blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
197947df3f6c3b552f542cad538188861870d86f
95c027e7302751b335b33d287e0efac7483edfc3
/boj/BOJ_평균.py
aaf5066b2ef4cd7f9d8f10ec2c10ff292124ceba
[]
no_license
kimchaelin13/Algorithm
01bd4bcb24c58d5d82714e60272d5af91d2d9ce8
53f7f3cff5a141cf705af3c9f31cdb9ae997caff
refs/heads/master
2023-02-03T08:58:26.660299
2020-12-20T17:01:16
2020-12-20T17:01:16
296,996,924
1
0
null
null
null
null
UTF-8
Python
false
false
185
py
import sys sys.stdin = open("input.txt", "r") s = [] for i in range(5): s.append(int(input())) for j in range(len(s)): if s[j] < 40: s[j]=40 print(round(sum(s)/len(s)))
3775521386c59304a0872b9053c2111fdfe7ca55
da687718aa8ce62974090af63d25e057262e9dfe
/cap14-funcoes/extras/entrada.py
8f9a269e72ba810cb2bb7d637f9fbdeaae697fbd
[]
no_license
frclasso/revisao_Python_modulo1
77928fa4409c97d49cc7deccdf291f44c337d290
1e83d0ef9657440db46a8e84b136ac5f9a7c556e
refs/heads/master
2020-06-25T05:37:28.768343
2019-07-27T22:23:58
2019-07-27T22:23:58
199,217,969
1
0
null
null
null
null
UTF-8
Python
false
false
329
py
def valida_inteiro(mensagem, minimo, maximo): while True: try: v = int(input(mensagem)) if v >= minimo and v <= maximo: return v else: print(f'Digite um valor entre {maximo} e {minimo}.') except: print('Voce deve digitar um numero inteiro.')
1c1842851e7ef3306eade4b5362a299e7a952d0f
4cdf4e243891c0aa0b99dd5ee84f09a7ed6dd8c8
/django2/bookmarks/bookmarks/settings.py
8277bde8c3c7f242eb407532c2ef68e2c0ae896b
[ "MIT" ]
permissive
gozeon/code-collections
464986c7765df5dca980ac5146b847416b750998
13f07176a6c7b6ac13586228cec4c1e2ed32cae4
refs/heads/master
2023-08-17T18:53:24.189958
2023-08-10T04:52:47
2023-08-10T04:52:47
99,432,793
1
0
NOASSERTION
2020-07-17T09:25:44
2017-08-05T15:56:53
JavaScript
UTF-8
Python
false
false
3,367
py
""" Django settings for bookmarks project. Generated by 'django-admin startproject' using Django 2.0.8. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'a9va+)ulziy57*cci0qv^v#7lo04$%&t-qj*77hg@77q1_&#_d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'account.apps.AccountConfig', 'images.apps.ImagesConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'bookmarks.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bookmarks.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' LOGIN_REDIRECT_URL = 'dashboard' LOGIN_URL = 'login' LOGOUT_URL = 'logout' EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media/')
990c0d14f1a9a11941085c4fae1209efd43555c4
e9988eb38fd515baa386d8b06bb7cce30c34c50d
/sitevenv/lib/python2.7/site-packages/django/utils/translation/trans_real.py
6ab071dabaf28cf2d985efd0f10d8189984cabaf
[]
no_license
Arrrrrrrpit/Hire_station
8c2f293677925d1053a4db964ee504d78c3738d8
f33f044628082f1e034484b5c702fd66478aa142
refs/heads/master
2020-07-01T01:24:18.190530
2016-09-25T20:33:05
2016-09-25T20:33:05
201,007,123
0
0
null
null
null
null
UTF-8
Python
false
false
30,622
py
"""Translation helper functions.""" from __future__ import unicode_literals import gettext as gettext_module import os import re import sys import warnings from collections import OrderedDict from threading import local from django.apps import apps from django.conf import settings from django.conf.locale import LANG_INFO from django.core.exceptions import AppRegistryNotReady from django.core.signals import setting_changed from django.dispatch import receiver from django.utils import lru_cache, six from django.utils._os import upath from django.utils.encoding import force_text from django.utils.safestring import SafeData, mark_safe from django.utils.six import StringIO from django.utils.translation import ( LANGUAGE_SESSION_KEY, TranslatorCommentWarning, trim_whitespace, ) # Translations are cached in a dictionary for every language. # The active translations are stored by threadid to make them thread local. _translations = {} _active = local() # The default translation is based on the settings file. _default = None # magic gettext number to separate context from message CONTEXT_SEPARATOR = "\x04" # Format of Accept-Language header values. From RFC 2616, section 14.4 and 3.9 # and RFC 3066, section 2.1 accept_language_re = re.compile(r''' ([A-Za-z]{1,8}(?:-[A-Za-z0-9]{1,8})*|\*) # "en", "en-au", "x-y-z", "es-419", "*" (?:\s*;\s*q=(0(?:\.\d{,3})?|1(?:.0{,3})?))? # Optional "q=1.00", "q=0.8" (?:\s*,\s*|$) # Multiple accepts per header. ''', re.VERBOSE) language_code_re = re.compile( r'^[a-z]{1,8}(?:-[a-z0-9]{1,8})*(?:@[a-z0-9]{1,20})?$', re.IGNORECASE ) language_code_prefix_re = re.compile(r'^/([\w@-]+)(/|$)') @receiver(setting_changed) def reset_cache(**kwargs): """ Reset global state when LANGUAGES setting has been changed, as some languages should no longer be accepted. """ if kwargs['setting'] in ('LANGUAGES', 'LANGUAGE_CODE'): check_for_language.cache_clear() get_languages.cache_clear() get_supported_language_variant.cache_clear() def to_locale(language, to_lower=False): """ Turns a language name (en-us) into a locale name (en_US). If 'to_lower' is True, the last component is lower-cased (en_us). """ p = language.find('-') if p >= 0: if to_lower: return language[:p].lower() + '_' + language[p + 1:].lower() else: # Get correct locale for sr-latn if len(language[p + 1:]) > 2: return language[:p].lower() + '_' + language[p + 1].upper() + language[p + 2:].lower() return language[:p].lower() + '_' + language[p + 1:].upper() else: return language.lower() def to_language(locale): """Turns a locale name (en_US) into a language name (en-us).""" p = locale.find('_') if p >= 0: return locale[:p].lower() + '-' + locale[p + 1:].lower() else: return locale.lower() class DjangoTranslation(gettext_module.GNUTranslations): """ This class sets up the GNUTranslations context with regard to output charset. This translation object will be constructed out of multiple GNUTranslations objects by merging their catalogs. It will construct an object for the requested language and add a fallback to the default language, if it's different from the requested language. """ domain = 'django' def __init__(self, language, domain=None, localedirs=None): """Create a GNUTranslations() using many locale directories""" gettext_module.GNUTranslations.__init__(self) if domain is not None: self.domain = domain self.set_output_charset('utf-8') # For Python 2 gettext() (#25720) self.__language = language self.__to_language = to_language(language) self.__locale = to_locale(language) self._catalog = None if self.domain == 'django': if localedirs is not None: # A module-level cache is used for caching 'django' translations warnings.warn("localedirs is ignored when domain is 'django'.", RuntimeWarning) localedirs = None self._init_translation_catalog() if localedirs: for localedir in localedirs: translation = self._new_gnu_trans(localedir) self.merge(translation) else: self._add_installed_apps_translations() self._add_local_translations() if self.__language == settings.LANGUAGE_CODE and self.domain == 'django' and self._catalog is None: # default lang should have at least one translation file available. raise IOError("No translation files found for default language %s." % settings.LANGUAGE_CODE) self._add_fallback(localedirs) if self._catalog is None: # No catalogs found for this language, set an empty catalog. self._catalog = {} def __repr__(self): return "<DjangoTranslation lang:%s>" % self.__language def _new_gnu_trans(self, localedir, use_null_fallback=True): """ Returns a mergeable gettext.GNUTranslations instance. A convenience wrapper. By default gettext uses 'fallback=False'. Using param `use_null_fallback` to avoid confusion with any other references to 'fallback'. """ return gettext_module.translation( domain=self.domain, localedir=localedir, languages=[self.__locale], codeset='utf-8', fallback=use_null_fallback) def _init_translation_catalog(self): """Creates a base catalog using global django translations.""" settingsfile = upath(sys.modules[settings.__module__].__file__) localedir = os.path.join(os.path.dirname(settingsfile), 'locale') translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_installed_apps_translations(self): """Merges translations from each installed app.""" try: app_configs = reversed(list(apps.get_app_configs())) except AppRegistryNotReady: raise AppRegistryNotReady( "The translation infrastructure cannot be initialized before the " "apps registry is ready. Check that you don't make non-lazy " "gettext calls at import time.") for app_config in app_configs: localedir = os.path.join(app_config.path, 'locale') translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_local_translations(self): """Merges translations defined in LOCALE_PATHS.""" for localedir in reversed(settings.LOCALE_PATHS): translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_fallback(self, localedirs=None): """Sets the GNUTranslations() fallback with the default language.""" # Don't set a fallback for the default language or any English variant # (as it's empty, so it'll ALWAYS fall back to the default language) if self.__language == settings.LANGUAGE_CODE or self.__language.startswith('en'): return if self.domain == 'django': # Get from cache default_translation = translation(settings.LANGUAGE_CODE) else: default_translation = DjangoTranslation( settings.LANGUAGE_CODE, domain=self.domain, localedirs=localedirs ) self.add_fallback(default_translation) def merge(self, other): """Merge another translation into this catalog.""" if not getattr(other, '_catalog', None): return # NullTranslations() has no _catalog if self._catalog is None: # Take plural and _info from first catalog found (generally Django's). self.plural = other.plural self._info = other._info.copy() self._catalog = other._catalog.copy() else: self._catalog.update(other._catalog) def language(self): """Returns the translation language.""" return self.__language def to_language(self): """Returns the translation language name.""" return self.__to_language def translation(language): """ Returns a translation object in the default 'django' domain. """ global _translations if language not in _translations: _translations[language] = DjangoTranslation(language) return _translations[language] def activate(language): """ Fetches the translation object for a given language and installs it as the current translation object for the current thread. """ if not language: return _active.value = translation(language) def deactivate(): """ Deinstalls the currently active translation object so that further _ calls will resolve against the default translation object, again. """ if hasattr(_active, "value"): del _active.value def deactivate_all(): """ Makes the active translation object a NullTranslations() instance. This is useful when we want delayed translations to appear as the original string for some reason. """ _active.value = gettext_module.NullTranslations() _active.value.to_language = lambda *args: None def get_language(): """Returns the currently selected language.""" t = getattr(_active, "value", None) if t is not None: try: return t.to_language() except AttributeError: pass # If we don't have a real translation object, assume it's the default language. return settings.LANGUAGE_CODE def get_language_bidi(): """ Returns selected language's BiDi layout. * False = left-to-right layout * True = right-to-left layout """ lang = get_language() if lang is None: return False else: base_lang = get_language().split('-')[0] return base_lang in settings.LANGUAGES_BIDI def catalog(): """ Returns the current active catalog for further processing. This can be used if you need to modify the catalog or want to access the whole message catalog instead of just translating one string. """ global _default t = getattr(_active, "value", None) if t is not None: return t if _default is None: _default = translation(settings.LANGUAGE_CODE) return _default def do_translate(message, translation_function): """ Translates 'message' using the given 'translation_function' name -- which will be either gettext or ugettext. It uses the current thread to find the translation object to use. If no current translation is activated, the message will be run through the default translation object. """ global _default # str() is allowing a bytestring message to remain bytestring on Python 2 eol_message = message.replace(str('\r\n'), str('\n')).replace(str('\r'), str('\n')) if len(eol_message) == 0: # Returns an empty value of the corresponding type if an empty message # is given, instead of metadata, which is the default gettext behavior. result = type(message)("") else: _default = _default or translation(settings.LANGUAGE_CODE) translation_object = getattr(_active, "value", _default) result = getattr(translation_object, translation_function)(eol_message) if isinstance(message, SafeData): return mark_safe(result) return result def gettext(message): """ Returns a string of the translation of the message. Returns a string on Python 3 and an UTF-8-encoded bytestring on Python 2. """ return do_translate(message, 'gettext') if six.PY3: ugettext = gettext else: def ugettext(message): return do_translate(message, 'ugettext') def pgettext(context, message): msg_with_ctxt = "%s%s%s" % (context, CONTEXT_SEPARATOR, message) result = ugettext(msg_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found # force unicode, because lazy version expects unicode result = force_text(message) return result def gettext_noop(message): """ Marks strings for translation but doesn't translate them now. This can be used to store strings in global variables that should stay in the base language (because they might be used externally) and will be translated later. """ return message def do_ntranslate(singular, plural, number, translation_function): global _default t = getattr(_active, "value", None) if t is not None: return getattr(t, translation_function)(singular, plural, number) if _default is None: _default = translation(settings.LANGUAGE_CODE) return getattr(_default, translation_function)(singular, plural, number) def ngettext(singular, plural, number): """ Returns a string of the translation of either the singular or plural, based on the number. Returns a string on Python 3 and an UTF-8-encoded bytestring on Python 2. """ return do_ntranslate(singular, plural, number, 'ngettext') if six.PY3: ungettext = ngettext else: def ungettext(singular, plural, number): """ Returns a unicode strings of the translation of either the singular or plural, based on the number. """ return do_ntranslate(singular, plural, number, 'ungettext') def npgettext(context, singular, plural, number): msgs_with_ctxt = ("%s%s%s" % (context, CONTEXT_SEPARATOR, singular), "%s%s%s" % (context, CONTEXT_SEPARATOR, plural), number) result = ungettext(*msgs_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found result = ungettext(singular, plural, number) return result def all_locale_paths(): """ Returns a list of paths to user-provides languages files. """ globalpath = os.path.join( os.path.dirname(upath(sys.modules[settings.__module__].__file__)), 'locale') return [globalpath] + list(settings.LOCALE_PATHS) @lru_cache.lru_cache(maxsize=1000) def check_for_language(lang_code): """ Checks whether there is a global language file for the given language code. This is used to decide whether a user-provided language is available. lru_cache should have a maxsize to prevent from memory exhaustion attacks, as the provided language codes are taken from the HTTP request. See also <https://www.djangoproject.com/weblog/2007/oct/26/security-fix/>. """ # First, a quick check to make sure lang_code is well-formed (#21458) if lang_code is None or not language_code_re.search(lang_code): return False for path in all_locale_paths(): if gettext_module.find('django', path, [to_locale(lang_code)]) is not None: return True return False @lru_cache.lru_cache() def get_languages(): """ Cache of settings.LANGUAGES in an OrderedDict for easy lookups by key. """ return OrderedDict(settings.LANGUAGES) @lru_cache.lru_cache(maxsize=1000) def get_supported_language_variant(lang_code, strict=False): """ Returns the language-code that's listed in supported languages, possibly selecting a more generic variant. Raises LookupError if nothing found. If `strict` is False (the default), the function will look for an alternative country-specific variant when the currently checked is not found. lru_cache should have a maxsize to prevent from memory exhaustion attacks, as the provided language codes are taken from the HTTP request. See also <https://www.djangoproject.com/weblog/2007/oct/26/security-fix/>. """ if lang_code: # If 'fr-ca' is not supported, try special fallback or language-only 'fr'. possible_lang_codes = [lang_code] try: possible_lang_codes.extend(LANG_INFO[lang_code]['fallback']) except KeyError: pass generic_lang_code = lang_code.split('-')[0] possible_lang_codes.append(generic_lang_code) supported_lang_codes = get_languages() for code in possible_lang_codes: if code in supported_lang_codes and check_for_language(code): return code if not strict: # if fr-fr is not supported, try fr-ca. for supported_code in supported_lang_codes: if supported_code.startswith(generic_lang_code + '-'): return supported_code raise LookupError(lang_code) def get_language_from_path(path, strict=False): """ Returns the language-code if there is a valid language-code found in the `path`. If `strict` is False (the default), the function will look for an alternative country-specific variant when the currently checked is not found. """ regex_match = language_code_prefix_re.match(path) if not regex_match: return None lang_code = regex_match.group(1) try: return get_supported_language_variant(lang_code, strict=strict) except LookupError: return None def get_language_from_request(request, check_path=False): """ Analyzes the request to find what language the user wants the system to show. Only languages listed in settings.LANGUAGES are taken into account. If the user requests a sublanguage where we have a main language, we send out the main language. If check_path is True, the URL path prefix will be checked for a language code, otherwise this is skipped for backwards compatibility. """ if check_path: lang_code = get_language_from_path(request.path_info) if lang_code is not None: return lang_code supported_lang_codes = get_languages() if hasattr(request, 'session'): lang_code = request.session.get(LANGUAGE_SESSION_KEY) if lang_code in supported_lang_codes and lang_code is not None and check_for_language(lang_code): return lang_code lang_code = request.COOKIES.get(settings.LANGUAGE_COOKIE_NAME) try: return get_supported_language_variant(lang_code) except LookupError: pass accept = request.META.get('HTTP_ACCEPT_LANGUAGE', '') for accept_lang, unused in parse_accept_lang_header(accept): if accept_lang == '*': break if not language_code_re.search(accept_lang): continue try: return get_supported_language_variant(accept_lang) except LookupError: continue try: return get_supported_language_variant(settings.LANGUAGE_CODE) except LookupError: return settings.LANGUAGE_CODE dot_re = re.compile(r'\S') def blankout(src, char): """ Changes every non-whitespace character to the given char. Used in the templatize function. """ return dot_re.sub(char, src) context_re = re.compile(r"""^\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?'))\s*""") inline_re = re.compile( # Match the trans 'some text' part r"""^\s*trans\s+((?:"[^"]*?")|(?:'[^']*?'))""" # Match and ignore optional filters r"""(?:\s*\|\s*[^\s:]+(?::(?:[^\s'":]+|(?:"[^"]*?")|(?:'[^']*?')))?)*""" # Match the optional context part r"""(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?\s*""" ) block_re = re.compile(r"""^\s*blocktrans(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?(?:\s+|$)""") endblock_re = re.compile(r"""^\s*endblocktrans$""") plural_re = re.compile(r"""^\s*plural$""") constant_re = re.compile(r"""_\(((?:".*?")|(?:'.*?'))\)""") def templatize(src, origin=None): """ Turns a Django template into something that is understood by xgettext. It does so by translating the Django translation tags into standard gettext function invocations. """ from django.template.base import ( Lexer, TOKEN_TEXT, TOKEN_VAR, TOKEN_BLOCK, TOKEN_COMMENT, TRANSLATOR_COMMENT_MARK, ) src = force_text(src, settings.FILE_CHARSET) out = StringIO('') message_context = None intrans = False inplural = False trimmed = False singular = [] plural = [] incomment = False comment = [] lineno_comment_map = {} comment_lineno_cache = None # Adding the u prefix allows gettext to recognize the Unicode string # (#26093). raw_prefix = 'u' if six.PY3 else '' def join_tokens(tokens, trim=False): message = ''.join(tokens) if trim: message = trim_whitespace(message) return message for t in Lexer(src).tokenize(): if incomment: if t.token_type == TOKEN_BLOCK and t.contents == 'endcomment': content = ''.join(comment) translators_comment_start = None for lineno, line in enumerate(content.splitlines(True)): if line.lstrip().startswith(TRANSLATOR_COMMENT_MARK): translators_comment_start = lineno for lineno, line in enumerate(content.splitlines(True)): if translators_comment_start is not None and lineno >= translators_comment_start: out.write(' # %s' % line) else: out.write(' #\n') incomment = False comment = [] else: comment.append(t.contents) elif intrans: if t.token_type == TOKEN_BLOCK: endbmatch = endblock_re.match(t.contents) pluralmatch = plural_re.match(t.contents) if endbmatch: if inplural: if message_context: out.write(' npgettext({p}{!r}, {p}{!r}, {p}{!r},count) '.format( message_context, join_tokens(singular, trimmed), join_tokens(plural, trimmed), p=raw_prefix, )) else: out.write(' ngettext({p}{!r}, {p}{!r}, count) '.format( join_tokens(singular, trimmed), join_tokens(plural, trimmed), p=raw_prefix, )) for part in singular: out.write(blankout(part, 'S')) for part in plural: out.write(blankout(part, 'P')) else: if message_context: out.write(' pgettext({p}{!r}, {p}{!r}) '.format( message_context, join_tokens(singular, trimmed), p=raw_prefix, )) else: out.write(' gettext({p}{!r}) '.format( join_tokens(singular, trimmed), p=raw_prefix, )) for part in singular: out.write(blankout(part, 'S')) message_context = None intrans = False inplural = False singular = [] plural = [] elif pluralmatch: inplural = True else: filemsg = '' if origin: filemsg = 'file %s, ' % origin raise SyntaxError( "Translation blocks must not include other block tags: " "%s (%sline %d)" % (t.contents, filemsg, t.lineno) ) elif t.token_type == TOKEN_VAR: if inplural: plural.append('%%(%s)s' % t.contents) else: singular.append('%%(%s)s' % t.contents) elif t.token_type == TOKEN_TEXT: contents = t.contents.replace('%', '%%') if inplural: plural.append(contents) else: singular.append(contents) else: # Handle comment tokens (`{# ... #}`) plus other constructs on # the same line: if comment_lineno_cache is not None: cur_lineno = t.lineno + t.contents.count('\n') if comment_lineno_cache == cur_lineno: if t.token_type != TOKEN_COMMENT: for c in lineno_comment_map[comment_lineno_cache]: filemsg = '' if origin: filemsg = 'file %s, ' % origin warn_msg = ( "The translator-targeted comment '%s' " "(%sline %d) was ignored, because it wasn't " "the last item on the line." ) % (c, filemsg, comment_lineno_cache) warnings.warn(warn_msg, TranslatorCommentWarning) lineno_comment_map[comment_lineno_cache] = [] else: out.write('# %s' % ' | '.join(lineno_comment_map[comment_lineno_cache])) comment_lineno_cache = None if t.token_type == TOKEN_BLOCK: imatch = inline_re.match(t.contents) bmatch = block_re.match(t.contents) cmatches = constant_re.findall(t.contents) if imatch: g = imatch.group(1) if g[0] == '"': g = g.strip('"') elif g[0] == "'": g = g.strip("'") g = g.replace('%', '%%') if imatch.group(2): # A context is provided context_match = context_re.match(imatch.group(2)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") out.write(' pgettext({p}{!r}, {p}{!r}) '.format( message_context, g, p=raw_prefix )) message_context = None else: out.write(' gettext({p}{!r}) '.format(g, p=raw_prefix)) elif bmatch: for fmatch in constant_re.findall(t.contents): out.write(' _(%s) ' % fmatch) if bmatch.group(1): # A context is provided context_match = context_re.match(bmatch.group(1)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") intrans = True inplural = False trimmed = 'trimmed' in t.split_contents() singular = [] plural = [] elif cmatches: for cmatch in cmatches: out.write(' _(%s) ' % cmatch) elif t.contents == 'comment': incomment = True else: out.write(blankout(t.contents, 'B')) elif t.token_type == TOKEN_VAR: parts = t.contents.split('|') cmatch = constant_re.match(parts[0]) if cmatch: out.write(' _(%s) ' % cmatch.group(1)) for p in parts[1:]: if p.find(':_(') >= 0: out.write(' %s ' % p.split(':', 1)[1]) else: out.write(blankout(p, 'F')) elif t.token_type == TOKEN_COMMENT: if t.contents.lstrip().startswith(TRANSLATOR_COMMENT_MARK): lineno_comment_map.setdefault(t.lineno, []).append(t.contents) comment_lineno_cache = t.lineno else: out.write(blankout(t.contents, 'X')) return out.getvalue() def parse_accept_lang_header(lang_string): """ Parses the lang_string, which is the body of an HTTP Accept-Language header, and returns a list of (lang, q-value), ordered by 'q' values. Any format errors in lang_string results in an empty list being returned. """ result = [] pieces = accept_language_re.split(lang_string.lower()) if pieces[-1]: return [] for i in range(0, len(pieces) - 1, 3): first, lang, priority = pieces[i:i + 3] if first: return [] if priority: try: priority = float(priority) except ValueError: return [] if not priority: # if priority is 0.0 at this point make it 1.0 priority = 1.0 result.append((lang, priority)) result.sort(key=lambda k: k[1], reverse=True) return result
ef04eda75ce46249309cb75b6cbb7b0c9858fbe3
9f3991f4e7b405c04f2ef03ac7747b5a69d26b4b
/openpyxl/csv_to_excel.py
8efbab73e40cd93a497cd0cec0ccd755b3044f64
[]
no_license
zcxyun/pythonDemo
f66eb5e6e4274db2137480786eae4d6ca7e73163
adf18cf6b58282a7f2f9203aa09d5cb60ced2e35
refs/heads/master
2021-07-29T19:06:52.481792
2021-07-27T16:10:38
2021-07-27T16:10:38
101,542,803
0
0
null
null
null
null
UTF-8
Python
false
false
3,467
py
#!/usr/bin/env # -*- coding: utf-8 -*- import csv import re import openpyxl import itertools from datetime import datetime # from openpyxl.utils import get_column_letter, column_index_from_string money = [] payee = [] payeeNumber = [] firstPayDate = [] #with open('resource/example.csv', encoding='utf-8') as originFile: # 将csv文件的数据提取到相应的列表中 with open('E:/新农合银行转账统计表/新农合网银统计银行下载原件/12.1-12.4.csv', encoding='utf-16') as originFile: originReader = csv.reader(originFile, delimiter='\t') originData = list(originReader) for index, title in enumerate(originData[0]): if title == '金额': for m in originData[1: len(originData)+1]: money.append(float(''.join(m[index].split(',')))) if title == '收款人名称': for p in originData[1: len(originData)+1]: payee.append(p[index]) if title == '收款人账号': for pn in originData[1: len(originData)+1]: payeeNumber.append(pn[index]) if title == '初次委托日期': for fpd in originData[1: len(originData)+1]: firstPayDate.append(fpd[index][:10]) # 将相应的列表转换为相应的迭代器 moneyIter = iter(money) payeeIter = iter(payee) payeeNumberIter = iter(payeeNumber) firstPayDateIter = iter(firstPayDate) # 加载 excel 文件 wb = openpyxl.load_workbook('E:/新农合银行转账统计表/2017-12-01至2017-12-31.xlsx') # 获取工作表 sheet0 = wb.get_sheet_by_name('sheet0') # 获取工作表模板 sheetTemplate = wb.get_sheet_by_name('sheetTemplate') # 计数器 natuals = itertools.count(1) ns = itertools.takewhile(lambda x: x <= len(money), natuals) # csv 文件中的数据根据一定的规则复制到相应的 Excel 文件中 def copy(sheet): try: # print(sheet.title) for rowOfCellObjects in sheet['B5':'H34']: for index, cell in enumerate(rowOfCellObjects): if cell.value == None: if index == 0: cell.value = next(payeeIter) if index == 1: cell.value = next(firstPayDateIter) if index == 2: cell.value = next(moneyIter) if index == 3: cell.value = next(payeeNumberIter) if index == 4: cell.value = rowOfCellObjects[0].value if index == 5: cell.value = rowOfCellObjects[2].value # if index == 6: # cell.value = datetime.now().date() ws_next = wb.copy_worksheet(sheetTemplate) ws_next.title = sheetTemplate.title[:5] + str(next(ns)) copy(ws_next) except StopIteration as e: return copy(sheet0) # 根据前一个工作表的索引建立新工作表的索引 def makeIndex(sheet): title = re.match(r'^([a-zA-Z]+)(\d+)$', sheet.title) titleStr = title.group(1) titleExt = title.group(2) titleExtToInt = int(titleExt) # print(str(titleExtToInt+1)) sheetPrev = wb.get_sheet_by_name(titleStr + str(titleExtToInt-1)) # print(sheetPrev) sheet['A5'] = sheetPrev['A34'].value + 1 # print(sheet['A2'].value) for i in range(len(sheet['A5':'A34'])): if i >= 1: sheet['A5':'A34'][i][0].value = sheet['A5':'A34'][i-1][0].value + 1 # 合计支付金额 def moneySum(sheet): sheet['D35'] = "=SUM(D5:D34)" sheet['G35'] = "=SUM(G5:G34)" for sh in wb: moneySum(sh) if sh.title != 'sheetTemplate' and sh.title != 'sheet0' : makeIndex(sh) wb.save('E:/新农合银行转账统计表/2017-12-01至2017-12-31.xlsx')
a08b6a7a99b0ab5b2de2ff6bf12388fbf6319a48
c4bfd8ba4c4c0f21bd6a54a9131f0985a5a4fa56
/crescent/resources/s3/bucket_policy/constants.py
5ba83647b2baf057d3d871cc99288b7e11f8f64e
[ "Apache-2.0" ]
permissive
mpolatcan/crescent
405936ec001002e88a8f62d73b0dc193bcd83010
2fd0b1b9b21613b5876a51fe8b5f9e3afbec1b67
refs/heads/master
2022-09-05T04:19:43.745557
2020-05-25T00:09:11
2020-05-25T00:09:11
244,903,370
1
0
null
null
null
null
UTF-8
Python
false
false
325
py
from crescent.core.constants import get_values class _RequiredProperties: class BucketPolicy: BUCKET = "Bucket" POLICY_DOCUMENT = "PolicyDocument" # -------------------------------------------------- class ResourceRequiredProperties: BUCKET_POLICY = get_values(_RequiredProperties.BucketPolicy)
5aadabb6bec3aec95c8f54c9736e197ced6a47ab
0daf6763c960cd898e9bb5612b1314d7e34b8870
/mnist_1/data.py
b1bf29e2af4aca2bbe3f70fd3c775cddef6107cf
[ "MIT" ]
permissive
evanthebouncy/nnhmm
a6ba2a1f0ed2c90a0188de8b5e162351e6668565
acd76edaa1b3aa0c03d39f6a30e60d167359c6ad
refs/heads/master
2021-01-12T02:27:32.814908
2017-04-01T05:01:24
2017-04-01T05:01:24
77,956,435
0
0
null
null
null
null
UTF-8
Python
false
false
7,180
py
