blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0e8eb7cfd16b0572c20b19d0ca5619c7eecbd659
7c9917d62959b8d69309d44362481356e632083e
/enzymatic_bias/profile_model_of_bias/kmer_init_tuned/dnase/24mer/model.py
8e07a5bc7b4e1400fd6be929ca7b482df4c88a82
[ "MIT" ]
permissive
kundajelab/bias_correction
bee77bd2d36268aa6b7046b817e9e349c8cc8238
521678ea8739473f793b0ce85e22e622d13df6fe
refs/heads/master
2021-06-21T11:34:54.558788
2021-06-10T06:39:35
2021-06-10T06:39:35
218,137,376
0
0
null
null
null
null
UTF-8
Python
false
false
4,974
py
import pickle import pdb import numpy as np ; from keras.backend import int_shape from sklearn.metrics import average_precision_score from kerasAC.metrics import * from kerasAC.custom_losses import * import keras; #import the various keras layers from keras.layers import Dense,Activation,Dropout,Flatten,Reshape,Input, Concatenate, Cropping1D, Add from keras.layers.core import Dropout, Reshape, Dense, Activation, Flatten from keras.layers.convolutional import Conv1D from keras.layers.pooling import GlobalMaxPooling1D,MaxPooling1D,GlobalAveragePooling1D from keras.layers.normalization import BatchNormalization from keras.optimizers import Adam from keras.constraints import maxnorm; from keras.regularizers import l1, l2 from keras.models import Model def get_model_param_dict(param_file): ''' param_file has 2 columns -- param name in column 1, and param value in column 2 ''' params={} if param_file is None: return params for line in open(param_file,'r').read().strip().split('\n'): tokens=line.split('\t') params[tokens[0]]=tokens[1] return params def getModelGivenModelOptionsAndWeightInits(args): #default params (can be overwritten by providing model_params file as input to the training function) filters=1 conv1_kernel_size=6 control_smoothing=[1, 50] counts_loss_weight=1 profile_loss_weight=1 model_params=get_model_param_dict(args.model_params) if 'filters' in model_params: filters=int(model_params['filters']) if 'conv1_kernel_size' in model_params: conv1_kernel_size=int(model_params['conv1_kernel_size']) if 'counts_loss_weight' in model_params: counts_loss_weight=float(model_params['counts_loss_weight']) if 'profile_loss_weight' in model_params: profile_loss_weight=float(model_params['profile_loss_weight']) print("params:") print("filters:"+str(filters)) print("conv1_kernel_size:"+str(conv1_kernel_size)) print("counts_loss_weight:"+str(counts_loss_weight)) print("profile_loss_weight:"+str(profile_loss_weight)) #load the fixed weights tobias_data_dnase_k562=pickle.load(open("/srv/scratch/annashch/bias_correction/enzymatic_bias/tobias/dnase/K562.filtered_AtacBias.pickle",'rb')) tobias_dnase_pssm_forward=np.transpose(tobias_data_dnase_k562.bias['forward'].pssm[0:4])[:,[0,2,3,1]] conv1_pwm=np.expand_dims(tobias_dnase_pssm_forward,axis=-1) conv1_bias=np.zeros((1,)) conv1_frozen_weights=[conv1_pwm, conv1_bias] #read in arguments seed=args.seed init_weights=args.init_weights sequence_flank=args.tdb_input_flank[0] num_tasks=args.num_tasks seq_len=2*sequence_flank out_flank=args.tdb_output_flank[0] out_pred_len=2*out_flank print(seq_len) print(out_pred_len) #define inputs inp = Input(shape=(seq_len, 4),name='sequence') # first convolution without dilation first_conv = Conv1D(filters, weights=conv1_frozen_weights, kernel_size=conv1_kernel_size, padding='valid', activation='relu', name='1st_conv')(inp) profile_out_prebias_shape =int_shape(first_conv) cropsize = int(profile_out_prebias_shape[1]/2)-int(out_pred_len/2) if profile_out_prebias_shape[1]%2==0: crop_left=cropsize crop_right=cropsize else: crop_left=cropsize crop_right=cropsize+1 print(crop_left) print(crop_right) profile_out_prebias = Cropping1D((crop_left,crop_right), name='prof_out_crop2match_output')(first_conv) profile_out = Conv1D(filters=num_tasks, kernel_size=1, name="profile_predictions")(profile_out_prebias) gap_combined_conv = GlobalAveragePooling1D(name='gap')(first_conv) count_out = Dense(num_tasks, name="logcount_predictions")(gap_combined_conv) model=Model(inputs=[inp],outputs=[profile_out, count_out]) print("got model") model.compile(optimizer=Adam(), loss=[MultichannelMultinomialNLL(1),'mse'], loss_weights=[profile_loss_weight,counts_loss_weight]) print("compiled model") return model if __name__=="__main__": import argparse parser=argparse.ArgumentParser(description="view model arch") parser.add_argument("--seed",type=int,default=1234) parser.add_argument("--init_weights",default=None) parser.add_argument("--tdb_input_flank",nargs="+",default=[673]) parser.add_argument("--tdb_output_flank",nargs="+",default=[500]) parser.add_argument("--num_tasks",type=int,default=1) parser.add_argument("--model_params",default=None) args=parser.parse_args() model=getModelGivenModelOptionsAndWeightInits(args) print(model.summary()) pdb.set_trace()
c51867d2cd55c0e97a84af6332cfcfd529eeb1d2
40be7c7a50b839a922c22ea624123b11e5da25cb
/feria/migrations/0003_franquicia_imagen.py
c252e9fbb8cc5b7835b3b8c49f36ae453c9fd74f
[]
no_license
LuberNavarrete/sistema
e70b15d0410402ceb6f3ba2a320886d5b225c65c
e4800f3aa2cdde69189a43dcf9543be85ed14693
refs/heads/master
2021-01-10T16:54:21.479466
2015-11-15T14:21:20
2015-11-15T14:21:20
44,011,243
0
0
null
null
null
null
UTF-8
Python
false
false
422
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('feria', '0002_auto_20151008_1937'), ] operations = [ migrations.AddField( model_name='franquicia', name='imagen', field=models.ImageField(null=True, upload_to=b'imagenes'), ), ]
951e87820000a2ba516ce5733b3db4e751382387
be0eda70579e191d7dd1ace87ccbda8a3e85474e
/app01/urls.py
78bd401466e3cf6df768de0ca595ee3d970007da
[]
no_license
zxycode-2020/django_tutrital2
084ebe4a83e7a9724163ae54b816239ff2b0cce6
969ce0b3caca92c045afee0e5eb628f9afb35b48
refs/heads/master
2022-05-03T23:22:17.075830
2020-02-05T03:11:09
2020-02-05T03:11:09
236,920,126
0
0
null
2022-04-22T23:00:29
2020-01-29T06:40:39
Python
UTF-8
Python
false
false
577
py
from django.urls import path, include from app01.views import index, article, test_url, student, \ students, args, reg, xuanran, orm_test, post_cls, get_cls urlpatterns = [ path('index/', index), path('article/<str:aid>/', article), path('test_url/', test_url), path('students/', students), # 学生列表 path('student/<str:stu_id>/', student), # 学生单个 path('args/', args), path('reg/', reg), path('xuanran/', xuanran), path('orm_test/', orm_test), path('post_cls/', post_cls), path('get_cls/', get_cls), ]
2b792a76a6d249e279abf8afff4ad007a551e9e7
d42a9128898d504a9831f1afee3198c4677236c9
/Level_3/가장먼노드.py
19833971ef9bcd673871a0c8a749d8662f7847c8
[]
no_license
ketkat001/Programmers-coding
6848a9c8cffd97b792cfc8856ec135b72af5d688
799baba8d66a9971b43233d231cecbf262b4ea27
refs/heads/master
2023-09-02T23:07:25.614820
2021-10-17T18:12:02
2021-10-17T18:12:02
235,016,879
0
0
null
null
null
null
UTF-8
Python
false
false
650
py
from collections import deque def solution(n, edge): answer = 0 graph = [[] for _ in range(n+1)] dp = [0] * (n+1) dp[1] = 1 queue = deque([1]) for edg in edge: graph[edg[0]].append(edg[1]) graph[edg[1]].append(edg[0]) while queue: answer = len(queue) for i in range(answer): next_node = queue.popleft() for target_node in graph[next_node]: if dp[target_node] == 0: dp[target_node] = 1 queue.append(target_node) return answer print(solution(6, [[3, 6], [4, 3], [3, 2], [1, 3], [1, 2], [2, 4], [5, 2]]))
a24038b8a160f6fdb13f63be8d66b6cae29dd3e1
42c48f3178a48b4a2a0aded547770027bf976350
/google/ads/google_ads/v5/proto/services/account_link_service_pb2.py
972899082ca981068d71b76032f3fa541ac8301d
[ "Apache-2.0" ]
permissive
fiboknacky/google-ads-python
e989464a85f28baca1f28d133994c73759e8b4d6
a5b6cede64f4d9912ae6ad26927a54e40448c9fe
refs/heads/master
2021-08-07T20:18:48.618563
2020-12-11T09:21:29
2020-12-11T09:21:29
229,712,514
0
0
Apache-2.0
2019-12-23T08:44:49
2019-12-23T08:44:49
null
UTF-8
Python
false
true
21,860
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v5/proto/services/account_link_service.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v5.proto.resources import account_link_pb2 as google_dot_ads_dot_googleads__v5_dot_proto_dot_resources_dot_account__link__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v5/proto/services/account_link_service.proto', package='google.ads.googleads.v5.services', syntax='proto3', serialized_options=b'\n$com.google.ads.googleads.v5.servicesB\027AccountLinkServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v5/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V5.Services\312\002 Google\\Ads\\GoogleAds\\V5\\Services\352\002$Google::Ads::GoogleAds::V5::Services', create_key=_descriptor._internal_create_key, serialized_pb=b'\nAgoogle/ads/googleads_v5/proto/services/account_link_service.proto\x12 google.ads.googleads.v5.services\x1a:google/ads/googleads_v5/proto/resources/account_link.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\"\\\n\x15GetAccountLinkRequest\x12\x43\n\rresource_name\x18\x01 \x01(\tB,\xe0\x41\x02\xfa\x41&\n$googleads.googleapis.com/AccountLink\"\x7f\n\x18\x43reateAccountLinkRequest\x12\x18\n\x0b\x63ustomer_id\x18\x01 \x01(\tB\x03\xe0\x41\x02\x12I\n\x0c\x61\x63\x63ount_link\x18\x02 \x01(\x0b\x32..google.ads.googleads.v5.resources.AccountLinkB\x03\xe0\x41\x02\"2\n\x19\x43reateAccountLinkResponse\x12\x15\n\rresource_name\x18\x01 \x01(\t\"\xb4\x01\n\x18MutateAccountLinkRequest\x12\x18\n\x0b\x63ustomer_id\x18\x01 \x01(\tB\x03\xe0\x41\x02\x12N\n\toperation\x18\x02 \x01(\x0b\x32\x36.google.ads.googleads.v5.services.AccountLinkOperationB\x03\xe0\x41\x02\x12\x17\n\x0fpartial_failure\x18\x03 \x01(\x08\x12\x15\n\rvalidate_only\x18\x04 \x01(\x08\"5\n\x14\x41\x63\x63ountLinkOperation\x12\x10\n\x06remove\x18\x03 \x01(\tH\x00\x42\x0b\n\toperation\"f\n\x19MutateAccountLinkResponse\x12I\n\x06result\x18\x01 \x01(\x0b\x32\x39.google.ads.googleads.v5.services.MutateAccountLinkResult\"0\n\x17MutateAccountLinkResult\x12\x15\n\rresource_name\x18\x01 \x01(\t2\xc2\x05\n\x12\x41\x63\x63ountLinkService\x12\xc1\x01\n\x0eGetAccountLink\x12\x37.google.ads.googleads.v5.services.GetAccountLinkRequest\x1a..google.ads.googleads.v5.resources.AccountLink\"F\x82\xd3\xe4\x93\x02\x30\x12./v5/{resource_name=customers/*/accountLinks/*}\xda\x41\rresource_name\x12\xe5\x01\n\x11\x43reateAccountLink\x12:.google.ads.googleads.v5.services.CreateAccountLinkRequest\x1a;.google.ads.googleads.v5.services.CreateAccountLinkResponse\"W\x82\xd3\xe4\x93\x02\x36\"1/v5/customers/{customer_id=*}/accountLinks:create:\x01*\xda\x41\x18\x63ustomer_id,account_link\x12\xe2\x01\n\x11MutateAccountLink\x12:.google.ads.googleads.v5.services.MutateAccountLinkRequest\x1a;.google.ads.googleads.v5.services.MutateAccountLinkResponse\"T\x82\xd3\xe4\x93\x02\x36\"1/v5/customers/{customer_id=*}/accountLinks:mutate:\x01*\xda\x41\x15\x63ustomer_id,operation\x1a\x1b\xca\x41\x18googleads.googleapis.comB\xfe\x01\n$com.google.ads.googleads.v5.servicesB\x17\x41\x63\x63ountLinkServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v5/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V5.Services\xca\x02 Google\\Ads\\GoogleAds\\V5\\Services\xea\x02$Google::Ads::GoogleAds::V5::Servicesb\x06proto3' , dependencies=[google_dot_ads_dot_googleads__v5_dot_proto_dot_resources_dot_account__link__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_api_dot_client__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,]) _GETACCOUNTLINKREQUEST = _descriptor.Descriptor( name='GetAccountLinkRequest', full_name='google.ads.googleads.v5.services.GetAccountLinkRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v5.services.GetAccountLinkRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002\372A&\n$googleads.googleapis.com/AccountLink', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=278, serialized_end=370, ) _CREATEACCOUNTLINKREQUEST = _descriptor.Descriptor( name='CreateAccountLinkRequest', full_name='google.ads.googleads.v5.services.CreateAccountLinkRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='customer_id', full_name='google.ads.googleads.v5.services.CreateAccountLinkRequest.customer_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='account_link', full_name='google.ads.googleads.v5.services.CreateAccountLinkRequest.account_link', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=372, serialized_end=499, ) _CREATEACCOUNTLINKRESPONSE = _descriptor.Descriptor( name='CreateAccountLinkResponse', full_name='google.ads.googleads.v5.services.CreateAccountLinkResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v5.services.CreateAccountLinkResponse.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=501, serialized_end=551, ) _MUTATEACCOUNTLINKREQUEST = _descriptor.Descriptor( name='MutateAccountLinkRequest', full_name='google.ads.googleads.v5.services.MutateAccountLinkRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='customer_id', full_name='google.ads.googleads.v5.services.MutateAccountLinkRequest.customer_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='operation', full_name='google.ads.googleads.v5.services.MutateAccountLinkRequest.operation', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='partial_failure', full_name='google.ads.googleads.v5.services.MutateAccountLinkRequest.partial_failure', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='validate_only', full_name='google.ads.googleads.v5.services.MutateAccountLinkRequest.validate_only', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=554, serialized_end=734, ) _ACCOUNTLINKOPERATION = _descriptor.Descriptor( name='AccountLinkOperation', full_name='google.ads.googleads.v5.services.AccountLinkOperation', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='remove', full_name='google.ads.googleads.v5.services.AccountLinkOperation.remove', index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='operation', full_name='google.ads.googleads.v5.services.AccountLinkOperation.operation', index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), ], serialized_start=736, serialized_end=789, ) _MUTATEACCOUNTLINKRESPONSE = _descriptor.Descriptor( name='MutateAccountLinkResponse', full_name='google.ads.googleads.v5.services.MutateAccountLinkResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='result', full_name='google.ads.googleads.v5.services.MutateAccountLinkResponse.result', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=791, serialized_end=893, ) _MUTATEACCOUNTLINKRESULT = _descriptor.Descriptor( name='MutateAccountLinkResult', full_name='google.ads.googleads.v5.services.MutateAccountLinkResult', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v5.services.MutateAccountLinkResult.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=895, serialized_end=943, ) _CREATEACCOUNTLINKREQUEST.fields_by_name['account_link'].message_type = google_dot_ads_dot_googleads__v5_dot_proto_dot_resources_dot_account__link__pb2._ACCOUNTLINK _MUTATEACCOUNTLINKREQUEST.fields_by_name['operation'].message_type = _ACCOUNTLINKOPERATION _ACCOUNTLINKOPERATION.oneofs_by_name['operation'].fields.append( _ACCOUNTLINKOPERATION.fields_by_name['remove']) _ACCOUNTLINKOPERATION.fields_by_name['remove'].containing_oneof = _ACCOUNTLINKOPERATION.oneofs_by_name['operation'] _MUTATEACCOUNTLINKRESPONSE.fields_by_name['result'].message_type = _MUTATEACCOUNTLINKRESULT DESCRIPTOR.message_types_by_name['GetAccountLinkRequest'] = _GETACCOUNTLINKREQUEST DESCRIPTOR.message_types_by_name['CreateAccountLinkRequest'] = _CREATEACCOUNTLINKREQUEST DESCRIPTOR.message_types_by_name['CreateAccountLinkResponse'] = _CREATEACCOUNTLINKRESPONSE DESCRIPTOR.message_types_by_name['MutateAccountLinkRequest'] = _MUTATEACCOUNTLINKREQUEST DESCRIPTOR.message_types_by_name['AccountLinkOperation'] = _ACCOUNTLINKOPERATION DESCRIPTOR.message_types_by_name['MutateAccountLinkResponse'] = _MUTATEACCOUNTLINKRESPONSE DESCRIPTOR.message_types_by_name['MutateAccountLinkResult'] = _MUTATEACCOUNTLINKRESULT _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetAccountLinkRequest = _reflection.GeneratedProtocolMessageType('GetAccountLinkRequest', (_message.Message,), { 'DESCRIPTOR' : _GETACCOUNTLINKREQUEST, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """Request message for [AccountLinkService.GetAccountLink][google.ads.goo gleads.v5.services.AccountLinkService.GetAccountLink]. Attributes: resource_name: Required. Resource name of the account link. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.GetAccountLinkRequest) }) _sym_db.RegisterMessage(GetAccountLinkRequest) CreateAccountLinkRequest = _reflection.GeneratedProtocolMessageType('CreateAccountLinkRequest', (_message.Message,), { 'DESCRIPTOR' : _CREATEACCOUNTLINKREQUEST, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """Request message for [AccountLinkService.CreateAccountLink][google.ads. googleads.v5.services.AccountLinkService.CreateAccountLink]. Attributes: customer_id: Required. The ID of the customer for which the account link is created. account_link: Required. The account link to be created. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.CreateAccountLinkRequest) }) _sym_db.RegisterMessage(CreateAccountLinkRequest) CreateAccountLinkResponse = _reflection.GeneratedProtocolMessageType('CreateAccountLinkResponse', (_message.Message,), { 'DESCRIPTOR' : _CREATEACCOUNTLINKRESPONSE, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """Response message for [AccountLinkService.CreateAccountLink][google.ads .googleads.v5.services.AccountLinkService.CreateAccountLink]. Attributes: resource_name: Returned for successful operations. Resource name of the account link. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.CreateAccountLinkResponse) }) _sym_db.RegisterMessage(CreateAccountLinkResponse) MutateAccountLinkRequest = _reflection.GeneratedProtocolMessageType('MutateAccountLinkRequest', (_message.Message,), { 'DESCRIPTOR' : _MUTATEACCOUNTLINKREQUEST, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """Request message for [AccountLinkService.MutateAccountLink][google.ads. googleads.v5.services.AccountLinkService.MutateAccountLink]. Attributes: customer_id: Required. The ID of the customer being modified. operation: Required. The operation to perform on the link. partial_failure: If true, successful operations will be carried out and invalid operations will return errors. If false, all operations will be carried out in one transaction if and only if they are all valid. Default is false. validate_only: If true, the request is validated but not executed. Only errors are returned, not results. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.MutateAccountLinkRequest) }) _sym_db.RegisterMessage(MutateAccountLinkRequest) AccountLinkOperation = _reflection.GeneratedProtocolMessageType('AccountLinkOperation', (_message.Message,), { 'DESCRIPTOR' : _ACCOUNTLINKOPERATION, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """A single update on an account link. Attributes: operation: The operation to perform. remove: Remove operation: A resource name for the account link to remove is expected, in this format: ``customers/{customer_id}/accountLinks/{account_link_id}`` """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.AccountLinkOperation) }) _sym_db.RegisterMessage(AccountLinkOperation) MutateAccountLinkResponse = _reflection.GeneratedProtocolMessageType('MutateAccountLinkResponse', (_message.Message,), { 'DESCRIPTOR' : _MUTATEACCOUNTLINKRESPONSE, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """Response message for account link mutate. Attributes: result: Result for the mutate. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.MutateAccountLinkResponse) }) _sym_db.RegisterMessage(MutateAccountLinkResponse) MutateAccountLinkResult = _reflection.GeneratedProtocolMessageType('MutateAccountLinkResult', (_message.Message,), { 'DESCRIPTOR' : _MUTATEACCOUNTLINKRESULT, '__module__' : 'google.ads.googleads_v5.proto.services.account_link_service_pb2' , '__doc__': """The result for the account link mutate. Attributes: resource_name: Returned for successful operations. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v5.services.MutateAccountLinkResult) }) _sym_db.RegisterMessage(MutateAccountLinkResult) DESCRIPTOR._options = None _GETACCOUNTLINKREQUEST.fields_by_name['resource_name']._options = None _CREATEACCOUNTLINKREQUEST.fields_by_name['customer_id']._options = None _CREATEACCOUNTLINKREQUEST.fields_by_name['account_link']._options = None _MUTATEACCOUNTLINKREQUEST.fields_by_name['customer_id']._options = None _MUTATEACCOUNTLINKREQUEST.fields_by_name['operation']._options = None _ACCOUNTLINKSERVICE = _descriptor.ServiceDescriptor( name='AccountLinkService', full_name='google.ads.googleads.v5.services.AccountLinkService', file=DESCRIPTOR, index=0, serialized_options=b'\312A\030googleads.googleapis.com', create_key=_descriptor._internal_create_key, serialized_start=946, serialized_end=1652, methods=[ _descriptor.MethodDescriptor( name='GetAccountLink', full_name='google.ads.googleads.v5.services.AccountLinkService.GetAccountLink', index=0, containing_service=None, input_type=_GETACCOUNTLINKREQUEST, output_type=google_dot_ads_dot_googleads__v5_dot_proto_dot_resources_dot_account__link__pb2._ACCOUNTLINK, serialized_options=b'\202\323\344\223\0020\022./v5/{resource_name=customers/*/accountLinks/*}\332A\rresource_name', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CreateAccountLink', full_name='google.ads.googleads.v5.services.AccountLinkService.CreateAccountLink', index=1, containing_service=None, input_type=_CREATEACCOUNTLINKREQUEST, output_type=_CREATEACCOUNTLINKRESPONSE, serialized_options=b'\202\323\344\223\0026\"1/v5/customers/{customer_id=*}/accountLinks:create:\001*\332A\030customer_id,account_link', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='MutateAccountLink', full_name='google.ads.googleads.v5.services.AccountLinkService.MutateAccountLink', index=2, containing_service=None, input_type=_MUTATEACCOUNTLINKREQUEST, output_type=_MUTATEACCOUNTLINKRESPONSE, serialized_options=b'\202\323\344\223\0026\"1/v5/customers/{customer_id=*}/accountLinks:mutate:\001*\332A\025customer_id,operation', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_ACCOUNTLINKSERVICE) DESCRIPTOR.services_by_name['AccountLinkService'] = _ACCOUNTLINKSERVICE # @@protoc_insertion_point(module_scope)
