blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
535268bab86addff45ad4349f708df0310b4627d
d5c1f39f619e49be02238bbd9c327103ee0c6199
/vai/plugins/commands/Time/Time.py
4ed8dc22387aae6b3ff5563e24423513b64af622
[]
no_license
CRY-D/vai
520d35ef1b32de2e4058f64a73cd1b9da9b2e313
7e6981690209e8ccd9a6e6f64d2f2a6c7426ef3f
refs/heads/master
2023-07-06T18:24:43.884669
2021-07-20T09:40:48
2021-07-20T09:40:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
from vai import sdk import time class TimePlugin(sdk.CommandPlugin): def name(self): """ To be reimplement in the plugin """ return "Time" def keyword(self): return "time" def execute(self, command_line): sdk.statusBar().setMessage(time.asctime(), 3000)
3933ec1fd97d722f5292bc31f1a94483cfcf3809
1fdc846f4e5b7bda56e8740b859c8340d9b5141a
/sfepy/fem/region.py
4984860518fb2a1df5196debf2fd39474ed6f272
[ "BSD-3-Clause" ]
permissive
olivierverdier/sfepy
b824fdab7d91e137a371c277901fbb807b316b02
83aefb7b33ea17f4acb83388ba8bc7314c77616c
refs/heads/master
2021-01-18T05:39:13.127137
2010-10-25T13:13:18
2010-10-25T17:31:37
1,022,869
1
0
null
null
null
null
UTF-8
Python
false
false
19,130
py
from sfepy.base.base import * _depends = re.compile( 'r\.([a-zA-Z_0-9]+)' ).findall def get_parents(selector): """Given a region selector, return names of regions it is based on.""" parents = _depends(selector) return parents def get_dependency_graph(region_defs): """Return a dependency graph and a name-sort name mapping for given region definitions.""" graph = {} name_to_sort_name = {} for sort_name, rdef in region_defs.iteritems(): name, sel = rdef.name, rdef.select ## print sort_name, name, sel if name_to_sort_name.has_key( name ): msg = 'region %s/%s already defined!' % (sort_name, name) raise ValueError(msg) name_to_sort_name[name] = sort_name if not graph.has_key( name ): graph[name] = [0] for parent in get_parents(sel): graph[name].append(parent) ## print graph return graph, name_to_sort_name ## # 15.06.2006, c # 17.07.2006 # 04.09.2006 def sort_by_dependency( graph ): out = [] n_nod = len( graph ) idone = 0 idone0 = -1 while idone < n_nod: dep_removed = 0 for node, deps in graph.iteritems(): # print '--', node, deps if (len( deps ) == 1) and not deps[0]: out.append( node ) deps[0] = 1 idone += 1 elif not deps[0]: # print '--->', deps for ii, dep in enumerate( deps[1:] ): if graph[dep][0]: ir = deps.index( dep ) deps.pop( ir ) dep_removed += 1 # print '---<', deps ## print graph ## print out ## print idone, idone0, n_nod, dep_removed ## pause() if (idone <= idone0) and not dep_removed: raise ValueError, 'circular dependency' idone0 = idone return out ## # 15.06.2006, c def _join( def1, op, def2 ): return '(' + def1 + ' ' + op + ' ' + def2 + ')' ## # 31.10.2005, c class Region( Struct ): ## # 14.06.2006, c # 15.06.2006 # 23.02.2007 def __init__( self, name, definition, domain, parse_def ): """conns, vertex_groups are links to domain data""" Struct.__init__(self, name = name, definition = definition, n_v_max = domain.shape.n_nod, domain = domain, parse_def = parse_def, all_vertices = None, igs = [], vertices = {}, edges = {}, faces = {}, cells = {}, fis = {}, can_cells = True, must_update = True, is_complete = False, mirror_region = None, ig_map = None, ig_map_i = None) ## # 15.06.2006, c def light_copy( self, name, parse_def ): return Region( name, self.definition, self.domain, parse_def ) ## # c: 15.06.2006, r: 04.02.2008 def update_groups( self, force = False ): """Vertices common to several groups are listed only in all of them - fa, ed.unique_indx contain no edge/face duplicates already.""" if self.must_update or force: self.igs = [] self.vertices = {} self.cells = {} for group in self.domain.iter_groups(): ig = group.ig vv = nm.intersect1d( group.vertices, self.all_vertices ) if len( vv ) == 0: continue self.igs.append( ig ) self.vertices[ig] = vv if self.can_cells: mask = nm.zeros( self.n_v_max, nm.int32 ) mask[vv] = 1 conn = group.conn aux = nm.sum( mask[conn], 1, dtype = nm.int32 ) rcells = nm.where( aux == conn.shape[1] )[0] self.cells[ig] = nm.asarray( rcells, dtype = nm.int32 ) self.must_update = False ## # 15.06.2006, c def update_vertices( self ): self.all_vertices = nm.zeros( (0,), nm.int32 ) self.vertices = {} for ig, group in self.domain.iter_groups( self.igs ): rcells = self.cells[ig] conn = group.conn nods = conn[rcells,:].ravel() aux = nm.unique( nods ) self.vertices[ig] = aux self.all_vertices = nm.unique( nm.r_[self.all_vertices, aux] ) ## # 15.06.2006, c def set_vertices( self, vertices ): self.all_vertices = nm.array(vertices, dtype=nm.int32) self.update_groups( force = True ) self.is_complete = False ## # c: 15.06.2006, r: 14.07.2008 def set_cells( self, cells ): self.igs = [] self.cells = {} for ig, rcells in cells.iteritems(): self.cells[ig] = nm.array( rcells, dtype = nm.int32, ndmin = 1 ) self.igs.append( ig ) self.update_vertices() self.is_complete = False self.must_update = False ## # 15.06.2006, c def set_from_group( self, ig, vertices, n_cell ): self.igs = [ig] self.cells = {ig : nm.arange( n_cell, dtype = nm.int32 )} self.vertices = {ig: vertices.copy()} self.all_vertices = vertices.copy() self.must_update = False ## # c: 23.02.2007, r: 22.01.2008 def delete_groups( self, digs ): """self.complete_description must be called after!""" for ig in digs: try: del self.vertices[ig] del self.cells[ig] self.igs.remove( ig ) except KeyError: pass ## # 17.07.2007, c def switch_cells( self, can_cells ): if self.can_cells: self.can_cells = can_cells if not can_cells: self.cells = {} else: self.can_cells = can_cells if can_cells: self.update_groups( force = True ) def complete_description(self, ed, fa): """ self.edges, self.faces list edge/face indices per group (pointers to ed.facets, fa.facets) - repetitions among groups are possible. """ ## # Get edges, faces, etc. par subdomain. edges = ed.facets if fa is not None: faces = fa.facets self.edges = {} self.faces = {} self.shape = {} for ig, group in self.domain.iter_groups( self.igs ): vv = self.vertices[ig] if self.cells.has_key( ig ): n_cell = self.cells[ig].shape[0] else: n_cell = 0 self.shape[ig] = Struct( n_vertex = vv.shape[0], n_cell = n_cell ) if len( vv ) == 0: continue mask = nm.zeros( self.n_v_max, nm.int32 ) mask[vv] = 1 indx = ed.indx[ig] aux = nm.sum(mask[edges[indx]], 1) # Points to ed.facets. redges = indx.start + nm.where( aux == 2 )[0] self.edges[ig] = redges if fa is None: continue n_fp = fa.n_fps[ig] indx = fa.indx[ig] aux = nm.sum(mask[faces[indx,:n_fp]], 1) # Points to fa.facets. rfaces = indx.start + nm.where(aux == n_fp)[0] self.faces[ig] = rfaces self.shape[ig].n_edge = redges.shape[0] self.shape[ig].n_face = rfaces.shape[0] self.is_complete = True def setup_face_indices(self, reset=True): """ Initialize an array (per group) of (iel, ifa) for each face. """ if reset or not self.fis: fa = self.domain.get_facets(force_faces=True)[1] if self.faces: faces = self.faces else: faces = self.edges self.fis = {} for ig in self.igs: rfaces = faces[ig] fi = fa.indices[rfaces] assert_(nm.all(fi[:,0] == ig)) self.fis[ig] = fi[:,1:].copy() ## # 05.09.2006, c # 22.02.2007 # 17.07.2007 def select_cells( self, n_verts ): """Select cells containing at least n_verts[ii] vertices per group ii.""" if not self.can_cells: print 'region %s cannot have cells!' % self.name raise ValueError self.cells = {} for ig, group in self.domain.iter_groups( self.igs ): vv = self.vertices[ig] if len( vv ) == 0: continue mask = nm.zeros( self.n_v_max, nm.int32 ) mask[vv] = 1 aux = nm.sum( mask[group.conn], 1 ) rcells = nm.where( aux >= n_verts[ig] )[0] # print rcells.shape self.cells[ig] = rcells def select_cells_of_surface(self, reset=True): """ Select cells corresponding to faces (or edges in 2D). """ if not self.can_cells: raise ValueError('region %s cannot have cells!' % self.name) self.setup_face_indices(reset=reset) if self.faces: faces = self.faces else: faces = self.edges self.cells = {} for ig in self.igs: rcells = self.fis[ig][:,0] self.cells[ig]= rcells ## # 02.03.2007, c def copy( self ): """Vertices-based copy.""" tmp = self.light_copy( 'copy', self.parse_def ) tmp.set_vertices( copy( self.all_vertices ) ) return tmp ## # 15.06.2006, c def sub_n( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '-n', other.parse_def ) ) tmp.set_vertices( nm.setdiff1d( self.all_vertices, other.all_vertices ) ) return tmp ## # 15.06.2006, c def add_n( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '+n', other.parse_def ) ) tmp.set_vertices( nm.union1d( self.all_vertices, other.all_vertices ) ) return tmp ## # 15.06.2006, c def intersect_n( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '*n', other.parse_def ) ) tmp.set_vertices( nm.intersect1d( self.all_vertices, other.all_vertices ) ) return tmp ## # c: 15.06.2006, r: 15.04.2008 def sub_e( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '-e', other.parse_def ) ) for ig in self.igs: if ig not in other.igs: tmp.igs.append( ig ) tmp.cells[ig] = self.cells[ig].copy() continue aux = nm.setdiff1d( self.cells[ig], other.cells[ig] ) if not len( aux ): continue tmp.cells[ig] = aux tmp.igs.append( ig ) tmp.update_vertices() return tmp ## # 15.06.2006, c def add_e( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '+e', other.parse_def ) ) for ig in self.igs: tmp.igs.append( ig ) if ig not in other.igs: tmp.cells[ig] = self.cells[ig].copy() continue tmp.cells[ig] = nm.union1d( self.cells[ig], other.cells[ig] ) for ig in other.igs: if ig in tmp.igs: continue tmp.igs.append( ig ) tmp.cells[ig] = other.cells[ig].copy() tmp.update_vertices() return tmp ## # 15.06.2006, c # 20.02.2007 def intersect_e( self, other ): tmp = self.light_copy( 'op', _join( self.parse_def, '*e', other.parse_def ) ) for ig in self.igs: if ig not in other.igs: continue aux = nm.intersect1d( self.cells[ig], other.cells[ig] ) if not len( aux ): continue tmp.igs.append( ig ) tmp.cells[ig] = aux tmp.update_vertices() return tmp def setup_mirror_region(self): """ Find the corresponding mirror region, set up element mapping. """ for reg in self.domain.regions: if (reg is not self) and \ (len(reg.igs) == len(self.igs)) and \ nm.all(self.all_vertices == reg.all_vertices): mirror_region = reg break else: raise ValueError('cannot find mirror region! (%s)' % self.name) ig_map = {} ig_map_i = {} for igr in self.igs: for igc in mirror_region.igs: if nm.all(self.vertices[igr] == mirror_region.vertices[igc]): ig_map[igc] = igr ig_map_i[igr] = igc break else: raise ValueError('cannot find mirror region group! (%d)' \ % igr) self.mirror_region = mirror_region self.ig_map = ig_map self.ig_map_i = ig_map_i def get_mirror_region(self): return self.mirror_region, self.ig_map, self.ig_map_i def create_mapping(self, kind, ig): """ Create mapping from reference elements to physical elements, given the integration kind ('v' or 's'). This mapping can be used to compute the physical quadrature points. Returns ------- mapping : VolumeMapping or SurfaceMapping instance The requested mapping. """ from sfepy.fem.mappings import VolumeMapping, SurfaceMapping from sfepy.fem.fe_surface import FESurface coors = self.domain.get_mesh_coors() if kind == 's': coors = coors[self.all_vertices] gel = self.domain.groups[ig].gel conn = self.domain.groups[ig].conn if kind == 'v': cells = self.cells[ig] mapping = VolumeMapping(coors, conn[cells], gel=gel) elif kind == 's': aux = FESurface('aux', self, gel.get_surface_entities(), conn , ig) mapping = SurfaceMapping(coors, aux.leconn, gel=gel.surface_facet) return mapping def get_field_nodes(self, field, merge=False, clean=False, warn=False, igs=None): """ Get nodes of the field contained in the region. Notes ----- For one edge node type only! (should index row of cnt_en...) """ if igs is None: igs = self.igs cnt_en = field.cnt_en nods = [] node_descs = field.get_node_descs( self ) for ig, node_desc in node_descs.iteritems(): if not ig in igs: nods.append( None ) continue nnew = nm.empty( (0,), dtype = nm.int32 ) if node_desc.vertex is not None: nnew = nm.concatenate( (nnew, field.remap[self.vertices[ig]]) ) if node_desc.edge is not None: ed = field.domain.ed # ed.uid_i[self.edges[ii]] == ed.uid[ed.perm_i[self.edges[ii]]] enods = cnt_en[:cnt_en.shape[0],ed.uid_i[self.edges[ig]]].ravel() enods = nm.compress( (enods >= 0), enods ) nnew = nm.concatenate( (nnew, enods) ) if node_desc.face is not None: print self.name, field.name raise NotImplementedError if (node_desc.bubble is not None) and self.can_cells: noft = field.aps.node_offset_table ia = field.aps.igs.index( ig ) enods = self.cells[ig] + noft[3,ia] nnew = nm.concatenate( (nnew, enods) ) nods.append( nnew ) if merge: nods = [nn for nn in nods if nn is not None] nods = nm.unique( nm.hstack( nods ) ) elif clean: for nn in nods[:]: if nn is None: nods.remove(nn) if warn is not None: output(warn + ('%s' % region.name)) return nods def get_n_cells(self, ig, is_surface=False): if is_surface: return self.shape[ig].n_face else: return self.shape[ig].n_cell ## # 22.02.2007, c def get_vertices( self, ig ): return self.vertices[ig] ## # 05.06.2007, c def get_edges( self, ig ): return self.edges[ig] ## # 05.06.2007, c def get_faces( self, ig ): return self.faces[ig] ## # 05.06.2007, c def get_cells( self, ig ): return self.cells[ig] def iter_cells(self): ii = 0 for ig, cells in self.cells.iteritems(): for iel in cells: yield ig, ii, iel ii += 1 ## # created: 28.05.2007 # last revision: 11.12.2007 def has_cells( self ): if self.can_cells: for cells in self.cells.itervalues(): if cells.size: return True return False else: return False def has_cells_if_can( self ): if self.can_cells: for cells in self.cells.itervalues(): if cells.size: return True return False else: return True def contains( self, other ): """Tests only igs for now!!!""" return set( other.igs ).issubset( set( self.igs ) ) ## # c: 25.03.2008, r: 25.03.2008 def get_cell_offsets( self ): offs = {} off = 0 for ig in self.igs: offs[ig] = off off += self.shape[ig].n_cell return offs def get_charfun( self, by_cell = False, val_by_id = False ): """ Return the characteristic function of the region as a vector of values defined either in the mesh nodes (by_cell == False) or cells. The values are either 1 (val_by_id == False) or sequential id + 1. """ if by_cell: chf = nm.zeros( (self.domain.shape.n_el,), dtype = nm.float64 ) offs = self.get_cell_offsets() for ig, cells in self.cells.iteritems(): iel = offs[ig] + cells if val_by_id: chf[iel] = iel + 1 else: chf[iel] = 1.0 else: chf = nm.zeros( (self.domain.shape.n_nod,), dtype = nm.float64 ) if val_by_id: chf[self.all_vertices] = self.all_vertices + 1 else: chf[self.all_vertices] = 1.0 return chf
11c869ecd5e826427cc7d523ecdbb29f056a4b97
0ddcfcbfc3faa81c79e320c34c35a972dab86498
/tests/test_summary_ranges.py
c75bf5a290b7f94b3f204aa5c8f8d1d2a2f4a90a
[]
no_license
IvanWoo/coding-interview-questions
3311da45895ac4f3c394b22530079c79a9215a1c
1312305b199b65a11804a000432ebe28d1fba87e
refs/heads/master
2023-08-09T19:46:28.278111
2023-06-21T01:47:07
2023-06-21T01:47:07
135,307,912
0
0
null
2023-07-20T12:14:38
2018-05-29T14:24:43
Python
UTF-8
Python
false
false
329
py
import pytest from puzzles.summary_ranges import summary_ranges @pytest.mark.parametrize( "nums, expected", [ ([0, 1, 2, 4, 5, 7], ["0->2", "4->5", "7"]), ([0, 2, 3, 4, 6, 8, 9], ["0", "2->4", "6", "8->9"]), ], ) def test_summary_ranges(nums, expected): assert summary_ranges(nums) == expected
a6ba03e0e4a8062c8b63455aa01e52a7f24e0db4
8dcd3ee098b4f5b80879c37a62292f42f6b2ae17
/venv/Lib/site-packages/pandas/plotting/_core.py
17f6b990ba84c33027e706bda6f9149466ab80d2
[]
no_license
GregVargas1999/InfinityAreaInfo
53fdfefc11c4af8f5d2b8f511f7461d11a3f7533
2e4a7c6a2424514ca0ec58c9153eb08dc8e09a4a
refs/heads/master
2022-12-01T20:26:05.388878
2020-08-11T18:37:05
2020-08-11T18:37:05
286,821,452
0
0
null
null
null
null
UTF-8
Python
false
false
57,368
py
import importlib from pandas._config import get_option from pandas.core.base import PandasObject from pandas.core.dtypes.common import is_integer, is_list_like from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.util._decorators import Appender, Substitution def hist_series( self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, backend=None, **kwargs, ): """ Draw histogram of the input series using matplotlib. Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups. ax : matplotlib axis object If not passed, uses gca(). grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. figsize : tuple, default None Figure size in inches by default. bins : int or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs To be passed to the actual plotting function. Returns ------- matplotlib.AxesSubplot A histogram plot. See Also -------- matplotlib.axes.Axes.hist : Plot a histogram using matplotlib. """ plot_backend = _get_plot_backend(backend) return plot_backend.hist_series( self, by=by, ax=ax, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, figsize=figsize, bins=bins, **kwargs, ) def hist_frame( data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, backend=None, **kwargs, ): """ Make a histogram of the DataFrame's. A `histogram`_ is a representation of the distribution of data. This function calls :meth:`matplotlib.pyplot.hist`, on each series in the DataFrame, resulting in one histogram per column. .. _histogram: https://en.wikipedia.org/wiki/Histogram Parameters ---------- data : DataFrame The pandas object holding the data. column : str or sequence If passed, will be used to limit data to a subset of columns. by : object, optional If passed, then used to form histograms for separate groups. grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. ax : Matplotlib axes object, default None The axes to plot the histogram on. sharex : bool, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. sharey : bool, default False In case subplots=True, share y axis and set some y axis labels to invisible. figsize : tuple The size in inches of the figure to create. Uses the value in `matplotlib.rcParams` by default. layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms. bins : int or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs All other plotting keyword arguments to be passed to :meth:`matplotlib.pyplot.hist`. Returns ------- matplotlib.AxesSubplot or numpy.ndarray of them See Also -------- matplotlib.pyplot.hist : Plot a histogram using matplotlib. Examples -------- .. plot:: :context: close-figs This example draws a histogram based on the length and width of some animals, displayed in three bins >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3) """ plot_backend = _get_plot_backend(backend) return plot_backend.hist_frame( data, column=column, by=by, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout, bins=bins, **kwargs, ) _boxplot_doc = """ Make a box plot from DataFrame columns. Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to `1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box. Outlier points are those past the end of the whiskers. For further details see Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_. Parameters ---------- column : str or list of str, optional Column name or list of names, or vector. Can be any valid input to :meth:`pandas.DataFrame.groupby`. by : str or array-like, optional Column in the DataFrame to :meth:`pandas.DataFrame.groupby`. One box-plot will be done per value of columns in `by`. ax : object of class matplotlib.axes.Axes, optional The matplotlib axes to be used by boxplot. fontsize : float or str Tick label font size in points or as a string (e.g., `large`). rot : int or float, default 0 The rotation angle of labels (in degrees) with respect to the screen coordinate system. grid : bool, default True Setting this to True will show the grid. figsize : A tuple (width, height) in inches The size of the figure to create in matplotlib. layout : tuple (rows, columns), optional For example, (3, 5) will display the subplots using 3 columns and 5 rows, starting from the top-left. return_type : {'axes', 'dict', 'both'} or None, default 'axes' The kind of object to return. The default is ``axes``. * 'axes' returns the matplotlib axes the boxplot is drawn on. * 'dict' returns a dictionary whose values are the matplotlib Lines of the boxplot. * 'both' returns a namedtuple with the axes and dict. * when grouping with ``by``, a Series mapping columns to ``return_type`` is returned. If ``return_type`` is `None`, a NumPy array of axes with the same shape as ``layout`` is returned. %(backend)s\ **kwargs All other plotting keyword arguments to be passed to :func:`matplotlib.pyplot.boxplot`. Returns ------- result See Notes. See Also -------- Series.plot.hist: Make a histogram. matplotlib.pyplot.boxplot : Matplotlib equivalent plot. Notes ----- The return type depends on the `return_type` parameter: * 'axes' : object of class matplotlib.axes.Axes * 'dict' : dict of matplotlib.lines.Line2D objects * 'both' : a namedtuple with structure (ax, lines) For data grouped with ``by``, return a Series of the above or a numpy array: * :class:`~pandas.Series` * :class:`~numpy.array` (for ``return_type = None``) Use ``return_type='dict'`` when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. Examples -------- Boxplots can be created for every column in the dataframe by ``df.boxplot()`` or indicating the columns to be used: .. plot:: :context: close-figs >>> np.random.seed(1234) >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['Col1', 'Col2', 'Col3', 'Col4']) >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) Boxplots of variables distributions grouped by the values of a third variable can be created using the option ``by``. For instance: .. plot:: :context: close-figs >>> df = pd.DataFrame(np.random.randn(10, 2), ... columns=['Col1', 'Col2']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> boxplot = df.boxplot(by='X') A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot in order to group the data by combination of the variables in the x-axis: .. plot:: :context: close-figs >>> df = pd.DataFrame(np.random.randn(10, 3), ... columns=['Col1', 'Col2', 'Col3']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A', ... 'B', 'A', 'B', 'A', 'B']) >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y']) The layout of boxplot can be adjusted giving a tuple to ``layout``: .. plot:: :context: close-figs >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... layout=(2, 1)) Additional formatting can be done to the boxplot, like suppressing the grid (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``) or changing the fontsize (i.e. ``fontsize=15``): .. plot:: :context: close-figs >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) The parameter ``return_type`` can be used to select the type of element returned by `boxplot`. When ``return_type='axes'`` is selected, the matplotlib axes on which the boxplot is drawn are returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes') >>> type(boxplot) <class 'matplotlib.axes._subplots.AxesSubplot'> When grouping with ``by``, a Series mapping columns to ``return_type`` is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type='axes') >>> type(boxplot) <class 'pandas.core.series.Series'> If ``return_type`` is `None`, a NumPy array of axes with the same shape as ``layout`` is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type=None) >>> type(boxplot) <class 'numpy.ndarray'> """ _backend_doc = """\ backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 """ @Substitution(backend="") @Appender(_boxplot_doc) def boxplot( data, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwargs, ): plot_backend = _get_plot_backend("matplotlib") return plot_backend.boxplot( data, column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, **kwargs, ) @Substitution(backend=_backend_doc) @Appender(_boxplot_doc) def boxplot_frame( self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs, ): plot_backend = _get_plot_backend(backend) return plot_backend.boxplot_frame( self, column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, **kwargs, ) def boxplot_frame_groupby( grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, backend=None, **kwargs, ): """ Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group. column : column name or list of names, or vector Can be any valid input to groupby. fontsize : int or str rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) The layout of the plot: (rows, columns). sharex : bool, default False Whether x-axes will be shared among subplots. .. versionadded:: 0.23.1 sharey : bool, default True Whether y-axes will be shared among subplots. .. versionadded:: 0.23.1 backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs All other plotting keyword arguments to be passed to matplotlib's boxplot function. Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> >>> grouped = df.groupby(level='lvl1') >>> boxplot_frame_groupby(grouped) >>> >>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1) >>> boxplot_frame_groupby(grouped, subplots=False) """ plot_backend = _get_plot_backend(backend) return plot_backend.boxplot_frame_groupby( grouped, subplots=subplots, column=column, fontsize=fontsize, rot=rot, grid=grid, ax=ax, figsize=figsize, layout=layout, sharex=sharex, sharey=sharey, **kwargs, ) class PlotAccessor(PandasObject): """ Make plots of Series or DataFrame. Uses the backend specified by the option ``plotting.backend``. By default, matplotlib is used. Parameters ---------- data : Series or DataFrame The object for which the method is called. x : label or position, default None Only used if data is a DataFrame. y : label, position or list of label, positions, default None Allows plotting of one column versus another. Only used if data is a DataFrame. kind : str The kind of plot to produce: - 'line' : line plot (default) - 'bar' : vertical bar plot - 'barh' : horizontal bar plot - 'hist' : histogram - 'box' : boxplot - 'kde' : Kernel Density Estimation plot - 'density' : same as 'kde' - 'area' : area plot - 'pie' : pie plot - 'scatter' : scatter plot - 'hexbin' : hexbin plot. figsize : a tuple (width, height) in inches use_index : bool, default True Use index as ticks for x axis. title : str or list Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and `subplots` is True, print each item in the list above the corresponding subplot. grid : bool, default None (matlab style default) Axis grid lines. legend : bool or {'reverse'} Place legend on axis subplots. style : list or dict The matplotlib line style per column. logx : bool or 'sym', default False Use log scaling or symlog scaling on x axis. .. versionchanged:: 0.25.0 logy : bool or 'sym' default False Use log scaling or symlog scaling on y axis. .. versionchanged:: 0.25.0 loglog : bool or 'sym', default False Use log scaling or symlog scaling on both x and y axes. .. versionchanged:: 0.25.0 xticks : sequence Values to use for the xticks. yticks : sequence Values to use for the yticks. xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots). fontsize : int, default None Font size for xticks and yticks. colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : bool, optional If True, plot colorbar (only relevant for 'scatter' and 'hexbin' plots). position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center). table : bool, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See :ref:`Plotting with Error Bars <visualization.errorbars>` for detail. xerr : DataFrame, Series, array-like, dict and str Equivalent to yerr. mark_right : bool, default True When using a secondary_y axis, automatically mark the column labels with "(right)" in the legend. include_bool : bool, default is False If True, boolean values can be plotted. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs Options to pass to matplotlib plotting method. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them If the backend is not the default matplotlib one, the return value will be the object returned by the backend. Notes ----- - See matplotlib documentation online for more on this subject - If `kind` = 'bar' or 'barh', you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) """ _common_kinds = ("line", "bar", "barh", "kde", "density", "area", "hist", "box") _series_kinds = ("pie",) _dataframe_kinds = ("scatter", "hexbin") _kind_aliases = {"density": "kde"} _all_kinds = _common_kinds + _series_kinds + _dataframe_kinds def __init__(self, data): self._parent = data @staticmethod def _get_call_args(backend_name, data, args, kwargs): """ This function makes calls to this accessor `__call__` method compatible with the previous `SeriesPlotMethods.__call__` and `DataFramePlotMethods.__call__`. Those had slightly different signatures, since `DataFramePlotMethods` accepted `x` and `y` parameters. """ if isinstance(data, ABCSeries): arg_def = [ ("kind", "line"), ("ax", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", False), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("label", None), ("secondary_y", False), ] elif isinstance(data, ABCDataFrame): arg_def = [ ("x", None), ("y", None), ("kind", "line"), ("ax", None), ("subplots", False), ("sharex", None), ("sharey", False), ("layout", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", True), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("secondary_y", False), ("sort_columns", False), ] else: raise TypeError( f"Called plot accessor for type {type(data).__name__}, " "expected Series or DataFrame" ) if args and isinstance(data, ABCSeries): positional_args = str(args)[1:-1] keyword_args = ", ".join( f"{name}={repr(value)}" for (name, default), value in zip(arg_def, args) ) msg = ( "`Series.plot()` should not be called with positional " "arguments, only keyword arguments. The order of " "positional arguments will change in the future. " f"Use `Series.plot({keyword_args})` instead of " f"`Series.plot({positional_args})`." ) raise TypeError(msg) pos_args = {name: value for value, (name, _) in zip(args, arg_def)} if backend_name == "pandas.plotting._matplotlib": kwargs = dict(arg_def, **pos_args, **kwargs) else: kwargs = dict(pos_args, **kwargs) x = kwargs.pop("x", None) y = kwargs.pop("y", None) kind = kwargs.pop("kind", "line") return x, y, kind, kwargs def __call__(self, *args, **kwargs): plot_backend = _get_plot_backend(kwargs.pop("backend", None)) x, y, kind, kwargs = self._get_call_args( plot_backend.__name__, self._parent, args, kwargs ) kind = self._kind_aliases.get(kind, kind) # when using another backend, get out of the way if plot_backend.__name__ != "pandas.plotting._matplotlib": return plot_backend.plot(self._parent, x=x, y=y, kind=kind, **kwargs) if kind not in self._all_kinds: raise ValueError(f"{kind} is not a valid plot kind") # The original data structured can be transformed before passed to the # backend. For example, for DataFrame is common to set the index as the # `x` parameter, and return a Series with the parameter `y` as values. data = self._parent.copy() if isinstance(data, ABCSeries): kwargs["reuse_plot"] = True if kind in self._dataframe_kinds: if isinstance(data, ABCDataFrame): return plot_backend.plot(data, x=x, y=y, kind=kind, **kwargs) else: raise ValueError(f"plot kind {kind} can only be used for data frames") elif kind in self._series_kinds: if isinstance(data, ABCDataFrame): if y is None and kwargs.get("subplots") is False: raise ValueError( f"{kind} requires either y column or 'subplots=True'" ) elif y is not None: if is_integer(y) and not data.columns.holds_integer(): y = data.columns[y] # converted to series actually. copy to not modify data = data[y].copy() data.index.name = y elif isinstance(data, ABCDataFrame): data_cols = data.columns if x is not None: if is_integer(x) and not data.columns.holds_integer(): x = data_cols[x] elif not isinstance(data[x], ABCSeries): raise ValueError("x must be a label or position") data = data.set_index(x) if y is not None: # check if we have y as int or list of ints int_ylist = is_list_like(y) and all(is_integer(c) for c in y) int_y_arg = is_integer(y) or int_ylist if int_y_arg and not data.columns.holds_integer(): y = data_cols[y] label_kw = kwargs["label"] if "label" in kwargs else False for kw in ["xerr", "yerr"]: if kw in kwargs and ( isinstance(kwargs[kw], str) or is_integer(kwargs[kw]) ): try: kwargs[kw] = data[kwargs[kw]] except (IndexError, KeyError, TypeError): pass # don't overwrite data = data[y].copy() if isinstance(data, ABCSeries): label_name = label_kw or y data.name = label_name else: match = is_list_like(label_kw) and len(label_kw) == len(y) if label_kw and not match: raise ValueError( "label should be list-like and same length as y" ) label_name = label_kw or data.columns data.columns = label_name return plot_backend.plot(data, kind=kind, **kwargs) __call__.__doc__ = __doc__ def line(self, x=None, y=None, **kwargs): """ Plot Series or DataFrame as lines. This function is useful to plot lines using DataFrame's values as coordinates. Parameters ---------- x : int or str, optional Columns to use for the horizontal axis. Either the location or the label of the columns to be used. By default, it will use the DataFrame indices. y : int, str, or list of them, optional The values to be plotted. Either the location or the label of the columns to be used. By default, it will use the remaining DataFrame numeric columns. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or :class:`numpy.ndarray` Return an ndarray when ``subplots=True``. See Also -------- matplotlib.pyplot.plot : Plot y versus x as lines and/or markers. Examples -------- .. plot:: :context: close-figs >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() .. plot:: :context: close-figs An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse') """ return self(kind="line", x=x, y=y, **kwargs) def bar(self, x=None, y=None, **kwargs): """ Vertical bar plot. A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, optional Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. y : label or position, optional Allows plotting of one column versus another. If not specified, all numerical columns are used. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them An ndarray is returned with one :class:`matplotlib.axes.Axes` per column when ``subplots=True``. See Also -------- DataFrame.plot.barh : Horizontal bar plot. DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.bar : Make a bar plot with matplotlib. Examples -------- Basic plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0) Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis. .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0) Instead of nesting, the figure can be split by column with ``subplots=True``. In this case, a :class:`numpy.ndarray` of :class:`matplotlib.axes.Axes` are returned. .. plot:: :context: close-figs >>> axes = df.plot.bar(rot=0, subplots=True) >>> axes[1].legend(loc=2) # doctest: +SKIP Plot a single column. .. plot:: :context: close-figs >>> ax = df.plot.bar(y='speed', rot=0) Plot only selected categories for the DataFrame. .. plot:: :context: close-figs >>> ax = df.plot.bar(x='lifespan', rot=0) """ return self(kind="bar", x=x, y=y, **kwargs) def barh(self, x=None, y=None, **kwargs): """ Make a horizontal bar plot. A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. Parameters ---------- x : label or position, default DataFrame.index Column to be used for categories. y : label or position, default All numeric columns in dataframe Columns to be plotted from the DataFrame. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.plot.bar: Vertical bar plot. DataFrame.plot : Make plots of DataFrame using matplotlib. matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib. Examples -------- Basic example .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab': ['A', 'B', 'C'], 'val': [10, 30, 20]}) >>> ax = df.plot.barh(x='lab', y='val') Plot a whole DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh() Plot a column of the DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(y='speed') Plot DataFrame versus the desired column .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(x='lifespan') """ return self(kind="barh", x=x, y=y, **kwargs) def box(self, by=None, **kwargs): r""" Make a box plot of the DataFrame columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers. For further details see Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`__. A consideration when using this chart is that the box and the whiskers can overlap, which is very common when plotting small sets of data. Parameters ---------- by : str or sequence Column in the DataFrame to group by. **kwargs Additional keywords are documented in :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.boxplot: Another method to draw a box plot. Series.plot.box: Draw a box plot from a Series object. matplotlib.pyplot.boxplot: Draw a box plot in matplotlib. Examples -------- Draw a box plot from a DataFrame with four columns of randomly generated data. .. plot:: :context: close-figs >>> data = np.random.randn(25, 4) >>> df = pd.DataFrame(data, columns=list('ABCD')) >>> ax = df.plot.box() """ return self(kind="box", by=by, **kwargs) def hist(self, by=None, bins=10, **kwargs): """ Draw one histogram of the DataFrame's columns. A histogram is a representation of the distribution of data. This function groups the values of all given Series in the DataFrame into bins and draws all bins in one :class:`matplotlib.axes.Axes`. This is useful when the DataFrame's Series are in a similar scale. Parameters ---------- by : str or sequence, optional Column in the DataFrame to group by. bins : int, default 10 Number of histogram bins to be used. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- class:`matplotlib.AxesSubplot` Return a histogram plot. See Also -------- DataFrame.hist : Draw histograms per DataFrame's Series. Series.hist : Draw a histogram with Series' data. Examples -------- When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions. .. plot:: :context: close-figs >>> df = pd.DataFrame( ... np.random.randint(1, 7, 6000), ... columns = ['one']) >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000) >>> ax = df.plot.hist(bins=12, alpha=0.5) """ return self(kind="hist", by=by, bins=bins, **kwargs) def kde(self, bw_method=None, ind=None, **kwargs): """ Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, `kernel density estimation`_ (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. .. _kernel density estimation: https://en.wikipedia.org/wiki/Kernel_density_estimation Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If None (default), 'scott' is used. See :class:`scipy.stats.gaussian_kde` for more information. ind : NumPy array or int, optional Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If `ind` is a NumPy array, the KDE is evaluated at the points passed. If `ind` is an integer, `ind` number of equally spaced points are used. **kwargs Additional keyword arguments are documented in :meth:`pandas.%(this-datatype)s.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray of them See Also -------- scipy.stats.gaussian_kde : Representation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF. Examples -------- Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default): .. plot:: :context: close-figs >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: .. plot:: :context: close-figs >>> ax = s.plot.kde(bw_method=0.3) .. plot:: :context: close-figs >>> ax = s.plot.kde(bw_method=3) Finally, the `ind` parameter determines the evaluation points for the plot of the estimated PDF: .. plot:: :context: close-figs >>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5]) For DataFrame, it works in the same way: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> ax = df.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: .. plot:: :context: close-figs >>> ax = df.plot.kde(bw_method=0.3) .. plot:: :context: close-figs >>> ax = df.plot.kde(bw_method=3) Finally, the `ind` parameter determines the evaluation points for the plot of the estimated PDF: .. plot:: :context: close-figs >>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6]) """ return self(kind="kde", bw_method=bw_method, ind=ind, **kwargs) density = kde def area(self, x=None, y=None, **kwargs): """ Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters ---------- x : label or position, optional Coordinates for the X axis. By default uses the index. y : label or position, optional Column to plot. By default uses all columns. stacked : bool, default True Area plots are stacked by default. Set to False to create a unstacked plot. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray Area plot, or array of area plots if subplots is True. See Also -------- DataFrame.plot : Make plots of DataFrame using matplotlib / pylab. Examples -------- Draw an area plot based on basic business metrics: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass ``stacked=False``: .. plot:: :context: close-figs >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: .. plot:: :context: close-figs >>> ax = df.plot.area(y='sales') Draw with a different `x`: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day') """ return self(kind="area", x=x, y=y, **kwargs) def pie(self, **kwargs): """ Generate a pie plot. A pie plot is a proportional representation of the numerical data in a column. This function wraps :meth:`matplotlib.pyplot.pie` for the specified column. If no column reference is passed and ``subplots=True`` a pie plot is drawn for each numerical column independently. Parameters ---------- y : int or label, optional Label or position of the column to plot. If not provided, ``subplots=True`` argument must be passed. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them A NumPy array is returned when `subplots` is True. See Also -------- Series.plot.pie : Generate a pie plot for a Series. DataFrame.plot : Make plots of a DataFrame. Examples -------- In the example below we have a DataFrame with the information about planet's mass and radius. We pass the the 'mass' column to the pie function to get a pie plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97], ... 'radius': [2439.7, 6051.8, 6378.1]}, ... index=['Mercury', 'Venus', 'Earth']) >>> plot = df.plot.pie(y='mass', figsize=(5, 5)) .. plot:: :context: close-figs >>> plot = df.plot.pie(subplots=True, figsize=(6, 3)) """ if ( isinstance(self._parent, ABCDataFrame) and kwargs.get("y", None) is None and not kwargs.get("subplots", False) ): raise ValueError("pie requires either y column or 'subplots=True'") return self(kind="pie", **kwargs) def scatter(self, x, y, s=None, c=None, **kwargs): """ Create a scatter plot with varying marker point size and color. The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters ---------- x : int or str The column name or column position to be used as horizontal coordinates for each point. y : int or str The column name or column position to be used as vertical coordinates for each point. s : scalar or array_like, optional The size of each point. Possible values are: - A single scalar so all points have the same size. - A sequence of scalars, which will be used for each point's size recursively. For instance, when passing [2,14] all points size will be either 2 or 14, alternatively. c : str, int or array_like, optional The color of each point. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each point's color recursively. For instance ['green','yellow'] all points will be filled in green or yellow, alternatively. - A column name or position whose values will be used to color the marker points according to a colormap. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- matplotlib.pyplot.scatter : Scatter plot using multiple input data formats. Examples -------- Let's see how to draw a scatter plot using coordinates from the values in a DataFrame's columns. .. plot:: :context: close-figs >>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> ax1 = df.plot.scatter(x='length', ... y='width', ... c='DarkBlue') And now with the color determined by a column as well. .. plot:: :context: close-figs >>> ax2 = df.plot.scatter(x='length', ... y='width', ... c='species', ... colormap='viridis') """ return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs) def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwargs): """ Generate a hexagonal binning plot. Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None` (the default), this is a histogram of the number of occurrences of the observations at ``(x[i], y[i])``. If `C` is specified, specifies values at given coordinates ``(x[i], y[i])``. These values are accumulated for each hexagonal bin and then reduced according to `reduce_C_function`, having as default the NumPy's mean function (:meth:`numpy.mean`). (If `C` is specified, it must also be a 1-D sequence of the same length as `x` and `y`, or a column label.) Parameters ---------- x : int or str The column label or position for x points. y : int or str The column label or position for y points. C : int or str, optional The column label or position for the value of `(x, y)` point. reduce_C_function : callable, default `np.mean` Function of one argument that reduces all the values in a bin to a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`). gridsize : int or tuple of (int, int), default 100 The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.AxesSubplot The matplotlib ``Axes`` on which the hexbin is plotted. See Also -------- DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood. Examples -------- The following examples are generated with random data from a normal distribution. .. plot:: :context: close-figs >>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20) The next example uses `C` and `np.sum` as `reduce_C_function`. Note that `'observations'` values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of the `reduce_C_function`. .. plot:: :context: close-figs >>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis") """ if reduce_C_function is not None: kwargs["reduce_C_function"] = reduce_C_function if gridsize is not None: kwargs["gridsize"] = gridsize return self(kind="hexbin", x=x, y=y, C=C, **kwargs) _backends = {} def _find_backend(backend: str): """ Find a pandas plotting backend> Parameters ---------- backend : str The identifier for the backend. Either an entrypoint item registered with pkg_resources, or a module name. Notes ----- Modifies _backends with imported backends as a side effect. Returns ------- types.ModuleType The imported backend. """ import pkg_resources # Delay import for performance. for entry_point in pkg_resources.iter_entry_points("pandas_plotting_backends"): if entry_point.name == "matplotlib": # matplotlib is an optional dependency. When # missing, this would raise. continue _backends[entry_point.name] = entry_point.load() try: return _backends[backend] except KeyError: # Fall back to unregisted, module name approach. try: module = importlib.import_module(backend) except ImportError: # We re-raise later on. pass else: if hasattr(module, "plot"): # Validate that the interface is implemented when the option # is set, rather than at plot time. _backends[backend] = module return module raise ValueError( f"Could not find plotting backend '{backend}'. Ensure that you've installed " f"the package providing the '{backend}' entrypoint, or that the package has a " "top-level `.plot` method." ) def _get_plot_backend(backend=None): """ Return the plotting backend to use (e.g. `pandas.plotting._matplotlib`). The plotting system of pandas has been using matplotlib, but the idea here is that it can also work with other third-party backends. In the future, this function will return the backend from a pandas option, and all the rest of the code in this file will use the backend specified there for the plotting. The backend is imported lazily, as matplotlib is a soft dependency, and pandas can be used without it being installed. """ backend = backend or get_option("plotting.backend") if backend == "matplotlib": # Because matplotlib is an optional dependency and first-party backend, # we need to attempt an import here to raise an ImportError if needed. try: import pandas.plotting._matplotlib as module except ImportError: raise ImportError( "matplotlib is required for plotting when the " 'default backend "matplotlib" is selected.' ) from None _backends["matplotlib"] = module if backend in _backends: return _backends[backend] module = _find_backend(backend) _backends[backend] = module return module