import numpy as np from scipy.misc import imresize from scipy.ndimage.filters import gaussian_filter from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_L = 10 L = 14 N_BATCH = 50 OBS_SIZE = 20 KEEP = 0.6 # ---------------------------- helpers def black_white(img): new_img = np.copy(img) img_flat = img.flatten() nonzeros = img_flat[np.nonzero(img_flat)] sortedd = np.sort(nonzeros) idxx = round(len(sortedd) * (1.0 - KEEP)) thold = sortedd[idxx] mask_pos = img >= thold mask_neg = img < thold new_img[mask_pos] = 1.0 new_img[mask_neg] = 0.0 return new_img def vectorize(coords): retX, retY = np.zeros([L]), np.zeros([L]) retX[coords[0]] = 1.0 retY[coords[1]] = 1.0 return retX, retY # show dimension of a data object (list of list or a tensor) def show_dim(lst1): if hasattr(lst1, '__len__') and len(lst1) > 0: return [len(lst1), show_dim(lst1[0])] else: try: return lst1.get_shape() except: try: return lst1.shape except: return type(lst1) # -------------------------------------- making the datas # assume X is already a 2D matrix def mk_query(X): def query(O): Ox, Oy = O if X[Ox][Oy] == 1.0: return [1.0, 0.0] else: return [0.0, 1.0] return query def sample_coord(): return np.random.randint(0, L), np.random.randint(0, L) def sample_coord_center(): Ox, Oy = np.random.multivariate_normal([L/2,L/2], [[L*0.7, 0.0], [0.0, L*0.7]]) Ox, Oy = round(Ox), round(Oy) if 0 <= Ox < L: if 0 <= Oy < L: return Ox, Oy return sample_coord() def sample_coord_bias(qq): def find_positive(qq): C = sample_coord() if qq(C) == [1.0, 0.0]: return C else: return find_positive(qq) def find_negative(qq): C = sample_coord() if qq(C) == [0.0, 1.0]: return C else: return find_negative(qq) toss = np.random.random() < 0.5 if toss: return find_positive(qq) else: return find_negative(qq) def gen_O(X): query = mk_query(X) Ox, Oy = sample_coord() O = (Ox, Oy) return O, query(O) def get_img_class(test=False): img, _x = mnist.train.next_batch(1) if test: img, _x = mnist.test.next_batch(1) img = np.reshape(img[0], [2*L,2*L]) # rescale the image to 14 x 14 # img = imresize(img, (14,14), interp='nearest') / 255.0 img = gaussian_filter(imresize(img, (14,14)) / 255.0, 0.11) img = black_white(img) return img, _x[0] # a trace is named tuple # (Img, S, Os) # where Img is the black/white image # where S is the hidden hypothesis (i.e. label of the img) # Os is a set of Observations which is (qry_pt, label) import collections Trace = collections.namedtuple('Trace', 'Img S Os') def gen_rand_trace(test=False): img, _x = get_img_class(test) obs = [] for ob_idx in range(OBS_SIZE): obs.append(gen_O(img)) return Trace(img, _x, obs) # a class to hold the experiences class Experience: def __init__(self, buf_len): self.buf = [] self.buf_len = buf_len def trim(self): while len(self.buf) > self.buf_len: self.buf.pop() def add(self, trace): self.buf.append(trace) self.trim() def sample(self): idxxs = np.random.choice(len(self.buf), size=1, replace=False) return self.buf[idxxs[0]] def data_from_exp(exp): traces = [exp.sample() for _ in range(N_BATCH)] x = [] obs_x = [[] for i in range(OBS_SIZE)] obs_y = [[] for i in range(OBS_SIZE)] obs_tfs = [[] for i in range(OBS_SIZE)] new_ob_x = [] new_ob_y = [] new_ob_tf = [] imgs = [] for bb in range(N_BATCH): trr = traces[bb] # generate a hidden variable X # get a single thing out img = trr.Img _x = trr.S imgs.append(img) x.append(_x) # generate a FRESH new observation for demanding an answer _new_ob_coord, _new_ob_lab = gen_O(img) _new_ob_x, _new_ob_y = vectorize(_new_ob_coord) new_ob_x.append(_new_ob_x) new_ob_y.append(_new_ob_y) new_ob_tf.append(_new_ob_lab) # generate observations for this hidden variable x for ob_idx in range(OBS_SIZE): _ob_coord, _ob_lab = trr.Os[ob_idx] _ob_x, _ob_y = vectorize(_ob_coord) obs_x[ob_idx].append(_ob_x) obs_y[ob_idx].append(_ob_y) obs_tfs[ob_idx].append(_ob_lab) return np.array(x, np.float32),\ np.array(obs_x, np.float32),\ np.array(obs_y, np.float32),\ np.array(obs_tfs, np.float32),\ np.array(new_ob_x, np.float32),\ np.array(new_ob_y, np.float32),\ np.array(new_ob_tf, np.float32), imgs # the thing is we do NOT use the trace observations, we need to generate random observations # to be sure we can handle all kinds of randomizations def inv_data_from_label_data(labelz, inputz): labs = [] obss = [] for bb in range(N_BATCH): img = inputz[bb] lab = labelz[bb] labs.append(lab) obs = np.zeros([L,L,2]) # generate observations for this hidden variable x for ob_idx in range(OBS_SIZE): ob_coord, ob_lab = gen_O(img) ox, oy = ob_coord if ob_lab[0] == 1.0: obs[ox][oy][0] = 1.0 if ob_lab[1] == 1.0: obs[ox][oy][1] = 1.0 obss.append(obs) return np.array(labs, np.float32),\ np.array(obss, np.float32) # uses trace info def inv_batch_obs(labz, batch_Os): obss = [] for bb in range(N_BATCH): Os = batch_Os[bb] obs = np.zeros([L,L,2]) # generate observations for this hidden variable x for ob_idx in range(OBS_SIZE): ob_coord, ob_lab = Os[ob_idx] ox, oy = ob_coord if ob_lab[0] == 1.0: obs[ox][oy][0] = 1.0 if ob_lab[1] == 1.0: obs[ox][oy][1] = 1.0 obss.append(obs) return np.array(labz, np.float32),\ np.array(obss, np.float32) # def gen_data(): # x = [] # # obs_x = [[] for i in range(OBS_SIZE)] # obs_y = [[] for i in range(OBS_SIZE)] # obs_tfs = [[] for i in range(OBS_SIZE)] # new_ob_x = [] # new_ob_y = [] # new_ob_tf = [] # # imgs = [] # # for bb in range(N_BATCH): # # generate a hidden variable X # # get a single thing out # img, _x = get_img_class() # imgs.append(img) # # # add to x # x.append(_x[0]) # # generate new observation # _new_ob_coord, _new_ob_lab = gen_O(img) # _new_ob_x, _new_ob_y = vectorize(_new_ob_coord) # new_ob_x.append(_new_ob_x) # new_ob_y.append(_new_ob_y) # new_ob_tf.append(_new_ob_lab) # # # generate observations for this hidden variable x # for ob_idx in range(OBS_SIZE): # _ob_coord, _ob_lab = gen_O(img) # _ob_x, _ob_y = vectorize(_ob_coord) # obs_x[ob_idx].append(_ob_x) # obs_y[ob_idx].append(_ob_y) # obs_tfs[ob_idx].append(_ob_lab) # # return np.array(x, np.float32),\ # np.array(obs_x, np.float32),\ # np.array(obs_y, np.float32),\ # np.array(obs_tfs, np.float32),\ # np.array(new_ob_x, np.float32),\ # np.array(new_ob_y, np.float32),\ # np.array(new_ob_tf, np.float32), imgs
a232db2616848042691d1e7c825e015af8882aab
5fe72bb13baf3649058ebe11aa86ad4fc56c69ed
/hard-gists/3409403/snippet.py
0e119325f7fbab1ea9ab0c1fde4fd52135828a49
[ "Apache-2.0" ]
permissive
dockerizeme/dockerizeme
8825fed45ff0ce8fb1dbe34959237e8048900a29
408f3fa3d36542d8fc1236ba1cac804de6f14b0c
refs/heads/master
2022-12-10T09:30:51.029846
2020-09-02T13:34:49
2020-09-02T13:34:49
144,501,661
24
20
Apache-2.0
2022-11-21T12:34:29
2018-08-12T21:21:04
Python
UTF-8
Python
false
false
547
py
from google.appengine.ext import db, ndb from google.appengine.datastore import entity_pb def db_entity_to_protobuf(e): return db.model_to_protobuf(e).Encode() def protobuf_to_db_entity(pb): # precondition: model class must be imported return db.model_from_protobuf(entity_pb.EntityProto(pb)) def ndb_entity_to_protobuf(e): return ndb.ModelAdapter().entity_to_pb(e).Encode() def protobuf_to_ndb_entity(pb): # precondition: model class must be imported return ndb.ModelAdapter().pb_to_entity(entity_pb.EntityProto(pb))
9a3f3542a14276c1794492528c5d906908c7f791
6b9084d234c87d7597f97ec95808e13f599bf9a1
/evaluation/logger/pytracking.py
6e17451f77982c297479789660635ffca35a1ee4
[]
no_license
LitingLin/ubiquitous-happiness
4b46234ce0cb29c4d27b00ec5a60d3eeb52c26fc
aae2d764e136ca4a36c054212b361dd7e8b22cba
refs/heads/main
2023-07-13T19:51:32.227633
2021-08-03T16:02:03
2021-08-03T16:02:03
316,664,903
1
0
null
null
null
null
UTF-8
Python
false
false
606
py
import numpy as np import os class PyTrackingLogger: def __init__(self, output_path=None): self.output_path = output_path def log_sequence_result(self, name: str, predicted_bboxes: np.ndarray, **kwargs): print(f'Sequence: {name}') print(f'FPS: {kwargs["fps"]}') predicted_bboxes = predicted_bboxes.copy() predicted_bboxes[:, 0] += 1 predicted_bboxes[:, 1] += 1 if self.output_path is not None: np.savetxt(os.path.join(self.output_path, '{}.txt'.format(name)), predicted_bboxes, delimiter='\t', fmt='%d')
a9ab497015525833279bb4f7cb7b294f7e35efe7
5fd401dbc7b9ac782d387067c43a559971de5028
/modules/file/upload.py
5ad9b4a030323d70e88e69b37d7ef047af896c60
[]
no_license
SagaieNet/weevely3
0b41be1bbd08a8ebde1e236775462483ad175c6e
c169bbf24807a581b3f61a455b9a43a5d48c8f52
refs/heads/master
2021-01-22T15:00:19.838734
2014-09-30T20:00:07
2014-09-30T20:00:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,139
py
from core.vectors import PhpCmd, ModuleCmd from core.module import Module from core import messages from core.loggers import log import random import hashlib import base64 class Upload(Module): """Upload file to remote filesystem.""" def init(self): self.register_info( { 'author': [ 'Emilio Pinna' ], 'license': 'GPLv3' } ) self.register_arguments( # Declare mandatory arguments mandatory = [ 'lpath', 'rpath' ], # Declare additional options optional = { 'content': '', 'vector': '' }, bind_to_vectors = 'vector') self.register_vectors( [ PhpCmd( "(file_put_contents('${rpath}', base64_decode('${content}'))&&print(1)) || print(0);", name = 'file_put_contents' ), PhpCmd( """($h=fopen("${rpath}","a+")&&fwrite($h, base64_decode('${content}'))&&fclose($h)&&print(1)) || print(0);""", name = "fwrite" ) ] ) def run(self, args): # Load local file content_orig = args.get('content') if not content_orig: lpath = args.get('lpath') try: content_orig = open(lpath, 'r').read() except Exception, e: log.warning( messages.generic.error_loading_file_s_s % (lpath, str(e))) return content = base64.b64encode(content_orig) # Check remote file existence rpath_exists = ModuleCmd('file_check', [ args['rpath'], 'exists' ]).run() if rpath_exists: log.warning(messages.generic.error_file_s_already_exists % args['rpath']) return vector_name, result = self.vectors.find_first_result( format_args = { 'args' : args, 'content' : content }, condition = lambda result: True if result == '1' else False )
6bf462112c68e100b92acc5b9b8ed814e8f09d27
ef4a1748a5bfb5d02f29390d6a66f4a01643401c
/algorithm/new_teacher_algorithm/AD/도약.py
5c781e9d4bc4c9a28efdc8ca127c58b5528ef92d
[]
no_license
websvey1/TIL
aa86c1b31d3efc177df45503d705b3e58b800f8e
189e797ba44e2fd22a033d1024633f9e0128d5cf
refs/heads/master
2023-01-12T10:23:45.677578
2019-12-09T07:26:59
2019-12-09T07:26:59
162,102,142
0
1
null
2022-12-11T16:31:08
2018-12-17T08:57:58
Python
UTF-8
Python
false
false
2,093
py
import sys sys.stdin = open("도약.txt") ########################################################### ########################## 두개 쓰기 ######################## ########################################################### # def lowerSearch(s,e,f): # # f 이상 중에서 가장 작은 값의 위치를 리턴 # sol = -1 # while s<=e: # m = (s+e)//2 # if data[m] >= f: # f 이상이면 왼쪽영역 재탐색(더 작은 값 찾기 위해) # sol = m # e = m-1 # else: # s= m+1 #우측탐색) # return sol # # def upperSearch(s,e,f): # # f 이하중에서 가장 큰 값의 위치를 리턴 # sol = -1 # while s<=e: # m = (s+e)//2 # if data[m] <= f: # 데이타 이하면 오른쪽 재탐색(더 큰걸 찾기위해) # sol = m # s = m+1 # else: # e= m-1 # return sol # N = int(input()) # data = sorted([(int(input())) for i in range(N)]) # cnt = 0 # for i in range(N-2): # for j in range(i+1, N-1): # S = data[j]+(data[j]-data[i]) # E = data[j] + (data[j] - data[i])*2 # lo = lowerSearch(j+1, N-1, S) # if lo==-1 or data[lo]>E: continue # up = upperSearch(j+1, N-1, E) # cnt += (up-lo+1) # print(cnt) ########################################################### ########################## 하나 쓰기######################## ########################################################### def upperSearch(s,e,f): # f 이하중에서 가장 큰 값의 위치를 리턴 sol = -1 while s<=e: m = (s+e)//2 if data[m] < f: # 데이타 이하면 오른쪽 재탐색(더 큰걸 찾기위해) s = m + 1 sol = m else: e= m-1 return sol N = int(input()) data = sorted([(int(input())) for i in range(N)]) cnt = 0 for i in range(N-2): for j in range(i+1, N-1): S = data[j]+(data[j]-data[i]) E = data[j] + (data[j] - data[i])*2 cnt += upperSearch(j, N- 1, E+1) - upperSearch(j, N-1, S) print(cnt)
f6721ea11faae85216d3a60224be9c9ec0207242
3fc4bca70bb817d8c14c2e6eaf29cda765e8cf19
/venv/bin/pip3.6
548512482798bf15606d78d042dcc9e3e66cd6e0
[]
no_license
OseiasBeu/ExemploDjango
4841412dca9e15613671951cdcb18ea8d18ff68a
31e4dfb12b84d217ff989bd7fc0fa5636312b8c4
refs/heads/master
2020-03-28T16:05:10.873540
2018-09-13T15:22:59
2018-09-13T15:22:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
261
6
#!/home/OseiasBeu/Documents/LPs/django/projeto/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
b563da1a4aa94a36c4599e6482162f6ded7d93e9
5b2218208aef68cf06609bcc3bf42b499d99d5f6
/docs/source/conf.py
e94bc7c7e29be180973b828865b19e7712c33ad6
[ "MIT" ]
permissive
c137digital/unv_app_template
c36cacfff3e0be0b00ecad6365b20b434836ffe7
a1d1f2463334afc668cbf4e8acbf1dcaacc93e80
refs/heads/master
2020-05-25T19:24:17.098451
2020-04-24T19:33:08
2020-04-24T19:33:08
187,950,678
0
0
null
null
null
null
UTF-8
Python
false
false
5,816
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # -- Project information ----------------------------------------------------- project = 'unv_app_template' copyright = '2020, change' author = 'change' # The short X.Y version version = '0.1' # The full version, including alpha/beta/rc tags release = '0.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'unv_app_templatedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'unv_app_template.tex', 'unv\\_template Documentation', 'change', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'unv_app_template', 'unv_app_template Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'unv_app_template', 'unv_app_template Documentation', author, 'unv_app_template', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
4c1e7c5233cb21118ed12162d9ba099c0665a80a
e0980f704a573894350e285f66f4cf390837238e
/.history/flex/models_20201029143145.py
b68119b214fd032d442ee5cf1b7492154ab67eb2
[]
no_license
rucpata/WagtailWebsite
28008474ec779d12ef43bceb61827168274a8b61
5aa44f51592f49c9a708fc5515ad877c6a29dfd9
refs/heads/main
2023-02-09T15:30:02.133415
2021-01-05T14:55:45
2021-01-05T14:55:45
303,961,094
0
0
null
null
null
null
UTF-8
Python
false
false
1,048
py
from django.db import models from wagtail.core.models import Page from wagtail.core.fields import StreamField from wagtail.admin.edit_handlers import StreamFieldPanel from wagtail.snippets.blocks import SnippetChooserBlock from wagtail.core import blocks as wagtail_ from streams import blocks from home.models import new_table_options class FlexPage(Page): body = StreamField([ ('title', blocks.TitleBlock()), ('cards', blocks.CardsBlock()), ('image_and_text', blocks.ImageAndTextBlock()), ('cta', blocks.CallToActionBlock()), ('testimonial', SnippetChooserBlock( target_model='testimonials.Testimonial', template = 'streams/testimonial_block.html' )), ('pricing_table', blocks.PricingTableBlock(table_options=new_table_options)), ], null=True, blank=True) content_panels = Page.content_panels + [ StreamFieldPanel('body'), ] class Meta: verbose_name = 'Flex (misc) page' verbose_name_plural = 'Flex (misc) pages'
71bfd188e3307f50316b5807460e05e6b0dab81e
0be27c0a583d3a8edd5d136c091e74a3df51b526
/int_long.py
09d9178607925a32fd93bcf2ea90ca80acb00f96
[]
no_license
ssangitha/guvicode
3d38942f5d5e27a7978e070e14be07a5269b01fe
ea960fb056cfe577eec81e83841929e41a31f72e
refs/heads/master
2020-04-15T05:01:00.226391
2019-09-06T10:08:23
2019-09-06T10:08:23
164,405,935
0
2
null
null
null
null
UTF-8
Python
false
false
172
py
n=int(input()) if(n>=-2**15+1 and n<=2**15+1): print ("INT") elif n>=-2**31+1 and n<=2**31+1: print("LONG") else: print ("LONG LONG") #..int,long...longlong
e32bd0130a28604d940e0a1e7d79496057d8a0cb
66a9c25cf0c53e2c3029b423018b856103d709d4
/tests/live_test.py
b71930af68b02cc6137cb3b01a6f80f39c0ef9f3
[ "MIT", "BSD-3-Clause", "BSD-2-Clause" ]
permissive
fritzy/SleekXMPP
1b02d3e2b22efeb6bf3f8f487e6c0343b9b85baf
cc1d470397de768ffcc41d2ed5ac3118d19f09f5
refs/heads/develop
2020-05-22T04:14:58.568822
2020-02-18T22:54:57
2020-02-18T22:54:57
463,405
658
254
NOASSERTION
2023-06-27T20:05:54
2010-01-08T05:54:45
Python
UTF-8
Python
false
false
3,422
py
import logging from sleekxmpp.test import * class TestLiveStream(SleekTest): """ Test that we can test a live stanza stream. """ def tearDown(self): self.stream_close() def testClientConnection(self): """Test that we can interact with a live ClientXMPP instance.""" self.stream_start(mode='client', socket='live', skip=False, jid='user@localhost/test', password='user') # Use sid=None to ignore any id sent by the server since # we can't know it in advance. self.recv_header(sfrom='localhost', sid=None) self.send_header(sto='localhost') self.recv_feature(""" <stream:features> <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"> <mechanism>DIGEST-MD5</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features> """) self.send_feature(""" <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> """) self.recv_feature(""" <proceed xmlns="urn:ietf:params:xml:ns:xmpp-tls" /> """) self.send_header(sto='localhost') self.recv_header(sfrom='localhost', sid=None) self.recv_feature(""" <stream:features> <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl"> <mechanism>DIGEST-MD5</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features> """) self.send_feature(""" <auth xmlns="urn:ietf:params:xml:ns:xmpp-sasl" mechanism="PLAIN">AHVzZXIAdXNlcg==</auth> """) self.recv_feature(""" <success xmlns="urn:ietf:params:xml:ns:xmpp-sasl" /> """) self.send_header(sto='localhost') self.recv_header(sfrom='localhost', sid=None) self.recv_feature(""" <stream:features> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind" /> <session xmlns="urn:ietf:params:xml:ns:xmpp-session" /> </stream:features> """) # Should really use send, but our Iq stanza objects # can't handle bind element payloads yet. self.send_feature(""" <iq type="set" id="1"> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"> <resource>test</resource> </bind> </iq> """) self.recv_feature(""" <iq type="result" id="1"> <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"> <jid>user@localhost/test</jid> </bind> </iq> """) self.stream_close() suite = unittest.TestLoader().loadTestsFromTestCase(TestLiveStream) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(levelname)-8s %(message)s') tests = unittest.TestSuite([suite]) result = unittest.TextTestRunner(verbosity=2).run(tests) test_ns = 'http://andyet.net/protocol/tests' print("<tests xmlns='%s' %s %s %s %s />" % ( test_ns, 'ran="%s"' % result.testsRun, 'errors="%s"' % len(result.errors), 'fails="%s"' % len(result.failures), 'success="%s"' % result.wasSuccessful()))
f5058ccbcc8449198222100dc98b9d6777472a89
2f6d017dedc68588b2615d65c1e8ca8bcdd90446
/api/deploy/write_json.py
01f5c1cf3ca63b0de2e90ca19f9b694b331c12f5
[]
no_license
hysunflower/benchmark
70fc952a4eb1545208543627539d72e991cef78a
c14f99c15b4be9e11f56ea378ca15d9c3da23bab
refs/heads/master
2022-06-30T07:04:14.986050
2022-06-15T02:43:04
2022-06-15T02:43:04
224,449,279
1
0
null
2019-11-27T14:29:29
2019-11-27T14:29:29
null
UTF-8
Python
false
false
3,347
py
#!/bin/python # -*- coding: UTF-8 -*- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import json import op_benchmark_unit COMPARE_RESULT_SHOWS = { "Better": "优于", "Equal": "打平", "Less": "差于", "Unknown": "未知", "Unsupport": "不支持", "Others": "其他", "Total": "汇总" } def create_summary_json(compare_result, category): summary_json_result = list() compare_result_colors = {"Better": "green", "Less": "red"} compare_result_keys = compare_result.compare_result_keys titles = {"title": 1, "row_0": category} for (i, compare_result_key) in enumerate(compare_result_keys, 1): titles["row_%i" % i] = COMPARE_RESULT_SHOWS[compare_result_key] summary_json_result.append(titles) for device in ["gpu", "cpu"]: for direction in ["forward", "backward"]: for method in ["total", "kernel"]: if device == "cpu": continue data = { "title": 0, "row_0": "{} {} ({})".format(device.upper(), direction.capitalize(), method) } value = compare_result.get(device, direction, method) num_total_cases = value["Total"] for (i, compare_result_key) in enumerate(compare_result_keys, 1): num_cases = value[compare_result_key] if num_cases > 0: ratio = float(num_cases) / float(num_total_cases) this_str = "{} ({:.2f}%)".format(num_cases, ratio * 100) else: this_str = "--" data["row_%i" % i] = this_str summary_json_result.append(data) return summary_json_result def dump_json(benchmark_result_list, output_path=None): """ dump data to a json file """ if output_path is None: print("Output path is not specified, will not dump json.") return compare_result_case_level = op_benchmark_unit.summary_compare_result( benchmark_result_list) compare_result_op_level = op_benchmark_unit.summary_compare_result_op_level( benchmark_result_list) with open(output_path, 'w') as f: summary_case_json = create_summary_json(compare_result_case_level, "case_level") summary_op_json = create_summary_json(compare_result_op_level, "case_level") f.write(json.dumps(summary_case_json + summary_op_json))
89189e31f7eff193f8991a28da369417a28ae86d
68cd659b44f57adf266dd37789bd1da31f61670d
/D2/D2_20190715파리퇴치.py
37273d877cfb93458b8b8fdef4531e610039777c
[]
no_license
01090841589/solved_problem
c0c6f5a46e4d48860dccb3b0288aa5b56868fbca
bbea2f31e5fe36cad100bc514eacd83545fb25b1
refs/heads/master
2023-07-02T23:55:51.631478
2021-08-04T13:57:00
2021-08-04T13:57:00
197,157,830
2
0
null
null
null
null
UTF-8
Python
false
false
657
py
def arrr(N) : for i in range(N) : inp = input().split(' ') inp = [int(j) for j in inp] fly.append(inp) return fly def max_cal(fly,N,M): sum_num = 0 max_num = 0 for i in range(N-M+1) : for j in range(N-M+1) : for l in range(M) : for m in range(M) : sum_num += fly[l+i][m+j] if max_num < sum_num : max_num = sum_num sum_num = 0 return(max_num) T = int(input()) for a in range(T): N = input().split(' ') fly = [] fly = arrr(int(N[0])) print('#{0} {1}'.format(a+1, max_cal(fly,int(N[0]),int(N[1]))))
f21360c68557a49b1b4e4413627b85cd6737f75c
73c9211d5627594e0191510f0b4d70a907f5c4c5
/nn/keras_dataguru/lesson2/work2.py
4dcacb8f30dd2feaffbd330256b8915e94435bcf
[]
no_license
tigerxjtu/py3
35378f270363532fb30962da8674dbcee99eb5ff
5d24cd074f51bd0f17f6cc4f5f1a6e7cf0d48779
refs/heads/master
2021-07-13T05:34:15.080119
2020-06-24T09:36:33
2020-06-24T09:36:33
159,121,100
2
0
null
null
null
null
UTF-8
Python
false
false
1,149
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import keras import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # In[2]: (x_train,y_train),(x_test,y_test)=mnist.load_data() print('x_shape:',x_train.shape) #(60000,28,28) print('y_shape:',y_train.shape) #(60000,) x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # In[8]: # model=Sequential([Dense(units=10,input_dim=784,bias_initializer='one',activation='softmax')]) model=Sequential() model.add(Dense(units=256,input_dim=x_train.shape[1],activation='relu')) model.add(Dense(units=10,activation='softmax')) sgd=SGD(lr=0.2) model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=['accuracy']) # In[9]: model.fit(x_train,y_train,batch_size=32,epochs=10) loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss:',loss) print('accuracy:',accuracy) # In[ ]:
9f719d70ff61b820cde1a602f393ba9c91b6514b
d83f50302702d6bf46c266b8117514c6d2e5d863
/number-of-boomerangs.py
7add2f05767711dbf020f6215cc8f92ec9b5a59c
[]
no_license
sfdye/leetcode
19764a6bdb82de114a2c82986864b1b2210c6d90
afc686acdda4168f4384e13fb730e17f4bdcd553
refs/heads/master
2020-03-20T07:58:52.128062
2019-05-05T08:10:41
2019-05-05T08:10:41
137,295,892
3
0
null
null
null
null
UTF-8
Python
false
false
415
py
class Solution(object): def numberOfBoomerangs(self, points): """ :type points: List[List[int]] :rtype: int """ ans = 0 for p in points: d = collections.defaultdict(int) for q in points: d[(p[0] - q[0]) ** 2 + (p[1] - q[1]) ** 2] += 1 for k in d.values(): ans += k * (k - 1) return ans
840b8e213aaeafea3b9c2b03e58bd84996694d5a
bafcde124dd3af37ef14e322e0e76e82d8684469
/restapi/services/models/PasswordResetModel.py
47e24ce9d570005a767967ad9265625a49a108e4
[]
no_license
mentimun-mentah/balihot-property-backend
1c7ac91c04f791ca55f5f97e872034fbc30a8d32
b715cc3988ca70d16dbe2e89839653af310fa091
refs/heads/master
2022-12-27T15:01:23.196310
2020-09-06T17:00:53
2020-09-06T17:00:53
268,197,437
1
0
null
2020-10-20T16:55:31
2020-05-31T02:46:41
Python
UTF-8
Python
false
false
1,310
py
import uuid, os from services.serve import db from time import time from flask import url_for from sqlalchemy import func from services.libs.MailSmtp import MailSmtp class PasswordReset(db.Model): __tablename__ = 'password_resets' id = db.Column(db.String(100),primary_key=True) email = db.Column(db.String(100),unique=True,index=True,nullable=False) resend_expired = db.Column(db.Integer,nullable=True) created_at = db.Column(db.DateTime,default=func.now()) def __init__(self,email: str): self.email = email self.resend_expired = int(time()) + 300 # add 5 minute expired self.id = uuid.uuid4().hex def send_email_reset_password(self) -> None: link = os.getenv("APP_URL") + url_for('user.reset_password',token=self.id) MailSmtp.send_email([self.email],'Reset Password','email/EmailResetPassword.html',link=link) @property def resend_is_expired(self) -> bool: return int(time()) > self.resend_expired def change_resend_expired(self) -> "PasswordReset": self.resend_expired = int(time()) + 300 # add 5 minute expired def save_to_db(self) -> None: db.session.add(self) db.session.commit() def delete_from_db(self) -> None: db.session.delete(self) db.session.commit()
014e8f1ddcd99487d99ffa878a6e6cfa7d50ed6c
d55bda4c4ba4e09951ffae40584f2187da3c6f67
/h/admin/views/groups.py
0caffe6dcf887350fc17bfffc50c9f1ecc8b64bc
[ "BSD-3-Clause", "BSD-2-Clause-Views", "BSD-2-Clause", "MIT" ]
permissive
ficolo/h
3d12f78fe95843b2a8f4fc37231363aa7c2868d9
31ac733d37e77c190f359c7ef5d59ebc9992e531
refs/heads/master
2021-01-15T21:08:17.554764
2016-06-09T15:42:01
2016-06-09T15:42:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,234
py
# -*- coding: utf-8 -*- from pyramid.view import view_config from h import models from h import paginator @view_config(route_name='admin_groups', request_method='GET', renderer='h:templates/admin/groups.html.jinja2', permission='admin_groups') @paginator.paginate def groups_index(context, request): return models.Group.query.order_by(models.Group.created.desc()) @view_config(route_name='admin_groups_csv', request_method='GET', renderer='csv', permission='admin_groups') def groups_index_csv(request): groups = models.Group.query header = ['Group name', 'Group URL', 'Creator username', 'Creator email', 'Number of members'] rows = [[group.name, request.route_url('group_read', pubid=group.pubid, slug=group.slug), group.creator.username, group.creator.email, len(group.members)] for group in groups] filename = 'groups.csv' request.response.content_disposition = 'attachment;filename=' + filename return {'header': header, 'rows': rows} def includeme(config): config.scan(__name__)
b9aeff68654c2ed50000a30879c2e21c640d81e5
0206ac23a29673ee52c367b103dfe59e7733cdc1
/src/nemo/compare_2nemo_simulations.py
041bbfd0229b247c34b4796abf04bc639b9483ae
[]
no_license
guziy/RPN
2304a93f9ced626ae5fc8abfcc079e33159ae56a
71b94f4c73d4100345d29a6fbfa9fa108d8027b5
refs/heads/master
2021-11-27T07:18:22.705921
2021-11-27T00:54:03
2021-11-27T00:54:03
2,078,454
4
3
null
null
null
null
UTF-8
Python
false
false
3,484
py
from collections import namedtuple from pathlib import Path from matplotlib import cm from matplotlib.gridspec import GridSpec from nemo.nemo_yearly_files_manager import NemoYearlyFilesManager __author__ = 'huziy' # Compare 2 Nemo outputs import matplotlib.pyplot as plt import numpy as np def main_compare_max_yearly_ice_conc(): """ ice concentration """ var_name = "" start_year = 1979 end_year = 1985 SimConfig = namedtuple("SimConfig", "path label") base_config = SimConfig("/home/huziy/skynet3_rech1/offline_glk_output_daily_1979-2012", "ERAI-driven") modif_config = SimConfig("/home/huziy/skynet3_rech1/one_way_coupled_nemo_outputs_1979_1985", "CRCM5") nemo_manager_base = NemoYearlyFilesManager(folder=base_config.path, suffix="icemod.nc") nemo_manager_modif = NemoYearlyFilesManager(folder=modif_config.path, suffix="icemod.nc") icecov_base, icecov_ts_base = nemo_manager_base.get_max_yearly_ice_fraction(start_year=start_year, end_year=end_year) icecov_modif, icecov_ts_modif = nemo_manager_modif.get_max_yearly_ice_fraction(start_year=start_year, end_year=end_year) lons, lats, bmp = nemo_manager_base.get_coords_and_basemap() xx, yy = bmp(lons.copy(), lats.copy()) # Plot as usual: model, obs, model - obs img_folder = Path("nemo/{}vs{}".format(modif_config.label, base_config.label)) if not img_folder.is_dir(): img_folder.mkdir(parents=True) img_file = img_folder.joinpath("compare_yearmax_icecov_{}_vs_{}_{}-{}.pdf".format( modif_config.label, base_config.label, start_year, end_year)) fig = plt.figure() gs = GridSpec(2, 3, width_ratios=[1, 1, 0.05]) cmap = cm.get_cmap("jet", 10) diff_cmap = cm.get_cmap("RdBu_r", 10) # base ax = fig.add_subplot(gs[0, 0]) cs = bmp.contourf(xx, yy, icecov_base, cmap=cmap) bmp.drawcoastlines(ax=ax) ax.set_title(base_config.label) # modif ax = fig.add_subplot(gs[0, 1]) cs = bmp.contourf(xx, yy, icecov_modif, cmap=cmap, levels=cs.levels) plt.colorbar(cs, cax=fig.add_subplot(gs[0, -1])) bmp.drawcoastlines(ax=ax) ax.set_title(modif_config.label) # difference ax = fig.add_subplot(gs[1, :]) cs = bmp.contourf(xx, yy, icecov_modif - icecov_base, cmap=diff_cmap, levels=np.arange(-1, 1.2, 0.2)) bmp.colorbar(cs, ax=ax) bmp.drawcoastlines(ax=ax) fig.tight_layout() fig.savefig(str(img_file), bbox_inches="tight") ax.set_title("{}-{}".format(modif_config.label, base_config.label)) plt.close(fig) # Plot time series img_file = img_folder.joinpath("ts_compare_yearmax_icecov_{}_vs_{}_{}-{}.pdf".format( modif_config.label, base_config.label, start_year, end_year)) fig = plt.figure() plt.plot(range(start_year, end_year + 1), icecov_ts_base, "b", lw=2, label=base_config.label) plt.plot(range(start_year, end_year + 1), icecov_ts_modif, "r", lw=2, label=modif_config.label) plt.legend() plt.gca().get_xaxis().get_major_formatter().set_useOffset(False) plt.grid() plt.xlabel("Year") fig.tight_layout() fig.savefig(str(img_file), bbox_inches="tight") if __name__ == '__main__': import application_properties application_properties.set_current_directory() main_compare_max_yearly_ice_conc()
92e85c7b6e66817ecaf916d920cc1d86019397c2
fe9573bad2f6452ad3e2e64539361b8bc92c1030
/scapy_code/sniif_packet.py
97cbf240c0083c9937735a47714341cd1d7da111
[]
no_license
OceanicSix/Python_program
e74c593e2e360ae22a52371af6514fcad0e8f41f
2716646ce02db00306b475bad97105b260b6cd75
refs/heads/master
2022-01-25T16:59:31.212507
2022-01-09T02:01:58
2022-01-09T02:01:58
149,686,276
1
2
null
null
null
null
UTF-8
Python
false
false
224
py
from scapy.all import * def print_pkt(pkt): print("---------------this is a new packet----------------------") new_pkt = pkt[IP] if new_pkt[ICMP]: new_pkt.show() sniff(filter= "icmp" , prn=print_pkt)
bae78268a22dd8097a25f839b0a4b162beeae02c
4d332c45578246847ef2cdcdeb827ca29ab06090
/modules/Bio/Graphics/GenomeDiagram/_GraphSet.py
0a2ed5a0bc20757fad28322a3c8d7e8873e6337e
[ "MIT" ]
permissive
prateekgupta3991/justforlearn
616cc297a2a6119fa959b9337a5e91c77a11ebf7
3984c64063b356cf89003e17a914272983b6cf48
refs/heads/master
2021-03-12T22:09:12.184638
2014-01-28T10:37:07
2014-01-28T10:37:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
/usr/share/pyshared/Bio/Graphics/GenomeDiagram/_GraphSet.py
83a912f2fd9bb92402ffe65df2ebaf7a667edd7e
e590449a05b20712d777fc5f0fa52097678c089b
/python-client/test/test_stash_appscode_com_v1alpha1_api.py
58eaf340d2c3e2c403e782c27e9854d90c2f4271
[ "Apache-2.0" ]
permissive
Hardeep18/kube-openapi-generator
2563d72d9f95196f8ef795896c08e8e21cd1a08e
6607d1e208965e3a09a0ee6d1f2de7e462939150
refs/heads/master
2020-04-11T03:30:18.786896
2018-05-05T20:57:51
2018-05-05T20:57:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,173
py