ecad99a07312379715f64a3e39b3ea5577d254ee
c5746efe18a5406764c041d149d89c0e0564c5a5
/1. Python语言核心编程/1. Python核心/Day07/exercise11.py
a656871fe2f7a823083003ada2bd5ae8242e8c9c
[]
no_license
ShaoxiongYuan/PycharmProjects
fc7d9eeaf833d3711211cd2fafb81dd277d4e4a3
5111d4c0a7644c246f96e2d038c1a10b0648e4bf
refs/heads/master
2021-12-15T05:45:42.117000
2021-11-23T06:45:16
2021-11-23T06:45:16
241,294,858
3
1
null
2021-02-20T15:29:07
2020-02-18T07:06:08
Jupyter Notebook
UTF-8
Python
false
false
175
py
def sum_digit(num): """ :param num: :return: """ count = 0 for item in str(num): count += int(item) return count print(sum_digit(1234))
4052c872dbac2fd274177618ea0b913cd7c86450
6a9f06b967d7641ddff7b56425651b29d3e577f4
/mindinsight/mindinsight/backend/datavisual/train_visual_api.py
a868a443c817c402a689b20195737d12c7706bd9
[ "Apache-2.0" ]
permissive
ZeroWangZY/DL-VIS
b3117016547007b88dc66cfe7339ef02b0d84e9c
8be1c70c44913a6f67dd424aa0e0330f82e48b06
refs/heads/master
2023-08-18T00:22:30.906432
2020-12-04T03:35:50
2020-12-04T03:35:50
232,723,696
1
1
null
null
null
null
UTF-8
Python
false
false
5,850
py
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Backend interface module. This module provides the interfaces to train processors functions. """ from flask import Blueprint from flask import request from flask import jsonify from mindinsight.conf import settings from mindinsight.datavisual.utils.tools import get_train_id from mindinsight.datavisual.utils.tools import if_nan_inf_to_none from mindinsight.datavisual.processors.histogram_processor import HistogramProcessor from mindinsight.datavisual.processors.images_processor import ImageProcessor from mindinsight.datavisual.processors.scalars_processor import ScalarsProcessor from mindinsight.datavisual.processors.graph_processor import GraphProcessor from mindinsight.datavisual.data_transform.data_manager import DATA_MANAGER BLUEPRINT = Blueprint("train_visual", __name__, url_prefix=settings.URL_PATH_PREFIX+settings.API_PREFIX) @BLUEPRINT.route("/datavisual/image/metadata", methods=["GET"]) def image_metadata(): """ Interface to fetch metadata about the images for the particular run,tag, and zero-indexed sample. Returns: Response, which contains a list in JSON containing image events, each one of which is an object containing items wall_time, step, width, height, and query. """ tag = request.args.get("tag") train_id = get_train_id(request) processor = ImageProcessor(DATA_MANAGER) response = processor.get_metadata_list(train_id, tag) return jsonify(response) @BLUEPRINT.route("/datavisual/image/single-image", methods=["GET"]) def single_image(): """ Interface to fetch raw image data for a particular image. Returns: Response, which contains a byte string of image. """ tag = request.args.get("tag") step = request.args.get("step") train_id = get_train_id(request) processor = ImageProcessor(DATA_MANAGER) img_data = processor.get_single_image(train_id, tag, step) return img_data @BLUEPRINT.route("/datavisual/scalar/metadata", methods=["GET"]) def scalar_metadata(): """ Interface to fetch metadata about the scalars for the particular run and tag. Returns: Response, which contains a list in JSON containing scalar events, each one of which is an object containing items' wall_time, step and value. """ tag = request.args.get("tag") train_id = get_train_id(request) processor = ScalarsProcessor(DATA_MANAGER) response = processor.get_metadata_list(train_id, tag) metadatas = response['metadatas'] for metadata in metadatas: value = metadata.get("value") metadata["value"] = if_nan_inf_to_none('scalar_value', value) return jsonify(response) @BLUEPRINT.route("/datavisual/graphs/nodes", methods=["GET"]) def graph_nodes(): """ Interface to get graph nodes. Returns: Response, which contains a JSON object. """ name = request.args.get('name', default=None) tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) response = graph_process.list_nodes(scope=name) return jsonify(response) @BLUEPRINT.route("/datavisual/graphs/nodes/names", methods=["GET"]) def graph_node_names(): """ Interface to query node names. Returns: Response, which contains a JSON object. """ search_content = request.args.get("search") offset = request.args.get("offset", default=0) limit = request.args.get("limit", default=100) tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) resp = graph_process.search_node_names(search_content, offset, limit) return jsonify(resp) @BLUEPRINT.route("/datavisual/graphs/single-node", methods=["GET"]) def graph_search_single_node(): """ Interface to search single node. Returns: Response, which contains a JSON object. """ name = request.args.get("name") tag = request.args.get("tag", default=None) train_id = get_train_id(request) graph_process = GraphProcessor(train_id, DATA_MANAGER, tag) resp = graph_process.search_single_node(name) return jsonify(resp) @BLUEPRINT.route("/datavisual/histograms", methods=["GET"]) def histogram(): """ Interface to obtain histogram data. Returns: Response, which contains a JSON object. """ tag = request.args.get("tag", default=None) train_id = get_train_id(request) processor = HistogramProcessor(DATA_MANAGER) response = processor.get_histograms(train_id, tag) return jsonify(response) @BLUEPRINT.route("/datavisual/scalars", methods=["GET"]) def get_scalars(): """Get scalar data for given train_ids and tags.""" train_ids = request.args.getlist('train_id') tags = request.args.getlist('tag') processor = ScalarsProcessor(DATA_MANAGER) scalars = processor.get_scalars(train_ids, tags) return jsonify({'scalars': scalars}) def init_module(app): """ Init module entry. Args: app (Flask): The application obj. """ app.register_blueprint(BLUEPRINT)
904accd2539767b15763cd55082659294465b998
a2e11ec88ef3c83b9f07129e76a3681a676d164f
/demo8apr/testapp/urls.py
612a33b0ec158d2795dc24c6b407ab4fabc9dc74
[]
no_license
qwertypool/lofo
dadd7cd5b149a3a200b7111d803b1d0195d76642
3bc7bd125e7ea5a67f51dd6dd654e38a5f218055
refs/heads/master
2022-05-18T09:31:11.456634
2020-04-18T14:47:44
2020-04-18T14:47:44
256,773,858
3
0
null
null
null
null
UTF-8
Python
false
false
375
py
from django.urls import path from testapp import views urlpatterns = [ path('form/',views.form_view,name='forms'), path('thankyou/',views.thankyou_view,name='thankyou'), path('list/',views.list_view,name='list'), path('elist/',views.elist_view,name='elist'), path('eform/',views.eform_view,name='eform'), path('demo/',views.demo_view,name='demo'), ]
825f6ccaee5f5912163c36e767b88ed23e0e1a49
24fe1f54fee3a3df952ca26cce839cc18124357a
/servicegraph/lib/python2.7/site-packages/acimodel-4.0_3d-py2.7.egg/cobra/modelimpl/snmp/src.py
b6b8d307181045b63a79b7469c70f940f94421de
[]
no_license
aperiyed/servicegraph-cloudcenter
4b8dc9e776f6814cf07fe966fbd4a3481d0f45ff
9eb7975f2f6835e1c0528563a771526896306392
refs/heads/master
2023-05-10T17:27:18.022381
2020-01-20T09:18:28
2020-01-20T09:18:28
235,065,676
0
0
null
2023-05-01T21:19:14
2020-01-20T09:36:37
Python
UTF-8
Python
false
false
8,786
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2019 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class Src(Mo): """ The SNMP source profile determines the fault information, severity level, and destination for sending messages to the SNMP destination. SNMP is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network . """ meta = ClassMeta("cobra.model.snmp.Src") meta.moClassName = "snmpSrc" meta.rnFormat = "snmpsrc-%(name)s" meta.category = MoCategory.REGULAR meta.label = "SNMP Source" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x800000000000001 meta.isDomainable = False meta.isReadOnly = False meta.isConfigurable = True meta.isDeletable = True meta.isContextRoot = False meta.childClasses.add("cobra.model.tag.Tag") meta.childClasses.add("cobra.model.fault.Counts") meta.childClasses.add("cobra.model.health.Inst") meta.childClasses.add("cobra.model.mon.MonObjDn") meta.childClasses.add("cobra.model.snmp.RsDestGroup") meta.childClasses.add("cobra.model.aaa.RbacAnnotation") meta.childClasses.add("cobra.model.fault.Delegate") meta.childClasses.add("cobra.model.tag.Annotation") meta.childNamesAndRnPrefix.append(("cobra.model.tag.Annotation", "annotationKey-")) meta.childNamesAndRnPrefix.append(("cobra.model.snmp.RsDestGroup", "rsdestGroup")) meta.childNamesAndRnPrefix.append(("cobra.model.mon.MonObjDn", "monobjdn-")) meta.childNamesAndRnPrefix.append(("cobra.model.aaa.RbacAnnotation", "rbacDom-")) meta.childNamesAndRnPrefix.append(("cobra.model.tag.Tag", "tagKey-")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Counts", "fltCnts")) meta.childNamesAndRnPrefix.append(("cobra.model.health.Inst", "health")) meta.childNamesAndRnPrefix.append(("cobra.model.fault.Delegate", "fd-")) meta.parentClasses.add("cobra.model.mon.CommonPol") meta.parentClasses.add("cobra.model.mon.InfraPol") meta.parentClasses.add("cobra.model.mon.EPGTarget") meta.parentClasses.add("cobra.model.mon.FabricPol") meta.parentClasses.add("cobra.model.event.SevAsnP") meta.parentClasses.add("cobra.model.mon.EPGPol") meta.parentClasses.add("cobra.model.mon.InfraTarget") meta.parentClasses.add("cobra.model.fault.SevAsnP") meta.parentClasses.add("cobra.model.mon.FabricTarget") meta.superClasses.add("cobra.model.mon.Src") meta.superClasses.add("cobra.model.naming.NamedObject") meta.superClasses.add("cobra.model.pol.Obj") meta.superClasses.add("cobra.model.pol.Comp") meta.rnPrefixes = [ ('snmpsrc-', True), ] prop = PropMeta("str", "annotation", "annotation", 37566, PropCategory.REGULAR) prop.label = "Annotation. Suggested format orchestrator:value" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("annotation", prop) prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "descr", "descr", 5582, PropCategory.REGULAR) prop.label = "Description" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "extMngdBy", "extMngdBy", 39705, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "undefined" prop._addConstant("msc", "msc", 1) prop._addConstant("undefined", "undefined", 0) meta.props.add("extMngdBy", prop) prop = PropMeta("str", "incl", "incl", 16399, PropCategory.REGULAR) prop.label = "Include Action" prop.isConfig = True prop.isAdmin = True prop.defaultValue = 15 prop.defaultValueStr = "all" prop._addConstant("all", "all", 15) prop._addConstant("audit", "audit-logs", 4) prop._addConstant("events", "events", 2) prop._addConstant("faults", "faults", 1) prop._addConstant("none", "none", 0) prop._addConstant("session", "session-logs", 8) meta.props.add("incl", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "minSev", "minSev", 1546, PropCategory.REGULAR) prop.label = "None" prop.isConfig = True prop.isAdmin = True prop.defaultValue = 1 prop.defaultValueStr = "info" prop._addConstant("cleared", "cleared", 0) prop._addConstant("critical", "critical", 5) prop._addConstant("info", "info", 1) prop._addConstant("major", "major", 4) prop._addConstant("minor", "minor", 3) prop._addConstant("warning", "warning", 2) meta.props.add("minSev", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "monPolDn", "monPolDn", 14168, PropCategory.REGULAR) prop.label = "Monitoring policy attached to this observable object" prop.isImplicit = True prop.isAdmin = True meta.props.add("monPolDn", prop) prop = PropMeta("str", "name", "name", 7161, PropCategory.REGULAR) prop.label = "Name" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.range = [(1, 64)] prop.regex = ['[a-zA-Z0-9_.:-]+'] meta.props.add("name", prop) prop = PropMeta("str", "nameAlias", "nameAlias", 28417, PropCategory.REGULAR) prop.label = "Name alias" prop.isConfig = True prop.isAdmin = True prop.range = [(0, 63)] prop.regex = ['[a-zA-Z0-9_.-]+'] meta.props.add("nameAlias", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "uid", "uid", 8, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True meta.props.add("uid", prop) meta.namingProps.append(getattr(meta.props, "name")) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Policy" def __init__(self, parentMoOrDn, name, markDirty=True, **creationProps): namingVals = [name] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
32275f30d3edfcdfabbae11c0e0d3061a353a050
33f9056de72ea429774cdf42d3f813a4cd33a255
/backend/takeout/admin/models/admin.py
803776d2c167a36a3dde181c74e8d18c7d90e965
[ "MIT" ]
permissive
alex159s/Take-out
a566e35d5c05c6e8456beb449c08b6c6479f4e79
27c66dcc4f0e045ae060255679a2aa68c0f744d2
refs/heads/master
2020-04-06T06:36:51.806309
2016-07-15T14:27:06
2016-07-15T14:27:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
305
py
# coding: utf-8 from lib.models.userbase import UserBase class Admin(UserBase): def to_string(self): return { "id": self.id, "username": self.username, "nickname": self.nickname, } def to_detail_string(self): return self.to_string()
d14f400d7cb6a38ec86427c746f0251aa6fa1c75
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-3721.py
dba02cd6001ae165033db26d67139aa3e7a13aa6
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,348
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] $Var.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: int, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))
62d5c24f0840174a493b4036c242af7859a52887
f82757475ea13965581c2147ff57123b361c5d62
/gi-stubs/repository/ICalGLib/__init__.py
75c6283ac12886f54d25efafcb89d88f2ef41f10
[]
no_license
ttys3/pygobject-stubs
9b15d1b473db06f47e5ffba5ad0a31d6d1becb57
d0e6e93399212aada4386d2ce80344eb9a31db48
refs/heads/master
2022-09-23T12:58:44.526554
2020-06-06T04:15:00
2020-06-06T04:15:00
269,693,287
8
2
null
2020-06-05T15:57:54
2020-06-05T15:57:54
null
UTF-8
Python
false
false
12,903
py
# encoding: utf-8 # module gi.repository.ICalGLib # from /usr/lib64/girepository-1.0/ICalGLib-3.0.typelib # by generator 1.147 """ An object which wraps an introspection typelib. This wrapping creates a python module like representation of the typelib using gi repository as a foundation. Accessing attributes of the module will dynamically pull them in and create wrappers for the members. These members are then cached on this introspection module. """ # imports import gi as __gi import gi.overrides.GObject as __gi_overrides_GObject import gobject as __gobject # Variables with simple values _namespace = 'ICalGLib' _version = '3.0' __weakref__ = None # functions def bt(): # real signature unknown; restored from __doc__ """ bt() """ pass def errno_return(): # real signature unknown; restored from __doc__ """ errno_return() -> ICalGLib.ErrorEnum """ pass def error_clear_errno(): # real signature unknown; restored from __doc__ """ error_clear_errno() """ pass def error_crash_here(): # real signature unknown; restored from __doc__ """ error_crash_here() """ pass def error_get_error_state(error): # real signature unknown; restored from __doc__ """ error_get_error_state(error:ICalGLib.ErrorEnum) -> ICalGLib.ErrorState """ pass def error_perror(): # real signature unknown; restored from __doc__ """ error_perror() -> str """ return "" def error_restore(error, es): # real signature unknown; restored from __doc__ """ error_restore(error:str, es:ICalGLib.ErrorState) """ pass def error_set_errno(x): # real signature unknown; restored from __doc__ """ error_set_errno(x:ICalGLib.ErrorEnum) """ pass def error_set_error_state(error, state): # real signature unknown; restored from __doc__ """ error_set_error_state(error:ICalGLib.ErrorEnum, state:ICalGLib.ErrorState) """ pass def error_stop_here(): # real signature unknown; restored from __doc__ """ error_stop_here() """ pass def error_strerror(e): # real signature unknown; restored from __doc__ """ error_strerror(e:ICalGLib.ErrorEnum) -> str """ return "" def error_supress(error): # real signature unknown; restored from __doc__ """ error_supress(error:str) -> ICalGLib.ErrorState """ pass def get_unknown_token_handling_setting(): # real signature unknown; restored from __doc__ """ get_unknown_token_handling_setting() -> ICalGLib.Unknowntokenhandling """ pass def memory_add_tmp_buffer(buf=None): # real signature unknown; restored from __doc__ """ memory_add_tmp_buffer(buf=None) """ pass def memory_append_char(buf, pos, ch): # real signature unknown; restored from __doc__ """ memory_append_char(buf:list, pos:list, ch:int) -> buf:list, pos:list """ pass def memory_append_string(buf, pos, p_str): # real signature unknown; restored from __doc__ """ memory_append_string(buf:list, pos:list, str:str) -> buf:list, pos:list """ pass def memory_free_buffer(buf=None): # real signature unknown; restored from __doc__ """ memory_free_buffer(buf=None) """ pass def memory_new_buffer(size): # real signature unknown; restored from __doc__ """ memory_new_buffer(size:int) """ pass def memory_resize_buffer(buf=None, size): # real signature unknown; restored from __doc__ """ memory_resize_buffer(buf=None, size:int) """ pass def memory_strdup(s): # real signature unknown; restored from __doc__ """ memory_strdup(s:str) -> str """ return "" def memory_tmp_buffer(size): # real signature unknown; restored from __doc__ """ memory_tmp_buffer(size:int) """ pass def memory_tmp_copy(p_str): # real signature unknown; restored from __doc__ """ memory_tmp_copy(str:str) -> str """ return "" def mime_parse(func, user_data=None): # real signature unknown; restored from __doc__ """ mime_parse(func:ICalGLib.MimeParseFunc, user_data=None) -> ICalGLib.Component """ pass def recur_expand_recurrence(rule, start, count): # real signature unknown; restored from __doc__ """ recur_expand_recurrence(rule:str, start:int, count:int) -> list """ return [] def request_status_code(stat): # real signature unknown; restored from __doc__ """ request_status_code(stat:ICalGLib.RequestStatus) -> str """ return "" def request_status_desc(stat): # real signature unknown; restored from __doc__ """ request_status_desc(stat:ICalGLib.RequestStatus) -> str """ return "" def request_status_from_num(major, minor): # real signature unknown; restored from __doc__ """ request_status_from_num(major:int, minor:int) -> ICalGLib.RequestStatus """ pass def request_status_major(stat): # real signature unknown; restored from __doc__ """ request_status_major(stat:ICalGLib.RequestStatus) -> int """ return 0 def request_status_minor(stat): # real signature unknown; restored from __doc__ """ request_status_minor(stat:ICalGLib.RequestStatus) -> int """ return 0 def restriction_check(comp): # real signature unknown; restored from __doc__ """ restriction_check(comp:ICalGLib.Component) -> int """ return 0 def restriction_compare(restr, count): # real signature unknown; restored from __doc__ """ restriction_compare(restr:ICalGLib.RestrictionKind, count:int) -> int """ return 0 def set_unknown_token_handling_setting(newSetting): # real signature unknown; restored from __doc__ """ set_unknown_token_handling_setting(newSetting:ICalGLib.Unknowntokenhandling) """ pass def __delattr__(*args, **kwargs): # real signature unknown """ Implement delattr(self, name). """ pass def __dir__(*args, **kwargs): # real signature unknown pass def __eq__(*args, **kwargs): # real signature unknown """ Return self==value. """ pass def __format__(*args, **kwargs): # real signature unknown """ Default object formatter. """ pass def __getattribute__(*args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getattr__(*args, **kwargs): # real signature unknown pass def __ge__(*args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(*args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(*args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init_subclass__(*args, **kwargs): # real signature unknown """ This method is called when a class is subclassed. The default implementation does nothing. It may be overridden to extend subclasses. """ pass def __init__(*args, **kwargs): # real signature unknown """ Might raise gi._gi.RepositoryError """ pass def __le__(*args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(*args, **kwargs): # real signature unknown """ Return self<value. """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(*args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __reduce_ex__(*args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __reduce__(*args, **kwargs): # real signature unknown """ Helper for pickle. """ pass def __repr__(*args, **kwargs): # real signature unknown pass def __setattr__(*args, **kwargs): # real signature unknown """ Implement setattr(self, name, value). """ pass def __sizeof__(*args, **kwargs): # real signature unknown """ Size of object in memory, in bytes. """ pass def __str__(*args, **kwargs): # real signature unknown """ Return str(self). """ pass def __subclasshook__(*args, **kwargs): # real signature unknown """ Abstract classes can override this to customize issubclass(). This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached). """ pass # classes from .Object import Object from .Array import Array from .ArrayClass import ArrayClass from .Attach import Attach from .AttachClass import AttachClass from .CompIter import CompIter from .CompIterClass import CompIterClass from .Component import Component from .ComponentClass import ComponentClass from .ComponentKind import ComponentKind from .Datetimeperiod import Datetimeperiod from .DatetimeperiodClass import DatetimeperiodClass from .Duration import Duration from .DurationClass import DurationClass from .ErrorEnum import ErrorEnum from .ErrorState import ErrorState from .Geo import Geo from .GeoClass import GeoClass from .ObjectClass import ObjectClass from .ObjectPrivate import ObjectPrivate from .Parameter import Parameter from .ParameterAction import ParameterAction from .ParameterClass import ParameterClass from .ParameterCutype import ParameterCutype from .ParameterEnable import ParameterEnable from .ParameterEncoding import ParameterEncoding from .ParameterFbtype import ParameterFbtype from .ParameterKind import ParameterKind from .ParameterLocal import ParameterLocal from .ParameterPartstat import ParameterPartstat from .ParameterRange import ParameterRange from .ParameterRelated import ParameterRelated from .ParameterReltype import ParameterReltype from .ParameterRequired import ParameterRequired from .ParameterRole import ParameterRole from .ParameterRsvp import ParameterRsvp from .ParameterScheduleagent import ParameterScheduleagent from .ParameterScheduleforcesend import ParameterScheduleforcesend from .ParameterStayinformed import ParameterStayinformed from .ParameterSubstate import ParameterSubstate from .ParameterValue import ParameterValue from .ParameterXliccomparetype import ParameterXliccomparetype from .ParameterXlicerrortype import ParameterXlicerrortype from .Parser import Parser from .ParserClass import ParserClass from .ParserState import ParserState from .Period import Period from .PeriodClass import PeriodClass from .Property import Property from .PropertyAction import PropertyAction from .PropertyBusytype import PropertyBusytype from .PropertyCarlevel import PropertyCarlevel from .PropertyClass import PropertyClass from .PropertyCmd import PropertyCmd from .PropertyKind import PropertyKind from .PropertyMethod import PropertyMethod from .PropertyPollcompletion import PropertyPollcompletion from .PropertyPollmode import PropertyPollmode from .PropertyQuerylevel import PropertyQuerylevel from .PropertyStatus import PropertyStatus from .PropertyTaskmode import PropertyTaskmode from .PropertyTransp import PropertyTransp from .PropertyXlicclass import PropertyXlicclass from .Property_Class import Property_Class from .RecurIterator import RecurIterator from .RecurIteratorClass import RecurIteratorClass from .Recurrence import Recurrence from .RecurrenceArrayMaxValues import RecurrenceArrayMaxValues from .RecurrenceArraySizes import RecurrenceArraySizes from .RecurrenceClass import RecurrenceClass from .RecurrenceFrequency import RecurrenceFrequency from .RecurrenceSkip import RecurrenceSkip from .RecurrenceWeekday import RecurrenceWeekday from .Reqstat import Reqstat from .ReqstatClass import ReqstatClass from .RequestStatus import RequestStatus from .RestrictionKind import RestrictionKind from .Time import Time from .TimeClass import TimeClass from .TimeSpan import TimeSpan from .TimeSpanClass import TimeSpanClass from .Timezone import Timezone from .TimezoneClass import TimezoneClass from .Trigger import Trigger from .TriggerClass import TriggerClass from .Unknowntokenhandling import Unknowntokenhandling from .Value import Value from .ValueClass import ValueClass from .ValueKind import ValueKind from ._Array import _Array from ._Attach import _Attach from ._CompIter import _CompIter from ._Component import _Component from ._Datetimeperiod import _Datetimeperiod from ._Duration import _Duration from ._Geo import _Geo from ._Parameter import _Parameter from ._Parser import _Parser from ._Period import _Period from ._Property import _Property from ._RecurIterator import _RecurIterator from ._Recurrence import _Recurrence from ._Reqstat import _Reqstat from ._Time import _Time from ._TimeSpan import _TimeSpan from ._Timezone import _Timezone from ._Trigger import _Trigger from ._Value import _Value from .