1252894bbc2a8443c571bc7d8c3dfc7f34290c28
fafde4b09e56cadbe893c09ae1dfb52a745ae45a
/0x03-python-data_structures/0-print_list_integer.py
72437fda223c519c834d47e5b084b819c6cca790
[]
no_license
MCavigli/holbertonschool-higher_level_programming
2120c6c3018c86215d221c6fffec1957ca1d0f48
c3408521683f03214813839b7eed03fee083081e
refs/heads/master
2022-07-12T20:59:12.732979
2022-06-17T05:21:01
2022-06-17T05:21:01
461,013,788
3
7
null
null
null
null
UTF-8
Python
false
false
111
py
#!/usr/bin/python3 def print_list_integer(my_list=[]): for i in my_list: print('{:d}'.format(i))
accc82f441ea51a73813ec2cb7dbc086e252d603
cf9494e7953c91d786e003bfbcd9f6ad93126c7f
/widgets_entry2.py
4879d321a74e5d54581585dbc09c16bb798c330e
[]
no_license
utisz86/TkinterTutorial
7fd318e631f6e1a858083c3c157fa68a60bcc85a
32030494ac3035d442a432bf6b389b6ff7e1c537
refs/heads/master
2022-11-26T06:36:47.959218
2020-07-07T22:10:33
2020-07-07T22:10:33
277,841,542
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
import tkinter as tk window = tk.Tk() # create a Label and an Entry widget label = tk.Label(text="Name") entry = tk.Entry() # visible label.pack() entry.pack() entry.insert(0,"mi?") name = entry.get() print(name) window.mainloop()
45aca59783a82f8aebeef1769d251a6c7c1aea2f
1186e0f758d930960aeb5319200ca50e09ff1d35
/build/lib/cplvm/lm.py
5d6ea254cd9fc48a55c71f271f202ac3c7edc685
[ "MIT" ]
permissive
ethanweinberger/cplvm
c182ee3a960f20ce2975cec5492ec5b1f434dd71
f4bbcfc4b2e9a9cec7d01eb5f7ff3a169d6e3ff6
refs/heads/main
2023-06-17T15:23:15.604291
2021-07-07T12:04:57
2021-07-07T12:04:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,771
py
import functools import warnings import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd from tensorflow_probability import bijectors as tfb from scipy.stats import multivariate_normal tf.enable_v2_behavior() warnings.filterwarnings('ignore') NUM_VI_ITERS = 300 LEARNING_RATE_VI = 0.05 # ------- Specify model --------- def clvm(data_dim, num_datapoints, counts_per_cell, dummy, is_H0=False): mu = yield tfd.Normal(loc=tf.zeros([data_dim, 1]), scale=tf.ones([data_dim, 1]), name="mu") beta = yield tfd.Normal(loc=tf.zeros([data_dim, 1]), scale=tf.ones([data_dim, 1]), name="beta") # sigma = yield tfd.InverseGamma(concentration=tf.ones([data_dim, 1]), # scale=1, # name="sigma") data = yield tfd.Normal(loc=(tf.matmul(beta, dummy) + mu) + np.log(counts_per_cell), scale=1, name="x") def fit_model(X, Y, compute_size_factors=True, is_H0=False): assert X.shape[0] == Y.shape[0] data_dim = X.shape[0] num_datapoints_x, num_datapoints_y = X.shape[1], Y.shape[1] n = num_datapoints_x + num_datapoints_y dummy = np.zeros(n) dummy[num_datapoints_x:] = 1 dummy = np.expand_dims(dummy, 0) data = np.concatenate([X, Y], axis=1) data = np.log(data + 1) if compute_size_factors: # counts_per_cell = np.sum(data, axis=0) # counts_per_cell = np.expand_dims(counts_per_cell, axis=0) counts_per_cell = np.sum(np.concatenate([X, Y], axis=1), axis=0) counts_per_cell = np.expand_dims(counts_per_cell, axis=0) assert counts_per_cell.shape[1] == X.shape[1] + Y.shape[1] else: counts_per_cell = 1.0 # ------- Specify model --------- concrete_clvm_model = functools.partial(clvm, data_dim=data_dim, num_datapoints=n, counts_per_cell=counts_per_cell, dummy=dummy, is_H0=is_H0) model = tfd.JointDistributionCoroutineAutoBatched(concrete_clvm_model) if is_H0: def target_log_prob_fn(mu, beta): return model.log_prob( (mu, beta, data)) else: def target_log_prob_fn(mu, beta): return model.log_prob( (mu, beta, data)) # ------- Specify variational families ----------- # Variational parmater means # mu qmu_mean = tf.Variable(tf.random.normal([data_dim, 1])) qmu_stddv = tfp.util.TransformedVariable( 1e-4 * tf.ones([data_dim, 1]), bijector=tfb.Softplus()) # beta qbeta_mean = tf.Variable(tf.random.normal([data_dim, 1])) qbeta_stddv = tfp.util.TransformedVariable( 1e-4 * tf.ones([data_dim, 1]), bijector=tfb.Softplus()) # sigma # qsigma_concentration = tfp.util.TransformedVariable( # tf.ones([data_dim, 1]), # bijector=tfb.Softplus()) def factored_normal_variational_model(): qmu = yield tfd.Normal(loc=qmu_mean, scale=qmu_stddv, name="qmu") qbeta = yield tfd.Normal(loc=qbeta_mean, scale=qbeta_stddv, name="qbeta") # qsigma = yield tfd.InverseGamma(concentration=qsigma_concentration, # scale=1, # name="qsigma") # Surrogate posterior that we will try to make close to p surrogate_posterior = tfd.JointDistributionCoroutineAutoBatched( factored_normal_variational_model) # --------- Fit variational inference model using MC samples and gradient descent ---------- losses = tfp.vi.fit_surrogate_posterior( target_log_prob_fn, surrogate_posterior=surrogate_posterior, optimizer=tf.optimizers.Adam(learning_rate=LEARNING_RATE_VI), num_steps=NUM_VI_ITERS) # d = np.log(data + 1) # d = data / data.sum(0) # from sklearn.linear_model import LinearRegression # plt.scatter(np.squeeze(LinearRegression().fit(dummy.T, d.T).coef_), np.squeeze(qbeta_mean.numpy())) # plt.show() # d = (d.T - d.mean(1)).T # x = np.mean(d[:, num_datapoints_x:], axis=1) # y = np.mean(d[:, :num_datapoints_x], axis=1) # from sklearn.linear_model import LinearRegression # import ipdb # ipdb.set_trace() # plt.scatter(x - y, np.squeeze(qbeta_mean.numpy())) # plt.show() # import ipdb # ipdb.set_trace() if is_H0: return_dict = { 'loss_trace': losses, # 'qs_mean': qs_mean, # 'qzx_mean': qzx_mean, # 'qzy_mean': qzy_mean, # 'qs_stddv': qs_stddv, # 'qzx_stddv': qzx_stddv, # 'qzy_stddv': qzy_stddv, # 'qdelta_mean': qdelta_mean, # 'qdelta_stddv': qdelta_stddv, } else: return_dict = { 'loss_trace': losses, # 'qs_mean': qs_mean, # 'qw_mean': qw_mean, # 'qzx_mean': qzx_mean, # 'qzy_mean': qzy_mean, # 'qty_mean': qty_mean, # 'qs_stddv': qs_stddv, # 'qw_stddv': qw_stddv, # 'qzx_stddv': qzx_stddv, # 'qzy_stddv': qzy_stddv, # 'qty_stddv': qty_stddv, # 'qdelta_mean': qdelta_mean, # 'qdelta_stddv': qdelta_stddv, } return return_dict
53bbaf0c1927f1dd6a655edc347f5f068614c4fe
a4681043cb56a9ab45be32a62fa9700b391f087f
/14-Statistics_with_Python/Histograms/Finding_your_Best_Bin_Size.py
ee5208c7421bb08d3d728fd281c28ccc5c4509db
[]
no_license
MarceloDL-A/Python
b16b221ae4355b6323092d069bf83d1d142b9975
c091446ae0089f03ffbdc47b3a6901f4fa2a25fb
refs/heads/main
2023-01-01T02:29:31.591861
2020-10-27T19:04:11
2020-10-27T19:04:11
301,565,957
0
0
null
2020-10-27T19:04:12
2020-10-05T23:41:30
Python
MacCentralEurope
Python
false
false
1,976
py
""" HISTOGRAMS Finding your Best Bin Size The figure below displays the graph that you created in the last exercise: Histogram This histogram is helpful for our store manager. The last six hours of the day are the busiest ó from 6 pm until midnight. Does this mean the manager should staff their grocery store with the most employees between 6 pm and midnight? To the manager, this doesnít make much sense. The manager knows the store is busy when many people get off work, but the rush certainly doesnít continue later than 9 pm. The issue with this histogram is that we have too few bins. When plotting a histogram, itís essential to select bins that fully capture the trends in the underlying data. Often, this will require some guessing and checking. There isnít much of a science to selecting bin size. How many bins do you think makes sense for this example? I would try 24 because there are 24 hours in a day. """ # Import packages import codecademylib import numpy as np import pandas as pd from matplotlib import pyplot as plt # Read in transactions data transactions = pd.read_csv("transactions.csv") # Save transaction times to a separate numpy array times = transactions["Transaction Time"].values """ Change the number of bins in your code from 4 to 24. What do you notice about the data? Given this new graph, when would you recommend staffing the grocery store? Check the hint to see what we thought. """ # Use plt.hist() below plt.hist(times, range=(0, 24), bins=24, edgecolor="black") plt.title("Weekday Frequency of Customers") plt.xlabel("Hours (1 hour increments)") plt.ylabel("Count") plt.show() """ It looks like the busiest times of day are in the morning, from 5am to 10am, and in the evening from 5pm to 10pm. This histogram has two distinct peaks, neither of which are close to our average of 3pm. As you can see, averages donít tell the full story. By visualizing the shape of our data, we can make better-informed decisions. """
0f0685f8137ae113e06f7428ee41f7d757b0a252
15bfc574ae99ea02f10c1f549136bd9951f399cd
/articles/views.py
f5c3eaddddb2e91b794b65638563c13318ad1b73
[]
no_license
dimka1993kh/Dj_HW_5.3
a2b9a197729eb26fd4e6d3b4872b754542bd8c07
e891370b4cb740fd1bf44e19e27a17021a65f99c
refs/heads/master
2023-04-15T01:54:24.943214
2021-05-03T18:44:02
2021-05-03T18:44:02
364,027,709
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
from django.views.generic import ListView from django.shortcuts import render from .models import Article def articles_list(request): template_name = 'articles/news.html' news = Article.objects.all().select_related('author', 'genre').defer('author__phone') # news = Article.objects.all() context = { 'object_list': news, } # используйте этот параметр для упорядочивания результатов # https://docs.djangoproject.com/en/2.2/ref/models/querysets/#django.db.models.query.QuerySet.order_by ordering = '-published_at' return render(request, template_name, context)
5f58ecef0b8e82fcead874e63f358470565ad618
c5bfc4509bedafe822691bbb3eb927e1fdd6daef
/ProblemSet5/Coordinate.py
0d75033313b8a1597c52bb185feea8efdae00559
[]
no_license
BMariscal/MITx-6.00.1x
046f9891dcdc9c5fabf0543a01434a1304a7db9d
37951478f41f9f2e00bb2e1ec12ccbafb4ab8e78
refs/heads/master
2021-06-19T09:08:56.827010
2017-07-16T08:10:26
2017-07-16T08:10:26
82,771,759
0
0
null
null
null
null
UTF-8
Python
false
false
1,403
py
"""Your task is to define the following two methods for the Coordinate class: 1.Add an __eq__ method that returns True if coordinates refer to same point in the plane (i.e., have the same x and y coordinate). 2.Define __repr__, a special method that returns a string that looks like a valid Python expression that could be used to recreate an object with the same value. In other words, eval(repr(c)) == c given the definition of __eq__ from part 1. """ class Coordinate(object): def __init__(self,x,y): self.x = x self.y = y def __eq__(self,other): # First make sure `other` is of the same type assert type(other) == type(self) # Since `other` is the same type, test if coordinates are equal return self.getX() == other.getX() and self.getY() == other.getY() def __repr__(self): return 'Coordinate(' + str(self.getX()) + ',' + str(self.getY()) + ')' def getX(self): # Getter method for a Coordinate object's x coordinate. # Getter methods are better practice than just accessing an attribute directly return self.x def getY(self): # Getter method for a Coordinate object's y coordinate return self.y def __str__(self): return '<' + str(self.getX()) + ',' + str(self.getY()) + '>' > print(c1) <1,-8> > print(c2) <1,-8> > print(c1 == c2) True
f6613b94c9e9d8ee741d57e5cd2f3e1165564490
f4f181f2c970a163801b4202fc8d6c92a4e8113d
/google-cloud-sdk/lib/googlecloudsdk/command_lib/compute/ssh_utils.py
f61e082ca4e2e06461cb227e69749734f27b9406
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
Sorsly/subtle
7732a6cb910f5e2f4eed1ac0d3b5979001582340
718e79a3e04f1f57f39b6ebe90dec9e028e88d40
refs/heads/master
2021-05-24T01:21:39.218495
2017-10-28T01:33:58
2017-10-28T01:33:58
83,103,372
0
1
MIT
2020-07-25T11:21:05
2017-02-25T03:33:07
Python
UTF-8
Python
false
false
23,694
py
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for subcommands that need to SSH into virtual machine guests.""" import logging from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import constants from googlecloudsdk.api_lib.compute import metadata_utils from googlecloudsdk.api_lib.compute import path_simplifier from googlecloudsdk.api_lib.compute import request_helper from googlecloudsdk.api_lib.compute import utils from googlecloudsdk.api_lib.compute.users import client as user_client from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.util import gaia from googlecloudsdk.command_lib.util import ssh from googlecloudsdk.command_lib.util import time_util from googlecloudsdk.core import exceptions as core_exceptions from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core.console import progress_tracker # The maximum amount of time to wait for a newly-added SSH key to # propagate before giving up. _SSH_KEY_PROPAGATION_TIMEOUT_SEC = 60 _TROUBLESHOOTING_URL = ( 'https://cloud.google.com/compute/docs/troubleshooting#ssherrors') class CommandError(core_exceptions.Error): """Wraps ssh.CommandError, primarly for adding troubleshooting info.""" def __init__(self, original_error, message=None): if message is None: message = 'See {url} for troubleshooting hints.'.format( url=_TROUBLESHOOTING_URL) super(CommandError, self).__init__( '{0}\n{1}'.format(original_error, message), exit_code=original_error.exit_code) class SetProjectMetadataError(core_exceptions.Error): pass def GetExternalIPAddress(instance_resource, no_raise=False): """Returns the external IP address of the instance. Args: instance_resource: An instance resource object. no_raise: A boolean flag indicating whether or not to return None instead of raising. Raises: ToolException: If no external IP address is found for the instance_resource and no_raise is False. Returns: A string IP or None is no_raise is True and no ip exists. """ if instance_resource.networkInterfaces: access_configs = instance_resource.networkInterfaces[0].accessConfigs if access_configs: ip_address = access_configs[0].natIP if ip_address: return ip_address elif not no_raise: raise exceptions.ToolException( 'Instance [{0}] in zone [{1}] has not been allocated an external ' 'IP address yet. Try rerunning this command later.'.format( instance_resource.name, path_simplifier.Name(instance_resource.zone))) if no_raise: return None raise exceptions.ToolException( 'Instance [{0}] in zone [{1}] does not have an external IP address, ' 'so you cannot SSH into it. To add an external IP address to the ' 'instance, use [gcloud compute instances add-access-config].' .format(instance_resource.name, path_simplifier.Name(instance_resource.zone))) def _GetMetadataKey(iam_ssh_keys): """Get the metadata key name for the desired SSH key metadata. There are four SSH key related metadata pairs: * Per-project 'sshKeys': this grants SSH access to VMs project-wide. * Per-instance 'sshKeys': this is used to grant access to an individual instance. For historical reasons, it acts as an override to the project-global value. * Per-instance 'block-project-ssh-keys': this determines whether 'ssh-keys' overrides or adds to the per-project 'sshKeys' * Per-instance 'ssh-keys': this also grants access to an individual instance, but acts in addition or as an override to the per-project 'sshKeys' depending on 'block-project-ssh-keys' Args: iam_ssh_keys: bool. If False, give the name of the original SSH metadata key (that overrides the project-global SSH metadata key). If True, give the name of the IAM SSH metadata key (that works in conjunction with the project-global SSH key metadata). Returns: str, the corresponding metadata key name. """ if iam_ssh_keys: metadata_key = constants.SSH_KEYS_INSTANCE_RESTRICTED_METADATA_KEY else: metadata_key = constants.SSH_KEYS_METADATA_KEY return metadata_key def _GetSSHKeysFromMetadata(metadata, iam_keys=False): """Returns the value of the "sshKeys" metadata as a list.""" if not metadata: return [] for item in metadata.items: if item.key == _GetMetadataKey(iam_keys): return [key.strip() for key in item.value.split('\n') if key] return [] def _PrepareSSHKeysValue(ssh_keys): """Returns a string appropriate for the metadata. Values from are taken from the tail until either all values are taken or _MAX_METADATA_VALUE_SIZE_IN_BYTES is reached, whichever comes first. The selected values are then reversed. Only values at the head of the list will be subject to removal. Args: ssh_keys: A list of keys. Each entry should be one key. Returns: A new-line-joined string of SSH keys. """ keys = [] bytes_consumed = 0 for key in reversed(ssh_keys): num_bytes = len(key + '\n') if bytes_consumed + num_bytes > constants.MAX_METADATA_VALUE_SIZE_IN_BYTES: log.warn('The following SSH key will be removed from your project ' 'because your sshKeys metadata value has reached its ' 'maximum allowed size of {0} bytes: {1}' .format(constants.MAX_METADATA_VALUE_SIZE_IN_BYTES, key)) else: keys.append(key) bytes_consumed += num_bytes keys.reverse() return '\n'.join(keys) def _AddSSHKeyToMetadataMessage(message_classes, user, public_key, metadata, iam_keys=False): """Adds the public key material to the metadata if it's not already there.""" entry = u'{user}:{public_key}'.format( user=user, public_key=public_key) ssh_keys = _GetSSHKeysFromMetadata(metadata, iam_keys=iam_keys) log.debug('Current SSH keys in project: {0}'.format(ssh_keys)) if entry in ssh_keys: return metadata else: ssh_keys.append(entry) return metadata_utils.ConstructMetadataMessage( message_classes=message_classes, metadata={ _GetMetadataKey(iam_keys): _PrepareSSHKeysValue(ssh_keys)}, existing_metadata=metadata) def _MetadataHasBlockProjectSshKeys(metadata): """Return true if the metadata has 'block-project-ssh-keys' set and 'true'.""" if not (metadata and metadata.items): return False matching_values = [item.value for item in metadata.items if item.key == constants.SSH_KEYS_BLOCK_METADATA_KEY] if not matching_values: return False return matching_values[0].lower() == 'true' class BaseSSHCommand(base_classes.BaseCommand): """Base class for subcommands that need to connect to instances using SSH. Subclasses can call EnsureSSHKeyIsInProject() to make sure that the user's public SSH key is placed in the project metadata before proceeding. Attributes: keys: ssh.Keys, the public/private key pair. env: ssh.Environment, the current environment, used by subclasses. """ @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ force_key_file_overwrite = parser.add_argument( '--force-key-file-overwrite', action='store_true', default=None, help=('Force overwrite the files associated with a broken SSH key.') ) force_key_file_overwrite.detailed_help = """\ If enabled gcloud will regenerate and overwrite the files associated with a broken SSH key without asking for confirmation in both interactive and non-interactive environment. If disabled gcloud will not attempt to regenerate the files associated with a broken SSH key and fail in both interactive and non-interactive environment. """ # Last line empty to preserve spacing between last paragraph and calliope # attachment "Use --no-force-key-file-overwrite to disable." ssh_key_file = parser.add_argument( '--ssh-key-file', help='The path to the SSH key file.') ssh_key_file.detailed_help = """\ The path to the SSH key file. By default, this is ``{0}''. """.format(ssh.Keys.DEFAULT_KEY_FILE) def Run(self, args): """Sets up resources to be used by concrete subclasses. Subclasses must call this in their Run() before continuing. Args: args: argparse.Namespace, arguments that this command was invoked with. Raises: ssh.CommandNotFoundError: SSH is not supported. """ self.keys = ssh.Keys.FromFilename(args.ssh_key_file) self.env = ssh.Environment.Current() self.env.RequireSSH() def GetProject(self, project): """Returns the project object. Args: project: str, the project we are requesting or None for value from from properties Returns: The project object """ errors = [] objects = list(request_helper.MakeRequests( requests=[(self.compute.projects, 'Get', self.messages.ComputeProjectsGetRequest( project=project or properties.VALUES.core.project.Get( required=True), ))], http=self.http, batch_url=self.batch_url, errors=errors)) if errors: utils.RaiseToolException( errors, error_message='Could not fetch project resource:') return objects[0] def _SetProjectMetadata(self, new_metadata): """Sets the project metadata to the new metadata.""" compute = self.compute errors = [] list(request_helper.MakeRequests( requests=[ (compute.projects, 'SetCommonInstanceMetadata', self.messages.ComputeProjectsSetCommonInstanceMetadataRequest( metadata=new_metadata, project=properties.VALUES.core.project.Get( required=True), ))], http=self.http, batch_url=self.batch_url, errors=errors)) if errors: utils.RaiseException( errors, SetProjectMetadataError, error_message='Could not add SSH key to project metadata:') def SetProjectMetadata(self, new_metadata): """Sets the project metadata to the new metadata with progress tracker.""" with progress_tracker.ProgressTracker('Updating project ssh metadata'): self._SetProjectMetadata(new_metadata) def _SetInstanceMetadata(self, instance, new_metadata): """Sets the project metadata to the new metadata.""" compute = self.compute errors = [] # API wants just the zone name, not the full URL zone = instance.zone.split('/')[-1] list(request_helper.MakeRequests( requests=[ (compute.instances, 'SetMetadata', self.messages.ComputeInstancesSetMetadataRequest( instance=instance.name, metadata=new_metadata, project=properties.VALUES.core.project.Get( required=True), zone=zone ))], http=self.http, batch_url=self.batch_url, errors=errors)) if errors: utils.RaiseToolException( errors, error_message='Could not add SSH key to instance metadata:') def SetInstanceMetadata(self, instance, new_metadata): """Sets the instance metadata to the new metadata with progress tracker.""" with progress_tracker.ProgressTracker('Updating instance ssh metadata'): self._SetInstanceMetadata(instance, new_metadata) def EnsureSSHKeyIsInInstance(self, user, instance, iam_keys=False): """Ensures that the user's public SSH key is in the instance metadata. Args: user: str, the name of the user associated with the SSH key in the metadata instance: Instance, ensure the SSH key is in the metadata of this instance iam_keys: bool. If False, write to the original SSH metadata key (that overrides the project-global SSH metadata key). If true, write to the new SSH metadata key (that works in union with the project-global SSH key metadata). Returns: bool, True if the key was newly added, False if it was in the metadata already """ public_key = self.keys.GetPublicKey().ToEntry(include_comment=True) new_metadata = _AddSSHKeyToMetadataMessage(self.messages, user, public_key, instance.metadata, iam_keys=iam_keys) if new_metadata != instance.metadata: self.SetInstanceMetadata(instance, new_metadata) return True else: return False def EnsureSSHKeyIsInProject(self, user, project_name=None): """Ensures that the user's public SSH key is in the project metadata. Args: user: str, the name of the user associated with the SSH key in the metadata project_name: str, the project SSH key will be added to Returns: bool, True if the key was newly added, False if it was in the metadata already """ public_key = self.keys.GetPublicKey().ToEntry(include_comment=True) project = self.GetProject(project_name) existing_metadata = project.commonInstanceMetadata new_metadata = _AddSSHKeyToMetadataMessage( self.messages, user, public_key, existing_metadata) if new_metadata != existing_metadata: self.SetProjectMetadata(new_metadata) return True else: return False def _EnsureSSHKeyExistsForUser(self, fetcher, user): """Ensure the user's public SSH key is known by the Account Service.""" public_key = self.keys.GetPublicKey().ToEntry(include_comment=True) should_upload = True try: user_info = fetcher.LookupUser(user) except user_client.UserException: owner_email = gaia.GetAuthenticatedGaiaEmail(self.http) fetcher.CreateUser(user, owner_email) user_info = fetcher.LookupUser(user) for remote_public_key in user_info.publicKeys: if remote_public_key.key.rstrip() == public_key: expiration_time = remote_public_key.expirationTimestamp if expiration_time and time_util.IsExpired(expiration_time): # If a key is expired we remove and reupload fetcher.RemovePublicKey( user_info.name, remote_public_key.fingerprint) else: should_upload = False break if should_upload: fetcher.UploadPublicKey(user, public_key) return True @property def resource_type(self): return 'instances' class BaseSSHCLICommand(BaseSSHCommand): """Base class for subcommands that use ssh or scp.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Please add arguments in alphabetical order except for no- or a clear- pair for that argument which can follow the argument itself. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ BaseSSHCommand.Args(parser) parser.add_argument( '--dry-run', action='store_true', help=('If provided, prints the command that would be run to standard ' 'out instead of executing it.')) plain = parser.add_argument( '--plain', action='store_true', help='Suppresses the automatic addition of ssh/scp flags.') plain.detailed_help = """\ Suppresses the automatic addition of *ssh(1)*/*scp(1)* flags. This flag is useful if you want to take care of authentication yourself or use specific ssh/scp features. """ strict_host_key = parser.add_argument( '--strict-host-key-checking', choices=['yes', 'no', 'ask'], help='Override the default behavior for ssh/scp StrictHostKeyChecking') strict_host_key.detailed_help = """\ Override the default behavior of StrictHostKeyChecking. By default, StrictHostKeyChecking is set to 'no' the first time you connect to an instance and will be set to 'yes' for all subsequent connections. Use this flag to specify a value for the connection. """ def Run(self, args): super(BaseSSHCLICommand, self).Run(args) if not args.plain: self.keys.EnsureKeysExist(args.force_key_file_overwrite) def GetInstance(self, instance_ref): """Fetch an instance based on the given instance_ref.""" request = (self.compute.instances, 'Get', self.messages.ComputeInstancesGetRequest( instance=instance_ref.Name(), project=instance_ref.project, zone=instance_ref.zone)) errors = [] objects = list(request_helper.MakeRequests( requests=[request], http=self.http, batch_url=self.batch_url, errors=errors)) if errors: utils.RaiseToolException( errors, error_message='Could not fetch instance:') return objects[0] def HostKeyAlias(self, instance): return 'compute.{0}'.format(instance.id) def ActuallyRun(self, args, cmd_args, user, instance, project, strict_error_checking=True, use_account_service=False, wait_for_sshable=True, ignore_ssh_errors=False): """Runs the scp/ssh command specified in cmd_args. If the scp/ssh command exits non-zero, this command will exit with the same exit code. Args: args: argparse.Namespace, The calling command invocation args. cmd_args: [str], The argv for the command to execute. user: str, The user name. instance: Instance, the instance to connect to project: str, the project instance is in strict_error_checking: bool, whether to fail on a non-zero, non-255 exit code (alternative behavior is to return the exit code use_account_service: bool, when false upload ssh keys to project metadata. wait_for_sshable: bool, when false skip the sshability check. ignore_ssh_errors: bool, when true ignore all errors, including the 255 exit code. Raises: CommandError: If the scp/ssh command fails. Returns: int, the exit code of the command that was run """ cmd_args = ssh.LocalizeCommand(cmd_args, self.env) if args.dry_run: log.out.Print(' '.join(cmd_args)) return if args.plain: keys_newly_added = [] elif use_account_service: fetcher = user_client.UserResourceFetcher( self.clouduseraccounts, self.project, self.http, self.batch_url) keys_newly_added = self._EnsureSSHKeyExistsForUser(fetcher, user) else: # There are two kinds of metadata: project-wide metadata and per-instance # metadata. There are four SSH-key related metadata keys: # # * project['sshKeys']: shared project-wide # * instance['sshKeys']: legacy. Acts as an override to project['sshKeys'] # * instance['block-project-ssh-keys']: If true, instance['ssh-keys'] # overrides project['sshKeys']. Otherwise, keys from both metadata # pairs are valid. # * instance['ssh-keys']: Acts either in conjunction with or as an # override to project['sshKeys'], depending on # instance['block-project-ssh-keys'] # # SSH-like commands work by copying a relevant SSH key to # the appropriate metadata value. The VM grabs keys from the metadata as # follows (pseudo-Python): # # def GetAllSshKeys(project, instance): # if 'sshKeys' in instance.metadata: # return (instance.metadata['sshKeys'] + # instance.metadata['ssh-keys']) # elif instance.metadata['block-project-ssh-keys'] == 'true': # return instance.metadata['ssh-keys'] # else: # return (instance.metadata['ssh-keys'] + # project.metadata['sshKeys']) # if _GetSSHKeysFromMetadata(instance.metadata): # If we add a key to project-wide metadata but the per-instance # 'sshKeys' metadata exists, we won't be able to ssh in because the VM # won't check the project-wide metadata. To avoid this, if the instance # has per-instance SSH key metadata, we add the key there instead. keys_newly_added = self.EnsureSSHKeyIsInInstance(user, instance) elif _MetadataHasBlockProjectSshKeys(instance.metadata): # If the instance 'ssh-keys' metadata overrides the project-wide # 'sshKeys' metadata, we should put our key there. keys_newly_added = self.EnsureSSHKeyIsInInstance(user, instance, iam_keys=True) else: # Otherwise, try to add to the project-wide metadata. If we don't have # permissions to do that, add to the instance 'ssh-keys' metadata. try: keys_newly_added = self.EnsureSSHKeyIsInProject(user, project) except SetProjectMetadataError: log.info('Could not set project metadata:', exc_info=True) # If we can't write to the project metadata, it may be because of a # permissions problem (we could inspect this exception object further # to make sure, but because we only get a string back this would be # fragile). If that's the case, we want to try the writing to the # iam_keys metadata (we may have permissions to write to instance # metadata). We prefer this to the per-instance override of the # project metadata. log.info('Attempting to set instance metadata.') keys_newly_added = self.EnsureSSHKeyIsInInstance(user, instance, iam_keys=True) if keys_newly_added and wait_for_sshable: external_ip_address = GetExternalIPAddress(instance) host_key_alias = self.HostKeyAlias(instance) ssh.WaitUntilSSHable( user, external_ip_address, self.env, self.keys.key_file, host_key_alias, args.plain, args.strict_host_key_checking, _SSH_KEY_PROPAGATION_TIMEOUT_SEC) logging.debug('%s command: %s', cmd_args[0], ' '.join(cmd_args)) try: return ssh.RunExecutable(cmd_args, strict_error_checking=strict_error_checking, ignore_ssh_errors=ignore_ssh_errors) except ssh.CommandError as e: raise CommandError(e)
f047b7e7e7ffeddbf2f1357674c44aee7ab8d35a
6e8f2e28479566dbaa338300b2d61f784ff83f97
/.history/code/datasetup_20210414102701.py
67abb47540226e9e7256dd767a367bdddaf1b16d
[]
no_license
eeng5/CV-final-project
55a7d736f75602858233ebc380c4e1d67ab2b866
580e28819560b86f6974959efb1d31ef138198fc
refs/heads/main
2023-04-09T21:28:21.531293
2021-04-21T19:57:22
2021-04-21T19:57:22
352,703,734
0
0
null
null
null
null
UTF-8
Python
false
false
4,231
py
from PIL import Image import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd import cv2 import os import glob from pathlib import Path def cleanTestDirs(): emotions = ['angry', 'happy', 'disgust', 'sad', 'neutral', 'surprise', 'fear'] for e in emotions: pathy = '/Users/Natalie/Desktop/cs1430/CV-final-project/data/test/'+e for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanTrainDirs(): emotions = ['angry', 'happy', 'disgust', 'sad', 'neutral', 'surprise', 'fear'] for e in emotions: pathy = '/Users/Natalie/Desktop/cs1430/CV-final-project/data/train/'+e for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanAll(): cleanTestDirs() cleanTrainDirs() def createPixelArray(arr): arr = list(map(int, arr.split())) array = np.array(arr, dtype=np.uint8) array = array.reshape((48, 48)) return array def equalize_hist(img): img = cv2.equalizeHist(img) return img def showImages(imgs): _, axs = plt.subplots(1, len(imgs), figsize=(20, 20)) axs = axs.flatten() for img, ax in zip(imgs, axs): ax.imshow(img,cmap=plt.get_cmap('gray')) plt.show() def augmentIMG(img, task): imgs = [img] img1 = equalize_hist(img) imgs.append(img1) if(task == 3): img2 = cv2.bilateralFilter(img1, d=9, sigmaColor=75, sigmaSpace=75) imgs.append(img2) img6 = cv2.flip(img, 1) # flip horizontally imgs.append(img6) return imgs def saveIMG(arr, num, folderLoc): im = Image.fromarray(arr) filename = folderLoc + "image_"+ num+".jpg" im.save(filename) def createTrain(emotion_dict, task): df = pd.read_csv('/Users/Natalie/Desktop/cs1430/CV-final-project/data/icml_face_data.csv') # CHANGE ME base_filename = "/Users/Natalie/Desktop/cs1430/CV-final-project/data/train/" # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "Training"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = emotion_dict[emot] filename = base_filename + emot_loc img = createPixelArray(px) img_arr = augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createTest(emotion_dict , task): df = pd.read_csv('/Users/Natalie/Desktop/cs1430/CV-final-project/data/icml_face_data.csv') # CHANGE ME base_filename = "/Users/Natalie/Desktop/cs1430/CV-final-project/data/test/" # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "PublicTest"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = emotion_dict[emot] filename = base_filename + emot_loc img = createPixelArray(px) img_arr = augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createEmotionDict(): emotionDict = {} emotionDict[0]="angry/" emotionDict[1]="disgust/" emotionDict[2]="fear/" emotionDict[3]="happy/" emotionDict[4]="sad/" emotionDict[5]="surprise/" emotionDict[6] = "neutral/" return emotionDict def createSimpleData(): cleanAll() print("Cleaning done") emot_dict = createEmotionDict() createTrain(emot_dict, 1) print("Training done") createTest(emot_dict, 1) print("Testing done") def createComplexData(): cleanAll() emot_dict = createEmotionDict() createTrain(emot_dict, 3) createTest(emot_dict, 3) def main(): cleanAll() print("Cleaning done") emot_dict = createEmotionDict() createTrain(emot_dict, 1) print("Training done") createTest(emot_dict, 1) print("Testing done") if __name__ == '__main__': main()
be6f744ed74a9d985bf2d457c64dc8a20447b721
543e4a93fd94a1ebcadb7ba9bd8b1f3afd3a12b8
/maza/modules/creds/cameras/sentry360/ftp_default_creds.py
36767e634607918cc0d8f56a5cba7e413c92d652
[ "MIT" ]
permissive
ArturSpirin/maza
e3127f07b90034f08ff294cc4afcad239bb6a6c3
56ae6325c08bcedd22c57b9fe11b58f1b38314ca
refs/heads/master
2020-04-10T16:24:47.245172
2018-12-11T07:13:15
2018-12-11T07:13:15
161,144,181
2
0
null
null
null
null
UTF-8
Python
false
false
841
py
from maza.core.exploit import * from maza.modules.creds.generic.ftp_default import Exploit as FTPDefault class Exploit(FTPDefault): __info__ = { "name": "Sentry360 Camera Default FTP Creds", "description": "Module performs dictionary attack against Sentry360 Camera FTP service. " "If valid credentials are found, they are displayed to the user.", "authors": ( "Marcin Bury <marcin[at]threat9.com>", # routersploit module ), "devices": ( "Sentry360 Camera", ) } target = OptIP("", "Target IPv4, IPv6 address or file with ip:port (file://)") port = OptPort(21, "Target FTP port") threads = OptInteger(1, "Number of threads") defaults = OptWordlist("admin:1234", "User:Pass or file with default credentials (file://)")
2aa88315ba210081a02274e09c7e59726276c367
e4bceb499098281253f01f93d5c4f11284febf2e
/wakeup.py
71ff96919c980606a2c9ddd0ded586b253c131a3
[]
no_license
Hemie143/gc_mysteries
d2a0a363767128bd599e079a1fab01822986d7e9
d26cf036f20f13d9a6c314000b7531e2f21d4d5e
refs/heads/master
2021-09-15T11:25:23.775079
2018-05-31T11:38:08
2018-05-31T11:38:08
125,210,054
0
0
null
null
null
null
UTF-8
Python
false
false
1,279
py
import requests import filecmp import os import time import datetime ''' curl -A "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36" -e http://geocachewakeup.byethost7.com/?ckattempt=1 -b "__test=a7f64c693f5755629af2d2c71aa06d2a;referrer=" -o wakeup%TS%.png -H "Cache-Control: no-cache" http://geocachewakeup.byethost7.com/image.php ''' headers = {'referer': 'http://geocachewakeup.byethost7.com/?ckattempt=1', 'user-agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36', 'pragma': 'no-cache', 'cache-control': 'no-cache'} cookies = {'__test': 'a7f64c693f5755629af2d2c71aa06d2a', 'referrer': ''} i = 1 while True: print('Trial {0}'.format(i)) res = requests.get('http://geocachewakeup.byethost7.com/image.php', cookies=cookies, headers=headers) res.raise_for_status() imagefile = open('uil.png', 'wb') for chunk in res.iter_content(1000): imagefile.write(chunk) imagefile.close() if not filecmp.cmp('howlsleep.png', 'uil.png', shallow=False): os.rename('uil.png', 'uil_{:%Y%m%d_%H%M%S}.png'.format(datetime.datetime.now())) filecmp.clear_cache() i += 1 time.sleep(15)
fb0ad1f1480d6d4839f0c76a440b978b0e071368
7c9f28e371e8dfa9290c05a48a9d924484b4b18c
/rgn.py
3a668bd7122d3cbb93110cc8b215dd74a2e7f72c
[]
no_license
Pavithralakshmi/corekata
1f9d963da44a6fdcdedaf2e39452545f6cc52e9b
06d1c7bba25681ce12e2ab93ce461228afb6b984
refs/heads/master
2021-04-30T01:53:37.414318
2018-10-11T17:58:39
2018-10-11T17:58:39
121,491,600
0
0
null
null
null
null
UTF-8
Python
false
false
95
py
def sum_digits(n): ss = 0 while n: ss += n % 10 n //= 10 return ss
8cdd706344dff0e13cfd77f5b6b4f98005a35c96
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/bBExn57vLEsXgHC5m_13.py
a75afd38204a17adcd9211e34c8b31be9e80d941
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
217
py
def same_line(lst): try: return (lst[1][1] - lst[0][1]) / (lst[1][0] - lst[0][0]) == (lst[2][1] - lst[1][1]) / (lst[2][0] - lst[1][0]) except: return lst[0][0] == 0 and lst[1][0] == 0 and lst[2][0] == 0
e2e902fe476469280d8f67738cf676ce097be6c5
48290f34b95013e1d25b98a73fdd8f879c4b5b7a
/login-register.py
06cfab88082c20f8d6c6d00093327aba2e0b705b
[]
no_license
anmolrajaroraa/core-python-july
584a3b055c39140b8c79c1158b366f8bdc4a015d
0fada23d8d969e548dadb6b9935aff1429f13a64
refs/heads/master
2022-12-15T23:17:19.786059
2020-09-13T17:37:51
2020-09-13T17:37:51
278,815,765
0
0
null
null
null
null
UTF-8
Python
false
false
2,193
py
import csv # comma separated values print(''' 1. Login 2. Register ''') choice = int(input("Enter choice: ")) # if choice == 1: # isLoginSuccessful = False # usernameOrEmail = input("Enter username/email: ") # password = input("Enter password: ") # with open("users.csv") as fileStream: # reader = csv.reader(fileStream) # for row in reader: # if usernameOrEmail == row[0] or usernameOrEmail == row[2]: # if password == row[3]: # print("Login successful!") # isLoginSuccessful = True # break # if not isLoginSuccessful: # print("Login failed") if choice == 1: usernameOrEmail = input("Enter username/email: ") password = input("Enter password: ") with open("users.csv") as fileStream: reader = csv.reader(fileStream) for row in reader: if usernameOrEmail == row[0] or usernameOrEmail == row[2]: if password == row[3]: print("Login successful!") break else: print("Login failed!") # for-else block # else says now I'm a follower of for block # if 'for' loop ends gracefully, else will run # but if we break the for loop(terminate it abruptly) then else is also terminated hence 'else' block will not run elif choice == 2: emailExists = False username = input("Enter username: ") fullname = input("Enter fullname: ") email = input("Enter email: ") password = input("Enter password: ") # fileStream = open("users.csv", "w") # fileStream.close() with open("users.csv") as fileStream: reader = csv.reader(fileStream) for row in reader: # print(row) emailFromDB = row[2] if email == emailFromDB: print("Email already registered..please login") emailExists = True break if not emailExists: with open("users.csv", "a", newline='') as fileStream: writer = csv.writer(fileStream) writer.writerow([username, fullname, email, password]) print("Registered successfully...")
