b00ee363
refs/heads/master
2020-04-11T10:09:28.100445
2019-03-21T18:00:25
2019-03-21T18:00:25
161,705,160
3
0
null
null
null
null
UTF-8
Python
false
false
860
py
from tkinter import Canvas, Tk import random import shapes import math gui = Tk() gui.title('Circle') canvas = Canvas(gui, width=500, height=500, background='#FFFFFF') canvas.pack() ########################## YOUR CODE BELOW THIS LINE ############################## center_x = 250 center_y = 250 distance_from_center = 50 radius_of_individual_circle = 100 num_circles = 30 for i in range(num_circles): # calculate new position of x and y radians = 360 / num_circles * i * (math.pi / 180) dy = distance_from_center * math.sin(radians) dx = distance_from_center * math.cos(radians) x = center_x + dx y = center_y - dy shapes.make_circle(canvas, (x, y), radius_of_individual_circle, color=None, outline='black', stroke_width=1) ########################## YOUR CODE ABOVE THIS LINE ############################## canvas.mainloop()
83f402a7ec1b6a4bf2e2ac6f13ff695c108fcf0c
44ff565bb1838a445e0d5a89ea3ca3e4b29b3686
/Python算法详解/第12章/Reversi.py
0a81667472893c1c0099a99a2e84e5b90021e743
[]
no_license
huoweikong/python_pch_kiton
df3162aae397e82df9ef575f5f9d26039e5e036e
057cef1f34c76701840e7b8b46a5955b9f38b86b
refs/heads/master
2023-01-10T22:40:45.610986
2020-11-19T18:37:56
2020-11-19T18:37:56
313,897,428
0
0
null
null
null
null
UTF-8
Python
false
false
9,262
py
# Reversegam: a clone of Othello/Reversi import random import sys WIDTH = 8 # Board is 8 spaces wide HEIGHT = 8 # Board is 8 spaces tall def drawBoard(board): # This function prints the board that it was passed. Returns None. print(' 12345678') print(' +--------+') for y in range(HEIGHT): print('%s|' % (y+1), end='') for x in range(WIDTH): print(board[x][y], end='') print('|%s' % (y+1)) print(' +--------+') print(' 12345678') def getNewBoard(): # Creates a brand-new, blank board data structure. board = [] for i in range(WIDTH): board.append([' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ']) return board def isValidMove(board, tile, xstart, ystart): # 如果玩家在空间x上移动,则y无效,则返回false。 如果它是一个有效的移动, # 则返回一个空格列表,如果玩家在这里移动的话,它们会变成玩家的列表。 if board[xstart][ystart] != ' ' or not isOnBoard(xstart, ystart): return False if tile == 'X': otherTile = 'O' else: otherTile = 'X' tilesToFlip = [] for xdirection, ydirection in [[0, 1], [1, 1], [1, 0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]: x, y = xstart, ystart x += xdirection # First step in the x direction y += ydirection # First step in the y direction while isOnBoard(x, y) and board[x][y] == otherTile: # 继续在这个XY方向前进 . x += xdirection y += ydirection if isOnBoard(x, y) and board[x][y] == tile: # 有一些东西翻转过来。沿着相反的方向走,直到我们到达原始空间,注意沿途所有的瓦片。 while True: x -= xdirection y -= ydirection if x == xstart and y == ystart: break tilesToFlip.append([x, y]) if len(tilesToFlip) == 0: # 如果没有翻转瓦片,这不是有效的移动。. return False return tilesToFlip def isOnBoard(x, y): # 如果坐标位于板上,则返回true . return x >= 0 and x <= WIDTH - 1 and y >= 0 and y <= HEIGHT - 1 def getBoardWithValidMoves(board, tile): # 返回一个新的棋盘,标明玩家可以做出的有效动作。 boardCopy = getBoardCopy(board) for x, y in getValidMoves(boardCopy, tile): boardCopy[x][y] = '.' return boardCopy def getValidMoves(board, tile): # 返回给定板上给定玩家的有效移动列表[x,y] validMoves = [] for x in range(WIDTH): for y in range(HEIGHT): if isValidMove(board, tile, x, y) != False: validMoves.append([x, y]) return validMoves def getScoreOfBoard(board): # 通过计算瓦片来确定分数。返回带有键x’和‘o’的字典。 xscore = 0 oscore = 0 for x in range(WIDTH): for y in range(HEIGHT): if board[x][y] == 'X': xscore += 1 if board[x][y] == 'O': oscore += 1 return {'X':xscore, 'O':oscore} def enterPlayerTile(): # 让玩家键入他们想要的瓦片 # 返回一个列表,玩家的瓦片作为第一个项目,计算机的瓦片作为第二个. tile = '' while not (tile == 'X' or tile == 'O'): print('Do you want to be X or O?') tile = input().upper() # The first element in the list is the player's tile, and the second is the computer's tile. if tile == 'X': return ['X', 'O'] else: return ['O', 'X'] def whoGoesFirst(): # Randomly choose who goes first. if random.randint(0, 1) == 0: return 'computer' else: return 'player' def makeMove(board, tile, xstart, ystart): # Place the tile on the board at xstart, ystart, and flip any of the opponent's pieces. # Returns False if this is an invalid move; True if it is valid. tilesToFlip = isValidMove(board, tile, xstart, ystart) if tilesToFlip == False: return False board[xstart][ystart] = tile for x, y in tilesToFlip: board[x][y] = tile return True def