# coding: utf-8 """ stash-server No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: v0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.api.stash_appscode_com_v1alpha1_api import StashAppscodeComV1alpha1Api # noqa: E501 from swagger_client.rest import ApiException class TestStashAppscodeComV1alpha1Api(unittest.TestCase): """StashAppscodeComV1alpha1Api unit test stubs""" def setUp(self): self.api = swagger_client.api.stash_appscode_com_v1alpha1_api.StashAppscodeComV1alpha1Api() # noqa: E501 def tearDown(self): pass def test_create_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_create_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_create_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for create_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_recovery(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_recovery """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_repository(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_repository """ pass def test_delete_stash_appscode_com_v1alpha1_collection_namespaced_restic(self): """Test case for delete_stash_appscode_com_v1alpha1_collection_namespaced_restic """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_delete_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for delete_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_get_stash_appscode_com_v1alpha1_api_resources(self): """Test case for get_stash_appscode_com_v1alpha1_api_resources """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_list_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for list_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_list_stash_appscode_com_v1alpha1_recovery_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_recovery_for_all_namespaces """ pass def test_list_stash_appscode_com_v1alpha1_repository_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_repository_for_all_namespaces """ pass def test_list_stash_appscode_com_v1alpha1_restic_for_all_namespaces(self): """Test case for list_stash_appscode_com_v1alpha1_restic_for_all_namespaces """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_patch_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for patch_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_read_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for read_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_replace_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for replace_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_recovery(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_recovery """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_recovery_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_recovery_list """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_repository(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_repository """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_repository_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_repository_list """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_restic(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_restic """ pass def test_watch_stash_appscode_com_v1alpha1_namespaced_restic_list(self): """Test case for watch_stash_appscode_com_v1alpha1_namespaced_restic_list """ pass def test_watch_stash_appscode_com_v1alpha1_recovery_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_recovery_list_for_all_namespaces """ pass def test_watch_stash_appscode_com_v1alpha1_repository_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_repository_list_for_all_namespaces """ pass def test_watch_stash_appscode_com_v1alpha1_restic_list_for_all_namespaces(self): """Test case for watch_stash_appscode_com_v1alpha1_restic_list_for_all_namespaces """ pass if __name__ == '__main__': unittest.main()
c693954cad97f78d72668a79087d4930ccea1091
a8b37bd399dd0bad27d3abd386ace85a6b70ef28
/airbyte-integrations/connectors/source-opsgenie/source_opsgenie/source.py
743694d15b54b6ca441b6e91b3a528af43f6b85c
[ "MIT", "LicenseRef-scancode-free-unknown", "Elastic-2.0" ]
permissive
thomas-vl/airbyte
5da2ba9d189ba0b202feb952cadfb550c5050871
258a8eb683634a9f9b7821c9a92d1b70c5389a10
refs/heads/master
2023-09-01T17:49:23.761569
2023-08-25T13:13:11
2023-08-25T13:13:11
327,604,451
1
0
MIT
2021-01-07T12:24:20
2021-01-07T12:24:19
null
UTF-8
Python
false
false
1,870
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # from typing import Any, List, Mapping, Tuple import requests from airbyte_cdk.sources import AbstractSource from airbyte_cdk.sources.streams import Stream from airbyte_cdk.sources.streams.http.requests_native_auth import TokenAuthenticator from .streams import AlertLogs, AlertRecipients, Alerts, Incidents, Integrations, Services, Teams, Users, UserTeams # Source class SourceOpsgenie(AbstractSource): @staticmethod def get_authenticator(config: Mapping[str, Any]): return TokenAuthenticator(config["api_token"], auth_method="GenieKey") def check_connection(self, logger, config) -> Tuple[bool, any]: try: auth = self.get_authenticator(config) api_endpoint = f"https://{config['endpoint']}/v2/account" response = requests.get( api_endpoint, headers=auth.get_auth_header(), ) return response.status_code == requests.codes.ok, None except Exception as error: return False, f"Unable to connect to Opsgenie API with the provided credentials - {repr(error)}" def streams(self, config: Mapping[str, Any]) -> List[Stream]: auth = self.get_authenticator(config) args = {"authenticator": auth, "endpoint": config["endpoint"]} incremental_args = {**args, "start_date": config.get("start_date", "")} users = Users(**args) alerts = Alerts(**incremental_args) return [ alerts, AlertRecipients(parent_stream=alerts, **args), AlertLogs(parent_stream=alerts, **args), Incidents(**incremental_args), Integrations(**args), Services(**args), Teams(**args), users, UserTeams(parent_stream=users, **args), ]
a0b0afefa29d9867d2ca4e7ea95add21f514f525
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/cognitiveservices/azure-mgmt-cognitiveservices/tests/disable_test_cli_mgmt_cognitiveservices.py
36137183535e3c620a46e8cea7f926e0adadefd9
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
4,767
py
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- # TEST SCENARIO COVERAGE # ---------------------- # Methods Total : 14 # Methods Covered : 14 # Examples Total : 15 # Examples Tested : 13 # Coverage % : 87 # ---------------------- import unittest import azure.mgmt.cognitiveservices from devtools_testutils import AzureMgmtTestCase, ResourceGroupPreparer AZURE_LOCATION = 'eastus' class MgmtCognitiveServicesTest(AzureMgmtTestCase): def setUp(self): super(MgmtCognitiveServicesTest, self).setUp() self.mgmt_client = self.create_mgmt_client( azure.mgmt.cognitiveservices.CognitiveServicesManagementClient ) @unittest.skip('hard to test') @ResourceGroupPreparer(location=AZURE_LOCATION) def test_cognitiveservices(self, resource_group): SUBSCRIPTION_ID = self.settings.SUBSCRIPTION_ID RESOURCE_GROUP = resource_group.name ACCOUNT_NAME = "myAccount" LOCATION = "myLocation" # /Accounts/put/Create Account Min[put] BODY = { "location": "West US", "kind": "CognitiveServices", "sku": { "name": "S0" }, "identity": { "type": "SystemAssigned" } } result = self.mgmt_client.accounts.create(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # /Accounts/put/Create Account[put] BODY = { "location": "West US", "kind": "Emotion", "sku": { "name": "S0" }, "properties": { "encryption": { "key_vault_properties": { "key_name": "KeyName", "key_version": "891CF236-D241-4738-9462-D506AF493DFA", "key_vault_uri": "https://pltfrmscrts-use-pc-dev.vault.azure.net/" }, "key_source": "Microsoft.KeyVault" }, "user_owned_storage": [ { "resource_id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.Storage/storageAccountsfelixwatest" } ] }, "identity": { "type": "SystemAssigned" } } # result = self.mgmt_client.accounts.create(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # /Accounts/get/Get Usages[get] result = self.mgmt_client.accounts.get_usages(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/List SKUs[get] result = self.mgmt_client.accounts.list_skus(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/Get Account[get] result = self.mgmt_client.accounts.get_properties(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/get/List Accounts by Resource Group[get] result = self.mgmt_client.accounts.list_by_resource_group(resource_group_name=RESOURCE_GROUP) # /Accounts/get/List Accounts by Subscription[get] result = self.mgmt_client.accounts.list() # /ResourceSkus/get/Regenerate Keys[get] result = self.mgmt_client.resource_skus.list() # /Operations/get/Get Operations[get] result = self.mgmt_client.operations.list() # /Accounts/post/Regenerate Keys[post] result = self.mgmt_client.accounts.regenerate_key(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, key_name="Key2") # /Accounts/post/List Keys[post] result = self.mgmt_client.accounts.list_keys(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) # /Accounts/patch/Update Account[patch] BODY = { "sku": { "name": "S2" } } # result = self.mgmt_client.accounts.update(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME, account=BODY) # //post/Check SKU Availability[post] SKUS = [ "S0" ] result = self.mgmt_client.check_sku_availability(location="eastus", skus=SKUS, kind="Face", type="Microsoft.CognitiveServices/accounts") # /Accounts/delete/Delete Account[delete] result = self.mgmt_client.accounts.delete(resource_group_name=RESOURCE_GROUP, account_name=ACCOUNT_NAME) #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
87db78fc9bb040bc77eeeb14ffba6ee78b8c43fa
42394bd8cd674dcd0822ae288ddb4f4e749a6ed6
/fluent_blogs/sitemaps.py
97da332b7a014536107d1f7fe042d295b321ac83
[ "Apache-2.0" ]
permissive
mmggbj/django-fluent-blogs
4bca6e7effeca8b4cee3fdf4f8bb4eb4d192dfbe
7fc3220d6609fe0615ad6ab44044c671d17d06a3
refs/heads/master
2021-05-08T13:02:51.896360
2018-01-31T21:54:27
2018-01-31T21:54:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,647
py
from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.contrib.sitemaps import Sitemap from fluent_blogs.models import get_entry_model, get_category_model from fluent_blogs.urlresolvers import blog_reverse from parler.models import TranslatableModel User = get_user_model() EntryModel = get_entry_model() CategoryModel = get_category_model() class EntrySitemap(Sitemap): """ The sitemap definition for the pages created with django-fluent-blogs. """ def items(self): qs = EntryModel.objects.published().order_by('-publication_date') if issubclass(EntryModel, TranslatableModel): # Note that .active_translations() can't be combined with other filters for translations__.. fields. qs = qs.active_translations() return qs.order_by('-publication_date', 'translations__language_code') else: return qs.order_by('-publication_date') def lastmod(self, urlnode): """Return the last modification of the entry.""" return urlnode.modification_date def location(self, urlnode): """Return url of an entry.""" return urlnode.url class CategoryArchiveSitemap(Sitemap): def items(self): only_ids = EntryModel.objects.published().values('categories').order_by().distinct() return CategoryModel.objects.filter(id__in=only_ids) def lastmod(self, category): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(categories=category).only('modification_date') return lastitems[0].modification_date def location(self, category): """Return url of an entry.""" return blog_reverse('entry_archive_category', kwargs={'slug': category.slug}, ignore_multiple=True) class AuthorArchiveSitemap(Sitemap): def items(self): only_ids = EntryModel.objects.published().values('author').order_by().distinct() return User.objects.filter(id__in=only_ids) def lastmod(self, author): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(author=author).only('modification_date') return lastitems[0].modification_date def location(self, author): """Return url of an entry.""" return blog_reverse('entry_archive_author', kwargs={'slug': author.username}, ignore_multiple=True) class TagArchiveSitemap(Sitemap): def items(self): # Tagging is optional. When it's not used, it's ignored. if 'taggit' not in settings.INSTALLED_APPS: return [] from taggit.models import Tag only_instances = EntryModel.objects.published().only('pk') # Until https://github.com/alex/django-taggit/pull/86 is merged, # better use the field names directly instead of bulk_lookup_kwargs return Tag.objects.filter( taggit_taggeditem_items__object_id__in=only_instances, taggit_taggeditem_items__content_type=ContentType.objects.get_for_model(EntryModel) ) def lastmod(self, tag): """Return the last modification of the entry.""" lastitems = EntryModel.objects.published().order_by('-modification_date').filter(tags=tag).only('modification_date') return lastitems[0].modification_date def location(self, tag): """Return url of an entry.""" return blog_reverse('entry_archive_tag', kwargs={'slug': tag.slug}, ignore_multiple=True)
83f1f904fbc11dea0d949ea539259c4155273c82
364e2632a334241c034448ee0a7242818b49cdf7
/bigmler/tests/test_02_batch_predictions.py
f37bd5abba68ee95bee0e21639252ce78ebf007f
[ "Apache-2.0" ]
permissive
cybernetics/bigmler
46f6bf508b9ac6c6000c3859b5ed32a7619a3dad
c1c91548169e6f6053aef1b09085fa1fb7a43e43
refs/heads/master
2021-01-18T01:07:10.519630
2015-06-12T23:56:28
2015-06-12T23:56:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,126
py
# -*- coding: utf-8 -*- # # Copyright 2014-2015 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Testing batch prediction creation """ from __future__ import absolute_import from bigmler.tests.world import (world, common_setup_module, common_teardown_module, teardown_class) import bigmler.tests.basic_tst_prediction_steps as test_pred import bigmler.tests.basic_batch_tst_prediction_steps as test_batch_pred import bigmler.tests.basic_anomaly_prediction_steps as anomaly_pred def setup_module(): """Setup for the module """ common_setup_module() test = TestBatchPrediction() test.setup_scenario2() def teardown_module(): """Teardown for the module """ common_teardown_module() class TestBatchPrediction(object): def teardown(self): """Calling generic teardown for every method """ teardown_class() def setup(self): """No setup operations for every method at present """ pass def test_scenario1(self): """ Scenario 1: Successfully building test predictions from scratch: Given I create BigML resources uploading train "<data>" file to test "<test>" remotely with mapping file "<fields_map>" and log predictions in "<output>" And I check that the source has been created And I check that the dataset has been created And I check that the model has been created And I check that the source has been created from the test file And I check that the dataset has been created from the test file And I check that the batch prediction has been created And I check that the predictions are ready Then the local prediction file is like "<predictions_file>" Examples: | data | test | fields_map | output |predictions_file | | ../data/grades.csv | ../data/test_grades.csv | ../data/grades_fields_map.csv | ./scenario_r1_r/predictions.csv | ./check_files/predictions_grades.csv | """ print self.test_scenario1.__doc__ examples = [ ['data/grades.csv', 'data/test_grades.csv', 'data/grades_fields_map.csv', 'scenario_r1_r/predictions.csv', 'check_files/predictions_grades.csv']] for example in examples: print "\nTesting with:\n", example test_pred.i_create_all_resources_batch_map(self, data=example[0], test=example[1], fields_map=example[2], output=example[3]) test_pred.i_check_create_source(self) test_pred.i_check_create_dataset(self, suffix=None) test_pred.i_check_create_model(self) test_batch_pred.i_check_create_test_source(self) test_batch_pred.i_check_create_test_dataset(self) test_batch_pred.i_check_create_batch_prediction(self) test_pred.i_check_create_predictions(self) test_pred.i_check_predictions(self, example[4]) def setup_scenario2(self): """ Scenario 2: Successfully building test predictions from scratch: Given I create BigML resources uploading train "<data>" file to test "<test>" remotely and log predictions in "<output>" And I check that the source has been created And I check that the dataset has been created And I check that the model has been created And I check that the source has been created from the test file And I check that the dataset has been created from the test file And I check that the batch prediction has been created And I check that the predictions are ready Then the local prediction file is like "<predictions_file>" Examples: | data | test | output |predictions_file | | ../data/iris.csv | ../data/test_iris.csv | ./scenario_r1/predictions.csv | ./check_files/predictions_iris.csv | """ print self.setup_scenario2.__doc__ examples = [ ['data/iris.csv', 'data/test_iris.csv', 'scenario_r1/predictions.csv', 'check_files/predictions_iris.csv']] for example in examples: print "\nTesting with:\n", example test_pred.i_create_all_resources_batch(self, data=example[0], test=example[1], output=example[2]) test_pred.i_check_create_source(self) test_pred.i_check_create_dataset(self, suffix=None) test_pred.i_check_create_model(self) test_batch_pred.i_check_create_test_source(self) test_batch_pred.i_check_create_test_dataset(self) test_batch_pred.i_check_create_batch_prediction(self) test_pred.i_check_create_predictions(self) test_pred.i_check_predictions(self, example[3]) def test_scenario3(self): """ Scenario 3: Successfully building test predictions from source Given I have previously executed "<scenario>" or reproduce it with arguments <kwargs> And I create BigML resources using source to test the previous test source remotely and log predictions in "<output>" And I check that the dataset has been created And I check that the model has been created And I check that the dataset has been created from the test file And I check that the batch prediction has been created And I check that the predictions are ready Then the local prediction file is like "<predictions_file>" Examples: |scenario | kwargs | output |predictions_file | | scenario_r1| {"data": "../data/iris.csv", "output": "./scenario_r1/predictions.csv", "test": "../data/test_iris.csv"} |./scenario_r2/predictions.csv | ./check_files/predictions_iris.csv | """ print self.test_scenario3.__doc__ examples = [ ['scenario_r1', '{"data": "data/iris.csv", "output": "scenario_r1/predictions.csv", "test": "data/test_iris.csv"}', 'scenario_r2/predictions.csv', 'check_files/predictions_iris.csv']] for example in examples: print "\nTesting with:\n", example test_pred.i_have_previous_scenario_or_reproduce_it(self, example[0], example[1]) test_pred.i_create_resources_from_source_batch(self, output=example[2]) test_pred.i_check_create_dataset(self, suffix=None) test_pred.i_check_create_model(self) test_batch_pred.i_check_create_test_dataset(self) test_batch_pred.i_check_create_batch_prediction(self) test_pred.i_check_create_predictions(self) test_pred.i_check_predictions(self, example[3]) def test_scenario4(self): """ Scenario 4: Successfully building test predictions from dataset Given I have previously executed "<scenario>" or reproduce it with arguments <kwargs> And I create BigML resources using dataset to test the previous test dataset remotely and log predictions in "<output>" And I check that the model has been created And I check that the batch prediction has been created And I check that the predictions are ready Then the local prediction file is like "<predictions_file>" Examples: |scenario | kwargs | test | output |predictions_file | | scenario_r1| {"data": "../data/iris.csv", "output": "./scenario_r1/predictions.csv", "test": "../data/test_iris.csv"} | ../data/test_iris.csv | ./scenario_r3/predictions.csv | ./check_files/predictions_iris.csv | """ print self.test_scenario4.__doc__ examples = [ ['scenario_r1', '{"data": "data/iris.csv", "output": "scenario_r1/predictions.csv", "test": "data/test_iris.csv"}', 'scenario_r3/predictions.csv', 'check_files/predictions_iris.csv']] for example in examples: print "\nTesting with:\n", example test_pred.i_have_previous_scenario_or_reproduce_it(self, example[0], example[1]) test_pred.i_create_resources_from_dataset_batch(self, output=example[2]) test_pred.i_check_create_model(self) test_batch_pred.i_check_create_batch_prediction(self) test_pred.i_check_create_predictions(self) test_pred.i_check_predictions(self, example[3]) def test_scenario5(self): """ Scenario 5: Successfully building test predictions from dataset and prediction format info Given I have previously executed "<scenario>" or reproduce it with arguments <kwargs> And I create BigML resources using a model to test the previous test dataset remotely with prediction headers and fields "<fields>" and log predictions in "<output>" And I check that the batch prediction has been created And I check that the predictions are ready Then the local prediction file is like "<predictions_file>" Examples: |scenario | kwargs | fields | output |predictions_file | | scenario_r1| {"data": "../data/iris.csv", "output": "./scenario_r1/predictions.csv", "test": "../data/test_iris.csv"} | sepal length,sepal width | ./scenario_r4/predictions.csv | ./check_files/predictions_iris_format.csv | """ print self.test_scenario5.__doc__ examples = [ ['scenario_r1', '{"data": "data/iris.csv", "output": "scenario_r1/predictions.csv", "test": "data/test_iris.csv"}', 'sepal length,sepal width', 'scenario_r4/predictions.csv', 'check_files/predictions_iris_format.csv']] for example in examples: print "\nTesting with:\n", example test_pred.i_have_previous_scenario_or_reproduce_it(self, example[0], example[1]) test_pred.i_create_resources_from_model_batch(self, fields=example[2], output=example[3]) test_batch_pred.i_check_create_batch_prediction(self) test_pred.i_check_create_predictions(self) test_pred.i_check_predictions(self, example[4]) def test_scenario6(self): """ Scenario 6: Successfully building remote test predictions from scratch to a dataset: Given I create BigML resources uploading train "<data>" file to test "<test>" remotely to a dataset with no CSV output and log resources in "<output_dir>" And I check that the source has been created And I check that the dataset has been created And I check that the model has been created And I check that the source has been created from the test file And I check that the dataset has been created from the test file And I check that the batch prediction has been created Then I check that the batch predictions dataset exists And no local CSV file is created Examples: | data | test | output_dir | | ../data/iris.csv | ../data/test_iris.csv | ./scenario_r5 | """ print self.test_scenario6.__doc__ examples = [ ['data/iris.csv', 'data/test_iris.csv', 'scenario_r5']] for example in examples: print "\nTesting with:\n", example test_pred.i_create_all_resources_batch_to_dataset(self, data=example[0], test=example[1], output_dir=example[2]) test_pred.i_check_create_source(self) test_pred.i_check_create_dataset(self, suffix=None) test_pred.i_check_create_model(self) test_batch_pred.i_check_create_test_source(self) test_batch_pred.i_check_create_test_dataset(self) test_batch_pred.i_check_create_batch_prediction(self) test_batch_pred.i_check_create_batch_predictions_dataset(self) anomaly_pred.i_check_no_local_CSV(self)
27ea18a5756b03152493d5b0994a5db4e48e30db
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03227/s470552278.py
434e9ba40f42f909254017bbb3c840bf9b0c6468
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
n = raw_input() print n if len(n)==2 else n[::-1]
b149655165dbfc3253e689f968488cd68f3e18c6
3e660e22783e62f19e9b41d28e843158df5bd6ef
/script.me.syncsmashingfromgithub/smashingfavourites/scripts/oldscripts/smashingtvextended.py
23aa7191d67b111064220b6ce41ecbc4caa91859
[]
no_license
monthou66/repository.smashingfavourites
a9603906236000d2424d2283b50130c7a6103966
f712e2e4715a286ff6bff304ca30bf3ddfaa112f
refs/heads/master
2020-04-09T12:14:34.470077
2018-12-04T10:56:45
2018-12-04T10:56:45
160,341,386
0
0
null
null
null
null
UTF-8
Python
false
false
5,059
py
# -*- coding: utf-8 -*- # opens tv channel or guide groups via smashingfavourites and / or keymap. import os import os.path import xbmc import sys # make sure dvbviewer is running - enable and wait if necessary def enable(): if not xbmc.getCondVisibility('System.HasAddon(pvr.dvbviewer)'): xbmc.executeJSONRPC('{"jsonrpc":"2.0","method":"Addons.SetAddonEnabled","id":7,"params":{"addonid":"pvr.dvbviewer","enabled":true}}') xbmc.sleep(200) # make sure dvbviewer is not running - disable if necessary def disable(): xbmc.executeJSONRPC('{"jsonrpc":"2.0","method":"Addons.SetAddonEnabled","id":8,"params":{"addonid":"pvr.dvbviewer","enabled":false}}') # define terms... c = count # f=0 for just pvr disabled f = 1 (value) if channels, f=2 (value) if guides, f=3 if radio, f=4 if recordings, # f=5 if timers, f=6 if search, f=7 if recording / recorded files, f=8 for timeshift, f=9 for permanently enable, # f=10 for remove enable check. # g = group number (value)... g=3 for last channel group / guide group # define f a = sys.argv[1] f = int(a) def terms(): b = sys.argv[2] c = 2 g = int(b) # f=3 def radio(): xbmc.executebuiltin('ActivateWindow(Radio)') exit() # f=4 def recordings(): xbmc.executebuiltin('ActivateWindow(tvrecordings)') exit() # f=5 def timers(): xbmc.executebuiltin('ActivateWindow(tvtimers)') exit() # f=6 def search(): xbmc.executebuiltin('ActivateWindow(tvsearch)') exit() # pvr can be disabled for recorded files - f=7 def recordedfiles(): xbmc.executebuiltin('Videos,smb://SourceTVRecordings/,return') exit() # pvr can be disabled for timeshift files - f=8 def timeshift(): xbmc.executebuiltin('Videos,smb://SourceTVRecordings/,return') exit() # print stars to show up in log and error notification def printstar(): print "****************************************************************************" print "****************************************************************************" def error(): xbmc.executebuiltin('Notification(Check, smashingtv)') exit() # open channel or guide windows - f = 1,2 def opengroups(): if f == 1: xbmc.executebuiltin('ActivateWindow(TVChannels)') elif f == 2: xbmc.executebuiltin('ActivateWindow(TVGuide)') else: xbmc.executebuiltin('Notification(Check, smashingtv)'); exit() xbmc.executebuiltin('SendClick(28)') xbmc.executebuiltin( "XBMC.Action(FirstPage)" ) # loop move down to correct group (if necessary) if g > 1: while (c <= g): c = c + 1 xbmc.executebuiltin( "XBMC.Action(Down)" ) # open group if not using 'choose' option. if g >=1: xbmc.executebuiltin( "XBMC.Action(Select)" ) xbmc.executebuiltin( "XBMC.Action(Right)" ) xbmc.executebuiltin( "ClearProperty(SideBladeOpen)" ) # define file locations def files(): SOURCEFILE = os.path.join(xbmc.translatePath('special://userdata/favourites/smashingtv/enablefile'), "enablepvr.txt") TARGET = os.path.join(xbmc.translatePath('special://userdata/favourites/smashingtv'), "enablepvr.txt") # permanentenable: # Copy pvrenable.txt to favourites/smashingtv folder as marker and enable pvr.dvbviewer - f=9 # check if SOURCEFILE exists - if not give an error message # check if TARGET exists - if so give a notification 'already enabled' # copy SOURCEFILE to TARGET, enable and close def permanentenable(): if not os.path.isfile(SOURCEFILE): printstar() print "smashingtv problem - check userdata/favourites/smashingtv/enablefile folder for missing pvrenable.txt" printstar() error() if os.path.isfile(TARGET): xbmc.executebuiltin('Notification(PVR is, already enabled)') enable() exit() else: shutil.copy(SOURCEFILE, TARGET) xbmc.executebuiltin('Notification(PVR is, permanently enabled)') enable() exit() #removepermanentcheck # Remove pvrenable.txt from favourites/smashingtv folder f=10 def removepermanentcheck(): if not os.path.isfile(TARGET): xbmc.executebuiltin('Notification(No PVR, lock found)') disable() exit() else: os.remove(TARGET) xbmc.executebuiltin('Notification(PVR, unlocked)') disable() exit() # Get on with it... # disable or enable pvr.dvbviewer, exit if necessary, exit and print message if f is out of range if f == 0: disable() exit() elif f == 7 or f == 8: disable() elif f > 10 or f < 0: printstar() print "smashingtv exited 'cos f is out of range" print "f is ",f printstar() error() else: enable() if f == 1 or f == 2: terms() opengroups() elif f == 3: radio() elif f == 4: recordings() elif f == 5: timers() elif f == 6: search() elif f == 7: recordedfiles() elif f == 8: timeshift() elif f == 9: permanentenable() enable() elif f == 10: removepermanentcheck() disable() else: printstar() print "smashingtv exited 'cos sumfink went rong" printstar() error()
6042ebe496e64d755d312557f38f2f61d3e98e80
18e687608ff326fae4d1e1604cf452f086f99559
/classroom/admin.py
7da03566a6f4b009b1d4c24281b22e580476a82c
[ "Apache-2.0" ]
permissive
nu11byt3s/lms-ml
955bad451ddcb78e464227294496ee0a92be08c0
c0ea63f09d4125b0ae9033fd8b0a4aab2604bb42
refs/heads/main
2023-08-13T08:09:53.097312
2021-10-12T09:51:31
2021-10-12T09:51:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
265
py
from django.contrib import admin from .models import ClassFiles, ClassRoom, MemberShip, RoomStream, Comment admin.site.register(ClassRoom) admin.site.register(ClassFiles) admin.site.register(MemberShip) admin.site.register(RoomStream) admin.site.register(Comment)
59bd29fb6eb52de6fe04df9967256812d218e790
4e60e8a46354bef6e851e77d8df4964d35f5e53f
/share/create_db/__init__.py
89e75b0e45db463c422c246e51d237b4f3e7984d
[]
no_license
cq146637/DockerManagerPlatform
cbae4154ad66eac01772ddd902d7f70b62a2d856
9c509fb8dca6633ed3afdc92d4e6491b5d13e322
refs/heads/master
2021-04-09T13:58:14.117752
2018-03-19T13:41:04
2018-03-19T13:41:04
125,712,276
0
0
null
null
null
null
UTF-8
Python
false
false
44
py
# -*- coding: utf-8 -*- __author__ = 'CQ'
f50a2c13091de7e6652bd032364405a6cb81e40a
f08336ac8b6f8040f6b2d85d0619d1a9923c9bdf
/148-sortList.py
deaa09cb9bde869ffaac11cb72d4a48498d2f6ed
[]
no_license
MarshalLeeeeee/myLeetCodes
fafadcc35eef44f431a008c1be42b1188e7dd852
80e78b153ad2bdfb52070ba75b166a4237847d75
refs/heads/master
2020-04-08T16:07:47.943755
2019-02-21T01:43:16
2019-02-21T01:43:16
159,505,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,383
py
''' 148. Sort List Sort a linked list in O(n log n) time using constant space complexity. Example 1: Input: 4->2->1->3 Output: 1->2->3->4 Example 2: Input: -1->5->3->4->0 Output: -1->0->3->4->5 ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def solve(self,head,length): if length == 1: return head i, curr = 0, head while i+1 < length//2: curr = curr.next i += 1 tail = curr.next curr.next = None newHead = self.solve(head,length//2) newTail = self.solve(tail,length-length//2) currHead, currTail, ansHead = newHead, newTail, ListNode(0) curr = ansHead while currHead and currTail: if currHead.val < currTail.val: curr.next = currHead; currHead = currHead.next else: curr.next = currTail; currTail = currTail.next curr = curr.next if not currHead: curr.next = currTail else: curr.next = currHead return ansHead.next def sortList(self, head): """ :type head: ListNode :rtype: ListNode """ l, curr = 0, head while curr: l += 1 curr = curr.next if not l or l == 1: return head else: return self.solve(head,l)
24aeb181fe8842ceab8dcbdae1e7eae470e32e96
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/2091.py
2be5159255a480621d5ba476c77387286fc6d261
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
def get_values(f,line): choices = []; for i in range(0,4): if i+1 == line: choices.extend(f.readline().split()) else: f.readline() return choices if __name__ == "__main__": with open('problem.txt','r') as f: trials = int(f.readline()) for i in range(0,trials): first = int(f.readline()) first_choices = get_values(f,first) second = int(f.readline()) second_choices = get_values(f,second) combined = [] for a in first_choices: if a in second_choices: combined.append(a) if len(combined) == 1: print "Case #%s: %s"%(i+1,combined[0]) elif len(combined) > 1: print "Case #%s: %s"%(i+1,"Bad magician!") else: print "Case #%s: %s"%(i+1,"Volunteer cheated!")