330a65e3a647bee90a48d3f323e928e718b549f5
1dc67a30f9af553243088668d51bc4e75e87d83d
/python/dazhewan/day19/打着玩/super_init.py
c76074a2ffcc59ce4d27de7f348f85e81ddb37c5
[]
no_license
houyinhu/AID1812
00db45b3e8905bd069b31f2e7689f83bca3fa61f
8eeb9f06ed9f4e742d480354ef0e336dfe8c2f17
refs/heads/master
2020-04-27T16:33:57.275890
2019-04-10T01:09:51
2019-04-10T01:09:51
174,486,040
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
#super_init.py #此示例示意,用super函数显示调用基类__init__初始化方法 class Human: def __init__(self,n,a): self.name = n self.age = a print("Human的__init__方法被调用") def infos(self): print('姓名:',self.name) print('年龄:',self.age) class Student(Human): def __init__(self,n,a,s=0): super().__init__(n,a) #显示调用父类的初始化方法 self.score = s #添加成绩属性 print("Student类的__init__方法被调用") def infos(self): super().infos() #调用父类的方法 print("成绩:",self.score) s1 = Student('小张',20,100) s1.infos()
a456e19cd9296ebd7f72cb740ff6165d5b72db52
1384435f0e0cf706db82d0672d5fe9e3bc0cf5a8
/agilo/ticket/tests/workflow_test.py
4fc84cd6f5053468c692e14cb4e4a51a6219361f
[]
no_license
djangsters/agilo
1e85d776ab4ec2fa67a6366e72206bbad2930226
1059b76554363004887b2a60953957f413b80bb0
refs/heads/master
2016-09-05T12:16:51.476308
2013-12-18T21:19:09
2013-12-18T21:19:09
15,294,469
0
0
null
null
null
null
UTF-8
Python
false
false
11,979
py
# -*- encoding: utf-8 -*- # Copyright 2009 Agile42 GmbH, Berlin (Germany) # Copyright 2011 Agilo Software GmbH All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from agilo.test import AgiloTestCase from agilo.ticket import AgiloTicket from agilo.ticket.workflow_support import TicketStatusManipulator, \ TransitionFinder, TicketHierarchyMover from agilo.utils import Key, Status, Type class TestFindTransitionInWorkflow(AgiloTestCase): def setUp(self): self.super() self.task = AgiloTicket(self.env, t_type=Type.TASK) # this task is not stored in the db on purpose - so I can check # that no workflow does any permanent damage! del self.task._old[Key.TYPE] self._set_status_to(Status.NEW) req = self.teh.mock_request('foo') self.finder = TransitionFinder(self.env, req, self.task) self.assert_equals({}, self.task._old) def _set_status_to(self, status): self.task[Key.STATUS] = status del self.task._old[Key.STATUS] self.assert_equals({}, self.task._old) def test_can_find_transition_from_new_to_in_progress(self): self.assert_equals(Status.NEW, self.task[Key.STATUS]) transition = self.finder.transition_to_in_progress_state() self.assert_equals(['accept'], transition) self.assert_equals({}, self.task._old) def test_can_find_direct_transition_from_accepted_to_closed(self): self._set_status_to(Status.ACCEPTED) transition = self.finder.transition_to_closed_state() self.assert_equals(['resolve'], transition) self.assert_equals({}, self.task._old) def test_can_find_direct_transition_from_assigned_to_new(self): self.teh.change_workflow_config([('putback', 'assigned -> new')]) self._set_status_to(Status.ASSIGNED) transition = self.finder.transition_to_new_state() self.assert_equals(['putback'], transition) self.assert_equals({}, self.task._old) def test_can_find_even_indirect_transitions(self): self.teh.change_workflow_config([('putback', 'assigned -> new')]) self._set_status_to(Status.ACCEPTED) transition = self.finder.transition_to_new_state() self.assert_equals(['reassign', 'putback'], transition) self.assert_equals({}, self.task._old) def test_use_shortest_transition(self): self.teh.change_workflow_config([('ask', 'assigned -> needinfo'), ('invalidate', 'needinfo -> new'), ('putback', 'assigned -> new'), ]) self._set_status_to(Status.ACCEPTED) transition = self.finder.transition_to_new_state() self.assert_equals(['reassign', 'putback'], transition) self.assert_equals({}, self.task._old) def test_return_none_for_assigned_to_new_if_no_transition_allowed(self): self._set_status_to('assigned') transition = self.finder.transition_to_new_state() self.assert_none(transition) self.assert_equals({}, self.task._old) def test_return_none_for_reopenend_to_new_if_no_transition_allowed(self): self._set_status_to(Status.REOPENED) transition = self.finder.transition_to_new_state() self.assert_none(transition) self.assert_equals({}, self.task._old) def test_empty_transition_if_ticket_is_already_in_target_state(self): self.assert_equals(Status.NEW, self.task[Key.STATUS]) self.assert_equals([], self.finder.transition_to_new_state()) self._set_status_to(Status.ACCEPTED) self.assert_equals([], self.finder.transition_to_in_progress_state()) self._set_status_to(Status.CLOSED) self.assert_equals([], self.finder.transition_to_closed_state()) class TestManipulateTicketStatus(AgiloTestCase): def setUp(self): self.super() self.task = AgiloTicket(self.env, t_type=Type.TASK) # this task is not stored in the db on purpose - so I can check # that no workflow does any permanent damage! del self.task._old[Key.TYPE] req = self.teh.mock_request('foo') self.manipulator = TicketStatusManipulator(self.env, req, self.task) self.assert_equals({}, self.task._old) def _set_status_to(self, status): self.task[Key.STATUS] = status del self.task._old[Key.STATUS] self.assert_equals({}, self.task._old) def test_ignores_workflow_if_no_valid_transition_to_new_was_found(self): self._set_status_to('assigned') self.manipulator.change_status_to('new') self.assert_equals(Status.NEW, self.task[Key.STATUS]) def test_delete_owner_if_new_status_is_new(self): self._set_status_to(Status.ACCEPTED) self.task[Key.OWNER] = 'foo' self.manipulator.change_status_to('new') self.assert_equals(Status.NEW, self.task[Key.STATUS]) self.assert_equals('', self.task[Key.OWNER]) def test_delete_resolution_if_ticket_was_closed_before(self): self._set_status_to(Status.CLOSED) self.task[Key.OWNER] = 'foo' self.task[Key.RESOLUTION] = Status.RES_FIXED self.manipulator.change_status_to('in_progress') self.assert_equals(Status.REOPENED, self.task[Key.STATUS]) self.assert_equals('', self.task[Key.RESOLUTION]) def test_can_ignore_workflow_for_transition_to_closed(self): self.teh.change_workflow_config([('resolve', '* -> in_qa')]) self._set_status_to(Status.ACCEPTED) self.task[Key.OWNER] = 'foo' self.manipulator.change_status_to('closed') self.assert_equals(Status.CLOSED, self.task[Key.STATUS]) self.assert_equals(Status.RES_FIXED, self.task[Key.RESOLUTION]) def test_can_ignore_workflow_for_transition_to_in_progress(self): self.teh.change_workflow_config([('reopen', 'assigned -> new')]) self._set_status_to(Status.CLOSED) self.task[Key.OWNER] = 'bar' self.task[Key.RESOLUTION] = Status.RES_FIXED self.manipulator.change_status_to('in_progress') self.assert_equals(Status.ACCEPTED, self.task[Key.STATUS]) self.assert_equals('', self.task[Key.RESOLUTION]) self.assert_equals('foo', self.task[Key.OWNER]) def test_can_ignore_workflow_for_transition_custom_ticket_status(self): self.teh.change_workflow_config([('fnordify', 'new -> fnord')]) self._set_status_to(Status.NEW) self.manipulator.change_status_to('fnord') self.assert_equals('fnord', self.task[Key.STATUS]) def test_will_choose_assigned_as_default_in_progress_status(self): # not sure in what order the workflows are found, but 'abc' helped trigger this bug # since it's alphabetically smaller than 'accept' self.teh.change_workflow_config([('abc', 'new -> fnord')]) self._set_status_to(Status.NEW) self.manipulator.change_status_to('in_progress') self.assert_equals(Status.ACCEPTED, self.task[Key.STATUS]) def test_can_transition_to_custom_ticket_status(self): self.teh.change_workflow_config([('fnordify', 'new -> fnord')]) self._set_status_to(Status.NEW) self.manipulator.change_status_to('fnord') self.assert_equals('fnord', self.task[Key.STATUS]) class TestMoveTicketHierarchyOnSprintChange(AgiloTestCase): def setUp(self): self.super() self.old_sprint = 'Old Sprint' self.new_sprint = 'New Sprint' self.teh.create_sprint(self.old_sprint) self.teh.create_sprint(self.new_sprint) self._create_story_and_task() def _create_story_and_task(self): self.story = self.teh.create_story(sprint=self.old_sprint) self.task = self.teh.create_task(sprint=self.old_sprint) self.assert_true(self.story.link_to(self.task)) def _assert_ticket_has_sprint(self, ticket_id, sprint_name): ticket = AgiloTicket(self.env, ticket_id) self.assert_equals(sprint_name, ticket[Key.SPRINT]) def _assert_ticket_has_new_sprint(self, ticket_id): self._assert_ticket_has_sprint(ticket_id, self.new_sprint) def _assert_ticket_has_old_sprint(self, ticket_id): self._assert_ticket_has_sprint(ticket_id, self.old_sprint) def _assert_move_task_of_story(self): mover = TicketHierarchyMover(self.env, self.story, self.old_sprint, self.new_sprint) self._assert_ticket_has_old_sprint(self.task.id) mover.execute() self._assert_ticket_has_new_sprint(self.task.id) def test_can_move_task_of_a_story(self): self._assert_move_task_of_story() def test_can_pull_in_task_of_a_story(self): self.old_sprint = '' self._create_story_and_task() self._assert_move_task_of_story() def test_can_pull_out_task_of_a_story(self): self.new_sprint = '' self._assert_move_task_of_story() def test_can_have_identical_source_and_destination(self): self.new_sprint = self.old_sprint self._assert_move_task_of_story() def test_does_not_move_closed_task(self): self.task[Key.STATUS] = Status.CLOSED self.task.save_changes(None, None) mover = TicketHierarchyMover(self.env, self.story, self.old_sprint, self.new_sprint) mover.execute() self._assert_ticket_has_old_sprint(self.task.id) def test_does_not_move_task_with_different_sprint(self): self.teh.create_sprint('Third Sprint') self.task[Key.SPRINT] = 'Third Sprint' self.task.save_changes(None, None) mover = TicketHierarchyMover(self.env, self.story, self.old_sprint, self.new_sprint) mover.execute() self._assert_ticket_has_sprint(self.task.id, 'Third Sprint') def test_can_move_indirect_task(self): bug = self.teh.create_ticket(t_type=Type.BUG, props=dict(sprint=self.old_sprint)) self.assert_true(bug.link_to(self.story)) mover = TicketHierarchyMover(self.env, bug, self.old_sprint, self.new_sprint) mover.execute() self._assert_ticket_has_new_sprint(self.task.id) def test_will_store_default_author_on_changelog(self): self._assert_move_task_of_story() self.assert_equals("agilo", self.teh.last_changelog_author(self.task)) def test_will_store_custom_author_on_changelog(self): mover = TicketHierarchyMover(self.env, self.story, self.old_sprint, self.new_sprint, changelog_author="fnord") mover.execute() self.assert_equals("fnord", self.teh.last_changelog_author(self.task)) def test_does_not_explode_if_child_has_no_sprint_field(self): self.teh.allow_link_from_to(Type.USER_STORY, Type.REQUIREMENT) # recreate object because the allowed links are cached inside self.story = AgiloTicket(self.env, self.story.id) requirement = self.teh.create_ticket(t_type=Type.REQUIREMENT) self.assert_true(self.story.link_to(requirement)) mover = TicketHierarchyMover(self.env, self.story, self.old_sprint, self.new_sprint) mover.execute() self._assert_ticket_has_sprint(requirement.id, '')
0a3a0097b6cf311e49d6da4a0de4b7ef22c3ab65
dff749b6652cc6b5ba804d491b3c981f2a9599e1
/pytests/cbas/cbas_dcp_state.py
03a677fa6579ceeecb3c6325aff0a53bb9c2c7d1
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
pavithra-mahamani/TAF
7c6f40beee7fb14f28f7016a246c49d3e728b938
ff854adcc6ca3e50d9dc64e7756ca690251128d3
refs/heads/master
2020-07-29T01:18:56.807783
2019-09-20T22:51:50
2019-09-20T22:51:50
209,612,844
0
0
Apache-2.0
2019-09-19T17:35:20
2019-09-19T17:35:20
null
UTF-8
Python
false
false
15,424
py
import time import json from cbas.cbas_base import CBASBaseTest from remote.remote_util import RemoteMachineShellConnection from couchbase_helper.tuq_generators import JsonGenerator class CBASDCPState(CBASBaseTest): def setUp(self): super(CBASDCPState, self).setUp() self.log.info("Establish remote connection to CBAS node and Empty analytics log") self.shell = RemoteMachineShellConnection(self.cbas_node) self.shell.execute_command("echo '' > /opt/couchbase/var/lib/couchbase/logs/analytics*.log") self.log.info("Load documents in the default bucket") self.perform_doc_ops_in_all_cb_buckets(self.num_items, "create", 0, self.num_items) self.log.info("Create connection") self.cbas_util.createConn(self.cb_bucket_name) self.log.info("Create dataset") self.cbas_util.create_dataset_on_bucket(self.cb_bucket_name, self.cbas_dataset_name) self.log.info("Add a CBAS nodes") self.assertTrue(self.add_node(self.servers[1], services=["cbas"], rebalance=True), msg="Failed to add CBAS node") self.log.info("Connect to Local link") self.cbas_util.connect_link() self.log.info("Validate count on CBAS") self.assertTrue(self.cbas_util.validate_cbas_dataset_items_count(self.cbas_dataset_name, self.num_items), msg="Count mismatch on CBAS") self.log.info("Kill CBAS/JAVA Process on NC node") self.shell.kill_multiple_process(['java', 'cbas']) """ test_dcp_state_with_cbas_bucket_connected_kv_bucket_deleted,default_bucket=True,cb_bucket_name=default,cbas_dataset_name=ds,items=10000 """ def test_dcp_state_with_cbas_bucket_connected_kv_bucket_deleted(self): """ Cover's the scenario: CBAS bucket is connected, KV bucket is deleted Expected Behaviour: Rebalance must pass once we receive DCP state API response """ self.log.info("Delete KV bucket") self.delete_bucket_or_assert(serverInfo=self.master) self.log.info("Check DCP state") start_time = time.time() dcp_state_captured = False while time.time() < start_time + 120: try: status, content, _ = self.cbas_util.fetch_dcp_state_on_cbas(self.cbas_dataset_name) if status: dcp_state_captured = True content = json.loads(content) break except: pass self.log.info("Check DCP state is inconsistent, and rebalance passes since KV bucket does not exist and we don't care about the state") self.assertTrue(dcp_state_captured, msg="DCP state not found. Failing the test") self.assertFalse(content["exact"], msg="DCP state is consistent. Failing the test since subsequent rebalance will pass.") self.log.info("Add a CBAS nodes") self.assertTrue(self.add_node(self.servers[3], services=["cbas"], rebalance=False), msg="Failed to add CBAS node") self.log.info("Rebalance in CBAS node") rebalance_success = False try: rebalance_success = self.rebalance() except Exception as e: pass self.assertTrue(rebalance_success, msg="Rebalance in of CBAS node must succeed since DCP state API returned success") """ test_dcp_state_with_cbas_bucket_disconnected_kv_bucket_deleted,default_bucket=True,cb_bucket_name=default,cbas_dataset_name=ds,items=10000 """ def test_dcp_state_with_cbas_bucket_disconnected_kv_bucket_deleted(self): """ Cover's the scenario: CBAS bucket is disconnected, KV bucket deleted Expected Behaviour: Rebalance must succeeds and we must see in logs "Bucket Bucket:Default.cbas doesn't exist in KV anymore... nullifying its DCP state" """ self.log.info("Delete KV bucket") self.delete_bucket_or_assert(serverInfo=self.master) self.log.info("Disconnect from CBAS bucket") start_time = time.time() while time.time() < start_time + 120: try: self.cbas_util.disconnect_link() break except Exception as e: pass self.log.info("Add a CBAS nodes") self.assertTrue(self.add_node(self.servers[3], services=["cbas"], rebalance=False), msg="Failed to add a CBAS node") self.log.info("Rebalance in CBAS node") self.assertTrue(self.rebalance(), msg="Rebalance in CBAS node failed") self.log.info("Grep Analytics logs for message") result, _ = self.shell.execute_command("grep 'exist in KV anymore... nullifying its DCP state' /opt/couchbase/var/lib/couchbase/logs/analytics*.log") self.assertTrue("nullifying its DCP state" in result[0], msg="Expected message 'nullifying its DCP state' not found") """ test_dcp_state_with_cbas_bucket_disconnected_kv_bucket_deleted_and_recreate,default_bucket=True,cb_bucket_name=default,cbas_dataset_name=ds,items=10000 """ def test_dcp_state_with_cbas_bucket_disconnected_kv_bucket_deleted_and_recreate(self): """ Cover's the scenario: CBAS bucket is disconnected, CB bucket is deleted and then recreated Expected Behaviour: Rebalance succeeds with message in logs "Bucket Bucket:Default.cbas doesn't exist in KV anymore... nullifying its DCP state, then again after bucket is re-created, data is re-ingested from 0" """ self.log.info("Delete KV bucket") self.delete_bucket_or_assert(serverInfo=self.master) self.log.info("Disconnect from CBAS bucket") start_time = time.time() while time.time() < start_time + 120: try: self.cbas_util.disconnect_link() break except Exception as e: pass self.log.info("Add a CBAS nodes") self.assertTrue(self.add_node(self.servers[3], services=["cbas"], rebalance=False), msg="Failed to add a CBAS node") self.log.info("Rebalance in CBAS node") self.assertTrue(self.rebalance(), msg="Rebalance in CBAS node failed") self.log.info("Grep Analytics logs for message") result, _ = self.shell.execute_command("grep 'exist in KV anymore... nullifying its DCP state' /opt/couchbase/var/lib/couchbase/logs/analytics*.log") self.assertTrue("nullifying its DCP state" in result[0], msg="Expected message 'nullifying its DCP state' not found") self.log.info("Recreate KV bucket") self.create_default_bucket() self.log.info("Load documents in the default bucket") self.perform_doc_ops_in_all_cb_buckets(self.num_items // 100, "create", 0, self.num_items // 100) self.log.info("Create connection") self.cbas_util.createConn(self.cb_bucket_name) self.log.info("Connect to Local link") self.cbas_util.connect_link(with_force=True) self.log.info("Validate count on CBAS post KV bucket re-created") self.assertTrue(self.cbas_util.validate_cbas_dataset_items_count(self.cbas_dataset_name, self.num_items // 100), msg="Count mismatch on CBAS") """ test_dcp_state_with_cbas_bucket_disconnected_cb_bucket_exist,default_bucket=True,cb_bucket_name=default,cbas_dataset_name=ds,items=10000,user_action=connect_cbas_bucket test_dcp_state_with_cbas_bucket_disconnected_cb_bucket_exist,default_bucket=True,cb_bucket_name=default,cbas_dataset_name=ds,items=10000 """ def test_dcp_state_with_cbas_bucket_disconnected_cb_bucket_exist(self): """ Cover's the scenario: CBAS bucket is disconnected Expected Behaviour: Rebalance fails with user action Connect the bucket or drop the dataset" """ self.log.info("Disconnect from CBAS bucket") start_time = time.time() while time.time() < start_time + 120: try: self.cbas_util.disconnect_link() break except Exception as e: pass self.log.info("Add a CBAS nodes") self.assertTrue(self.add_node(self.servers[3], services=["cbas"], rebalance=False), msg="Failed to add a CBAS node") self.log.info("Rebalance in CBAS node") rebalance_success = False try: rebalance_success = self.rebalance() except Exception as e: pass if rebalance_success == False: self.log.info("Grep Analytics logs for user action as rebalance in Failed") result, _ = self.shell.execute_command("grep 'Datasets in different partitions have different DCP states.' /opt/couchbase/var/lib/couchbase/logs/analytics*.log") self.assertTrue("User action: Connect the bucket:" in result[0] and "or drop the dataset: Default.ds" in result[0], msg="User action not found.") user_action = self.input.param("user_action", "drop_dataset") if user_action == "connect_cbas_bucket": self.log.info("Connect back Local link") self.cbas_util.connect_link() self.sleep(15, message="Wait for link to be connected") else: self.log.info("Dropping the dataset") self.cbas_util.drop_dataset(self.cbas_dataset_name) self.log.info("Rebalance in CBAS node") self.assertTrue(self.rebalance(), msg="Rebalance in CBAS node must succeed after user has taken the specified action.") else: self.log.info("Rebalance was successful as DCP state were consistent") def tearDown(self): super(CBASDCPState, self).tearDown() class CBASPendingMutations(CBASBaseTest): def setUp(self): super(CBASPendingMutations, self).setUp() """ cbas.cbas_dcp_state.CBASPendingMutations.test_pending_mutations_idle_kv_system,default_bucket=True,cb_bucket_name=default,cbas_bucket_name=cbas,cbas_dataset_name=ds,items=200000 """ def test_pending_mutations_idle_kv_system(self): self.log.info("Load documents in KV") self.perform_doc_ops_in_all_cb_buckets(self.num_items, "create", 0, self.num_items, batch_size=5000) self.log.info("Create dataset on the CBAS") self.cbas_util.create_dataset_on_bucket( self.cb_bucket_name, self.cbas_dataset_name) self.log.info("Connect link") self.cbas_util.connect_link() self.log.info("Fetch cluster remaining mutations") aggregate_remaining_mutations_list = [] while True: status, content, _ = self.cbas_util.fetch_pending_mutation_on_cbas_cluster() self.assertTrue(status, msg="Fetch pending mutations failed") content = json.loads(content) if content: aggregate_remaining_mutations_list.append(content["Default.ds"]) total_count, _ = self.cbas_util.get_num_items_in_cbas_dataset(self.cbas_dataset_name) if total_count == self.num_items: break self.log.info("Verify remaining mutation count is reducing as ingestion progress's") self.log.info(aggregate_remaining_mutations_list) is_remaining_mutation_count_reducing = True for i in range(len(aggregate_remaining_mutations_list)): if aggregate_remaining_mutations_list[i] > self.num_items or aggregate_remaining_mutations_list[i] < 0: self.fail("Remaining mutation count must not be greater than total documents and must be non -ve") for i in range(1, len(aggregate_remaining_mutations_list)): if not aggregate_remaining_mutations_list[i-1] >= aggregate_remaining_mutations_list[i]: is_remaining_mutation_count_reducing = False break self.log.info("Assert mutation progress API response") self.assertTrue(self.cbas_util.validate_cbas_dataset_items_count(self.cbas_dataset_name, self.num_items), msg="Count mismatch on CBAS") self.assertTrue(len(aggregate_remaining_mutations_list) > 1, msg="Found no remaining mutations during ingestion") self.assertTrue(is_remaining_mutation_count_reducing, msg="Remaining mutation count must reduce as ingestion progress's") """ cbas.cbas_dcp_state.CBASPendingMutations.test_pending_mutations_busy_kv_system,default_bucket=True,cb_bucket_name=default,cbas_bucket_name=cbas,cbas_dataset_name=ds,items=100000 """ def test_pending_mutations_busy_kv_system(self): self.log.info("Load documents in KV") self.perform_doc_ops_in_all_cb_buckets(self.num_items, "create", 0, self.num_items) self.log.info("Create dataset on the CBAS") self.cbas_util.create_dataset_on_bucket(self.cb_bucket_name, self.cbas_dataset_name) self.log.info("Connect link") self.cbas_util.connect_link() self.log.info("Perform async doc operations on KV") json_generator = JsonGenerator() generators = json_generator.generate_docs_simple(docs_per_day=self.num_items * 4, start=self.num_items) kv_task = self._async_load_all_buckets(self.master, generators, "create", 0, batch_size=3000) self.log.info("Fetch cluster remaining mutations") aggregate_remaining_mutations_list = [] while True: status, content, _ = self.cbas_util.fetch_pending_mutation_on_cbas_cluster() self.assertTrue(status, msg="Fetch pending mutations failed") content = json.loads(content) if content: aggregate_remaining_mutations_list.append(content["Default.ds"]) total_count, _ = self.cbas_util.get_num_items_in_cbas_dataset(self.cbas_dataset_name) if total_count == self.num_items * 4: break self.log.info("Get KV ops result") for task in kv_task: task.get_result() self.log.info("Verify remaining mutation count is reducing as ingestion progress's") self.log.info(aggregate_remaining_mutations_list) is_remaining_mutation_count_reducing = True for i in range(len(aggregate_remaining_mutations_list)): if aggregate_remaining_mutations_list[i] < 0: self.fail("Remaining mutation count must be non -ve") for i in range(1, len(aggregate_remaining_mutations_list)): if not aggregate_remaining_mutations_list[i-1] >= aggregate_remaining_mutations_list[i]: is_remaining_mutation_count_reducing = False break self.log.info("Assert mutation progress API response") self.assertTrue(self.cbas_util.validate_cbas_dataset_items_count(self.cbas_dataset_name, self.num_items * 4), msg="Count mismatch on CBAS") self.assertTrue(len(aggregate_remaining_mutations_list) > 1, msg="Found no items during ingestion") self.assertFalse(is_remaining_mutation_count_reducing, msg="Remaining mutation must increase as ingestion progress's") def tearDown(self): super(CBASPendingMutations, self).tearDown()
f137634b0821b9597b08027552f1db74ad9bc5dc
9508ccf2802becb4d19dd049b3496cf19d5f7b15
/tensorflow_probability/python/mcmc/internal/leapfrog_integrator_test.py
6ff15635b716756dbc78a4c7c242e3ac27e9390a
[ "Apache-2.0" ]
permissive
etarakci-hvl/probability
e89485968e4660050424944b0ffdbbf617533fe4
7a0ce5e5beff91051028258dfbc7bc6cf0c4998d
refs/heads/master
2020-11-25T20:39:53.290761
2019-12-18T02:13:04
2019-12-18T02:14:04
228,835,497
1
0
Apache-2.0
2019-12-18T12:27:56
2019-12-18T12:27:56
null
UTF-8
Python
false
false
3,873
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `leapfrog_integrator.py`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf from tensorflow_probability.python.internal import test_util from tensorflow_probability.python.mcmc.internal import leapfrog_integrator as leapfrog_impl @test_util.test_all_tf_execution_regimes class LeapfrogIntegratorTest(test_util.TestCase): def setUp(self): self._shape_param = 5. self._rate_param = 10. tf1.random.set_random_seed(10003) np.random.seed(10003) def assertAllFinite(self, x): self.assertAllEqual(np.ones_like(x).astype(bool), np.isfinite(x)) def _log_gamma_log_prob(self, x, event_dims=()): """Computes log-pdf of a log-gamma random variable. Args: x: Value of the random variable. event_dims: Dimensions not to treat as independent. Returns: log_prob: The log-pdf up to a normalizing constant. """ return tf.reduce_sum( self._shape_param * x - self._rate_param * tf.exp(x), axis=event_dims) def _integrator_conserves_energy(self, x, independent_chain_ndims): event_dims = tf.range(independent_chain_ndims, tf.rank(x)) target_fn = lambda x: self._log_gamma_log_prob(x, event_dims) m = tf.random.normal(tf.shape(x)) log_prob_0 = target_fn(x) old_energy = -log_prob_0 + 0.5 * tf.reduce_sum(m**2., axis=event_dims) event_size = np.prod( self.evaluate(x).shape[independent_chain_ndims:]) integrator = leapfrog_impl.SimpleLeapfrogIntegrator( target_fn, step_sizes=[0.09 / event_size], num_steps=1000) [[new_m], [_], log_prob_1, [_]] = integrator([m], [x]) new_energy = -log_prob_1 + 0.5 * tf.reduce_sum(new_m**2., axis=event_dims) old_energy_, new_energy_ = self.evaluate([old_energy, new_energy]) tf1.logging.vlog( 1, 'average energy relative change: {}'.format( (1. - new_energy_ / old_energy_).mean())) self.assertAllClose(old_energy_, new_energy_, atol=0., rtol=0.02) def _integrator_conserves_energy_wrapper(self, independent_chain_ndims): """Tests the long-term energy conservation of the leapfrog integrator. The leapfrog integrator is symplectic, so for sufficiently small step sizes it should be possible to run it more or less indefinitely without the energy of the system blowing up or collapsing. Args: independent_chain_ndims: Python `int` scalar representing the number of dims associated with independent chains. """ x = tf.constant(np.random.rand(50, 10, 2), np.float32) self._integrator_conserves_energy(x, independent_chain_ndims) def testIntegratorEnergyConservationNullShape(self): self._integrator_conserves_energy_wrapper(0) def testIntegratorEnergyConservation1(self): self._integrator_conserves_energy_wrapper(1) def testIntegratorEnergyConservation2(self): self._integrator_conserves_energy_wrapper(2) def testIntegratorEnergyConservation3(self): self._integrator_conserves_energy_wrapper(3) if __name__ == '__main__': tf.test.main()
23df7434ab536aa03632fc11bee9095c7e4d847e
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/64/usersdata/208/37039/submittedfiles/atm.py
fffc892d1e1eeab4114a3f231991c77f9faa11fd
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
# -*- coding: utf-8 -*- v=int(input('digite o valor que deseja sacar:')) n1=v//20 n2=(v%20)//10 n3=((v%20)%10)//5 n4=(((v%20)%10)%5//2 n5=((((v%20)%10)%5)%2)//1 print('%d'%n1) print('%d'%n2) print('%d'%n3) print('%d'%n4) print('%d'%n5)
2f52aaac7e20119310401c3ba628d0ea489c2a5b
0845b9e00b0046c409eff2b55c835c331190a2dc
/Example_code/bullets.py
9f4598ab62b9538ba20843eecbbaf22de1f1f74d
[]
no_license
crazcalm/Learn_Pygame
edba44f4ff89add764ee3f6b2558172465f9cc26
e93c482fb9eb392912627855b11ff2c36c22a191
refs/heads/master
2020-04-05T22:56:29.928626
2014-09-27T07:08:29
2014-09-27T07:08:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,486
py
""" Show how to fire bullets. Sample Python/Pygame Programs Simpson College Computer Science http://programarcadegames.com/ http://simpson.edu/computer-science/ Explanation video: http://youtu.be/PpdJjaiLX6A """ import pygame import random # Define some colors BLACK = ( 0, 0, 0) WHITE = ( 255, 255, 255) RED = ( 255, 0, 0) BLUE = ( 0, 0, 255) # --- Classes class Block(pygame.sprite.Sprite): """ This class represents the block. """ def __init__(self, color): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([20, 15]) self.image.fill(color) self.rect = self.image.get_rect() class Player(pygame.sprite.Sprite): """ This class represents the Player. """ def __init__(self): """ Set up the player on creation. """ # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([20, 20]) self.image.fill(RED) self.rect = self.image.get_rect() def update(self): """ Update the player's position. """ # Get the current mouse position. This returns the position # as a list of two numbers. pos = pygame.mouse.get_pos() # Set the player x position to the mouse x position self.rect.x = pos[0] class Bullet(pygame.sprite.Sprite): """ This class represents the bullet . """ def __init__(self): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([4, 10]) self.image.fill(BLACK) self.rect = self.image.get_rect() def update(self): """ Move the bullet. """ self.rect.y -= 3 # --- Create the window # Initialize Pygame pygame.init() # Set the height and width of the screen screen_width = 700 screen_height = 400 screen = pygame.display.set_mode([screen_width, screen_height]) # --- Sprite lists # This is a list of every sprite. All blocks and the player block as well. all_sprites_list = pygame.sprite.Group() # List of each block in the game block_list = pygame.sprite.Group() # List of each bullet bullet_list = pygame.sprite.Group() # --- Create the sprites for i in range(50): # This represents a block block = Block(BLUE) # Set a random location for the block block.rect.x = random.randrange(screen_width) block.rect.y = random.randrange(350) # Add the block to the list of objects block_list.add(block) all_sprites_list.add(block) # Create a red player block player = Player() all_sprites_list.add(player) #Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() score = 0 player.rect.y = 370 # -------- Main Program Loop ----------- while not done: # --- Event Processing for event in pygame.event.get(): if event.type == pygame.QUIT: done = True elif event.type == pygame.MOUSEBUTTONDOWN: # Fire a bullet if the user clicks the mouse button bullet = Bullet() # Set the bullet so it is where the player is bullet.rect.x = player.rect.x bullet.rect.y = player.rect.y # Add the bullet to the lists all_sprites_list.add(bullet) bullet_list.add(bullet) # --- Game logic # Call the update() method on all the sprites all_sprites_list.update() # Calculate mechanics for each bullet for bullet in bullet_list: # See if it hit a block block_hit_list = pygame.sprite.spritecollide(bullet, block_list, True) # For each block hit, remove the bullet and add to the score for block in block_hit_list: bullet_list.remove(bullet) all_sprites_list.remove(bullet) score += 1 print(score) # Remove the bullet if it flies up off the screen if bullet.rect.y < -10: bullet_list.remove(bullet) all_sprites_list.remove(bullet) # --- Draw a frame # Clear the screen screen.fill(WHITE) # Draw all the spites all_sprites_list.draw(screen) # Go ahead and update the screen with what we've drawn. pygame.display.flip() # --- Limit to 20 frames per second clock.tick(60) pygame.quit()
047b96b5f23a5f677481e75436be67e963f16f40
0c110eb32f2eaea5c65d40bda846ddc05757ced6
/scripts/mastersort/scripts_dir/p7542_run2L4.py
d95b7a8dccc8565de88643a95318f55cc9b4a0c0
[]
no_license
nyspisoccog/ks_scripts
792148a288d1a9d808e397c1d2e93deda2580ff4
744b5a9dfa0f958062fc66e0331613faaaee5419
refs/heads/master
2021-01-18T14:22:25.291331
2018-10-15T13:08:24
2018-10-15T13:08:24
46,814,408
0
0
null
null
null
null
UTF-8
Python
false
false
1,197
py
from __future__ import with_statement import os, csv, shutil,tarfile, uf, dcm_ops dest_root = '/ifs/scratch/pimri/soccog/test_working' dst_path_lst = ['7542', 'run2L4'] uf.buildtree(dest_root, dst_path_lst) uf.copytree('/ifs/scratch/pimri/soccog/old/SocCog_Raw_Data_By_Exam_Number/2727/E2727_e363504/s414724_1904_2L4_s23', '/ifs/scratch/pimri/soccog/test_working/7542/run2L4') t = tarfile.open(os.path.join('/ifs/scratch/pimri/soccog/test_working/7542/run2L4','MRDC_files.tar.gz'), 'r') t.extractall('/ifs/scratch/pimri/soccog/test_working/7542/run2L4') for f in os.listdir('/ifs/scratch/pimri/soccog/test_working/7542/run2L4'): if 'MRDC' in f and 'gz' not in f: old = os.path.join('/ifs/scratch/pimri/soccog/test_working/7542/run2L4', f) new = os.path.join('/ifs/scratch/pimri/soccog/test_working/7542/run2L4', f + '.dcm') os.rename(old, new) qsub_cnv_out = dcm_ops.cnv_dcm('/ifs/scratch/pimri/soccog/test_working/7542/run2L4', '7542_run2L4', '/ifs/scratch/pimri/soccog/scripts/mastersort/scripts_dir/cnv') #qsub_cln_out = dcm_ops.cnv_dcm('/ifs/scratch/pimri/soccog/test_working/7542/run2L4', '7542_run2L4', '/ifs/scratch/pimri/soccog/scripts/mastersort/scripts_dir/cln')
d80cceffb15b6da1f32f7e511c4fb6433d8b362f
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003/W_w_M_to_C_pyr/pyr_6s/L3/step10_a.py
33a90e07ba8ad4d1d18aa65e7efbaf7acd074ac4
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
51,406
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_6side_L3 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_W_and_I_gt_F use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_W").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ################### ############# 1s1 ######### 2s1 ### 3s1 ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s2 ######### 2s1 ### 3s1 ch032_1side_2__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s1 ### 3s1 ch032_1side_2__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_2__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s3 ######### 2s1 ### 3s1 ch032_1side_3__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ### 3s1 ch032_1side_3__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_3__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ### 3s1 ch032_1side_3__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_3__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s3 ch032_1side_3__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s4 ######### 2s1 ### 3s1 ch032_1side_4__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ### 3s1 ch032_1side_4__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_4__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ### 3s1 ch032_1side_4__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_4__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s3 ch032_1side_4__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ### 3s1 ch032_1side_4__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s2 ch032_1side_4__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s3 ch032_1side_4__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 3s4 ch032_1side_4__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
259bd4310a5b596b737a9ccae5087953d99928ea
74bc48ba64859a63855d204f1efd31eca47a223f
/Nature/9999.Reference_DataAugmentation.py
6ab2dd8feba11d86b67d6f5132136efada9cf3c9
[]
no_license
PraveenAdepu/kaggle_competitions
4c53d71af12a615d5ee5f34e5857cbd0fac7bc3c
ed0111bcecbe5be4529a2a5be2ce4c6912729770
refs/heads/master
2020-09-02T15:29:51.885013
2020-04-09T01:50:55
2020-04-09T01:50:55
219,248,958
0
0
null
null
null
null
UTF-8
Python
false
false
9,841
py