__class__ import __class__ # variables with complex values __loader__ = None # (!) real value is '<gi.importer.DynamicImporter object at 0x7f13551b1d00>' __path__ = [ '/usr/lib64/girepository-1.0/ICalGLib-3.0.typelib', ] __spec__ = None # (!) real value is "ModuleSpec(name='gi.repository.ICalGLib', loader=<gi.importer.DynamicImporter object at 0x7f13551b1d00>)"
fe08de446db91af310d979c631ab7fd26537e457
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_121/ch9_2020_08_31_17_12_51_131522.py
f0d648d01a9c7d5c599714f7d8705d12d95bfed3
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
import math def calcula_volume_da_esfera(r): volume_esfera = 4 / 3 * math.pi * r ** 3 return volume_esfera
25bec75d335fd19663fb549bac3f111228adcee2
f3e51466d00510f1dae58f1cb87dd53244ce4e70
/LeetCodes/facebook/ReverseLinkedList.py
9184e30348f7f6739d047928f0e48937973b5b12
[]
no_license
chutianwen/LeetCodes
40d18e7aa270f8235342f0485bfda2bd1ed960e1
11d6bf2ba7b50c07e048df37c4e05c8f46b92241
refs/heads/master
2022-08-27T10:28:16.594258
2022-07-24T21:23:56
2022-07-24T21:23:56
96,836,652
0
0
null
null
null
null
UTF-8
Python
false
false
959
py
''' Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1->NULL Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both? ''' # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def reverseListIterative(self, head): new_head = None while head: # watch out, this order is not right!!! # in this case, head will be head.next first, so head can be None, then head.next = new_head will have problem. # new_head, head, head.next = head, head.next, new_head head.next, new_head, head = new_head, head, head.next return new_head def reverseList(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head else: node = self.reverseList(head.next) head.next.next= = head head.next = None return node
d9557a94d789d81754209070b91182d44bae2261
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/modules/events/settings.py
45ce014e97b50016de412b5d7b4e562a48cc8776
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
8,847
py
from __future__ import unicode_literals import os import re from functools import wraps import yaml from flask.helpers import get_root_path from fossir.core import signals from fossir.core.settings import ACLProxyBase, SettingProperty, SettingsProxyBase from fossir.core.settings.converters import DatetimeConverter from fossir.core.settings.util import get_all_settings, get_setting, get_setting_acl from fossir.modules.events.models.settings import EventSetting, EventSettingPrincipal from fossir.util.caching import memoize from fossir.util.signals import values_from_signal from fossir.util.user import iter_acl def event_or_id(f): @wraps(f) def wrapper(self, event, *args, **kwargs): from fossir.modules.events import Event if isinstance(event, Event): event = event.id return f(self, int(event), *args, **kwargs) return wrapper class EventACLProxy(ACLProxyBase): """Proxy class for event-specific ACL settings""" @event_or_id def get(self, event, name): """Retrieves an ACL setting :param event: Event (or its ID) :param name: Setting name """ self._check_name(name) return get_setting_acl(EventSettingPrincipal, self, name, self._cache, event_id=event) @event_or_id def set(self, event, name, acl): """Replaces an ACL with a new one :param event: Event (or its ID) :param name: Setting name :param acl: A set containing principals (users/groups) """ self._check_name(name) EventSettingPrincipal.set_acl(self.module, name, acl, event_id=event) self._flush_cache() @event_or_id def contains_user(self, event, name, user): """Checks if a user is in an ACL. To pass this check, the user can either be in the ACL itself or in a group in the ACL. :param event: Event (or its ID) :param name: Setting name :param user: A :class:`.User` """ return any(user in principal for principal in iter_acl(self.get(event, name))) @event_or_id def add_principal(self, event, name, principal): """Adds a principal to an ACL :param event: Event (or its ID) :param name: Setting name :param principal: A :class:`.User` or a :class:`.GroupProxy` """ self._check_name(name) EventSettingPrincipal.add_principal(self.module, name, principal, event_id=event) self._flush_cache() @event_or_id def remove_principal(self, event, name, principal): """Removes a principal from an ACL :param event: Event (or its ID) :param name: Setting name :param principal: A :class:`.User` or a :class:`.GroupProxy` """ self._check_name(name) EventSettingPrincipal.remove_principal(self.module, name, principal, event_id=event) self._flush_cache() def merge_users(self, target, source): """Replaces all ACL user entries for `source` with `target`""" EventSettingPrincipal.merge_users(self.module, target, source) self._flush_cache() class EventSettingsProxy(SettingsProxyBase): """Proxy class to access event-specific settings for a certain module""" acl_proxy_class = EventACLProxy @property def query(self): """Returns a query object filtering by the proxy's module.""" return EventSetting.find(module=self.module) @event_or_id def get_all(self, event, no_defaults=False): """Retrieves all settings :param event: Event (or its ID) :param no_defaults: Only return existing settings and ignore defaults. :return: Dict containing the settings """ return get_all_settings(EventSetting, EventSettingPrincipal, self, no_defaults, event_id=event) @event_or_id def get(self, event, name, default=SettingsProxyBase.default_sentinel): """Retrieves the value of a single setting. :param event: Event (or its ID) :param name: Setting name :param default: Default value in case the setting does not exist :return: The settings's value or the default value """ self._check_name(name) return get_setting(EventSetting, self, name, default, self._cache, event_id=event) @event_or_id def set(self, event, name, value): """Sets a single setting. :param event: Event (or its ID) :param name: Setting name :param value: Setting value; must be JSON-serializable """ self._check_name(name) EventSetting.set(self.module, name, self._convert_from_python(name, value), event_id=event) self._flush_cache() @event_or_id def set_multi(self, event, items): """Sets multiple settings at once. :param event: Event (or its ID) :param items: Dict containing the new settings """ items = {k: self._convert_from_python(k, v) for k, v in items.iteritems()} self._split_call(items, lambda x: EventSetting.set_multi(self.module, x, event_id=event), lambda x: EventSettingPrincipal.set_acl_multi(self.module, x, event_id=event)) self._flush_cache() @event_or_id def delete(self, event, *names): """Deletes settings. :param event: Event (or its ID) :param names: One or more names of settings to delete """ self._split_call(names, lambda name: EventSetting.delete(self.module, *name, event_id=event), lambda name: EventSettingPrincipal.delete(self.module, *name, event_id=event)) self._flush_cache() @event_or_id def delete_all(self, event): """Deletes all settings. :param event: Event (or its ID) """ EventSetting.delete_all(self.module, event_id=event) EventSettingPrincipal.delete_all(self.module, event_id=event) self._flush_cache() class EventSettingProperty(SettingProperty): attr = 'event' class ThemeSettingsProxy(object): @property @memoize def settings(self): core_path = os.path.join(get_root_path('fossir'), 'modules', 'events', 'themes.yaml') with open(core_path) as f: core_data = f.read() core_settings = yaml.safe_load(core_data) # YAML doesn't give us access to anchors so we need to include the base yaml. # Since duplicate keys are invalid (and may start failing in the future) we # rename them - this also makes it easy to throw them away after parsing the # file provided by a plugin. core_data = re.sub(r'^(\S+:)$', r'__core_\1', core_data, flags=re.MULTILINE) for plugin, path in values_from_signal(signals.plugin.get_event_themes_files.send(), return_plugins=True): with open(path) as f: data = f.read() settings = {k: v for k, v in yaml.safe_load(core_data + '\n' + data).viewitems() if not k.startswith('__core_')} # We assume there's no more than one theme plugin that provides defaults. # If that's not the case the last one "wins". We could reject this but it # is quite unlikely that people have multiple theme plugins in the first # place, even more so theme plugins that specify defaults. core_settings['defaults'].update(settings.get('defaults', {})) # Same for definitions - we assume plugin authors are responsible enough # to avoid using definition names that are likely to cause collisions. # Either way, if someone does this on purpose chances are good they want # to override a default style so let them do so... for name, definition in settings.get('definitions', {}).viewitems(): definition['plugin'] = plugin core_settings['definitions'][name] = definition return core_settings @property @memoize def themes(self): return self.settings['definitions'] @property @memoize def defaults(self): return self.settings['defaults'] @memoize def get_themes_for(self, event_type): return {theme_id: theme_data for theme_id, theme_data in self.themes.viewitems() if event_type in theme_data['event_types']} event_core_settings = EventSettingsProxy('core', { 'start_dt_override': None, 'end_dt_override': None, 'organizer_info': '', 'additional_info': '' }, converters={ 'start_dt_override': DatetimeConverter, 'end_dt_override': DatetimeConverter }) event_contact_settings = EventSettingsProxy('contact', { 'title': 'Contact', 'emails': [], 'phones': [] })
8e34a2e597940d4b033ab178c33dd25722a67540
fc25d8a6d20b2b9dd78df754b53067e4a6c255d8
/step01a_seaIce_monthlyaveraging_RCP45.py
eaf54dd5e6d74de9ac04cfb70b5d4a8a03153cd3
[]
no_license
weilin2018/cesmEnsembleSeaIce
5195bbec3b4c717d4a990e814b0a8aefa1b46857
7dfeac61d421951560b1562c107ffd3b72a292c9
refs/heads/master
2020-09-04T19:31:53.099776
2015-09-29T17:33:19
2015-09-29T17:33:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,864
py
# code written by K. Barnhart in 2014 and 2015 in support of # Barnhart et al., TITLE, YEAR # # this code represents the first step in analysing the CESMLE sea ice output # it creates monthly averages of the sea ice concentration and sea ice extent. # # to run it, please verify that all the modules listed below are installed on # your machine and change the input and output file paths. print 'importing modules' import nio import numpy as np from netCDF4 import Dataset from datetime import datetime import os import glob # set paths for input and output folder # input folder should contain all of the aice_d files from the CESM-LE # for users of Yellowstone/glade, this file is located at # glade/p/cesm0005/CESM-CAM5-BGC-LE/ice/proc/tseries/daily/aice_d/ pathOut=u'/Volumes/Pitcairn/seaicePPF/northernHemisphere/analysisOutput/' pathIn=u'/Volumes/Pitcairn/seaicePPF/p/cesm0005/CESM-CAM5-BGC-LE/ice/proc/tseries/daily/aice_d/' pathIn45=u'/Volumes/Pitcairn/seaicePPF/p/cesm0005/CESM-CAM5-BGC-ME/ice/proc/tseries/daily/aice_d/' # find all files (nh) limits us to just the northern hemisphere dirList=glob.glob(pathIn45+'b*h*.nc') # hard code in the names for the run parts bgKey=u'B1850C5CN' runPart1key=u'B20TRC5CNBDRD' runParts23key=u'BRCP85C5CNBDRD' runParts23keyRCP45=u'BRCP45C5CNBDRD' owThresh=15 # sea ice concentration for "open Water" daysPerMonth=[31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] cumDaysInYear=np.cumsum(daysPerMonth) ## select unique runs (for RCP 4.5 remove this because all are unique) #uniqueRuns=[] #for fn in dirList: # pathSplit=fn.split('/') # fnSplit=pathSplit[-1].split('.') # if fnSplit[2]==bgKey: # if the control run # uniqueRuns.append(fn) # if fnSplit[2]==runPart1key: # uniqueRuns.append(fn) uniqueRuns=dirList # make sure monthly average do not already exist fileNames=[] for fn in uniqueRuns: pathSplit=fn.split('/') fnSplit=pathSplit[-1].split('.') if fnSplit[2]==bgKey: # if the control run fnTemp=str.join(".", fnSplit[:-1])+'.timeseries.nc' #if fnSplit[2]==runPart1key: # fnSplit[2]=runPart1key+'-'+runParts23keyRCP45 # fnTemp=str.join(".", fnSplit[:-2])+'.timeseries.nc' if fnSplit[2]==runParts23keyRCP45: fnSplit[2]=runPart1key+'-'+runParts23keyRCP45 fnTemp=str.join(".", fnSplit[:-2])+'.timeseries.nc' fn_monthOut=pathOut+fnTemp[:-2]+'monthlyAvg.nc' if os.path.isfile(fn_monthOut)==False: fileNames.append(fn) print fn_monthOut # process the remaining input files. startTime = datetime.now() for fn in fileNames: try: print 'Starting averaging of', fn pathSplit=fn.split('/') fnSplit=pathSplit[-1].split('.') # open files, get aice_d, and time and put into variables with the same name if fnSplit[2]==bgKey: # if the control run fnTemp=str.join(".", fnSplit[:-1])+'.timeseries.nc' f=nio.open_file(fn, 'r') aice_d=f.variables['aice_d'][:,:,:] time=f.variables['time'][:] if fnSplit[2]==runParts23keyRCP45: # now instead you need to open THREE FILES: # first open the first one f=nio.open_file(fn, 'r') aice_d=f.variables['aice_d'][:,:,:] time=f.variables['time'][:] # now find the other two and add them to the end pathConstruct2=pathIn45+'*'+runParts23keyRCP45+'*'+fnSplit[4]+'*'+fnSplit[7]+'*nc' findFiles=np.sort(glob.glob(pathConstruct2)) for fother in findFiles: print fother f1=nio.open_file(fother, 'r') time=np.append(time,f1.variables['time'][:], 0) aice_d=np.append(aice_d, f1.variables['aice_d'][:,:,:], 0) del f1 fnSplit[2]=runPart1key+'-'+runParts23keyRCP45 fnTemp=str.join(".", fnSplit[:-2])+'.timeseries.nc' fn_monthOut=pathOut+fnTemp[:-2]+'monthlyAvg.nc' # calculate the number of years and get the x-y dimension numyears=time.size/365 ni=f.dimensions['ni'] nj=f.dimensions['nj'] area=f.variables['tarea'][:,:] nummonths=numyears*12 # for each cell do the following create monthly averages of SIC and sea ice area # initialize output monthlyTimestep=np.zeros(numyears*12) monthlyTimeBounds=np.zeros((numyears*12,2)) monthlyAvgSIC=np.zeros((numyears*12, nj, ni)) monthlyAvgSIA=np.zeros((numyears*12, 1)) monthlyAvgSIA_thresh=np.zeros((numyears*12, 1)) monthlyTimestep=monthlyTimestep.astype(np.float32) monthlyTimeBounds=monthlyTimeBounds.astype(np.float32) monthlyAvgSIC=monthlyAvgSIC.astype(np.float32) monthlyAvgSIA=monthlyAvgSIA.astype(np.float32) monthlyAvgSIA_thresh=monthlyAvgSIA_thresh.astype(np.float32) # loop through each month. arrayItter=0 for i in range(numyears): #print 'year = ',i+int(t[0]/365) for j in range(12): indStart=int(i*365+np.remainder(cumDaysInYear[j-1], 365)) indStop=int(i*365+cumDaysInYear[j]-1) # select the timestamps and ice concentrations for the current month selt=time[indStart:indStop] selIce=aice_d[indStart:indStop,:,:] # calculate the mean ice concentration meanIce=selIce.mean(axis=0) meanIce[selIce[0,:,:]==f.variables['aice_d'].__dict__['_FillValue']]=f.variables['aice_d'].__dict__['_FillValue'] monthlyAvgSIC[arrayItter,:,:]=meanIce # calculate the mean ice extent sia=[] sia_thresh=[] conversion=1000000.*1000000. for jj in range(selIce.shape[0]): selice2=selIce[jj,:,:] selice2[selice2>1e29]=0 temparea=area temparea[temparea>1e29]=0 temparea=temparea/conversion temparea[selice2==0]=0 sia.append((np.sum((selice2/100.)*(temparea)))) sia_thresh.append((np.sum((selice2>owThresh)*(temparea)))) # save values into output structures. monthlyAvgSIA[arrayItter] = np.mean(sia) # 100% is represted ast 100 instead of 1 monthlyAvgSIA_thresh[arrayItter] = np.mean(sia_thresh) monthlyTimestep[arrayItter]=round(selt.mean(axis=0)) monthlyTimeBounds[arrayItter, 0]=selt.min(axis=0) monthlyTimeBounds[arrayItter, 1]=selt.max(axis=0) arrayItter+=1 del time del aice_d ## Create this monthly averaged file as a new netcdf fMonth=Dataset(fn_monthOut, 'w',format='NETCDF4') # create all the dimentions, set time to unlimited for k in f.dimensions.keys(): if f.unlimited(k)==True: fMonth.createDimension(k, monthlyTimestep.size)#None) else: fMonth.createDimension(k, f.dimensions[k]) print k, f.dimensions[k] # use the netCDF4 instead of pyNIO since it seems to work much better with unlimited variables fMonthVars={} for key in {'TLAT', 'TLON','latt_bounds','lont_bounds','time_bounds', 'time'}: #print 'creating ', key # the netCDF4 module requires that if a fill value exists, it must be declared when the variable is created. try: fMonthVars[key]=fMonth.createVariable(key, f.variables[key].typecode(), f.variables[key].dimensions, fill_value=f.variables[key].__dict__['_FillValue']) except: fMonthVars[key]=fMonth.createVariable(key, f.variables[key].typecode(), f.variables[key].dimensions,fill_value=f.variables['aice_d'].__dict__['_FillValue']) # sett all the attribute keys. atts = f.variables[key].__dict__ for attKey in atts.keys(): if attKey != '_FillValue': setattr(fMonth.variables[key],attKey,atts[attKey]) # create the montly averaged sea ice variable monthAvgKey='aice_d_monthAvg' fMonthVars[monthAvgKey]=fMonth.createVariable(monthAvgKey, f.variables['aice_d'].typecode(), f.variables['aice_d'].dimensions,fill_value=f.variables['aice_d'].__dict__['_FillValue']) #print 'creating aice_d_monthAvg' atts = f.variables['aice_d'].__dict__ for attKey in atts.keys(): if attKey is not '_FillValue': setattr(fMonth.variables[monthAvgKey],attKey,atts[attKey]) setattr(fMonth.variables[monthAvgKey],'long_name','mean monthly sea ice concentration (aggregate)') monthAvgKey='monthlyAvgSIA' fMonthVars[monthAvgKey]=fMonth.createVariable(monthAvgKey, f.variables['aice_d'].typecode(), 'time',fill_value=f.variables['aice_d'].__dict__['_FillValue']) #print 'creating aice_d_monthAvg' atts = f.variables['aice_d'].__dict__ for attKey in atts.keys(): if attKey is not '_FillValue': setattr(fMonth.variables[monthAvgKey],attKey,atts[attKey]) setattr(fMonth.variables[monthAvgKey],'long_name','mean monthly ice area (aggregate)') setattr(fMonth.variables[monthAvgKey],'units','million square kilometers') monthAvgKey='monthlyAvgSIA_thresh' fMonthVars[monthAvgKey]=fMonth.createVariable(monthAvgKey, f.variables['aice_d'].typecode(), 'time',fill_value=f.variables['aice_d'].__dict__['_FillValue']) #print 'creating aice_d_monthAvg' atts = f.variables['aice_d'].__dict__ for attKey in atts.keys(): if attKey is not '_FillValue': setattr(fMonth.variables[monthAvgKey],attKey,atts[attKey]) setattr(fMonth.variables[monthAvgKey],'long_name','mean monthly ice area (using 15% threshold) (aggregate)') setattr(fMonth.variables[monthAvgKey],'units','million square kilometers') # put data into variables, first the ones we are copying over. #print 'putting data into standard variables' for key in {'TLAT', 'TLON','latt_bounds','lont_bounds'}: fMonthVars[key][:,:]=f.variables[key][:] # now, the ones we have created (those with time as a dimention) fMonthVars['time'][:]=monthlyTimestep fMonthVars['time_bounds'][:,:]=monthlyTimeBounds fMonthVars['aice_d_monthAvg'][:,:,:]=monthlyAvgSIC fMonthVars['monthlyAvgSIA'][:]=monthlyAvgSIA fMonthVars['monthlyAvgSIA_thresh'][:]=monthlyAvgSIA_thresh # close and delete the output netCDF variable, retain f, so we can do the next part of the analysis. fMonth.close() del fMonth print'finished averaging of ',fn , (datetime.now()-startTime) except: print 'oops... ', fn, 'didnt run' , (datetime.now()-startTime)
01dca87891811dc9c80df4ec667f35a0d253a385