94039fd9178ad4160ba0efb6f0dda17c0fde9816
8926a97e04be31c62a28ee9031520ca785f2947b
/flask/member_test/app3.py
1879796d52c5957ea5c6d9b35167283e4c2e6a95
[]
no_license
ragu6963/kfq_pyhton
3d651357242892713f36ac12e31f7b586d6e7422
bdad24e7620e8102902e2f0a71c8486fb0ad86c9
refs/heads/master
2022-11-26T16:02:49.838263
2020-07-31T00:40:59
2020-07-31T00:40:59
276,516,045
0
0
null
null
null
null
UTF-8
Python
false
false
4,306
py
from flask import Flask, request, render_template, redirect, url_for, jsonify, json import pymysql, os, cx_Oracle from flask_sqlalchemy import SQLAlchemy from json import JSONEncoder app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = "oracle://hr:[email protected]:1521/xe" # app.config['SQLALCHEMY_DATABASE_URI'] = "mysql+pymysql://root:qwer1234@localhost/test" # app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class User(db.Model): # id = db.Column(db.Integer, primary_key = True) userid = db.Column(db.String(20), primary_key=True) userpw = db.Column(db.String(20)) username = db.Column(db.String(20)) userage = db.Column(db.Integer) usermail = db.Column(db.String(20)) useradd = db.Column(db.String(20)) usergender = db.Column(db.String(20)) usertel = db.Column(db.String(20)) def __repr__(self): return "<userid %r,username %r>" % (self.id, self.username) def __init__(self, userid, userpw, username, userage, usermail, useradd, usergender, usertel): self.userid = userid self.userpw = userpw self.username = username self.userage = userage self.usermail = usermail self.useradd = useradd self.usergender = usergender self.usertel = usertel def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) @app.route("/") def index(): return render_template("index.html") @app.route("/usersform", methods=["POST", "GET"]) def usersform(): if request.method == "GET": return render_template("usersform.html") else: userid = request.form.get("userid") userpw = request.form.get("userpw") username = request.form.get("username") userage = request.form.get("userage") usermail = request.form.get("useremail") useradd = request.form.get("useradd") usergender = request.form.get("usergender") usertel = request.form.get("usertel") my_user = User(userid, userpw, username, userage, usermail, useradd, usergender, usertel) db.session.add(my_user) db.session.commit() return redirect("/list") @app.route("/list") def list(): all_data = User.query.all() return render_template("list.html", list=all_data) @app.route("/content/<userid>") def content(userid): result = User.query.filter_by(userid=userid).one() return render_template("content.html", list=result) @app.route("/updateform/<userid>", methods=["GET"]) def updateformget(userid): result = User.query.filter_by(userid=userid).one() return render_template("updateform.html", list=result) @app.route("/updateform", methods=["POST"]) def updateformpost(): my_user = User.query.get(request.form.get("userid")) my_user.userid = request.form.get("userid") my_user.userpw = request.form.get("userpw") my_user.username = request.form.get("username") my_user.userage = request.form.get("userage") my_user.usermail = request.form.get("usermail") my_user.useradd = request.form.get("useradd") my_user.usergender = request.form.get("usergender") my_user.usertel = request.form.get("usertel") db.session.commit() return redirect("/list") @app.route("/deleteform/<userid>") def deleteformget(userid): my_data = User.query.get(userid) db.session.delete(my_data) db.session.commit() return redirect("/list") @app.route("/ajaxlist", methods=["GET"]) def ajaxlistget(): all_data = User.query.all() return render_template("ajaxlist.html", list=all_data) @app.route("/ajaxlist", methods=["POST"]) def ajaxlistpost(): userid = request.form.get("userid") query = User.query.filter(User.userid.like("%" + userid + "%")).order_by(User.userid) all_data = query.all() result = [] for data in all_data: result.append(data.toJSON()) # return jsonify(all_data) return result @app.route("/imglist") def imglist(): print(os.path.dirname(__file__)) dirname = os.path.dirname(__file__) + "/static/img/" filenames = os.listdir(dirname) print(filenames) return render_template("imglist.html", filenames=filenames) if __name__ == "__main__": db.create_all() app.run(debug=True, port=8089)
89bb0587757a6aed99336fb24ec99c4a1cbfe575
8d2a785ffc06ec46a546cdf50af41054a382f05a
/classes/day02/class/3.pass语句.py
f2defecd7c5467b8ae56a75acfff0e26254f3c38
[]
no_license
Pigcanflysohigh/Py27
4be0d9ad93f5d695c48fd89157952230ec4d111a
2f6568fce2a6f09c73cdc08342a8b05645c87736
refs/heads/master
2020-06-18T08:09:08.217036
2019-11-20T16:14:05
2019-11-20T16:14:05
196,225,940
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
if 1==2: ... # 什么也不做,只是占个地方,表示我是明白python的语法规则的 n = 0 while n<6: pass
b40d364523a6a0d9a5830630e0d64197363cab87
95884a6b32f6831e68c95d7785bc968a56877121
/cifar_imagenet/models/cifar/momentumnet_restart_lookahead_vel_learned_scalar_clip_mom.py
ba44f69eff7577785b303b3c9d7d192514916fc3
[ "MIT", "Apache-2.0" ]
permissive
minhtannguyen/RAdam
d89c4c6ce1ce0dd95b0be3aa2c20e70ea62da8b0
44f403288df375bae0785cc82dd8c888eaaaa441
refs/heads/master
2020-08-09T07:53:50.601789
2020-02-17T06:17:05
2020-02-17T06:17:05
214,041,479
0
0
Apache-2.0
2019-10-09T23:11:14
2019-10-09T23:11:14
null
UTF-8
Python
false
false
7,243
py
# -*- coding: utf-8 -*- """ momentum net """ import torch import torch.nn as nn import math from torch.nn.parameter import Parameter __all__ = ['momentumnet_restart_lookahead_vel_learned_scalar_clip_mom'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, step_size=2.0, momentum=0.5): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self.conv1 = conv3x3(inplanes, planes, stride) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = conv3x3(planes, planes) self.downsample = downsample self.stride = stride # for momentum net self.step_size = Parameter(torch.tensor(step_size), requires_grad=True) self.momentum = Parameter(torch.tensor(momentum), requires_grad=True) def forward(self, invec): x, y = invec[0], invec[1] residualx = x residualy = y out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) if self.downsample is not None: residualx = self.downsample(x) residualy = self.downsample(y) outy = residualx - self.step_size*out outx = (1.0 + self.momentum) * outy - self.momentum * residualy return [outx, outy] class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, step_size=2.0, momentum=0.5): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride # for momentum net self.step_size = Parameter(torch.tensor(step_size), requires_grad=True) self.momentum = Parameter(torch.tensor(momentum), requires_grad=True) def forward(self, invec): x, prex = invec[0], invec[1] residualx = x residualprex = prex x = x + torch.clamp(input=self.momentum, min=0.0, max=1.0) * prex out = self.bn1(x) out = self.relu(out) out = self.conv1(out) out = self.bn2(out) out = self.relu(out) out = self.conv2(out) out = self.bn3(out) out = self.relu(out) out = self.conv3(out) if self.downsample is not None: residualx = self.downsample(residualx) residualprex = torch.zeros_like(out) outprex = torch.clamp(input=self.momentum, min=0.0, max=1.0) * residualprex - self.step_size * out outx = residualx + outprex return [outx, outprex] class MomentumNet(nn.Module): def __init__(self, depth, step_size=2.0, momentum=0.5, num_classes=1000, block_name='BasicBlock', feature_vec='x'): super(MomentumNet, self).__init__() # Model type specifies number of layers for CIFAR-10 model if block_name.lower() == 'basicblock': assert (depth - 2) % 6 == 0, 'When use basicblock, depth should be 6n+2, e.g. 20, 32, 44, 56, 110, 1202' n = (depth - 2) // 6 block = BasicBlock elif block_name.lower() == 'bottleneck': assert (depth - 2) % 9 == 0, 'When use bottleneck, depth should be 9n+2, e.g. 20, 29, 47, 56, 110, 1199' n = (depth - 2) // 9 block = Bottleneck else: raise ValueError('block_name shoule be Basicblock or Bottleneck') self.inplanes = 16 # for momentum net self.step_size = step_size self.momentum = momentum self.feature_vec = feature_vec self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1, bias=False) self.layer1 = self._make_layer(block, 16, n, step_size=self.step_size, momentum=self.momentum) self.layer2 = self._make_layer(block, 32, n, stride=2, step_size=self.step_size, momentum=self.momentum) self.layer3 = self._make_layer(block, 64, n, stride=2, step_size=self.step_size, momentum=self.momentum) self.bn = nn.BatchNorm2d(64 * block.expansion) self.relu = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(8) self.fc = nn.Linear(64 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, step_size=2.0, momentum=0.5): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, step_size=step_size, momentum=momentum)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, step_size=step_size, momentum=momentum)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) out = [x, torch.zeros_like(x)] out = self.layer1(out) # 32x32 out = self.layer2(out) # 16x16 out = self.layer3(out) # 8x8 if self.feature_vec=='x': x = out[0] else: x = out[1] x = self.bn(x) x = self.relu(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def momentumnet_restart_lookahead_vel_learned_scalar_clip_mom(**kwargs): """ Constructs a ResNet model. """ return MomentumNet(**kwargs) # def momentum_net20(**kwargs): # return MomentumNet(num_classes=10, depth=20, block_name="basicblock") # def momentum_net56(**kwargs): # return MomentumNet(num_classes=10, depth=56, block_name="bottleneck") # def momentum_net110(**kwargs): # return MomentumNet(num_classes=10, depth=110, block_name="bottleneck") # def momentum_net164(**kwargs): # return MomentumNet(num_classes=10, depth=164, block_name="bottleneck") # def momentum_net290(**kwargs): # return MomentumNet(num_classes=10, depth=290, block_name="bottleneck")
066f467af220cf2210d237b5be14036c9a366795
c4ee4a9d28425aa334038ad174c7b1d757ff45db
/py/survey_backdeck/SurveyBackdeckDB.py
425ea9aadef024c30c34e6d6199380a96c70f5d1
[ "MIT" ]
permissive
nwfsc-fram/pyFieldSoftware
32b3b9deb06dba4a168083a77336613704c7c262
477ba162b66ede2263693cda8c5a51d27eaa3b89
refs/heads/master
2023-08-03T07:38:24.117376
2021-10-20T22:49:51
2021-10-20T22:49:51
221,750,910
1
1
MIT
2023-07-20T13:13:25
2019-11-14T17:23:47
Python
UTF-8
Python
false
false
1,155
py
__author__ = 'Todd.Hay' # ------------------------------------------------------------------------------- # Name: TrawlBackdeckDB.py # Purpose: Provides connection to the trawl_backdeck.db SQLite database # Author: Todd.Hay # Email: [email protected] # # Created: Jan 08, 2016 # License: MIT #------------------------------------------------------------------------------- import unittest from py.common import CommonDB class HookAndLineHookCutterDB(CommonDB.CommonDB): """ Subclass the CommonDB class, which makes the actual database connection """ def __init__(self, db_filename="hookandline_cutter.db"): super().__init__(db_filename) class TestTrawlBackdeckDB(unittest.TestCase): """ Test basic SQLite connectivity """ def setUp(self): self._db = HookAndLineHookCutterDB('hookandline_cutter.db') def tearDown(self): self._db.disconnect() def test_query(self): count = 0 for t in self._db.execute('SELECT * FROM SETTINGS'): count += 1 self.assertGreater(count, 200) if __name__ == '__main__': unittest.main()
56cb0a401e086cffa893b8b4dcd75edf07ca9e4c
dacf092e82b5cc841554178e5117c38fd0b28827
/day24_program4/server_start.py
80694736d2929c195b9ccc3caf71539ee8767758
[]
no_license
RainMoun/python_programming_camp
f9bbee707e7468a7b5d6633c2364f5dd75abc8a4
f8e06cdd2e6174bd6986d1097cb580a6a3b7201f
refs/heads/master
2020-04-15T11:27:09.680587
2019-04-06T02:21:14
2019-04-06T02:21:14
164,630,838
4
1
null
null
null
null
UTF-8
Python
false
false
1,604
py
import socket import os from conf import setting from interface import common_interface from db import models, db_handler import logging.config def upload_file(): # 接收文件 file_path = os.path.join(BASE_DIR, 'db', 'file_upload') if not os.path.exists(file_path): os.makedirs(file_path) path = os.path.join(BASE_DIR, 'db', 'file_upload', file_name) if not os.path.exists(path): f = open(path, 'w') f.close() f = open(path, 'ab') has_received = 0 while has_received != file_size: data_once = conn.recv(1024) f.write(data_once) has_received += len(data_once) f.close() file_md5_finish = common_interface.get_file_md5(path) if file_md5_finish == file_md5: file_upload = models.File(file_name, file_size, file_md5, admin_name) db_handler.save_upload_file_message(file_upload) logging.info('{} upload {}, the md5 is {}'.format(admin_name, file_name, file_md5)) print('{} upload {}, the md5 is {}'.format(admin_name, file_name, file_md5)) func_dict = { 'post': upload_file } if __name__ == '__main__': sk = socket.socket() sk.bind(setting.SERVER_ADDRESS) sk.listen(3) BASE_DIR = os.path.dirname(os.path.abspath(__file__)) while True: conn, addr = sk.accept() while True: data = conn.recv(1024) print(data.decode('utf-8')) flag, admin_name, file_name, file_size, file_md5 = data.decode('utf-8').split('|') file_size = int(file_size) func_dict[flag]() break sk.close()
50a805dc8a946792bd4c670cf4d42f3317b82c4d
5925c0fc934760f1726818a18d6098499dcfb981
/GAN_upscale_28x28/GAN_upscale_28x28.py
0c4f60692043ba8d1aaf07a121723c78c1911750
[ "MIT" ]
permissive
PsycheShaman/Keras-GAN
64b4b20471f4b185580860f28caa9320ed615a51
9a1f2576af8f67fad7845421ea5feb53012c1c9f
refs/heads/master
2020-06-17T11:03:23.993616
2019-09-14T08:04:25
2019-09-14T08:04:25
195,858,154
2
0
MIT
2019-09-14T08:04:26
2019-07-08T17:33:39
Python
UTF-8
Python
false
false
6,859
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 11 12:14:02 2019 @author: gerhard """ from __future__ import print_function, division from keras.datasets import mnist from keras.layers import Input, Dense, Reshape, Flatten, Dropout from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam import matplotlib.pyplot as plt import sys import numpy as np import glob import pickle def load_data(): x_files = glob.glob("C:\\Users\\gerhard\\Documents\\msc-thesis-data\\cnn\\x_*.pkl") with open(x_files[0],'rb') as x_file: x = pickle.load(x_file) for i in x_files[1:]: print(i) with open(i,'rb') as x_file: print(i) xi = pickle.load(x_file) x = np.concatenate((x,xi),axis=0) print(x.shape) return(x) def scale(x, out_range=(-1, 1)): domain = np.min(x), np.max(x) y = (x - (domain[1] + domain[0]) / 2) / (domain[1] - domain[0]) return y * (out_range[1] - out_range[0]) + (out_range[1] + out_range[0]) / 2 class GAN(): def __init__(self): self.img_rows = 28 self.img_cols = 28 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 5 optimizer_discr = Adam(0.0004, 0.5) optimizer_gen = Adam(0.0001, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer_discr, metrics=['accuracy']) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs z = Input(shape=(self.latent_dim,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated images as input and determines validity validity = self.discriminator(img) # The combined model (stacked generator and discriminator) # Trains the generator to fool the discriminator self.combined = Model(z, validity) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer_gen) def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img) def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity) def train(self, epochs, batch_size=128, sample_interval=50): # Load the dataset X_train = load_data() new_x = np.zeros((X_train.shape[0],28,28)) for i in range(0,X_train.shape[0]): x_new_i = np.zeros((28,28)) x_old_i = X_train[i,:,:] x_new_i[5:x_old_i.shape[0]+5,2:x_old_i.shape[1]+2] = x_old_i new_x[i,:,:] = x_new_i X_train = new_x del new_x # Rescale -1 to 1 # X_train = X_train / 127.5 - 1. X_train = scale(X_train) X_train = np.expand_dims(X_train, axis=3) # Adversarial ground truths # valid = np.ones((batch_size, 1)) # fake = np.zeros((batch_size, 1)) valid = np.full(shape=(batch_size,1),fill_value=0.975) fake = np.full(shape=(batch_size,1),fill_value=0.025) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random batch of images idx = np.random.randint(0, X_train.shape[0], batch_size) imgs = X_train[idx] noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) # Generate a batch of new images gen_imgs = self.generator.predict(noise) # Train the discriminator d_loss_real = self.discriminator.train_on_batch(imgs, valid) d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # --------------------- # Train Generator # --------------------- noise = np.random.normal(0, 1, (batch_size, self.latent_dim)) # Train the generator (to have the discriminator label samples as valid) g_loss = self.combined.train_on_batch(noise, valid) # Plot the progress print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss)) # If at save interval => save generated image samples if epoch % sample_interval == 0: self.sample_images(epoch) def sample_images(self, epoch): # r, c = 5, 5 noise = np.random.normal(0, 1, (2, self.latent_dim)) gen_imgs = self.generator.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 plt.imshow(gen_imgs[1,:,:,0],cmap='gray') # fig, axs = plt.subplots(r, c) # cnt = 0 # for i in range(r): # for j in range(c): # axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray') # axs[i,j].axis('off') # cnt += 1 plt.savefig("images/%d.png" % epoch) plt.close() if __name__ == '__main__': gan = GAN() gan.train(epochs=30000, batch_size=32, sample_interval=10)
babc9118bdcf7d2c25b4dc9e551d807e63b0a18f
6b6c00e637e4659e4c960ff5dc48c8b25f09c543
/myihome/web_html.py
86d5f26bfaab5886725ef16013e4324d6595659e
[]
no_license
too-hoo/myiHome
881d24f7835a1d6f95fea8cc97d68194d078d451
54c57755f5c9a700330cb38a47fe88e4f9f7ab3a
refs/heads/master
2020-07-13T11:26:53.915246
2019-09-04T11:43:01
2019-09-04T11:43:01
205,073,018
9
6
null
null
null
null
UTF-8
Python
false
false
1,638
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # 静态文件加载的显示文件 from flask import Blueprint, current_app, make_response from flask_wtf import csrf # 引入CSRF防御 # 提供静态文件的蓝图 html = Blueprint("web_html", __name__) # 127.0.0.1:5000/() # 127.0.0.1:5000/(index.html) # 127.0.0.1:5000/(register.html) # 127.0.0.1:5000/(favico.ico) # 浏览器会自己请求这个资源,它是网站的标志 # 可能什么都提取不到也有可能提取到一个文件名.*代表最少是0个,html_file_name对应的是我们提取的文件名字 @html.route("/<re(r'.*'):html_file_name>") def get_html(html_file_name): """提供html文件""" # 可以直接到静态文件哪里找到返回,也可以使用flask提供的一个方法current_app.send_static_file,专门让我们返回静态文件的 # 如果html_file_name为空,表示访问的路径为/ , 请求的是主页,直接等于index.html即可 if not html_file_name: html_file_name = 'index.html' # 如果html_file_name不是favicon.ico if html_file_name != 'favicon.ico': html_file_name = 'html/' + html_file_name # 直接拼接html/ # 创建一个csrf_token的值 csrf_token = csrf.generate_csrf() # flask 提供的返回静态文件的方法,默认是到static目录下面去找 # flask 提供的返回静态文件的方法, 在返回之前先使用make_response接受一下响应体设置cookie之后再返回 resp = make_response(current_app.send_static_file(html_file_name)) # 设置cookie值包含CSRF的token值 resp.set_cookie('csrf_token', csrf_token) return resp
328588836d307293f0d666768429a1b18e4e1007
3a1c5ae00324fc26728ad9549cd4cf710a6dfcca
/trackmeapp/serializers.py
ecb9872ce6f7e0f07739fb553cc72ca93c734d99
[]
no_license
EnockOMONDI/TRACK-ME
c39b3f6ed04957a011c96735526475dae596941c
aff6704f2ce1645a6b7f044a52abf0769de7d604
refs/heads/master
2021-06-24T22:26:49.841861
2019-06-24T07:19:22
2019-06-24T07:19:22
193,167,979
0
0
null
2021-06-10T21:37:58
2019-06-21T22:46:08
Python
UTF-8
Python
false
false
309
py
from rest_framework import serializers from trackmeapp.models import Task # transforming objects to JSON and vice versa class TaskSerializer(serializers.ModelSerializer): class Meta: model = Task fields = ('item_id', 'title', 'description', 'created_at', 'comp_date', 'status')
4835bc6e70d40dff4467464c94615a922a6eeb0d
82ef9a0dd1618a28770597227acfc0150b948af2
/wearnow/tex/plug/_plugin.py
dd765acd80043d80efc8cafe2aca871e1af2e00f
[]
no_license
bmcage/wearnow
ef32a7848472e79e56763b38551835aa97864b21
c8dfa75e1ea32b0c021d71c4f366ab47104c207e
refs/heads/master
2021-01-16T00:27:59.597812
2016-01-19T11:55:03
2016-01-19T11:55:03
37,195,574
0
0
null
null
null
null
UTF-8
Python
false
false
2,318
py
# # WearNow - a GTK+/GNOME based program # # Copyright (C) 2008 Brian G. Matherly # Copyright (C) 2009 Benny Malengier # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ This module provides the base class for plugins. """ class Plugin(object): """ This class serves as a base class for all plugins that can be registered with the plugin manager """ def __init__(self, name, description, module_name): """ :param name: A friendly name to call this plugin. Example: "GEDCOM Import" :type name: string :param description: A short description of the plugin. Example: "This plugin will import a GEDCOM file into a database" :type description: string :param module_name: The name of the module that contains this plugin. Example: "gedcom" :type module_name: string :return: nothing """ self.__name = name self.__desc = description self.__mod_name = module_name def get_name(self): """ Get the name of this plugin. :return: a string representing the name of the plugin """ return self.__name def get_description(self): """ Get the description of this plugin. :return: a string that describes the plugin """ return self.__desc def get_module_name(self): """ Get the name of the module that this plugin lives in. :return: a string representing the name of the module for this plugin """ return self.__mod_name
35d145eae9baf5f65b192fdad8fad0e7408f07eb
9eff544e604f9cff4384d4154204ab3276a56a23
/mpsci/distributions/gumbel_max.py
c6080c33985af06b004adc47893c0f19297ed96c
[ "BSD-2-Clause" ]
permissive
WarrenWeckesser/mpsci
844d22b0230bc8fb5bf2122e7705c6fd1f0744d9
cd4626ee34680627abd820d9a80860b45de1e637
refs/heads/main
2023-08-31T11:01:11.412556
2023-08-25T20:30:43
2023-08-25T20:30:43
159,705,639
8
0
null
null
null
null
UTF-8
Python
false
false
7,575
py
""" Gumbel probability distribution (for maxima) -------------------------------------------- This is the same distribution as: * `scipy.stats.gumbel_r`; * NumPy's `numpy.random.Generator.gumbel`; * the Gumbel distribution discussed in the wikipedia article "Gumbel distribtion" (https://en.wikipedia.org/wiki/Gumbel_distribution); * the Type I extreme value distribution used in the text "An Introduction to Statistical Modeling of Extreme Values" by Stuart Coles (Springer, 2001); * the Gumbel distribution given in the text "Modelling Extremal Events" by Embrechts, Klüppelberg and Mikosch (Springer, 1997); * the Gumbel distribution in the text "Statistical Distribution" (fourth ed.) by Forbes, Evans, Hastings and Peacock (Wiley, 2011); * the `extreme_value_distribution` class implemented in the Boost/math C++ library; * the `Gumbel` distribution in the Rust `rand_distr` crate. """ from mpmath import mp from .. import stats from mpsci.stats import mean as _mean from ._common import _seq_to_mp __all__ = ['pdf', 'logpdf', 'cdf', 'invcdf', 'sf', 'invsf', 'mean', 'var', 'nll', 'mle', 'mom'] def pdf(x, loc, scale): """ Probability density function for the Gumbel distribution (for maxima). """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) return mp.exp(logpdf(x, loc, scale)) def logpdf(x, loc, scale): """ Log of the PDF of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return -(z + mp.exp(-z)) - mp.log(scale) def cdf(x, loc, scale): """ Cumulative distribution function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return mp.exp(-mp.exp(-z)) def invcdf(p, loc, scale): """ Inverse of the CDF for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): p = mp.mpf(p) loc = mp.mpf(loc) scale = mp.mpf(scale) z = -mp.log(-mp.log(p)) x = scale*z + loc return x def sf(x, loc, scale): """ Survival function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): x = mp.mpf(x) loc = mp.mpf(loc) scale = mp.mpf(scale) z = (x - loc) / scale return -mp.expm1(-mp.exp(-z)) def invsf(p, loc, scale): """ Inverse of the survival function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): p = mp.mpf(p) loc = mp.mpf(loc) scale = mp.mpf(scale) z = -mp.log(-mp.log1p(-p)) x = scale*z + loc return x def mean(loc, scale): """ Mean of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) return loc + mp.euler*scale def var(loc, scale): """ Variance of the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) return mp.pi**2/6 * scale**2 def nll(x, loc, scale): """ Negative log-likelihood function for the Gumbel distribution. """ if scale <= 0: raise ValueError('scale must be positive.') with mp.extradps(5): loc = mp.mpf(loc) scale = mp.mpf(scale) n = len(x) z = [(mp.mpf(xi) - loc)/scale for xi in x] t1 = n*mp.log(scale) t2 = mp.fsum(z) t3 = mp.fsum([mp.exp(-zi) for zi in z]) return t1 + t2 + t3 def _mle_scale_func(scale, x, xbar): emx = [mp.exp(-xi/scale) for xi in x] s1 = mp.fsum([xi * emxi for xi, emxi in zip(x, emx)]) s2 = mp.fsum(emx) return s2*(xbar - scale) - s1 def _solve_mle_scale(x): xbar = stats.mean(x) # Very rough guess of the scale parameter: s0 = stats.std(x) if s0 == 0: # The x values are all the same. return s0 # Find an interval in which there is a sign change of # _mle_scale_func. s1 = s0 s2 = s0 sign2 = mp.sign(_mle_scale_func(s2, x, xbar)) while True: s1 = 0.9*s1 sign1 = mp.sign(_mle_scale_func(s1, x, xbar)) if (sign1 * sign2) <= 0: break s2 = 1.1*s2 sign2 = mp.sign(_mle_scale_func(s2, x, xbar)) if (sign1 * sign2) <= 0: break # Did we stumble across the root while looking for an interval # with a sign change? Not likely, but check anyway... if sign1 == 0: return s1 if sign2 == 0: return s2 root = mp.findroot(lambda t: _mle_scale_func(t, x, xbar), [s1, s2], solver='anderson') return root def _mle_scale_with_fixed_loc(scale, x, loc): z = [(xi - loc) / scale for xi in x] ez = [mp.expm1(-zi)*zi for zi in z] return stats.mean(ez) + 1 def mle(x, loc=None, scale=None): """ Maximum likelihood estimates for the Gumbel distribution. `x` must be a sequence of numbers--it is the data to which the Gumbel distribution is to be fit. If either `loc` or `scale` is not None, the parameter is fixed at the given value, and only the other parameter will be fit. Returns maximum likelihood estimates of the `loc` and `scale` parameters. Examples -------- Imports and mpmath configuration: >>> from mpmath import mp >>> mp.dps = 20 >>> from mpsci.distributions import gumbel_max The data to be fit: >>> x = [6.86, 14.8 , 15.65, 8.72, 8.11, 8.15, 13.01, 13.36] Unconstrained MLE: >>> gumbel_max.mle(x) (mpf('9.4879877926148360358863'), mpf('2.727868138859403832702')) If we know the scale is 2, we can add the argument `scale=2`: >>> gumbel_max.mle(x, scale=2) (mpf('9.1305625326153555632872'), mpf('2.0')) """ with mp.extradps(5): x = _seq_to_mp(x) if scale is None and loc is not None: # Estimate scale with fixed loc. loc = mp.mpf(loc) # Initial guess for findroot. s0 = stats.std([xi - loc for xi in x]) scale = mp.findroot( lambda t: _mle_scale_with_fixed_loc(t, x, loc), s0 ) return loc, scale if scale is None: scale = _solve_mle_scale(x) else: scale = mp.mpf(scale) if loc is None: ex = [mp.exp(-xi / scale) for xi in x] loc = -scale * mp.log(stats.mean(ex)) else: loc = mp.mpf(loc) return loc, scale def mom(x): """ Method of moments parameter estimation for the Gumbel-max distribution. x must be a sequence of real numbers. Returns (loc, scale). """ with mp.extradps(5): M1 = _mean(x) M2 = _mean([mp.mpf(t)**2 for t in x]) scale = mp.sqrt(6*(M2 - M1**2))/mp.pi loc = M1 - scale*mp.euler return loc, scale
af43c669459f8dd1c60ac2dae04418f9744f6a29
44a7b4879c1da661cc2e8aa51c7fcc24cfb0fd3b
/tests/psu/psu_version_test.py
b3942b4c3523ed8b6ec2b0b234eb1705e2bb042b
[ "MIT" ]
permissive
seoss/scs_core
21cd235c9630c68f651b9a8c88120ab98fe5f513
a813f85f86b6973fa77722a7d61cc93762ceba09
refs/heads/master
2021-08-08T08:09:56.905078
2020-04-16T19:46:52
2020-04-16T19:46:52
156,239,538
0
0
null
null
null
null
UTF-8
Python
false
false
694
py
#!/usr/bin/env python3 """ Created on 13 Nov 2017 @author: Bruno Beloff ([email protected]) """ import json from scs_core.data.json import JSONify from scs_core.psu.psu_version import PSUVersion # -------------------------------------------------------------------------------------------------------------------- jstr = '{"id": "South Coast Science PSU", "tag": "1.2.3", "c-date": "Aug 8 2017", "c-time": "08:35:25"}' print(jstr) print("-") jdict = json.loads(jstr) print(jdict) print("-") status = PSUVersion.construct_from_jdict(jdict) print(status) print("-") jdict = status.as_json() print(jdict) print("-") jstr = JSONify.dumps(jdict) print(jstr) print("-")
3206f80ebb7cd794ba25b8f13f14e0c5a68d2477
6f8c5d58ccd771d1ba92dc053b54caa44be9515c
/inst_fluid_en/models.py
7fba96ece1c1d3dfd9ed2d96070362bda8abf302
[ "MIT" ]
permissive
manumunoz/8004
b6f32cf446a3d0d66988d34a03a252ba4d885da1
06b5a5a8cdea53294ff85c4bedb6be163d2da25a
refs/heads/master
2020-03-24T22:24:37.155460
2019-03-28T07:02:18
2019-03-28T07:02:18
143,083,725
0
0
NOASSERTION
2018-12-07T15:17:27
2018-08-01T00:29:45
HTML
UTF-8
Python
false
false
4,478
py