# -*- coding: utf-8 -*- """ Created on Wed Feb 01 19:08:48 2017 @author: SriPrav """ # -*- coding: utf-8 -*- """ Created on Mon Jan 09 20:02:03 2017 @author: SriPrav """ import numpy as np np.random.seed(2016) import os import glob import cv2 import datetime import pandas as pd import time import warnings warnings.filterwarnings("ignore") from sklearn.cross_validation import KFold from keras.models import Sequential from keras.layers.core import Dense, Dropout, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD from keras.callbacks import EarlyStopping from keras.utils import np_utils from sklearn.metrics import log_loss from keras.preprocessing.image import ImageDataGenerator from keras import __version__ as keras_version ROWS = 64 COLUMNS = 64 CHANNELS = 3 VERBOSEFLAG = 1 def get_im_cv2(path): img = cv2.imread(path) resized = cv2.resize(img, (ROWS, COLUMNS), cv2.INTER_LINEAR) return resized def load_train(): X_train = [] X_train_id = [] y_train = [] start_time = time.time() print('Read train images') folders = ['ALB', 'BET', 'DOL', 'LAG', 'NoF', 'OTHER', 'SHARK', 'YFT'] for fld in folders: index = folders.index(fld) print('Load folder {} (Index: {})'.format(fld, index)) path = os.path.join('C:\Users\SriPrav\Documents\R\\18Nature', 'input', 'train', fld, '*.jpg') files = glob.glob(path) for fl in files: flbase = os.path.basename(fl) img = get_im_cv2(fl) X_train.append(img) X_train_id.append(flbase) y_train.append(index) print('Read train data time: {} seconds'.format(round(time.time() - start_time, 2))) return X_train, y_train, X_train_id def load_test(): path = os.path.join('C:\Users\SriPrav\Documents\R\\18Nature', 'input', 'test_stg1', '*.jpg') files = sorted(glob.glob(path)) X_test = [] X_test_id = [] for fl in files: flbase = os.path.basename(fl) img = get_im_cv2(fl) X_test.append(img) X_test_id.append(flbase) return X_test, X_test_id def create_submission(predictions, test_id, info): result1 = pd.DataFrame(predictions, columns=['ALB', 'BET', 'DOL', 'LAG', 'NoF', 'OTHER', 'SHARK', 'YFT']) result1.loc[:, 'image'] = pd.Series(test_id, index=result1.index) imgcolumn = result1['image'] result1.drop(labels=['image'], axis=1,inplace = True) result1.insert(0, 'image', imgcolumn) now = datetime.datetime.now() sub_file = 'submissions\submission_' + info + '_' + str(now.strftime("%Y-%m-%d-%H-%M")) + '.csv' result1.to_csv(sub_file, index=False) def read_and_normalize_train_data(): train_data, train_target, train_id = load_train() print('Convert to numpy...') train_data = np.array(train_data, dtype=np.uint8) train_target = np.array(train_target, dtype=np.uint8) print('Reshape...') train_data = train_data.transpose((0, 3, 1, 2)) print('Convert to float...') train_data = train_data.astype('float32') train_data = train_data / 255 train_target = np_utils.to_categorical(train_target, 8) print('Train shape:', train_data.shape) print(train_data.shape[0], 'train samples') return train_data, train_target, train_id def read_and_normalize_test_data(): start_time = time.time() test_data, test_id = load_test() test_data = np.array(test_data, dtype=np.uint8) test_data = test_data.transpose((0, 3, 1, 2)) test_data = test_data.astype('float32') test_data = test_data / 255 print('Test shape:', test_data.shape) print(test_data.shape[0], 'test samples') print('Read and process test data time: {} seconds'.format(round(time.time() - start_time, 2))) return test_data, test_id def dict_to_list(d): ret = [] for i in d.items(): ret.append(i[1]) return ret def merge_several_folds_mean(data, nfolds): a = np.array(data[0]) for i in range(1, nfolds): a += np.array(data[i]) a /= nfolds return a.tolist() #def create_model(): # model = Sequential() # model.add(ZeroPadding2D((1, 1), input_shape=(CHANNELS,ROWS, COLUMNS), dim_ordering='th')) # model.add(Convolution2D(4, 3, 3, activation='relu', dim_ordering='th')) # model.add(ZeroPadding2D((1, 1), dim_ordering='th')) # model.add(Convolution2D(4, 3, 3, activation='relu', dim_ordering='th')) # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) # # model.add(ZeroPadding2D((1, 1), dim_ordering='th')) # model.add(Convolution2D(8, 3, 3, activation='relu', dim_ordering='th')) # model.add(ZeroPadding2D((1, 1), dim_ordering='th')) # model.add(Convolution2D(8, 3, 3, activation='relu', dim_ordering='th')) # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) # # model.add(Flatten()) # model.add(Dense(32, activation='relu')) # model.add(Dropout(0.5)) # model.add(Dense(32, activation='relu')) # model.add(Dropout(0.5)) # model.add(Dense(8, activation='softmax')) # # sgd = SGD(lr=1e-2, decay=1e-6, momentum=0.9, nesterov=True) # model.compile(optimizer=sgd, loss='categorical_crossentropy') # # return model def create_model(): model = Sequential() model.add(ZeroPadding2D((1, 1), input_shape=(CHANNELS,ROWS, COLUMNS), dim_ordering='th')) model.add(Convolution2D(8, 3, 3, activation='relu', dim_ordering='th', init='he_uniform')) model.add(Dropout(0.2)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) model.add(ZeroPadding2D((1, 1), dim_ordering='th')) model.add(Convolution2D(16, 3, 3, activation='relu', dim_ordering='th', init='he_uniform')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2), dim_ordering='th')) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(96, activation='relu',init='he_uniform')) model.add(Dropout(0.4)) model.add(Dense(24, activation='relu',init='he_uniform')) model.add(Dropout(0.2)) model.add(Dense(8, activation='softmax')) sgd = SGD(lr=1e-2, decay=1e-4, momentum=0.89, nesterov=False) model.compile(optimizer=sgd, loss='categorical_crossentropy') return model def get_validation_predictions(train_data, predictions_valid): pv = [] for i in range(len(train_data)): pv.append(predictions_valid[i]) return pv datagen = ImageDataGenerator( rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True ) def run_cross_validation_create_models(nfolds=10): # input image dimensions batch_size = 32 nb_epoch = 13 random_state = 2017 train_data, train_target, train_id = read_and_normalize_train_data() yfull_train = dict() kf = KFold(len(train_id), n_folds=nfolds, shuffle=True, random_state=random_state) num_fold = 0 sum_score = 0 models = [] for train_index, test_index in kf: model = create_model() X_train = train_data[train_index] Y_train = train_target[train_index] X_valid = train_data[test_index] Y_valid = train_target[test_index] num_fold += 1 print('Start KFold number {} from {}'.format(num_fold, nfolds)) print('Split train: ', len(X_train), len(Y_train)) print('Split valid: ', len(X_valid), len(Y_valid)) callbacks = [ EarlyStopping(monitor='val_loss', patience=3, verbose=VERBOSEFLAG), ] # model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, # shuffle=True, verbose=VERBOSEFLAG, validation_data=(X_valid, Y_valid), # callbacks=callbacks) # model.fit_generator(datagen.flow(X_train, Y_train, batch_size=batch_size), nb_epoch=nb_epoch, # verbose=VERBOSEFLAG, validation_data=(X_valid, Y_valid) # ) model.fit_generator(datagen.flow(X_train, Y_train, batch_size=32), samples_per_epoch=len(X_train), nb_epoch=nb_epoch,validation_data=(X_valid, Y_valid),verbose=VERBOSEFLAG) predictions_valid = model.predict(X_valid.astype('float32'), batch_size=batch_size, verbose=2) score = log_loss(Y_valid, predictions_valid) print('Score log_loss: ', score) sum_score += score*len(test_index) # Store valid predictions for i in range(len(test_index)): yfull_train[test_index[i]] = predictions_valid[i] models.append(model) score = sum_score/len(train_data) print("Log_loss train independent avg: ", score) info_string = 'loss_' + str(score) + '_folds_' + str(nfolds) + '_ep_' + str(nb_epoch) return info_string, models def run_cross_validation_process_test(info_string, models): batch_size = 16 num_fold = 0 yfull_test = [] test_id = [] nfolds = len(models) for i in range(nfolds): model = models[i] num_fold += 1 print('Start KFold number {} from {}'.format(num_fold, nfolds)) test_data, test_id = read_and_normalize_test_data() test_prediction = model.predict(test_data, batch_size=batch_size, verbose=VERBOSEFLAG) yfull_test.append(test_prediction) test_res = merge_several_folds_mean(yfull_test, nfolds) info_string = 'loss_' + info_string \ + '_folds_' + str(nfolds) create_submission(test_res, test_id, info_string) if __name__ == '__main__': print('Keras version: {}'.format(keras_version)) num_folds = 5 info_string, models = run_cross_validation_create_models(num_folds) run_cross_validation_process_test(info_string, models)
452bb4a716c3bd8adec7df2878cd13e873b5b57d
d75fbceb28ad14b07ae4057a8b23ec0bd3682628
/code/chap08/ZombieMobGame.py
1ca5ebc7b9173aa046b6f7eb320226cfc169fb42
[]
no_license
wubinbai/pygame-book
0707a0b36f41bc6f0b1282707e6c4f6cbed9c87a
9de1f7516a2aec940ffa97f9686cc0520bad2deb
refs/heads/master
2020-12-21T15:51:08.397619
2020-01-30T12:37:52
2020-01-30T12:37:52
236,478,999
0
0
null
null
null
null
UTF-8
Python
false
false
5,667
py
# Zombie Mob Game # Chapter 8 import itertools, sys, time, random, math, pygame from pygame.locals import * from MyLibrary import * def calc_velocity(direction, vel=1.0): velocity = Point(0,0) if direction == 0: #north velocity.y = -vel elif direction == 2: #east velocity.x = vel elif direction == 4: #south velocity.y = vel elif direction == 6: #west velocity.x = -vel return velocity def reverse_direction(sprite): if sprite.direction == 0: sprite.direction = 4 elif sprite.direction == 2: sprite.direction = 6 elif sprite.direction == 4: sprite.direction = 0 elif sprite.direction == 6: sprite.direction = 2 #main program begins pygame.init() screen = pygame.display.set_mode((800,600)) pygame.display.set_caption("Collision Demo") font = pygame.font.Font(None, 36) timer = pygame.time.Clock() #create sprite groups player_group = pygame.sprite.Group() zombie_group = pygame.sprite.Group() health_group = pygame.sprite.Group() #create the player sprite player = MySprite() player.load("farmer walk.png", 96, 96, 8) player.position = 80, 80 player.direction = 4 player_group.add(player) #create the zombie sprite zombie_image = pygame.image.load("zombie walk.png").convert_alpha() for n in range(0, 10): zombie = MySprite() zombie.load("zombie walk.png", 96, 96, 8) zombie.position = random.randint(0,700), random.randint(0,500) zombie.direction = random.randint(0,3) * 2 zombie_group.add(zombie) #create heath sprite health = MySprite() health.load("health.png", 32, 32, 1) health.position = 400,300 health_group.add(health) game_over = False player_moving = False player_health = 100 #repeating loop while True: timer.tick(30) ticks = pygame.time.get_ticks() for event in pygame.event.get(): if event.type == QUIT: sys.exit() keys = pygame.key.get_pressed() if keys[K_ESCAPE]: sys.exit() elif keys[K_UP] or keys[K_w]: player.direction = 0 player_moving = True elif keys[K_RIGHT] or keys[K_d]: player.direction = 2 player_moving = True elif keys[K_DOWN] or keys[K_s]: player.direction = 4 player_moving = True elif keys[K_LEFT] or keys[K_a]: player.direction = 6 player_moving = True else: player_moving = False if not game_over: #set animation frames based on player's direction player.first_frame = player.direction * player.columns player.last_frame = player.first_frame + player.columns-1 if player.frame < player.first_frame: player.frame = player.first_frame if not player_moving: #stop animating when player is not pressing a key player.frame = player.first_frame = player.last_frame else: #move player in direction player.velocity = calc_velocity(player.direction, 1.5) player.velocity.x *= 1.5 player.velocity.y *= 1.5 #update player sprite player_group.update(ticks, 50) #manually move the player if player_moving: player.X += player.velocity.x player.Y += player.velocity.y if player.X < 0: player.X = 0 elif player.X > 700: player.X = 700 if player.Y < 0: player.Y = 0 elif player.Y > 500: player.Y = 500 #update zombie sprites zombie_group.update(ticks, 50) #manually iterate through all the zombies for z in zombie_group: #set the zombie's animation range z.first_frame = z.direction * z.columns z.last_frame = z.first_frame + z.columns-1 if z.frame < z.first_frame: z.frame = z.first_frame z.velocity = calc_velocity(z.direction) #keep the zombie on the screen z.X += z.velocity.x z.Y += z.velocity.y if z.X < 0 or z.X > 700 or z.Y < 0 or z.Y > 500: reverse_direction(z) #check for collision with zombies attacker = None attacker = pygame.sprite.spritecollideany(player, zombie_group) if attacker != None: #we got a hit, now do a more precise check if pygame.sprite.collide_rect_ratio(0.5)(player,attacker): player_health -= 10 if attacker.X < player.X: attacker.X -= 10 elif attacker.X > player.X: attacker.X += 10 else: attacker = None #update the health drop health_group.update(ticks, 50) #check for collision with health if pygame.sprite.collide_rect_ratio(0.5)(player,health): player_health += 30 if player_health > 100: player_health = 100 health.X = random.randint(0,700) health.Y = random.randint(0,500) #is player dead? if player_health <= 0: game_over = True #clear the screen screen.fill((50,50,100)) #draw sprites health_group.draw(screen) zombie_group.draw(screen) player_group.draw(screen) #draw energy bar pygame.draw.rect(screen, (50,150,50,180), Rect(300,570,player_health*2,25)) pygame.draw.rect(screen, (100,200,100,180), Rect(300,570,200,25), 2) if game_over: print_text(font, 300, 100, "G A M E O V E R") pygame.display.update()
1d4abd406e5975787c37fe68fdc30ace92e9a531
e262e64415335060868e9f7f73ab8701e3be2f7b
/.history/pyexcel_20201111162515.py
eb28ae94c2e1ecfb48fe15a06c26ed612a6d0851
[]
no_license
Allison001/developer_test
6e211f1e2bd4287ee26fd2b33baf1c6a8d80fc63
b8e04b4b248b0c10a35e93128a5323165990052c
refs/heads/master
2023-06-18T08:46:40.202383
2021-07-23T03:31:54
2021-07-23T03:31:54
322,807,303
0
0
null
null
null
null
UTF-8
Python
false
false
899
py
from openpyxl import Workbook from openpyxl.utils import get_column_letter wb = Workbook() dest_filename = 'empty_book.xlsx' ws1 = wb.active ws1.title = "range names" for row in range(1, 40): ws1.append(range(600)) ws2 = wb.create_sheet(title="Pi") ws2['F5'] = 3.14 ws3 = wb.create_sheet(title="Data") for row in range(10, 20): for col in range(27, 54): _ = ws3.cell(column=col, row=row, value="{0}".format(get_column_letter(col))) print(ws3['AA10'].value) ws4 = wb.create_sheet(title="test") for i in range(1,11): ws4.cell(column=i,row=1).value="用例编号" ws5 = wb.create_sheet(title="Test1") title1 = ("用例编号","用例模块","用例标题","用例级别","测试环境","测试输入","执行操作","预期结果","验证结果","备注") for i in range(1,11): for j in title1: ws5.cell(column=1,row=).value=j wb.save(filename = dest_filename)
318b865387216d39ed0bd4472857241446accb5c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02390/s595695585.py
37891011aec61d584d08c47440668ca2b1330dfd
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
s = int(input()) min = int(s/60) sec = s%60 hour = int(min/60) min = min%60 print("{0}:{1}:{2}".format(hour, min, sec))
d14ec836cc015536b3f4fbbea3e42722d329fe10
fc276597c51509a13bf2c622c91123eb4987d6b2
/setup.py
d45a7fa220a59b4a2f456f2596709f0d4c052620
[ "Apache-2.0" ]
permissive
zaquestion/requests-mv-integrations
df1150b0efb8bf4d97979e8ed3499737d98fa16d
b8f3332c1cd564ef106e725e0ee3436913fa8e19
refs/heads/master
2020-06-29T11:12:30.990262
2016-11-22T01:56:56
2016-11-22T01:56:56
74,429,832
0
0
null
2016-12-06T18:57:52
2016-11-22T03:21:53
Python
UTF-8
Python
false
false
2,180
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @namespace pycountry-convert from __future__ import with_statement # To install the tune-mv-integration-python library, open a Terminal shell, # then run this file by typing: # # python setup.py install # import sys import re from setuptools import setup REQUIREMENTS = [ req for req in open('requirements.txt') .read().split('\n') if req != '' ] PACKAGES = [ 'requests_mv_integrations', 'requests_mv_integrations.support', 'requests_mv_integrations.errors' ] CLASSIFIERS = [ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries :: Python Modules' ] with open('requests_mv_integrations/__init__.py', 'r') as fd: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') if len(sys.argv) < 2 or sys.argv[1] == 'version': print(version) sys.exit() setup( name='requests-mv-integrations', version=version, description='', author='TUNE Inc., TuneLab', author_email='[email protected]', url='https://github.com/TuneLab/requests-mv-integrations', install_requires=REQUIREMENTS, packages=PACKAGES, package_dir={'requests-mv-integrations': 'requests-mv-integrations'}, include_package_data=True, license='Apache 2.0', zip_safe=False, classifiers=CLASSIFIERS, long_description=""" ----------------------------------------------------- """ )
81146b5b73fa9c515a476c8bf531f60c1e4b6b89
a8289cb7273245e7ec1e6079c7f266db4d38c03f
/Anthony_Flask_Tutorials/Flask_GETAPI/run.py
4b5fb6680b2b2838fcc12f2b4cce3d759ec957a0
[]
no_license
palmarytech/Python_Snippet
6acbd572d939bc9d5d765800f35a0204bc044708
41b4ebe15509d166c82edd23b713a1f3bf0458c5
refs/heads/master
2022-10-06T22:51:00.469383
2020-03-13T08:32:11
2020-03-13T08:32:11
272,350,189
1
0
null
2020-06-15T05:30:44
2020-06-15T05:30:44
null
UTF-8
Python
false
false
617
py
from flask import Flask, jsonify, request app = Flask(__name__) languages = [{"name": "Javascript"}, {"name": "Python"}, {"name": "Ruby"}] @app.route("/", methods=["GET"]) def test(): return jsonify({"message": "API works"}) @app.route("/languages", methods=["GET"]) def returnAll(): return jsonify({"languages": languages}) @app.route("/languages/<string:name>", methods=["GET"]) def returnOne(name): _langs = [language for language in languages if language["name"] == name] return jsonify({"language": _langs[0]}) if __name__ == "__main__": app.run(debug=True, host="0.0.0.0", port=5000)
74107df377adab78ed6ad99a7cdafb3fe88dfef6
a5016c90fb13caaf8ce4e2c48dc842017f195822
/src/0008_StringToInteger.py
c800458b3678b28a95706de4e3e5ff1d26c81c80
[]
no_license
lixinchn/LeetCode
c21efc2d715da637374871d36d3d183ea08b9c31
4060d525f007c10a3a55d874f7953a0a1d98c8fd
refs/heads/master
2020-04-03T10:27:16.068777
2017-01-05T02:31:28
2017-01-05T02:31:28
50,000,305
0
0
null
null
null
null
UTF-8
Python
false
false
1,513
py
class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ ret_int = 0 negative = False MAX_INT = 2147483647 MIN_INT = 2147483648 i = 0 for i in range(len(str)): if str[i] == ' ' or str[i] == '\t': continue break if i < len(str) and (str[i] == '-' or str[i] == '+'): negative = str[i] == '-' i += 1 str = str[i:] for i in range(len(str)): try: char_int = int(str[i]) except: break ret_int = ret_int * 10 + char_int if not negative and ret_int > MAX_INT: return MAX_INT if negative and ret_int > MIN_INT: return MIN_INT * -1 if negative: ret_int *= -1 return ret_int if __name__ == "__main__": solution = Solution() str = '100' print solution.myAtoi(str) str = '-1' print solution.myAtoi(str) str = '0' print solution.myAtoi(str) str = '007' print solution.myAtoi(str) str = '-007' print solution.myAtoi(str) str = '' print solution.myAtoi(str) str = ' ' print solution.myAtoi(str) str = 'a123' print solution.myAtoi(str) str = '12aa3' print solution.myAtoi(str) str = '-2147483648' print solution.myAtoi(str) str = '-2147483649' print solution.myAtoi(str)
787e223f49a9ab2eeab5f45a7afcebfb8907c122
26e468e4f99ffc0ccd6da43c1ae9f363ec3010e6
/msr.py
32c9ecdd0dc265971335ef45b9e1bfc43fb7fe41
[]
no_license
mtoqeerpk/rshalib
d86d36216fe9a4008a710af6c0e118c34c73dab4
9ef631ca3690c158693445a52d59c2583f8bd67e
refs/heads/master
2023-01-28T00:25:14.992405
2020-12-10T09:16:41
2020-12-10T09:16:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
""" Magnitude scaling relations """ from __future__ import absolute_import, division, print_function, unicode_literals try: ## Python 2 basestring except: ## Python 3 basestring = str __all__ = ['get_oq_msr'] def get_oq_msr(msr_or_name): """ Get OpenQuake magnitude scaling relationship object :param msr_or_name: str or instance of :class:`oqhazlib.scalerel.BaseMSR` :return: instance of :class:`oqhazlib.scalerel.BaseMSR` """ from . import oqhazlib if isinstance(msr_or_name, oqhazlib.scalerel.BaseMSR): msr = msr_or_name elif isinstance(msr_or_name, basestring): #if msr_or_name[-3:] != 'MSR': # msr_or_name += 'MSR' msr = getattr(oqhazlib.scalerel, msr_or_name)() return msr
6ec27707f06f70599fd009e6b1515054ddf675be
029948b3fd0e41d80d66c84d808abff4fcb24ac8
/dnac_api_client/models/response.py
21c419cccc99217f50f5b75be892b1baee6f818a
[]
no_license
yijxiang/dnac-api-client
842d1da9e156820942656b8f34342d52c96d3c37
256d016e2df8fc1b3fdad6e28f441c6005b43b07
refs/heads/master
2021-09-25T21:10:09.502447
2018-10-25T14:39:57
2018-10-25T14:39:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,249
py
# coding: utf-8 """ Cisco DNA Center Platform v. 1.2.x (EFT) REST API (EFT) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class Response(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { } attribute_map = { } def __init__(self): # noqa: E501 """Response - a model defined in OpenAPI""" # noqa: E501 self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Response): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
34e474332837d41d7be8e3b1b8180a049fb43e1b
45de7d905486934629730945619f49281ad19359
/xlsxwriter/test/comparison/test_chart_layout02.py
22e9a8e8599e84e984544c6755d61220a43f21fa
[ "BSD-2-Clause" ]
permissive
jmcnamara/XlsxWriter
599e1d225d698120ef931a776a9d93a6f60186ed
ab13807a1be68652ffc512ae6f5791d113b94ee1
refs/heads/main
2023-09-04T04:21:04.559742
2023-08-31T19:30:52
2023-08-31T19:30:52
7,433,211
3,251
712
BSD-2-Clause
2023-08-28T18:52:14
2013-01-04T01:07:06
Python
UTF-8
Python
false
false
1,659
py
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2023, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename("chart_layout02.xlsx") def test_create_file(self): """Test the creation of an XlsxWriter file with user defined layout.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({"type": "column"}) chart.axis_ids = [68311296, 69198208] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column("A1", data[0]) worksheet.write_column("B1", data[1]) worksheet.write_column("C1", data[2]) chart.add_series({"values": "=Sheet1!$A$1:$A$5"}) chart.add_series({"values": "=Sheet1!$B$1:$B$5"}) chart.add_series({"values": "=Sheet1!$C$1:$C$5"}) chart.set_legend( { "layout": { "x": 0.80197353455818021, "y": 0.37442403032954213, "width": 0.12858202099737534, "height": 0.25115157480314959, } } ) worksheet.insert_chart("E9", chart) workbook.close() self.assertExcelEqual()
58c3c301b8c5ffe6496f032137b6c97b8eabbefb
19a32440205b2caeec67c73c10d917b5fb30a86a
/isi_sdk/models/settings_notification_create_params.py
55f76156fd70615ae7d5ef6ff537e1aba68c0417
[ "Apache-2.0", "MIT" ]
permissive
marrotte/isilon_sdk_python
480e84312f5924a506aeb09c9c7cae79a2b9b7f4
91039da803ae37ed4abf8d2a3f59c333f3ef1866
refs/heads/master
2020-03-23T07:31:40.376316
2016-06-07T23:44:31
2016-06-07T23:44:31
141,277,076
1
0
MIT
2018-07-17T11:02:08
2018-07-17T11:02:08
null
UTF-8
Python
false
false
9,762
py
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re class SettingsNotificationCreateParams(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ SettingsNotificationCreateParams - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'action_alert': 'bool', 'action_email_address': 'str', 'action_email_owner': 'bool', 'condition': 'str', 'email_template': 'str', 'holdoff': 'int', 'schedule': 'str', 'threshold': 'str' } self.attribute_map = { 'action_alert': 'action_alert', 'action_email_address': 'action_email_address', 'action_email_owner': 'action_email_owner', 'condition': 'condition', 'email_template': 'email_template', 'holdoff': 'holdoff', 'schedule': 'schedule', 'threshold': 'threshold' } self._action_alert = None self._action_email_address = None self._action_email_owner = None self._condition = None self._email_template = None self._holdoff = None self._schedule = None self._threshold = None @property def action_alert(self): """ Gets the action_alert of this SettingsNotificationCreateParams. Send alert when rule matches. :return: The action_alert of this SettingsNotificationCreateParams. :rtype: bool """ return self._action_alert @action_alert.setter def action_alert(self, action_alert): """ Sets the action_alert of this SettingsNotificationCreateParams. Send alert when rule matches. :param action_alert: The action_alert of this SettingsNotificationCreateParams. :type: bool """ self._action_alert = action_alert @property def action_email_address(self): """ Gets the action_email_address of this SettingsNotificationCreateParams. Email a specific email address when rule matches. :return: The action_email_address of this SettingsNotificationCreateParams. :rtype: str """ return self._action_email_address @action_email_address.setter def action_email_address(self, action_email_address): """ Sets the action_email_address of this SettingsNotificationCreateParams. Email a specific email address when rule matches. :param action_email_address: The action_email_address of this SettingsNotificationCreateParams. :type: str """ self._action_email_address = action_email_address @property def action_email_owner(self): """ Gets the action_email_owner of this SettingsNotificationCreateParams. Email quota domain owner when rule matches. :return: The action_email_owner of this SettingsNotificationCreateParams. :rtype: bool """ return self._action_email_owner @action_email_owner.setter def action_email_owner(self, action_email_owner): """ Sets the action_email_owner of this SettingsNotificationCreateParams. Email quota domain owner when rule matches. :param action_email_owner: The action_email_owner of this SettingsNotificationCreateParams. :type: bool """ self._action_email_owner = action_email_owner @property def condition(self): """ Gets the condition of this SettingsNotificationCreateParams. The condition detected. :return: The condition of this SettingsNotificationCreateParams. :rtype: str """ return self._condition @condition.setter def condition(self, condition): """ Sets the condition of this SettingsNotificationCreateParams. The condition detected. :param condition: The condition of this SettingsNotificationCreateParams. :type: str """ allowed_values = ["exceeded", "denied", "violated", "expired"] if condition not in allowed_values: raise ValueError( "Invalid value for `condition`, must be one of {0}" .format(allowed_values) ) self._condition = condition @property def email_template(self): """ Gets the email_template of this SettingsNotificationCreateParams. Path of optional /ifs template file used for email actions. :return: The email_template of this SettingsNotificationCreateParams. :rtype: str """ return self._email_template @email_template.setter def email_template(self, email_template): """ Sets the email_template of this SettingsNotificationCreateParams. Path of optional /ifs template file used for email actions. :param email_template: The email_template of this SettingsNotificationCreateParams. :type: str """ self._email_template = email_template @property def holdoff(self): """ Gets the holdoff of this SettingsNotificationCreateParams. Time to wait between detections for rules triggered by user actions. :return: The holdoff of this SettingsNotificationCreateParams. :rtype: int """ return self._holdoff @holdoff.setter def holdoff(self, holdoff): """ Sets the holdoff of this SettingsNotificationCreateParams. Time to wait between detections for rules triggered by user actions. :param holdoff: The holdoff of this SettingsNotificationCreateParams. :type: int """ self._holdoff = holdoff @property def schedule(self): """ Gets the schedule of this SettingsNotificationCreateParams. Schedule for rules that repeatedly notify. :return: The schedule of this SettingsNotificationCreateParams. :rtype: str """ return self._schedule @schedule.setter def schedule(self, schedule): """ Sets the schedule of this SettingsNotificationCreateParams. Schedule for rules that repeatedly notify. :param schedule: The schedule of this SettingsNotificationCreateParams. :type: str """ self._schedule = schedule @property def threshold(self): """ Gets the threshold of this SettingsNotificationCreateParams. The quota threshold detected. :return: The threshold of this SettingsNotificationCreateParams. :rtype: str """ return self._threshold @threshold.setter def threshold(self, threshold): """ Sets the threshold of this SettingsNotificationCreateParams. The quota threshold detected. :param threshold: The threshold of this SettingsNotificationCreateParams. :type: str """ allowed_values = ["hard", "soft", "advisory"] if threshold not in allowed_values: raise ValueError( "Invalid value for `threshold`, must be one of {0}" .format(allowed_values) ) self._threshold = threshold def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
490e341e942d8a60011545ea7657bda519f70f4e
ac32bac45df77083f4ef3115e747038a6753936c
/methods/stack/custom/adapters/layer_custom.py
e3220b5ba16f66f4e881fd6331e8a0efa9f0f191
[]
no_license
Yujin-Yujin/rexpert
13e1d5c4ca55664dd9fbb9a765ea5157a2e0893f
ed8628dc053194fee40e593b1cc5ec45a26c8073
refs/heads/main
2023-06-22T05:58:42.269923
2021-07-23T06:35:43
2021-07-23T06:35:43
373,423,887
0
0
null
null
null
null
UTF-8
Python
false
false
18,825
py
from abc import ABC, abstractmethod from typing import List, Mapping, Union import torch from torch import nn from transformers.adapters.composition import AdapterCompositionBlock, Fuse, Parallel, Split, Stack, parse_composition from custom.adapters.modeling_custom import Adapter, BertFusion class AdapterLayerBaseMixin(ABC): """ An abstract base implementation of adapter integration into a Transformer block. In BERT, subclasses of this module are placed in the BertSelfOutput module and in the BertOutput module. """ # override this property if layer norm has a different name @property def layer_norm(self): return self.LayerNorm @property @abstractmethod def adapter_config_key(self): """Gets the name of the key by which this adapter location is identified in the adapter configuration.""" pass @property def layer_idx(self): return getattr(self, "_layer_idx", -1) @layer_idx.setter def layer_idx(self, layer_idx): idx = getattr(self, "_layer_idx", layer_idx) assert idx == layer_idx setattr(self, "_layer_idx", idx) def _init_adapter_modules(self): self.adapters = nn.ModuleDict(dict()) self.adapter_fusion_layer = nn.ModuleDict(dict()) def add_adapter(self, adapter_name: str, layer_idx: int): self.layer_idx = layer_idx adapter_config = self.config.adapters.get(adapter_name) if adapter_config and adapter_config.get(self.adapter_config_key, None): reduction_factor = adapter_config["reduction_factor"] if isinstance(reduction_factor, Mapping): if str(self.layer_idx) in reduction_factor: reduction_factor = reduction_factor[str(self.layer_idx)] elif "default" in reduction_factor: reduction_factor = reduction_factor["default"] else: raise KeyError( "The given reduction factor mapping does not give a default value and does not specify each " "reduction factor individually. You need to provide a default value like this: " '{"1": 16, "default": 16}' ) adapter = Adapter( input_size=self.config.hidden_size, down_sample=self.config.hidden_size // reduction_factor, add_layer_norm_before=adapter_config["ln_before"], add_layer_norm_after=adapter_config["ln_after"], non_linearity=adapter_config["non_linearity"], residual_before_ln=adapter_config["adapter_residual_before_ln"], ) adapter.train(self.training) # make sure training mode is consistent self.adapters[adapter_name] = adapter def add_fusion_layer(self, adapter_names: Union[List, str]): """See BertModel.add_fusion_layer""" adapter_names = adapter_names if isinstance(adapter_names, list) else adapter_names.split(",") if self.config.adapters.common_config_value(adapter_names, self.adapter_config_key): fusion = BertFusion(self.config) fusion.train(self.training) # make sure training mode is consistent self.adapter_fusion_layer[",".join(adapter_names)] = fusion def enable_adapters(self, adapter_setup: AdapterCompositionBlock, unfreeze_adapters: bool, unfreeze_fusion: bool): """ Unfreezes a given list of adapters, the adapter fusion layer, or both Args: adapter_names: names of adapters to unfreeze (or names of adapters part of the fusion layer to unfreeze) unfreeze_adapters: whether the adapters themselves should be unfreezed unfreeze_fusion: whether the adapter attention layer for the given adapters should be unfreezed """ if unfreeze_adapters: for adapter_name in adapter_setup.flatten(): if adapter_name in self.adapters: for param in self.adapters[adapter_name].parameters(): param.requires_grad = True if unfreeze_fusion: if isinstance(adapter_setup, Fuse): if adapter_setup.name in self.adapter_fusion_layer: for param in self.adapter_fusion_layer[adapter_setup.name].parameters(): param.requires_grad = True for sub_setup in adapter_setup: if isinstance(sub_setup, Fuse): if sub_setup.name in self.adapter_fusion_layer: for param in self.adapter_fusion_layer[sub_setup.name].parameters(): param.requires_grad = True def get_adapter_preparams( self, adapter_config, hidden_states, input_tensor, ): """ Retrieves the hidden_states, query (for Fusion), and residual connection according to the set configuratio Args: adapter_config: config file according to what the parameters are passed hidden_states: output of previous layer input_tensor: residual connection before FFN Returns: hidden_states, query, residual """ query = None if adapter_config["residual_before_ln"]: residual = hidden_states if hasattr(self.config, "adapter_fusion") and self.config.adapter_fusion["query_before_ln"]: query = hidden_states if adapter_config["original_ln_before"]: if self.layer_norm: hidden_states = self.layer_norm(hidden_states + input_tensor) else: hidden_states = hidden_states + input_tensor if not adapter_config["residual_before_ln"]: residual = hidden_states if hasattr(self.config, "adapter_fusion") and not self.config.adapter_fusion["query_before_ln"]: query = hidden_states return hidden_states, query, residual def adapter_stack(self, adapter_setup: Stack, hidden_states, input_tensor, lvl=0): """ Forwards the given input through the given stack of adapters. """ for i, adapter_stack_layer in enumerate(adapter_setup): # Break if setup is too deep if isinstance(adapter_stack_layer, AdapterCompositionBlock) and lvl >= 1: raise ValueError( "Specified adapter setup is too deep. Cannot have {} at level {}".format( adapter_stack_layer.__class__.__name__, lvl ) ) # Case 1: We have a nested fusion layer -> call fusion method if isinstance(adapter_stack_layer, Fuse): hidden_states = self.adapter_fusion(adapter_stack_layer, hidden_states, input_tensor, lvl=lvl + 1) # Case 2: We have a nested split layer -> call split method elif isinstance(adapter_stack_layer, Split): hidden_states = self.adapter_split(adapter_stack_layer, hidden_states, input_tensor, lvl=lvl + 1) # Case 3: We have a nested parallel layer -> call parallel method elif isinstance(adapter_stack_layer, Parallel): hidden_states, input_tensor = self.adapter_parallel( adapter_stack_layer, hidden_states, input_tensor, lvl=lvl + 1 ) # Case 4: We have a single adapter which is part of this module -> forward pass elif adapter_stack_layer in self.adapters: adapter_layer = self.adapters[adapter_stack_layer] adapter_config = self.config.adapters.get(adapter_stack_layer) hidden_states, _, residual = self.get_adapter_preparams(adapter_config, hidden_states, input_tensor) hidden_states, _, up = adapter_layer(hidden_states, residual_input=residual) # as this stack might be part of a fusion block, return the adapter up-projection output here # together with the final output (with potential residuals & norms) if we reached the last block of the stack if i == len(adapter_setup) - 1: return hidden_states, up, input_tensor # Case X: No adapter which is part of this module -> ignore # If we got here, we either had another nested composition block # or no adapter was found. In both cases, we don't need to set the second return value for fusion return hidden_states, None, input_tensor def adapter_fusion(self, adapter_setup: Fuse, hidden_states, input_tensor, lvl=0): """ Performs adapter fusion with the given adapters for the given input. """ # config of _last_ fused adapter is significant adapter_config = self.config.adapters.get(adapter_setup.last()) hidden_states, query, residual = self.get_adapter_preparams(adapter_config, hidden_states, input_tensor) up_list = [] for adapter_block in adapter_setup: # Case 1: We have a nested stack -> call stack method if isinstance(adapter_block, Stack): _, up, _ = self.adapter_stack(adapter_block, hidden_states, input_tensor, lvl=lvl + 1) if up is not None: # could be none if stack is empty up_list.append(up) # Case 2: We have a single adapter which is part of this module -> forward pass elif adapter_block in self.adapters: adapter_layer = self.adapters[adapter_block] _, _, up = adapter_layer(hidden_states, residual_input=residual) up_list.append(up) # Case 3: nesting other composition blocks is invalid elif isinstance(adapter_block, AdapterCompositionBlock): raise ValueError( "Invalid adapter setup. Cannot nest {} in {}".format( adapter_block.