2d997384a86f0d9c0cdb80a1141908abfdf674cc
/ML_homework8/task.py
3a7d666193d64500051f875d33be8500c66db5a8
[]
no_license
Alice-Avetisyan/Machine_Learning
1ddc91fad066f3abf0457d036aa783f0fc40a46f
9a0cc83c6d90ef58703a383f066ef857bb124334
refs/heads/master
2021-01-16T09:07:20.435898
2020-06-18T08:44:17
2020-06-18T08:44:17
243,054,222
0
0
null
null
null
null
UTF-8
Python
false
false
1,678
py
from sklearn.datasets import make_classification # Generate a random n-class classification problem X, y = make_classification(100, 3, 2, 1, class_sep=0.5) # 2 of 3 features are informative and 1 is redundant # 100 -> number of samples/rows, # 3 -> number of features/columns, # 2 -> number of informative features, # 1 -> number of redundant features (useless data) # class_sep -> the complexity if the model import matplotlib.pyplot as plt # plt.hist(X[:, 1]) # all rows of the second column # plt.show() # plt.scatter(X[:, 0], X[:, 1]) # plt.show() fig = plt.figure() axis1 = fig.add_subplot(1, 2, 1) axis1.hist(X[:, 1]) axis2 = fig.add_subplot(1, 2, 2) axis2.scatter(X[:, 0], X[:, 1]) plt.show() # plots the class distribution for i in range(len(X)): if y[i] == 0: plt.scatter(X[i, 0], X[i, 1], marker='*', color='b') else: plt.scatter(X[i, 0], X[i, 1], marker='D', color='r') plt.show() from sklearn.svm import SVC svc_model = SVC(kernel='rbf') from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=101) svc_model.fit(X_train, y_train) from sklearn.metrics import accuracy_score y_pred = svc_model.predict(X_test) print("Model Accuracy: ", accuracy_score(y_test, y_pred)) # converting the data into DataFrame import pandas as pd custom_df = pd.DataFrame(X, columns=['X1', 'X2', 'X3']) custom_df.insert(len(custom_df.columns), 'y', pd.DataFrame(y)) print(custom_df) # turning the data into a csv file custom_df.to_csv('custom_data.csv', index=False) csv = pd.read_csv('custom_data.csv') print(csv)
9e30f6dd5e43574bbc8c96b3976c5ed164f00864
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/vehicle_systems/components/__init__.py
057145a5b192b33ecbef57d0bc595f52f45d7640
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
132
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/vehicle_systems/components/__init__.py pass
10ebb5a33de3a78479eeeeab0075a4ed9b9b5b16
bcb56cc126ea1885eb5ecc920884e2e331def045
/Part B/Letter.py
5536de9080655ae9b4a8c2bdfc7f925462a11551
[]
no_license
priyanshkedia04/Codeforces-Solutions
2d11cb7b8329fe658f983b7212c17fc89fd784f0
a5197c633bf4c3238f48bfb5b308144c2ffba473
refs/heads/main
2023-06-06T13:10:13.787843
2021-07-01T14:06:52
2021-07-01T14:06:52
382,000,707
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
from collections import Counter s1 = dict(Counter(list(input()))) s2 = dict(Counter(list(input()))) count = 0 if ' ' in s2: del s2[' '] for i in s2: if i in s1 and i: if s1[i] >= s2[i]: count += 1 if count == len(s2): print("YES") else: print("NO")
dab8b347c67f8225bb55fa6570fe28846ab87f79
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/101/usersdata/227/49714/submittedfiles/av1_m3.py
24617831cbcfc8ae60100af176c4d6c910776e9e
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
# -*- coding: utf-8 -*- import math m=int(input('digite o número de termos:')) a=4 pi=0 for i in range(2,m+1,2): b=i+1 c=b+1 pi=3+(a/(i*b*c) print('%.6d'%pi)
2d87cfb2050dc123dda3a9e59dec3db88a7322cd
cf03974cf92b11db7c52d7aec87b4c856feba215
/hungry.py
7a043473d6bca288b13395ad5e69c900846611e1
[]
no_license
kkirankumar9/test
80164594d4f1df97effa3df8b7a19e8f79817c76
166e77e17675bfa873c38ade145aa115a786be55
refs/heads/main
2023-06-21T10:27:55.815853
2021-07-31T13:59:12
2021-07-31T13:59:12
387,144,634
0
0
null
null
null
null
UTF-8
Python
false
false
83
py
i=input("are you hungry") if i=='yes': print("eat pizza") else: print("do work")
f1089e8283bf6ef3416226ce279c6d214d5d825b
5ff12b8402f45a945ef1d33235ecb9c85fb20fe1
/assignment2/cs231n/classifiers/fc_net.py
86b2053377b423a96411375ec289b26feb92ac93
[ "MIT" ]
permissive
strategist922/cs231n
6cc5c82d6df210828f1a3004c964941ae2775fd1
592aa76417341728759900b580141df333a5b46c
refs/heads/master
2020-04-01T09:17:02.570479
2018-08-08T05:32:16
2018-08-08T05:32:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,156
py
from builtins import range from builtins import object import numpy as np from cs231n.layers import * from cs231n.layer_utils import * class TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax. Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - dropout: Scalar between 0 and 1 giving dropout strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg ############################################################################ # TODO: Initialize the weights and biases of the two-layer net. Weights # # should be initialized from a Gaussian with standard deviation equal to # # weight_scale, and biases should be initialized to zero. All weights and # # biases should be stored in the dictionary self.params, with first layer # # weights and biases using the keys 'W1' and 'b1' and second layer weights # # and biases using the keys 'W2' and 'b2'. # ############################################################################ self.params['W1'] = np.random.randn(input_dim, hidden_dim)\ * weight_scale self.params['b1'] = np.zeros(hidden_dim) self.params['W2'] = np.random.randn(hidden_dim, num_classes)\ * weight_scale self.params['b2'] = np.zeros(num_classes) ############################################################################ # END OF YOUR CODE # ############################################################################ def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ scores = None W1, W2, b1, b2 = self.params['W1'], self.params['W2'], \ self.params['b1'], self.params['b2'] ############################################################################ # TODO: Implement the forward pass for the two-layer net, computing the # # class scores for X and storing them in the scores variable. # ############################################################################ hidden, hidden_cache = affine_relu_forward(X, W1, b1) scores, out_cache = affine_forward(hidden, W2, b2) ############################################################################ # END OF YOUR CODE # ############################################################################ # If y is None then we are in test mode so just return scores if y is None: return scores loss, grads = 0, {} ############################################################################ # TODO: Implement the backward pass for the two-layer net. Store the loss # # in the loss variable and gradients in the grads dictionary. Compute data # # loss using softmax, and make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ loss, dx3 = softmax_loss(scores, y) loss += 0.5 * self.reg * (np.sum(W1 * W1) + np.sum(W2 * W2)) dx2, dw2, db2 = affine_backward(dx3, (hidden, W2, b2)) dx1, dw1, db1 = affine_relu_backward(dx2, hidden_cache) grads['W1'] = dw1 + self.reg * W1 grads['W2'] = dw2 + self.reg * W2 grads['b1'] = db1 grads['b2'] = db2 ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads class FullyConnectedNet(object): """ A fully-connected neural network with an arbitrary number of hidden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch normalization as options. For a network with L layers, the architecture will be {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax where batch normalization and dropout are optional, and the {...} block is repeated L - 1 times. Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class. """ def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10, dropout=0, use_batchnorm=False, reg=0.0, weight_scale=1e-2, dtype=np.float32, seed=None): """ Initialize a new FullyConnectedNet. Inputs: - hidden_dims: A list of integers giving the size of each hidden layer. - input_dim: An integer giving the size of the input. - num_classes: An integer giving the number of classes to classify. - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then the network should not use dropout at all. - use_batchnorm: Whether or not the network should use batch normalization. - reg: Scalar giving L2 regularization strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking. - seed: If not None, then pass this random seed to the dropout layers. This will make the dropout layers deteriminstic so we can gradient check the model. """ self.use_batchnorm = use_batchnorm self.use_dropout = dropout > 0 self.reg = reg self.num_layers = 1 + len(hidden_dims) self.dtype = dtype self.params = {} ############################################################################ # TODO: Initialize the parameters of the network, storing all values in # # the self.params dictionary. Store weights and biases for the first layer # # in W1 and b1; for the second layer use W2 and b2, etc. Weights should be # # initialized from a normal distribution with standard deviation equal to # # weight_scale and biases should be initialized to zero. # # # # When using batch normalization, store scale and shift parameters for the # # first layer in gamma1 and beta1; for the second layer use gamma2 and # # beta2, etc. Scale parameters should be initialized to one and shift # # parameters should be initialized to zero. # ############################################################################ for i in range(self.num_layers): if i == 0: self.params['W1'] = np.random.randn(input_dim, hidden_dims[0]) self.params['W1'] *= weight_scale self.params['b1'] = np.zeros(hidden_dims[0]) elif i == self.num_layers - 1: self.params['W'+str(i+1)] = np.random.randn(hidden_dims[-1], num_classes) self.params['W'+str(i+1)] *= weight_scale self.params['b'+str(i+1)] = np.zeros(num_classes) else: self.params['W'+str(i+1)] = np.random.randn(hidden_dims[i-1], hidden_dims[i]) self.params['W'+str(i+1)] *= weight_scale self.params['b'+str(i+1)] = np.zeros(hidden_dims[i]) ############################################################################ # END OF YOUR CODE # ############################################################################ # When using dropout we need to pass a dropout_param dictionary to each # dropout layer so that the layer knows the dropout probability and the mode # (train / test). You can pass the same dropout_param to each dropout layer. self.dropout_param = {} if self.use_dropout: self.dropout_param = {'mode': 'train', 'p': dropout} if seed is not None: self.dropout_param['seed'] = seed # With batch normalization we need to keep track of running means and # variances, so we need to pass a special bn_param object to each batch # normalization layer. You should pass self.bn_params[0] to the forward pass # of the first batch normalization layer, self.bn_params[1] to the forward # pass of the second batch normalization layer, etc. self.bn_params = [] if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)] # Cast all parameters to the correct datatype for k, v in self.params.items(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Compute loss and gradient for the fully-connected net. Input / output: Same as TwoLayerNet above. """ X = X.astype(self.dtype) mode = 'test' if y is None else 'train' # Set train/test mode for batchnorm params and dropout param since they # behave differently during training and testing. if self.dropout_param is not None: self.dropout_param['mode'] = mode if self.use_batchnorm: for bn_param in self.bn_params: bn_param['mode'] = mode scores = None ############################################################################ # TODO: Implement the forward pass for the fully-connected net, computing # # the class scores for X and storing them in the scores variable. # # # # When using dropout, you'll need to pass self.dropout_param to each # # dropout forward pass. # # # # When using batch normalization, you'll need to pass self.bn_params[0] to # # the forward pass for the first batch normalization layer, pass # # self.bn_params[1] to the forward pass for the second batch normalization # # layer, etc. # ############################################################################ out = [] cache = [] temp_out = X for i in range(self.num_layers-1): temp_out, affine_cache = affine_relu_forward( temp_out, self.params['W'+str(i+1)], self.params['b'+str(i+1)]) out.append(temp_out) cache.append(affine_cache) temp_out, affine_cache = affine_forward( temp_out, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)] ) out.append(temp_out) cache.append(affine_cache) scores = out[-1] ############################################################################ # END OF YOUR CODE # ############################################################################ # If test mode return early if mode == 'test': return scores loss, grads = 0.0, {} ############################################################################ # TODO: Implement the backward pass for the fully-connected net. Store the # # loss in the loss variable and gradients in the grads dictionary. Compute # # data loss using softmax, and make sure that grads[k] holds the gradients # # for self.params[k]. Don't forget to add L2 regularization! # # # # When using batch normalization, you don't need to regularize the scale # # and shift parameters. # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ loss, d_loss = softmax_loss(scores, y) weight_norm = 0 for i in range(self.num_layers): weight_norm += np.sum(self.params['W'+str(i+1)] ** 2) loss += 0.5 * self.reg * weight_norm #====================backpropagation for i in np.arange(self.num_layers, 0, -1): if i == self.num_layers: d_affine = affine_backward(d_loss, cache[i-1]) else: d_affine = affine_relu_backward(dout, cache[i-1]) dout = d_affine[0] idx = str(i) grads['W'+idx] = d_affine[1] grads['b'+idx] = d_affine[2] grads['W'+idx] += self.reg * self.params['W'+idx] ########################################################################### # END OF YOUR CODE # ############################################################################ return loss, grads
dfce2e36e00f6072dad0dd1363e621c2a3ac5e08
2635c2e2c31a7badb8b188306c3cdfc61dc1ecc8
/versiones_anteriores_historico/ihm_ant_historico_precios/models/purchase_order_lines.py
58305e8b480fabd0953f97d4aaea24313293aa7c
[]
no_license
rosalesdc/ihm_testing
ec4ebf26c3c7602267a04fd183de4064f9d16bc1
d91ebeac5504c9f29a21b2b0f05bc16ed240ff48
refs/heads/master
2020-04-17T01:21:03.214595
2019-10-29T23:05:52
2019-10-29T23:05:52
166,088,611
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
class purchaseOrderLines(models.Model): _inherit = "purchase.order.lines" def genera_reporte
464aca6bdb71bea101e69f9172bcaeea0fdf5dee
a485f01fd697721356d4405dfef569c50499d652
/SipMask-mmdetection/configs/sipmask/sipmask++_r101_caffe_fpn_ssd_6x.py
dabccfd91bdc17e15ea79c812b84436a3eeb3192
[ "MIT", "Apache-2.0" ]
permissive
Borda/SipMask
653333c1c7a7b5e9d0779c28f1b86d17b623aa5f
bc63fa93f9291d7b664c065f41d937a65d3c72fd
refs/heads/master
2023-05-25T11:11:44.452534
2021-03-26T02:47:49
2021-03-26T02:47:49
299,910,001
1
0
MIT
2020-09-30T12:22:24
2020-09-30T12:22:23
null
UTF-8
Python
false
false
4,553
py
# model settings model = dict( type='SipMask', pretrained='open-mmlab://resnet101_caffe', backbone=dict( type='ResNet', depth=101, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='caffe', dcn=dict(type='DCN', deformable_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, extra_convs_on_inputs=False, # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='SipMaskHead', num_classes=81, in_channels=256, stacked_convs=2, ssd_flag=True, norm_cfg=None, rescoring_flag = True, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), center_sampling=True, center_sample_radius=1.5)) # training and testing settings train_cfg = dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False) test_cfg = dict( nms_pre=1000, min_bbox_size=0, score_thr=0.1, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(576, 576), keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='RandomFlip', flip_ratio=0.5), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(544, 544), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=8, workers_per_gpu=3, train=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict() # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[20, 23]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 24 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/sipmask++_r101_caffe_fpn_6x' load_from = None resume_from = None workflow = [('train', 1)]
8d09c7578019ad5f22cf3b2ab7e4e74eaa4c0bbe
f3ccd2cf5c1819cf6b2b296a134a59a58deb87a6
/03img_classify/classify.py
a1bbe880c582e1d737c4fb08b515be56ded6347b
[]
no_license
leebinjun/gaze_tracking_ARglasses
195120a17a0e4858f4cdfc9516e781567f091fb0
63841b565f6fbb16f788268fb1ef991df0142b6b
refs/heads/master
2020-07-27T01:50:35.800129
2019-12-18T03:05:15
2019-12-18T03:05:15
208,825,449
0
1
null
null
null
null
UTF-8
Python
false
false
1,796
py
import tensorflow as tf import numpy as np import cv2 uid_to_human = {} for line in tf.gfile.GFile('imagenet_synset_to_human_label_map.txt').readlines(): items = line.strip().split('\t') uid_to_human[items[0]] = items[1] node_id_to_uid = {} for line in tf.gfile.GFile('imagenet_2012_challenge_label_map_proto.pbtxt').readlines(): if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1].strip('\n').strip('\"') node_id_to_uid[target_class] = target_class_string node_id_to_name = {} for key, value in node_id_to_uid.items(): node_id_to_name[key] = uid_to_human[value] def create_graph(): with tf.gfile.FastGFile('classify_image_graph_def.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def classify_image(image, top_k=2): image_data = tf.gfile.FastGFile(image, 'rb').read() # print(image_data) # image_data = cv2.imread(image) create_graph() with tf.Session() as sess: # 'softmax:0': A tensor containing the normalized prediction across 1000 labels # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 float description of the image # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG encoding of the image softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, feed_dict={'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) top_k = predictions.argsort()[-top_k:] for node_id in top_k: human_string = node_id_to_name[node_id] score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score)) classify_image('IMG_20190917_120404.jpg')
4cbbc8616a600058c184f711b2e71766118ee132
2c8c7617d98f0349e560291960ecc5fb831bc0af
/programmers/level1/min/최대공약수와최소공배수.py
67ebc70fa0b925142de49537b9ce963b435f15d2
[]
no_license
BU-PS/coding_test
e53d9680ae80f32bfb5238795e868d3b37e5dd71
c4fbd5034c8f507a858ca021cc7f6cfcf43f402a
refs/heads/master
2023-03-15T05:26:36.566092
2021-03-25T12:36:40
2021-03-25T12:36:40
316,865,325
0
0
null
null
null
null
UTF-8
Python
false
false
937
py
# 최대 공약수 (GCD) : 두 개 이상의 자연수의 공통인 약수 중 가장 큰 수 # 1. 최대 공약수를 구하는 법 # - 두수의 약수들을 구한다 # - 두수의 약수들을 집합(set)에 넣는다 # - 교집합을 통해 공약수를 찾는다 # - 교집합을 중 가장 큰 수를 찾는다 # 최소 공배수 (LCM) : 두 수의 공배수가 최소인 # 1. 최소 공배수를 구하는 법 # - N * M = L * C 의 식을 통해 값을 구한 def solution(n: int, m: int): gcd_value = gcd(n=n, m=m) lcm_value = lcm(n=n, m=m, g=gcd_value) return [gcd_value, lcm_value] def gcd(n: int, m: int): max_value = max([n, m]) n_cm = set() m_cm = set() for i in range(1, max_value + 1): if n % i == 0: n_cm.add(i) if m % i == 0: m_cm.add(i) return max(n_cm & m_cm) def lcm(n: int, m: int, g: int): return n * m // g solution(4512, 18)
27e83ea7ad44899703c2d61c2941e9dcef77cdd2
8e583ac7e8a2047f01fa6e9829f9de36022c3265
/lib/python/gooey/python_bindings/gooey_parser.py
95e2b888765693f41f424ea3c8819bc2d20689f2
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jonathanlurie/timelapseComposer
ef25c5623d19024e5f83ad6c236497fdcffca10d
8de9f1ca626419bacb11bf6c563e79d52fb16a8d
refs/heads/master
2021-01-10T09:18:58.517707
2015-05-25T18:58:40
2015-05-25T18:58:40
36,248,988
2
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
from argparse import ArgumentParser class GooeyParser(object): def __init__(self, **kwargs): self.__dict__['parser'] = ArgumentParser(**kwargs) self.widgets = {} @property def _mutually_exclusive_groups(self): return self.parser._mutually_exclusive_groups @property def _actions(self): return self.parser._actions @property def description(self): return self.parser.description def add_argument(self, *args, **kwargs): widget = kwargs.pop('widget', None) self.parser.add_argument(*args, **kwargs) self.widgets[self.parser._actions[-1].dest] = widget def add_mutually_exclusive_group(self, **kwargs): return self.parser.add_mutually_exclusive_group(**kwargs) def add_argument_group(self, *args, **kwargs): return self.parser.add_argument_group(*args, **kwargs) def parse_args(self, args=None, namespace=None): return self.parser.parse_args(args, namespace) def __getattr__(self, item): return getattr(self.parser, item) def __setattr__(self, key, value): return setattr(self.parser, key, value)
3bec992595116b04adc9b11ce51ab2e1693e2a4b
38c8cca903432a88a6141dab4b9ac24740ae9e39
/src/crike_django/manage.py
8937161661f10d2505a8b82f54ecd20f227091b2
[ "Apache-2.0" ]
permissive
mxwww/crike
3d37882e75a4f7170d183d2050d6a643a72f381b
141bd1c9b37882f0369dd8231cdf3576eeb7a5e1
refs/heads/master
2023-07-19T08:09:25.806263
2016-06-11T05:30:46
2016-06-11T05:30:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "crike_django.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
a2190e26fa997ddb6b13f10b274f5d200b6e3918
de6fb3a55196b6bd36a4fda0e08ad658679fb7a1
/vt_manager/src/python/vt_manager/models/utils/Choices.py
8b045af44501156cda604d3c0cf5c53e35f5078b
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
dana-i2cat/felix
4a87af639e4c7db686bfa03f1ae4ce62711615e3
059ed2b3308bda2af5e1942dc9967e6573dd6a53
refs/heads/master
2021-01-02T23:12:43.840754
2016-02-04T10:04:24
2016-02-04T10:04:24
17,132,912
4
4
null
null
null
null
UTF-8
Python
false
false
1,606
py