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) import itertools author = 'Manu Munoz' doc = """ Identity Switch - Networks: Instructions FLUID """ class Constants(BaseConstants): #------------------------------------------ name_in_url = 'inst_fluid_en' names = ['1','2','3','4','5','6','7'] players_per_group = len(names) instructions_template = 'inst_fluid_en/Instructions.html' periods = 1 num_rounds = periods #------------------------------------------ # Treatment & Group parameters others = len(names) - 1 total_circles = 4 total_triangles = 3 part_name = 1 part_fixed = 2 part_fluid = 3 part_alloc = 4 rounds_fixed = 10 #------------------------------------------ # Payoffs exp_currency = "points" currency = "pesos" currency_exchange = 1000 points_exchange = 1 min_pay = 10000 link_cost = 2 liked_gain = 6 disliked_gain = 4 switch_cost = 6 #------------------------------------------ # Group Names group_a = 'Lions' #Leones group_b = 'Tigers' #Tigres group_c = 'Leopards' #Leopardos group_d = 'Jaguars' #Jaguares group_e = 'Cats' #Gatos group_f = 'Coyotes' #Coyotes group_g = 'Jackals' #Chacales group_h = 'Wolves' #Lobos group_i = 'Foxes' #Zorros group_j = 'Dogs' #Perros #------------------------------------------ class Subsession(BaseSubsession): def creating_session(self): treat = itertools.cycle([1, 2, 3, 4, 5, 6]) # 1: Full-Free, 2: Sticky-Free, 3: Blurry-Free, 4: Full-Cost, 5: Sticky-Cost, 6: Blurry-Cost # for p in self.get_players(): # p.treat = next(treat) for p in self.get_players(): if 'treatment' in self.session.config: # demo mode p.treat = self.session.config['treatment'] else: # live experiment mode p.treat = next(treat) class Group(BaseGroup): pass class Player(BasePlayer): treat = models.IntegerField() # Treatments from 1 to 6 given_group = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round'], ], widget=widgets.RadioSelect ) appearance = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round by changing my group'], ], widget=widgets.RadioSelect ) label = models.PositiveIntegerField( choices=[ [1, 'It is fixed and does not change'], [2, 'The computer changes it in each round'], [3, 'I can change it in each round'], ], widget=widgets.RadioSelect ) pay_coord = models.PositiveIntegerField( choices=[ [1, 'I gain 6 and pay the cost of 2 = 4 points in total'], [2, 'I gain 4 and pay the cost of 2 = 2 points in total'], [3, 'I gain 0 and pay the cost of 2 = -2 points in total'] ], widget=widgets.RadioSelect ) pay_coord2 = models.PositiveIntegerField( choices=[ [1, 'I gain 6 and pay the cost of 2 = 4 points in total'], [2, 'I gain 4 and pay the cost of 2 = 2 points in total'], [3, 'I gain 0 and pay the cost of 2 = -2 points in total'] ], widget=widgets.RadioSelect ) information = models.PositiveIntegerField( choices=[ [1, 'They can see the group I choose and my new appearance'], [2, 'They can see the group I choose and my appearance from Part {}'.format(Constants.part_fixed)], [3, 'They cannot see the group I choose only my appearance from Part {}'.format(Constants.part_fixed)], ], widget=widgets.RadioSelect ) def vars_for_template(self): return { 'circles_name': self.participant.vars['circles_name'], 'triangles_name': self.participant.vars['triangles_name'], 'circles_label': self.participant.vars['circles_label'], 'triangles_label': self.participant.vars['triangles_label'], 'names': len(Constants.names) }
389d80a51e57aab9b9e90dd9cf236befa5c6cd93
457c673c8c8d704ec150322e4eeee2fde4f827ca
/Python Fundamentals - January 2020/Functions/03_Repeat_string.py
e36aa36cc0812058b32ec3f857f6917eeb7e1787
[]
no_license
xMrShadyx/SoftUni
13c08d56108bf8b1ff56d17bb2a4b804381e0d4e
ce4adcd6e8425134d138fd8f4b6101d4eb1c520b
refs/heads/master
2023-08-02T03:10:16.205251
2021-06-20T05:52:15
2021-06-20T05:52:15
276,562,926
5
1
null
2021-09-22T19:35:25
2020-07-02T06:07:35
Python
UTF-8
Python
false
false
94
py
def repeat(s, rep): return s * rep s = input() rep = int(input()) print(repeat(s, rep))
b1a7b240bbf7f17341177d6f03acfd50f21dbac8
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/arc094/B/4253154.py
6d7383b45734c25c5fe494a308375919ce98d92e
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
502
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import math def solve(a, b): a, b = min(a, b), max(a, b) if a == b: return 2 * a - 2 c = int(math.sqrt(a * b)) + 2 while True: if c * c < a * b: if c * (c + 1) >= a * b: return 2 * c - 2 else: return 2 * c - 1 else: c -= 1 Q = int(input()) for _ in range(Q): a, b = map(int, input().split()) print(solve(a, b))
4dd6abce27312bede65ef9f29a7d675967b34fe5
0f799b88204d002d655f48894a3095bf006f9d1f
/chapter12/file_pickle.py
282b759494246bb4280bf6f94244a262ea552c48
[]
no_license
liuyuzhou/pythonsourcecode
4008b4adf0342e61a1b6c03f12ab55ad04252e7e
476c75ff6b83953565175a66e21cad3139f06ad2
refs/heads/master
2020-05-16T01:39:20.518816
2019-04-22T02:48:49
2019-04-22T02:48:49
182,607,905
2
1
null
null
null
null
UTF-8
Python
false
false
74
py
import pickle d = dict(name='xiao zhi', num=1002) print(pickle.dumps(d))
049e4a9ab11ab90ed899286b280e96eef25db4de
cadd27a5c72644fe87940e156e4f40f1131b9a57
/udemy/_internal.py
0cc13463a4fdad5b5c127e648080b4c565dc88a2
[ "MIT" ]
permissive
mrbrazzi/udemy-dl
1ef576800bd01ed2724911144a1fd8bad70b18f9
0f0a3ff00167b3b4614d5afc0d4dc6461e46be97
refs/heads/master
2022-11-13T17:41:38.170496
2020-07-01T18:17:24
2020-07-01T18:17:24
274,795,490
1
0
MIT
2020-06-25T00:16:33
2020-06-25T00:16:32
null
UTF-8
Python
false
false
6,961
py
#!/usr/bin/python # -*- coding: utf-8 -*- """ Author : Nasir Khan (r0ot h3x49) Github : https://github.com/r0oth3x49 License : MIT Copyright (c) 2020 Nasir Khan (r0ot h3x49) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import time from ._colorized import * from ._extract import Udemy from ._shared import ( UdemyCourse, UdemyChapters, UdemyLectures, UdemyLectureStream, UdemyLectureAssets, UdemyLectureSubtitles ) class InternUdemyCourse(UdemyCourse, Udemy): def __init__(self, *args, **kwargs): self._info = '' super(InternUdemyCourse, self).__init__(*args, **kwargs) def _fetch_course(self): if self._have_basic: return if not self._cookies: auth = self._login(username=self._username, password=self._password) if self._cookies: auth = self._login(cookies=self._cookies) if auth.get('login') == 'successful': sys.stdout.write(fc + sd + "[" + fm + sb + "+" + fc + sd + "] : " + fg + sb + "Logged in successfully.\n") sys.stdout.write('\r' + fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Downloading course information .. \r") self._info = self._real_extract(self._url) time.sleep(1) sys.stdout.write('\r' + fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Downloaded course information .. (done)\r\n") self._id = self._info['course_id'] self._title = self._info['course_title'] self._chapters_count = self._info['total_chapters'] self._total_lectures = self._info['total_lectures'] self._chapters = [InternUdemyChapter(z) for z in self._info['chapters']] sys.stdout.write(fc + sd + "[" + fm + sb + "*" + fc + sd + "] : " + fg + sb + "Trying to logout now...\n") if not self._cookies: self._logout() sys.stdout.write(fc + sd + "[" + fm + sb + "+" + fc + sd + "] : " + fg + sb + "Logged out successfully.\n") self._have_basic = True if auth.get('login') == 'failed': sys.stdout.write(fc + sd + "[" + fr + sb + "-" + fc + sd + "] : " + fr + sb + "Failed to login ..\n") sys.exit(0) class InternUdemyChapter(UdemyChapters): def __init__(self, chapter): super(InternUdemyChapter, self).__init__() self._chapter_id = chapter['chapter_id'] self._chapter_title = chapter['chapter_title'] self._unsafe_title = chapter['unsafe_chapter'] self._chapter_index = chapter['chapter_index'] self._lectures_count = chapter.get('lectures_count', 0) self._lectures = [InternUdemyLecture(z) for z in chapter['lectures']] if self._lectures_count > 0 else [] class InternUdemyLecture(UdemyLectures): def __init__(self, lectures): super(InternUdemyLecture, self).__init__() self._info = lectures self._lecture_id = self._info['lectures_id'] self._lecture_title = self._info['lecture_title'] self._unsafe_title = self._info['unsafe_lecture'] self._lecture_index = self._info['lecture_index'] self._subtitles_count = self._info.get('subtitle_count', 0) self._sources_count = self._info.get('sources_count', 0) self._assets_count = self._info.get('assets_count', 0) self._extension = self._info.get('extension') self._html_content = self._info.get('html_content') self._duration = self._info.get('duration') if self._duration: duration = int(self._duration) (mins, secs) = divmod(duration, 60) (hours, mins) = divmod(mins, 60) if hours == 0: self._duration = "%02d:%02d" % (mins, secs) else: self._duration = "%02d:%02d:%02d" % (hours, mins, secs) def _process_streams(self): streams = [InternUdemyLectureStream(z, self) for z in self._info['sources']] if self._sources_count > 0 else [] self._streams = streams def _process_assets(self): assets = [InternUdemyLectureAssets(z, self) for z in self._info['assets']] if self._assets_count > 0 else [] self._assets = assets def _process_subtitles(self): subtitles = [InternUdemyLectureSubtitles(z, self) for z in self._info['subtitles']] if self._subtitles_count > 0 else [] self._subtitles = subtitles class InternUdemyLectureStream(UdemyLectureStream): def __init__(self, sources, parent): super(InternUdemyLectureStream, self).__init__(parent) self._mediatype = sources.get('type') self._extension = sources.get('extension') height = sources.get('height', 0) width = sources.get('width', 0) self._resolution = '%sx%s' % (width, height) self._dimention = width, height self._quality = self._resolution self._url = sources.get('download_url') class InternUdemyLectureAssets(UdemyLectureAssets): def __init__(self, assets, parent): super(InternUdemyLectureAssets, self).__init__(parent) self._mediatype = assets.get('type') self._extension = assets.get('extension') self._filename = '{0:03d} {1!s}'.format(parent._lecture_index, assets.get('filename')) self._url = assets.get('download_url') class InternUdemyLectureSubtitles(UdemyLectureSubtitles): def __init__(self, subtitles, parent): super(InternUdemyLectureSubtitles, self).__init__(parent) self._mediatype = subtitles.get('type') self._extension = subtitles.get('extension') self._language = subtitles.get('language') self._url = subtitles.get('download_url')
6d9aa23aac7fc83f966804c5d25d3a1d9096f76b
81f9d88a560edb2b92997855c6445628cf0e6eaa
/homura/__init__.py
53bd57eca602723adbb53d18674e93be0451c1cd
[ "Apache-2.0" ]
permissive
haiyan-he/homura
e1de6e0162a0a3d5c2f2ce142f551562dc30f4c3
2b98d4e0071b926233869e5396a02e70638d19f7
refs/heads/master
2023-02-06T18:25:15.557698
2020-10-01T07:54:23
2020-10-01T07:54:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
from .register import Registry from .utils import TensorDataClass, TensorTuple, distributed_print, enable_accimage, get_args, get_environ, \ get_git_hash, get_global_rank, get_local_rank, get_num_nodes, get_world_size, if_is_master, init_distributed, \ is_accimage_available, is_distributed, is_distributed_available, is_faiss_available, is_master, set_deterministic, \ set_seed Registry.import_modules('homura.vision')
10682582ea1863fd922d5da0927d22778286f60e
38c35956be6343855914b1c58b8fbd2e40c6e615
/Grafos/2131.py
2dd6d299343e38504e64253ea933e1dd5ba17cd3
[]
no_license
LucasBarbosaRocha/URI
b43e4f4a6b3beed935f24839001bea354411c4bd
2c9bcc13300a9f6243242e483c8f9ec3296a88ad
refs/heads/master
2020-06-25T05:06:51.297824
2019-08-22T04:50:11
2019-08-22T04:50:11
199,210,037
0
0
null
null
null
null
UTF-8
Python
false
false
1,953
py
# -*- coding: utf-8 -*- # Funcao que cria um grafo def cria_grafo(lista_de_vs, lista_de_arestas): grafo = {} for v in lista_de_vs: grafo[v] = [] for aresta in lista_de_arestas: grafo[aresta[0]].append(aresta[1]) return grafo # Busca em profundidade personalizada def dfs_iterative(grafo, i, n, verticesValidos): cores = [-1]*(n+1) for j in range(i, n + 1): if (j in verticesValidos): stack = [j] cores[j] = 1 while stack: v = stack.pop() #print ("BLABLA") #print (stack) for adjacencia in grafo[v]: if (cores[adjacencia] == -1): # Em y (adjacencias) eh a cor invertida da cor do pai cores[adjacencia] = 1 - cores[v] stack.append(adjacencia) # Coloco a adjacencia na pilha elif (cores[adjacencia] == cores[v]): # Se a adjacencia tiver a mesma cor que o pai nao eh bipartido return False verticesValidos.remove(v) #print (cores) return True k = 1 while True: try: entrada = raw_input().split(" ") n = int(entrada[0]) m = int(entrada[1]) vertices = [] verticesValidos = [] for i in range(1, n + 1): vertices.append(i) arestas = [] grafo = [] caminho = [] totalArestas = 0 print ("Instancia %d" %k) # Verificar se o grafo eh bipartido #print ("AQUI") #print(n, m) for i in range(m): entrada = raw_input().split(" ") v1 = int(entrada[0]) v2 = int(entrada[1]) if (verticesValidos == []): verticesValidos.append(v1) verticesValidos.append(v2) if (v1 not in verticesValidos): verticesValidos.append(v1) if (v2 not in verticesValidos): verticesValidos.append(v2) arestas.append((v1, v2)) #arestas.append((v2, v1)) grafo = cria_grafo(verticesValidos, arestas) #print (grafo) #print (verticesValidos) if (m == 0 or dfs_iterative(grafo, verticesValidos[0], n, verticesValidos) == True): print ("sim\n") else: print ("nao\n") k = k + 1 except : break
3b29475196e55b01c9672bfe50448f45d59c16f9
9ffd8754679f363f7c03fa2873dfd3b1f5af41a7
/UserRegistration/admin.py
90d6d157eb401162e4d94faa6e1e2727258d82ca
[]
no_license
cmrajib/django_fashion_ecommerce
54848c7f3f1ede349bad77533647cd161d86c413
141e87ad77f4a4503e487de8ad360789a9e272f4
refs/heads/main
2023-02-21T12:31:07.457942
2021-01-19T17:58:31
2021-01-19T17:58:31
331,065,005
0
0
null
null
null
null
UTF-8
Python
false
false
467
py
from django.contrib import admin # Register your models here. from UserRegistration.models import User, Coupon class UserAdmin(admin.ModelAdmin): list_display = ('email', 'full_name') list_display_links = ('email', 'full_name') # list_filter = ('user__email','full_name','city') # list_editable = ('is_featured',) search_fields =('full_name', 'phone') list_per_page = 10 admin.site.register(User, UserAdmin) admin.site.register(Coupon)
b5aa8a920de266e4b7fb60ea573ed638ecf93516
ab4f74d127bfc89813ee359bb9c779eca5426ddc
/script/label_image.runfiles/org_tensorflow/tensorflow/python/ops/spectral_ops.py
101e33656cb9435c28ff2b5093959cbdf275dfad
[ "MIT" ]
permissive
harshit-jain-git/ImageNET
cdfd5a340b62862ad8d1cc3b9a0f30cccc481744
1cd4c2b70917e4709ce75422c0205fe3735a1b01
refs/heads/master
2022-12-11T12:47:46.795376
2017-12-19T05:47:26
2017-12-19T05:47:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
/home/co/Documents/ImageClassifier/tensorflow/tensorflow/python/ops/spectral_ops.py
4049996983313e176aa4972cf259096df6168fe7
eee6dd18897d3118f41cb5e6f93f830e06fbfe2f
/venv/lib/python3.6/site-packages/scipy/sparse/spfuncs.py
a5aeb7d325475944cf4927075b955f7bbfa4a436
[]
no_license
georgeosodo/ml
2148ecd192ce3d9750951715c9f2bfe041df056a
48fba92263e9295e9e14697ec00dca35c94d0af0
refs/heads/master
2020-03-14T11:39:58.475364
2018-04-30T13:13:01
2018-04-30T13:13:01
131,595,044
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
""" Functions that operate on sparse matrices """ __all__ = ['count_blocks','estimate_blocksize'] from .csr import isspmatrix_csr, csr_matrix from .csc import isspmatrix_csc from ._sparsetools import csr_count_blocks def extract_diagonal(A): raise NotImplementedError('use .diagonal() instead') #def extract_diagonal(A): # """extract_diagonal(A) returns the main diagonal of A.""" # #TODO extract k-th diagonal # if isspmatrix_csr(A) or isspmatrix_csc(A): # fn = getattr(sparsetools, A.format + "_diagonal") # y = empty( min(A.shape), dtype=upcast(A.dtype) ) # fn(A.shape[0],A.shape[1],A.indptr,A.indices,A.data,y) # return y # elif isspmatrix_bsr(A): # M,N = A.shape # R,C = A.blocksize # y = empty( min(M,N), dtype=upcast(A.dtype) ) # fn = sparsetools.bsr_diagonal(M//R, N//C, R, C, \ # A.indptr, A.indices, ravel(A.data), y) # return y # else: # return extract_diagonal(csr_matrix(A)) def estimate_blocksize(A,efficiency=0.7): """Attempt to determine the blocksize of a sparse matrix Returns a blocksize=(r,c) such that - A.nnz / A.tobsr( (r,c) ).nnz > efficiency """ if not (isspmatrix_csr(A) or isspmatrix_csc(A)): A = csr_matrix(A) if A.nnz == 0: return (1,1) if not 0 < efficiency < 1.0: raise ValueError('efficiency must satisfy 0.0 < efficiency < 1.0') high_efficiency = (1.0 + efficiency) / 2.0 nnz = float(A.nnz) M,N = A.shape if M % 2 == 0 and N % 2 == 0: e22 = nnz / (4 * count_blocks(A,(2,2))) else: e22 = 0.0 if M % 3 == 0 and N % 3 == 0: e33 = nnz / (9 * count_blocks(A,(3,3))) else: e33 = 0.0 if e22 > high_efficiency and e33 > high_efficiency: e66 = nnz / (36 * count_blocks(A,(6,6))) if e66 > efficiency: return (6,6) else: return (3,3) else: if M % 4 == 0 and N % 4 == 0: e44 = nnz / (16 * count_blocks(A,(4,4))) else: e44 = 0.0 if e44 > efficiency: return (4,4) elif e33 > efficiency: return (3,3) elif e22 > efficiency: return (2,2) else: return (1,1) def count_blocks(A,blocksize): """For a given blocksize=(r,c) count the number of occupied blocks in a sparse matrix A """ r,c = blocksize if r < 1 or c < 1: raise ValueError('r and c must be positive') if isspmatrix_csr(A): M,N = A.shape return csr_count_blocks(M,N,r,c,A.indptr,A.indices) elif isspmatrix_csc(A): return count_blocks(A.T,(c,r)) else: return count_blocks(csr_matrix(A),blocksize)
fa00dc55b7191039833d1a3dea845bcd117e6125
55e9f3b00fc2e488597bab5225ed321c86efbd4b
/sdk/yapily/configuration.py
e060bb0c81cb4f122ad71cd083264392d20f804d
[ "MIT" ]
permissive
bs-yapily/yapily-sdk-python
ad9d04c28f3d744830734c3444c1cef8215206fd
0bba45e351b674eb655425a51190f539c4e9896f
refs/heads/master
2020-08-26T17:18:53.156429
2019-10-22T11:01:16
2019-10-22T11:01:16
217,085,936
0
0
null
null
null
null
UTF-8
Python
false
false
8,451
py
# coding: utf-8 """ Yapily API To access endpoints that require authentication, use your application key and secret created in the Dashboard (https://dashboard.yapily.com) # noqa: E501 OpenAPI spec version: 0.0.155 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import copy import logging import multiprocessing import sys import urllib3 import six from six.moves import http_client as httplib class TypeWithDefault(type): def __init__(cls, name, bases, dct): super(TypeWithDefault, cls).__init__(name, bases, dct) cls._default = None def __call__(cls): if cls._default is None: cls._default = type.__call__(cls) return copy.copy(cls._default) def set_default(cls, default): cls._default = copy.copy(default) class Configuration(six.with_metaclass(TypeWithDefault, object)): """NOTE: This class is auto generated by the swagger code generator program. Ref: https://github.com/swagger-api/swagger-codegen Do not edit the class manually. """ def __init__(self): """Constructor""" # Default Base url self.host = "https://api.yapily.com" # Temp file folder for downloading files self.temp_folder_path = None # Authentication Settings # dict to store API key(s) self.api_key = {} # dict to store API prefix (e.g. Bearer) self.api_key_prefix = {} # Username for HTTP basic authentication self.username = "" # Password for HTTP basic authentication self.password = "" # access token for OAuth self.access_token = "" # Logging Settings self.logger = {} self.logger["package_logger"] = logging.getLogger("yapily") self.logger["urllib3_logger"] = logging.getLogger("urllib3") # Log format self.logger_format = '%(asctime)s %(levelname)s %(message)s' # Log stream handler self.logger_stream_handler = None # Log file handler self.logger_file_handler = None # Debug file location self.logger_file = None # Debug switch self.debug = False # SSL/TLS verification # Set this to false to skip verifying SSL certificate when calling API # from https server. self.verify_ssl = True # Set this to customize the certificate file to verify the peer. self.ssl_ca_cert = None # client certificate file self.cert_file = None # client key file self.key_file = None # Set this to True/False to enable/disable SSL hostname verification. self.assert_hostname = None # urllib3 connection pool's maximum number of connections saved # per pool. urllib3 uses 1 connection as default value, but this is # not the best value when you are making a lot of possibly parallel # requests to the same host, which is often the case here. # cpu_count * 5 is used as default value to increase performance. self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 # Proxy URL self.proxy = None # Safe chars for path_param self.safe_chars_for_path_param = '' @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_file_handler) if self.logger_stream_handler: logger.removeHandler(self.logger_stream_handler) else: # If not set logging file, # then add stream handler and remove file handler. self.logger_stream_handler = logging.StreamHandler() self.logger_stream_handler.setFormatter(self.logger_formatter) for _, logger in six.iteritems(self.logger): logger.addHandler(self.logger_stream_handler) if self.logger_file_handler: logger.removeHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in six.iteritems(self.logger): logger.setLevel(logging.DEBUG) # turn on httplib debug httplib.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in six.iteritems(self.logger): logger.setLevel(logging.WARNING) # turn off httplib debug httplib.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :return: The token for api key authentication. """ if (self.api_key.get(identifier) and self.api_key_prefix.get(identifier)): return self.api_key_prefix[identifier] + ' ' + self.api_key[identifier] # noqa: E501 elif self.api_key.get(identifier): return self.api_key[identifier] def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ return urllib3.util.make_headers( basic_auth=self.username + ':' + self.password ).get('authorization') def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ return { 'basicAuth': { 'type': 'basic', 'in': 'header', 'key': 'Authorization', 'value': self.get_basic_auth_token() }, 'tokenAuth': { 'type': 'oauth2', 'in': 'header', 'key': 'Authorization', 'value': 'Bearer ' + self.access_token }, } def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return "Python SDK Debug Report:\n"\ "OS: {env}\n"\ "Python Version: {pyversion}\n"\ "Version of the API: 0.0.155\n"\ "SDK Package Version: 1.0.0".\ format(env=sys.platform, pyversion=sys.version)
621d2aad3eb42bb8dbd059d46d0a17ff7f170215
a8f6a8afd6b3609a947cafad5988d025454b4f9c
/datesFromLogs_Test.py
c15388862c6f16360d4caae0cd5764dee4ff4481
[]
no_license
andreodendaal/100DaysOfCode
aede59a6e1f3f3ada30a1a534548939a7b9b375f
282bf21c2d75fcd562ae935fa23e41a7c4c0cb45
refs/heads/master
2020-03-20T17:21:44.649611
2019-02-27T17:22:56
2019-02-27T17:22:56
137,557,756
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
import unittest from datesFromLogs_d2 import datetime, timedelta from datesFromLogs_d2 import loglines, convert_to_datetime, time_between_shutdowns class TestDatesFromLogs(unittest.TestCase): def test_convert_to_datetime(self): line1 = 'ERROR 2014-07-03T23:24:31 supybot Invalid user dictionary file' line2 = 'INFO 2015-10-03T10:12:51 supybot Shutdown initiated.' line3 = 'INFO 2016-09-03T02:11:22 supybot Shutdown complete.' self.assertEqual(convert_to_datetime(line1), datetime(2014, 7, 3, 23, 24, 31)) self.assertEqual(convert_to_datetime(line2), datetime(2015, 10, 3, 10, 12, 51)) self.assertEqual(convert_to_datetime(line3), datetime(2016, 9, 3, 2, 11, 22)) def test_time_between_events(self): diff = time_between_shutdowns(loglines) self.assertEqual(type(diff), timedelta) self.assertEqual(str(diff), '0:03:31') if __name__ == '__main__': unittest.main()
aa8d5d425f8c8c07e9aa8bd8b01d8c38944a0232
295ecf4f254c42e9201657ef0a13ec2c68c40c9b
/buy/forms.py
c80566d1a697136ed495d48bc28f1acb92a3c021
[]
no_license
zwolf21/StockAdmin-pre2
0236061284a6fe8801591608591d21129d4ea7c0
b21d069ff215c17ce3bca040ecf9b8f48b452ed4
refs/heads/master
2021-05-01T09:28:59.818469
2016-11-30T17:33:30
2016-11-30T17:33:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
from django import forms from .models import BuyItem, Buy from datetime import date class CreateBuyForm(forms.ModelForm): date = forms.DateField(initial=date.today(), widget=forms.TextInput(attrs={'tabindex':'-1','readonly':'readonly'})) class Meta: model = Buy fields = ['date'] class BuyItemAddForm(forms.ModelForm): # name = forms.CharField(label='약품명', required=False) amount = forms.IntegerField(label='수량', required=False, help_text='위아래 방향키로 수량조절') class Meta: model = BuyItem fields = ['amount'] help_texts = {'amount':('위아래 방향키로 수량 조절')}
c6ab3e4068fda9c8202f9017c37654175a68e019
393a387cdb286cde75b4b7d760625d5851b6b080
/Sorting items from user in alphabetical and reverse.py
90a60ccf36cb5d37082e64d25c13965862512f11
[]
no_license
nami-h/Python
b57f12ae48d5bc17a3de72ec7c5abb5622ba0cd2
7b067950da29df705237405742564d2f127f1446
refs/heads/master
2021-06-27T16:00:10.113762
2020-09-22T19:59:05
2020-09-22T19:59:05
136,550,054
0
0
null
null
null
null
UTF-8
Python
false
false
310
py
lis=[] num=int(input("How many animals do you want to enter? ")) for add in range(num): add=input("Enter animal: ") lis.append(add) animals=['horse','cat','mouse'] s=lis+animals print("Our list consists of: ", s) s.sort() print("Alphabetically ordered: ", s) s.reverse() print("Reverse ordered: ",s)
75abc5b6b01a6dcbb9c8d615f21e672899c50936
f9e3a0fb511470561d3d94bc984dafaee06000cb
/PP4E-Examples-1.4/Examples/PP4E/Preview/person_start.py
c1ba77cd5ea9c9f2d7400fccde6645dfcf752e38
[]
no_license
Sorath93/Programming-Python-book
359b6fff4e17b44b9842662f484bbafb490cfd3d
ebe4c93e265edd4ae135491bd2f96904d08a911c
refs/heads/master
2022-12-03T01:49:07.815439
2020-08-16T22:19:38
2020-08-16T22:19:38
287,775,012
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
class Person: def __init__(self, name, age, pay=0, job=None): self.name = name self.age = age self.pay = pay self.job = job if __name__ == '__main__': bob = Person('Bob Smith', 42, 30000, 'software') sue = Person('Sue Jones', 45, 40000, 'hardware') print(bob.name, sue.pay) print(bob.name.split()[-1]) sue.pay *= 1.10 print(sue.pay)
5e46bc761055167ebad6fd4ddfafcf2a93b274cb
a7a3863acaf31d0fb679a482000c6ff89636a55c
/python/main_test_lfads_old.py
64bb6d1eb50d2a138072ffea80eb887c69bcd805
[]
no_license
gviejo/SWR_factors
313280926b3e1f895578ca453c474900e1a3f320
87c74106c26b7c7ec03a197858b8013f10f74780
refs/heads/master
2021-11-10T02:57:39.280051
2021-11-05T01:37:58
2021-11-05T01:37:58
176,997,481
0
0
null
null
null
null
UTF-8
Python
false
false
21,639