__class__.__name__, adapter_setup.__class__.__name__ ) ) # Case X: No adapter which is part of this module -> ignore if len(up_list) > 0: up_list = torch.stack(up_list) up_list = up_list.permute(1, 2, 0, 3) hidden_states = torch.zeros(up_list.shape[0], up_list.shape[1], up_list.shape[3]).to(up_list.get_device()) # pooh stack for i in range(up_list.shape[2]): hidden_states += up_list[:,:,i,:] hidden_states = self.adapter_fusion_layer[adapter_setup.name]( query, hidden_states ) return hidden_states def adapter_split(self, adapter_setup: Split, hidden_states, input_tensor, lvl=0): """ Splits the given input between the given adapters. """ # config of _first_ of splitted adapters is significant adapter_config = self.config.adapters.get(adapter_setup.first()) hidden_states, query, residual = self.get_adapter_preparams(adapter_config, hidden_states, input_tensor) # split hidden representations and residuals at split index split_hidden_states = [ hidden_states[:, : adapter_setup.split_index, :], hidden_states[:, adapter_setup.split_index :, :], ] split_input_tensor = [ input_tensor[:, : adapter_setup.split_index, :], input_tensor[:, adapter_setup.split_index :, :], ] split_residual = [ residual[:, : adapter_setup.split_index, :], residual[:, adapter_setup.split_index :, :], ] for i, adapter_block in enumerate(adapter_setup): # Case 1: We have a nested stack -> call stack method if isinstance(adapter_block, Stack): split_hidden_states[i], _, _ = self.adapter_stack( adapter_block, split_hidden_states[i], split_input_tensor[i], lvl=lvl + 1 ) # Case 2: We have a nested split -> recursively call split elif isinstance(adapter_block, Split): split_hidden_states[i] = self.adapter_split( adapter_block, split_hidden_states[i], split_input_tensor[i], lvl=lvl + 1 ) # Case 3: We have a single adapter which is part of this module -> forward pass elif adapter_block in self.adapters: adapter_layer = self.adapters[adapter_block] split_hidden_states[i], _, _ = adapter_layer(split_hidden_states[i], residual_input=split_residual[i]) # Case 4: nesting other composition blocks is invalid elif isinstance(adapter_block, AdapterCompositionBlock): raise ValueError( "Invalid adapter setup. Cannot nest {} in {}".format( adapter_block.__class__.__name__, adapter_setup.__class__.__name__ ) ) # Case X: No adapter which is part of this module -> ignore hidden_states = torch.cat(split_hidden_states, dim=1) return hidden_states def adapter_parallel(self, adapter_setup: Parallel, hidden_states, input_tensor, lvl=0): """ For parallel execution of the adapters on the same input. This means that the input is repeated N times before feeding it to the adapters (where N is the number of adapters). """ # We assume that all adapters have the same config adapter_config = self.config.adapters.get(adapter_setup.first()) if not self.config.adapters.is_parallelized: orig_batch_size = input_tensor.shape[0] input_tensor = input_tensor.repeat(self.config.adapters.active_setup.parallel_channels, 1, 1) hidden_states = hidden_states.repeat(self.config.adapters.active_setup.parallel_channels, 1, 1) self.config.adapters.is_parallelized = True else: # The base model should handle replication of input. # Therefore, we assume the (replicated) input batch to be divisible by the number of parallel channels. if hidden_states.shape[0] % adapter_setup.parallel_channels != 0: raise ValueError( "The total input batch size in a Parallel adapter block must be divisible by the number of parallel channels." ) orig_batch_size = hidden_states.shape[0] // adapter_setup.parallel_channels hidden_states, _, residual = self.get_adapter_preparams(adapter_config, hidden_states, input_tensor) # sequentially feed different parts of the blown-up batch into different adapters children_hidden = [] for i, child in enumerate(adapter_setup): # Case 1: We have a nested stack -> call stack method if isinstance(child, Stack): child_hidden_states, _, _ = self.adapter_stack( child, hidden_states[i * orig_batch_size : (i + 1) * orig_batch_size], input_tensor[i * orig_batch_size : (i + 1) * orig_batch_size], lvl=lvl + 1, ) children_hidden.append(child_hidden_states) # Case 2: We have a single adapter which is part of this module -> forward pass elif child in self.adapters: adapter_layer = self.adapters[child] child_hidden_states, _, _ = adapter_layer( hidden_states[i * orig_batch_size : (i + 1) * orig_batch_size], residual_input=residual[i * orig_batch_size : (i + 1) * orig_batch_size], ) children_hidden.append(child_hidden_states) # Case 3: nesting other composition blocks is invalid elif isinstance(child, AdapterCompositionBlock): raise ValueError( "Invalid adapter setup. Cannot nest {} in {}".format( child.__class__.__name__, adapter_setup.__class__.__name__ ) ) # Case X: No adapter which is part of this module -> ignore else: children_hidden.append(hidden_states[i * orig_batch_size : (i + 1) * orig_batch_size]) # concatenate all outputs and return hidden_states = torch.cat(children_hidden, 0) return hidden_states, input_tensor def adapters_forward(self, hidden_states, input_tensor, **kwargs): """ Called for each forward pass through adapters. """ if hasattr(self.config, "adapters"): # First check for given arguments before falling back to defined setup adapter_setup = kwargs.pop("adapter_names", None) if adapter_setup is not None: adapter_setup = parse_composition(adapter_setup) else: adapter_setup = self.config.adapters.active_setup else: adapter_setup = None skip_adapters = adapter_setup is None or ( self.config.adapters.skip_layers is not None and self.layer_idx in self.config.adapters.skip_layers ) if not skip_adapters and (len(set(self.adapters.keys()) & adapter_setup.flatten()) > 0): if isinstance(adapter_setup, Stack): hidden_states, _, input_tensor = self.adapter_stack(adapter_setup, hidden_states, input_tensor) elif isinstance(adapter_setup, Fuse): hidden_states = self.adapter_fusion(adapter_setup, hidden_states, input_tensor) elif isinstance(adapter_setup, Split): hidden_states = self.adapter_split(adapter_setup, hidden_states, input_tensor) elif isinstance(adapter_setup, Parallel): # notice that we are overriding input tensor here to keep the same dim as hidden_states for the residual # in case we were blowing up the batch for parallel processing of multiple adapters for the same input hidden_states, input_tensor = self.adapter_parallel(adapter_setup, hidden_states, input_tensor) else: raise ValueError(f"Invalid adapter setup {adapter_setup}") last_config = self.config.adapters.get(adapter_setup.last()) if last_config["original_ln_after"]: if self.layer_norm: hidden_states = self.layer_norm(hidden_states + input_tensor) else: hidden_states = hidden_states + input_tensor elif self.layer_norm: hidden_states = self.layer_norm(hidden_states + input_tensor) else: hidden_states = hidden_states + input_tensor return hidden_states
afbde06d9758d8f6cb99f0c165487171b932e4a9
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03399/s459988463.py
c485ed9fa7f3a1cbfbac8d9420a062d84304b2e3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
181
py
# 数値の取得 A = int(input()) B = int(input()) C = int(input()) D = int(input()) # 料金の最安値を出力 train = min(A,B) bus = min(C,D) tbsum = train + bus print(tbsum)
f19b8be273679764a4d21955b4e6283bcba5d52c
41e3065d6f29449251f1cc79cb340fa273ac5c61
/0x11-python-network_1/4-hbtn_status.py
9760dd4785428c240c719c71c1c380eb25f80b8c
[]
no_license
BD20171998/holbertonschool-higher_level_programming
856fa3a7fcfafd3e17ebd7dd4cf9d3e5a609fd1f
bfa78d25bd4527e06cf1bf54cbc00722449d9a30
refs/heads/master
2021-07-16T01:58:42.911959
2020-11-15T07:18:19
2020-11-15T07:18:19
226,976,859
0
1
null
null
null
null
UTF-8
Python
false
false
262
py
#!/usr/bin/python3 import requests if __name__ == "__main__": html = requests.get('https://intranet.hbtn.io/status') print("Body response:") print("{}{}".format("\t- type: ", type(html.text))) print("{}{}".format("\t- content: ", html.text))
be67b3d78dfe581cfe41e8bf0ac8acd188a3da8e
2ad7e88305a7d2215a816e1aa3a82ef50b685b23
/dshop/main/utilities.py
eacf75e1b907eea2ad161776d182389a5405e407
[]
no_license
KeksikProg/shop_chairs
5c9fb01f47676bb118fcc8161be1854e23271550
4bb09c409450cf2bb024c69d51d9f046520e9349
refs/heads/master
2023-06-26T17:21:27.678778
2020-08-06T16:28:29
2020-08-06T16:28:29
281,150,953
0
0
null
null
null
null
UTF-8
Python
false
false
1,336
py
from datetime import datetime from os.path import splitext from django.template.loader import render_to_string from django.core.signing import Signer # Это для цифровой подписи from dshop.settings import ALLOWED_HOSTS from django.dispatch import Signal from django.db.models.signals import post_save def get_timestamp_path(instance, filename): # Тк эта функция не относится не к редакторам не к контроллерами не к моделям ,мы просто запишем её сюда return f'{datetime.now().timestamp()}{splitext(filename)[1]}' signer = Signer() def send_activation_notification(user): if ALLOWED_HOSTS: host = 'http://' + ALLOWED_HOSTS[0] else: host = 'http://localhost:8000' context = {'user':user, 'host':host, 'sign':signer.sign(user.username)} subj = render_to_string('email/activation_letter_subj.txt', context) body = render_to_string('email/activation_letter_body.txt', context) user.email_user(subj, body) user_registrated = Signal(providing_args = ['instance']) # Тут мы из всех сигналов берем определенный по его ключу def user_registrated_dispatcher(sender, **kwargs): send_activation_notification(kwargs['instance']) user_registrated.connect(user_registrated_dispatcher)
d676188c2588e84de56202458db7503191525a1e
715966248566909e4e8978230b37458d031418c5
/01.jumptopython/chap03/책/126-02.py
9e55500f0b6a62346082cb03961b4920774aabf8
[]
no_license
itminha123/jumptopython
1101f4e065ce2f8e0a1c68bb818b14b562fc43d1
8b25ae84f795eab5e7bcfa609646a2736ac2a98f
refs/heads/master
2021-09-19T08:29:33.686384
2018-07-25T18:59:55
2018-07-25T18:59:55
112,169,738
1
0
null
null
null
null
UTF-8
Python
false
false
534
py
coffee=10 while True: money=int(input("돈을 넣어 주세요:")) if money== 300: print("커피를 줍니다.") coffee=coffee-1 elif money>300: print("거스름돈 %d를 주고 커피를 줍니다."%(money-300)) coffee=coffee-1 else: print("돈을 다시 돌려주고 커피를 주지 않습니다.") print("남은 커피의 양은 %d개 입니다."%coffee) if not coffee: print("커피가 다 떨어졌습니다. 판매를 중지합니다.") break
408491e006322a62395f8c6b6a009ef13abe8b3c
c566ceb33bfea62f4be98dd2f9536deaee46ac3e
/api/utils/custom_exception.py
27388bf098fb1fd47d3af3feec46065ce054813d
[]
no_license
Saviodiow95/wallet_test
1ad0e8f1699803ecca0ebf8c6a96b10efea980a3
4c2bf80332458b39197de134e914af669bbcc355
refs/heads/main
2023-07-04T02:25:11.321675
2021-08-02T12:28:40
2021-08-02T12:28:40
390,503,421
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
from rest_framework.exceptions import APIException class InsufficientFundsException(APIException): """ Exceção criada para retornar uma mensagem quando não houver saldo de um ativo para realizar o resgate """ status_code = 304 default_detail = 'Não é possível realizar o Resgate, Saldo Insuficiente'
fd0c93ec47ca70c94d9bc8e470186eac42081257
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_counselled.py
4ca2e9c494bd4785c5c7bc4a66f6f1113eba6619
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
#calss header class _COUNSELLED(): def __init__(self,): self.name = "COUNSELLED" self.definitions = counsel self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['counsel']
52bad13f94b0f90846709fba274572fa370e643a
c085578abc19db18ee0766e1f9598d79a3acdbe1
/18-4Sum/solution.py
c5448eab17a5a88cac8e2880a4fc80d1a1c7a04b
[ "MIT" ]
permissive
Tanych/CodeTracking
efb6245edc036d7edf85e960972c34d03b8c707a
86f1cb98de801f58c39d9a48ce9de12df7303d20
refs/heads/master
2020-05-21T17:40:10.105759
2016-10-09T18:20:42
2016-10-09T18:20:42
60,616,356
0
0
null
null
null
null
UTF-8
Python
false
false
1,830
py
class Solution(object): def nsum(self,nums,start,n,target): nlen=len(nums) res=[] if nums[start]*n>target or target>nums[nlen-1]*n: return res for i in xrange(start,nlen-n+1): if i>start and nums[i-1]==nums[i]: continue if n==1: if target<nums[i]:break if target>nums[i]:continue res.append([target]) break for li in self.nsum(nums,i+1,n-1,target-nums[i]): li.append(nums[i]) res.append(li) return res def fourSum(self, nums,target): """ :type nums: List[int] :rtype: List[List[int]] """ num_len=len(nums) if num_len<4: return [] nums.sort() return self.nsum(nums,0,4,target) res_list=[] hash_dict={} for m in xrange(num_len-3): if 4*nums[m]>target: return res_list for i in xrange(m+1,num_len-2): start=i+1 end=num_len-1 while start<end: if nums[m]+nums[i]+nums[start]+nums[end]==target: if not hash_dict.has_key((nums[m],nums[i],nums[start],nums[end])): res_list.append([nums[m],nums[i],nums[start],nums[end]]) hash_dict[(nums[m],nums[i],nums[start],nums[end])]=1 start+=1 end-=1 elif nums[m]+nums[i]+nums[start]+nums[end]<target: start+=1 elif nums[m]+nums[i]+nums[start]+nums[end]>target: end-=1 return res_list
0e10bb119dad92159c84d65e61fbe16a80bca333
10f0193389a161c447061d06a87c4fae8fc31bb5
/huobi/model/orderupdatenew.py
51c567837fd5cfda68b30d5a52efdf3ac769b7be
[ "Apache-2.0" ]
permissive
neosun100/huobi_Python
1d9fca2c24673076516d582c263445c17626bd8e
70b280f751e6159b76f0cc43251896a754c1b559
refs/heads/master
2021-01-14T16:47:30.471992
2020-02-24T08:45:40
2020-02-24T08:45:40
242,685,209
0
0
Apache-2.0
2020-02-24T08:38:33
2020-02-24T08:38:32
null
UTF-8
Python
false
false
2,896
py
from huobi.model.constant import * class OrderUpdateNew: """ The detail order information. :member match_id: The Match id for make order. order_id: The order id. symbol: The symbol, like "btcusdt". state: The order state: submitted, partial-filled, cancelling, filled, canceled. role: value is taker or maker price: The limit price of limit order. order_type: The order type, possible values are: buy-market, sell-market, buy-limit, sell-limit, buy-ioc, sell-ioc, buy-limit-maker, sell-limit-maker. filled_amount: The amount which has been filled. filled_cash_amount: The filled total in quote currency. unfilled_amount: The amount which is unfilled. """ def __init__(self): self.match_id = 0 self.order_id = 0 self.symbol = "" self.state = OrderState.INVALID self.role = "" self.price = 0.0 self.filled_amount = 0.0 self.filled_cash_amount = 0.0 self.unfilled_amount = 0.0 self.client_order_id = "" self.order_type = OrderType.INVALID @staticmethod def json_parse(json_data): order_upd = OrderUpdateNew() order_upd.match_id = json_data.get_int("match-id") order_upd.order_id = json_data.get_int("order-id") order_upd.symbol = json_data.get_string("symbol") order_upd.state = json_data.get_string("order-state") order_upd.role = json_data.get_string("role") order_upd.price = json_data.get_float("price") order_upd.order_type = json_data.get_string("order-type") order_upd.filled_amount = json_data.get_float("filled-amount") order_upd.filled_cash_amount = json_data.get_float("filled-cash-amount") order_upd.unfilled_amount = json_data.get_float("unfilled-amount") order_upd.client_order_id = json_data.get_string("client-order-id") return order_upd def print_object(self, format_data=""): from huobi.base.printobject import PrintBasic PrintBasic.print_basic(self.match_id, format_data + "Match Id") PrintBasic.print_basic(self.order_id, format_data + "Order Id") PrintBasic.print_basic(self.symbol, format_data + "Symbol") PrintBasic.print_basic(self.state, format_data + "Order State") PrintBasic.print_basic(self.role, format_data + "Role") PrintBasic.print_basic(self.price, format_data + "Price") PrintBasic.print_basic(self.filled_amount, format_data + "Filled Amount") PrintBasic.print_basic(self.filled_cash_amount, format_data + "Filled Cash Amount") PrintBasic.print_basic(self.unfilled_amount, format_data + "Unfilled Amount") PrintBasic.print_basic(self.client_order_id, format_data + "Client Order Id") PrintBasic.print_basic(self.order_type, format_data + "Order Type")
1ad8e97dd542ba0a2310670381e40b114cef0bc8
cd67fbaec6ba71fdd10ac8dd23e034d7df706aa3
/bootstrap/urls.py
1db8a20ee1f67439cdb7324c6c4e7e6e93525396
[]
no_license
ssyctlm/feb27
009310d09bc866d7432576d4a867b63591009cbb
8c666cf584e1589d06be16ba8b1266cb27646f39
refs/heads/master
2020-04-25T15:16:55.957159
2019-03-19T13:41:07
2019-03-19T13:41:07
172,873,078
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
from django.urls import path from .views import ( index_view, about_view, services_view, contact_view ) # app_name = 'articles' urlpatterns = [ path('',index_view,name='home'), path('about',about_view,name = 'about'), path('services',services_view,name = 'services'), path('contact',contact_view,name = 'contact'), ]
[ "none" ]
none
720efd4d9680f6c52878542ad045aff577e5aa38
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/RecoBTag/Configuration/test/test_cfg.py
7fc7d9770ab2228f60b31accaf28c59b6b4e80a7
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
843
py
import FWCore.ParameterSet.Config as cms process = cms.Process("GeometryTest") process.load("Configuration.StandardSequences.Reconstruction_cff") process.load("Configuration.StandardSequences.FakeConditions_cff") process.load("Configuration.EventContent.EventContent_cff") process.load("Configuration.StandardSequences.MagneticField_cff") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('/store/relval/2008/5/20/RelVal-RelValTTbar-1211209682-FakeConditions-2nd/0000/08765709-5826-DD11-9CE8-000423D94700.root') ) process.RECO = cms.OutputModule("PoolOutputModule", process.AODSIMEventContent, fileName = cms.untracked.string('reco.root') ) process.p1 = cms.Path(process.btagging) process.p = cms.EndPath(process.RECO)
f9348d48ee596bc1cd89fca043043b4b52b931d2
b144c5142226de4e6254e0044a1ca0fcd4c8bbc6
/ixnetwork_restpy/testplatform/sessions/ixnetwork/impairment/profile/accumulateandburst/accumulateandburst.py
091ec9d83b6e627d30bda819aaea8952ba46111d
[ "MIT" ]
permissive
iwanb/ixnetwork_restpy
fa8b885ea7a4179048ef2636c37ef7d3f6692e31
c2cb68fee9f2cc2f86660760e9e07bd06c0013c2
refs/heads/master
2021-01-02T17:27:37.096268
2020-02-11T09:28:15
2020-02-11T09:28:15
239,721,780
0
0
NOASSERTION
2020-02-11T09:20:22
2020-02-11T09:20:21
null
UTF-8
Python
false
false
7,559
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class AccumulateAndBurst(Base): """Accumulates packets in a queue and transmit groups of packets as a burst. It can only be used on a profile if delayVariation and customDelayVariation are disabled. The AccumulateAndBurst class encapsulates a required accumulateAndBurst resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'accumulateAndBurst' def __init__(self, parent): super(AccumulateAndBurst, self).__init__(parent) @property def BurstSize(self): """Represents the burst octet size. The default value is 1014. Returns: number """ return self._get_attribute('burstSize') @BurstSize.setter def BurstSize(self, value): self._set_attribute('burstSize', value) @property def BurstSizeUnit(self): """The burst size unit is either megabytes or kilobytes. The default unit is kilobytes. Returns: str(kilobytes|kKilobytes|kMegabytes|megabytes) """ return self._get_attribute('burstSizeUnit') @BurstSizeUnit.setter def BurstSizeUnit(self, value): self._set_attribute('burstSizeUnit', value) @property def BurstTimeout(self): """The burst timeout.The default value is 5 seconds. Returns: str """ return self._get_attribute('burstTimeout') @BurstTimeout.setter def BurstTimeout(self, value): self._set_attribute('burstTimeout', value) @property def BurstTimeoutUnit(self): """Seconds(default) / milliseconds / mm:ss.fff time format. Returns: str(kMilliseconds|kSeconds|kTimeFormat|milliseconds|seconds|timeFormat) """ return self._get_attribute('burstTimeoutUnit') @BurstTimeoutUnit.setter def BurstTimeoutUnit(self, value): self._set_attribute('burstTimeoutUnit', value) @property def Enabled(self): """If true, received packets are queued and transmitted in bursts. Returns: bool """ return self._get_attribute('enabled') @Enabled.setter def Enabled(self, value): self._set_attribute('enabled', value) @property def InterBurstGap(self): """Tail to head (default) / Head to head. Returns: str(headToHead|kHeadToHead|kTailToHead|tailToHead) """ return self._get_attribute('interBurstGap') @InterBurstGap.setter def InterBurstGap(self, value): self._set_attribute('interBurstGap', value) @property def InterBurstGapValue(self): """The InterBurst gap value. The default value is 20 ms. Returns: number """ return self._get_attribute('interBurstGapValue') @InterBurstGapValue.setter def InterBurstGapValue(self, value): self._set_attribute('interBurstGapValue', value) @property def InterBurstGapValueUnit(self): """Seconds / milliseconds (default). Returns: str(kMilliseconds|kSeconds|milliseconds|seconds) """ return self._get_attribute('interBurstGapValueUnit') @InterBurstGapValueUnit.setter def InterBurstGapValueUnit(self, value): self._set_attribute('interBurstGapValueUnit', value) @property def PacketCount(self): """Represents the burst packet count. The default value is 1000 packets. Returns: number """ return self._get_attribute('packetCount') @PacketCount.setter def PacketCount(self, value): self._set_attribute('packetCount', value) @property def QueueAutoSize(self): """Gets the automatically calculated queue size when queueAutoSizeEnable is true or zero when queueAutoSizeEnable is false. Returns: number """ return self._get_attribute('queueAutoSize') @property def QueueAutoSizeEnabled(self): """Automatically calculate queue size. The default value is true. Returns: bool """ return self._get_attribute('queueAutoSizeEnabled') @QueueAutoSizeEnabled.setter def QueueAutoSizeEnabled(self, value): self._set_attribute('queueAutoSizeEnabled', value) @property def QueueSize(self): """The accumulate-and-burst queue size expressed in MB. The default value is 1. Returns: number """ return self._get_attribute('queueSize') @QueueSize.setter def QueueSize(self, value): self._set_attribute('queueSize', value) def update(self, BurstSize=None, BurstSizeUnit=None, BurstTimeout=None, BurstTimeoutUnit=None, Enabled=None, InterBurstGap=None, InterBurstGapValue=None, InterBurstGapValueUnit=None, PacketCount=None, QueueAutoSizeEnabled=None, QueueSize=None): """Updates a child instance of accumulateAndBurst on the server. Args: BurstSize (number): Represents the burst octet size. The default value is 1014. BurstSizeUnit (str(kilobytes|kKilobytes|kMegabytes|megabytes)): The burst size unit is either megabytes or kilobytes. The default unit is kilobytes. BurstTimeout (str): The burst timeout.The default value is 5 seconds. BurstTimeoutUnit (str(kMilliseconds|kSeconds|kTimeFormat|milliseconds|seconds|timeFormat)): Seconds(default) / milliseconds / mm:ss.fff time format. Enabled (bool): If true, received packets are queued and transmitted in bursts. InterBurstGap (str(headToHead|kHeadToHead|kTailToHead|tailToHead)): Tail to head (default) / Head to head. InterBurstGapValue (number): The InterBurst gap value. The default value is 20 ms. InterBurstGapValueUnit (str(kMilliseconds|kSeconds|milliseconds|seconds)): Seconds / milliseconds (default). PacketCount (number): Represents the burst packet count. The default value is 1000 packets. QueueAutoSizeEnabled (bool): Automatically calculate queue size. The default value is true. QueueSize (number): The accumulate-and-burst queue size expressed in MB. The default value is 1. Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals())
2582be4a1861d40ece795a0beb0a30470be1b7b5
1d49c3b135c04a58ca25fd9d8e7e073daa26ff51
/steam/pipelines.py
cefa2f6f0193df72b56a0b20af253b1ae532b675
[]
no_license
clioo/steam-scraping
08dabb1968080e1951cc9a1dac0279865fa24e8f
9f401e331dcecc51238fa1c52e9c6ffb4c6a483b
refs/heads/master
2022-10-05T23:33:16.544375
2020-06-05T17:42:56
2020-06-05T17:42:56
269,166,605
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
# -*- coding: utf-8 -*- class SteamPipeline(object): def process_item(self, item, spider): return item
531a249844fca891544a673ad19ecb26f8145614
9cb43a47faef0d3f5c7a6986cb2b21a0a89b6972
/file-operations-02/clonefootage.py
5e3b060fc83ff787e47778f2f1c91a95909bb04b
[]
no_license
fsiddi/generic-tools
3e0f2c7ecaf469dcb8f173e191cd7d891fff8bc6
432463ec468a695551d7093c4851d5248f1d7764
refs/heads/master
2021-03-12T19:56:53.373367
2013-01-13T14:17:15
2013-01-13T14:17:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,357
py
import subprocess import os import shutil FOLDER_SRC = "/Users/fsiddi/Desktop/clonefootage/footage_src" FOLDER_DST = "/Users/fsiddi/Desktop/clonefootage/footage_dst" for dirname, dirnames, filenames in os.walk(FOLDER_SRC): for filename in filenames: if "linear_hd" in dirname: filename_src = os.path.join(dirname, filename) dirname_dst = dirname.replace(FOLDER_SRC, FOLDER_DST) ''''if filename.endswith(".png"): if not os.path.exists(dirname_dst): os.makedirs(dirname_dst) filename_jpg = filename.replace(".png", ".jpg") filename_dst = os.path.join(dirname_dst, filename_jpg) print filename_src + " >> " + filename_dst elif filename.endswith(".jpg"): if not os.path.exists(dirname_dst): os.makedirs(dirname_dst) filename_dst = os.path.join(dirname_dst, filename) print filename_src + " >> " + filename_dst''' if filename.endswith(".exr"): if not os.path.exists(dirname_dst): #pass os.makedirs(dirname_dst) filename_dst = os.path.join(dirname_dst, filename) if not os.path.exists(filename_dst): print filename_src + " >> " + filename_dst shutil.copy(filename_src, filename_dst) else: print "skipping " + filename_src else: pass #subprocess.call(["convert", filename_src, "-resize", "1280x1280", filename_dst]) else: print "skipping " + dirname
a2ac5030018622f024f8ca2435442ccd4f597f21
8ffc07a5240be5e6bb3106b20e11aee38cb8808a
/syloga/utils/symbols.py
aaf3a96c6a1d1b704aa3654833e56b44a3d8a098
[ "MIT" ]
permissive
xaedes/python-symbolic-logic-to-gate
315a242d2000123bf09ea15a439dc6437ea457cb
a0dc9be9e04290008cf709fac789d224ab8c14b0
refs/heads/main
2023-09-02T15:37:53.750722
2021-11-08T12:51:51
2021-11-08T12:51:51
425,550,839
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
from syloga.ast.core import Symbol from syloga.ast.containers import Tuple def symbols(string): return Tuple(*map(Symbol,string.split(" ")))
fc6b16aacd2c5eb9924c98c120e85092a8d4ec26
233b2958c853dc57dfa5d54caddbc1520dcc35c8
/ava/cmds/pod.py
51fe03691017ccf91af0b199173ecdc252918607
[]
no_license
eavatar/ava.node
6295ac6ed5059ebcb6ce58ef6e75adf1bfa24ed7
71e3304d038634ef13f44d245c3838d276a275e6
refs/heads/master
2021-01-19T06:13:01.127585
2015-06-03T03:10:59
2015-06-03T03:10:59
33,645,210
0
0
null
null
null
null
UTF-8
Python
false
false
1,159
py
# -*- coding: utf-8 -*- """ Command for managing local pod directory. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import os import shutil import click from ava.runtime import environ from .cli import cli @cli.group() def pod(): """ Pod management. """ pass @pod.command() @click.argument("folder", type=click.Path(exists=False)) def init(folder): """ Constructs the skeleton of directories if it not there already. :return: """ if os.path.exists(folder): click.echo("Folder %s is not empty!" % folder, err=True) return os.makedirs(folder) src_dir = environ.pod_dir() # copy files from base_dir to user_dir subdirs = os.listdir(src_dir) for d in subdirs: src_path = os.path.join(src_dir, d) dst_path = os.path.join(folder, d) if os.path.isdir(src_path): shutil.copytree(src_path, dst_path) else: shutil.copy2(src_path, dst_path) @pod.command() def open(): """ Open Pod folder in a file explorer or the like. """ click.launch(environ.pod_dir())
64765314abb3f1daa11e18f0f3f06465242daf37
ed0ead8389adb7cd81ade57f972afea7de896ffc
/haffa/Badge.py
14d280ec8b20140e125365d399cdae00e046556e
[]
no_license
rblack42/haffa
4e55664e1274b9ceec25fdfbc4603a03592229c0
526814e4024c1289cb2a79115d173772c82b5a88
refs/heads/master
2022-11-18T14:00:52.443335
2020-07-12T13:28:55
2020-07-12T13:28:55
273,238,463
0
0
null
null
null
null
UTF-8
Python
false
false
3,706
py
from svgelements import * from Shapes import paths, boxes from svgelements import Path SVGDIR = "svg" class Badge(object): def __init__(self, height): """ load shape and position data""" print("Generating SVG file for height %d" % height) self.paths = paths self.boxes = boxes def normalize(self, path): """ normalize path to height of 1000""" box = path.bbox() x1, y1, x2, y2 = box dx = x2 - x1 dy = y2 - y1 scale = 1000 / dy t = "translate(%s,%s)" % (-x1, -y1) s = "scale(%s)" % scale tp = path * t sp = tp * s return sp def transform(self, shape, x, y, w, h): print("transforming", x, y, w, h) bbox = shape.bbox() print(bbox) x1, y1, x2, y2 = bbox bdx = x2 - x1 bdy = y2 - y1 scalex = w/bdx scaley = h/bdy print(bdx, bdy) s = 'scale(%s,%s)' % (scalex, scaley) t = 'translate(%s,%s)' % (x, y) print(s, t) sc = shape * s tc = sc * t return tc def gen_raw_svg(self): """generate standard view of shapes""" for s in self.paths: shape_path = paths[s] sp = Path(shape_path) sp = self.normalize(sp) bb = sp.bbox() x1, y1, x2, y2 = bb dx = x2 - x1 dy = y2 - y1 sp = self.transform(sp, 20, 20, dx*0.6, dy*0.6) d = sp.d() db = "M 20,20 h %s v %s H 20 V 20 Z" % (dx*0.6, dy*0.6) svg = """<svg width="%d" height="%d" xmlns="http://www.w3.org/2000/svg" >""" % (dx, dy) svg += """ <path style="fill:none" stroke="black" stroke-width="3" d="%s" />""" % db svg += """ <path style="fill:none" stroke="red" stroke-width="3" d="%s" />""" % d svg += """" </svg>""" fname = "%s/raw_%s.svg" % (SVGDIR, s) with open(fname, "w") as fout: fout.write(svg) def gen_placement(self): cx1, cy1, cx2, cy2 = self.boxes["canvas"] width = cx2 - cx1 + 10 height = cy2 - cy1 + 10 svg = """<svg width="%d" height="%d" xmlns="http://www.w3.org/2000/svg" >""" % (width, height) for b in self.boxes: if b == "canvas": continue shape = b if len(b) == 2: shape = shape[0] print("placing ", b, " with shape: ", shape) path = self.paths[shape] x1, y1, x2, y2 = self.boxes[b] w = x2 - x1 h = y2 - y1 print(x1, y1, x2, y2, w, h) sp = Path(path) sp = self.normalize(sp) sp = self.transform(sp, x1, y1, w, h) print("shape box:", sp.bbox()) d = sp.d() svg += """ <rect x="%d" y="%d" width="%d" height="%d" stroke="black" stroke-width="2" fill="none" />""" % (x1, y1, w, h) svg += """ <path style="fill:none" stroke="red" stroke-width="3" d="%s" />""" % d svg += "</svg>" with open("svg/layout.svg", "w") as fout: fout.write(svg) def get_logo_placement(self, size): """calculate scale and x,y to fit in circle of radius=size""" x1, y1, x2, y2 = boxes["canvas"] width = x2 - x1 height = y2 - y1 ar = width / height if __name__ == "__main__": l = Logo(1000) heart = paths["heart"] bbox = boxes["heart"] print(heart) p = Path(heart) print(p.d()) print(p.bbox()) x1, y1, x2, y2 = bbox print(x1, y1, x2, y2) l.gen_raw_svg() l.gen_placement()
acb8348fecf068802da63c27c4edb3dfd4a38d12
95495baeb47fd40b9a7ecb372b79d3847aa7a139
/test/test_i_ospfv3_neighbor_configuration.py
63449143673653979dfb3179399a45495a40dc62
[]
no_license
pt1988/fmc-api
b1d8ff110e12c13aa94d737f3fae9174578b019c
075f229585fcf9bd9486600200ff9efea5371912
refs/heads/main
2023-01-07T09:22:07.685524
2020-10-30T03:21:24
2020-10-30T03:21:24
308,226,669
0
0
null
null
null
null
UTF-8
Python
false
false
1,308
py
# coding: utf-8 """ Cisco Firepower Management Center Open API Specification **Specifies the REST URLs and methods supported in the Cisco Firepower Management Center API. Refer to the version specific [REST API Quick Start Guide](https://www.cisco.com/c/en/us/support/security/defense-center/products-programming-reference-guides-list.html) for additional information.** # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.i_ospfv3_neighbor_configuration import IOspfv3NeighborConfiguration # noqa: E501 from swagger_client.rest import ApiException class TestIOspfv3NeighborConfiguration(unittest.TestCase): """IOspfv3NeighborConfiguration unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIOspfv3NeighborConfiguration(self): """Test IOspfv3NeighborConfiguration""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.i_ospfv3_neighbor_configuration.IOspfv3NeighborConfiguration() # noqa: E501 pass if __name__ == '__main__': unittest.main()
f7e0ca4f8faa4f0f72846a1c2ba9af5e5b7bac40
2f36dc886195b67fd6fe0de48984e0268b3e0d71
/invoke_retry/code/src/zato/invoke_retry/__init__.py
762926718385ed9c1c066b15d87f47485bebbe93
[]
no_license
aek/zato-labs
84d52b3d1eea515c91fa6e7d4a439af3ee35ca05
302e40b8825f8fba5e3ea065280af742904fb25b
refs/heads/master
2020-12-26T08:17:38.664195
2014-02-16T21:30:27
2014-02-16T21:30:27
16,894,545
0
1
null
null
null
null
UTF-8
Python
false
false
9,393
py