class VirtTechClass: VIRT_TECH_TYPE_XEN = "xen" VIRT_TECH_CHOICES = ( (VIRT_TECH_TYPE_XEN, 'XEN'), ) @staticmethod def validateVirtTech(value): for tuple in VirtTechClass.VIRT_TECH_CHOICES: if value in tuple: return raise Exception("Virtualization Type not valid") class OSDistClass(): OS_DIST_TYPE_DEBIAN = "Debian" OS_DIST_TYPE_UBUNTU = "Ubuntu" OS_DIST_TYPE_REDHAT = "RedHat" OS_DIST_TYPE_CENTOS = "CentOS" OS_DIST_CHOICES = ( (OS_DIST_TYPE_DEBIAN, 'Debian'), (OS_DIST_TYPE_UBUNTU, 'Ubuntu'), (OS_DIST_TYPE_REDHAT, 'RedHat'), (OS_DIST_TYPE_CENTOS, 'CentOS'), ) @staticmethod def validateOSDist(value): for tuple in OSDistClass.OS_DIST_CHOICES: if value in tuple: return raise Exception("OS Distribution not valid") class OSVersionClass(): OS_VERSION_TYPE_50 = "5.0" OS_VERSION_TYPE_60 = "6.0" OS_VERSION_TYPE_62 = "6.2" OS_VERSION_TYPE_70 = "7.0" OS_VERSION_CHOICES = ( (OS_VERSION_TYPE_50, '5.0'), (OS_VERSION_TYPE_60, '6.0'), (OS_VERSION_TYPE_62, '6.2'), (OS_VERSION_TYPE_70, '7.0'), ) @staticmethod def validateOSVersion(value): for tuple in OSVersionClass.OS_VERSION_CHOICES: if value in tuple: return raise Exception("OS Version not valid") class OSTypeClass(): OS_TYPE_TYPE_GNULINUX = "GNU/Linux" OS_TYPE_TYPE_WINDOWS = "Windows" OS_TYPE_CHOICES = ( (OS_TYPE_TYPE_GNULINUX, 'GNU/Linux'), (OS_TYPE_TYPE_WINDOWS, 'Windows'), ) @staticmethod def validateOSType(value): for tuple in OSTypeClass.OS_TYPE_CHOICES: if value in tuple: return raise Exception("OS Type not valid")
06e6ec8eeae855acf71b78ba670c6f33f3e7d563
b144c5142226de4e6254e0044a1ca0fcd4c8bbc6
/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/cfm_c1742b75736db9d1da0fb731317ab337.py
2553211aa330936731e6ce2d5a16da9385c4e481
[ "MIT" ]
permissive
iwanb/ixnetwork_restpy
fa8b885ea7a4179048ef2636c37ef7d3f6692e31
c2cb68fee9f2cc2f86660760e9e07bd06c0013c2
refs/heads/master
2021-01-02T17:27:37.096268
2020-02-11T09:28:15
2020-02-11T09:28:15
239,721,780
0
0
NOASSERTION
2020-02-11T09:20:22
2020-02-11T09:20:21
null
UTF-8
Python
false
false
6,156
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class Cfm(Base): """This object contains the configuration of the CFM protocol. The Cfm class encapsulates a required cfm resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'cfm' def __init__(self, parent): super(Cfm, self).__init__(parent) @property def Bridge(self): """An instance of the Bridge class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bridge_d8b0c3589e6175e046e1a83cbe6f36b6.Bridge) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bridge_d8b0c3589e6175e046e1a83cbe6f36b6 import Bridge return Bridge(self) @property def EnableOptionalLmFunctionality(self): """NOT DEFINED Returns: bool """ return self._get_attribute('enableOptionalLmFunctionality') @EnableOptionalLmFunctionality.setter def EnableOptionalLmFunctionality(self, value): self._set_attribute('enableOptionalLmFunctionality', value) @property def EnableOptionalTlvValidation(self): """If true, the CFM protocol will validate optional TLVs present in CFM packets. Returns: bool """ return self._get_attribute('enableOptionalTlvValidation') @EnableOptionalTlvValidation.setter def EnableOptionalTlvValidation(self, value): self._set_attribute('enableOptionalTlvValidation', value) @property def Enabled(self): """If true, the CFM protcol is enabled. Returns: bool """ return self._get_attribute('enabled') @Enabled.setter def Enabled(self, value): self._set_attribute('enabled', value) @property def ReceiveCcm(self): """If true, the CFM protocol can receive CFM CCMs on this port. Returns: bool """ return self._get_attribute('receiveCcm') @ReceiveCcm.setter def ReceiveCcm(self, value): self._set_attribute('receiveCcm', value) @property def RunningState(self): """The current running state of the CFM protocol. Returns: str(unknown|stopped|stopping|starting|started) """ return self._get_attribute('runningState') @property def SendCcm(self): """If true, the CFM protocol can send CFM CCMs from this port. Returns: bool """ return self._get_attribute('sendCcm') @SendCcm.setter def SendCcm(self, value): self._set_attribute('sendCcm', value) @property def SuppressErrorsOnAis(self): """If true, the errors on AIS are suopressed. Returns: bool """ return self._get_attribute('suppressErrorsOnAis') @SuppressErrorsOnAis.setter def SuppressErrorsOnAis(self, value): self._set_attribute('suppressErrorsOnAis', value) def update(self, EnableOptionalLmFunctionality=None, EnableOptionalTlvValidation=None, Enabled=None, ReceiveCcm=None, SendCcm=None, SuppressErrorsOnAis=None): """Updates a child instance of cfm on the server. Args: EnableOptionalLmFunctionality (bool): NOT DEFINED EnableOptionalTlvValidation (bool): If true, the CFM protocol will validate optional TLVs present in CFM packets. Enabled (bool): If true, the CFM protcol is enabled. ReceiveCcm (bool): If true, the CFM protocol can receive CFM CCMs on this port. SendCcm (bool): If true, the CFM protocol can send CFM CCMs from this port. SuppressErrorsOnAis (bool): If true, the errors on AIS are suopressed. Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals()) def Start(self): """Executes the start operation on the server. Starts the CFM protocol on a port or group of ports. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('start', payload=payload, response_object=None) def Stop(self): """Executes the stop operation on the server. Stops the CFM protocol on a port or group of ports. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('stop', payload=payload, response_object=None)
3093186e46c96765d0b51554468a7761c5484e8e
a72e79b8caa43e973e7d7ecb7ffdaba15314bb9f
/server/wtpodcast2/feeds/whatsnew/urls.py
d16a486de32ebec8b741e4bcd3163578dee8596f
[]
no_license
crgwbr/wt-podcast2
2e4be9a0ffa8675d8283f3d0cc16adc799acac68
a2dfb178b5e4c3e9ac5ab9ef7c13669caf50129c
refs/heads/master
2022-12-24T07:42:47.599582
2020-10-08T15:35:52
2020-10-08T15:35:52
266,866,346
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
from django.urls import path from . import views app_name = 'whatsnew' urlpatterns = [ path('feed.rss', views.feed_rss, name='feed_rss'), ]
f7a4a5e6467ee184d150cffb9fae09e625703666
1af44bdcbc3c15d3f6e436a7924dfd45f504ab3a
/01.jump to python/02.Data Science/1. collection/6. App/Scheduler_example.py
25345e1d5cf5e270c0a09dd38d9fcbcdd11abc17
[]
no_license
wql7654/bigdata_exam
f57c8b475690cbc5978009dbf8008bedff602e2a
c07ee711bb84407428ba31165185b9607b6825e8
refs/heads/master
2023-04-07T00:50:59.563714
2021-05-25T02:46:43
2021-05-25T02:46:43
180,915,985
0
0
null
2023-03-25T01:08:09
2019-04-12T02:36:08
Jupyter Notebook
UTF-8
Python
false
false
998
py
import threading import time g_Balcony_windows=False g_AI_Mode=False def updata_scheduler(): global g_Balcony_windows while True: if g_AI_Mode == False: continue else: time.sleep(5) g_Balcony_windows=not g_Balcony_windows t= threading.Thread(target=updata_scheduler) t.daemon=True t.start() while True: print("메뉴를 선택하세요") print("1. 장비 상태 조회") print("2. 인공지능 모드 변경") print("3. 종료") menu_num= int(input("메뉴 입력: ")) if(menu_num==1): print("발코니(베란다) 창문: ",end='') if g_Balcony_windows==True: print("열림") else: print("닫힘") elif(menu_num==2): print("인공지능 모드: ", end='') g_AI_Mode=not g_AI_Mode if g_AI_Mode==True: print("작동") else: print("정지") else: break
0864304fb6f9996499fcb687bf16c415b3d12c7e
938d5d26c0346316a10a74520b7e30b1bb1f6893
/oncopolicy/utils/generic.py
4a1dcb70ea43341de423c68976e0cc57c3119a36
[ "MIT" ]
permissive
yala/Tempo
46fe0da5a6e2e1a8b9bc855851e7ff9a3ab63bd6
bf3e0e78d64869bb2079c582a4a35982f78386ad
refs/heads/main
2023-04-17T07:04:34.697607
2022-01-13T21:03:04
2022-01-13T21:03:04
419,388,269
13
2
null
null
null
null
UTF-8
Python
false
false
3,560
py
import datetime import hashlib import numpy as np from copy import deepcopy import torch import pdb INVALID_DATE_STR = "Date string not valid! Received {}, and got exception {}" ISO_FORMAT = '%Y-%m-%d %H:%M:%S' CGMH_ISO_FORMAT ='%Y%m%d' DAYS_IN_YEAR = 365 DAYS_IN_MO = 30 MAX_MO_TO_CANCER = 1200 MIN_MO_TO_CANCER = 3 MAX_PREFERNCES = 10.0 MIN_PREFERNCES = 0 EPSILON = 1e-3 AVG_MOMENTUM = 0.95 NUM_DIM_AUX_FEATURES = 7 ## Deprecated class AverageMeter(): def __init__(self): self.avg = 0 self.first_update = True def reset(self): self.avg = 0 self.first_update = True def update(self, val_tensor): val = val_tensor.item() if self.first_update: self.avg = val self.first_update = False else: self.avg = (AVG_MOMENTUM * self.avg) + (1-AVG_MOMENTUM) * val assert self.avg >= 0 and val >= 0 def get_aux_tensor(tensor, args): ## use of auxillary features for screen is deprecated return torch.zeros([tensor.size()[0], NUM_DIM_AUX_FEATURES]).to(tensor.device) def to_numpy(tensor): return tensor.cpu().numpy() def to_tensor(arr, device): return torch.Tensor(arr).to(device) def sample_preference_vector(batch_size, sample_random, args): if sample_random: dist = torch.distributions.uniform.Uniform(MIN_PREFERNCES, MAX_PREFERNCES) preferences = dist.sample([batch_size, len(args.metrics), 1]) else: preferences = torch.ones(batch_size, len(args.metrics), 1) preferences *= torch.tensor(args.fixed_preference).unsqueeze(0).unsqueeze(-1) preferences = preferences + EPSILON preferences = (preferences / (preferences).sum(dim=1).unsqueeze(-1)) return preferences.to(args.device) def normalize_dictionary(dictionary): ''' Normalizes counts in dictionary :dictionary: a python dict where each value is a count :returns: a python dict where each value is normalized to sum to 1 ''' num_samples = sum([dictionary[l] for l in dictionary]) for label in dictionary: dictionary[label] = dictionary[label]*1. / num_samples return dictionary def parse_date(iso_string): ''' Takes a string of format "YYYY-MM-DD HH:MM:SS" and returns a corresponding datetime.datetime obj throws an exception if this can't be done. ''' try: return datetime.datetime.strptime(iso_string, ISO_FORMAT) except Exception as e: raise Exception(INVALID_DATE_STR.format(iso_string, e)) def md5(key): ''' returns a hashed with md5 string of the key ''' return hashlib.md5(key.encode()).hexdigest() def pad_array_to_length(arr, pad_token, max_length): arr = arr[:max_length] return np.array( arr + [pad_token]* (max_length - len(arr))) def fast_forward_exam_by_one_time_step(curr_exam, NUM_DAYS_IN_TIME_STEP): exam = deepcopy(curr_exam) est_date_of_last_followup = curr_exam['date'] + datetime.timedelta(days=int(DAYS_IN_YEAR * curr_exam['years_to_last_followup'])) est_date_of_cancer = curr_exam['date'] + datetime.timedelta(days=int(DAYS_IN_MO * curr_exam['months_to_cancer'])) exam['date'] = curr_exam['date'] + datetime.timedelta(days=int(NUM_DAYS_IN_TIME_STEP)) exam['years_to_last_followup'] = (est_date_of_last_followup - exam['date']).days / DAYS_IN_YEAR exam['months_to_cancer'] = (est_date_of_cancer - exam['date']).days / DAYS_IN_MO exam['has_cancer'] = exam['months_to_cancer'] < MIN_MO_TO_CANCER exam['time_stamp'] = curr_exam['time_stamp'] + 1 return exam
9518f30afd0866dfa568b4f15f136dbab54fdeb8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02705/s961392013.py
735378c11733dcf7056fec7e375575cc6f489fe0
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
# mathモジュールをインポート import math r = input().rstrip() r = int(r) # 円周率の近似値 x = math.pi ans = (2 * r) * x print(ans)
79a50b733533cd6299691b654d5ce900ae38596f
de4449e4fbd2972a5a7e775e3a3c7a187ef86899
/ubiops/models/pipeline_request_deploment_request.py
4cab9039fd3b21f5a7110af758c322d56e311bb0
[ "Apache-2.0" ]
permissive
egutierrez-ar/client-library-python
03325cc1d4c3e949187889ceb404a08660a7f418
94177e5f175263bce645c15a171e54690b1e254f
refs/heads/master
2023-01-22T23:41:40.274718
2020-11-19T07:34:36
2020-11-19T07:34:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,840
py
# coding: utf-8 """ UbiOps Client Library to interact with the UbiOps API. # noqa: E501 The version of the OpenAPI document: v2.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from ubiops.configuration import Configuration class PipelineRequestDeplomentRequest(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'request_id': 'str', 'pipeline_object': 'str', 'success': 'bool', 'request_data': 'object', 'result': 'object', 'error_message': 'str' } attribute_map = { 'request_id': 'request_id', 'pipeline_object': 'pipeline_object', 'success': 'success', 'request_data': 'request_data', 'result': 'result', 'error_message': 'error_message' } def __init__(self, request_id=None, pipeline_object=None, success=None, request_data=None, result=None, error_message=None, local_vars_configuration=None): # noqa: E501 """PipelineRequestDeplomentRequest - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._request_id = None self._pipeline_object = None self._success = None self._request_data = None self._result = None self._error_message = None self.discriminator = None self.request_id = request_id self.pipeline_object = pipeline_object self.success = success self.request_data = request_data self.result = result self.error_message = error_message @property def request_id(self): """Gets the request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this PipelineRequestDeplomentRequest. :param request_id: The request_id of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ self._request_id = request_id @property def pipeline_object(self): """Gets the pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._pipeline_object @pipeline_object.setter def pipeline_object(self, pipeline_object): """Sets the pipeline_object of this PipelineRequestDeplomentRequest. :param pipeline_object: The pipeline_object of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and pipeline_object is None: # noqa: E501 raise ValueError("Invalid value for `pipeline_object`, must not be `None`") # noqa: E501 if (self.local_vars_configuration.client_side_validation and pipeline_object is not None and len(pipeline_object) < 1): raise ValueError("Invalid value for `pipeline_object`, length must be greater than or equal to `1`") # noqa: E501 self._pipeline_object = pipeline_object @property def success(self): """Gets the success of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The success of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: bool """ return self._success @success.setter def success(self, success): """Sets the success of this PipelineRequestDeplomentRequest. :param success: The success of this PipelineRequestDeplomentRequest. # noqa: E501 :type: bool """ if self.local_vars_configuration.client_side_validation and success is None: # noqa: E501 raise ValueError("Invalid value for `success`, must not be `None`") # noqa: E501 self._success = success @property def request_data(self): """Gets the request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: object """ return self._request_data @request_data.setter def request_data(self, request_data): """Sets the request_data of this PipelineRequestDeplomentRequest. :param request_data: The request_data of this PipelineRequestDeplomentRequest. # noqa: E501 :type: object """ self._request_data = request_data @property def result(self): """Gets the result of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The result of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: object """ return self._result @result.setter def result(self, result): """Sets the result of this PipelineRequestDeplomentRequest. :param result: The result of this PipelineRequestDeplomentRequest. # noqa: E501 :type: object """ self._result = result @property def error_message(self): """Gets the error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :return: The error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :rtype: str """ return self._error_message @error_message.setter def error_message(self, error_message): """Sets the error_message of this PipelineRequestDeplomentRequest. :param error_message: The error_message of this PipelineRequestDeplomentRequest. # noqa: E501 :type: str """ self._error_message = error_message def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PipelineRequestDeplomentRequest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, PipelineRequestDeplomentRequest): return True return self.to_dict() != other.to_dict()
95f6713504bf13a0bf73502b797efe5295597a01
bcb71f3ad0196709d462330a60801d5f8ec92ea6
/backend/blog/models.py
52046c2bc34be06eb996c26a98cfd002333212d7
[ "BSD-3-Clause" ]
permissive
lautarianoo/lautacademy
c7a7e84958fd6209415c16a0957a7e12449a9afc
beec082bdffe8c773fcec51974a687aced278a76
refs/heads/master
2023-05-28T20:22:22.718962
2021-06-11T17:19:32
2021-06-11T17:19:32
364,965,320
2
0
null
null
null
null
UTF-8
Python
false
false
5,201
py
from ckeditor_uploader.fields import RichTextUploadingField from django.db import models from django.contrib.auth.models import User from django.urls import reverse from django.utils import timezone from ckeditor.fields import RichTextField from mptt.models import MPTTModel, TreeForeignKey from django.dispatch import receiver from django.db.models.signals import post_save from backend.utils.transliteration import transliteration_rus_eng from backend.utils.send_mail import send_mail_user_post class BlogCategory(MPTTModel): """Класс модели категорий сетей""" name = models.CharField("Категория", max_length=50) published = models.BooleanField("Опубликовать?", default=True) parent = TreeForeignKey( 'self', verbose_name="Родительская категория", on_delete=models.CASCADE, null=True, blank=True, related_name='children') slug = models.SlugField(max_length=100, blank=True, null=True, unique=True) description = models.TextField("Description", max_length=300, default="") class Meta: verbose_name = "Категория" verbose_name_plural = "Категории" def __str__(self): return self.name class Tag(models.Model): """Класс модели тегов""" name = models.CharField("Тег", max_length=50, unique=True, null=True) slug = models.SlugField(max_length=100, blank=True, null=True) class Meta: verbose_name = "Тег" verbose_name_plural = "Теги" def __str__(self): return self.name class Post(models.Model): """Класс модели поста""" author = models.ForeignKey( User, verbose_name="Автор", on_delete=models.CASCADE) title = models.CharField("Тема", max_length=500) mini_text = models.TextField("Краткое содержание", max_length=5000) text = models.TextField("Полное содержание", max_length=10000000) created_date = models.DateTimeField("Дата создания", auto_now_add=True) published_date = models.DateTimeField("Дата публикации", blank=True, null=True) image = models.ImageField("Изображение", upload_to="blog/", blank=True) tag = models.ManyToManyField(Tag, verbose_name="Тег", blank=True) category = models.ForeignKey( BlogCategory, verbose_name="Категория", blank=True, null=True, on_delete=models.SET_NULL) published = models.BooleanField("Опубликовать?", default=True) viewed = models.IntegerField("Просмотрено", default=0) slug = models.SlugField(max_length=500, blank=True, null=True, unique=True) description = models.TextField("Description", max_length=300, default="", null=True) class Meta: verbose_name = "Новость" verbose_name_plural = "Новости" ordering = ["-created_date"] def publish(self): self.published_date = timezone.now() self.save() def get_category_description(self): return self.category.description def get_absolute_url(self): return reverse("single_post", kwargs={"category": self.category.slug, "slug": self.slug}) def save(self, *args, **kwargs): self.slug = transliteration_rus_eng(self.title) + '-' + str(self.id) super().save(*args, **kwargs) def __str__(self): return self.title class Comment(MPTTModel): """Модель коментариев к новостям""" user = models.ForeignKey(User, verbose_name="Пользователь", on_delete=models.CASCADE) post = models.ForeignKey(Post, verbose_name="Новость", on_delete=models.CASCADE) text = models.TextField("Сообщение", max_length=2000) date = models.DateTimeField("Дата", auto_now_add=True) update = models.DateTimeField("Изменен", auto_now=True) parent = TreeForeignKey( "self", verbose_name="Родительский комментарий", on_delete=models.CASCADE, null=True, blank=True, related_name='children') published = models.BooleanField("Опубликовать?", default=True) class Meta: verbose_name = "Комментарий" verbose_name_plural = "Комментарии" def __str__(self): return "{} - {}".format(self.user, self.post) class SpySearch(models.Model): """Модель отслеживания запросов поиска""" record = models.CharField("Запрос", max_length=1000) counter = models.PositiveIntegerField("Количество запросов", default=0) class Meta: verbose_name = "Запрос" verbose_name_plural = "Запросы" def __str__(self): return "{}".format(self.record) @receiver(post_save, sender=Post) def create_user_post(sender, instance, created, **kwargs): """Отправка сообщения о предложенной статье на email""" if created: send_mail_user_post(instance)
[ "neonchick1" ]
neonchick1
4e75a52bbb36cbac6858c29d1ab2d433f1f7071e
169d809f45dedcaa3c7b1b49912d8b025abe18d9
/challenge251_easy.py
5d902f9cf7b2c9832252475e7fc7bf3834a08af4
[]
no_license
bermec/challenges
8a82d1d38d1ed1a0fc3f258443bc0054efc977a6
9fb092f20f12b4eaa808e758f00f482a49346c88
refs/heads/master
2021-10-08T05:05:56.803332
2018-12-08T00:20:20
2018-12-08T00:20:20
109,448,713
0
0
null
null
null
null
UTF-8
Python
false
false
2,253
py
''' Nonograms, also known as Hanjie, Picross or Griddlers, are picture logic puzzles in which cells in a grid must be colored or left blank according to numbers at the side of the grid to reveal a hidden picture. In this puzzle type, the numbers are a form of discrete tomography that measures how many unbroken lines of filled-in squares there are in any given row or column. In a Nonogram you are given the number of elements in the rows and columns. A row/column where containing no element has a '0' all other rows/columns will have at least one number. Each number in a row/column represent sets of elements next to each other. If a row/column have multiple sets, the declaration of that row/column will have multiple numbers. These sets will always be at least 1 cell apart. An example 2 1 1 1 1 1 2 1 2 * * 1 2 * * * 0 2 1 * * * 2 * * Input description Today you will receive an image in ASCII with ' ' being empty and '*' being full. The number of rows and columns will always be a multiple of 5. * ** * * * * ***** Output description Give the columns and rows for the input Columns: 1 1 1 2 1 1 5 Rows: 1 2 1 1 1 1 5 Ins 1 * /| / | / | *---* 2 /\ # /**\# /****\ /******\ /--------\ | | | || # | | || # | | || | *------* Bonus Place the columns and rows in a grid like you would give to a puzzler 1 1 1 2 1 1 5 1 2 1 1 1 1 5 ''' pattern = ''' * /| / | / | *---*''' pattern = pattern.splitlines() output = [] import re for x in range(0, len(pattern)): print() ans = re.findall('\S\S\S\S\S|\S\S|\S', pattern[x]) temp = [] for item in ans: len_item = len(item) temp.append(str(len_item)) output.append(temp) temp = [] N = len(output) b = '' c = [] for lst in output: for item in lst: b += item b = b.rjust(2, ' ') c.append(b) b = '' d = ' ' e = [] # width M = len(c[0]) for x in range(0, M): for y in range(0, len(c)): d += c[y][x] + ' ' e.append(d) print(d) d = ' ' for x in range(0, N): temp = c[x][0] temp2 = c[x][1] print(c[x][0], end='') print('{: >2}'.format(c[x][1]))