py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from lfads import LFADS import numpy as np import os import tensorflow as tf import re import sys import h5py from functions import * from time import time from lfads.utils import * from lfads.functions import * import pickle from sklearn.model_selection import train_test_split hps = hps_dict_to_obj({ "data_dir": '../data/', #"Data for training" "lfads_save_dir": '../data/lfads_test', #"model save dir" "kind": "train", #"Type of model to build {train, posterior_sample_and_average, posterior_push_mean, prior_sample, write_model_params" "output_dist": 'poisson', #"Type of output distribution, 'poisson' or 'gaussian'" "allow_gpu_growth": False, #"If true, only allocate amount of memory needed for Session. Otherwise, use full GPU memory." "checkpoint_pb_load_name": 'checkpoint', #"Name of checkpoint files, use 'checkpoint_lve' for best error" "checkpoint_name": 'lfads_vae', #"Name of checkpoint files (.ckpt appended)" "output_filename_stem": '', #"Name of output file (postfix will be added)" "device": 'gpu:0', #"Which device to use (default: \"gpu:0\", can also be \"cpu:0\", \"gpu:1\", etc)" "csv_log": 'fitlog', #"Name of file to keep running log of fit likelihoods, etc (.csv appended)" "max_ckpt_to_keep": 5, #"Max # of checkpoints to keep (rolling)" "ps_nexamples_to_process": sys.maxsize, #"Number of examples to process for posterior sample and average (not number of samples to average over)." "max_ckpt_to_keep_lve": 5, #"Max # of checkpoints to keep for lowest validation error models (rolling)" "ext_input_dim": 0, #"Dimension of external inputs" "num_steps_for_gen_ic": sys.maxsize, #"Number of steps to train the generator initial conditon." "inject_ext_input_to_gen": False, #"Should observed inputs be input to model via encoders, or injected directly into generator?" "cell_weight_scale": 1.0, #"Input scaling for input weights in generator." "ic_dim": 64, #"Dimension of h0" "factors_dim": 50, #"Number of factors from generator" "ic_enc_dim": 128, #"Cell hidden size, encoder of h0" "gen_dim": 200, #"Cell hidden size, generator." "gen_cell_input_weight_scale": 1.0, #"Input scaling for input weights in generator." "gen_cell_rec_weight_scale": 1.0, #"Input scaling for rec weights in generator." "ic_prior_var_min": 0.1, #"Minimum variance in posterior h0 codes." "ic_prior_var_scale": 0.1, #"Variance of ic prior distribution" "ic_prior_var_max": 0.1, #"Maximum variance of IC prior distribution." "ic_post_var_min": 0.0001, #"Minimum variance of IC posterior distribution." "co_prior_var_scale": 0.1, #"Variance of control input prior distribution." "prior_ar_atau": 10.0, #"Initial autocorrelation of AR(1) priors." "prior_ar_nvar": 0.1, #"Initial noise variance for AR(1) priors." "do_train_prior_ar_atau": True, #"Is the value for atau an init: or the constant value?" "do_train_prior_ar_nvar": True, #"Is the value for noise variance an init, or the constant value?" "co_dim": 1, #"Number of control net outputs (>0 builds that graph)." "do_causal_controller": False, #"Restrict the controller create only causal inferred inputs?" "do_feed_factors_to_controller": True, #"Should factors[t-1] be input to controller at time t?" "feedback_factors_or_rates": 'factors', #"Feedback the factors or the rates to the controller? Acceptable values: 'factors' or 'rates'." "controller_input_lag": 1, #"Time lag on the encoding to controller t-lag for forward, t+lag for reverse." "ci_enc_dim": 128, #"Cell hidden size: encoder of control inputs" "con_dim": 128, #"Cell hidden size, controller" "batch_size": 400, #"Batch size to use during training." "learning_rate_init": 0.01, #"Learning rate initial value" "learning_rate_decay_factor": 0.95, #"Learning rate decay, decay by this fraction every so often." "learning_rate_stop": 0.00005, #"The lr is adaptively reduced, stop training at this value." "learning_rate_n_to_compare": 10, #"Number of previous costs current cost has to be worse than, to lower learning rate." "max_grad_norm": 200.0, #"Max norm of gradient before clipping." "cell_clip_value": 5.0, #"Max value recurrent cell can take before being clipped." "do_train_io_only": False, #"Train only the input (readin) and output (readout) affine functions." "do_train_encoder_only": False, #"Train only the encoder weights." "do_reset_learning_rate": False, #"Reset the learning rate to initial value." "do_train_readin": True, #"Whether to train the readin matrices and bias vectors. False leaves them fixed at their initial values specified by the alignment matrices and vectors." "keep_prob": 0.95, #"Dropout keep probability." "temporal_spike_jitter_width": 0, #"Shuffle spikes around this window." "l2_gen_scale": 2000.0, #"L2 regularization cost for the generator only." "l2_con_scale": 0.0, #"L2 regularization cost for the controller only." "co_mean_corr_scale": 0.0, #"Cost of correlation (thru time)in the means of controller output." "kl_ic_weight": 1.0, #"Strength of KL weight on initial conditions KL penatly." "kl_co_weight": 1.0, #"Strength of KL weight on controller output KL penalty." "kl_start_step": 0, #"Start increasing weight after this many steps." "kl_increase_steps": 2000, #"Increase weight of kl cost to avoid local minimum." "l2_start_step": 0, #"Start increasing l2 weight after this many steps." "l2_increase_steps": 2000, #"Increase weight of l2 cost to avoid local minimum." }) t1 = time() ##################################################################################### # load_datasets ##################################################################################### datasets = pickle.load(open("../data/swr_hist_Mouse12.pickle", "rb")) # s = list(datasets.keys())[0] datasets = {s:datasets[s] for s in list(datasets.keys())[0:3]} for s in datasets: for k in ['train_truth', 'train_ext_input', 'valid_data','valid_truth', 'valid_ext_input', 'valid_train']: if k not in datasets[s]: datasets[s][k] = None datasets[s]['all_data'] = datasets[s]['train_data'] hps.dataset_names = list(datasets.keys()) hps.dataset_dims = {k:datasets[k]['data_dim'] for k in datasets} hps.num_steps = datasets[list(datasets.keys())[0]]['num_steps'] hps.ndatasets = len(hps.dataset_names) if hps.num_steps_for_gen_ic > hps.num_steps: hps.num_steps_for_gen_ic = hps.num_steps with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as session: ##################################################################################### # train ##################################################################################### ##################################################################################### # build_model(hps, kind='train', datasets = datasets) ##################################################################################### with tf.variable_scope("LFADS", reuse=None): model = LFADS(hps, kind='train', datasets=datasets) tf.global_variables_initializer().run() session.run(model.learning_rate.initializer) ##################################################################################### # model.train_model(datasets) ##################################################################################### lr = session.run(model.learning_rate) lr_stop = hps.learning_rate_stop train_costs = [] valid_costs = [] learning_rates = [] count = 0 t1 = time() while True: learning_rates.append(lr) ##################################### # shuffling between train and valid ##################################### for s in datasets: data_train, data_valid = train_test_split(datasets[s]['all_data']) datasets[s]['train_data'] = data_train #[0:50] datasets[s]['valid_data'] = data_valid #[0:10] ##################################################################################### # self.train_epochs(datasets, do_save_ckpt=do_save_ckpt) ##################################################################################### ops_to_eval = [model.cost, model.recon_cost, model.kl_cost, model.kl_weight, model.l2_cost, model.l2_weight, model.train_op] ##################################################################################### # self.run_epochs(datasets, ops_to_eval, kind="train") ##################################################################################### all_name_example_idx_pairs = model.shuffle_and_flatten_datasets(datasets, hps.kind) collected_op_values = np.zeros((6,len(all_name_example_idx_pairs))) for j, (name, example_idxs) in enumerate(all_name_example_idx_pairs): data_dict = datasets[name] data_bxtxd, ext_input_bxtxi = model.get_batch(data_dict['train_data'], data_dict['train_ext_input'],example_idxs=example_idxs) feed_dict = model.build_feed_dict(name, data_bxtxd, ext_input_bxtxi, keep_prob=None) evaled_ops_np = session.run(ops_to_eval, feed_dict=feed_dict) collected_op_values[:,j] = np.array(evaled_ops_np[0:6]) ##################################################################################### mean_cost = collected_op_values.mean(1) tr_total_cost, tr_recon_cost, tr_kl_cost, kl_weight, l2_cost, l2_weight = mean_cost ##################################################################################### ##################################################################################### # self.eval_cost_epoch(datasets, kind='valid') ##################################################################################### ops_to_eval = [model.cost, model.recon_cost, model.kl_cost] ##################################################################################### # self.run_epochs(datasets, ops_to_eval, kind="valid", keep_prob = 1.0) ##################################################################################### all_name_example_idx_pairs = model.shuffle_and_flatten_datasets(datasets, 'valid') # should be valid here collected_op_values = np.zeros((3,len(all_name_example_idx_pairs))) for j, (name, example_idxs) in enumerate(all_name_example_idx_pairs): data_dict = datasets[name] data_bxtxd, ext_input_bxtxi = model.get_batch(data_dict['valid_data'], data_dict['valid_ext_input'],example_idxs=example_idxs) feed_dict = model.build_feed_dict(name, data_bxtxd, ext_input_bxtxi, keep_prob=1.0) evaled_ops_np = session.run(ops_to_eval, feed_dict=feed_dict) collected_op_values[:,j] = np.array(evaled_ops_np[0:3]) ##################################################################################### mean_cost = collected_op_values.mean(1) ev_total_cost, ev_recon_cost, ev_kl_cost = mean_cost ##################################################################################### valid_costs.append(ev_total_cost) # Plot and summarize values = { 'nepochs':count, 'has_any_valid_set': True, 'tr_total_cost':tr_total_cost, 'ev_total_cost':ev_total_cost, 'tr_recon_cost':tr_recon_cost, 'ev_recon_cost':ev_recon_cost, 'tr_kl_cost':tr_kl_cost, 'ev_kl_cost':ev_kl_cost, 'l2_weight':l2_weight, 'kl_weight':kl_weight, 'l2_cost':l2_cost } model.summarize_all(datasets, values) # Manage learning rate. n_lr = hps.learning_rate_n_to_compare if len(train_costs) > n_lr and tr_total_cost > np.max(train_costs[-n_lr:]): lr = session.run(model.learning_rate_decay_op) print(" Decreasing learning rate to %f." % lr) # Force the system to run n_lr times while at this lr. train_costs.append(np.inf) else: train_costs.append(tr_total_cost) if lr < lr_stop: print("Stopping optimization based on learning rate criteria.") break print("Iteration %i ; Elapsed time : %d seconds" % (count, time()-t1)) count += 1 if count == 2: break ##################################################################################### print("Training time %d seconds" % (time()-t1)) ####################################################################################### # POSTERIOR SAMPLE AND AVERAGE # write_model_runs(write_model_runs(hps, datasets, hps.output_filename_stem, push_mean=False)) # model.write_model_runs(datasets, output_fname, push_mean) ####################################################################################### model.hps.kind = 'posterior_sample_and_average' samples = {} for data_name, data_dict in datasets.items(): samples[data_name] = {} # data_tuple = [('train', data_dict['all_data'], data_dict['train_ext_input']), ('valid', data_dict['all_data'], data_dict['train_ext_input'])] data_tuple = [('all', data_dict['all_data'], data_dict['train_ext_input'])] for data_kind, data_extxd, ext_input_extxi in data_tuple: fname = "model_runs_" + data_name + '_' + data_kind + '_' + model.hps.kind ############################################################################### # model.eval_model_runs_avg_epoch ############################################################################### hps = model.hps batch_size = hps.batch_size E, T, D = data_extxd.shape E_to_process = np.minimum(hps.ps_nexamples_to_process, E) if hps.ic_dim > 0: prior_g0_mean = np.zeros([E_to_process, hps.ic_dim]) prior_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) post_g0_mean = np.zeros([E_to_process, hps.ic_dim]) post_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) if hps.co_dim > 0: controller_outputs = np.zeros([E_to_process, T, hps.co_dim]) gen_ics = np.zeros([E_to_process, hps.gen_dim]) gen_states = np.zeros([E_to_process, T, hps.gen_dim]) factors = np.zeros([E_to_process, T, hps.factors_dim]) if hps.output_dist == 'poisson': out_dist_params = np.zeros([E_to_process, T, D]) elif hps.output_dist == 'gaussian': out_dist_params = np.zeros([E_to_process, T, D+D]) else: assert False, "NIY" costs = np.zeros(E_to_process) nll_bound_vaes = np.zeros(E_to_process) nll_bound_iwaes = np.zeros(E_to_process) train_steps = np.zeros(E_to_process) for es_idx in range(E_to_process): print("Running %d of %d." % (es_idx+1, E_to_process)) example_idxs = es_idx * np.ones(batch_size, dtype=np.int32) data_bxtxd, ext_input_bxtxi = model.get_batch(data_extxd, ext_input_extxi, batch_size=batch_size, example_idxs=example_idxs) ############################################################################## # model_values = self.eval_model_runs_batch(data_name, data_bxtxd, ext_input_bxtxi, do_eval_cost=True, do_average_batch=True) ############################################################################## # if fewer than batch_size provided, pad to batch_size E, _, _ = data_bxtxd.shape if E < hps.batch_size: data_bxtxd = np.pad(data_bxtxd, ((0, hps.batch_size-E), (0, 0), (0, 0)), mode='constant', constant_values=0) if ext_input_bxtxi is not None: ext_input_bxtxi = np.pad(ext_input_bxtxi, ((0, hps.batch_size-E), (0, 0), (0, 0)), mode='constant', constant_values=0) feed_dict = model.build_feed_dict(data_name, data_bxtxd, ext_input_bxtxi, keep_prob=1.0) # Non-temporal signals will be batch x dim. # Temporal signals are list length T with elements batch x dim. tf_vals = [model.gen_ics, model.gen_states, model.factors, model.output_dist_params] tf_vals.append(model.cost) tf_vals.append(model.nll_bound_vae) tf_vals.append(model.nll_bound_iwae) tf_vals.append(model.train_step) # not train_op! if model.hps.ic_dim > 0: tf_vals += [model.prior_zs_g0.mean, model.prior_zs_g0.logvar, model.posterior_zs_g0.mean, model.posterior_zs_g0.logvar] if model.hps.co_dim > 0: tf_vals.append(model.controller_outputs) tf_vals_flat, fidxs = flatten(tf_vals) np_vals_flat = session.run(tf_vals_flat, feed_dict=feed_dict) # do average batch gen_ics[es_idx] = np.mean(np_vals_flat[0], 0) # assuming E > hps.batch_size costs[es_idx] = np_vals_flat[fidxs[4][0]] nll_bound_vaes[es_idx] = np_vals_flat[fidxs[5][0]] nll_bound_iwaes[es_idx] = np_vals_flat[fidxs[6][0]] train_steps[es_idx] = np_vals_flat[fidxs[7][0]] gen_states[es_idx] = np.mean(list_t_bxn_to_tensor_bxtxn([np_vals_flat[f] for f in fidxs[1]]), 0) factors[es_idx] = np.mean(list_t_bxn_to_tensor_bxtxn([np_vals_flat[f] for f in fidxs[2]]), 0) out_dist_params[es_idx] = np.mean(list_t_bxn_to_tensor_bxtxn([np_vals_flat[f] for f in fidxs[3]]), 0) if model.hps.ic_dim > 0: prior_g0_mean[es_idx] = np.mean(np_vals_flat[fidxs[8][0]], 0) prior_g0_logvar[es_idx] = np.mean(np_vals_flat[fidxs[9][0]], 0) post_g0_mean[es_idx] = np.mean(np_vals_flat[fidxs[10][0]], 0) post_g0_logvar[es_idx] = np.mean(np_vals_flat[fidxs[11][0]], 0) if model.hps.co_dim > 0: controller_outputs[es_idx] = np.mean(list_t_bxn_to_tensor_bxtxn([np_vals_flat[f] for f in fidxs[12]]), 0) ############################################################################## print('bound nll(vae): %.3f, bound nll(iwae): %.3f' % (nll_bound_vaes[es_idx], nll_bound_iwaes[es_idx])) model_runs = {} if model.hps.ic_dim > 0: model_runs['prior_g0_mean'] = prior_g0_mean model_runs['prior_g0_logvar'] = prior_g0_logvar model_runs['post_g0_mean'] = post_g0_mean model_runs['post_g0_logvar'] = post_g0_logvar model_runs['gen_ics'] = gen_ics if model.hps.co_dim > 0: model_runs['controller_outputs'] = controller_outputs model_runs['gen_states'] = gen_states model_runs['factors'] = factors model_runs['output_dist_params'] = out_dist_params model_runs['costs'] = costs model_runs['nll_bound_vaes'] = nll_bound_vaes model_runs['nll_bound_iwaes'] = nll_bound_iwaes model_runs['train_steps'] = train_steps ############################################################################### full_fname = os.path.join(hps.lfads_save_dir, fname) write_data(full_fname, model_runs, compression='gzip') samples[data_name] = model_runs sys.exit() s = list(samples.keys())[0] x = datasets[s]['train_data'] xp = samples[s]['train']['output_dist_params'] y = datasets[s]['train_data'] yp = samples[s]['train']['output_dist_params'] from pylab import * figure() plot(np.mean(x, 0)[:,0]) plot(np.mean(xp, 0)[:,0]) figure() plot(np.mean(y, 0)[:,0]) plot(np.mean(yp, 0)[:,0]) show() factors = [] for s in samples.keys(): dims = samples[s]['train']['factors'].shape factors.append(samples[s]['train']['factors'].reshape(dims[0], dims[1] * dims[2])) factors = np.vstack(factors) from sklearn.manifold import TSNE X = TSNE(n_components=2, perplexity = 30).fit_transform(factors) scatter(X[:,0], X[:,1]) # POSTERIOR PUSH MEAN # with sess.as_default(): # with tf.device(hps.device): # if kind == "train": # train(hps, datasets) # elif kind == "posterior_sample_and_average": # write_model_runs(hps, datasets, hps.output_filename_stem, push_mean=False) # elif kind == "posterior_push_mean": # write_model_runs(hps, datasets, hps.output_filename_stem, push_mean=True) # elif kind == "prior_sample": # write_model_samples(hps, datasets, hps.output_filename_stem) # elif kind == "write_model_params": # write_model_parameters(hps, hps.output_filename_stem, datasets) # else: # assert False, ("Kind %s is not implemented. " % kind)
a52bc78e9d3b3e11b7cddbd0d97869f5a2a6bec2
62e58c051128baef9452e7e0eb0b5a83367add26
/x12/5040/828005040.py
4a6d507aea18f617baa5083c1e25b5d6ed822f7a
[]
no_license
dougvanhorn/bots-grammars
2eb6c0a6b5231c14a6faf194b932aa614809076c
09db18d9d9bd9d92cefbf00f1c0de1c590fe3d0d
refs/heads/master
2021-05-16T12:55:58.022904
2019-05-17T15:22:23
2019-05-17T15:22:23
105,274,633
0
0
null
2017-09-29T13:21:21
2017-09-29T13:21:21
null
UTF-8
Python
false
false
823
py
from bots.botsconfig import * from records005040 import recorddefs syntax = { 'version': '00504', 'functionalgroup': 'DA', } structure = [ {ID: 'ST', MIN: 1, MAX: 1, LEVEL: [ {ID: 'BAU', MIN: 1, MAX: 1}, {ID: 'N1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 99999}, {ID: 'N3', MIN: 0, MAX: 99999}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'PER', MIN: 0, MAX: 99999}, {ID: 'DAD', MIN: 1, MAX: 99999, LEVEL: [ {ID: 'NM1', MIN: 0, MAX: 1}, {ID: 'N2', MIN: 0, MAX: 99999}, {ID: 'N3', MIN: 0, MAX: 99999}, {ID: 'N4', MIN: 0, MAX: 1}, {ID: 'REF', MIN: 0, MAX: 99999}, {ID: 'PER', MIN: 0, MAX: 99999}, ]}, {ID: 'CTT', MIN: 1, MAX: 1}, {ID: 'AMT', MIN: 0, MAX: 1}, {ID: 'SE', MIN: 1, MAX: 1}, ]} ]
2940503764898b98082340170692f4e10443826b
8e59a43de9d427865c5d67fef39e9a50e44f07ce
/ppocr/modeling/heads/rec_multi_head.py
0b4fa939eecad15c79f5e37384944720b1879205
[ "Apache-2.0" ]
permissive
PaddlePaddle/PaddleOCR
af87db8a804b9a4f4eac8a0b2faf80d1dd71633a
15963b0d242867a4cc4d76445626dc8965509b2f
refs/heads/release/2.7
2023-09-01T04:53:37.561932
2023-08-30T02:22:15
2023-08-30T02:22:15
262,296,122
34,195
7,338
Apache-2.0
2023-09-14T06:08:11
2020-05-08T10:38:16
Python
UTF-8
Python
false
false
4,301
py
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F from ppocr.modeling.necks.rnn import Im2Seq, EncoderWithRNN, EncoderWithFC, SequenceEncoder, EncoderWithSVTR from .rec_ctc_head import CTCHead from .rec_sar_head import SARHead from .rec_nrtr_head import Transformer class FCTranspose(nn.Layer): def __init__(self, in_channels, out_channels, only_transpose=False): super().__init__() self.only_transpose = only_transpose if not self.only_transpose: self.fc = nn.Linear(in_channels, out_channels, bias_attr=False) def forward(self, x): if self.only_transpose: return x.transpose([0, 2, 1]) else: return self.fc(x.transpose([0, 2, 1])) class MultiHead(nn.Layer): def __init__(self, in_channels, out_channels_list, **kwargs): super().__init__() self.head_list = kwargs.pop('head_list') self.gtc_head = 'sar' assert len(self.head_list) >= 2 for idx, head_name in enumerate(self.head_list): name = list(head_name)[0] if name == 'SARHead': # sar head sar_args = self.head_list[idx][name] self.sar_head = eval(name)(in_channels=in_channels, \ out_channels=out_channels_list['SARLabelDecode'], **sar_args) elif name == 'NRTRHead': gtc_args = self.head_list[idx][name] max_text_length = gtc_args.get('max_text_length', 25) nrtr_dim = gtc_args.get('nrtr_dim', 256) num_decoder_layers = gtc_args.get('num_decoder_layers', 4) self.before_gtc = nn.Sequential( nn.Flatten(2), FCTranspose(in_channels, nrtr_dim)) self.gtc_head = Transformer( d_model=nrtr_dim, nhead=nrtr_dim // 32, num_encoder_layers=-1, beam_size=-1, num_decoder_layers=num_decoder_layers, max_len=max_text_length, dim_feedforward=nrtr_dim * 4, out_channels=out_channels_list['NRTRLabelDecode']) elif name == 'CTCHead': # ctc neck self.encoder_reshape = Im2Seq(in_channels) neck_args = self.head_list[idx][name]['Neck'] encoder_type = neck_args.pop('name') self.ctc_encoder = SequenceEncoder(in_channels=in_channels, \ encoder_type=encoder_type, **neck_args) # ctc head head_args = self.head_list[idx][name]['Head'] self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels, \ out_channels=out_channels_list['CTCLabelDecode'], **head_args) else: raise NotImplementedError( '{} is not supported in MultiHead yet'.format(name)) def forward(self, x, targets=None): ctc_encoder = self.ctc_encoder(x) ctc_out = self.ctc_head(ctc_encoder, targets) head_out = dict() head_out['ctc'] = ctc_out head_out['ctc_neck'] = ctc_encoder # eval mode if not self.training: return ctc_out if self.gtc_head == 'sar': sar_out = self.sar_head(x, targets[1:]) head_out['sar'] = sar_out else: gtc_out = self.gtc_head(self.before_gtc(x), targets[1:]) head_out['nrtr'] = gtc_out return head_out
47c310bae1e4abdaa6b75569a117b14e0647509e
a53998e56ee06a96d59d97b2601fd6ec1e4124d7
/基础课/jichu/day16/seek.py
9bc56e0f93452a501443ed06d36a8a5bd659e588
[]
no_license
zh-en520/aid1901
f0ec0ec54e3fd616a2a85883da16670f34d4f873
a56f82d0ea60b2395deacc57c4bdf3b6bc73bd2e
refs/heads/master
2020-06-28T21:16:22.259665
2019-08-03T07:09:29
2019-08-03T07:09:29
200,344,127
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
fr = open('20bytes.txt','rb') print('当前读写位置是:',fr.tell())#0 b = fr.reed(2) print(b)#b'AB' print('当前读写位置是:',fe.tell())#2 #读写abcde这五个字节 fr.seek(5,0)# # fr.seek(3,1) # fr.seek(-15,2) b = fr.read(5)#b'abcde' print(b)
83c7d94c9223617493fa9162a58e518ded6fbd10
551b75f52d28c0b5c8944d808a361470e2602654
/huaweicloud-sdk-cloudide/huaweicloudsdkcloudide/v2/model/show_price_response.py
437f28d12f863bbca7d3ec3c11acd04386c74027
[ "Apache-2.0" ]
permissive
wuchen-huawei/huaweicloud-sdk-python-v3
9d6597ce8ab666a9a297b3d936aeb85c55cf5877
3683d703f4320edb2b8516f36f16d485cff08fc2
refs/heads/master
2023-05-08T21:32:31.920300
2021-05-26T08:54:18
2021-05-26T08:54:18
370,898,764
0
0
NOASSERTION
2021-05-26T03:50:07
2021-05-26T03:50:07
null
UTF-8
Python
false
false
3,513
py
# coding: utf-8 import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class ShowPriceResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'prices': 'list[ResourcePrice]', 'status': 'str' } attribute_map = { 'prices': 'prices', 'status': 'status' } def __init__(self, prices=None, status=None): """ShowPriceResponse - a model defined in huaweicloud sdk""" super(ShowPriceResponse, self).__init__() self._prices = None self._status = None self.discriminator = None if prices is not None: self.prices = prices if status is not None: self.status = status @property def prices(self): """Gets the prices of this ShowPriceResponse. 技术栈价格列表 :return: The prices of this ShowPriceResponse. :rtype: list[ResourcePrice] """ return self._prices @prices.setter def prices(self, prices): """Sets the prices of this ShowPriceResponse. 技术栈价格列表 :param prices: The prices of this ShowPriceResponse. :type: list[ResourcePrice] """ self._prices = prices @property def status(self): """Gets the status of this ShowPriceResponse. 状态 :return: The status of this ShowPriceResponse. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ShowPriceResponse. 状态 :param status: The status of this ShowPriceResponse. :type: str """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowPriceResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
4a538cff9ad6cd0890340bd264318ca2cc7dc8c3
cc9a0d5608b2209b02591ceace0a7416823a9de5
/config/settings/local.py
cc31fc60988cb0f8692e336882a572a81a46a794
[ "MIT" ]
permissive
morwen1/hack_your_body
240838e75dd4447c944d47d37635d2064d4210fd
d4156d4fbe2dd4123d5b5bceef451803a50a39f8
refs/heads/master
2020-11-24T01:55:46.323849
2019-12-15T18:15:51
2019-12-15T18:15:51
226,505,010
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="EGR9jaMwa7cjRCcM2wIxqFPD2RqJ6yIEAiL7KlbEUKIPVjjPcL9ZMHgprAJiT2T7", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites #INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware #MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config """ DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, }""" # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] if env("USE_DOCKER") == "yes": import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS += [ip[:-1] + "1" for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Celery # ------------------------------------------------------------------------------ # http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-eager-propagates CELERY_TASK_EAGER_PROPAGATES = True # Your stuff... # ------------------------------------------------------------------------------
c67c6aa5d5f63958801f1bc6b365fa8cf502cda7
bd933b02a85343e5c7b2bf4018c7d9e11d39b222
/MODEL1303260003/model.py
e613b83d4e71b70742457b7c2808d360bbdebe8c
[ "LicenseRef-scancode-public-domain", "CC0-1.0" ]
permissive
biomodels/MODEL1303260003
8533d064f8a9a65e84258cc98d91386adb69eb1e
a2695ffb9d247f28b8c397bc516c8750ea6ab559
refs/heads/master
2016-09-05T13:57:50.132052
2014-10-16T05:49:12
2014-10-16T05:49:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
import os path = os.path.dirname(os.path.realpath(__file__)) sbmlFilePath = os.path.join(path, 'MODEL1303260003.xml') with open(sbmlFilePath,'r') as f: sbmlString = f.read() def module_exists(module_name): try: __import__(module_name) except ImportError: return False else: return True if module_exists('libsbml'): import libsbml sbml = libsbml.readSBMLFromString(sbmlString)
79e07c6d4eb631d0458dd3a369941042ebf329ff
3a9f2b3d79cf214704829427ee280f4b49dca70a
/saigon/rat/RuckusAutoTest/scripts/zd/ats_ZD_Combo_CLI_Config_SNMP_Trap.py
1cd2cc625e0a8cef8938c78b6c4bf089240f43cd
[]
no_license
jichunwei/MyGitHub-1
ae0c1461fe0a337ef459da7c0d24d4cf8d4a4791
f826fc89a030c6c4e08052d2d43af0b1b4b410e3
refs/heads/master
2021-01-21T10:19:22.900905
2016-08-20T03:34:52
2016-08-20T03:34:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,956
py
''' Config SNMP Trap via ZD CLI Config snmp trap via ZD CLI successfully 1. The trap information from CLI and GUI are same. 2. Enable trap v2, the information are same between get and set, CLI get and GUI get. 3. Enable trap v3, the information are same between get and set, CLI get and GUI get. 2. Disable trap, the information are same between get and set, CLI get and GUI get. expect result: All steps should result properly. How to: 1) Get snmp trap setting from CLI and GUI, verify they are same. 2) Enable snmp trap v2 via ZD CLI. 3) Get snmp trap information from GUI and CLI. 4) Compare the information are same between CLI set and CLI get. 5) Compare the information are same between CLI get and GUI get. 6) Verify ap join trap is received. 7) Repeat do 4)-6) for enable trap v3. 8) Disable snmp trap, repeat do 3)-6), verify trap is not received. Created on 2011-4-25 @author: [email protected] ''' import sys import libZD_TestSuite as testsuite from RuckusAutoTest.common import lib_KwList as kwlist def define_test_cfg(tcfg): test_cfgs = [] test_name = 'CB_Scaling_ZD_CLI_Process_Check' common_name = 'apmgr and stamgr daemon pid mark' param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 0, False)) test_case_name = '[Current Trap Info GUI and CLI]' test_name = 'CB_ZD_Get_SNMP_Trap_Info' common_name = '%sGet SNMP Trap Info from GUI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 1, False)) test_name = 'CB_ZD_CLI_Get_Sys_SNMP_Trap_Info' common_name = '%sGet SNMP Trap Info from CLI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info' common_name = '%sVerify SNMP Trap Info between GUI Get and CLI Get' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_case_name = '[Enable SNMP Trap V2]' test_name = 'CB_ZD_CLI_Set_SNMP_Trap' common_name = '%sEnable SNMP Trap V2 from CLI' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v2_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 1, False)) test_name = 'CB_ZD_CLI_Get_Sys_SNMP_Trap_Info' common_name = '%sGet SNMP Trap V2 Info from CLI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info_CLI_Get_Set' common_name = '%sVerify SNMP Trap V2 Info between CLI Get and CLI Set' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v2_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_Get_SNMP_Trap_Info' common_name = '%sGet SNMP Trap V2 Info from GUI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info' common_name = '%sVerify SNMP Trap V2 Info between GUI Get and CLI Get' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_SNMP_Verify_AP_Join_Trap' common_name = '%sVerify AP Join trap when trap is enable' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v2_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_case_name = '[Enable SNMP Trap V3]' test_name = 'CB_ZD_CLI_Set_SNMP_Trap' common_name = '%sEnable SNMP Trap V3 from CLI' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v3_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 1, False)) test_name = 'CB_ZD_CLI_Get_Sys_SNMP_Trap_Info' common_name = '%sGet SNMP Trap V3 Info from CLI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info_CLI_Get_Set' common_name = '%sVerify SNMP Trap V3 Info between CLI Get and CLI Set' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v3_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_Get_SNMP_Trap_Info' common_name = '%sGet SNMP Trap V3 Info from GUI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Get_Sys_SNMP_Trap_Info' common_name = '%sVerify SNMP Trap V3 Info between GUI Get and CLI Get' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_SNMP_Verify_AP_Join_Trap' common_name = '%sVerify AP Join trap when trap is enable' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['enable_v3_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_case_name = '[Disable SNMP Trap]' test_name = 'CB_ZD_CLI_Set_SNMP_Trap' common_name = '%sDisable SNMP Trap from CLI' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['disable_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 1, False)) test_name = 'CB_ZD_CLI_Get_Sys_SNMP_Trap_Info' common_name = '%sGet SNMP Trap Info from CLI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info_CLI_Get_Set' common_name = '%sVerify SNMP Trap Info between CLI Get and CLI Set' % (test_case_name,) param_cfg = {'snmp_trap_cfg':tcfg['disable_trap_cfg']} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_Get_SNMP_Trap_Info' common_name = '%sGet SNMP Trap Info from GUI' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_ZD_CLI_Verify_SNMP_Trap_Info' common_name = '%sVerify SNMP Trap Info between GUI Get and CLI Get' % (test_case_name,) param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 2, False)) disable_trap_cfg = {} disable_trap_cfg.update(tcfg['enable_v2_trap_cfg']) disable_trap_cfg['enabled'] = False test_name = 'CB_ZD_SNMP_Verify_AP_Join_Trap' common_name = '%sVerify AP Join v2 trap when trap is disable' % (test_case_name,) param_cfg = {'snmp_trap_cfg':disable_trap_cfg} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) disable_trap_cfg = {} disable_trap_cfg.update(tcfg['enable_v3_trap_cfg']) disable_trap_cfg['enabled'] = False test_name = 'CB_ZD_SNMP_Verify_AP_Join_Trap' common_name = '%sVerify AP Join v3 trap when trap is disable' % (test_case_name,) param_cfg = {'snmp_trap_cfg':disable_trap_cfg} test_cfgs.append((param_cfg, test_name, common_name, 2, False)) test_name = 'CB_Scaling_ZD_CLI_Process_Check' common_name = 'apmgr and stamgr daemon pid checking.' param_cfg = dict() test_cfgs.append((param_cfg, test_name, common_name, 0, True)) return test_cfgs def define_test_parameters(tbcfg, trap_server_ip): server_ip = raw_input('Please input test engine ip address[%s]' % trap_server_ip) if not server_ip: server_ip = trap_server_ip enable_v2_trap_cfg = {'version': 2, 'enabled': True, '1': {'server_ip': server_ip}, } enable_v3_trap_cfg = {'version': 3, 'enabled': True, '1': {'sec_name': 'ruckus-read', 'server_ip': server_ip, 'auth_protocol': 'MD5', 'auth_passphrase': '12345678', 'priv_protocol': 'DES', 'priv_passphrase': '12345678', } } disable_trap_cfg = {'enabled': False} tcfg = {'enable_v2_trap_cfg': enable_v2_trap_cfg, 'enable_v3_trap_cfg': enable_v3_trap_cfg, 'disable_trap_cfg': disable_trap_cfg, } return tcfg def create_test_suite(**kwargs): tb = testsuite.getTestbed2(**kwargs) tbcfg = testsuite.getTestbedConfig(tb) if str(tb.tbtype) == "ZD_Stations_IPV6": zd_ip_version = tbcfg['ip_cfg']['zd_ip_cfg']['ip_version'] ap_ip_version = tbcfg['ip_cfg']['ap_ip_cfg']['ip_version'] trap_server_ip = '2020:db8:1::10' ts_name = 'ZD CLI ZD %s AP %s - SNMP V2 and V3 Trap Configuration' % (zd_ip_version, ap_ip_version) else: trap_server_ip = '192.168.0.10' ts_name = 'ZD CLI - SNMP Trap Configuration' #ts_name = 'ZD CLI - SNMP V2 and V3 Trap Configuration' ts = testsuite.get_testsuite(ts_name, 'Verify SNMP Trap Configuration: CLI Set, GUI Get', combotest=True) tcfg = define_test_parameters(tbcfg, trap_server_ip) test_cfgs = define_test_cfg(tcfg) test_order = 1 test_added = 0 for test_params, testname, common_name, exc_level, is_cleanup in test_cfgs: if testsuite.addTestCase(ts, testname, common_name, test_params, test_order, exc_level, is_cleanup) > 0: test_added += 1 test_order += 1 print "Add test case with test name: %s\n\t\common name: %s" % (testname, common_name) print "\n-- Summary: added %d test cases into test suite '%s'" % (test_added, ts.name) if __name__ == "__main__": _dict = kwlist.as_dict(sys.argv[1:]) create_test_suite(**_dict)