# -*- coding: utf-8 -*- """ Copyright (C) 2013 Dariusz Suchojad <dsuch at zato.io> Licensed under LGPLv3, see LICENSE.txt for terms and conditions. """ # stdlib from traceback import format_exc # anyjson from anyjson import dumps, loads # bunch from bunch import Bunch # gevent from gevent import sleep, spawn, spawn_later # Zato from zato.common import ZatoException from zato.server.service import Service def _retry_failed_msg(so_far, retry_repeats, service_name, retry_seconds, orig_cid, e): return '({}/{}) Retry failed for:[{}], retry_seconds:[{}], orig_cid:[{}], e:[{}]'.format( so_far, retry_repeats, service_name, retry_seconds, orig_cid, format_exc(e)) def _retry_limit_reached_msg(retry_repeats, service_name, retry_seconds, orig_cid): return '({}/{}) Retry limit reached for:[{}], retry_seconds:[{}], orig_cid:[{}]'.format( retry_repeats, retry_repeats, service_name, retry_seconds, orig_cid) class NeedsRetry(ZatoException): def __init__(self, cid, inner_exc): self.cid = cid self.inner_exc = inner_exc def __repr__(self): return '<{} at {} cid:[{}] inner_exc:[{}]>'.format( self.__class__.__name__, hex(id(self)), self.cid, format_exc(self.inner_exc) if self.inner_exc else None) class RetryFailed(ZatoException): def __init__(self, remaining, inner_exc): self.remaining = remaining self.inner_exc = inner_exc def __repr__(self): return '<{} at {} remaining:[{}] inner_exc:[{}]>'.format( self.__class__.__name__, hex(id(self)), self.remaining, format_exc(self.inner_exc) if self.inner_exc else None) class _InvokeRetry(Service): name = 'zato.labs._invoke-retry' def _retry(self, remaining): try: response = self.invoke(self.req_bunch.target, *self.req_bunch.args, **self.req_bunch.kwargs) except Exception, e: msg = _retry_failed_msg( (self.req_bunch.retry_repeats-remaining)+1, self.req_bunch.retry_repeats, self.req_bunch.target, self.req_bunch.retry_seconds, self.req_bunch.orig_cid, e) self.logger.info(msg) raise RetryFailed(remaining-1, e) else: return response def _notify_callback(self, is_ok): callback_request = { 'ok': is_ok, 'orig_cid': self.req_bunch.orig_cid, 'target': self.req_bunch.target, 'retry_seconds': self.req_bunch.retry_seconds, 'retry_repeats': self.req_bunch.retry_repeats, 'context': self.req_bunch.callback_context } self.invoke_async(self.req_bunch.callback, dumps(callback_request)) def _on_retry_finished(self, g): """ A callback method invoked when a retry finishes. Will decide whether it should be attempted to retry the invocation again or give up notifying the uses via callback service if retry limit is reached. """ # Was there any exception caught when retrying? e = g.exception if e: # Can we retry again? if e.remaining: g = spawn_later(self.req_bunch.retry_seconds, self._retry, e.remaining) g.link(self._on_retry_finished) # Reached the limit, warn users in logs, notify callback service and give up. else: msg = _retry_limit_reached_msg(self.req_bunch.retry_repeats, self.req_bunch.target, self.req_bunch.retry_seconds, self.req_bunch.orig_cid) self.logger.warn(msg) self._notify_callback(False) # Let the callback know it's all good else: self._notify_callback(True) def handle(self): # Convert to bunch so it's easier to read everything self.req_bunch = Bunch(loads(self.request.payload)) # Initial retry linked to a retry callback g = spawn(self._retry, self.req_bunch.retry_repeats) g.link(self._on_retry_finished) class InvokeRetry(Service): """ Provides invoke_retry service that lets one invoke service with parametrized retries. """ name = 'zato.labs.invoke-retry' def _get_retry_settings(self, target, **kwargs): async_fallback = kwargs.get('async_fallback') callback = kwargs.get('callback') callback_context = kwargs.get('callback_context') retry_repeats = kwargs.get('retry_repeats') retry_seconds = kwargs.get('retry_seconds') retry_minutes = kwargs.get('retry_minutes') if async_fallback: items = ('callback', 'retry_repeats') for item in items: value = kwargs.get(item) if not value: msg = 'Could not invoke [{}], {}:[{}] was not given'.format(target, item, value) self.logger.error(msg) raise ValueError(msg) if retry_seconds and retry_minutes: msg = 'Could not invoke [{}], only one of retry_seconds:[{}] and retry_minutes:[{}] can be given'.format( target, retry_seconds, retry_minutes) self.logger.error(msg) raise ValueError(msg) if not(retry_seconds or retry_minutes): msg = 'Could not invoke [{}], exactly one of retry_seconds:[{}] or retry_minutes:[{}] must be given'.format( target, retry_seconds, retry_minutes) self.logger.error(msg) raise ValueError(msg) try: self.server.service_store.name_to_impl_name[callback] except KeyError, e: msg = 'Service:[{}] does not exist, e:[{}]'.format(callback, format_exc(e)) self.logger.error(msg) raise ValueError(msg) # Get rid of arguments our superclass doesn't understand for item in('async_fallback', 'callback', 'callback_context', 'retry_repeats', 'retry_seconds', 'retry_minutes'): kwargs.pop(item, True) # Note that internally we use seconds only. return async_fallback, callback, callback_context, retry_repeats, retry_seconds or retry_minutes * 60, kwargs def _invoke_async_retry(self, target, retry_repeats, retry_seconds, orig_cid, callback, callback_context, args, kwargs): # Request to invoke the background service with .. retry_request = { 'target': target, 'retry_repeats': retry_repeats, 'retry_seconds': retry_seconds, 'orig_cid': orig_cid, 'callback': callback, 'callback_context': callback_context, 'args': args, 'kwargs': kwargs } return self.invoke_async(_InvokeRetry.get_name(), dumps(retry_request)) def invoke_async_retry(self, target, *args, **kwargs): async_fallback, callback, callback_context, retry_repeats, retry_seconds, kwargs = self._get_retry_settings(target, **kwargs) return self._invoke_async_retry(target, retry_repeats, retry_seconds, self.cid, callback, callback_context, args, kwargs) def invoke_retry(self, target, *args, **kwargs): async_fallback, callback, callback_context, retry_repeats, retry_seconds, kwargs = self._get_retry_settings(target, **kwargs) # Let's invoke the service and find out if it works, maybe we don't need # to retry anything. try: result = self.invoke(target, *args, **kwargs) except Exception, e: msg = 'Could not invoke:[{}], cid:[{}], e:[{}]'.format(target, self.cid, format_exc(e)) self.logger.warn(msg) # How we handle the exception depends on whether the caller wants us # to block or prefers if we retry in background. if async_fallback: # .. invoke the background service and return CID to the caller. cid = self._invoke_async_retry(target, retry_repeats, retry_seconds, self.cid, callback, callback_context, args, kwargs) raise NeedsRetry(cid, e) # We are to block while repeating else: # Repeat the given number of times sleeping for as many seconds as we are told remaining = retry_repeats result = None while remaining > 0: try: result = self.invoke(target, *args, **kwargs) except Exception, e: msg = _retry_failed_msg((retry_repeats-remaining)+1, retry_repeats, target, retry_seconds, self.cid, e) self.logger.info(msg) sleep(retry_seconds) remaining -= 1 # OK, give up now, there's nothing more we can do if not result: msg = _retry_limit_reached_msg(retry_repeats, target, retry_seconds, self.cid) self.logger.warn(msg) raise ZatoException(None, msg) else: # All good, simply return the response return result
0030fcf22dbc77c896437faa18ec33a89a2f6c56
29625c33dc9642d984d7cf68763d57a9de62743e
/Bot/cogs/snipe.py
cd84e9a5d14d06e388ec6620f7a1eaee678360d7
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
DevRKJha/EpicBot
7fe508d828ad6cde087213cdd1fbb3a480529905
33eb8b7d5ee1120865da91b9a31dc559657c318c
refs/heads/main
2023-06-07T14:12:26.975039
2021-07-04T09:51:53
2021-07-04T09:51:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,698
py
import discord from discord.ext import commands class Snipe(commands.Cog): def __init__(self, client): self.client = client self.client.sniped_messages = {} self.client.edit_sniped_messages = {} @commands.Cog.listener() async def on_message_delete(self, message): if message.author.bot: return self.client.sniped_messages[message.guild.id, message.channel.id] = ( message.content, message.author, message.channel.name, message.created_at, message.attachments) @commands.Cog.listener() async def on_message_edit(self, before, after): if before.author.bot: return self.client.edit_sniped_messages[before.guild.id, before.channel.id] = ( before.content, after.content, before.author, before.channel.name ) @commands.command(aliases=['s']) async def snipe(self, ctx): try: contents, author, channel_name, time, attachments = self.client.sniped_messages[ ctx.guild.id, ctx.channel.id] files = "" for file in attachments: files += f"[{file.filename}]({file.proxy_url})" + "\n" embed = discord.Embed( description=contents, color=0x00FFFF, timestamp=time) embed.set_author( name=f"{author.name}#{author.discriminator}", icon_url=author.avatar_url) embed.add_field( name="Attachments", value=files[:-1] if len(attachments) != 0 else "None" ) embed.set_footer(text=f"Deleted in #{channel_name}") await ctx.send(embed=embed) except: await ctx.send("No messages were deleted here.") @commands.command(aliases = ['es']) async def editsnipe(self, ctx): try: before_content, after_content, author, channel_name = self.client.edit_sniped_messages[ctx.guild.id, ctx.channel.id] embed = discord.Embed(description = f"**Before:**\n{before_content}\n\n**After:**\n{after_content}", color=0x00FFFF) embed.set_author(name=f"{author.name}#{author.discriminator}", icon_url=author.avatar_url) embed.set_footer(text=f"Edited in #{channel_name}") await ctx.send(embed=embed) except: await ctx.send("No messages were edited here.") def setup(client): client.add_cog(Snipe(client))
bdc0e3f4bf90ef80c3e1cbf6474771ad81912cc5
be1762141886e27e2e542324ffb4650546aee58d
/setup.py
24ce1ea64205555595d2b03b54e784c4b012fea5
[]
no_license
rgleason/pypilot
71c2aad9a9894c84a1a9819078887ea041ff0e7b
66eabcc63a11c96b84f58588c87b6ef710ed5826
refs/heads/master
2023-06-12T09:26:42.846470
2021-06-29T06:38:37
2021-06-29T06:39:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,879
py
#!/usr/bin/env python # # Copyright (C) 2017 Sean D'Epagnier # # This Program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. import sys import os, os.path if sys.version_info[0] < 3: print('pypilot requires python version 3. python version is', sys.version) exit(1) if not os.path.exists('deps'): import dependencies try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension linebuffer_module = Extension('pypilot/linebuffer/_linebuffer', sources=['pypilot/linebuffer/linebuffer.cpp', 'pypilot/linebuffer/linebuffer.i'], extra_compile_args=['-Wno-unused-result'], swig_opts=['-c++'] ) arduino_servo_module = Extension('pypilot/arduino_servo/_arduino_servo', sources=['pypilot/arduino_servo/arduino_servo.cpp', 'pypilot/arduino_servo/arduino_servo_eeprom.cpp', 'pypilot/arduino_servo/arduino_servo.i'], extra_compile_args=['-Wno-unused-result'], swig_opts=['-c++'] ) ugfx_defs = ['-DWIRINGPI'] try: import RPi.GPIO ugfx_libraries=['wiringPi'] except: try: import OPi.GPIO ugfx_libraries=['wiringPi'] except: print('no RPi.GPIO library for ugfx') ugfx_libraries=[] ugfx_defs = [] ugfx_module = Extension('pypilot/hat/ugfx/_ugfx', sources=['hat/ugfx/ugfx.cpp', 'hat/ugfx/ugfx.i'], extra_compile_args=['-Wno-unused-result'] + ugfx_defs, libraries=ugfx_libraries, swig_opts=['-c++'] + ugfx_defs ) locale_files = [] for walk in os.walk('hat/locale'): path, dirs, files = walk path = path[len('hat/'):] for file in files: if file[len(file)-3:] == '.mo': locale_files.append(os.path.join(path, file)) from pypilot import version packages = ['pypilot', 'pypilot/pilots', 'pypilot/arduino_servo', 'ui', 'hat', 'web', 'pypilot/linebuffer', 'hat/ugfx'] try: from setuptools import find_packages packages = find_packages() except: pass # ensure all packages are under pypilot package_dirs = {} for package in list(packages): if not package.startswith('pypilot'): packages.remove(package) packages.append('pypilot.'+package) package_dirs['pypilot.'+package] = package.replace('.', '/') setup (name = 'pypilot', version = version.strversion, description = 'pypilot sailboat autopilot', license = 'GPLv3', author="Sean D'Epagnier", url='http://pypilot.org/', packages=packages, package_dir=package_dirs, ext_modules = [arduino_servo_module, linebuffer_module, ugfx_module], package_data={'pypilot.hat': ['font.ttf', 'static/*', 'templates/*'] + locale_files, 'pypilot.ui': ['*.png', '*.mtl', '*.obj'], 'pypilot.web': ['static/*', 'templates/*']}, entry_points={ 'console_scripts': [ 'pypilot=pypilot.autopilot:main', 'pypilot_boatimu=pypilot.boatimu:main', 'pypilot_servo=pypilot.servo:main', 'pypilot_web=pypilot.web.web:main', 'pypilot_hat=pypilot.hat.hat:main', 'pypilot_control=pypilot.ui.autopilot_control:main', 'pypilot_calibration=pypilot.ui.autopilot_calibration:main', 'pypilot_client=pypilot.client:main', 'pypilot_scope=pypilot.ui.scope_wx:main', 'pypilot_client_wx=pypilot.ui.client_wx:main' ] } )
73bc81c737025f384a2d55f27dbb83a3292b5dc9
ba9387ad04a79e5e89204b2f292d01323c7198ad
/backend/chat_user_profile/migrations/0001_initial.py
89ad1019538532877afb9c0211c55783492d29f1
[]
no_license
crowdbotics-apps/message52-19836
b9ec7d032a1548ba71153c443486a3b7c38da5f9
fde8c1c0b0de9e939e156e29bb2cb4dce1607cad
refs/heads/master
2022-12-04T23:48:19.002965
2020-08-28T02:37:50
2020-08-28T02:37:50
290,932,742
0
0
null
null
null
null
UTF-8
Python
false
false
2,659
py
# Generated by Django 2.2.15 on 2020-08-28 02:37 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('mobile_number', models.CharField(max_length=20)), ('pin', models.CharField(max_length=100)), ('photo', models.URLField()), ('status', models.CharField(max_length=50)), ('birthdate', models.DateField()), ('gender', models.CharField(max_length=1)), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('last_updated', models.DateTimeField(auto_now=True)), ('last_login', models.DateTimeField()), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='VerificationCode', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=255)), ('is_verified', models.BooleanField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('timestamp_verified', models.DateTimeField()), ('sent_to', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='verificationcode_sent_to', to='chat_user_profile.Profile')), ], ), migrations.CreateModel( name='Contact', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('is_blocked', models.BooleanField()), ('is_favorite', models.BooleanField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('added_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='contact_added_by', to=settings.AUTH_USER_MODEL)), ('added_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='contact_added_profile', to='chat_user_profile.Profile')), ], ), ]
016c75557647665c5a3773b8cf354ade5c11502f
941c912f44beff33a072e086c1f561f6cdd64626
/LeetCode/codes/22.py
84f0db4955118accd480b9d684a7ae03a363e1dc
[]
no_license
adreena/MyStudyCorner
3a13a743769ed144965b767f547c16df4d0fa0dd
355c0dbd32ad201800901f1bcc110550696bc96d
refs/heads/master
2023-02-20T07:39:32.391421
2021-01-25T01:46:21
2021-01-25T01:46:21
255,104,133
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
# time catalan numbers (2n n)*1/n # space: catalan numbers class Solution: def generateParenthesis(self, n: int) -> List[str]: self.outputs = [] def helper(n_left, n_right, output): if n_left == 0 and n_right == 0: self.outputs.append(output) else: if n_left>0: helper(n_left-1, n_right, output+'(') if n_right>n_left: helper(n_left, n_right-1, output+')') helper(n,n,'') return self.outputs
c114e9e4c5fbe43f5efbc36d8ddc04c35dd32490
af82475dc7eb45c478414372c222e7b6016359d4
/python书籍/Python For Finance Code/Code of Python For Finance/4375OS_08_Code/4375OS_08_12_Series.py
f279f6cc3587504d87af31fda1b21a119cea0200
[]
no_license
enfangzhong/PythonBaseCode
8f58c8b817eb9f4b0f0a5be437a52d5b5fab3433
9ab4a578b2692fdbb6aeeacb310251d51f72e953
refs/heads/master
2020-05-17T16:26:02.598344
2019-04-27T20:49:40
2019-04-27T20:49:40
183,817,172
4
1
null
null
null
null
UTF-8
Python
false
false
365
py
""" Name : 4375OS_08_12_Series.py Book : Python for Finance Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 12/26/2013 email : [email protected] [email protected] """ import pandas as pd x = pd.date_range('1/1/2013', periods=252) data = pd.Series(randn(len(x)), index=x) print data.head() print data.tail()
5f78d5f22130ef95b5451dbb67e83853d93a80b0
a6566ebc69ed5e7a17e2091bdb10e7b6523eefc9
/py/notifier/config.py
49ae8e99337c9f08bbbe648c1ba901d19f2924d8
[ "MIT" ]
permissive
mabotech/mabo.task
916e71650b45a24bb3852206a3755a7fd0342e47
96752a5ae94349a46e3b6f9369cc0933d5e37be0
refs/heads/master
2020-06-05T13:05:02.768838
2015-11-29T08:18:10
2015-11-29T08:18:10
23,750,849
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
import toml from singleton import Singleton class Config(object): __metacass__ = Singleton def __init__(self): conf_fn = "conf.toml" with open(conf_fn) as conf_fh: toml_str = conf_fh.read() self.conf = toml.loads(toml_str) def get_conf(self): return self.conf
a08866fdeb02d1584aca3775017ebe2a118292d7
04252676935223f4d03eff0393ba921cb00be1e5
/api/__init__.py
59d9087892b08ac0854226a2346b05ea5f5dff99
[]
no_license
kongp3/cross4u
4083aec3e5fe9de1d351d25609cbdf996df6abe3
8bd4dcfe8ae8fee5a3f169428b138b1294633da0
refs/heads/master
2020-11-29T23:11:17.838675
2019-12-30T06:56:20
2019-12-30T06:56:20
230,235,707
0
0
null
2019-12-26T09:33:09
2019-12-26T09:31:52
Python
UTF-8
Python
false
false
1,419
py
# -*- coding: utf-8 -*- import traceback from flask import jsonify from functools import wraps class RestResponse(object): """ 标准的接口Response类, 所有的api必须返回这个类的对象, 以便统一处理返回 """ def __init__(self,): pass def fail(self, code=500, message="Server Got A Exception"): d = {'meta': { 'success': False, 'status_code': code, 'message': message }} json_response = jsonify(d, ) return json_response def success(self, code=200, data=None): d = {'meta': { 'success': True, 'status_code': code, 'message': "Requset Successes" }, 'data': data} json_response = jsonify(d) return json_response def error_handler(f): """ 统一处理异常和返回错误信息, 增加了未知的耦合 就目前来看还是没问题的 :param f: :return: """ @wraps(f) def decorated_function(*args, **kwargs): response = RestResponse() try: result = f(response=response, *args, **kwargs) return result except ValueError as e: traceback.print_exc(limit=5) return response.fail(400, e.message) except Exception as e: traceback.print_exc(limit=5) return response.fail(500, message=e.message) return decorated_function
[ "kongp3@outlook" ]
kongp3@outlook
f63660d7a58a51a6d96d21c74bf21e35e3469584
6bfda75657070e177fa620a43c917096cbd3c550
/kubernetes/test/test_v1_job_status.py
f929582f971cf175bfa94a502d44fde0352fba4f
[ "Apache-2.0" ]
permissive
don41382/client-python
8e7e747a62f9f4fc0402eea1a877eab1bb80ab36
e69d4fe204b98f7d7ee3ada3996b4f5fbceae5fe
refs/heads/master
2021-01-19T23:15:50.172933
2017-04-18T18:00:48
2017-04-18T18:00:48
88,943,866
0
0
null
2017-04-21T05:19:52
2017-04-21T05:19:52
null
UTF-8
Python
false
false
827
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.6.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1_job_status import V1JobStatus class TestV1JobStatus(unittest.TestCase): """ V1JobStatus unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1JobStatus(self): """ Test V1JobStatus """ model = kubernetes.client.models.v1_job_status.V1JobStatus() if __name__ == '__main__': unittest.main()
4e2a5aac3f2d8596ac600f55307f6e113b1f375b
71da259f71428648d4285b1b4863ec2b7641e58c
/ecom/website/filters.py
561533e588086d70c2830bed74278b2c4dbe38da
[]
no_license
rafimuhammad01/e-com
8a58d0ccff27516da260b41c180c703fa22e76b3
75d451bfc10075090d88d5a16dbd03f626ff72ef
refs/heads/master
2023-02-18T08:48:26.144483
2021-01-15T08:56:54
2021-01-15T08:56:54
291,625,792
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
import django_filters from .models import Product class ProductFilter(django_filters.FilterSet) : class Meta: model = Product fields = { 'price' : ['lt', 'gt'], 'review__rate' : ['iexact'] } class ProductSearch(django_filters.FilterSet) : class Meta: model = Product fields = { 'name' : ['icontains'], }
6d5a2f9b2ddc3bfe891a3c7d27a364e5c4cb78eb
cdbb11473dc8d34767a5916f9f85cb68eb2ca3f2
/sde/migrations/0036_auto_20180729_1518.py
a313a94deec723d4c8b6e96c080fc6923b8eec30
[]
no_license
skyride/evestats
fb2a1a248952771731dcfecadab7d02b1f08cd4b
4bd2153f65c084b478272513733dcc78f9a0ef98
refs/heads/master
2020-03-23T13:50:19.216870
2018-08-05T19:19:47
2018-08-05T19:19:47
141,640,834
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
# Generated by Django 2.0.7 on 2018-07-29 15:18 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('sde', '0035_auto_20180729_1456'), ] operations = [ migrations.RemoveField( model_name='attributetype', name='unit_id', ), migrations.AddField( model_name='attributetype', name='unit', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='sde.Unit'), ), ]
693b5d23fcf762329e9caaaf81cb5e80096e70d6
f26d67e3e9f8b90e5d6243279a1c2ce87fa41d46
/src/prodstats/cq/tasks.py
f48b077503fffa1d9e9d88a31617f973023e977b
[ "MIT" ]
permissive
OCB-DS/prodstats
cf554e3abee651463e9f81606d4b633f464658a7
4ff5a6e0b0d6152af2d7e1f3844ede2d33ad4824
refs/heads/master
2022-11-25T15:30:06.988683
2020-08-02T16:08:05
2020-08-02T16:08:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,803
py
import asyncio import itertools from datetime import timedelta from typing import Coroutine, Dict, List, Union import pandas as pd from celery.utils.log import get_task_logger from celery.utils.time import humanize_seconds import calc.prod # noqa import config as conf import cq.signals # noqa import cq.util import db.models import ext.metrics as metrics import util from collector import IHSClient from const import HoleDirection, IHSPath, Provider from cq.worker import celery_app from executors import BaseExecutor, GeomExecutor, ProdExecutor, WellExecutor # noqa logger = get_task_logger(__name__) RETRY_BASE_DELAY = 15 # TODO: add retries # TODO: tenacity? # TODO: asynchronously fracture failed batches # TODO: circuit breakers? # TODO: add task meta @celery_app.task def log(): """Print some log messages""" logger.warning("task-check") @celery_app.task def smoke_test(): """ Verify an arbitrary Celery task can run """ return "verified" def run_executors( hole_dir: HoleDirection, api14s: List[str] = None, api10s: List[str] = None, executors: List[BaseExecutor] = None, batch_size: int = None, log_vs: float = None, log_hs: float = None, ): executors = executors or [WellExecutor, GeomExecutor, ProdExecutor] batch_size = batch_size or conf.TASK_BATCH_SIZE if api14s is not None: id_name = "api14s" ids = api14s elif api10s is not None: id_name = "api10s" ids = api10s else: raise ValueError("One of [api14s, api10s] must be specified") # TODO: move chunking to run_executor? for idx, chunk in enumerate(util.chunks(ids, n=batch_size)): for executor in executors: kwargs = { "hole_dir": hole_dir, "executor_name": executor.__name__, id_name: chunk, } countdown = cq.util.spread_countdown(idx, vs=log_vs, hs=log_hs) logger.info( f"({executor.__name__}[{hole_dir.value}]) submitting task: {id_name}={len(chunk)} countdown={countdown}" # noqa ) run_executor.apply_async( args=[], kwargs=kwargs, countdown=countdown, ignore_result=False, routing_key=hole_dir, ) @celery_app.task(is_eager=True) def post_heartbeat(): """ Send heartbeat to metrics backend""" return metrics.post_heartbeat() @celery_app.task def run_executor(hole_dir: HoleDirection, executor_name: str, **kwargs): # logger.warning(f"running {executor_name=} {hole_dir=} {kwargs=}") executor = globals()[executor_name] count, dataset = executor(hole_dir).run(**kwargs) @celery_app.task def run_next_available( hole_dir: Union[HoleDirection, str], force: bool = False, **kwargs ): """ Run next available area """ # TODO: set task meta hole_dir = HoleDirection(hole_dir) async def coro(): # await db.startup() # hole_dir = HoleDirection.H # TODO: move to Router if hole_dir == HoleDirection.H: ids_path = IHSPath.well_h_ids else: ids_path = IHSPath.well_v_ids area_obj, attr, is_ready, cooldown_hours = await db.models.Area.next_available( hole_dir ) utcnow = util.utcnow() prev_run = getattr(area_obj, attr) if is_ready or force: api14s: List[str] = await IHSClient.get_ids_by_area( path=ids_path, area=area_obj.area ) # pull from IDMaster once implmented # api14s = api14s[:10] run_executors(hole_dir=hole_dir, api14s=api14s, **kwargs) await area_obj.update(**{attr: utcnow}).apply() prev_run = ( prev_run.strftime(util.dt.formats.no_seconds) if prev_run else None ) utcnow = utcnow.strftime(util.dt.formats.no_seconds) print( f"({db.models.Area.__name__}[{hole_dir}]) updated {area_obj.area}.{attr}: {prev_run} -> {utcnow}" # noqa ) else: next_run_in_seconds = ( (prev_run + timedelta(hours=cooldown_hours)) - utcnow ).total_seconds() print( f"({db.models.Area.__name__}[{hole_dir}]) Skipping {area_obj.area} next available for run in {humanize_seconds(next_run_in_seconds)}" # noqa ) # noqa return util.aio.async_to_sync(coro()) @celery_app.task() def sync_area_manifest(): # FIXME: change to use Counties endpoint (and add Counties endpoint to IHS service :/) # noqa """ Ensure the local list of areas is up to date """ loop = asyncio.get_event_loop() async def wrapper(path: IHSPath, hole_dir: HoleDirection) -> List[Dict]: records: List[Dict] = [] areas = await IHSClient.get_areas(path=path, name_only=False) records = [ {"area": area["name"], "providers": [Provider.IHS]} for area in areas ] return records coros: List[Coroutine] = [] for args in [ (IHSPath.well_h_ids, HoleDirection.H), (IHSPath.well_v_ids, HoleDirection.V), (IHSPath.prod_h_ids, HoleDirection.H), (IHSPath.prod_v_ids, HoleDirection.V), ]: coros.append(wrapper(*args)) results = loop.run_until_complete(asyncio.gather(*coros)) inbound_df = pd.DataFrame(list(itertools.chain(*results))).set_index("area") inbound_areas = inbound_df.groupby(level=0).first().sort_index() existing_areas = util.aio.async_to_sync(db.models.Area.df()).sort_index() # get unique area names that dont already exist for_insert = inbound_areas[~inbound_areas.isin(existing_areas)].dropna() # for_insert["h_last_run_at"] = util.utcnow() if for_insert.shape[0] > 0: coro = db.models.Area.bulk_upsert( for_insert, update_on_conflict=True, reset_index=True, conflict_constraint=db.models.Area.constraints["uq_areas_area"], ) affected = loop.run_until_complete(coro) logger.info( f"({db.models.Area.__name__}) synchronized manifest: added {affected} areas" ) else: logger.info(f"({db.models.Area.__name__}) synchronized manifest: no updates") @celery_app.task def sync_known_entities(hole_dir: HoleDirection): hole_dir = HoleDirection(hole_dir) if hole_dir == HoleDirection.H: path = IHSPath.well_h_ids else: path = IHSPath.well_v_ids areas: List[Dict] = util.aio.async_to_sync(IHSClient.get_areas(path=path)) for idx, area in enumerate(areas): sync_known_entities_for_area.apply_async( args=(hole_dir, area), kwargs={}, countdown=idx + 30 ) @celery_app.task def sync_known_entities_for_area(hole_dir: HoleDirection, area: str): async def wrapper(hole_dir: HoleDirection, area: str): hole_dir = HoleDirection(hole_dir) index_cols = ["entity_id", "entity_type"] if hole_dir == HoleDirection.H: path = IHSPath.well_h_ids else: path = IHSPath.well_v_ids # fetch ids from remote service ids = await IHSClient.get_ids_by_area(path, area=area) df = pd.Series(ids, name="entity_id").to_frame() df["ihs_last_seen_at"] = util.utcnow() df["entity_type"] = "api14" df = df.set_index(index_cols) # query matching records existing in the known_entities model objs: List[db.models.KnownEntity] = await db.models.KnownEntity.query.where( db.models.KnownEntity.entity_id.in_(ids) ).gino.all() obj_df = pd.DataFrame([x.to_dict() for x in objs]).set_index(index_cols) fresh = pd.DataFrame(index=obj_df.index, columns=obj_df.columns) # merge the records, prioritizing new values from the remote service combined = fresh.combine_first(df).combine_first(obj_df) combined = combined.drop(columns=["created_at", "updated_at"]) # persist the new records await db.models.KnownEntity.bulk_upsert(combined, batch_size=1000) util.aio.async_to_sync(wrapper(hole_dir, area)) @celery_app.task def run_for_apilist( hole_dir: HoleDirection, api14s: List[str] = None, api10s: List[str] = None, **kwargs, ): run_executors(HoleDirection.H, api14s=api14s, api10s=api10s, **kwargs) @celery_app.task def run_driftwood(hole_dir: HoleDirection, **kwargs): hole_dir = HoleDirection(hole_dir) executors = [WellExecutor, GeomExecutor, ProdExecutor] if hole_dir == HoleDirection.H: api14s = [ "42461409160000", "42383406370000", "42461412100000", "42461412090000", "42461411750000", "42461411740000", "42461411730000", "42461411720000", "42461411600000", "42461411280000", "42461411270000", "42461411260000", "42383406650000", "42383406640000", "42383406400000", "42383406390000", "42383406380000", "42461412110000", "42383402790000", ] elif hole_dir == HoleDirection.V: api14s = [ "42461326620001", "42461326620000", "42461328130000", "42461343960001", "42461352410000", "42383362120000", "42383362080000", "42383362090000", "42383374140000", "42383374130000", "42383362060000", ] else: raise ValueError(f"Invalid hole direction: {hole_dir=}") run_executors(hole_dir, api14s=api14s, executors=executors, **kwargs) if __name__ == "__main__": from db import db util.aio.async_to_sync(db.startup()) import db.models import loggers import cq.tasks from const import HoleDirection loggers.config() hole_dir = HoleDirection.H # cq.tasks.sync_area_manifest.apply_async() # cq.tasks.run_next_available(HoleDirection.H, log_vs=10, log_hs=None) api14s = [ "42475014800000", "42475014810000", "42475014810001", "42475014820000", "42475014820001", "42475014830000", "42475014840000", "42475014850000", "42475014860000", "42475014860001", "42475014860002", "42475014870000", "42475014870001", "42475014880000", "42475014880001", "42475014890000", "42475014890001", "42475014900000", "42475014900001", "42475014900002", "42475014910000", "42475014910001", "42475014920000", "42475014920001", "42475014920002", ] holedir = HoleDirection.V async def run_wells(holedir: HoleDirection, api14s: List[str]): wexec = WellExecutor(holedir) wellset = await wexec.download(api14s=api14s) wellset = await wexec.process(wellset) await wexec.persist(wellset) async def run_geoms(holedir: HoleDirection, api14s: List[str]): gexec = GeomExecutor(holedir) geomset = await gexec.download(api14s=api14s) geomset = await gexec.process(geomset) await gexec.persist(geomset) loggers.config(formatter="funcname") async def run_production(holedir: HoleDirection, api14s: List[str]): pexec = ProdExecutor(holedir) prodset = await pexec.download(api14s=api14s) prodset = await pexec.process(prodset) await pexec.persist(prodset) async def async_wrapper(): hole_dir = HoleDirection.H IHSPath.well_h_ids sync_known_entities_for_area(hole_dir, "tx-upton")
045c865fc678eba2750f62646d81f6c24d5e15cb
7e93b1c33045b4c03054f42b6a2b800279b12a9b
/core/cache/backends/redis/compressors/base.py
8d9e74deabf56d11d14abf6ab944ca71c3f9526c
[ "MIT" ]
permissive
anthill-arch/framework
6f8036980667843f2be1414850255cf6a10e2dcd
a6c238a62ae9c3fb319d12e77f7e9047aab75e8d
refs/heads/master
2020-05-09T06:01:31.186830
2019-08-23T13:52:43
2019-08-23T13:52:43
180,988,916
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
class BaseCompressor(object): def __init__(self, options): self._options = options def compress(self, value): raise NotImplementedError def decompress(self, value): raise NotImplementedError
f6c7e47f18fecf5204af653cae821b0dbc934729
3a60b8935f809e300405214a66d949f0042e7e46
/src/map/tile.py
de575e0a0d16478ca90b3e9f8119073989688f77
[]
no_license
stellarlib/centaurus
e71fe5c98b94e8e575d00e32f55ba39fe71799e6
896ae73165f3f44dfb87378ef2635d447ccbccae
refs/heads/master
2020-08-29T00:02:47.294370
2020-07-06T20:06:02
2020-07-06T20:06:02
217,860,282
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
from random import randint from src.map.hex_map_properties import EdgeID class Tile(object): n = 15 GRASS, WOODS, WATER, ROCKS, SAND, CLAY, ROAD, WALL, EXIT,\ EXIT0, EXIT1, EXIT2, EXIT3, EXIT4, EXIT5 = range(n) OPEN = {GRASS, ROAD} IMPASSABLE = {WALL, ROCKS, WATER} OBSTACLE = {WALL, ROCKS} SLOWS_CHARGE = {WOODS, WATER, SAND, CLAY} DEADLY = {WATER} SHELTERED = {WOODS, WALL, ROCKS, WATER} EXIT_TILES = {EXIT, EXIT0, EXIT1, EXIT2, EXIT3, EXIT4, EXIT5} IMPASSABLE.update(EXIT_TILES) OBSTACLE.update(EXIT_TILES) SHELTERED.update(EXIT_TILES) EDGE_ID_TO_EXIT = { EdgeID.Ae: EXIT0, EdgeID.Be: EXIT1, EdgeID.Ce: EXIT2, EdgeID.De: EXIT3, EdgeID.Ee: EXIT4, EdgeID.Fe: EXIT5, } @classmethod def random_tile(cls): return randint(0, cls.n-1) @classmethod def is_open(cls, t): return t not in cls.OPEN @classmethod def is_passable(cls, t): return t not in cls.IMPASSABLE @classmethod def is_targetable(cls, t): return t not in cls.SHELTERED @classmethod def is_obstacle(cls, t): return t in cls.OBSTACLE @classmethod def is_slowing(cls, t): return t in cls.SLOWS_CHARGE @classmethod def is_deadly(cls, t): return t in cls.DEADLY
be1a846751a9b1a0055e8a81bbfe3ca6df2c437e
173f6c30ec4e5e3eb99ecf493e9019828270f5d3
/main.py
ac93f58ecffa8176285a3e5857c06808694f3832
[ "MIT" ]
permissive
DrLuke/FEMM-bode
14d1468d7f623a0fa874b9bb7d25b0feb9eb79f3
851397f914fbb114707ffa1202f9c3ac3a37bc37
refs/heads/master
2021-01-19T16:48:37.216579
2017-07-05T13:27:22
2017-07-05T13:27:22
88,288,695
0
0
null
null
null
null
UTF-8
Python
false
false
10,234
py
import subprocess import matplotlib as mpl import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import numpy as np import re import math, cmath from scipy.interpolate import griddata import os from femm import FEMM, FEMMfem, FEMMans from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QAction, QFileDialog, QSizePolicy from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg import sys import gui import math import appdirs import json from pathlib import Path def customexcepthook(type, value, traceback): print(traceback.print_exc()) raise(Exception()) sys.excepthook = customexcepthook class FEMMCanvas(FigureCanvasQTAgg): def __init__(self, fig): fig = matplotlib.figure.Figure(figsize=(4, 4), dpi=100) self.axes = fig.add_subplot(111) super(FEMMCanvas, self).__init__(fig) self.lastdrawnfreq = None self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) #self.updateGeometry() self.draw_idle() def updateFEMM(self, freq: float, solutions: dict): keys = list(solutions.keys()) freqdist = [abs(x - freq) for x in keys] idx = freqdist.index(min(freqdist)) if not self.lastdrawnfreq == keys[idx]: solution = solutions[keys[idx]] self.lastdrawnfreq = keys[idx] self.axes.clear() self.axes.imshow(solution["imdata"], extent=(math.floor(solution["ans"].x.min()), math.ceil(solution["ans"].x.max()), math.floor(solution["ans"].y.min()), math.ceil(solution["ans"].y.max()))) self.draw() self.repaint() class BodeCanvas(FigureCanvasQTAgg): def __init__(self, fig): fig = matplotlib.figure.Figure(figsize=(4, 4), dpi=100) self.axes = fig.add_subplot(111) self.axes.set_xlabel("Frequency [Hz]") self.axes.set_ylabel("Magnetic Flux Dampening [dB]") self.axes2 = self.axes.twinx() self.axes2.set_ylabel("Magnetic Flux Phase [radians]") super(BodeCanvas, self).__init__(fig) self.lastdrawnfreq = None self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) #self.updateGeometry() self.draw_idle() def updateBode(self, freqs: list, bodevalues: list): dcval = None if freqs[0] == 0: freqs = freqs[1:] dcval = bodevalues[0] bodevalues = bodevalues[1:] ampli = list(map(abs, bodevalues)) if dcval is not None: for i in range(len(ampli)): ampli[i] = 20*math.log10(abs(ampli[i]) / abs(dcval)) phase = list(map(cmath.phase, bodevalues)) for i in range(len(phase)): phase[i] = phase[i] / (2*math.pi) * 360 print(phase) print(freqs) self.axes.clear() self.axes.grid() self.axes.semilogx(freqs, ampli, "b") self.axes2.clear() self.axes2.semilogx(freqs, phase, "r-") self.draw() self.repaint() class FEMMSolutionManager: def __init__(self, canvas: FEMMCanvas, bodecanvas: BodeCanvas, ui: gui.Ui_MainWindow, femmfile: FEMMfem, config: dict): self.canvas = canvas self.bodecanvas = bodecanvas self.ui = ui self.femmfile = femmfile self.config = config # Initialize UI self.ui.generateButton.setEnabled(True) self.ui.freqSlider.setEnabled(False) self.ui.freqSpinBox.setEnabled(False) # initialize some healthy values self.minfreq = self.ui.minfreqSpinBox.value() self.maxfreq = self.ui.maxfreqSpinBox.value() self.decadesteps = self.ui.decadestepsSpinBox.value() self.viewfreq = self.minfreq self.ui.freqSlider.setMinimum(math.floor(math.log10(self.minfreq) * 100)) self.ui.freqSlider.setMaximum(math.ceil(math.log10(self.maxfreq) * 100)) # Signals self.ui.minfreqSpinBox.valueChanged.connect(self.minmaxchange) self.ui.maxfreqSpinBox.valueChanged.connect(self.minmaxchange) self.ui.decadestepsSpinBox.valueChanged.connect(self.stepchange) self.ui.freqSlider.valueChanged.connect(self.freqsliderchange) self.ui.freqSpinBox.valueChanged.connect(self.freqspinboxchange) self.ui.generateButton.pressed.connect(self.gensolutions) # Matplotlib Signals self.mplsignal = self.canvas.mpl_connect("button_press_event", self.canvasClicked) self.solutions = {} def minmaxchange(self, value): self.minfreq = self.ui.minfreqSpinBox.value() self.maxfreq = self.ui.maxfreqSpinBox.value() self.ui.freqSlider.setMinimum(math.floor(math.log10(self.minfreq)*100)) self.ui.freqSlider.setMaximum(math.ceil(math.log10(self.maxfreq)*100)) def stepchange(self, value): # This is a bit more complicated. When the step size changes, all previous solutions have to be discarded. self.decadesteps = self.ui.decadestepsSpinBox.value() self.solutions = {} # Dump all solutions when the stepsize is changes, otherwise data recycling will become too complicated self.ui.generateButton.setEnabled(True) self.ui.freqSlider.setEnabled(False) self.ui.freqSpinBox.setEnabled(False) def freqsliderchange(self, value): if self.ui.freqSlider.hasFocus(): self.ui.freqSpinBox.setValue(10**(value/100)) self.canvas.updateFEMM(10**(value/100), self.solutions) def freqspinboxchange(self, value): if self.ui.freqSpinBox.hasFocus(): self.ui.freqSlider.setValue(math.log10(value)*100) self.canvas.updateFEMM(value, self.solutions) def genlogrange(self): start = math.log10(self.minfreq) stop = math.log10(self.maxfreq) num = int((stop-start)*self.decadesteps) if num <= 0: num = 1 return np.concatenate((np.array([0]), np.logspace(start, stop, num, endpoint=True))) # Add frequency 0 aswell def gensolutions(self): logrange = self.genlogrange() with open(os.path.join(self.config["cdrivepath"], "TEMP.lua"), "w") as f: f.write("open(\"C:\\TEMP.FEM\"); mi_setfocus(\"TEMP.FEM\"); mi_analyze(); quit(1)") for freq in logrange: if freq not in self.solutions: with open(os.path.join(self.config["cdrivepath"], "TEMP.FEM"), "w") as f: f.write(self.femmfile.setfreq(freq)) # TODO: Let wine (optionally) run in fake screenbuffer for maximum efficiency subprocess.call(["wine", self.config["femmexe"], "C:\\TEMP.FEM", "-lua-script=C:\\TEMP.lua"]) ans = FEMMans.readans(os.path.join(self.config["cdrivepath"], "TEMP.ans")) self.solutions[freq] = {"ans": ans, "imdata": ans.generateimdata(100)} os.remove(os.path.join(self.config["cdrivepath"], "TEMP.lua")) os.remove(os.path.join(self.config["cdrivepath"], "TEMP.FEM")) os.remove(os.path.join(self.config["cdrivepath"], "TEMP.ans")) self.ui.generateButton.setEnabled(False) self.ui.freqSlider.setEnabled(True) self.ui.freqSpinBox.setEnabled(True) def canvasClicked(self, event): xcoord = event.xdata ycoord = event.ydata freqs = [] vals = [] for freq in self.solutions: freqs.append(freq) vals.append(self.solutions[freq]["ans"].getValueAtPoint(xcoord, ycoord)) self.bodecanvas.updateBode(freqs, vals) class bodewindow(QMainWindow): def __init__(self, config, *args, **kwargs): self.config = config super(bodewindow, self).__init__(*args, **kwargs) self.ui = gui.Ui_MainWindow() self.ui.setupUi(self) self.setupView() self.currentFEM = None # Solutions Manager ## Will act whenever you change frequency range and step size to calculate new solutions as required self.FEMMSolutionManager = None # Menubar signals self.ui.actionLoad_FEM_File.triggered.connect(self.selectFEM) # Open *.FEM file self.ui.actionExit.triggered.connect(self.close) # Exit Action def setupView(self): self.FEMMFig = matplotlib.figure.Figure(figsize=(100, 100), dpi=300) self.FEMMCanvas = FEMMCanvas(self.FEMMFig) self.FEMMTab = self.ui.tabWidget.addTab(self.FEMMCanvas, "FEMM Project Display") self.bodeFig = matplotlib.figure.Figure(figsize=(100, 100), dpi=300) self.bodeCanvas = BodeCanvas(self.bodeFig) self.bodeTab = self.ui.tabWidget.addTab(self.bodeCanvas, "Bode Plot") def selectFEM(self): fileDialog = QFileDialog() fileDialog.setDefaultSuffix("FEM") fileDialog.setNameFilters(["FEMM Project File (*.FEM *.fem)", "FEMM Solution File (*.ans)", "Any files (*)"]) if fileDialog.exec(): path = fileDialog.selectedFiles()[0] # selectedFiles returns a list of selected files, but we only take the first if os.path.exists(path): self.currentFEM = FEMMfem(path=path) self.FEMMSolutionManager = FEMMSolutionManager(self.FEMMCanvas, self.bodeCanvas, self.ui, self.currentFEM, self.config) def main(): configdir = appdirs.user_config_dir("FEMMBode") if not os.path.isdir(configdir): # Create configuration dir if it doesn't exist os.makedirs(configdir) if os.path.exists(os.path.join(configdir, "preferences.json")): # Check if config file exists, load if true with open(os.path.join(configdir, "preferences.json")) as f: config = json.load(f) else: # Create blank config file if false config = {"cdrivepath": os.path.join(os.path.expanduser("~/.wine/drive_c")), "femmexe": "C:\\\\femm42\\\\bin\\\\femm.exe"} with open(os.path.join(configdir, "preferences.json"), "w") as f: json.dump(config, f, indent=4, sort_keys=True) app = QApplication(sys.argv) mainwindow = bodewindow(config) mainwindow.show() retcode = app.exec_() sys.exit(retcode) if __name__ == "__main__": a = FEMM() main()