2982b152f2ef0916c17ae223e733483d0f455558
fa9cc9cc469a3f0c5bdc0bc4e562dbbd3ff7e465
/messages/RequestCloudMessage.py
cfd12e7df3126a5a7572dd9613f73bd6e7fc77a3
[ "MIT" ]
permissive
zadjii/nebula
ddd86ea30791b46b2a1aeb000ae5dfea9a496168
50c4ec019c9f7eb15fe105a6c53a8a12880e281c
refs/heads/master
2021-01-24T17:08:30.607634
2018-09-18T00:35:36
2018-09-18T00:35:36
36,847,552
2
1
null
null
null
null
UTF-8
Python
false
false
829
py
# last generated 2016-12-30 19:27:53.981000 from messages import BaseMessage from msg_codes import REQUEST_CLOUD as REQUEST_CLOUD __author__ = 'Mike' class RequestCloudMessage(BaseMessage): def __init__(self, id=None, cloud_uname=None, cname=None, username=None, passw=None): super(RequestCloudMessage, self).__init__() self.type = REQUEST_CLOUD self.id = id self.cloud_uname = cloud_uname self.cname = cname self.username = username self.passw = passw @staticmethod def deserialize(json_dict): msg = RequestCloudMessage() msg.id = json_dict['id'] msg.cloud_uname = json_dict['cloud_uname'] msg.cname = json_dict['cname'] msg.username = json_dict['username'] msg.passw = json_dict['passw'] return msg
de2366117fa19b7601ff66ec8e096b371bd033d7
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02379/s777602673.py
78b06ae63e611e0c41787c5b51901c304d983aee
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
import math x1,y1,x2,y2=map(float,input().split()) dx,dy=x2-x1,y2-y1 d=math.sqrt(dx*dx+dy*dy) print("{:.8f}".format(d))
68615c0335fc693397ae3712ddd889db8865a5ec
cee65c4806593554662330368c799c14ec943454
/src/dms-preview/azext_dms/vendored_sdks/datamigration/models/project_task.py
f06065a5bf044dac5eb01d8d79ccba2c49e5d1d2
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
azclibot/azure-cli-extensions
d5d1a4ecdfc87fd79f5ad042fb85cdbf881897d2
c230646258d4b56efb7d44eb7a0230f2943da6f6
refs/heads/master
2023-08-28T03:55:02.311902
2019-04-04T16:05:45
2019-04-04T16:05:45
179,548,695
1
1
MIT
2021-07-28T15:26:17
2019-04-04T17:54:39
Python
UTF-8
Python
false
false
1,660
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class ProjectTask(Resource): """A task resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param etag: HTTP strong entity tag value. This is ignored if submitted. :type etag: str :param properties: Custom task properties :type properties: ~azure.mgmt.datamigration.models.ProjectTaskProperties """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, 'properties': {'key': 'properties', 'type': 'ProjectTaskProperties'}, } def __init__(self, **kwargs): super(ProjectTask, self).__init__(**kwargs) self.etag = kwargs.get('etag', None) self.properties = kwargs.get('properties', None)
e5c99083e888679c70abb0a62f231e39b7340f2b
385a63d3c9e6f5815979165001f78ec3d7b90cd2
/DrivingTDM_SetupMatlabOOP/headerAndFunctionsMotor/ximc/python-profiles/STANDA/8MT175V-150-VSS42.py
36179aa2493ff6c8567ae576017af21d79a83175
[ "BSD-2-Clause" ]
permissive
Rasedujjaman/matlabOOP
5abb6ec94998fda5e9214ed94cf67a42bf243d4f
e1f025ab9b00a3646719df23852079736d2b5701
refs/heads/main
2023-07-23T21:40:53.905045
2021-08-31T16:12:39
2021-08-31T16:12:39
378,249,559
1
1
null
null
null
null
UTF-8
Python
false
false
22,810
py
def set_profile_8MT175V_150_VSS42(lib, id): worst_result = Result.Ok result = Result.Ok feedback_settings = feedback_settings_t() feedback_settings.IPS = 4000 class FeedbackType_: FEEDBACK_ENCODER_MEDIATED = 6 FEEDBACK_NONE = 5 FEEDBACK_EMF = 4 FEEDBACK_ENCODER = 1 feedback_settings.FeedbackType = FeedbackType_.FEEDBACK_NONE class FeedbackFlags_: FEEDBACK_ENC_TYPE_BITS = 192 FEEDBACK_ENC_TYPE_DIFFERENTIAL = 128 FEEDBACK_ENC_TYPE_SINGLE_ENDED = 64 FEEDBACK_ENC_REVERSE = 1 FEEDBACK_ENC_TYPE_AUTO = 0 feedback_settings.FeedbackFlags = FeedbackFlags_.FEEDBACK_ENC_TYPE_SINGLE_ENDED | FeedbackFlags_.FEEDBACK_ENC_TYPE_AUTO feedback_settings.CountsPerTurn = 4000 result = lib.set_feedback_settings(id, byref(feedback_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result home_settings = home_settings_t() home_settings.FastHome = 500 home_settings.uFastHome = 0 home_settings.SlowHome = 500 home_settings.uSlowHome = 0 home_settings.HomeDelta = 626 home_settings.uHomeDelta = 200 class HomeFlags_: HOME_USE_FAST = 256 HOME_STOP_SECOND_BITS = 192 HOME_STOP_SECOND_LIM = 192 HOME_STOP_SECOND_SYN = 128 HOME_STOP_SECOND_REV = 64 HOME_STOP_FIRST_BITS = 48 HOME_STOP_FIRST_LIM = 48 HOME_STOP_FIRST_SYN = 32 HOME_STOP_FIRST_REV = 16 HOME_HALF_MV = 8 HOME_MV_SEC_EN = 4 HOME_DIR_SECOND = 2 HOME_DIR_FIRST = 1 home_settings.HomeFlags = HomeFlags_.HOME_USE_FAST | HomeFlags_.HOME_STOP_SECOND_REV | HomeFlags_.HOME_STOP_FIRST_BITS | HomeFlags_.HOME_DIR_SECOND result = lib.set_home_settings(id, byref(home_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result move_settings = move_settings_t() move_settings.Speed = 1000 move_settings.uSpeed = 0 move_settings.Accel = 2000 move_settings.Decel = 4000 move_settings.AntiplaySpeed = 1000 move_settings.uAntiplaySpeed = 0 class MoveFlags_: RPM_DIV_1000 = 1 result = lib.set_move_settings(id, byref(move_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result engine_settings = engine_settings_t() engine_settings.NomVoltage = 1 engine_settings.NomCurrent = 1200 engine_settings.NomSpeed = 4000 engine_settings.uNomSpeed = 0 class EngineFlags_: ENGINE_LIMIT_RPM = 128 ENGINE_LIMIT_CURR = 64 ENGINE_LIMIT_VOLT = 32 ENGINE_ACCEL_ON = 16 ENGINE_ANTIPLAY = 8 ENGINE_MAX_SPEED = 4 ENGINE_CURRENT_AS_RMS = 2 ENGINE_REVERSE = 1 engine_settings.EngineFlags = EngineFlags_.ENGINE_LIMIT_RPM | EngineFlags_.ENGINE_ACCEL_ON | EngineFlags_.ENGINE_REVERSE engine_settings.Antiplay = 575 class MicrostepMode_: MICROSTEP_MODE_FRAC_256 = 9 MICROSTEP_MODE_FRAC_128 = 8 MICROSTEP_MODE_FRAC_64 = 7 MICROSTEP_MODE_FRAC_32 = 6 MICROSTEP_MODE_FRAC_16 = 5 MICROSTEP_MODE_FRAC_8 = 4 MICROSTEP_MODE_FRAC_4 = 3 MICROSTEP_MODE_FRAC_2 = 2 MICROSTEP_MODE_FULL = 1 engine_settings.MicrostepMode = MicrostepMode_.MICROSTEP_MODE_FRAC_256 engine_settings.StepsPerRev = 200 result = lib.set_engine_settings(id, byref(engine_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result entype_settings = entype_settings_t() class EngineType_: ENGINE_TYPE_BRUSHLESS = 5 ENGINE_TYPE_TEST = 4 ENGINE_TYPE_STEP = 3 ENGINE_TYPE_2DC = 2 ENGINE_TYPE_DC = 1 ENGINE_TYPE_NONE = 0 entype_settings.EngineType = EngineType_.ENGINE_TYPE_STEP | EngineType_.ENGINE_TYPE_NONE class DriverType_: DRIVER_TYPE_EXTERNAL = 3 DRIVER_TYPE_INTEGRATE = 2 DRIVER_TYPE_DISCRETE_FET = 1 entype_settings.DriverType = DriverType_.DRIVER_TYPE_INTEGRATE result = lib.set_entype_settings(id, byref(entype_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result power_settings = power_settings_t() power_settings.HoldCurrent = 50 power_settings.CurrReductDelay = 1000 power_settings.PowerOffDelay = 60 power_settings.CurrentSetTime = 300 class PowerFlags_: POWER_SMOOTH_CURRENT = 4 POWER_OFF_ENABLED = 2 POWER_REDUCT_ENABLED = 1 power_settings.PowerFlags = PowerFlags_.POWER_SMOOTH_CURRENT | PowerFlags_.POWER_OFF_ENABLED | PowerFlags_.POWER_REDUCT_ENABLED result = lib.set_power_settings(id, byref(power_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result secure_settings = secure_settings_t() secure_settings.LowUpwrOff = 800 secure_settings.CriticalIpwr = 4000 secure_settings.CriticalUpwr = 5500 secure_settings.CriticalT = 800 secure_settings.CriticalIusb = 450 secure_settings.CriticalUusb = 520 secure_settings.MinimumUusb = 420 class Flags_: ALARM_ENGINE_RESPONSE = 128 ALARM_WINDING_MISMATCH = 64 USB_BREAK_RECONNECT = 32 ALARM_FLAGS_STICKING = 16 ALARM_ON_BORDERS_SWAP_MISSET = 8 H_BRIDGE_ALERT = 4 LOW_UPWR_PROTECTION = 2 ALARM_ON_DRIVER_OVERHEATING = 1 secure_settings.Flags = Flags_.ALARM_ENGINE_RESPONSE | Flags_.ALARM_FLAGS_STICKING | Flags_.ALARM_ON_BORDERS_SWAP_MISSET | Flags_.H_BRIDGE_ALERT | Flags_.ALARM_ON_DRIVER_OVERHEATING result = lib.set_secure_settings(id, byref(secure_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result edges_settings = edges_settings_t() class BorderFlags_: BORDERS_SWAP_MISSET_DETECTION = 8 BORDER_STOP_RIGHT = 4 BORDER_STOP_LEFT = 2 BORDER_IS_ENCODER = 1 edges_settings.BorderFlags = BorderFlags_.BORDER_STOP_RIGHT | BorderFlags_.BORDER_STOP_LEFT class EnderFlags_: ENDER_SW2_ACTIVE_LOW = 4 ENDER_SW1_ACTIVE_LOW = 2 ENDER_SWAP = 1 edges_settings.EnderFlags = EnderFlags_.ENDER_SW2_ACTIVE_LOW | EnderFlags_.ENDER_SW1_ACTIVE_LOW | EnderFlags_.ENDER_SWAP edges_settings.LeftBorder = 874 edges_settings.uLeftBorder = 0 edges_settings.RightBorder = 57874 edges_settings.uRightBorder = 0 result = lib.set_edges_settings(id, byref(edges_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result pid_settings = pid_settings_t() pid_settings.KpU = 0 pid_settings.KiU = 0 pid_settings.KdU = 0 pid_settings.Kpf = 0.003599999938160181 pid_settings.Kif = 0.03799999877810478 pid_settings.Kdf = 2.8000000384054147e-05 result = lib.set_pid_settings(id, byref(pid_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result sync_in_settings = sync_in_settings_t() class SyncInFlags_: SYNCIN_GOTOPOSITION = 4 SYNCIN_INVERT = 2 SYNCIN_ENABLED = 1 sync_in_settings.ClutterTime = 4 sync_in_settings.Position = 0 sync_in_settings.uPosition = 0 sync_in_settings.Speed = 0 sync_in_settings.uSpeed = 0 result = lib.set_sync_in_settings(id, byref(sync_in_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result sync_out_settings = sync_out_settings_t() class SyncOutFlags_: SYNCOUT_ONPERIOD = 64 SYNCOUT_ONSTOP = 32 SYNCOUT_ONSTART = 16 SYNCOUT_IN_STEPS = 8 SYNCOUT_INVERT = 4 SYNCOUT_STATE = 2 SYNCOUT_ENABLED = 1 sync_out_settings.SyncOutFlags = SyncOutFlags_.SYNCOUT_ONSTOP | SyncOutFlags_.SYNCOUT_ONSTART sync_out_settings.SyncOutPulseSteps = 100 sync_out_settings.SyncOutPeriod = 2000 sync_out_settings.Accuracy = 0 sync_out_settings.uAccuracy = 0 result = lib.set_sync_out_settings(id, byref(sync_out_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result extio_settings = extio_settings_t() class EXTIOSetupFlags_: EXTIO_SETUP_INVERT = 2 EXTIO_SETUP_OUTPUT = 1 extio_settings.EXTIOSetupFlags = EXTIOSetupFlags_.EXTIO_SETUP_OUTPUT class EXTIOModeFlags_: EXTIO_SETUP_MODE_OUT_BITS = 240 EXTIO_SETUP_MODE_OUT_MOTOR_ON = 64 EXTIO_SETUP_MODE_OUT_ALARM = 48 EXTIO_SETUP_MODE_OUT_MOVING = 32 EXTIO_SETUP_MODE_OUT_ON = 16 EXTIO_SETUP_MODE_IN_BITS = 15 EXTIO_SETUP_MODE_IN_ALARM = 5 EXTIO_SETUP_MODE_IN_HOME = 4 EXTIO_SETUP_MODE_IN_MOVR = 3 EXTIO_SETUP_MODE_IN_PWOF = 2 EXTIO_SETUP_MODE_IN_STOP = 1 EXTIO_SETUP_MODE_IN_NOP = 0 EXTIO_SETUP_MODE_OUT_OFF = 0 extio_settings.EXTIOModeFlags = EXTIOModeFlags_.EXTIO_SETUP_MODE_IN_STOP | EXTIOModeFlags_.EXTIO_SETUP_MODE_IN_NOP | EXTIOModeFlags_.EXTIO_SETUP_MODE_OUT_OFF result = lib.set_extio_settings(id, byref(extio_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result brake_settings = brake_settings_t() brake_settings.t1 = 300 brake_settings.t2 = 500 brake_settings.t3 = 300 brake_settings.t4 = 400 class BrakeFlags_: BRAKE_ENG_PWROFF = 2 BRAKE_ENABLED = 1 brake_settings.BrakeFlags = BrakeFlags_.BRAKE_ENG_PWROFF result = lib.set_brake_settings(id, byref(brake_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result control_settings = control_settings_t() control_settings.MaxSpeed[0] = 100 control_settings.MaxSpeed[1] = 1000 control_settings.MaxSpeed[2] = 0 control_settings.MaxSpeed[3] = 0 control_settings.MaxSpeed[4] = 0 control_settings.MaxSpeed[5] = 0 control_settings.MaxSpeed[6] = 0 control_settings.MaxSpeed[7] = 0 control_settings.MaxSpeed[8] = 0 control_settings.MaxSpeed[9] = 0 control_settings.uMaxSpeed[0] = 0 control_settings.uMaxSpeed[1] = 0 control_settings.uMaxSpeed[2] = 0 control_settings.uMaxSpeed[3] = 0 control_settings.uMaxSpeed[4] = 0 control_settings.uMaxSpeed[5] = 0 control_settings.uMaxSpeed[6] = 0 control_settings.uMaxSpeed[7] = 0 control_settings.uMaxSpeed[8] = 0 control_settings.uMaxSpeed[9] = 0 control_settings.Timeout[0] = 1000 control_settings.Timeout[1] = 1000 control_settings.Timeout[2] = 1000 control_settings.Timeout[3] = 1000 control_settings.Timeout[4] = 1000 control_settings.Timeout[5] = 1000 control_settings.Timeout[6] = 1000 control_settings.Timeout[7] = 1000 control_settings.Timeout[8] = 1000 control_settings.MaxClickTime = 300 class Flags_: CONTROL_BTN_RIGHT_PUSHED_OPEN = 8 CONTROL_BTN_LEFT_PUSHED_OPEN = 4 CONTROL_MODE_BITS = 3 CONTROL_MODE_LR = 2 CONTROL_MODE_JOY = 1 CONTROL_MODE_OFF = 0 control_settings.Flags = Flags_.CONTROL_MODE_LR | Flags_.CONTROL_MODE_OFF control_settings.DeltaPosition = 1 control_settings.uDeltaPosition = 0 result = lib.set_control_settings(id, byref(control_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result joystick_settings = joystick_settings_t() joystick_settings.JoyLowEnd = 0 joystick_settings.JoyCenter = 5000 joystick_settings.JoyHighEnd = 10000 joystick_settings.ExpFactor = 100 joystick_settings.DeadZone = 50 class JoyFlags_: JOY_REVERSE = 1 result = lib.set_joystick_settings(id, byref(joystick_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result ctp_settings = ctp_settings_t() ctp_settings.CTPMinError = 3 class CTPFlags_: CTP_ERROR_CORRECTION = 16 REV_SENS_INV = 8 CTP_ALARM_ON_ERROR = 4 CTP_BASE = 2 CTP_ENABLED = 1 ctp_settings.CTPFlags = CTPFlags_.CTP_ERROR_CORRECTION result = lib.set_ctp_settings(id, byref(ctp_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result uart_settings = uart_settings_t() uart_settings.Speed = 115200 class UARTSetupFlags_: UART_STOP_BIT = 8 UART_PARITY_BIT_USE = 4 UART_PARITY_BITS = 3 UART_PARITY_BIT_MARK = 3 UART_PARITY_BIT_SPACE = 2 UART_PARITY_BIT_ODD = 1 UART_PARITY_BIT_EVEN = 0 uart_settings.UARTSetupFlags = UARTSetupFlags_.UART_PARITY_BIT_EVEN result = lib.set_uart_settings(id, byref(uart_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result controller_name = controller_name_t() controller_name.ControllerName = bytes([0, 113, 252, 118, 36, 0, 72, 0, 3, 0, 0, 0, 104, 101, 103, 0]) class CtrlFlags_: EEPROM_PRECEDENCE = 1 result = lib.set_controller_name(id, byref(controller_name)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result emf_settings = emf_settings_t() emf_settings.L = 0 emf_settings.R = 0 emf_settings.Km = 0 class BackEMFFlags_: BACK_EMF_KM_AUTO = 4 BACK_EMF_RESISTANCE_AUTO = 2 BACK_EMF_INDUCTANCE_AUTO = 1 result = lib.set_emf_settings(id, byref(emf_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result engine_advansed_setup = engine_advansed_setup_t() engine_advansed_setup.stepcloseloop_Kw = 50 engine_advansed_setup.stepcloseloop_Kp_low = 1000 engine_advansed_setup.stepcloseloop_Kp_high = 33 result = lib.set_engine_advansed_setup(id, byref(engine_advansed_setup)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result extended_settings = extended_settings_t() extended_settings.Param1 = 0 result = lib.set_extended_settings(id, byref(extended_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result stage_name = stage_name_t() stage_name.PositionerName = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_stage_name(id, byref(stage_name)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result stage_information = stage_information_t() stage_information.Manufacturer = bytes([0, 116, 97, 110, 100, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) stage_information.PartNumber = bytes([56, 77, 84, 49, 55, 53, 86, 45, 49, 53, 48, 45, 86, 83, 83, 52, 50, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_stage_information(id, byref(stage_information)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result stage_settings = stage_settings_t() stage_settings.LeadScrewPitch = 0.5 stage_settings.Units = bytes([0, 109, 0, 114, 101, 101, 0, 0]) stage_settings.MaxSpeed = 10 stage_settings.TravelRange = 150 stage_settings.SupplyVoltageMin = 0 stage_settings.SupplyVoltageMax = 0 stage_settings.MaxCurrentConsumption = 0 stage_settings.HorizontalLoadCapacity = 0 stage_settings.VerticalLoadCapacity = 0 result = lib.set_stage_settings(id, byref(stage_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result motor_information = motor_information_t() motor_information.Manufacturer = bytes([0, 111, 116, 105, 111, 110, 32, 67, 111, 110, 116, 114, 111, 108, 32, 80]) motor_information.PartNumber = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_motor_information(id, byref(motor_information)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result motor_settings = motor_settings_t() class MotorType_: MOTOR_TYPE_BLDC = 3 MOTOR_TYPE_DC = 2 MOTOR_TYPE_STEP = 1 MOTOR_TYPE_UNKNOWN = 0 motor_settings.MotorType = MotorType_.MOTOR_TYPE_STEP | MotorType_.MOTOR_TYPE_UNKNOWN motor_settings.ReservedField = 0 motor_settings.Poles = 0 motor_settings.Phases = 0 motor_settings.NominalVoltage = 0 motor_settings.NominalCurrent = 0 motor_settings.NominalSpeed = 0 motor_settings.NominalTorque = 0 motor_settings.NominalPower = 0 motor_settings.WindingResistance = 0 motor_settings.WindingInductance = 0 motor_settings.RotorInertia = 0 motor_settings.StallTorque = 0 motor_settings.DetentTorque = 0 motor_settings.TorqueConstant = 0 motor_settings.SpeedConstant = 0 motor_settings.SpeedTorqueGradient = 0 motor_settings.MechanicalTimeConstant = 0 motor_settings.MaxSpeed = 5000 motor_settings.MaxCurrent = 0 motor_settings.MaxCurrentTime = 0 motor_settings.NoLoadCurrent = 0 motor_settings.NoLoadSpeed = 0 result = lib.set_motor_settings(id, byref(motor_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result encoder_information = encoder_information_t() encoder_information.Manufacturer = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) encoder_information.PartNumber = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_encoder_information(id, byref(encoder_information)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result encoder_settings = encoder_settings_t() encoder_settings.MaxOperatingFrequency = 0 encoder_settings.SupplyVoltageMin = 0 encoder_settings.SupplyVoltageMax = 0 encoder_settings.MaxCurrentConsumption = 0 encoder_settings.PPR = 1000 class EncoderSettings_: ENCSET_REVOLUTIONSENSOR_ACTIVE_HIGH = 256 ENCSET_REVOLUTIONSENSOR_PRESENT = 64 ENCSET_INDEXCHANNEL_PRESENT = 16 ENCSET_PUSHPULL_OUTPUT = 4 ENCSET_DIFFERENTIAL_OUTPUT = 1 result = lib.set_encoder_settings(id, byref(encoder_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result hallsensor_information = hallsensor_information_t() hallsensor_information.Manufacturer = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) hallsensor_information.PartNumber = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_hallsensor_information(id, byref(hallsensor_information)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result hallsensor_settings = hallsensor_settings_t() hallsensor_settings.MaxOperatingFrequency = 0 hallsensor_settings.SupplyVoltageMin = 0 hallsensor_settings.SupplyVoltageMax = 0 hallsensor_settings.MaxCurrentConsumption = 0 hallsensor_settings.PPR = 0 result = lib.set_hallsensor_settings(id, byref(hallsensor_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result gear_information = gear_information_t() gear_information.Manufacturer = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) gear_information.PartNumber = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) result = lib.set_gear_information(id, byref(gear_information)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result gear_settings = gear_settings_t() gear_settings.ReductionIn = 1 gear_settings.ReductionOut = 1 gear_settings.RatedInputTorque = 0 gear_settings.RatedInputSpeed = 0 gear_settings.MaxOutputBacklash = 0 gear_settings.InputInertia = 0 gear_settings.Efficiency = 0 result = lib.set_gear_settings(id, byref(gear_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result accessories_settings = accessories_settings_t() accessories_settings.MagneticBrakeInfo = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) accessories_settings.MBRatedVoltage = 0 accessories_settings.MBRatedCurrent = 0 accessories_settings.MBTorque = 0 class MBSettings_: MB_POWERED_HOLD = 2 MB_AVAILABLE = 1 accessories_settings.TemperatureSensorInfo = bytes([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) accessories_settings.TSMin = 0 accessories_settings.TSMax = 0 accessories_settings.TSGrad = 0 class TSSettings_: TS_AVAILABLE = 8 TS_TYPE_BITS = 7 TS_TYPE_SEMICONDUCTOR = 2 TS_TYPE_THERMOCOUPLE = 1 TS_TYPE_UNKNOWN = 0 accessories_settings.TSSettings = TSSettings_.TS_TYPE_THERMOCOUPLE | TSSettings_.TS_TYPE_UNKNOWN class LimitSwitchesSettings_: LS_SHORTED = 16 LS_SW2_ACTIVE_LOW = 8 LS_SW1_ACTIVE_LOW = 4 LS_ON_SW2_AVAILABLE = 2 LS_ON_SW1_AVAILABLE = 1 result = lib.set_accessories_settings(id, byref(accessories_settings)) if result != Result.Ok: if worst_result == Result.Ok or worst_result == Result.ValueError: worst_result = result return worst_result
fdd007c0b032c25b1cf46ac0944db9b9217a204f
82c2c272fe07da8afafb1dc4630cae1d48575f23
/aws_reko/apps.py
58e8ecd9ec40e1978d3eb6f2563e2de7a8beda8b
[]
no_license
final-project-fastflix/Fastflix_WPS
d830ea1bd3aae31edd8fcdcb70434d214ba77bd0
1e4296df2f6d41fed8308dcd4d48912bb8cc0e1f
refs/heads/develop
2022-12-13T09:22:37.553487
2019-08-22T06:30:45
2019-08-22T06:30:45
199,455,228
3
2
null
2022-12-08T05:56:42
2019-07-29T13:09:55
JavaScript
UTF-8
Python
false
false
90
py
from django.apps import AppConfig class AwsRekoConfig(AppConfig): name = 'aws_reko'
308397ed048cf03a190ffa0c99b55d07196a45cf