a00da9b3a8568ca40cac0d1ea67083ce9ef97c43
9af35b0e0c0ed4b102c61c563d7c7647a758bb72
/braindecode/datautil/signal_target.py
ebb6280370c5f4026abc132b5482426657926cdc
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
TonioBall/braindecode
7c0a5217c944e8718d74fd9763b3c609252c9feb
d5b8d87d959c96ea8422e21099e1ef4b71b9d05a
refs/heads/master
2020-12-13T08:56:34.939109
2020-01-17T13:27:30
2020-01-17T13:27:30
234,367,901
0
0
BSD-3-Clause
2020-01-16T16:56:45
2020-01-16T16:56:44
null
UTF-8
Python
false
false
911
py
class SignalAndTarget(object): """ Simple data container class. Parameters ---------- X: 3darray or list of 2darrays The input signal per trial. y: 1darray or list Labels for each trial. """ def __init__(self, X, y): assert len(X) == len(y) self.X = X self.y = y def apply_to_X_y(fn, *sets): """ Apply a function to all `X` and `y` attributes of all given sets. Applies function to list of X arrays and to list of y arrays separately. Parameters ---------- fn: function Function to apply sets: :class:`.SignalAndTarget` objects Returns ------- result_set: :class:`.SignalAndTarget` Dataset with X and y as the result of the application of the function. """ X = fn(*[s.X for s in sets]) y = fn(*[s.y for s in sets]) return SignalAndTarget(X, y)
3dcff99559d2d1556f67ba262ff9fb3338adab21
d34087fa552d7492406def9871f756f101d3b6a6
/source/packages/mailman_2.1.20-1_brcm63xx-tch/usr/local/mailman/Mailman/Gui/ContentFilter.py
9043fe89179fa2d4b5f438060f3a35b49968b0ed
[]
no_license
fexofenadine/brcm63xx-tch
b0a582518418c43078bf6799e59f72e31c5c9e4f
b50c32f7bab074c7017d7b15d76da06430036a76
refs/heads/master
2023-07-22T10:22:20.838756
2023-07-08T02:57:10
2023-07-08T02:57:10
132,597,313
7
8
null
2022-10-19T00:54:37
2018-05-08T11:10:50
Vim script
UTF-8
Python
false
false
9,149
py
# Copyright (C) 2002-2005 by the Free Software Foundation, Inc. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, # USA. """GUI component managing the content filtering options.""" from Mailman import mm_cfg from Mailman.i18n import _ from Mailman.Gui.GUIBase import GUIBase NL = '\n' class ContentFilter(GUIBase): def GetConfigCategory(self): return 'contentfilter', _('Content&nbsp;filtering') def GetConfigInfo(self, mlist, category, subcat=None): if category <> 'contentfilter': return None WIDTH = mm_cfg.TEXTFIELDWIDTH actions = [_('Discard'), _('Reject'), _('Forward to List Owner')] if mm_cfg.OWNERS_CAN_PRESERVE_FILTERED_MESSAGES: actions.append(_('Preserve')) return [ _("""Policies concerning the content of list traffic. <p>Content filtering works like this: when a message is received by the list and you have enabled content filtering, the individual attachments are first compared to the <a href="?VARHELP=contentfilter/filter_mime_types">filter types</a>. If the attachment type matches an entry in the filter types, it is discarded. <p>Then, if there are <a href="?VARHELP=contentfilter/pass_mime_types">pass types</a> defined, any attachment type that does <em>not</em> match a pass type is also discarded. If there are no pass types defined, this check is skipped. <p>After this initial filtering, any <tt>multipart</tt> attachments that are empty are removed. If the outer message is left empty after this filtering, then the whole message is discarded. <p> Then, each <tt>multipart/alternative</tt> section will be replaced by just the first alternative that is non-empty after filtering if <a href="?VARHELP=contentfilter/collapse_alternatives" >collapse_alternatives</a> is enabled. <p>Finally, any <tt>text/html</tt> parts that are left in the message may be converted to <tt>text/plain</tt> if <a href="?VARHELP=contentfilter/convert_html_to_plaintext" >convert_html_to_plaintext</a> is enabled and the site is configured to allow these conversions."""), ('filter_content', mm_cfg.Radio, (_('No'), _('Yes')), 0, _("""Should Mailman filter the content of list traffic according to the settings below?""")), ('filter_mime_types', mm_cfg.Text, (10, WIDTH), 0, _("""Remove message attachments that have a matching content type."""), _("""Use this option to remove each message attachment that matches one of these content types. Each line should contain a string naming a MIME <tt>type/subtype</tt>, e.g. <tt>image/gif</tt>. Leave off the subtype to remove all parts with a matching major content type, e.g. <tt>image</tt>. <p>Blank lines are ignored. <p>See also <a href="?VARHELP=contentfilter/pass_mime_types" >pass_mime_types</a> for a content type whitelist.""")), ('pass_mime_types', mm_cfg.Text, (10, WIDTH), 0, _("""Remove message attachments that don't have a matching content type. Leave this field blank to skip this filter test."""), _("""Use this option to remove each message attachment that does not have a matching content type. Requirements and formats are exactly like <a href="?VARHELP=contentfilter/filter_mime_types" >filter_mime_types</a>. <p><b>Note:</b> if you add entries to this list but don't add <tt>multipart</tt> to this list, any messages with attachments will be rejected by the pass filter.""")), ('filter_filename_extensions', mm_cfg.Text, (10, WIDTH), 0, _("""Remove message attachments that have a matching filename extension."""),), ('pass_filename_extensions', mm_cfg.Text, (10, WIDTH), 0, _("""Remove message attachments that don't have a matching filename extension. Leave this field blank to skip this filter test."""),), ('collapse_alternatives', mm_cfg.Radio, (_('No'), _('Yes')), 0, _("""Should Mailman collapse multipart/alternative to its first part content?""")), ('convert_html_to_plaintext', mm_cfg.Radio, (_('No'), _('Yes')), 0, _("""Should Mailman convert <tt>text/html</tt> parts to plain text? This conversion happens after MIME attachments have been stripped.""")), ('filter_action', mm_cfg.Radio, tuple(actions), 0, _("""Action to take when a message matches the content filtering rules."""), _("""One of these actions is taken when the message matches one of the content filtering rules, meaning, the top-level content type matches one of the <a href="?VARHELP=contentfilter/filter_mime_types" >filter_mime_types</a>, or the top-level content type does <strong>not</strong> match one of the <a href="?VARHELP=contentfilter/pass_mime_types" >pass_mime_types</a>, or if after filtering the subparts of the message, the message ends up empty. <p>Note this action is not taken if after filtering the message still contains content. In that case the message is always forwarded on to the list membership. <p>When messages are discarded, a log entry is written containing the Message-ID of the discarded message. When messages are rejected or forwarded to the list owner, a reason for the rejection is included in the bounce message to the original author. When messages are preserved, they are saved in a special queue directory on disk for the site administrator to view (and possibly rescue) but otherwise discarded. This last option is only available if enabled by the site administrator.""")), ] def _setValue(self, mlist, property, val, doc): if property in ('filter_mime_types', 'pass_mime_types'): types = [] for spectype in [s.strip() for s in val.splitlines()]: ok = 1 slashes = spectype.count('/') if slashes == 0 and not spectype: ok = 0 elif slashes == 1: maintype, subtype = [s.strip().lower() for s in spectype.split('/')] if not maintype or not subtype: ok = 0 elif slashes > 1: ok = 0 if not ok: doc.addError(_('Bad MIME type ignored: %(spectype)s')) else: types.append(spectype.strip().lower()) if property == 'filter_mime_types': mlist.filter_mime_types = types elif property == 'pass_mime_types': mlist.pass_mime_types = types elif property in ('filter_filename_extensions', 'pass_filename_extensions'): fexts = [] for ext in [s.strip() for s in val.splitlines()]: fexts.append(ext.lower()) if property == 'filter_filename_extensions': mlist.filter_filename_extensions = fexts elif property == 'pass_filename_extensions': mlist.pass_filename_extensions = fexts else: GUIBase._setValue(self, mlist, property, val, doc) def getValue(self, mlist, kind, property, params): if property == 'filter_mime_types': return NL.join(mlist.filter_mime_types) if property == 'pass_mime_types': return NL.join(mlist.pass_mime_types) if property == 'filter_filename_extensions': return NL.join(mlist.filter_filename_extensions) if property == 'pass_filename_extensions': return NL.join(mlist.pass_filename_extensions) return None
9f7cd33b09083b7ca32ab65d512beb3d76667dc4
525bdfe2c7d33c901598a501c145df94a3e162b0
/subject6_graphs/text.py
e255a01bf2155d3b55fd0ba8180d1b331aa5b94d
[]
no_license
davendiy/ads_course2
f0a52108f1cab8619b2e6e2c6c4383a1a4615c15
e44bf2b535b34bc31fb323c20901a77b0b3072f2
refs/heads/master
2020-04-06T09:37:12.983564
2019-05-09T10:28:22
2019-05-09T10:28:22
157,349,669
0
0
null
null
null
null
UTF-8
Python
false
false
2,980
py
#!/usr/bin/env python3 # -*-encoding: utf-8-*- # created: 05.12.18 # by David Zashkolny # 2 course, comp math # Taras Shevchenko National University of Kyiv # email: [email protected] tasks = int(input()) for mini_task in range(tasks): s = input().split() n, m = int(s[0]), int(s[1]) l = [] x, y = -1, -1 xe, ye = -1, -1 cost = list(map(lambda x: int(x), input().split())) for i in range(n): buff = [] k = input() if x == -1: y, x = i, k.find('S') if xe == -1: ye, xe = i, k.find('E') for j in k: buff.append(j) l.append(buff) keys = [['', 0], ['R', cost[0]], ['G', cost[1]], ['B', cost[2]], ['Y', cost[3]], ['RG', cost[0] + cost[1]], ['RB', cost[0] + cost[2]], ['RY', cost[0] + cost[3]], ['GB', cost[1] + cost[2]], ['GY', cost[1] + cost[3]], ['BY', cost[2] + cost[3]], ['RGB', cost[0] + cost[1] + cost[2]], ['RGY', cost[0] + cost[1] + cost[3]], ['RBY', cost[0] + cost[2] + cost[3]], ['GBY', cost[1] + cost[2] + cost[3]], ['RGBY', sum(cost)]] # keys = ['G'] keys.sort(key=lambda x: x[1]) way = [False, ''] for key in keys: hl = [[-1 for i in range(m)] for j in range(n)] hl[y][x] = 1 indexes = [[y, x]] for i in range(n * m + 1): buff = [] for j in indexes: if 0 <= j[1] + 1 < m and (l[j[0]][j[1] + 1] == '.' or key[0].find(l[j[0]][j[1] + 1]) != -1 or l[j[0]][j[1] + 1] == 'E') and hl[j[0]][j[1] + 1] == -1: hl[j[0]][j[1] + 1] = hl[j[0]][j[1]] + 1 buff.append([j[0], j[1] + 1]) if 0 <= j[1] - 1 < m and (l[j[0]][j[1] - 1] == '.' or key[0].find(l[j[0]][j[1] - 1]) != -1 or l[j[0]][j[1] - 1] == 'E') and hl[j[0]][ j[1] - 1] == -1: hl[j[0]][j[1] - 1] = hl[j[0]][j[1]] + 1 buff.append([j[0], j[1] - 1]) if 0 <= j[0] + 1 < n and (l[j[0] + 1][j[1]] == '.' or key[0].find(l[j[0] + 1][j[1]]) != -1 or l[j[0] + 1][j[1]] == 'E') and hl[j[0] + 1][ j[1]] == -1: hl[j[0] + 1][j[1]] = hl[j[0]][j[1]] + 1 buff.append([j[0] + 1, j[1]]) if 0 <= j[0] - 1 < n and (l[j[0] - 1][j[1]] == '.' or key[0].find(l[j[0] - 1][j[1]]) != -1 or l[j[0] - 1][j[1]] == 'E') and hl[j[0] - 1][j[1]] == -1: hl[j[0] - 1][j[1]] = hl[j[0]][j[1]] + 1 buff.append([j[0] - 1, j[1]]) if j == [ye, xe]: way = [True, key[1]] break indexes = buff if way[0]: break if way[0]: break if way[0]: print(way[1]) else: print('Sleep')
8d5ab2ac2f9f3feed3bcb898040784ad256e54f9
8878700a71196cc33b7be00357b625cf9883043c
/store/tests/tests_viewset_OrderLine.py
e4296695c7e7c37c60581d5c5eff5512440e9821
[ "MIT" ]
permissive
Jerome-Celle/Blitz-API
bc7db966cbbb45b29bbbe944adb954d6cb5a0040
a0f870d6774abf302886ab70e169572a9d0225ef
refs/heads/master
2021-06-10T06:05:03.753314
2018-11-30T15:40:38
2018-11-30T15:46:19
165,642,546
0
0
MIT
2019-01-14T10:32:29
2019-01-14T10:32:28
null
UTF-8
Python
false
false
19,573
py
import json from datetime import timedelta from rest_framework import status from rest_framework.test import APIClient, APITestCase from django.utils import timezone from django.urls import reverse from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from blitz_api.factories import UserFactory, AdminFactory from blitz_api.models import AcademicLevel from ..models import Membership, Order, OrderLine, Package User = get_user_model() class OrderLineTests(APITestCase): @classmethod def setUpClass(cls): super(OrderLineTests, cls).setUpClass() cls.client = APIClient() cls.user = UserFactory() cls.admin = AdminFactory() cls.package_type = ContentType.objects.get_for_model(Package) cls.academic_level = AcademicLevel.objects.create( name="University" ) cls.membership_with_academic_level = Membership.objects.create( name="basic_membership", details="1-Year student membership", available=True, price=50, duration=timedelta(days=365), ) cls.membership_with_academic_level.academic_levels.set([ cls.academic_level ]) cls.membership = Membership.objects.create( name="basic_membership", details="1-Year student membership", available=True, price=50, duration=timedelta(days=365), ) cls.package = Package.objects.create( name="extreme_package", details="100 reservations package", available=True, price=400, reservations=100, ) cls.package.exclusive_memberships.set([ cls.membership, ]) cls.order = Order.objects.create( user=cls.user, transaction_date=timezone.now(), authorization_id=1, settlement_id=1, ) cls.order_admin = Order.objects.create( user=cls.admin, transaction_date=timezone.now(), authorization_id=1, settlement_id=1, ) cls.order_line = OrderLine.objects.create( order=cls.order, quantity=1, content_type=cls.package_type, object_id=1, ) cls.order_line_admin = OrderLine.objects.create( order=cls.order_admin, quantity=99, content_type=cls.package_type, object_id=1, ) def test_create_package(self): """ Ensure we can create an order line if user has permission. """ self.client.force_authenticate(user=self.admin) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 2, 'content_type': "package", 'object_id': 1, } response = self.client.post( reverse('orderline-list'), data, ) content = { 'content_type': 'package', 'id': 3, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 2, 'url': 'http://testserver/order_lines/3' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_create_without_membership(self): """ Ensure we can't create an order line if user does not have the required membership. """ self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 2, 'content_type': "package", 'object_id': 1, } response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'object_id': [ 'User does not have the required membership to order this ' 'package.' ] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_without_academic_level(self): """ Ensure we can't create an order line with a membership if the user does not have the required academic level. """ self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 1, 'content_type': "membership", 'object_id': self.membership_with_academic_level.id, } response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'object_id': [ 'User does not have the required academic_level to order this ' 'membership.' ] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_inexistent_object(self): """ Ensure we can't create an order line if the reference object does not exist. """ self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 2, 'content_type': "package", 'object_id': 999, } response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'object_id': ['The referenced object does not exist.'] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_with_membership(self): """ Ensure we can create an order line if user has the required membership. """ self.user.membership = self.membership self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 2, 'content_type': "package", 'object_id': 1, } response = self.client.post( reverse('orderline-list'), data, format='json', ) self.user.membership = None content = { 'content_type': 'package', 'id': 3, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 2, 'url': 'http://testserver/order_lines/3' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_create_membership(self): """ Ensure we can create an order line if user has permission. """ self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 1, 'content_type': "membership", 'object_id': self.membership.id, } response = self.client.post( reverse('orderline-list'), data, ) content = { 'content_type': 'membership', 'id': 3, 'object_id': self.membership.id, 'order': 'http://testserver/orders/1', 'quantity': 1, 'url': 'http://testserver/order_lines/3' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_201_CREATED) def test_create_missing_field(self): """ Ensure we can't create an order line when required field are missing. """ self.client.force_authenticate(user=self.admin) data = {} response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'content_type': ['This field is required.'], 'object_id': ['This field is required.'], 'order': ['This field is required.'], 'quantity': ['This field is required.'] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_null_field(self): """ Ensure we can't create an order line when required field are null. """ self.client.force_authenticate(user=self.admin) data = { 'content_type': None, 'object_id': None, 'order': None, 'quantity': None, } response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'content_type': ['This field may not be null.'], 'object_id': ['This field may not be null.'], 'order': ['This field may not be null.'], 'quantity': ['This field may not be null.'] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_invalid_field(self): """ Ensure we can't create an order when requi{ 'object_id': [ 'User does not have the required membership to order this ' 'package.' ] }red field are invalid. """ self.client.force_authenticate(user=self.admin) data = { 'content_type': (1,), 'object_id': "invalid", 'order': "invalid", 'quantity': (1,), } response = self.client.post( reverse('orderline-list'), data, format='json', ) content = { 'content_type': ['Object with model=[1] does not exist.'], 'object_id': ['A valid integer is required.'], 'order': ['Invalid hyperlink - No URL match.'], 'quantity': ['A valid integer is required.'] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_update(self): """ Ensure we can update an order line. """ self.client.force_authenticate(user=self.admin) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 99, 'content_type': "package", 'object_id': 1, } response = self.client.put( reverse( 'orderline-detail', kwargs={'pk': 1}, ), data, format='json', ) content = { 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 99, 'url': 'http://testserver/order_lines/1' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_update_partial(self): """ Ensure we can partially update an order line. """ self.user.membership = self.membership self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 9999, } response = self.client.patch( reverse( 'orderline-detail', kwargs={'pk': 1}, ), data, format='json', ) self.user.membership = None content = { 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 9999, 'url': 'http://testserver/order_lines/1' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_delete(self): """ Ensure we can delete an order line. """ self.client.force_authenticate(user=self.admin) response = self.client.delete( reverse( 'orderline-detail', kwargs={'pk': 1}, ), ) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) def test_update_partial_without_membership(self): """ Ensure we can't partially update an order line without required membership for ordered package. """ self.client.force_authenticate(user=self.user) data = { 'order': reverse('order-detail', args=[self.order.id]), 'quantity': 9999, } response = self.client.patch( reverse( 'orderline-detail', kwargs={'pk': 1}, ), data, format='json', ) content = { 'object_id': [ 'User does not have the required membership to order this ' 'package.' ] } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_delete(self): """ Ensure we can delete an order line. """ self.client.force_authenticate(user=self.admin) response = self.client.delete( reverse( 'orderline-detail', kwargs={'pk': 1}, ), ) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) def test_list(self): """ Ensure we can't list order lines as an unauthenticated user. """ response = self.client.get( reverse('orderline-list'), format='json', ) data = json.loads(response.content) content = {'detail': 'Authentication credentials were not provided.'} self.assertEqual(data, content) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_list_owner(self): """ Ensure we can list owned order lines as an authenticated user. """ self.client.force_authenticate(user=self.user) response = self.client.get( reverse('orderline-list'), format='json', ) data = json.loads(response.content) content = { 'count': 1, 'next': None, 'previous': None, 'results': [{ 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 1, 'url': 'http://testserver/order_lines/1' }] } self.assertEqual(data, content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_list_admin(self): """ Ensure we can list all order lines as an admin. """ self.client.force_authenticate(user=self.admin) response = self.client.get( reverse('orderline-list'), format='json', ) data = json.loads(response.content) content = { 'count': 2, 'next': None, 'previous': None, 'results': [{ 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 1, 'url': 'http://testserver/order_lines/1' }, { 'content_type': 'package', 'id': 2, 'object_id': 1, 'order': 'http://testserver/orders/2', 'quantity': 99, 'url': 'http://testserver/order_lines/2' }] } self.assertEqual(data, content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_read_unauthenticated(self): """ Ensure we can't read an order line as an unauthenticated user. """ response = self.client.get( reverse( 'orderline-detail', kwargs={'pk': 1}, ), ) content = {'detail': 'Authentication credentials were not provided.'} self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) def test_read_owner(self): """ Ensure we can read an order line owned by an authenticated user. """ self.client.force_authenticate(user=self.user) response = self.client.get( reverse( 'orderline-detail', kwargs={'pk': 1}, ), ) content = { 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 1, 'url': 'http://testserver/order_lines/1' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_read_owner_not_owned(self): """ Ensure we can't read an order line not owned by an authenticated user. """ self.client.force_authenticate(user=self.user) response = self.client.get( reverse( 'orderline-detail', kwargs={'pk': 2}, ), ) content = {'detail': 'Not found.'} self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_read_admin(self): """ Ensure we can read any order line as an admin. """ self.client.force_authenticate(user=self.admin) response = self.client.get( reverse( 'orderline-detail', kwargs={'pk': 1}, ), ) content = { 'content_type': 'package', 'id': 1, 'object_id': 1, 'order': 'http://testserver/orders/1', 'quantity': 1, 'url': 'http://testserver/order_lines/1' } self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_read_non_existent(self): """ Ensure we get not found when asking for an order line that doesn't exist. """ self.client.force_authenticate(user=self.user) response = self.client.get( reverse( 'orderline-detail', kwargs={'pk': 999}, ), ) content = {'detail': 'Not found.'} self.assertEqual(json.loads(response.content), content) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)
cd6e8276b89ab78c02389cbb84c51b5ba844fbdb
421d58c6b93b81e0724f8f4576119300eb344252
/influencers/users/migrations/0005_auto_20181111_1505.py
1d7c2ca75db84615820701ef82599ab6c705746f
[]
no_license
momen/influencers
7728228c92a552bdff9ae62f85986ad03bce186e
f9c76cfc2970440112967f9579dc31f77063cb25
refs/heads/master
2020-06-03T22:20:03.881411
2019-06-15T07:48:43
2019-06-15T07:48:43
191,754,739
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
# Generated by Django 2.1.2 on 2018-11-11 15:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_user_is_removed'), ] operations = [ migrations.AlterField( model_name='user', name='is_active', field=models.BooleanField(default=False, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active'), ), ]
e62fda6ebc68743af0af01a2bc34bc14ba0e666a
3117852233ea6c2644e723587a7b28d6d6518d95
/ttslang.py
28c918e4b4594278eeae4e3af6f10d766e7db1e7
[]
no_license
harishravi121/Pythoncodes
d70059a3b7785d668a4b03f3ec85b0777b33706f
1d6d6ca0ed6348b6c5d07d27d24668fb567527ca
refs/heads/master
2023-07-07T11:58:03.741814
2023-07-01T08:01:56
2023-07-01T08:01:56
211,642,477
3
0
null
2020-01-13T06:45:25
2019-09-29T10:00:32
Python
UTF-8
Python
false
false
83
py
import pyttsx3 engine = pyttsx3.init() engine.say("HEllo") engine.runAndWait()
792451ae4deffa9b1fcfbae36e7e0397b0f3d802
cf4f3c181dc04c4e698b53c3bb5dd5373b0cc1f4
/meridian/tst/acupoints/test_zusanli213.py
f53e9b7310099603a6d346caed38546241f59172
[ "Apache-2.0" ]
permissive
sinotradition/meridian
da3bba6fe42d3f91397bdf54520b3085f7c3bf1d
8c6c1762b204b72346be4bbfb74dedd792ae3024
refs/heads/master
2021-01-10T03:20:18.367965
2015-12-14T14:58:35
2015-12-14T14:58:35
46,456,260
5
3
null
2015-11-29T15:00:20
2015-11-19T00:21:00
Python
UTF-8
Python
false
false
301
py
#!/usr/bin/python #coding=utf-8 ''' @author: sheng @license: ''' import unittest from meridian.acupoints import zusanli213 class TestZusanli213Functions(unittest.TestCase): def setUp(self): pass def test_xxx(self): pass if __name__ == '__main__': unittest.main()
78114eb9b8af0d0f91311f5efe983687ab814067
71f00ed87cd980bb2f92c08b085c5abe40a317fb
/Data/GoogleCloud/google-cloud-sdk/lib/surface/ai_platform/operations/describe.py
06aa812cb986b22a941e19bab4929cc2330eda88
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
factoryofthesun/Rao-NLP
2bd8269a8eed1cb352c14c8fde88e3111ccca088
87f9723f5ee51bd21310d58c3425a2a7271ec3c5
refs/heads/master
2023-04-18T08:54:08.370155
2020-06-09T23:24:07
2020-06-09T23:24:07
248,070,291
0
1
null
2021-04-30T21:13:04
2020-03-17T20:49:03
Python
UTF-8
Python
false
false
1,528
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ai-platform jobs describe command.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.ml_engine import operations from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.ml_engine import endpoint_util from googlecloudsdk.command_lib.ml_engine import flags from googlecloudsdk.command_lib.ml_engine import operations_util def _AddDescribeArgs(parser): flags.OPERATION_NAME.AddToParser(parser) flags.GetRegionArg('operation').AddToParser(parser) class Describe(base.DescribeCommand): """Describe an AI Platform operation.""" @staticmethod def Args(parser): _AddDescribeArgs(parser) def Run(self, args): with endpoint_util.MlEndpointOverrides(region=args.region): client = operations.OperationsClient() return operations_util.Describe(client, args.operation)