df6b3cdaa09073a8075e928c7ef9df25a4f7150f
1f3a2cee3654c11586b30151fd9a3fc6fd705c0a
/deep_learning/pic.py
5488840c452ac9667371b0542085d8a928c76634
[]
no_license
2020668/AI
24ff42cefacac3f397e7a6f54dda7e9d741f2e03
3e1a78a6348e453b0f3e8862a784105620a22bc1
refs/heads/master
2020-12-09T02:03:55.311209
2020-02-10T15:36:26
2020-02-10T15:36:26
231,186,509
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
import tensorflow as tf print(tf.__version__) # 输出'2.0.0-alpha0' print(tf.test.is_gpu_available()) # 会输出True,则证明安装成功
b70b66f6096c21bc356db17ef7a9da3c02eaf719
f8bb2d5287f73944d0ae4a8ddb85a18b420ce288
/python/basic/for/format_obj.py
df47968c9dd34f209133f19983ab9c23ed9b0fe2
[]
no_license
nishizumi-lab/sample
1a2eb3baf0139e9db99b0c515ac618eb2ed65ad2
fcdf07eb6d5c9ad9c6f5ea539046c334afffe8d2
refs/heads/master
2023-08-22T15:52:04.998574
2023-08-20T04:09:08
2023-08-20T04:09:08
248,222,555
8
20
null
2023-02-02T09:03:50
2020-03-18T12:14:34
C
UTF-8
Python
false
false
46
py
for 変数 in オブジェクト: 処理
9ba384d7416217505108520e70e49bd802012c66
7b3009e019e081667df67c6b41328b5db632b898
/instances/shadows_of_infinity.py
34a98b9e889adc772c3ce344061ead7226547267
[ "MIT" ]
permissive
frostburn/multibranch-mandelbrot
d1e2cc6bce6ab8f065b678fb2133bd3057b832d5
84e4887ffc90a5338ae448ced6f62fcf40bc11a1
refs/heads/master
2023-08-02T18:20:56.671175
2021-09-28T09:57:58
2021-09-28T09:57:58
287,219,716
0
0
null
null
null
null
UTF-8
Python
false
false
1,926
py
import os import sys sys.path.insert(0, os.path.abspath('.')) from pylab import * from mandelbrot import mandelbrot, mandelbrot_generic, buddhabrot import nonescaping import classic from coloring import red_lavender, black_multi_edge, rainbow, gray, sepia, subharmonics, creature, white_multi_edge import color_gradients from scipy.ndimage import gaussian_filter def make_picture_frame(rgb, dither=1.0/256.0): if dither: rgb = [channel + random(channel.shape)*dither for channel in rgb] frame = stack(rgb, axis=-1) frame = clip(frame, 0.0, 1.0) return frame if __name__ == '__main__': scale = 10 # Instagram width, height = 108*scale, 108*scale anti_aliasing = 2 num_samples = 1<<25 max_iter = 1<<10 min_iter = 1<<9 zoom = -1.7 rotation = -pi*0.5 x, y = -0.2, 0.001 def circle_factory(theta, delta, radius=1.0, spread=0.5, x=0.0, y=0.08): def circle(num_samples): phi = rand(num_samples) - rand(num_samples) phi = theta + delta * phi r = radius + randn(num_samples) * spread return x + cos(phi) * r + 1j * (y + sin(phi) * r) return circle offset = 0.5 delta = 3.5 exposures = [] num_layers = 1 for i in range(num_layers): sub_exposures = [ (3*i+min_iter, 3*i+max_iter, circle_factory(offset + j*2*pi/3, delta)) for j in range(3) ] exposures.extend(sub_exposures) def color_map(exposed): e = exposed[0]*0.0 result = array([e, e, e]) for i in range(num_layers): for j in range(3): result[j] += (3*scale**2*exposed[i*3 + j] * num_samples**-0.9)**0.78 return result image = buddhabrot(width, height, x, y, zoom, rotation, -2, 1, num_samples, exposures, color_map, anti_aliasing=anti_aliasing, bailout=1e300) imsave("/tmp/out.png", make_picture_frame(image))
5dd88af5ae5e82c13194560776281ec8a542cab7
93ad65a519037b2a6c9363f356a00b3e51350537
/djR/conf.py
c80052a26cce28b6dc8ddf5b5a232ed373f0e040
[ "MIT" ]
permissive
JheanMarllos/django-R
6ccc9b42dbca50c803c740315fbeda136be1ad9c
3c1f8adfa2a16ad9cf9856e4dd7cd889e7a3c229
refs/heads/master
2020-05-30T12:42:49.200732
2019-06-02T11:37:49
2019-06-02T11:37:49
189,741,022
0
0
MIT
2019-06-01T14:16:22
2019-06-01T14:16:22
null
UTF-8
Python
false
false
418
py
# -*- coding: utf-8 -*- from django.conf import settings RETHINKDB_HOST = getattr(settings, 'RETHINKDB_HOST', 'localhost') RETHINKDB_PORT = getattr(settings, 'RETHINKDB_PORT', 28015) RETHINKDB_USER = getattr(settings, 'RETHINKDB_USER', None) RETHINKDB_PASSWORD = getattr(settings, 'RETHINKDB_PASSWORD', None) DEFAULT_DB = getattr(settings, 'R_DEFAULT_DB', None) VERBOSE = getattr(settings, 'R_VERBOSE', False)
9782f416c9447c9bea34e745ec11be24c68003db
8dbba1dc3b0a9cb3972e6fee6f41459d6fa56d78
/ch09/ex9-10.py
b644f50c93a1b0bc17981d880b07bc7f5e71550d
[]
no_license
freebz/Foundations-for-Analytics-with-Python
8da8308981538266e8e982ffcd080657058144ca
736b2075e339a679905071b39201e6a575f59229
refs/heads/master
2020-03-15T21:53:43.100954
2018-05-06T18:07:59
2018-05-06T18:07:59
132,363,669
0
1
null
null
null
null
UTF-8
Python
false
false
196
py
import numpy as np from numpy import concatenate, vstack, r_ array_concat = np.concatenate([array1, array2], axis=0) array_concat = np.vstack((array1, array2)) array_concat = np.r_[arry1, array2]
f3409674f6082e19e2cdbb91ddc6cc1956ae779f
9aea1b19a8681b4c6b15d628a080982fb2d98b39
/mianJing111111/Google/Implement Queue using Stacks.py
2e144185623f255bcbf62dc1b0ca3271002fcff4
[]
no_license
yzl232/code_training
ee7612efc6f166742fcf48e1af715f57a624d3aa
fc165027c3d7b1fec58ebfad2f9ada275a6b8c03
refs/heads/master
2021-01-21T04:32:02.522931
2016-07-01T21:35:29
2016-07-01T21:35:29
26,989,266
2
0
null
null
null
null
UTF-8
Python
false
false
901
py
# encoding=utf-8 ''' In this method, in en-queue operation, the new element is entered at the top of stack1. In de-queue operation, if stack2 is empty then all the elements are moved to stack2 and finally top of stack2 is returned. enQueue(q, x) 1) Push x to stack1 (assuming size of stacks is unlimited). deQueue(q) 1) If both stacks are empty then error. 2) If stack2 is empty While stack1 is not empty, push everything from satck1 to stack2. 3) Pop the element from stack2 and return it. ''' # G家考过。 class queue: def __init__(self): self.stack1 = [] self.stack2 = [] def enqueue(self, x): self.stack1.append(x) def dequeue(self): if not self.stack1 and not self.stack2: raise ValueError() if not self.stack2: while self.stack1: self.stack2.append(self.stack1.pop()) return self.stack2.pop()
96697e0a1210d4821564472422964ebcc50a0e3b
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/zulip/2015/12/run-dev.py
67b1614d07af8c64d03977bec514a539b207ca73
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
3,852
py
#!/usr/bin/env python2.7 import optparse import subprocess import signal import traceback import sys import os from twisted.internet import reactor from twisted.web import proxy, server, resource # Monkey-patch twisted.web.http to avoid request.finish exceptions # https://trac.zulip.net/ticket/1728 from twisted.web.http import Request orig_finish = Request.finish def patched_finish(self): if self._disconnected: return return orig_finish(self) Request.finish = patched_finish if 'posix' in os.name and os.geteuid() == 0: raise RuntimeError("run-dev.py should not be run as root.") parser = optparse.OptionParser(r""" Starts the app listening on localhost, for local development. This script launches the Django and Tornado servers, then runs a reverse proxy which serves to both of them. After it's all up and running, browse to http://localhost:9991/ Note that, while runserver and runtornado have the usual auto-restarting behavior, the reverse proxy itself does *not* automatically restart on changes to this file. """) parser.add_option('--test', action='store_true', dest='test', help='Use the testing database and ports') parser.add_option('--interface', action='store', dest='interface', default='127.0.0.1', help='Set the IP or hostname for the proxy to listen on') (options, args) = parser.parse_args() base_port = 9991 manage_args = '' if options.test: base_port = 9981 settings_module = "zproject.test_settings" else: settings_module = "zproject.settings" manage_args = ['--settings=%s' % (settings_module,)] os.environ['DJANGO_SETTINGS_MODULE'] = settings_module sys.path.append(os.path.join(os.path.dirname(__file__), '..')) proxy_port = base_port django_port = base_port+1 tornado_port = base_port+2 webpack_port = base_port+3 os.chdir(os.path.join(os.path.dirname(__file__), '..')) # Clean up stale .pyc files etc. subprocess.check_call('./tools/clean-repo') # Set up a new process group, so that we can later kill run{server,tornado} # and all of the processes they spawn. os.setpgrp() # Pass --nostatic because we configure static serving ourselves in # zulip/urls.py. cmds = [['./tools/compile-handlebars-templates', 'forever'], ['./tools/webpack', 'watch'], ['python', 'manage.py', 'rundjango'] + manage_args + ['localhost:%d' % (django_port,)], ['python', 'manage.py', 'runtornado'] + manage_args + ['localhost:%d' % (tornado_port,)], ['./tools/run-dev-queue-processors'] + manage_args, ['env', 'PGHOST=localhost', # Force password authentication using .pgpass './puppet/zulip/files/postgresql/process_fts_updates']] for cmd in cmds: subprocess.Popen(cmd) class Resource(resource.Resource): def getChild(self, name, request): # Assume an HTTP 1.1 request proxy_host = request.requestHeaders.getRawHeaders('Host') request.requestHeaders.setRawHeaders('X-Forwarded-Host', proxy_host) if (request.uri in ['/json/get_events'] or request.uri.startswith('/json/events') or request.uri.startswith('/api/v1/events') or request.uri.startswith('/sockjs')): return proxy.ReverseProxyResource('localhost', tornado_port, '/'+name) elif (request.uri.startswith('/webpack') or request.uri.startswith('/socket.io')): return proxy.ReverseProxyResource('localhost', webpack_port, '/'+name) return proxy.ReverseProxyResource('localhost', django_port, '/'+name) try: reactor.listenTCP(proxy_port, server.Site(Resource()), interface=options.interface) reactor.run() except: # Print the traceback before we get SIGTERM and die. traceback.print_exc() raise finally: # Kill everything in our process group. os.killpg(0, signal.SIGTERM)
b4b48833b14eeae1819479c4994e066e45300d1c
d0dccd8b1c31c0256dca3472719acab561661aa9
/events/views.py
8f52985d56e7d9d48486c2516ac1ab2f8b850635
[]
no_license
cjredmond/GrouperApp
5fe97271bc275e570d2e3565c2bb5233ce34a79d
aba431c7def9173150e24686dbbb87685d25ed24
refs/heads/master
2020-03-19T21:43:12.609648
2018-06-29T16:17:10
2018-06-29T16:17:10
136,947,937
0
0
null
null
null
null
UTF-8
Python
false
false
636
py
from django.shortcuts import render from django.views.generic import * from django.views.generic.edit import * from django.contrib.auth import get_user_model from django.urls import reverse from .models import Event from .forms import EventCreateForm from group.models import Entity class EventCreateView(CreateView): model = Event form_class = EventCreateForm def form_valid(self,form,**kwargs): instance = form.save(commit=False) instance.entity = Entity.objects.get(slug=self.kwargs['slug']) return super().form_valid(form) def get_success_url(self): return reverse('landing_view')
06072e8a7f63c5d0535c8e97d3d3590ec3ef64bc
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_backup.py
9eff4b2688d253805fa8fdb41115f611870c9543
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
#calss header class _BACKUP(): def __init__(self,): self.name = "BACKUP" self.definitions = [u'(someone or something that provides) support or help, or something that you have arranged in case your main plans, equipment, etc. go wrong: ', u'a copy of information held on a computer that is stored separately from the computer: ', u'a player who plays when the person who usually plays is not available: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
8fdf3accccfac6904b4799b77cccadf2bfc83862
42516b0348936e257d04113c2e632dc72ba58e91
/test_env/test_suit_ui_file_explorer/test_suit_ui_file_explorer_case06.py
d446ea461909499285fd138a157ee129cd48ee84
[]
no_license
wwlwwlqaz/Qualcomm
2c3a225875fba955d771101f3c38ca0420d8f468
a04b717ae437511abae1e7e9e399373c161a7b65
refs/heads/master
2021-01-11T19:01:06.123677
2017-04-05T07:57:21
2017-04-05T07:57:21
79,292,426
1
1
null
null
null
null
UTF-8
Python
false
false
4,124
py
#coding=utf-8 import settings.common as SC from test_case_base import TestCaseBase from logging_wrapper import log_test_case, take_screenshot from test_case_base import TestCaseBase from qrd_shared.case import * import fs_wrapper from case_utility import * import settings.common as SC from utility_wrapper import * ############################################ #author: # [email protected] #function: # copy and paste items cross folder in FileExplorer #precondition: # #step: # 1.goto FileExplorer; # if not, goto step4 # 2.try to create a new folder; # if not, goto step4 # 3.confirm whether new floder is created correctly; # if not, goto step4 # 4.exit to end case ############################################ import os,re,string,subprocess,shlex from test_suit_ui_file_explorer import * class test_suit_ui_file_explorer_case06(TestCaseBase): tag = 'ui_file_explorer_case06' def test_case_main(self, case_results): case_flag = False # # STEP 1: goto work_dir in FileExplorer # work_dir = '/Phone storage/DCIM/Camera' number = preprocess(self.tag,work_dir,floor=3) goto_dir(work_dir,'Folder') # # STEP 2: choose items to copy # try: (index_list,num1) = random_index_list_in_folder(work_dir,'.jpg') log_test_case(self.tag,"num1=%s want to copy %s photos"%(str(num1),str(len(index_list)+1))) first_name = get_view_text_by_id(VIEW_TEXT_VIEW,'text') click_textview_by_id('text',waitForView=1, clickType=LONG_CLICK) name_list = [] for i in range(len(index_list)): click_textview_by_index(index_list[i]) name_list.append(get_view_text_by_index(VIEW_TEXT_VIEW,index_list[i])) name_list.insert(0, first_name) click_textview_by_desc('Copy',isScrollable=0) except: take_screenshot() cur_path = get_view_text_by_index(VIEW_TEXT_VIEW,0) log_test_case(self.tag, "during COPY: something wrong, maybe no item in " + cur_path) set_cannot_continue() # # STEP 3: goto destination in FileExplorer # if can_continue(): destination = '/Phone storage/Download' goto_dir(destination,'Folder',go_from_home_screen=False) # # STEP 4: copy items to destination # if can_continue(): try: click_button_by_text('Paste',waitForView=1) except: take_screenshot() cur_path = get_view_text_by_index(VIEW_TEXT_VIEW,0) log_test_case(self.tag, "during COPY: no 'Paste' in " + cur_path) set_cannot_continue() # check if can_continue(): goto_dir(destination,'Folder',go_from_home_screen=True) cur_path = get_view_text_by_index(VIEW_TEXT_VIEW,0) flag = True for i in range(len(name_list)): if search_text('%s'%name_list[i],searchFlag=TEXT_MATCHES_REGEX): try:scroll_to_top() except:pass continue else: flag = False break if flag is True: case_flag = True else: log_test_case(self.tag, "failed copy %s"%name_list[i] +'in '+ cur_path) # # STEP 5: exit # exit_cur_case(self.tag) log_test_case(self.tag, "case_flag = "+str(case_flag)) if case_flag: qsst_log_case_status(STATUS_SUCCESS, "" , SEVERITY_HIGH) else: qsst_log_case_status(STATUS_FAILED, "copy and paste items cross folder is failed", SEVERITY_HIGH) case_results.append((self.case_config_map[fs_wrapper.CASE_NAME_ATTR], can_continue()))
fc7d7b27a526a43db9c9b511ae29a4442acf81d4
0fb2e09c0629cf47045881d7eecc125f674230e5
/pps_webapp/main/views.py
bf6d96c2869c358792ae6771da7c09201b547904
[]
no_license
satwik77/phenopacket-scraper-webapp
ea24ad2cc2fbd988e12df1178be5ba940c8a9859
4382c2a4e501448e7bfd68c7826a3c4c5ab39a26
refs/heads/master
2021-01-17T09:33:07.188192
2016-08-23T17:24:20
2016-08-23T17:24:20
61,695,575
0
0
null
2016-06-22T06:45:50
2016-06-22T06:45:50
null
UTF-8
Python
false
false
1,984
py
from django.shortcuts import get_object_or_404, render_to_response, redirect from django.shortcuts import render from django.contrib import auth from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt import requests import pprint api_url= 'http://localhost:8001/api/' @csrf_exempt def home(request): if request.POST: choice = str(request.POST['choice']) url = str(request.POST['url']) data = "" if choice == '1': get_data={'url' : str(url)} response = requests.get(api_url+ 'scrape', params = get_data) if response.status_code == 200: response_data = response.json() abstract = response_data['Abstract'] title = str(response_data['Title']) hpo_terms = response_data['HPO Terms'] data+= "Title:\n" + title + "\n" data+="Abstract:\n" + abstract + "\n" data+="HPO Terms:\n" for term in hpo_terms: data += str(term) + "\n" if choice == '2': get_data={'url' : str(url)} response = requests.get(api_url+ 'annotate', params = get_data) if response.status_code == 200: response_data = response.json() data = {} data["annotated_terms"] = response_data['Annotated HPO Terms'] data["annotated_abstract"] = response_data['Annotated Abstract'] data= pprint.pformat(data, indent=4) if choice == '3': get_data={'url' : str(url)} response = requests.get(api_url+ 'phenopacket', params = get_data) if response.status_code == 200: response_data = response.json() phenopacket = response_data['phenopacket'] data = phenopacket return HttpResponse(data) return render(request, 'main/index.html')
31a0c3c321b124e25d22c7584aa8ccbc4ed0ae04
c7a6f8ed434c86b4cdae9c6144b9dd557e594f78
/ECE364/.PyCharm40/system/python_stubs/348993582/PyQt4/QtNetwork/__init__.py
499f277c4fd5601ad24160f4fb960e5e5fc2f65f
[]
no_license
ArbalestV/Purdue-Coursework
75d979bbe72106975812b1d46b7d854e16e8e15e
ee7f86145edb41c17aefcd442fa42353a9e1b5d1
refs/heads/master
2020-08-29T05:27:52.342264
2018-04-03T17:59:01
2018-04-03T17:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,637
py
# encoding: utf-8 # module PyQt4.QtNetwork # from /usr/lib64/python2.6/site-packages/PyQt4/QtNetwork.so # by generator 1.136 # no doc # imports import PyQt4.QtCore as __PyQt4_QtCore # no functions # classes from QAbstractNetworkCache import QAbstractNetworkCache from QAbstractSocket import QAbstractSocket from QAuthenticator import QAuthenticator from QFtp import QFtp from QHostAddress import QHostAddress from QHostInfo import QHostInfo from QHttp import QHttp from QHttpHeader import QHttpHeader from QHttpRequestHeader import QHttpRequestHeader from QHttpResponseHeader import QHttpResponseHeader from QLocalServer import QLocalServer from QLocalSocket import QLocalSocket from QNetworkAccessManager import QNetworkAccessManager from QNetworkAddressEntry import QNetworkAddressEntry from QNetworkCacheMetaData import QNetworkCacheMetaData from QNetworkCookie import QNetworkCookie from QNetworkCookieJar import QNetworkCookieJar from QNetworkDiskCache import QNetworkDiskCache from QNetworkInterface import QNetworkInterface from QNetworkProxy import QNetworkProxy from QNetworkProxyFactory import QNetworkProxyFactory from QNetworkProxyQuery import QNetworkProxyQuery from QNetworkReply import QNetworkReply from QNetworkRequest import QNetworkRequest from QSsl import QSsl from QSslCertificate import QSslCertificate from QSslCipher import QSslCipher from QSslConfiguration import QSslConfiguration from QSslError import QSslError from QSslKey import QSslKey from QTcpSocket import QTcpSocket from QSslSocket import QSslSocket from QTcpServer import QTcpServer from QUdpSocket import QUdpSocket from QUrlInfo import QUrlInfo
4d4ecc1e1bddc6ac36317f8f1c3f8dc07d77ef43
8e79de4b73998dd0ee1dae4881784a2b12410615
/Bite_83/test_timezone.py
48b2574919d1328895aa94b5cdc1f6966ae66c3b
[ "MIT" ]
permissive
alehpineda/bitesofpy
e6eb7c9413cf407a12643efece01bef5457e5dcb
bfd319a606cd0b7b9bfb85a3e8942872a2d43c48
refs/heads/master
2021-07-15T19:59:35.061049
2020-09-25T17:49:32
2020-09-25T17:49:32
209,878,791
0
0
MIT
2020-09-06T00:11:45
2019-09-20T20:49:51
Python
UTF-8
Python
false
false
1,060
py
from datetime import datetime from timezone import what_time_lives_pybites def test_what_time_lives_pybites_spanish_summertime(): # AUS is 8 hours ahead of ES naive_utc_dt = datetime(2018, 4, 27, 22, 55, 0) aus_dt, es_dt = what_time_lives_pybites(naive_utc_dt) assert aus_dt.year == 2018 assert aus_dt.month == 4 assert aus_dt.day == 28 assert aus_dt.hour == 8 assert aus_dt.minute == 55 assert es_dt.year == 2018 assert es_dt.month == 4 assert es_dt.day == 28 assert es_dt.hour == 0 assert es_dt.minute == 55 def test_what_time_lives_pybites_spanish_wintertime(): # AUS is 10 hours ahead of ES naive_utc_dt = datetime(2018, 11, 1, 14, 10, 0) aus_dt, es_dt = what_time_lives_pybites(naive_utc_dt) assert aus_dt.year == 2018 assert aus_dt.month == 11 assert aus_dt.day == 2 assert aus_dt.hour == 1 assert aus_dt.minute == 10 assert es_dt.year == 2018 assert es_dt.month == 11 assert es_dt.day == 1 assert es_dt.hour == 15 assert es_dt.minute == 10
acb8cafa74645f1560e286301b9c4b31274498d0
b72e42f7f15ea8d359512cc0fe524f5407f358e5
/CS50_web_dev/src/src8/airline1/airline/urls.py
f9e85ea4cf69f88b0dfd879f4bc3a158aa887856
[ "MIT" ]
permissive
ChuaCheowHuan/web_app_DPTH
ec9f96d66c69ebd7e04df8d4b92578a3aaa7e392
dd901e6359fe76f15b69701c53f76666c3219173
refs/heads/master
2021-06-18T11:31:10.959634
2020-07-23T04:04:52
2020-07-23T04:04:52
205,556,446
0
0
MIT
2021-06-10T21:55:14
2019-08-31T14:42:35
HTML
UTF-8
Python
false
false
797
py
"""airline URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('', include('flights.urls')), path('admin/', admin.site.urls), ]
5d396f8a619172ddd3f61c1c285aedc696426ca7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03001/s613586641.py
5dadc4795c529eb1e7ffe05c54da04dc2de9168e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
import sys sys.setrecursionlimit(10**6) w, h, x, y = map(int, input().split()) ans1 = w*h/2 ans2 = 0 if x == w/2 and y == h/2: ans2 = 1 print(ans1, ans2)
2ca6dd6d9e283d56848cb08dedccbc18699489cf
f40c65a649206261d7255eb3132ea67963f13a17
/src/wait.py
d830074cea069e62e268c87b9f7ee5afbff4750b
[ "MIT" ]
permissive
fcurella/gh-status-check
2ec47ca212bfe471cda97d1ae0c1ee41f16420e3
1fdb5f7be1dcdb9f2338839ad55ad7c9188b159b
refs/heads/main
2022-12-22T18:35:00.543508
2020-10-01T17:46:35
2020-10-01T17:46:35
297,731,570
0
0
null
null
null
null
UTF-8
Python
false
false
2,852
py
import asyncio import logging import os import sys import aiohttp from asgiref.sync import sync_to_async from github import Github REPOSITORY = os.environ["GITHUB_REPOSITORY"] SHA = os.environ["GITHUB_SHA"] EVENT = os.environ["GITHUB_EVENT_NAME"] EVENT_PATH = os.environ["GITHUB_EVENT_PATH"] TOKEN = os.environ["INPUT_GITHUBTOKEN"] IGNORECONTEXTS = os.environ["INPUT_IGNORECONTEXTS"].split(',') IGNOREACTIONS = os.environ["INPUT_IGNOREACTIONS"].split(',') INTERVAL = float(os.environ["INPUT_CHECKINTERVAL"]) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) async def poll_checks(session, repo, ref): headers = { "Content-Type": "application/vnd.github.antiope-preview+json", "Authorization": f"token {TOKEN}", } url = f"https://api.github.com/repos/{repo}/commits/{ref}/check-runs" async with session.get(url, headers=headers, raise_for_status=True) as resp: data = await resp.json() check_runs = [ check_run for check_run in data["check_runs"] if check_run["name"] not in IGNOREACTIONS ] logger.info( "Checking %s actions: %s", len(check_runs), ", ".join([check_run["name"] for check_run in check_runs]) ) for check_run in check_runs: name, status = check_run["name"], check_run["status"] logger.info("%s: %s", name, status) if status != "completed": return False return True async def poll_statuses(commit): combined_status = await sync_to_async(commit.get_combined_status)() statuses = [ status for status in combined_status.statuses if status.context not in IGNORECONTEXTS ] logger.info( "Checking %s statuses: %s", len(statuses), ", ".join([status.context for status in statuses]) ) for status in statuses: context, state = status.context, status.state logger.info("%s: %s", context, state) if state != "success": return False return True async def main(): g = Github(TOKEN) repo = await sync_to_async(g.get_repo)(REPOSITORY) commit = await sync_to_async(repo.get_commit)(sha=SHA) results = [False, False] async with aiohttp.ClientSession() as session: while False in results: results = await asyncio.gather( poll_statuses(commit), poll_checks(session, REPOSITORY, SHA), return_exceptions=False, ) if False in results: logger.info("Checking again in %s seconds", INTERVAL) await asyncio.sleep(INTERVAL) return results if __name__ == "__main__": try: asyncio.run(main()) print("::set-output name=status::success") except: print("::set-output name=status::failure") raise
76dfebb655f45b53d778e40b6ae290fc76785090
09f0505f3ac1dccaf301c1e363423f38768cc3cc
/r_DailyProgrammer/Intermediate/C239/__init__.py
cf2036a70032f331ee1707580700ecc8e93ea54f
[]
no_license
Awesome-Austin/PythonPractice
02212292b92814016d062f0fec1c990ebde21fe7
9a717f91d41122be6393f9fcd1a648c5e62314b3
refs/heads/master
2023-06-21T11:43:59.366064
2021-07-29T23:33:00
2021-07-29T23:33:00
270,854,302
0
0
null
2020-08-11T20:47:10
2020-06-08T23:24:09
Python
UTF-8
Python
false
false
71
py
#! python3 from r_DailyProgrammer.Intermediate.C239.main import main
[ "{ID}+{username}@users.noreply.github.com" ]
{ID}+{username}@users.noreply.github.com
d7804ea8b7f2ecc0bd38927b3992aa58daadc478
af9b7a00b55aac5eaed58592cf8a9d69e659a076
/learning_log/learning_logs/forms.py
da3fa007a63b1f3e2886d67e9cb7c2ee946bc820
[]
no_license
dujiaojingyu/Django-Practice
bc246d2283a8f994567756b4e391ea167359620b
cab5db123eb97bd424a84fae24629cc0e1be4652
refs/heads/master
2020-03-25T17:33:25.597885
2018-08-08T08:38:09
2018-08-08T08:38:09
143,983,344
2
0
null
null
null
null
UTF-8
Python
false
false
204
py
__author__ = "Narwhale" from django import forms from .models import Topic class TopicForm(forms.ModelForm): class Meta: model = Topic fields= ['text'] labels = {'text':''}
e277cd2671d5de63fd0453d59feb4fde97ffbdaf
ac4b9385b7ad2063ea51237fbd8d1b74baffd016
/.history/google/s5_getparser_20210216045646.py
c901cc9e70acfeeb7542185d4f3f24d9c669f62e
[]
no_license
preethanpa/ssoemprep
76297ef21b1d4893f1ac2f307f60ec72fc3e7c6f
ce37127845253c768d01aeae85e5d0d1ade64516
refs/heads/main
2023-03-09T00:15:55.130818
2021-02-20T06:54:58
2021-02-20T06:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,991
py
import shutil from fonduer.parser.preprocessors import html_doc_preprocessor from sqlalchemy import exc import pdftotree import re from sen_parser_usable import * from config import config import json import os import posixpath import http.server import urllib.request, urllib.parse, urllib.error import cgi import shutil import mimetypes import re from io import BytesIO import json import uuid import sys import logging import errno from os import walk from fonduer.parser.models import Document, Sentence, Table from fonduer.parser.preprocessors import HTMLDocPreprocessor from fonduer.parser import Parser from pprint import pprint from fonduer import Meta, init_logging from fonduer.candidates import CandidateExtractor from fonduer.candidates import MentionNgrams from fonduer.candidates import MentionExtractor from fonduer.candidates.models import Mention from fonduer.candidates.models import mention_subclass from fonduer.candidates.models import candidate_subclass from fonduer.candidates.matchers import RegexMatchSpan, DictionaryMatch, LambdaFunctionMatcher, Intersect, Union from fonduer.features import Featurizer import inspect import matchers as matchers from extract_html import * PII_KEYLIST = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/model/pii-keylist.json' PARALLEL = 4 # assuming a quad-core machine # ATTRIBUTE = "ns8s_invoice_poc_stage" # check that the databases mentioned below already exist getdbref = __import__('s1_2_getdbref') # Will return <module '1_2_getdbref' from '/home/dsie/Developer/sandbox/3ray/server/backend/python/kbc_process/1_2_getdbref.py'> # pdf_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/documents/pdf/' # docs_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/documents/html/' # pdf_path = json.loads(sys.argv[1])['pdf_path'] # docs_path = json.loads(sys.argv[1])['html_path'] # job_id = json.loads(sys.argv[1])['job_id'] # exc_context = 'email_id' # doc_context = 'mock' # exc_context = json.loads(sys.argv[1])['context'] if len(sys.argv) > 0 and json.loads(sys.argv[1])['context'] is not None else None # doc_context = json.loads(sys.argv[1])['doc_name'] if len(sys.argv) > 0 and json.loads(sys.argv[1])['doc_name'] is not None else None # exc_context = 'phone_number' pdf_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/drive_documents/efca2facee5f8df9/pdf/' docs_path = '/home/dsie/Developer/sandbox/3ray/3rml/kbc_process/drive_documents/efca2facee5f8df9/html/' job_id = 'efca2facee5f8df9' exc_context = None doc_context = None # Configure logging for Fonduer init_logging(log_dir="logs", level=logging.ERROR) max_docs = 1000 PARALLEL = 4 doc_preprocessor = None execution_stack = ["1. Get session object..."] try: session = getdbref.get_session() sessType = type(session) # Will return <class 'sqlalchemy.orm.session.Session'> execution_stack.append("Done.") execution_stack.append("2. Processing layout...") except Exception as session_exception: logging.error(f'{execution_stack}, session = getdbref.get_session(), {session_exception}') except exc.SQLAlchemyError as sql_exception: logging.error(f'{execution_stack}, session = getdbref.get_session(), {sql_exception}') def do_prepare_mentions_batch(candidate_mentions, config): # for index, data in enumerate(config): for index, data in config.items(): mention_subclass_list = list() max_ngrams = None for key in data.keys(): if key == 'Candidates': for c in data.get(key): # if c not in candidate_mentions.keys(): #TODO verify this condition # candidate_mentions[c] = { # "mention_names": [], # "mention_ngrams": [], # "mention_matchers": [], # "mention_subclass": [], # "max_ngrams": [], # "throttler_function": [] # } candidate_mentions[c]['mention_names'].append(data['MentionName']) candidate_mentions[c]['mention_ngrams'].append(data['MentionNGrams']) candidate_mentions[c]['mention_matchers'].append(matchers.matcher[data.get('Context')]) if 'mention_subclass' in candidate_mentions[c].keys(): candidate_mentions[c]['mention_subclass'].append(mention_subclass(data['MentionName'])) else: candidate_mentions[c]['mention_subclass'] = [mention_subclass(data['MentionName'])] if 'max_ngrams' in candidate_mentions[c].keys(): candidate_mentions[c]['max_ngrams'].append(MentionNgrams(n_max=candidate_mentions[c].get('mention_ngrams'))) else: candidate_mentions[c]['max_ngrams'] = [MentionNgrams(n_max=candidate_mentions[c].get('mention_ngrams'))] # candidate_mentions[c]['throttler_function'] = data.get('ThrottlerFunctions')[0].get('tf') candidate_mentions[c]['throttler_function'] = [{data.get('ThrottlerFunctions')[0].get('tf')}] return candidate_mentions def do_prepare_mentions(candidate_mentions, config, context): mention_subclass_list = list() max_ngrams = None ctx = { "mention_names": [], "mention_ngrams": [], "mention_matchers": [], "mention_subclass": [], "max_ngrams": [], "throttler_function": None } ctx['mention_names'].append(config[context].get('MentionName')) ctx['mention_ngrams'].append(config[context]['MentionNGrams']) ctx['mention_matchers'].append(matchers.matcher[config[context].get('Context')]) ctx['mention_subclass'].append(mention_subclass(config[context]['MentionName'])) ctx['max_ngrams'].append(MentionNgrams(n_max=config[context].get('MaxNGrams'))) ctx['throttler_function'] = config[context].get('ThrottlerFunctions')[0].get('tf') candidate_mentions[context] = ctx return candidate_mentions def do_train(candidate_mentions): from sqlalchemy import desc docs = session.query(Document).order_by(Document.name).all() # docs = session.query(Document).order_by(desc(Document.id)).limit(1) total_mentions = session.query(Mention).count() splits = (1, 0.0, 0.0) train_cands = [] for candidate_key in candidate_mentions.keys(): train_docs = set() dev_docs = set() test_docs = set() '''print('Mention Subclass {}, Ngrams {} and Matchers {}' .format(candidate_mentions[candidate_key]['mention_subclass'], candidate_mentions[candidate_key]['max_ngrams'], candidate_mentions[candidate_key]['mention_matchers'])) ''' mention_extractor = MentionExtractor(session, candidate_mentions[candidate_key]['mention_subclass'], candidate_mentions[candidate_key]['max_ngrams'], candidate_mentions[candidate_key]['mention_matchers']) mention_extractor.apply(docs, clear=False, parallelism=PARALLEL, progress_bar=False) # mention_extractor.apply(docs) candidate_mentions[candidate_key]['candidate_subclass'] = candidate_subclass(candidate_key, candidate_mentions[candidate_key].get('mention_subclass'), table_name=candidate_mentions[candidate_key]['mention_names'][0]) candidate_extractor = CandidateExtractor(session, [candidate_mentions[candidate_key]['candidate_subclass']], throttlers=[candidate_mentions[candidate_key]['throttler_function']]) data = [(doc.name, doc) for doc in docs] data.sort(key=lambda x: x[0]) for i, (doc_name, doc) in enumerate(data): train_docs.add(doc) for i, docs in enumerate([train_docs, dev_docs, test_docs]): candidate_extractor.apply(docs, split=i, parallelism=PARALLEL) train_cands = candidate_extractor.get_candidates(split = 0) train_cands.append(candidate_extractor.get_candidates(split = 0)) candidate_mentions[candidate_key]['train_cands'] = candidate_extractor.get_candidates(split = 0) for index, item in enumerate(candidate_mentions[candidate_key]['train_cands']): if len(item) > 0: featurizer = Featurizer(session, [candidate_mentions[candidate_key]['candidate_subclass']]) featurizer.apply(split=0, train=True, parallelism=PARALLEL) F_train = featurizer.get_feature_matrices(candidate_mentions[candidate_key]['train_cands']) # %time featurizer.apply(split=0, train=True, parallelism=PARALLEL) # %time F_train = featurizer.get_feature_matrices(candidate_mentions[candidate_key]['train_cands']) else: candidate_mentions[candidate_key]['train_cands'].pop(index) # candidate[candidate_key]['train_cands'] = train_cands return candidate_mentions def do_process_get_candidates(candidate_mentions=None): train_cands = do_train(candidate_mentions) return train_cands def handle_return(generator, func): contextInfoDict = yield from generator func(contextInfoDict) def get_context_async(sm, document_context='', search_context=''): pass # star_char_index = sm.char_start # end_char_index = sm.char_end # star_char_index = sm['applicant_name_context'].char_start # end_char_index = sm['applicant_name_context'].char_end # contextInfoDictionary = { # 'label': { # # 'spanMention': sm['applicant_name_context'], # 'document': sm[search_context].sentence.document.name, # 'documentId': sm[search_context].sentence.document.id, # 'sentence': sm[search_context].sentence.text, # 'contextValue': sm[search_context].sentence.text[star_char_index:end_char_index+1], # 'startChar': star_char_index, # 'endChar': end_char_index # }, # 'value': { # # 'spanMention': sm['applicant_name_context'], # 'document': sm[search_context].sentence.document.name, # 'documentId': sm[search_context].sentence.document.id, # 'sentence': sm[search_context].sentence.text, # 'contextValue': sm[search_context].sentence.text[star_char_index:end_char_index+1], # 'startChar': star_char_index, # 'endChar': end_char_index # } # } # yield contextInfoDictionary def print_values(value): print('returned: {}'.format(json.dumps(value))) def do_get_docs_values(candidates=None, document_context=None, search_context=None): ''' "<class 'fonduer.parser.models.document.Document'>" "<class 'fonduer.parser.models.section.Section'>" "<class 'fonduer.parser.models.sentence.Sentence'>" "<class 'fonduer.candidates.models.span_mention.SpanMention'>" "<class 'fonduer.candidates.models.mention.ApplicationNameLabel'>" ''' train_cands = None docs_and_values = [] all_docs_and_values = [] # print(document_context, search_context) search_types = ['all_docs_and_pii', 'all_doc_and_'+search_context, 'all_pii_for_'+document_context, search_context+'_for_'+document_context] search_type = '' if document_context == None and search_context == None: '''Entire KB''' search_type = search_types[0] elif document_context == None and search_context is not None: ''' Send entire KB ''' search_type = search_types[1] elif document_context is not None and search_context == None: ''' Send KB for document''' search_type = search_types[2] else: ''' Send KB for match in Doc''' search_type = search_types[3] for index, item in enumerate(candidates): train_cands = candidates.get(item).get('train_cands') if train_cands is not None: for instances in train_cands: for candidate in instances: for key, value in enumerate(candidate): # all_docs_and_values.append({ docs_and_values.append({ "documentName": value.context.sentence.document.name, "page": value.context.sentence.page, "piiFound": value.context.sentence.text }) for item in all_docs_and_values: if search_type == 0: docs_and_values.append(item) elif search_type == 1: ''' search_context is already filtered, hence do not filter any document ''' docs_and_values.append(item) elif search_type == 2: ''' only filter document name ''' docs_and_values.append(item) if item.get("documentName") in document_context else None else: ''' search_type is 3 search_context is already filtered, hence only filter document_name ''' docs_and_values.append(item) if item.get("documentName") in document_context else None # logging.info(f'docs_and_values: {docs_and_values}') return docs_and_values def train_and_test_experiment(document_context=None, context_label='', user=0, pdf_path=''): ''' context_value: context_label: user: pdf_path: ''' candidate_mentions = do_prepare_mentions({}, config, context_label) candidates = do_process_get_candidates(candidate_mentions) results = [] if candidates is not None: span_mention = None span_mention_list = do_get_docs_values(candidates, document_context, context_label) if len(span_mention_list) > 0: span_mention = span_mention_list[0] returned_contexts = handle_return(get_context_async(span_mention, document_context, context_label), print_values) for x in returned_contexts: results.append(x) else: # TODO pass return results def train_and_test(document_context=None, context_label='', user=0, pdf_path=''): ''' context_value: context_label: user: pdf_path: ''' candidate_mentions = do_prepare_mentions({}, config, context_label) # candidate_mentions = do_prepare_mentions_batch({}, config) candidates = do_process_get_candidates(candidate_mentions) results = [] if candidates is not None: results = do_get_docs_values(candidates, document_context, context_label) return results _, _, filenames = next(walk(pdf_path)) exc_context_list = config.keys() for fn in filenames: fn = fn.split('.')[0] for ec in exc_context_list: combined_results = print(json.dumps({"result": train_and_test(document_context=fn, context_label=ec), "job_id": job_id }))