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_97/591.py
65f897b1fd4fe4677b641f162d03e1a08dcae786
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,640
py
# Recycled Numbers # main code fr = open('C-large.in', 'r') fw = open('C-large.out', 'w') numOfTestCase = int(fr.readline()) for x in range(0,numOfTestCase): result = "" print("========== Test case " + str(x+1) + " ==========") line = fr.readline() line = line.split(" ") A = int(line[0]) B = int(line[1]) # initialize number of distinct recycle number nDistinct = 0 for i in range(A,B+1): # change to string i_str = str(i) i_str_recycle = i_str strlen = len(i_str) if strlen == 1: # No recycle number possible continue from array import array pairList = array('i') for j in range(0,strlen): i_str_recycle = i_str_recycle[strlen-1] + i_str_recycle[0:strlen-1] if i_str_recycle != i_str and i_str_recycle[0] != '0' and (A <= int(i_str_recycle) and int(i_str_recycle) <= B) and int(i_str_recycle) > i : # i_str_recycle should not be the same as i_str # i_str_recycle should not be lead with digit 0 # i_str_recycle should not be in range A to B inclusive # i_str_recycle should be bigger than i repeatFlag = 0 # finally, there should be no repeat pair for k in range(0,len(pairList)): if pairList[k] == int(i_str_recycle): repeatFlag = 1 if repeatFlag == 0: nDistinct = nDistinct + 1 # print(i_str + ", " + i_str_recycle) # put current pair to pairList to prevent double pair pairList.append(int(i_str_recycle)) result = str(nDistinct) fw.write("Case #" + str(x+1) + ": " + result + "\n") fr.close() fw.close()
2136ceed7ded2995dc97b82ced276854c3146f10
6a044f45cd09695ea6f66f35bb8decf86a84607d
/installer/resources/pacbot_app/alb_https_listener.py
e285a11743e84dfb2706dd3e7435a718e88798c8
[ "Apache-2.0" ]
permissive
ritesh74/pacbot
a07bdf82632342509f05b5c5dbb6eb6aaba40219
4b5361d99e7efbbc5603ec9c6568ba639105c773
refs/heads/master
2021-07-09T15:35:27.342903
2020-09-28T20:36:42
2020-09-28T20:36:42
199,405,428
1
0
Apache-2.0
2019-07-29T07:53:26
2019-07-29T07:53:25
null
UTF-8
Python
false
false
2,414
py
from core.terraform.resources.aws.load_balancer import ALBListenerResource, ALBListenerRuleResource from core.config import Settings from resources.pacbot_app.alb import ApplicationLoadBalancer from resources.pacbot_app import alb_target_groups as tg PATH_PREFIX = '/api/' class PacBotHttpsListener(ALBListenerResource): load_balancer_arn = ApplicationLoadBalancer.get_output_attr('arn') port = 443 protocol = "HTTPS" ssl_policy = "ELBSecurityPolicy-2016-08" certificate_arn = Settings.get('SSL_CERTIFICATE_ARN') default_action_target_group_arn = tg.NginxALBTargetGroup.get_output_attr('arn') default_action_type = "forward" class BaseLR: listener_arn = PacBotHttpsListener.get_output_attr('arn') action_type = "forward" condition_field = "path-pattern" class ConfigALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.ConfigALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "config*"] class AdminALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.AdminALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "admin*"] class ComplianceALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.ComplianceALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "compliance*"] class NotificationsALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.NotificationsALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "notifications*"] class StatisticsALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.StatisticsALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "statistics*"] class AssetALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.AssetALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "asset*"] class AuthALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.AuthALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "auth*"] class VulnerabilityALBHttpsListenerRule(ALBListenerRuleResource, BaseLR): action_target_group_arn = tg.VulnerabilityALBTargetGroup.get_output_attr('arn') condition_values = [PATH_PREFIX + "vulnerability*"]
d4c94fe92d17941badd8ceec535168ec2c320fe2
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/scrapinghub_portia/portia-master/portia_server/portia_orm/tests/test_relationship.py
5167cbf61f361b3da5dede41e29b542d6a11d4f7
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
66,255
py
import mock from .models import (OneToOneModel1, OneToOneModel2, ParentModel, ChildModel, ManyToManyModel1, ManyToManyModel2, PolymorphicParentModel, PolymorphicChildModel1, PolymorphicChildModel2) from .utils import DataStoreTestCase, mock_storage class OneToOneRelationshipTests(DataStoreTestCase): def setUp(self): super(OneToOneRelationshipTests, self).setUp() self.storage = mock_storage({ 'o2o-model-1.json': '{' ' "id": "model-1",' ' "field": "model-1",' ' "m2": "model-2"' '}', 'o2o-model-2.json': '{' ' "id": "model-2",' ' "field": "model-2",' ' "m1": {' ' "id": "model-1",' ' "field": "model-1",' ' "m2": "model-2"' ' }' '}', }) def test_no_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2') self.assertEqual(model1.m2, None) self.assertEqual(model2.m1, None) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': None, }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': None, }) def test_set_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2') model2.m1 = model1 self.assertEqual(model1.m2, model2) self.assertEqual(model2.m1, model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': 'model-2', }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-1', 'm2': 'model-2', }, }) def test_set_reverse_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2') model1.m2 = model2 self.assertEqual(model1.m2, model2) self.assertEqual(model2.m1, model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': 'model-2', }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-1', 'm2': 'model-2', }, }) def test_create_with_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2', m1=model1) self.assertEqual(model1.m2, model2) self.assertEqual(model2.m1, model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': 'model-2', }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-1', 'm2': 'model-2', }, }) def test_create_with_reverse_relation(self): model2 = OneToOneModel2(id='model-2') model1 = OneToOneModel1(id='model-1', m2=model2) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': 'model-2', }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-1', 'm2': 'model-2', }, }) def test_change_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2', m1=model1) model3 = OneToOneModel1(id='model-3') self.assertEqual(model1.m2, model2) self.assertEqual(model2.m1, model1) self.assertEqual(model3.m2, None) model2.m1 = model3 self.assertEqual(model1.m2, None) self.assertEqual(model2.m1, model3) self.assertEqual(model3.m2, model2) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-3', 'm2': 'model-2', }, }) def test_change_reverse_relation(self): model1 = OneToOneModel1(id='model-1') model2 = OneToOneModel2(id='model-2', m1=model1) model3 = OneToOneModel1(id='model-3') self.assertEqual(model1.m2, model2) self.assertEqual(model2.m1, model1) self.assertEqual(model3.m2, None) model3.m2 = model2 self.assertEqual(model1.m2, None) self.assertEqual(model2.m1, model3) self.assertEqual(model3.m2, model2) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': { 'id': 'model-3', 'm2': 'model-2', }, }) def test_load_full(self): model = OneToOneModel2(self.storage, id='model-2') self.assertEqual(model.dump(), { 'id': 'model-2', 'field': 'model-2', 'm1': { 'id': 'model-1', 'field': 'model-1', 'm2': 'model-2', }, }) self.storage.open.assert_called_once_with('o2o-model-2.json') def test_load_partial(self): model = OneToOneModel1(self.storage, id='model-1') self.assertEqual(model.dump(), { 'id': 'model-1', 'field': 'model-1', 'm2': 'model-2', }) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('o2o-model-1.json'), mock.call('o2o-model-2.json')]) def test_save_field(self): model1 = OneToOneModel1(self.storage, id='model-1') model2 = model1.m2 model1.field = 'changed-field-1' model2.field = 'changed-field-2' model2.save() self.assertEqual(self.storage.save.call_count, 1) self.storage.save.assert_has_calls([ mock.call('o2o-model-2.json', mock.ANY)]) self.assertEqual( self.storage.files['o2o-model-2.json'], '{\n' ' "field": "changed-field-2", \n' ' "id": "model-2", \n' ' "m1": {\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": "model-2"\n' ' }\n' '}') model1.save() self.assertEqual(self.storage.save.call_count, 3) self.storage.save.assert_has_calls([ mock.call('o2o-model-2.json', mock.ANY), mock.call('o2o-model-1.json', mock.ANY), mock.call('o2o-model-2.json', mock.ANY)]) self.assertEqual( self.storage.files['o2o-model-1.json'], '{\n' ' "field": "changed-field-1", \n' ' "id": "model-1", \n' ' "m2": "model-2"\n' '}') self.assertEqual( self.storage.files['o2o-model-2.json'], '{\n' ' "field": "changed-field-2", \n' ' "id": "model-2", \n' ' "m1": {\n' ' "field": "changed-field-1", \n' ' "id": "model-1", \n' ' "m2": "model-2"\n' ' }\n' '}') def test_save_id(self): model1 = OneToOneModel1(self.storage, id='model-1') model2 = model1.m2 model1.id = 'changed-id-1' model2.id = 'changed-id-2' model2.save() self.assertEqual(self.storage.save.call_count, 2) self.storage.save.assert_has_calls([ mock.call('o2o-model-2.json', mock.ANY), mock.call('o2o-model-1.json', mock.ANY)]) self.assertEqual( self.storage.files['o2o-model-1.json'], '{\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": "changed-id-2"\n' '}') self.assertEqual( self.storage.files['o2o-model-2.json'], '{\n' ' "field": "model-2", \n' ' "id": "changed-id-2", \n' ' "m1": {\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": "changed-id-2"\n' ' }\n' '}') model1.save() self.assertEqual(self.storage.save.call_count, 4) self.storage.save.assert_has_calls([ mock.call('o2o-model-2.json', mock.ANY), mock.call('o2o-model-1.json', mock.ANY), mock.call('o2o-model-1.json', mock.ANY), mock.call('o2o-model-2.json', mock.ANY)]) self.assertEqual( self.storage.files['o2o-model-1.json'], '{\n' ' "field": "model-1", \n' ' "id": "changed-id-1", \n' ' "m2": "changed-id-2"\n' '}') self.assertEqual( self.storage.files['o2o-model-2.json'], '{\n' ' "field": "model-2", \n' ' "id": "changed-id-2", \n' ' "m1": {\n' ' "field": "model-1", \n' ' "id": "changed-id-1", \n' ' "m2": "changed-id-2"\n' ' }\n' '}') class OneToManyRelationshipTests(DataStoreTestCase): def setUp(self): super(OneToManyRelationshipTests, self).setUp() self.storage = mock_storage({ 'parents.json': '{' ' "id": "parent-1",' ' "field": "parent-1",' ' "children": [' ' {' ' "id": "child-1",' ' "parent": "parent-1"' ' }' ' ]' '}', 'parent-1/children.json': '[' ' {' ' "id": "child-1",' ' "field": "child-1",' ' "parent": "parent-1"' ' }' ']', }) def test_no_children(self): parent = ParentModel(id='parent-1') self.assertEqual(len(parent.children), 0) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [], }) def test_set_children(self): parent = ParentModel(id='parent-1') child = ChildModel(id='child-1') parent.children = [child] self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(parent.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, ], }) def test_add_to_children(self): parent = ParentModel(id='parent-1') child = ChildModel(id='child-1') parent.children.add(child) self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(parent.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, ], }) def test_set_parent(self): parent = ParentModel(id='parent-1') child = ChildModel(id='child-1') child.parent = parent self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(parent.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, ], }) def test_create_with_children(self): child = ChildModel(id='child-1') parent = ParentModel(id='parent-1', children=[child]) self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(parent.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, ], }) def test_create_with_parent(self): parent = ParentModel(id='parent-1') child = ChildModel(id='child-1', parent=parent) self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(parent.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, ], }) def test_change_parent(self): parent = ParentModel(id='parent-1') parent2 = ParentModel(id='parent-2') child = ChildModel(id='child-1', parent=parent) self.assertEqual(child.parent, parent) self.assertEqual(len(parent.children), 1) self.assertEqual(len(parent2.children), 0) child.parent = parent2 self.assertEqual(child.parent, parent2) self.assertEqual(len(parent.children), 0) self.assertEqual(len(parent2.children), 1) self.assertEqual(parent2.children[0], child) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [], }) self.assertEqual(parent2.dump(), { 'id': 'parent-2', 'children': [ { 'id': 'child-1', 'parent': 'parent-2', }, ], }) def test_change_children(self): parent = ParentModel(id='parent-1') child = ChildModel(id='child-1', parent=parent) child2 = ChildModel(id='child-2') self.assertEqual(child.parent, parent) self.assertEqual(child2.parent, None) self.assertEqual(len(parent.children), 1) parent.children = [child, child2] self.assertEqual(child.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'id': 'child-1', 'parent': 'parent-1', }, { 'id': 'child-2', 'parent': 'parent-1', }, ], }) def test_getitem(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) self.assertIs(parent.children[0], child1) self.assertIs(parent.children['child-1'], child1) self.assertIs(parent.children[child1], child1) with self.assertRaises(IndexError): parent.children[1000] with self.assertRaises(KeyError): parent.children['child-4'] self.assertEqual(parent.children[1:], [child2, child3]) def test_get(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) self.assertIs(parent.children.get(0), child1) self.assertIs(parent.children.get('child-1'), child1) self.assertIs(parent.children.get(child1), child1) self.assertIs(parent.children.get('child-4'), None) sentinel = object() self.assertIs(parent.children.get('child-4', default=sentinel), sentinel) def test_setitem(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) child1b = ChildModel(id='child-1') child1c = ChildModel(id='child-1') child1d = ChildModel(id='child-1') child4 = ChildModel(id='child-4') child5 = ChildModel(id='child-5') child6 = ChildModel(id='child-6') child7 = ChildModel(id='child-7') parent.children[0] = child1b self.assertIs(parent.children[0], child1b) parent.children['child-1'] = child1c self.assertIs(parent.children[0], child1c) parent.children[child1] = child1d self.assertIs(parent.children[0], child1d) self.assertListEqual(parent.children, [child1d, child2, child3]) parent.children[1:1] = [child4, child5] self.assertIs(child4.parent, parent) self.assertIs(child5.parent, parent) self.assertListEqual(parent.children, [child1d, child4, child5, child2, child3]) parent.children[:2] = [child6, child7] self.assertIs(child6.parent, parent) self.assertIs(child7.parent, parent) self.assertIs(child1d.parent, None) self.assertIs(child4.parent, None) self.assertListEqual(parent.children, [child6, child7, child5, child2, child3]) with self.assertRaises(ValueError): parent.children[0:0] = [child2] def test_delitem(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') child4 = ChildModel(id='child-4') child5 = ChildModel(id='child-5') parent = ParentModel(id='parent-1', children=[ child1, child2, child3, child4, child5]) del parent.children[0] del parent.children['child-3'] del parent.children[child4] self.assertListEqual(parent.children, [child2, child5]) self.assertIs(child1.parent, None) self.assertIs(child3.parent, None) self.assertIs(child4.parent, None) def test_append(self): child1 = ChildModel(id='child-1') child1b = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2]) parent.children.append(child3) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child3.parent, parent) with self.assertRaises(ValueError): parent.children.append(child1b) def test_add(self): child1 = ChildModel(id='child-1') child1b = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2]) parent.children.add(child3) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child3.parent, parent) parent.children.add(child1b) self.assertListEqual(parent.children, [child1, child2, child3]) def test_insert(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child2, child3]) parent.children.insert(0, child1) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child1.parent, parent) def test_remove(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) parent.children.remove(child1) self.assertListEqual(parent.children, [child2, child3]) self.assertIs(child1.parent, None) with self.assertRaises(ValueError): parent.children.remove(child1) def test_discard(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) parent.children.discard(child1) self.assertListEqual(parent.children, [child2, child3]) self.assertIs(child1.parent, None) parent.children.discard(child1) self.assertListEqual(parent.children, [child2, child3]) def test_pop(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) pop1 = parent.children.pop() self.assertIs(pop1, child3) self.assertListEqual(parent.children, [child1, child2]) self.assertIs(child3.parent, None) pop2 = parent.children.pop('child-1') self.assertIs(pop2, child1) self.assertListEqual(parent.children, [child2]) self.assertIs(child1.parent, None) def test_clear(self): child1 = ChildModel(id='child-1') child2 = ChildModel(id='child-2') child3 = ChildModel(id='child-3') parent = ParentModel(id='parent-1', children=[child1, child2, child3]) parent.children.clear() self.assertListEqual(parent.children, []) self.assertIs(child1.parent, None) self.assertIs(child2.parent, None) self.assertIs(child3.parent, None) def test_load_full(self): model = ParentModel(self.storage, id='parent-1') self.assertEqual(model.dump(), { 'id': 'parent-1', 'field': 'parent-1', 'children': [ { 'id': 'child-1', 'field': 'child-1', 'parent': 'parent-1', }, ], }) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('parents.json'), mock.call('parent-1/children.json')]) def test_load_partial(self): model = ChildModel(self.storage, id='child-1', parent=ParentModel(self.storage, id='parent-1')) self.assertEqual(model.dump(), { 'id': 'child-1', 'field': 'child-1', 'parent': 'parent-1', }) self.assertEqual(model, model.parent.children[0]) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('parents.json'), mock.call('parent-1/children.json')]) self.assertEqual(model.parent.dump(), { 'id': 'parent-1', 'field': 'parent-1', 'children': [ { 'id': 'child-1', 'field': 'child-1', 'parent': 'parent-1', }, ], }) def test_save_field(self): parent = ParentModel(self.storage, id='parent-1') child = parent.children[0] child.field = 'changed-id-1' parent.field = 'changed-id-2' parent.save() self.assertEqual(self.storage.save.call_count, 1) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY)]) self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "field": "child-1", \n' ' "id": "child-1", \n' ' "parent": "parent-1"\n' ' }\n' ' ], \n' ' "field": "changed-id-2", \n' ' "id": "parent-1"\n' '}') child.save() self.assertEqual(self.storage.save.call_count, 3) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('parent-1/children.json', mock.ANY), mock.call('parents.json', mock.ANY)]) self.assertEqual( self.storage.files['parent-1/children.json'], '[\n' ' {\n' ' "field": "changed-id-1", \n' ' "id": "child-1", \n' ' "parent": "parent-1"\n' ' }\n' ']') self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "field": "changed-id-1", \n' ' "id": "child-1", \n' ' "parent": "parent-1"\n' ' }\n' ' ], \n' ' "field": "changed-id-2", \n' ' "id": "parent-1"\n' '}') def test_save_id(self): parent = ParentModel(self.storage, id='parent-1') child = parent.children[0] child.id = 'changed-id-1' parent.id = 'changed-id-2' parent.save() self.assertEqual(self.storage.save.call_count, 2) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('changed-id-2/children.json', mock.ANY)]) self.storage.delete.assert_called_once_with('parent-1/children.json') self.assertEqual( self.storage.files['changed-id-2/children.json'], '[\n' ' {\n' ' "field": "child-1", \n' ' "id": "child-1", \n' ' "parent": "changed-id-2"\n' ' }\n' ']') self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "field": "child-1", \n' ' "id": "child-1", \n' ' "parent": "changed-id-2"\n' ' }\n' ' ], \n' ' "field": "parent-1", \n' ' "id": "changed-id-2"\n' '}') child.save() self.assertEqual(self.storage.save.call_count, 4) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('changed-id-2/children.json', mock.ANY), mock.call('changed-id-2/children.json', mock.ANY), mock.call('parents.json', mock.ANY)]) self.assertEqual( self.storage.files['changed-id-2/children.json'], '[\n' ' {\n' ' "field": "child-1", \n' ' "id": "changed-id-1", \n' ' "parent": "changed-id-2"\n' ' }\n' ']') self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "field": "child-1", \n' ' "id": "changed-id-1", \n' ' "parent": "changed-id-2"\n' ' }\n' ' ], \n' ' "field": "parent-1", \n' ' "id": "changed-id-2"\n' '}') class ManyToManyRelationshipTests(DataStoreTestCase): def setUp(self): super(ManyToManyRelationshipTests, self).setUp() self.storage = mock_storage({ 'm2m-model-1.json': '{' ' "id": "model-1",' ' "field": "model-1",' ' "m2": [' ' "model-2"' ' ]' '}', 'm2m-model-2.json': '[' ' {' ' "id": "model-2",' ' "field": "model-2",' ' "m1": [' ' {' ' "id": "model-1",' ' "field": "model-1",' ' "m2": [' ' "model-2"' ' ]' ' }' ' ]' ' }' ']', }) def test_no_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2') self.assertEqual(len(model1.m2), 0) self.assertEqual(len(model2.m1), 0) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [], }) def test_set_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2') model2.m1.append(model1) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, ], }) def test_set_reverse_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2') model1.m2.append(model2) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, ], }) def test_create_with_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2', m1=[model1]) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, ], }) def