getBoardCopy(board): # Make a duplicate of the board list and return it. boardCopy = getNewBoard() for x in range(WIDTH): for y in range(HEIGHT): boardCopy[x][y] = board[x][y] return boardCopy def isOnCorner(x, y): # Returns True if the position is in one of the four corners. return (x == 0 or x == WIDTH - 1) and (y == 0 or y == HEIGHT - 1) def getPlayerMove(board, playerTile): # Let the player enter their move. # Returns the move as [x, y] (or returns the strings 'hints' or 'quit'). DIGITS1TO8 = '1 2 3 4 5 6 7 8'.split() while True: print('Enter your move, "quit" to end the game, or "hints" to toggle hints.') move = input().lower() if move == 'quit' or move == 'hints': return move if len(move) == 2 and move[0] in DIGITS1TO8 and move[1] in DIGITS1TO8: x = int(move[0]) - 1 y = int(move[1]) - 1 if isValidMove(board, playerTile, x, y) == False: continue else: break else: print('That is not a valid move. Enter the column (1-8) and then the row (1-8).') print('For example, 81 will move on the top-right corner.') return [x, y] def getComputerMove(board, computerTile): # Given a board and the computer's tile, determine where to # move and return that move as a [x, y] list. possibleMoves = getValidMoves(board, computerTile) random.shuffle(possibleMoves) # randomize the order of the moves # Always go for a corner if available. for x, y in possibleMoves: if isOnCorner(x, y): return [x, y] # Find the highest-scoring move possible. bestScore = -1 for x, y in possibleMoves: boardCopy = getBoardCopy(board) makeMove(boardCopy, computerTile, x, y) score = getScoreOfBoard(boardCopy)[computerTile] if score > bestScore: bestMove = [x, y] bestScore = score return bestMove def printScore(board, playerTile, computerTile): scores = getScoreOfBoard(board) print('You: %s points. Computer: %s points.' % (scores[playerTile], scores[computerTile])) def playGame(playerTile, computerTile): showHints = False turn = whoGoesFirst() print('The ' + turn + ' will go first.') # Clear the board and place starting pieces. board = getNewBoard() board[3][3] = 'X' board[3][4] = 'O' board[4][3] = 'O' board[4][4] = 'X' while True: playerValidMoves = getValidMoves(board, playerTile) computerValidMoves = getValidMoves(board, computerTile) if playerValidMoves == [] and computerValidMoves == []: return board # No one can move, so end the game. elif turn == 'player': # Player's turn if playerValidMoves != []: if showHints: validMovesBoard = getBoardWithValidMoves(board, playerTile) drawBoard(validMovesBoard) else: drawBoard(board) printScore(board, playerTile, computerTile) move = getPlayerMove(board, playerTile) if move == 'quit': print('Thanks for playing!') sys.exit() # Terminate the program. elif move == 'hints': showHints = not showHints continue else: makeMove(board, playerTile, move[0], move[1]) turn = 'computer' elif turn == 'computer': # Computer's turn if computerValidMoves != []: drawBoard(board) printScore(board, playerTile, computerTile) input('Press Enter to see the computer\'s move.') move = getComputerMove(board, computerTile) makeMove(board, computerTile, move[0], move[1]) turn = 'player' print('Welcome to Reversegam!') playerTile, computerTile = enterPlayerTile() while True: finalBoard = playGame(playerTile, computerTile) # Display the final score. drawBoard(finalBoard) scores = getScoreOfBoard(finalBoard) print('X scored %s points. O scored %s points.' % (scores['X'], scores['O'])) if scores[playerTile] > scores[computerTile]: print('You beat the computer by %s points! Congratulations!' % (scores[playerTile] - scores[computerTile])) elif scores[playerTile] < scores[computerTile]: print('You lost. The computer beat you by %s points.' % (scores[computerTile] - scores[playerTile])) else: print('The game was a tie!') print('Do you want to play again? (yes or no)') if not input().lower().startswith('y'): break
0bc96e095f2069bc9811ef311b2dee119285ae92
9c88b828b783e23b50186a2cbba2c08610d8d10d
/espressodb/documentation/__init__.py
c16020e168c1d82085be018508a3cd3600a84a63
[ "BSD-3-Clause" ]
permissive
remram44/espressodb
9a51219c0e7ec6e4c400578d02b97ef95024ba1e
5aad7222ab81c0f1694b51171e5d197dbcc8a65f
refs/heads/master
2020-12-08T06:07:43.736419
2020-01-12T20:31:20
2020-01-12T20:31:20
232,909,755
0
0
BSD-3-Clause
2020-01-09T21:29:09
2020-01-09T21:29:08
null
UTF-8
Python
false
false
170
py
"""The documentations module provides a web page which summarizes the implemented models which derive from the EspressoDB :class:`espressodb.base.models.Base` class. """