1b661917f1bbf1889691f540f74bfadc8996f42a
244189d49a3967b4b002af73f40ca8e8064c4771
/modules/auxiliary/scanner/http/octopusdeploy_login.rb
e95f4eb8c6b5e148702da83e0b31045c7dcf1249
[ "MIT" ]
permissive
darkcode357/thg-framework
7540609fb79619bdc12bd98664976d51c79816aa
c1c3bd748aac85a8c75e52486ae608981a69d93a
refs/heads/master
2023-03-01T05:06:51.399919
2021-06-01T14:00:32
2021-06-01T14:00:32
262,925,227
11
6
NOASSERTION
2023-02-10T23:11:02
2020-05-11T03:04:05
Python
UTF-8
Python
false
false
2,528
rb
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## require 'metasploit/framework/credential_collection' require 'metasploit/framework/login_scanner/octopusdeploy' class MetasploitModule < Msf::Auxiliary include Msf::Exploit::Remote::HttpClient include Msf::Auxiliary::Report include Msf::Auxiliary::AuthBrute include Msf::Auxiliary::Scanner def initialize super( 'Name' => 'Octopus Deploy Login Utility', 'Description' => %q{ This module simply attempts to login to an Octopus Deploy server using a specific username and password. It has been confirmed to work on version 3.4.4 }, 'Author' => [ 'James Otten <jamesotten1[at]gmail.com>' ], 'License' => MSF_LICENSE ) register_options( [ Opt::RPORT(80), OptString.new('TARGETURI', [true, 'URI for login. Default is /api/users/login', '/api/users/login']) ]) deregister_options('PASSWORD_SPRAY') end def run_host(ip) cred_collection = Metasploit::Framework::CredentialCollection.new( blank_passwords: datastore['BLANK_PASSWORDS'], pass_file: datastore['PASS_FILE'], password: datastore['PASSWORD'], user_file: datastore['USER_FILE'], userpass_file: datastore['USERPASS_FILE'], username: datastore['USERNAME'], user_as_pass: datastore['USER_AS_PASS'] ) scanner = Metasploit::Framework::LoginScanner::OctopusDeploy.new( configure_http_login_scanner( cred_details: cred_collection, stop_on_success: datastore['STOP_ON_SUCCESS'], bruteforce_speed: datastore['BRUTEFORCE_SPEED'], connection_timeout: 10, http_username: datastore['HttpUsername'], http_password: datastore['HttpPassword'], uri: datastore['TARGETURI'] ) ) scanner.scan! do |result| credential_data = result.to_h credential_data.merge!( module_fullname: fullname, workspace_id: myworkspace_id ) if result.success? credential_core = create_credential(credential_data) credential_data[:core] = credential_core create_credential_login(credential_data) print_good "#{ip}:#{rport} - Login Successful: #{result.credential}" else invalidate_login(credential_data) vprint_error "#{ip}:#{rport} - LOGIN FAILED: #{result.credential} (#{result.status})" end end end end
adb6427317dfc161210edab8159cb6ef4ec06f21
23b44edcd663eb60d4deee64ced5a5b27ee3b7d2
/thermosteam/chemicals/phase_change.py
ef5a32237d3cf1e9db68f454ccd5c957c0c7a959
[ "LicenseRef-scancode-unknown-license-reference", "NCSA", "MIT" ]
permissive
sarangbhagwat/thermosteam
7b13c6c3146fe2fc378b453fe3c732dc7397ea0c
710ec22b17c257a742300bf172fd3121852abf98
refs/heads/master
2022-12-13T03:37:49.251727
2020-09-14T17:24:30
2020-09-14T17:24:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,344
py
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020, Yoel Cortes-Pena <[email protected]> # # This module extends the phase_change module from the chemicals's library: # https://github.com/CalebBell/chemicals # Copyright (C) 2020 Caleb Bell <[email protected]> # # This module is under a dual license: # 1. The UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. # # 2. The MIT open-source license. See # https://github.com/CalebBell/chemicals/blob/master/LICENSE.txt for details. from chemicals import phase_change as pc import numpy as np from ..base import InterpolatedTDependentModel, TDependentHandleBuilder, functor from .. import functional as fn from chemicals.dippr import EQ106 from .data import (phase_change_data_Perrys2_150, phase_change_data_VDI_PPDS_4, VDI_saturation_dict, phase_change_data_Alibakhshi_Cs, lookup_VDI_tabular_data, Hvap_data_CRC, Hvap_data_Gharagheizi, ) ### Enthalpy of Vaporization at T Clapeyron = functor(pc.Clapeyron, 'Hvap') Pitzer = functor(pc.Pitzer, 'Hvap') SMK = functor(pc.SMK, 'Hvap') MK = functor(pc.MK, 'Hvap') Velasco = functor(pc.Velasco, 'Hvap') Watson = functor(pc.Watson, 'Hvap') Alibakhshi = functor(pc.Alibakhshi, 'Hvap') PPDS12 = functor(pc.PPDS12, 'Hvap') def Clapeyron_hook(self, T, kwargs): kwargs = kwargs.copy() Psat = kwargs['Psat'] if callable(Psat): kwargs['Psat'] = Psat = Psat(T) if 'V' in kwargs: # Use molar volume to compute dZ if possible V = kwargs.pop('V') kwargs['dZ'] = fn.Z(T, Psat, V.g(T, Psat) - V.l(T, Psat)) return self.function(T, **kwargs) Clapeyron.functor.hook = Clapeyron_hook @TDependentHandleBuilder('Hvap') def heat_of_vaporization_handle(handle, CAS, Tb, Tc, Pc, omega, similarity_variable, Psat, V): # if has_CoolProp and self.CASRN in coolprop_dict: # methods.append(COOLPROP) # self.CP_f = coolprop_fluids[self.CASRN] # Tmins.append(self.CP_f.Tt); Tmaxs.append(self.CP_f.Tc) add_model = handle.add_model if CAS in phase_change_data_Perrys2_150: Tc, C1, C2, C3, C4, Tmin, Tmax = phase_change_data_Perrys2_150[CAS] data = (Tc, C1, C2, C3, C4) add_model(EQ106.functor.from_args(data), Tmin, Tmax) if CAS in phase_change_data_VDI_PPDS_4: Tc, A, B, C, D, E = phase_change_data_VDI_PPDS_4[CAS] add_model(PPDS12.functor.from_args(data=(Tc, A, B, C, D, E)), 0, Tc) if all((Tc, Pc)): model = Clapeyron.functor.from_args(data=(Tc, Pc, None, Psat)) model.V = V add_model(model, 0, Tc) data = (Tc, omega) if all(data): for f in (MK, SMK, Velasco, Pitzer): add_model(f.functor.from_args(data), 0, Tc) if CAS in VDI_saturation_dict: Ts, Hvaps = lookup_VDI_tabular_data(CAS, 'Hvap') add_model(InterpolatedTDependentModel(Ts, Hvaps, Ts[0], Ts[-1])) if Tc: if CAS in phase_change_data_Alibakhshi_Cs: C = float(phase_change_data_Alibakhshi_Cs.get(CAS, 'C')) add_model(Alibakhshi.functor.from_args(data=(Tc, C)), 0, Tc) if CAS in Hvap_data_CRC: Hvap = float(Hvap_data_CRC.get(CAS, 'HvapTb')) if not np.isnan(Hvap): Tb = float(Hvap_data_CRC.get(CAS, 'Tb')) data = dict(Hvap_ref=Hvap, T_ref=Tb, Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) Hvap = float(Hvap_data_CRC.get(CAS, 'Hvap298')) if not np.isnan(Hvap): data = dict(Hvap_ref=Hvap, T_ref=298., Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) if CAS in Hvap_data_Gharagheizi: Hvap = float(Hvap_data_Gharagheizi.get(CAS, 'Hvap298')) data = dict(Hvap_ref=Hvap, T_ref=298., Tc=Tc, exponent=0.38) add_model(Watson.functor.from_kwargs(data), 0, Tc) data = (Tb, Tc, Pc) if all(data): for f in (pc.Riedel, pc.Chen, pc.Vetere, pc.Liu): add_model(f(*data), 0, Tc) pc.heat_of_vaporization_handle = heat_of_vaporization_handle
6b5240c09546ae48c6e11c2e580c271be45aea67
b75ee1f07fcc50142da444e8ae9ba195bf49977a
/test/todo.py
fda75e5f8c9744005e5de098f819c7cadc1540c1
[ "Apache-2.0" ]
permissive
FlorianLudwig/code-owl
369bdb57a66c0f06e07853326be685c177e2802a
be6518c89fb49ae600ee004504f9485f328e1090
refs/heads/master
2016-08-04T02:26:07.445016
2014-05-25T19:19:13
2014-05-25T19:19:13
18,918,361
6
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
# this file contains tests for missing features # this means the tests here do FAIL. import codeowl.search def match(query, code): query = codeowl.search.generate_query(query) code = codeowl.code.parse(code) return codeowl.search.tokens(query, code, '<test>') def test_py_import(): assert match( 'import foo', 'from foo import bar' ) assert match( 'import foo.bar', 'from foo import bar' ) assert not match( 'import foo', 'import bar; print foo' ) def test_py_block(): """Tree based matching do semantic matching of code blocks.""" assert match( 'for: print i', 'for i in xrange(10):\n' ' pass\n' ' print i\n' ) # same as above just a few spaces less # since there are less not-maching tokens # this actually scores better than the # example above. But it should not match # at all. assert not match( 'for: print i', 'for i in xrange(10):\n' ' pass\n' 'print i\n' )
2bf16d2a0b120a587301917cafe6e3763746f348
52a3beeb07ad326115084a47a9e698efbaec054b
/horizon/.venv/bin/heat
da3eeefdf4e4f11003d3c6597a0c69aea163d0fd
[ "Apache-2.0" ]
permissive
bopopescu/sample_scripts
3dade0710ecdc8f9251dc60164747830f8de6877
f9edce63c0a4d636f672702153662bd77bfd400d
refs/heads/master
2022-11-17T19:19:34.210886
2018-06-11T04:14:27
2018-06-11T04:14:27
282,088,840
0
0
null
2020-07-24T00:57:31
2020-07-24T00:57:31
null
UTF-8
Python
false
false
240
#!/home/horizon/horizon/.venv/bin/python # -*- coding: utf-8 -*- import re import sys from heatclient.shell import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
62de38f216a4bb285bd5c78c9ae8517e3d1c44dc
4ddf82eeb31d46fb67802a4375390eb42a8f23b8
/tests/pyb/adc.py
875d31d732cc3648fff5484fb1e95c617dda69ad
[ "MIT" ]
permissive
pulkin/micropython
1437a507b9e90c8824e80c3553e6209d89e64565
c274c947c611f510fd2b1c4ef6cbd9f4283794fc
refs/heads/master
2023-03-08T02:35:28.208819
2022-04-19T12:38:47
2022-04-19T12:38:47
167,732,676
103
36
MIT
2023-02-25T03:02:36
2019-01-26T19:57:59
C
UTF-8
Python
false
false
1,546
py
from pyb import ADC, Timer adct = ADC(16) # Temperature 930 -> 20C print(str(adct)[:19]) adcv = ADC(17) # Voltage 1500 -> 3.3V print(adcv) # read single sample; 2.5V-5V is pass range val = adcv.read() assert val > 1000 and val < 2000 # timer for read_timed tim = Timer(5, freq=500) # read into bytearray buf = bytearray(b"\xff" * 50) adcv.read_timed(buf, tim) print(len(buf)) for i in buf: assert i > 50 and i < 150 # read into arrays with different element sizes import array arv = array.array("h", 25 * [0x7FFF]) adcv.read_timed(arv, tim) print(len(arv)) for i in arv: assert i > 1000 and i < 2000 arv = array.array("i", 30 * [-1]) adcv.read_timed(arv, tim) print(len(arv)) for i in arv: assert i > 1000 and i < 2000 # Test read_timed_multi arv = bytearray(b"\xff" * 50) art = bytearray(b"\xff" * 50) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 60 and i < 125 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 15 and i < 200 arv = array.array("i", 25 * [-1]) art = array.array("i", 25 * [-1]) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 1000 and i < 2000 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 50 and i < 2000 arv = array.array("h", 25 * [0x7FFF]) art = array.array("h", 25 * [0x7FFF]) ADC.read_timed_multi((adcv, adct), (arv, art), tim) for i in arv: assert i > 1000 and i < 2000 # Wide range: unsure of accuracy of temp sensor. for i in art: assert i > 50 and i < 2000
ba2dba9f3f8b6287d25ffbb5992a661635b0b81c
f1b9dc71b2dafc2b331de495ef4ceab938734fbe
/test.py
b80d38b36f71633c8ecb41f54b9fdf2f08e362bc
[]
no_license
philippjfr/FOSS4G-2017-Talk
7deb6e48755b71658f930aa55c06d3a903f1abc6
e3f035dc648cfc4642e774e536d6c07c847417b5
refs/heads/master
2022-11-07T07:19:37.053629
2017-08-23T17:16:38
2017-08-23T17:16:38
100,023,633
2
4
null
2022-11-01T10:51:44
2017-08-11T11:09:21
JavaScript
UTF-8
Python
false
false
1,261
py
import holoviews as hv import param import parambokeh import numpy as np from bokeh.io import curdoc renderer = hv.renderer('bokeh').instance(mode='server') class CurveExample(hv.streams.Stream): color = param.Color(default='#000000', precedence=0) element = param.ObjectSelector(default=hv.Curve, objects=[hv.Curve, hv.Scatter, hv.Area], precedence=0) amplitude = param.Number(default=2, bounds=(2, 5)) frequency = param.Number(default=2, bounds=(1, 10)) output = parambokeh.view.Plot() def view(self, *args, **kwargs): return self.element(self.amplitude*np.sin(np.linspace(0, np.pi*self.frequency)), vdims=[hv.Dimension('y', range=(-5, 5))])(style=dict(color=self.color)) def event(self, **kwargs): if not self.output or any(k in kwargs for k in ['color', 'element']): self.output = hv.DynamicMap(self.view, streams=[self]) else: super(CurveExample, self).event(**kwargs) example = CurveExample(name='HoloViews Example') doc = parambokeh.Widgets(example, callback=example.event, on_init=True, mode='server', view_position='right', doc=curdoc())
a8b75d380cc2dabf3b993334ea90a79166b071f7
729ee5bcb31708a82b08509775786597dac02263
/coding-challenges/week06/AssignmentQ4.py
40922ab75fb78db62f5805f72f03ea8d78695d15
[]
no_license
pandey-ankur-au17/Python
67c2478316df30c2ac8ceffa6704cf5701161c27
287007646a694a0dd6221d02b47923935a66fcf4
refs/heads/master
2023-08-30T05:29:24.440447
2021-09-25T16:07:23
2021-09-25T16:07:23
358,367,687
0
0
null
null
null
null
UTF-8
Python
false
false
532
py
# Given an array of size n and a number k, find all elements that appear # more than n/k times # Input : k = 4 ,n=9 , A = [ 3 ,1, 2, 2, 2, 1, 4, 3, 3 ] # # Output: - [ 3 , 2] list1=list(map(int,input("Enter the list=").split())) n=len(list1) k=int(input("Enter the value of k=")) frequency={} for i in list1: if i in frequency: frequency[i]=frequency[i]+1 else: frequency[i]=1 output=[] for i,j in frequency.items(): if j>n//k: output.append(i) else: continue print(output)
98a3bb666aa53326b5eaed0135122f7aa1ea659d
f445450ac693b466ca20b42f1ac82071d32dd991
/generated_tempdir_2019_09_15_163300/generated_part002017.py
3e62b15d60a4b9a7663df6952ee01bd0980a8d61
[]
no_license
Upabjojr/rubi_generated
76e43cbafe70b4e1516fb761cabd9e5257691374
cd35e9e51722b04fb159ada3d5811d62a423e429
refs/heads/master
2020-07-25T17:26:19.227918
2019-09-15T15:41:48
2019-09-15T15:41:48
208,357,412
4
1
null
null
null
null
UTF-8
Python
false
false
1,304
py
from sympy.abc import * from matchpy.matching.many_to_one import CommutativeMatcher from matchpy import * from matchpy.utils import VariableWithCount from collections import deque from multiset import Multiset from sympy.integrals.rubi.constraints import * from sympy.integrals.rubi.utility_function import * from sympy.integrals.rubi.rules.miscellaneous_integration import * from sympy import * class CommutativeMatcher85189(CommutativeMatcher): _instance = None patterns = { 0: (0, Multiset({}), [ (VariableWithCount('i2.2.1.2.2.1.0', 1, 1, None), Mul), (VariableWithCount('i2.2.1.2.2.1.0_1', 1, 1, S(1)), Mul) ]) } subjects = {} subjects_by_id = {} bipartite = BipartiteGraph() associative = Mul max_optional_count = 1 anonymous_patterns = set() def __init__(self): self.add_subject(None) @staticmethod def get(): if CommutativeMatcher85189._instance is None: CommutativeMatcher85189._instance = CommutativeMatcher85189() return CommutativeMatcher85189._instance @staticmethod def get_match_iter(subject): subjects = deque([subject]) if subject is not None else deque() subst0 = Substitution() # State 85188 return yield from collections import deque
d04aaef21caf30a7b3162da917e0162e5972d2ce
4e93e4275e82a08d3c114c9dd72deb0959d41a55
/src/ch10/binary/__init__.py
6f8ad9a2cdb18a4e50d6eeff4b4bd01581729622
[]
no_license
wsjhk/wasm-python-book
fd38e5a278be32df49416616724f38a415614e8b
872bc8fe754a6a3573436f534a8da696c0486c24
refs/heads/master
2023-03-16T02:18:48.869794
2020-09-17T11:31:49
2020-09-17T11:31:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
207
py
#!/usr/bin/env python # encoding: utf-8 """ @author: HuRuiFeng @file: __init__.py @time: 2020/8/19 1:55 @project: wasm-python-book @desc: """ from ch10.binary import reader decode_file = reader.decode_file
9d9b777e9db5f14839481e9edb2dc062d203210a
93b5da40708878016d953aeb4d9b908ff8af1e04
/function/practice2.py
3a807a52ef9fe652abe3614a37febbc4e2a91658
[]
no_license
Isaccchoi/python-practice
e50e932d2a7bf13b54e5ca317a03a5d63b406c6b
70e3e1f8590667cfe5ba4c094873eb39d555c44a
refs/heads/master
2021-06-29T05:45:18.371743
2017-09-21T06:15:47
2017-09-21T06:15:47
103,229,226
0
0
null
null
null
null
UTF-8
Python
false
false
559
py
def sequential_search(str, key): count = 0 while count < len(str): if str[count] == key: return count else: count += 1 return 0 print(sequential_search("개구리고양이", "개")) print(sequential_search("개구리고양이", "구")) print(sequential_search("개구리고양이", "리")) print(sequential_search("개구리고양이", "고")) print(sequential_search("개구리고양이", "양")) print(sequential_search("개구리고양이", "이")) print(sequential_search("개구리고양이", "말"))
d85ff8da66e28d47df80755796b5b30c21127fba
ce76b3ef70b885d7c354b6ddb8447d111548e0f1
/able_way/long_way/take_eye.py
cfcd983c2042f55d5d6e7c99ddba0ad24bf58cf2
[]
no_license
JingkaiTang/github-play
9bdca4115eee94a7b5e4ae9d3d6052514729ff21
51b550425a91a97480714fe9bc63cb5112f6f729
refs/heads/master
2021-01-20T20:18:21.249162
2016-08-19T07:20:12
2016-08-19T07:20:12
60,834,519
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
#! /usr/bin/env python def good_time(str_arg): problem_and_work(str_arg) print('high_thing') def problem_and_work(str_arg): print(str_arg) if __name__ == '__main__': good_time('able_fact_and_life')
a4096b7f1c4116a6ffaf257384b64bd4bd388996
5d302c38acd02d5af4ad7c8cfe244200f8e8f877
/String/6. ZigZag Conversion(Med).py
1e80504fb03188e5ba70ed8751bed04c9c9c96c4
[]
no_license
nerohuang/LeetCode
2d5214a2938dc06600eb1afd21686044fe5b6db0
f273c655f37da643a605cc5bebcda6660e702445
refs/heads/master
2023-06-05T00:08:41.312534
2021-06-21T01:03:40
2021-06-21T01:03:40
230,164,258
0
0
null
null
null
null
UTF-8
Python
false
false
1,574
py
class Solution: def convert(self, s: str, numRows: int) -> str: if numRows == 1: return s store = [["" for _ in range(len(s))]for _ in range(numRows)]; i = 0; m, n = -1, 1; while i < len(s): if m == -1: m += 1; n -= 1; while m < numRows: if i < len(s) and store[m][n] == "": store[m][n] = s[i]; i += 1; m += 1; if m == numRows: m -= 2; n += 1; while m >= 0: if i < len(s): store[m][n] = s[i]; m -= 1; n += 1; i += 1; else: break; ans = "" for i in range(len(store)): for c in store[i]: if store[i] != "": ans += c return(ans) #class Solution: # def convert(self, s: str, numRows: int) -> str: # if numRows == 1: # return s # # lines = [''] * numRows # line_count = 0 # adder = 1 # for c in s: # lines[line_count] = lines[line_count] + c # # if line_count + adder > numRows-1: # adder = -1 # elif line_count + adder < 0: # adder = 1 # # line_count = line_count + adder # return ''.join(lines)
83216ab4814f0ddc0657688c7f97149e35a3bdbb
142362be3c4f8b19bd118126baccab06d0514c5b
/xapian64/site-packages/djapian/utils/decorators.py
1deb7553ccf6014639b53b8845f5a841e5fbcb2e
[]
no_license
dkramorov/astwobytes
84afa4060ffed77d5fd1a6e8bf5c5c69b8115de6
55071537c5c84d0a27757f11ae42904745cc1c59
refs/heads/master
2023-08-27T07:10:51.883300
2023-08-02T16:52:17
2023-08-02T16:52:17
191,950,319
0
0
null
2022-11-22T09:15:42
2019-06-14T13:44:23
HTML
UTF-8
Python
false
false
898
py
import xapian def retry_if_except(errors, num_retry=4, cleanup_callback=None): def _wrap(func): def _inner(*args, **kwargs): for n in reversed(range(num_retry)): try: return func(*args, **kwargs) except errors: # propagate the exception if we have run out of tries if not n: raise # perform a clean up action before the next attempt if required if callable(cleanup_callback): cleanup_callback() return _inner return _wrap def reopen_if_modified(database, num_retry=3, errors=xapian.DatabaseModifiedError): return retry_if_except(errors, num_retry=num_retry, cleanup_callback=lambda: database.reopen())
14f7ea5a0fd4e2ab4ffa08421ed6e486da33ccfc
4692f28f86ee84a76abfac8cc8a0dd41fcd402e4
/tasks/github_tasks.py
ddf0c9af7bae0fe3c10ef1e08285fae600084aa1
[ "CC0-1.0", "BSD-3-Clause", "Apache-2.0", "GPL-1.0-or-later", "MIT", "0BSD", "Unlicense", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "BSD-2-Clause-Views", "MPL-2.0" ]
permissive
DataDog/datadog-agent
cc4b89839d6031903bf23aa12eccc2a3f3c7f213
d960cdb7de8fa5d1c7138cfe58e754af80cb796a
refs/heads/main
2023-09-04T10:45:08.138748
2023-09-04T09:13:43
2023-09-04T09:13:43
49,970,739
2,388
1,288
Apache-2.0
2023-09-14T20:06:34
2016-01-19T17:40:41
Go
UTF-8
Python
false
false
3,694
py
import os from invoke import Exit, task from .libs.github_actions_tools import ( download_artifacts_with_retry, follow_workflow_run, print_workflow_conclusion, trigger_macos_workflow, ) from .utils import DEFAULT_BRANCH, load_release_versions @task def trigger_macos_build( ctx, datadog_agent_ref=DEFAULT_BRANCH, release_version="nightly-a7", major_version="7", python_runtimes="3", destination=".", version_cache=None, retry_download=3, retry_interval=10, ): env = load_release_versions(ctx, release_version) github_action_ref = env["MACOS_BUILD_VERSION"] run = trigger_macos_workflow( workflow_name="macos.yaml", github_action_ref=github_action_ref, datadog_agent_ref=datadog_agent_ref, release_version=release_version, major_version=major_version, python_runtimes=python_runtimes, # Send pipeline id and bucket branch so that the package version # can be constructed properly for nightlies. gitlab_pipeline_id=os.environ.get("CI_PIPELINE_ID", None), bucket_branch=os.environ.get("BUCKET_BRANCH", None), version_cache_file_content=version_cache, ) workflow_conclusion = follow_workflow_run(run) print_workflow_conclusion(workflow_conclusion) download_artifacts_with_retry(run, destination, retry_download, retry_interval) if workflow_conclusion != "success": raise Exit(code=1) @task def trigger_macos_test( ctx, datadog_agent_ref=DEFAULT_BRANCH, release_version="nightly-a7", python_runtimes="3", destination=".", version_cache=None, retry_download=3, retry_interval=10, ): env = load_release_versions(ctx, release_version) github_action_ref = env["MACOS_BUILD_VERSION"] run = trigger_macos_workflow( workflow_name="test.yaml", github_action_ref=github_action_ref, datadog_agent_ref=datadog_agent_ref, python_runtimes=python_runtimes, version_cache_file_content=version_cache, ) workflow_conclusion = follow_workflow_run(run) print_workflow_conclusion(workflow_conclusion) download_artifacts_with_retry(run, destination, retry_download, retry_interval) if workflow_conclusion != "success": raise Exit(code=1) @task def lint_codeowner(_): """ Check every package in `pkg` has an owner """ base = os.path.dirname(os.path.abspath(__file__)) root_folder = os.path.join(base, "..") os.chdir(root_folder) owners = _get_code_owners(root_folder) # make sure each root package has an owner pkgs_without_owner = _find_packages_without_owner(owners, "pkg") if len(pkgs_without_owner) > 0: raise Exit( f'The following packages in `pkg` directory don\'t have an owner in CODEOWNERS: {pkgs_without_owner}', code=1, ) def _find_packages_without_owner(owners, folder): pkg_without_owners = [] for x in os.listdir(folder): path = os.path.join("/" + folder, x) if path not in owners: pkg_without_owners.append(path) return pkg_without_owners def _get_code_owners(root_folder): code_owner_path = os.path.join(root_folder, ".github", "CODEOWNERS") owners = {} with open(code_owner_path) as f: for line in f: line = line.strip() line = line.split("#")[0] # remove comment if len(line) > 0: parts = line.split() path = os.path.normpath(parts[0]) # example /tools/retry_file_dump ['@DataDog/agent-metrics-logs'] owners[path] = parts[1:] return owners
380ff41b42f8149fb0f95f550c5bedddd25c9232
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02724/s435287686.py
462d510537b496c3a2a42ca1c7ffce6125472883
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
x = int(input()) hap = x // 500 hap2 = (x - hap*500)//5 ans = hap*1000 + hap2*5 print(ans)
019ab9a8348c516eab7132b6900f6f45b8172cdb
243ce25168eea65144713a1100ca997a2d29f280
/p68.py
aaea8a7b5cd711d48a2ecaed6cc2366716f5667f
[]
no_license
acadien/projecteuler
6aa1efbb1141ecf36d6b23bb6b058070e5e881e0
2efb0b5577cee7f046ed4f67d0f01f438cbf3770
refs/heads/master
2020-04-28T21:33:49.631044
2013-12-06T19:25:20
2013-12-06T19:25:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
#!/usr/bin/python from math import * from random import * from itertools import chain,permutations o_ind=range(5) i_ind=[[5,6],[6,7],[7,8],[8,9],[9,5]] def trysum(A): if 10 in A[5:]: return False B=set([A[i]+A[i_ind[i][0]]+A[i_ind[i][1]] for i in range(5)]) if len(B)==1: return True return False def flatten(listOfLists): return chain.from_iterable(listOfLists) def tochain(A): start=A.index(min(A[:5])) return int("".join(map(str,flatten([[A[o_ind[j]],A[i_ind[j][0]],A[i_ind[j][1]]] for j in map(lambda x:x%5,range(start,start+5))])))) mx=0 for A in permutations(range(1,11)): if trysum(A): Aval=tochain(A) if Aval>mx: print Aval mx=Aval
e1deab83389f3a158a86076670d0bded1a976175
99e57f00fcaf4469c1c1b79f2d17176aaef9a790
/hr_payslip_batch_confirm/models/__init__.py
07e6a958e3299a35542efcae0c6a19e9d50b4dda
[]
no_license
detian08/mcl
d007ffd0e869f3bd9a8c74bc8473119901f0de2a
32d61148326c931aca0107c3894061773f287e33
refs/heads/master
2022-03-23T19:36:29.608645
2019-12-11T10:15:50
2019-12-11T10:15:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
from . import hr_payroll from . import hr_payroll_run
ae9e61d3ae9ee479adabb49c6e4d75d50cecfd7e
b1f7c8eecdfc1e54e868430d7b6192b162f5a530
/insta/signals.py
2177664422d6238343c5645260f46897273c08a5
[]
no_license
Nyagah-Tech/instagramWebApp
490c9d8874c082132e9a0d78eb849e2b1136656b
abf3421a408ac1daf5f5bf20b76073ad73894eba
refs/heads/master
2022-12-13T04:33:26.104920
2020-01-06T21:18:17
2020-01-06T21:18:17
229,194,006
0
0
null
2022-11-22T05:13:48
2019-12-20T05:08:18
Python
UTF-8
Python
false
false
565
py
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile @receiver(post_save, sender=User) def create_profile(sender,instance,created,**kwargs): ''' this is a function that creates a profile of a user after registration ''' if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_profile(sender,instance, **kwargs): ''' this is a fuunction that saves the profile after been made ''' instance.profile.save()
62b7897f6f243bde43c73bd0addea96c61ff23d3
e2d23d749779ed79472a961d2ab529eeffa0b5b0
/gcloud/tests/core/models/test_user_default_project.py
a8944c2c0e485a689a536b1e3088ebda6139b172
[ "MIT", "BSD-3-Clause", "BSL-1.0", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
manlucas/atom
9fa026b3f914e53cd2d34aecdae580bda09adda7
94963fc6fdfd0568473ee68e9d1631f421265359
refs/heads/master
2022-09-30T06:19:53.828308
2020-01-21T14:08:36
2020-01-21T14:08:36
235,356,376
0
0
NOASSERTION
2022-09-16T18:17:08
2020-01-21T14:04:51
Python
UTF-8
Python
false
false
2,282
py
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2019 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import factory from django.db.models import signals from django.test import TestCase from gcloud.core.models import Project, UserDefaultProject class UserDefaultProjectTestCase(TestCase): @factory.django.mute_signals(signals.post_save, signals.post_delete) def tearDown(self): Project.objects.all().delete() UserDefaultProject.objects.all().delete() @factory.django.mute_signals(signals.post_save, signals.post_delete) def test_init_user_default_project__first_set(self): project = Project.objects.create(name='name', creator='creator', desc='', ) dp = UserDefaultProject.objects.init_user_default_project('username', project) self.assertEqual(dp.default_project.id, project.id) @factory.django.mute_signals(signals.post_save, signals.post_delete) def test_init_user_default_project__second_set(self): project_1 = Project.objects.create(name='name', creator='creator', desc='', ) project_2 = Project.objects.create(name='name', creator='creator', desc='', ) UserDefaultProject.objects.init_user_default_project('username', project_1) dp = UserDefaultProject.objects.init_user_default_project('username', project_2) self.assertEqual(dp.default_project.id, project_1.id)
02778531cc548dda2bfadf226376a93af1bcd11f
746bf62ae3599f0d2dcd620ae37cd11370733cc3
/leetcode/contains-duplicate.py
768cd64e1cb979d349fc2bf6872d9d0a27bb7e6b
[]
no_license
wanglinjie/coding
ec0e614343b39dc02191455165eb1a5c9e6747ce
350f28cad5ec384df476f6403cb7a7db419de329
refs/heads/master
2021-04-22T14:00:48.825959
2017-05-02T12:49:05
2017-05-02T12:49:05
48,011,510
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Wanglj Create Time : 20151223 Last Modified: 判断列表中是否有重复的 ''' class Solution(object): def containsDuplicate(self, nums): """ :type nums: List[int] :rtype: bool """ nums_set = set(nums) if len(nums_set) < len(nums): return True else: return False
f9d7f2202c7c7b8cfb47887171023887d23fb306
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_192/ch50_2020_03_31_18_26_15_429003.py
9cc22791965cdb59d8ef25da1a85490c844cd611
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
177
py
def junta_nome_sobrenome(n, s): n_s = [] espaco = [' ']*len(n) i = 0 while i < len(n): n_s.append(n[i] = espaco[i] + s[i]) i += 1 return n_s
38723203b79a0913486767469b468bcf4790caac
795ba44e09add69a6c3859adf7e476908fcb234c
/backend/mod_training_1_27492/urls.py
58881d4c5e4d89926432059cb0802a8f7062e3db
[]
no_license
crowdbotics-apps/mod-training-1-27492
0df7b863ef18e7ba4e3f1c34f1bac7554e184553
91815c10d4f8af1e18bb550db97373b4099a4ae9
refs/heads/master
2023-04-26T00:57:13.854464
2021-06-01T19:48:41
2021-06-01T19:48:41
371,498,927
0
0
null
null
null
null
UTF-8
Python
false
false
2,247
py
"""mod_training_1_27492 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "mod-training-1" admin.site.site_title = "mod-training-1 Admin Portal" admin.site.index_title = "mod-training-1 Admin" # swagger api_info = openapi.Info( title="mod-training-1 API", default_version="v1", description="API documentation for mod-training-1 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ] urlpatterns += [path("", TemplateView.as_view(template_name='index.html'))] urlpatterns += [re_path(r"^(?:.*)/?$", TemplateView.as_view(template_name='index.html'))]