8af1f2b9b43cf26c7d092f16479f3b479eed5d23
90f52d0348aa0f82dc1f9013faeb7041c8f04cf8
/wxPython3.0 Docs and Demos/wxPython/samples/wxPIA_book/Chapter-10/popupmenu.py
5226849ca7224afab2ef1c1e69a3aae5158a74d5
[]
no_license
resource-jason-org/python-wxPythonTool
93a25ad93c768ca8b69ba783543cddf7deaf396b
fab6ec3155e6c1ae08ea30a23310006a32d08c36
refs/heads/master
2021-06-15T10:58:35.924543
2017-04-14T03:39:27
2017-04-14T03:39:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,388
py
import wx class MyFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, -1, "Popup Menu Example") self.panel = p = wx.Panel(self) menu = wx.Menu() exit = menu.Append(-1, "Exit") self.Bind(wx.EVT_MENU, self.OnExit, exit) menuBar = wx.MenuBar() menuBar.Append(menu, "Menu") self.SetMenuBar(menuBar) wx.StaticText(p, -1, "Right-click on the panel to show a popup menu", (25,25)) self.popupmenu = wx.Menu() for text in "one two three four five".split(): item = self.popupmenu.Append(-1, text) self.Bind(wx.EVT_MENU, self.OnPopupItemSelected, item) p.Bind(wx.EVT_CONTEXT_MENU, self.OnShowPopup) def OnShowPopup(self, event): pos = event.GetPosition() pos = self.panel.ScreenToClient(pos) self.panel.PopupMenu(self.popupmenu, pos) def OnPopupItemSelected(self, event): item = self.popupmenu.FindItemById(event.GetId()) text = item.GetText() wx.MessageBox("You selected item '%s'" % text) def OnExit(self, event): self.Close() if __name__ == "__main__": app = wx.App() frame = MyFrame() frame.Show() app.MainLoop()
41a58d08aeb1f5f3ee5fbd1e3067dbcc9eefbc43
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-3540.py
a875472b054493c30d3909c9a4a41429a81f0434
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,742
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: $Exp # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
0709557c1f679fa1a41d7157bfe2c991f6adadfc
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/NTWS-AP-IF-MIB.py
d9da09616db8ef8ddc0d2db88e651ab9fd3c63d5
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
5,408
py
# # PySNMP MIB module NTWS-AP-IF-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/NTWS-AP-IF-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:16:00 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueRangeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueRangeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint") IANAifType, = mibBuilder.importSymbols("IANAifType-MIB", "IANAifType") NtwsApSerialNum, = mibBuilder.importSymbols("NTWS-AP-TC", "NtwsApSerialNum") ntwsMibs, = mibBuilder.importSymbols("NTWS-ROOT-MIB", "ntwsMibs") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") Counter64, IpAddress, iso, Bits, Integer32, TimeTicks, Counter32, ObjectIdentity, ModuleIdentity, MibIdentifier, Unsigned32, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "Counter64", "IpAddress", "iso", "Bits", "Integer32", "TimeTicks", "Counter32", "ObjectIdentity", "ModuleIdentity", "MibIdentifier", "Unsigned32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "NotificationType") MacAddress, TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "MacAddress", "TextualConvention", "DisplayString") ntwsApIfMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16)) ntwsApIfMib.setRevisions(('2008-11-20 00:01',)) if mibBuilder.loadTexts: ntwsApIfMib.setLastUpdated('200811200001Z') if mibBuilder.loadTexts: ntwsApIfMib.setOrganization('Nortel Networks') class NtwsApInterfaceIndex(TextualConvention, Unsigned32): status = 'current' displayHint = 'd' subtypeSpec = Unsigned32.subtypeSpec + ValueRangeConstraint(1, 1024) ntwsApIfMibObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1)) ntwsApIfTable = MibTable((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1), ) if mibBuilder.loadTexts: ntwsApIfTable.setStatus('current') ntwsApIfEntry = MibTableRow((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1), ).setIndexNames((0, "NTWS-AP-IF-MIB", "ntwsApIfApSerialNum"), (0, "NTWS-AP-IF-MIB", "ntwsApIfIndex")) if mibBuilder.loadTexts: ntwsApIfEntry.setStatus('current') ntwsApIfApSerialNum = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 1), NtwsApSerialNum()) if mibBuilder.loadTexts: ntwsApIfApSerialNum.setStatus('current') ntwsApIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 2), NtwsApInterfaceIndex()) if mibBuilder.loadTexts: ntwsApIfIndex.setStatus('current') ntwsApIfName = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntwsApIfName.setStatus('current') ntwsApIfType = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 4), IANAifType()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntwsApIfType.setStatus('current') ntwsApIfMtu = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 5), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntwsApIfMtu.setStatus('current') ntwsApIfHighSpeed = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntwsApIfHighSpeed.setStatus('current') ntwsApIfMac = MibTableColumn((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 1, 1, 1, 7), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ntwsApIfMac.setStatus('current') ntwsApIfConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 2)) ntwsApIfCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 2, 1)) ntwsApIfGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 2, 2)) ntwsApIfCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 2, 1, 1)).setObjects(("NTWS-AP-IF-MIB", "ntwsApIfBasicGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ntwsApIfCompliance = ntwsApIfCompliance.setStatus('current') ntwsApIfBasicGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 45, 6, 1, 4, 16, 2, 2, 1)).setObjects(("NTWS-AP-IF-MIB", "ntwsApIfName"), ("NTWS-AP-IF-MIB", "ntwsApIfType"), ("NTWS-AP-IF-MIB", "ntwsApIfMtu"), ("NTWS-AP-IF-MIB", "ntwsApIfHighSpeed"), ("NTWS-AP-IF-MIB", "ntwsApIfMac")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ntwsApIfBasicGroup = ntwsApIfBasicGroup.setStatus('current') mibBuilder.exportSymbols("NTWS-AP-IF-MIB", ntwsApIfApSerialNum=ntwsApIfApSerialNum, ntwsApIfConformance=ntwsApIfConformance, ntwsApIfCompliance=ntwsApIfCompliance, PYSNMP_MODULE_ID=ntwsApIfMib, ntwsApIfName=ntwsApIfName, ntwsApIfMib=ntwsApIfMib, ntwsApIfHighSpeed=ntwsApIfHighSpeed, NtwsApInterfaceIndex=NtwsApInterfaceIndex, ntwsApIfBasicGroup=ntwsApIfBasicGroup, ntwsApIfEntry=ntwsApIfEntry, ntwsApIfMac=ntwsApIfMac, ntwsApIfIndex=ntwsApIfIndex, ntwsApIfMtu=ntwsApIfMtu, ntwsApIfType=ntwsApIfType, ntwsApIfTable=ntwsApIfTable, ntwsApIfCompliances=ntwsApIfCompliances, ntwsApIfMibObjects=ntwsApIfMibObjects, ntwsApIfGroups=ntwsApIfGroups)
fbe0979bb9bfd1111ac0cd12f14a2aecde30e551
892266713e500efa5ac04e1b8de812200410c956
/devset.py
cd8b6e2d344c504aedbc001fde9be6ebc8fc85de
[ "BSD-2-Clause" ]
permissive
martinphellwig/django-g11n
972eb95128637ec0b21efabad6b40ba02c30356c
94eb9da7d7027061873cd44356fdf3378cdb3820
refs/heads/master
2020-08-29T12:24:04.687019
2016-10-10T15:54:32
2016-10-10T15:54:32
218,030,322
0
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
#! /usr/bin/env python """ Developer Reset. """ import os APP = 'django_g11n' DIR = os.path.dirname(os.path.abspath(__file__)) def get_last_migration_file(): "Fetch the latest migration file." _ = os.path.join(DIR, APP, 'migrations') _ = [os.path.join(_, item) for item in os.listdir(_) if not item.startswith('_')] _.sort() if len(_) > 0: return _[-1] else: return None def modify_migration(): "Modify migration, add pylint disable line." path = get_last_migration_file() if path is None: return text = '# pylint: disable=invalid-name, missing-docstring, line-too-long\n' with open(path, 'r+') as file_open: data = file_open.readlines() data.insert(1, text) file_open.seek(0) file_open.write(''.join(data)) def execute_shell(command, prefix='python manage.py', pipe=None): "Execute shell python manage.py" import subprocess cmd = prefix + ' ' + command if pipe is not None: cmd = pipe + ' | ' + cmd subprocess.call(cmd, shell=True) def add_superuser(username, password): "Add superuser" from django.contrib.auth.models import User user = User(username=username) user.set_password(password) user.is_superuser = True user.is_staff = True user.save() return user def remove_db(): "remove the db if it exists" _ = os.path.join(DIR, 'db.sqlite3') if os.path.exists(_): os.remove(_) def remove_last_migration(): "remove last migration file." _ = get_last_migration_file() if _ is not None: os.remove(_) def add_migrations(): "set up the new migrations and migrate" execute_shell('makemigrations ' + APP) execute_shell('makemigrations') execute_shell('migrate') modify_migration() def main(): "Executed when this is the interface module" remove_db() remove_last_migration() add_migrations() # # This will run a shell which imports this file as a module, this means # we can execute things in a Django environment. execute_shell('shell', pipe='echo "import devset"') # execute_shell('runserver') def as_module(): "Executed when this is imported." add_superuser('admin', 'admin') if __name__ == '__main__': main() else: as_module()
[ "martin@localhost" ]
martin@localhost
e4cf4ab1bde5d12816c7568855788438a2c3bde5
b7620d0f1a90390224c8ab71774b9c906ab3e8e9
/aliyun-python-sdk-ehpc/aliyunsdkehpc/request/v20180412/SetAutoScaleConfigRequest.py
3e59df6b987590270e37c30aed6f6b4716a2eea1
[ "Apache-2.0" ]
permissive
YaoYinYing/aliyun-openapi-python-sdk
e9c62940baee1a35b9ec4a9fbd1e4eb0aaf93b2f
e9a93cc94bd8290d1b1a391a9cb0fad2e6c64627
refs/heads/master
2022-10-17T16:39:04.515562
2022-10-10T15:18:34
2022-10-10T15:18:34
117,057,304
0
0
null
2018-01-11T06:03:02
2018-01-11T06:03:01
null
UTF-8
Python
false
false
10,448
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkehpc.endpoint import endpoint_data class SetAutoScaleConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'EHPC', '2018-04-12', 'SetAutoScaleConfig') self.set_method('GET') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ImageId(self): # String return self.get_query_params().get('ImageId') def set_ImageId(self, ImageId): # String self.add_query_param('ImageId', ImageId) def get_SpotPriceLimit(self): # Float return self.get_query_params().get('SpotPriceLimit') def set_SpotPriceLimit(self, SpotPriceLimit): # Float self.add_query_param('SpotPriceLimit', SpotPriceLimit) def get_ExcludeNodes(self): # String return self.get_query_params().get('ExcludeNodes') def set_ExcludeNodes(self, ExcludeNodes): # String self.add_query_param('ExcludeNodes', ExcludeNodes) def get_ExtraNodesGrowRatio(self): # Integer return self.get_query_params().get('ExtraNodesGrowRatio') def set_ExtraNodesGrowRatio(self, ExtraNodesGrowRatio): # Integer self.add_query_param('ExtraNodesGrowRatio', ExtraNodesGrowRatio) def get_ShrinkIdleTimes(self): # Integer return self.get_query_params().get('ShrinkIdleTimes') def set_ShrinkIdleTimes(self, ShrinkIdleTimes): # Integer self.add_query_param('ShrinkIdleTimes', ShrinkIdleTimes) def get_GrowTimeoutInMinutes(self): # Integer return self.get_query_params().get('GrowTimeoutInMinutes') def set_GrowTimeoutInMinutes(self, GrowTimeoutInMinutes): # Integer self.add_query_param('GrowTimeoutInMinutes', GrowTimeoutInMinutes) def get_ClusterId(self): # String return self.get_query_params().get('ClusterId') def set_ClusterId(self, ClusterId): # String self.add_query_param('ClusterId', ClusterId) def get_EnableAutoGrow(self): # Boolean return self.get_query_params().get('EnableAutoGrow') def set_EnableAutoGrow(self, EnableAutoGrow): # Boolean self.add_query_param('EnableAutoGrow', EnableAutoGrow) def get_EnableAutoShrink(self): # Boolean return self.get_query_params().get('EnableAutoShrink') def set_EnableAutoShrink(self, EnableAutoShrink): # Boolean self.add_query_param('EnableAutoShrink', EnableAutoShrink) def get_SpotStrategy(self): # String return self.get_query_params().get('SpotStrategy') def set_SpotStrategy(self, SpotStrategy): # String self.add_query_param('SpotStrategy', SpotStrategy) def get_MaxNodesInCluster(self): # Integer return self.get_query_params().get('MaxNodesInCluster') def set_MaxNodesInCluster(self, MaxNodesInCluster): # Integer self.add_query_param('MaxNodesInCluster', MaxNodesInCluster) def get_ShrinkIntervalInMinutes(self): # Integer return self.get_query_params().get('ShrinkIntervalInMinutes') def set_ShrinkIntervalInMinutes(self, ShrinkIntervalInMinutes): # Integer self.add_query_param('ShrinkIntervalInMinutes', ShrinkIntervalInMinutes) def get_Queuess(self): # RepeatList return self.get_query_params().get('Queues') def set_Queuess(self, Queues): # RepeatList for depth1 in range(len(Queues)): if Queues[depth1].get('QueueName') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.QueueName', Queues[depth1].get('QueueName')) if Queues[depth1].get('SystemDiskLevel') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.SystemDiskLevel', Queues[depth1].get('SystemDiskLevel')) if Queues[depth1].get('InstanceTypes') is not None: for depth2 in range(len(Queues[depth1].get('InstanceTypes'))): if Queues[depth1].get('InstanceTypes')[depth2].get('VSwitchId') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceTypes.' + str(depth2 + 1) + '.VSwitchId', Queues[depth1].get('InstanceTypes')[depth2].get('VSwitchId')) if Queues[depth1].get('InstanceTypes')[depth2].get('SpotStrategy') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceTypes.' + str(depth2 + 1) + '.SpotStrategy', Queues[depth1].get('InstanceTypes')[depth2].get('SpotStrategy')) if Queues[depth1].get('InstanceTypes')[depth2].get('ZoneId') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceTypes.' + str(depth2 + 1) + '.ZoneId', Queues[depth1].get('InstanceTypes')[depth2].get('ZoneId')) if Queues[depth1].get('InstanceTypes')[depth2].get('InstanceType') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceTypes.' + str(depth2 + 1) + '.InstanceType', Queues[depth1].get('InstanceTypes')[depth2].get('InstanceType')) if Queues[depth1].get('InstanceTypes')[depth2].get('SpotPriceLimit') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceTypes.' + str(depth2 + 1) + '.SpotPriceLimit', Queues[depth1].get('InstanceTypes')[depth2].get('SpotPriceLimit')) if Queues[depth1].get('EnableAutoGrow') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.EnableAutoGrow', Queues[depth1].get('EnableAutoGrow')) if Queues[depth1].get('HostNameSuffix') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.HostNameSuffix', Queues[depth1].get('HostNameSuffix')) if Queues[depth1].get('SpotPriceLimit') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.SpotPriceLimit', Queues[depth1].get('SpotPriceLimit')) if Queues[depth1].get('EnableAutoShrink') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.EnableAutoShrink', Queues[depth1].get('EnableAutoShrink')) if Queues[depth1].get('SpotStrategy') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.SpotStrategy', Queues[depth1].get('SpotStrategy')) if Queues[depth1].get('DataDisks') is not None: for depth2 in range(len(Queues[depth1].get('DataDisks'))): if Queues[depth1].get('DataDisks')[depth2].get('DataDiskDeleteWithInstance') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskDeleteWithInstance', Queues[depth1].get('DataDisks')[depth2].get('DataDiskDeleteWithInstance')) if Queues[depth1].get('DataDisks')[depth2].get('DataDiskEncrypted') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskEncrypted', Queues[depth1].get('DataDisks')[depth2].get('DataDiskEncrypted')) if Queues[depth1].get('DataDisks')[depth2].get('DataDiskKMSKeyId') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskKMSKeyId', Queues[depth1].get('DataDisks')[depth2].get('DataDiskKMSKeyId')) if Queues[depth1].get('DataDisks')[depth2].get('DataDiskSize') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskSize', Queues[depth1].get('DataDisks')[depth2].get('DataDiskSize')) if Queues[depth1].get('DataDisks')[depth2].get('DataDiskCategory') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskCategory', Queues[depth1].get('DataDisks')[depth2].get('DataDiskCategory')) if Queues[depth1].get('DataDisks')[depth2].get('DataDiskPerformanceLevel') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.DataDisks.' + str(depth2 + 1) + '.DataDiskPerformanceLevel', Queues[depth1].get('DataDisks')[depth2].get('DataDiskPerformanceLevel')) if Queues[depth1].get('MinNodesInQueue') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.MinNodesInQueue', Queues[depth1].get('MinNodesInQueue')) if Queues[depth1].get('MaxNodesPerCycle') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.MaxNodesPerCycle', Queues[depth1].get('MaxNodesPerCycle')) if Queues[depth1].get('SystemDiskCategory') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.SystemDiskCategory', Queues[depth1].get('SystemDiskCategory')) if Queues[depth1].get('MaxNodesInQueue') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.MaxNodesInQueue', Queues[depth1].get('MaxNodesInQueue')) if Queues[depth1].get('SystemDiskSize') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.SystemDiskSize', Queues[depth1].get('SystemDiskSize')) if Queues[depth1].get('QueueImageId') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.QueueImageId', Queues[depth1].get('QueueImageId')) if Queues[depth1].get('InstanceType') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.InstanceType', Queues[depth1].get('InstanceType')) if Queues[depth1].get('HostNamePrefix') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.HostNamePrefix', Queues[depth1].get('HostNamePrefix')) if Queues[depth1].get('MinNodesPerCycle') is not None: self.add_query_param('Queues.' + str(depth1 + 1) + '.MinNodesPerCycle', Queues[depth1].get('MinNodesPerCycle')) def get_GrowIntervalInMinutes(self): # Integer return self.get_query_params().get('GrowIntervalInMinutes') def set_GrowIntervalInMinutes(self, GrowIntervalInMinutes): # Integer self.add_query_param('GrowIntervalInMinutes', GrowIntervalInMinutes) def get_GrowRatio(self): # Integer return self.get_query_params().get('GrowRatio') def set_GrowRatio(self, GrowRatio): # Integer self.add_query_param('GrowRatio', GrowRatio)
7db90b76ad8b3755f314e61da0f7b4ddf29bd341
ce196aba0adde47ea2767eae1d7983a1ef548bb8
/lambda单行表达式_0.py
dd751c9cc43d2361811c60ac8ee87e8da1b77fb7
[]
no_license
xiang-daode/Python3_codes
5d2639ffd5d65065b98d029e79b8f3608a37cf0b
06c64f85ce2c299aef7f9311e9473e0203a05b09
refs/heads/main
2023-08-30T14:59:55.123128
2021-11-03T05:12:24
2021-11-03T05:12:24
333,632,892
0
2
null
null
null
null
GB18030
Python
false
false
500
py
#!/usr/bin/python # -*- coding: cp936 -*- b= [x for x in range(2,100) if not[y for y in range(2,int(x**0.5)) if not x%y]] print("100以内的全部质数是:",b) c= [y for y in range(2,36)] print('2--35全部输出',c) b= [x for x in range(2,24) if True] print('2--23全部输出',b) d= [x for x in range(2,24) if False] print('无返回: ',d) d= [x for x in range(1,25) if x%2] print('奇数有:',d) d= [x for x in range(1,25) if not x%5] print('5的倍数有:',d)
748b1a4c649433f18bc779c59fa3d4da540bf330
bd185738ea6a74d1e76d9fc9d8cbc59f94990842
/onadata/libs/pagination.py
f3aaf30a3bad15075443aa054f66f133a9d41638
[ "BSD-2-Clause" ]
permissive
aondiaye/myhelpline
c4ad9e812b3a13c6c3c8bc65028a3d3567fd6a98
d72120ee31b6713cbaec79f299f5ee8bcb7ea429
refs/heads/master
2020-12-22T05:32:59.576519
2019-10-29T08:52:55
2019-10-29T08:52:55
236,683,448
1
0
NOASSERTION
2020-01-28T07:50:18
2020-01-28T07:50:17
null
UTF-8
Python
false
false
206
py
from rest_framework.pagination import PageNumberPagination class StandardPageNumberPagination(PageNumberPagination): page_size = 1000 page_size_query_param = 'page_size' max_page_size = 10000
42533e87831e34941babde24267e52e9219a54f1
6fa13067f1f5f50a48f7a535184c8abfb0334012
/old/fall2019/lecture8/sqlite_example2.py
e6d430e24ea7aacf5ae9ecffb2af1c1309060823
[]
no_license
mkzia/eas503
89193b889c39fc5dbc81217e1c6c3d2581b6929d
4d7b548cc7fa8e938842d390f3df710c23d5f8fb
refs/heads/master
2023-09-04T06:56:49.796298
2023-09-01T02:05:16
2023-09-01T02:05:16
205,002,120
70
123
null
null
null
null
UTF-8
Python
false
false
2,280
py
import os import sqlite3 from sqlite3 import Error def create_connection(db_file): conn = None try: conn = sqlite3.connect(db_file) conn.execute("PRAGMA foreign_keys = 1") except Error as e: print(e) return conn def create_table(conn, create_table_sql): try: c = conn.cursor() c.execute(create_table_sql) except Error as e: print(e) def insert_depts(conn, values): sql = ''' INSERT INTO Departments(DepartmentName) VALUES(?) ''' cur = conn.cursor() cur.execute(sql, values) return cur.lastrowid def insert_student(conn, values): sql = ''' INSERT INTO Students(StudentName, DepartmentId, DateOfBirth) VALUES(?,?,?) ''' cur = conn.cursor() cur.execute(sql, values) return cur.lastrowid def select_all_students(conn): cur = conn.cursor() cur.execute("""SELECT * FROM Students INNER JOIN Departments USING(DepartmentId);""") rows = cur.fetchall() for row in rows: print(row) return rows db_file = 'sample_data_py.db' if os.path.exists(db_file): os.remove(db_file) create_table_departments_sql = """ CREATE TABLE [Departments] ( [DepartmentId] INTEGER NOT NULL PRIMARY KEY, [DepartmentName] NVARCHAR(50) NULL ); """ create_table_students_sql = """ CREATE TABLE [Students] ( [StudentId] INTEGER PRIMARY KEY NOT NULL, [StudentName] NVARCHAR(50) NOT NULL, [DepartmentId] INTEGER NULL, [DateOfBirth] DATE NULL, FOREIGN KEY(DepartmentId) REFERENCES Departments(DepartmentId) ); """ conn = create_connection(db_file) depts = ('IT', 'Physics', 'Arts', 'Math') students = ( ('Michael', 1, '1998-10-12'), ('John', 1, '1998-10-12'), ('Jack', 1, '1998-10-12'), ('Sara', 2, '1998-10-12'), ('Sally', 2, '1998-10-12'), ('Jena', None, '1998-10-12'), ('Nancy', 2, '1998-10-12'), ('Adam', 3, '1998-10-12'), ('Stevens', 3, '1998-10-12'), ('George', None, '1998-10-12') ) with conn: create_table(conn, create_table_departments_sql) create_table(conn, create_table_students_sql) for values in depts: insert_depts(conn, (values, )) for values in students: insert_student(conn, values) select_all_students(conn)
37c1c3091247a88ff307abacfcd63fbc7b304bb5
8cce087dfd5c623c2f763f073c1f390a21838f0e
/projects/versioneer/test.py
32fd79d45d8ce3d9b488d3feae6bca952e983ac1
[ "Unlicense" ]
permissive
quinn-dougherty/python-on-nix
b2ae42761bccf7b3766999b27a4674310e276fd8
910d3f6554acd4a4ef0425ebccd31104dccb283c
refs/heads/main
2023-08-23T11:57:55.988175
2021-09-24T05:55:00
2021-09-24T05:55:00
414,799,752
0
0
null
null
null
null
UTF-8
Python
false
false
18
py
import versioneer
fbcc54fea5b182b3e2383026e517dcaa50974606
f20516958c39123f204e2bc442c91df7df1cc34a
/amqpstorm/exchange.py
865a03bd8e75475a400c5bdf1d4068945cb5fa0b
[ "BSD-3-Clause" ]
permissive
bradparks/ReadableWebProxy
3c2732cff64007afa8318b5b159616a529068322
81fbce3083471126942d2e2a298dba9eaf1092b1
refs/heads/master
2020-05-29T11:48:40.189530
2016-08-25T15:17:14
2016-08-25T15:17:14
66,568,996
0
0
null
2016-08-25T15:13:39
2016-08-25T15:13:39
null
UTF-8
Python
false
false
5,689
py
"""AMQP-Storm Channel.Exchange.""" import logging from pamqp.specification import Exchange as pamqp_exchange from amqpstorm import compatibility from amqpstorm.base import Handler from amqpstorm.exception import AMQPInvalidArgument LOGGER = logging.getLogger(__name__) class Exchange(Handler): """AMQP Channel.exchange""" __slots__ = [] def declare(self, exchange='', exchange_type='direct', passive=False, durable=False, auto_delete=False, arguments=None): """Declare an Exchange. :param str exchange: :param str exchange_type: :param bool passive: :param bool durable: :param bool auto_delete: :param dict arguments: :raises AMQPInvalidArgument: Invalid Parameters :raises AMQPChannelError: Raises if the channel encountered an error. :raises AMQPConnectionError: Raises if the connection encountered an error. :rtype: dict """ if not compatibility.is_string(exchange): raise AMQPInvalidArgument('exchange should be a string') elif not compatibility.is_string(exchange_type): raise AMQPInvalidArgument('exchange_type should be a string') elif not isinstance(passive, bool): raise AMQPInvalidArgument('passive should be a boolean') elif not isinstance(durable, bool): raise AMQPInvalidArgument('durable should be a boolean') elif not isinstance(auto_delete, bool): raise AMQPInvalidArgument('auto_delete should be a boolean') elif arguments is not None and not isinstance(arguments, dict): raise AMQPInvalidArgument('arguments should be a dict or None') declare_frame = pamqp_exchange.Declare(exchange=exchange, exchange_type=exchange_type, passive=passive, durable=durable, auto_delete=auto_delete, arguments=arguments) return self._channel.rpc_request(declare_frame) def delete(self, exchange='', if_unused=False): """Delete an Exchange. :param str exchange: :param bool if_unused: :raises AMQPInvalidArgument: Invalid Parameters :raises AMQPChannelError: Raises if the channel encountered an error. :raises AMQPConnectionError: Raises if the connection encountered an error. :rtype: dict """ if not compatibility.is_string(exchange): raise AMQPInvalidArgument('exchange should be a string') delete_frame = pamqp_exchange.Delete(exchange=exchange, if_unused=if_unused) return self._channel.rpc_request(delete_frame) def bind(self, destination='', source='', routing_key='', arguments=None): """Bind an Exchange. :param str destination: :param str source: :param str routing_key: :param dict arguments: :raises AMQPInvalidArgument: Invalid Parameters :raises AMQPChannelError: Raises if the channel encountered an error. :raises AMQPConnectionError: Raises if the connection encountered an error. :rtype: dict """ if not compatibility.is_string(destination): raise AMQPInvalidArgument('destination should be a string') elif not compatibility.is_string(source): raise AMQPInvalidArgument('source should be a string') elif not compatibility.is_string(routing_key): raise AMQPInvalidArgument('routing_key should be a string') elif arguments is not None and not isinstance(arguments, dict): raise AMQPInvalidArgument('arguments should be a dict or None') bind_frame = pamqp_exchange.Bind(destination=destination, source=source, routing_key=routing_key, arguments=arguments) return self._channel.rpc_request(bind_frame) def unbind(self, destination='', source='', routing_key='', arguments=None): """Unbind an Exchange. :param str destination: :param str source: :param str routing_key: :param dict arguments: :raises AMQPInvalidArgument: Invalid Parameters :raises AMQPChannelError: Raises if the channel encountered an error. :raises AMQPConnectionError: Raises if the connection encountered an error. :rtype: dict """ if not compatibility.is_string(destination): raise AMQPInvalidArgument('destination should be a string') elif not compatibility.is_string(source): raise AMQPInvalidArgument('source should be a string') elif not compatibility.is_string(routing_key): raise AMQPInvalidArgument('routing_key should be a string') elif arguments is not None and not isinstance(arguments, dict): raise AMQPInvalidArgument('arguments should be a dict or None') unbind_frame = pamqp_exchange.Unbind(destination=destination, source=source, routing_key=routing_key, arguments=arguments) return self._channel.rpc_request(unbind_frame)
9372d896b7050b2587a7d13762a113a2e9af5b33
cfa2417f07259e512a1bbface4f1f4ccd66502c6
/test/test_Likelihood/test_LensLikelihood/test_base_lens_likelihood.py
6ecb7556a125e7d02dc4226cdb44037390dd4b9d
[ "BSD-3-Clause" ]
permissive
jiwoncpark/hierArc
3779439533d3c9c5fe2e687f4bdf737dfc7673e8
3f31c0ae7540387fe98f778035d415c3cff38756
refs/heads/master
2021-05-18T21:32:45.590675
2020-12-23T00:01:01
2020-12-23T00:01:01
251,431,028
0
0
NOASSERTION
2020-03-30T21:20:08
2020-03-30T21:20:08
null
UTF-8
Python
false
false
4,045
py
import numpy as np import pytest import unittest from hierarc.Likelihood.LensLikelihood.base_lens_likelihood import LensLikelihoodBase class TestLensLikelihood(object): def setup(self): np.random.seed(seed=41) self.z_lens = 0.8 self.z_source = 3.0 num_samples = 10000 ddt_samples = np.random.normal(1, 0.1, num_samples) dd_samples = np.random.normal(1, 0.1, num_samples) self.likelihood_type_list = ['DdtGaussian', 'DdtDdKDE', 'DdtDdGaussian', 'DsDdsGaussian', 'DdtLogNorm', 'IFUKinCov', 'DdtHist', 'DdtHistKDE', 'DdtHistKin', 'DdtGaussKin', 'Mag', 'TDMag'] self.kwargs_likelihood_list = [{'ddt_mean': 1, 'ddt_sigma': 0.1}, {'dd_samples': dd_samples, 'ddt_samples': ddt_samples, 'kde_type': 'scipy_gaussian', 'bandwidth': 1}, {'ddt_mean': 1, 'ddt_sigma': 0.1, 'dd_mean': 1, 'dd_sigma': 0.1}, {'ds_dds_mean': 1, 'ds_dds_sigma': 0.1}, {'ddt_mu': 1, 'ddt_sigma': 0.1}, {'sigma_v_measurement': [1], 'j_model': [1], 'error_cov_measurement': [[1]], 'error_cov_j_sqrt': [[1]]}, {'ddt_samples': ddt_samples}, {'ddt_samples': ddt_samples}, {'ddt_samples': ddt_samples, 'sigma_v_measurement': [1], 'j_model': [1], 'error_cov_measurement': [[1]], 'error_cov_j_sqrt': [[1]]}, {'ddt_mean': 1, 'ddt_sigma': 0.1, 'sigma_v_measurement': [1], 'j_model': [1], 'error_cov_measurement': [[1]], 'error_cov_j_sqrt': [[1]]}, {'amp_measured': [1], 'cov_amp_measured': [[1]], 'mag_model': [1], 'cov_model': [[1]]}, {'time_delay_measured': [1.], 'cov_td_measured': [[1.]], 'amp_measured': [1., 1.], 'cov_amp_measured': [[1., 0], [0, 1.]], 'fermat_diff': [1.], 'mag_model': [1., 1.], 'cov_model': np.ones((3, 3))} ] def test_log_likelihood(self): for i, likelihood_type in enumerate(self.likelihood_type_list): likelihood = LensLikelihoodBase(z_lens=self.z_lens, z_source=self.z_source, likelihood_type=likelihood_type, **self.kwargs_likelihood_list[i]) print(likelihood_type) logl = likelihood.log_likelihood(ddt=1, dd=1, aniso_scaling=None, sigma_v_sys_error=1, mu_intrinsic=1) print(logl) assert logl > -np.inf def test_predictions_measurements(self): for i, likelihood_type in enumerate(self.likelihood_type_list): likelihood = LensLikelihoodBase(z_lens=self.z_lens, z_source=self.z_source, likelihood_type=likelihood_type, **self.kwargs_likelihood_list[i]) ddt_measurement = likelihood.ddt_measurement() likelihood.sigma_v_measurement(sigma_v_sys_error=0) likelihood.sigma_v_prediction(ddt=1, dd=1, aniso_scaling=1) assert len(ddt_measurement) == 2 class TestRaise(unittest.TestCase): def test_raise(self): with self.assertRaises(ValueError): LensLikelihoodBase(z_lens=0.5, z_source=2, likelihood_type='BAD') with self.assertRaises(ValueError): likelihood = LensLikelihoodBase(z_lens=0.5, z_source=2, likelihood_type='DdtGaussian', **{'ddt_mean': 1, 'ddt_sigma': 0.1}) likelihood.likelihood_type = 'BAD' likelihood.log_likelihood(ddt=1, dd=1) if __name__ == '__main__': pytest.main()
f8aa9cc771efab36e523016cc18be7dd92b8bf88
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
/test/test_study_group_values_controller_api.py
671f7e874460bcd47617d26a420f26a608131ef4
[]
no_license
Sage-Bionetworks/rcc-client
c770432de2d2950e00f7c7bd2bac22f3a81c2061
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
refs/heads/main
2023-02-23T05:55:39.279352
2021-01-21T02:06:08
2021-01-21T02:06:08
331,486,099
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
# coding: utf-8 """ nPhase REST Resource REDCap REST API v.2 # noqa: E501 The version of the OpenAPI document: 2.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import rcc from rcc.api.study_group_values_controller_api import StudyGroupValuesControllerApi # noqa: E501 from rcc.rest import ApiException class TestStudyGroupValuesControllerApi(unittest.TestCase): """StudyGroupValuesControllerApi unit test stubs""" def setUp(self): self.api = rcc.api.study_group_values_controller_api.StudyGroupValuesControllerApi() # noqa: E501 def tearDown(self): pass def test_create11(self): """Test case for create11 Create new Study Group Value for current Study based on auth token provided # noqa: E501 """ pass def test_delete8(self): """Test case for delete8 Delete Study Group Value for current Study based on auth token provided # noqa: E501 """ pass def test_get_details8(self): """Test case for get_details8 Get specified Study Group Value details # noqa: E501 """ pass def test_get_list9(self): """Test case for get_list9 Get list of all Study Group Values for specified Study # noqa: E501 """ pass def test_update10(self): """Test case for update10 Update Study Group Value for current Study based on auth token provided # noqa: E501 """ pass if __name__ == '__main__': unittest.main()