test_create_with_reverse_relation(self): model2 = ManyToManyModel2(id='model-2') model1 = ManyToManyModel1(id='model-1', m2=[model2]) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, ], }) def test_change_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2', m1=[model1]) model3 = ManyToManyModel1(id='model-3') self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(len(model3.m2), 0) model2.m1.append(model3) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 2) self.assertEqual(model2.m1[0], model1) self.assertEqual(model2.m1[1], model3) self.assertEqual(len(model3.m2), 1) self.assertEqual(model3.m2[0], model2) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, { 'id': 'model-3', 'm2': [ 'model-2', ], }, ], }) self.assertEqual(model3.dump(), { 'id': 'model-3', 'm2': [ 'model-2', ], }) model2.m1.remove(model1) self.assertEqual(len(model1.m2), 0) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model3) self.assertEqual(len(model3.m2), 1) self.assertEqual(model3.m2[0], model2) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-3', 'm2': [ 'model-2', ], }, ], }) self.assertEqual(model3.dump(), { 'id': 'model-3', 'm2': [ 'model-2', ], }) def test_change_reverse_relation(self): model1 = ManyToManyModel1(id='model-1') model2 = ManyToManyModel2(id='model-2', m1=[model1]) model3 = ManyToManyModel1(id='model-3') self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model1) self.assertEqual(len(model3.m2), 0) model3.m2.append(model2) self.assertEqual(len(model1.m2), 1) self.assertEqual(model1.m2[0], model2) self.assertEqual(len(model2.m1), 2) self.assertEqual(model2.m1[0], model1) self.assertEqual(model2.m1[1], model3) self.assertEqual(len(model3.m2), 1) self.assertEqual(model3.m2[0], model2) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-1', 'm2': [ 'model-2', ], }, { 'id': 'model-3', 'm2': [ 'model-2', ], }, ], }) self.assertEqual(model3.dump(), { 'id': 'model-3', 'm2': [ 'model-2', ], }) model1.m2.clear() self.assertEqual(len(model1.m2), 0) self.assertEqual(len(model2.m1), 1) self.assertEqual(model2.m1[0], model3) self.assertEqual(len(model3.m2), 1) self.assertEqual(model3.m2[0], model2) self.assertEqual(model1.dump(), { 'id': 'model-1', 'm2': [], }) self.assertEqual(model2.dump(), { 'id': 'model-2', 'm1': [ { 'id': 'model-3', 'm2': [ 'model-2', ], }, ], }) self.assertEqual(model3.dump(), { 'id': 'model-3', 'm2': [ 'model-2', ], }) def test_load_full(self): model = ManyToManyModel2(self.storage, id='model-2') self.assertEqual(model.dump(), { 'id': 'model-2', 'field': 'model-2', 'm1': [ { 'id': 'model-1', 'field': 'model-1', 'm2': [ 'model-2', ], }, ], }) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('m2m-model-2.json'), mock.call('m2m-model-1.json')]) def test_load_partial(self): model = ManyToManyModel1(self.storage, id='model-1') self.assertEqual(model.dump(), { 'id': 'model-1', 'field': 'model-1', 'm2': [ 'model-2', ], }) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('m2m-model-1.json'), mock.call('m2m-model-2.json')]) def test_save_field(self): model1 = ManyToManyModel1(self.storage, id='model-1') model2 = model1.m2[0] model1.field = 'changed-field-1' model2.field = 'changed-field-2' model2.save() self.storage.save.assert_called_once_with('m2m-model-2.json', mock.ANY) self.assertEqual( self.storage.files['m2m-model-2.json'], '[\n' ' {\n' ' "field": "changed-field-2", \n' ' "id": "model-2", \n' ' "m1": [\n' ' {\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": [\n' ' "model-2"\n' ' ]\n' ' }\n' ' ]\n' ' }\n' ']') model1.save() self.assertEqual(self.storage.save.call_count, 3) self.storage.save.assert_has_calls([ mock.call('m2m-model-2.json', mock.ANY), mock.call('m2m-model-1.json', mock.ANY), mock.call('m2m-model-2.json', mock.ANY)]) self.assertEqual( self.storage.files['m2m-model-1.json'], '{\n' ' "field": "changed-field-1", \n' ' "id": "model-1", \n' ' "m2": [\n' ' "model-2"\n' ' ]\n' '}') self.assertEqual( self.storage.files['m2m-model-2.json'], '[\n' ' {\n' ' "field": "changed-field-2", \n' ' "id": "model-2", \n' ' "m1": [\n' ' {\n' ' "field": "changed-field-1", \n' ' "id": "model-1", \n' ' "m2": [\n' ' "model-2"\n' ' ]\n' ' }\n' ' ]\n' ' }\n' ']') def test_save_id(self): model1 = ManyToManyModel1(self.storage, id='model-1') model2 = model1.m2[0] model1.id = 'changed-id-1' model2.id = 'changed-id-2' model2.save() self.assertEqual(self.storage.save.call_count, 2) self.storage.save.assert_has_calls([ mock.call('m2m-model-2.json', mock.ANY), mock.call('m2m-model-1.json', mock.ANY)]) self.assertEqual( self.storage.files['m2m-model-1.json'], '{\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": [\n' ' "changed-id-2"\n' ' ]\n' '}') self.assertEqual( self.storage.files['m2m-model-2.json'], '[\n' ' {\n' ' "field": "model-2", \n' ' "id": "changed-id-2", \n' ' "m1": [\n' ' {\n' ' "field": "model-1", \n' ' "id": "model-1", \n' ' "m2": [\n' ' "changed-id-2"\n' ' ]\n' ' }\n' ' ]\n' ' }\n' ']') model1.save() self.assertEqual(self.storage.save.call_count, 4) self.storage.save.assert_has_calls([ mock.call('m2m-model-2.json', mock.ANY), mock.call('m2m-model-1.json', mock.ANY), mock.call('m2m-model-1.json', mock.ANY), mock.call('m2m-model-2.json', mock.ANY)]) self.assertEqual( self.storage.files['m2m-model-1.json'], '{\n' ' "field": "model-1", \n' ' "id": "changed-id-1", \n' ' "m2": [\n' ' "changed-id-2"\n' ' ]\n' '}') self.assertEqual( self.storage.files['m2m-model-2.json'], '[\n' ' {\n' ' "field": "model-2", \n' ' "id": "changed-id-2", \n' ' "m1": [\n' ' {\n' ' "field": "model-1", \n' ' "id": "changed-id-1", \n' ' "m2": [\n' ' "changed-id-2"\n' ' ]\n' ' }\n' ' ]\n' ' }\n' ']') class PolymorphicRelationshipTests(DataStoreTestCase): def setUp(self): super(PolymorphicRelationshipTests, self).setUp() self.storage = mock_storage({ 'parents.json': '{' ' "id": "parent-1",' ' "field": "parent-1",' ' "children": [' ' {' ' "type": "PolymorphicChildModel1",' ' "id": "child-1"' ' },' ' {' ' "_type_": "PolymorphicChildModel2",' ' "id": "child-2"' ' }' ' ]' '}', 'children.json': '[' ' {' ' "type": "PolymorphicChildModel1",' ' "id": "child-1",' ' "field1": "child-1",' ' "parent": "parent-1"' ' },' ' {' ' "_type_": "PolymorphicChildModel2",' ' "id": "child-2",' ' "field2": "child-2",' ' "parent": "parent-1"' ' }' ']', }) def test_no_children(self): parent = PolymorphicParentModel(id='parent-1') self.assertEqual(len(parent.children), 0) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [], }) def test_set_children(self): parent = PolymorphicParentModel(id='parent-1') child1 = PolymorphicChildModel1(id='child-1', field1='field-1') child2 = PolymorphicChildModel2(id='child-2', field2='field-2') parent.children = [child1, child2] self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.children[0], child1) self.assertEqual(parent.children[1], child2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_add_to_children(self): parent = PolymorphicParentModel(id='parent-1') child1 = PolymorphicChildModel1(id='child-1', field1='field-1') child2 = PolymorphicChildModel2(id='child-2', field2='field-2') parent.children.add(child2) parent.children.add(child1) self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.children[0], child2) self.assertEqual(parent.children[1], child1) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, ], }) def test_set_parent(self): parent = PolymorphicParentModel(id='parent-1') child1 = PolymorphicChildModel1(id='child-1', field1='field-1') child2 = PolymorphicChildModel2(id='child-2', field2='field-2') child1.parent = parent child2.parent = parent self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.children[0], child1) self.assertEqual(parent.children[1], child2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_create_with_children(self): child1 = PolymorphicChildModel1(id='child-1', field1='field-1') child2 = PolymorphicChildModel2(id='child-2', field2='field-2') parent = PolymorphicParentModel(id='parent-1', children=[child1, child2]) self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.children[0], child1) self.assertEqual(parent.children[1], child2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_create_with_parent(self): parent = PolymorphicParentModel(id='parent-1') child1 = PolymorphicChildModel1(id='child-1', field1='field-1', parent=parent) child2 = PolymorphicChildModel2(id='child-2', field2='field-2', parent=parent) self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.children[0], child1) self.assertEqual(parent.children[1], child2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_change_parent(self): parent1 = PolymorphicParentModel(id='parent-1') parent2 = PolymorphicParentModel(id='parent-2') child1 = PolymorphicChildModel1(id='child-1', field1='field-1', parent=parent1) child2 = PolymorphicChildModel2(id='child-2', field2='field-2', parent=parent1) self.assertEqual(child1.parent, parent1) self.assertEqual(child2.parent, parent1) self.assertEqual(len(parent1.children), 2) self.assertEqual(len(parent2.children), 0) child2.parent = parent2 self.assertEqual(child1.parent, parent1) self.assertEqual(child2.parent, parent2) self.assertEqual(len(parent1.children), 1) self.assertEqual(len(parent2.children), 1) self.assertEqual(parent1.children[0], child1) self.assertEqual(parent2.children[0], child2) self.assertEqual(parent1.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, ], }) self.assertEqual(parent2.dump(), { 'id': 'parent-2', 'children': [ { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) child1.parent = parent2 self.assertEqual(child1.parent, parent2) self.assertEqual(child2.parent, parent2) self.assertEqual(len(parent1.children), 0) self.assertEqual(len(parent2.children), 2) self.assertEqual(parent2.children[0], child2) self.assertEqual(parent2.children[1], child1) self.assertEqual(parent1.dump(), { 'id': 'parent-1', 'children': [], }) self.assertEqual(parent2.dump(), { 'id': 'parent-2', 'children': [ { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, ], }) def test_change_children(self): parent = PolymorphicParentModel(id='parent-1') child1 = PolymorphicChildModel1(id='child-1', field1='field-1', parent=parent) child2 = PolymorphicChildModel2(id='child-2', field2='field-2') self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, None) self.assertEqual(len(parent.children), 1) parent.children = [child1, child2] self.assertEqual(child1.parent, parent) self.assertEqual(child2.parent, parent) self.assertEqual(len(parent.children), 2) self.assertEqual(parent.dump(), { 'id': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_getitem(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel2(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) self.assertIs(parent.children[0], child1) self.assertIs(parent.children['child-1'], child1) self.assertIs(parent.children[child1], child1) self.assertIs(parent.children[1], child2) self.assertIs(parent.children['child-2'], child2) self.assertIs(parent.children[child2], child2) with self.assertRaises(IndexError): parent.children[1000] with self.assertRaises(KeyError): parent.children['child-4'] self.assertEqual(parent.children[2:], [child3]) def test_get(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel2(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) self.assertIs(parent.children.get(0), child1) self.assertIs(parent.children.get('child-1'), child1) self.assertIs(parent.children.get(child1), child1) self.assertIs(parent.children.get(1), child2) self.assertIs(parent.children.get('child-2'), child2) self.assertIs(parent.children.get(child2), child2) self.assertIs(parent.children.get('child-4'), None) sentinel = object() self.assertIs(parent.children.get('child-4', default=sentinel), sentinel) def test_setitem(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel2(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) child1b = PolymorphicChildModel1(id='child-1') child1c = PolymorphicChildModel1(id='child-1') child1d = PolymorphicChildModel1(id='child-1') child4 = PolymorphicChildModel2(id='child-4') child5 = PolymorphicChildModel1(id='child-5') child6 = PolymorphicChildModel2(id='child-6') child7 = PolymorphicChildModel1(id='child-7') parent.children[0] = child1b self.assertIs(parent.children[0], child1b) parent.children['child-1'] = child1c self.assertIs(parent.children[0], child1c) parent.children[child1] = child1d self.assertIs(parent.children[0], child1d) self.assertListEqual(parent.children, [child1d, child2, child3]) parent.children[1:1] = [child4, child5] self.assertIs(child4.parent, parent) self.assertIs(child5.parent, parent) self.assertListEqual(parent.children, [child1d, child4, child5, child2, child3]) parent.children[:2] = [child6, child7] self.assertIs(child6.parent, parent) self.assertIs(child7.parent, parent) self.assertIs(child1d.parent, None) self.assertIs(child4.parent, None) self.assertListEqual(parent.children, [child6, child7, child5, child2, child3]) with self.assertRaises(ValueError): parent.children[0:0] = [child2] def test_delitem(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel2(id='child-2') child3 = PolymorphicChildModel1(id='child-3') child4 = PolymorphicChildModel2(id='child-4') child5 = PolymorphicChildModel1(id='child-5') parent = PolymorphicParentModel(id='parent-1', children=[ child1, child2, child3, child4, child5]) del parent.children[0] del parent.children['child-3'] del parent.children[child4] self.assertListEqual(parent.children, [child2, child5]) self.assertIs(child1.parent, None) self.assertIs(child3.parent, None) self.assertIs(child4.parent, None) def test_append(self): child1 = PolymorphicChildModel1(id='child-1') child1b = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel2(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2]) parent.children.append(child3) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child3.parent, parent) with self.assertRaises(ValueError): parent.children.append(child1b) def test_add(self): child1 = PolymorphicChildModel1(id='child-1') child1b = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel2(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2]) parent.children.add(child3) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child3.parent, parent) parent.children.add(child1b) self.assertListEqual(parent.children, [child1, child2, child3]) def test_insert(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child2, child3]) parent.children.insert(0, child1) self.assertListEqual(parent.children, [child1, child2, child3]) self.assertIs(child1.parent, parent) def test_remove(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) parent.children.remove(child1) self.assertListEqual(parent.children, [child2, child3]) self.assertIs(child1.parent, None) with self.assertRaises(ValueError): parent.children.remove(child1) def test_discard(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) parent.children.discard(child1) self.assertListEqual(parent.children, [child2, child3]) self.assertIs(child1.parent, None) parent.children.discard(child1) self.assertListEqual(parent.children, [child2, child3]) def test_pop(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) pop1 = parent.children.pop() self.assertIs(pop1, child3) self.assertListEqual(parent.children, [child1, child2]) self.assertIs(child3.parent, None) pop2 = parent.children.pop('child-1') self.assertIs(pop2, child1) self.assertListEqual(parent.children, [child2]) self.assertIs(child1.parent, None) def test_clear(self): child1 = PolymorphicChildModel1(id='child-1') child2 = PolymorphicChildModel1(id='child-2') child3 = PolymorphicChildModel1(id='child-3') parent = PolymorphicParentModel( id='parent-1', children=[child1, child2, child3]) parent.children.clear() self.assertListEqual(parent.children, []) self.assertIs(child1.parent, None) self.assertIs(child2.parent, None) self.assertIs(child3.parent, None) def test_load_full(self): model = PolymorphicParentModel(self.storage, id='parent-1') self.assertEqual(model.dump(), { 'id': 'parent-1', 'field': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('parents.json'), mock.call('children.json')]) def test_load_partial(self): model = PolymorphicChildModel1( self.storage, id='child-1', parent=PolymorphicParentModel( self.storage, id='parent-1')) self.assertEqual(model.dump(), { 'type': 'PolymorphicChildModel1', 'id': 'child-1', 'field1': 'child-1', 'parent': 'parent-1', }) self.assertEqual(model, model.parent.children[0]) self.assertEqual(self.storage.open.call_count, 2) self.storage.open.assert_has_calls([ mock.call('parents.json'), mock.call('children.json')]) self.assertEqual(model.parent.dump(), { 'id': 'parent-1', 'field': 'parent-1', 'children': [ { 'type': 'PolymorphicChildModel1', 'id': 'child-1', }, { '_type_': 'PolymorphicChildModel2', 'id': 'child-2', }, ], }) def test_save_field(self): parent = PolymorphicParentModel(self.storage, id='parent-1') child = parent.children[0] child.field1 = 'changed-id-1' parent.field = 'changed-id-2' parent.save() self.assertEqual(self.storage.save.call_count, 1) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY)]) self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "id": "child-1", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "id": "child-2"\n' ' }\n' ' ], \n' ' "field": "changed-id-2", \n' ' "id": "parent-1"\n' '}') child.save() self.assertEqual(self.storage.save.call_count, 2) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('children.json', mock.ANY)]) self.assertEqual( self.storage.files['children.json'], '[\n' ' {\n' ' "field1": "changed-id-1", \n' ' "id": "child-1", \n' ' "parent": "parent-1", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "field2": "child-2", \n' ' "id": "child-2", \n' ' "parent": "parent-1"\n' ' }\n' ']') def test_save_id(self): parent = PolymorphicParentModel(self.storage, id='parent-1') child = parent.children[0] child.id = 'changed-id-1' parent.id = 'changed-id-2' parent.save() self.assertEqual(self.storage.save.call_count, 2) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('children.json', mock.ANY)]) self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "id": "child-1", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "id": "child-2"\n' ' }\n' ' ], \n' ' "field": "parent-1", \n' ' "id": "changed-id-2"\n' '}') self.assertEqual( self.storage.files['children.json'], '[\n' ' {\n' ' "field1": "child-1", \n' ' "id": "child-1", \n' ' "parent": "changed-id-2", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "field2": "child-2", \n' ' "id": "child-2", \n' ' "parent": "changed-id-2"\n' ' }\n' ']') child.save() self.assertEqual(self.storage.save.call_count, 4) self.storage.save.assert_has_calls([ mock.call('parents.json', mock.ANY), mock.call('children.json', mock.ANY), mock.call('children.json', mock.ANY), mock.call('parents.json', mock.ANY)]) self.assertEqual( self.storage.files['children.json'], '[\n' ' {\n' ' "field1": "child-1", \n' ' "id": "changed-id-1", \n' ' "parent": "changed-id-2", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "field2": "child-2", \n' ' "id": "child-2", \n' ' "parent": "changed-id-2"\n' ' }\n' ']') self.assertEqual( self.storage.files['parents.json'], '{\n' ' "children": [\n' ' {\n' ' "id": "changed-id-1", \n' ' "type": "PolymorphicChildModel1"\n' ' }, \n' ' {\n' ' "_type_": "PolymorphicChildModel2", \n' ' "id": "child-2"\n' ' }\n' ' ], \n' ' "field": "parent-1", \n' ' "id": "changed-id-2"\n' '}')
8848a2025763c8c406ee3f306ba82e82e8db0a70
bf12e13c0ab5ccf2fc32509b02aaae6b6a2e3327
/examples/hello_rect.py
9f1bcbed6deb09a08632a4cee248572761d502d9
[ "MIT", "Python-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
HighCWu/tpythonpp
42b56c9eb3c77192cbda36f0e198707bb858fe38
f1c15e1101993e4c9c7529739823b47759ea13f7
refs/heads/master
2023-06-30T16:17:09.409107
2021-03-19T04:16:12
2021-03-19T04:16:12
391,806,131
0
0
null
null
null
null
UTF-8
Python
false
false
212
py
def test(): print('hello world') r = rect(0,0, 320, 240) print(r) print(r.x) print(r.y) print(r.width) print(r.height) r.x = 2 print(r.x) r.y += 0.1 print(r.y) area = r.get_area() print(area) test()
90f7ab7711d5790e74f9518e25d8c39a79edafd8
7b5828edda7751700ca7002b40a214e39e5f48a8
/EA/simulation/server_commands/service_npc_commands.py
07e4d57abbcbb8550b95b267c098277d3e6c293a
[]
no_license
daniela-venuta/Sims-4-Python-Script-Workspace
54c33dac02f84daed66f46b7307f222fede0fa62
f408b28fb34626b2e3b2953152343d591a328d66
refs/heads/main
2023-03-29T18:08:39.202803
2021-03-30T19:00:42
2021-03-30T19:00:42
353,111,243
1
0
null
null
null
null
UTF-8
Python
false
false
2,830
py
from date_and_time import create_time_span from sims4.commands import CommandType import services import sims4.commands @sims4.commands.Command('service_npc.request_service', command_type=CommandType.Cheat) def request_service(service_npc_type:str, household_id=None, _connection=None): service_npc_tuning = services.service_npc_manager().get(service_npc_type) if service_npc_tuning is not None: tgt_client = services.client_manager().get(_connection) if tgt_client is None: return False else: if household_id is None: household = tgt_client.household else: household_id = int(household_id) manager = services.household_manager() household = manager.get(household_id) if household is None: household = tgt_client.household services.current_zone().service_npc_service.request_service(household, service_npc_tuning) sims4.commands.output('Requesting service {0}'.format(service_npc_type), _connection) return True return False @sims4.commands.Command('service_npc.fake_perform_service') def fake_perform_service(service_npc_type:str, _connection=None): service_npc_tuning = services.service_npc_manager().get(service_npc_type) if service_npc_tuning is not None: tgt_client = services.client_manager().get(_connection) if tgt_client is None: return False else: household = tgt_client.household service_npc_tuning.fake_perform(household) return True return False @sims4.commands.Command('service_npc.cancel_service', command_type=CommandType.Automation) def cancel_service(service_npc_type:str, max_duration:int=240, _connection=None): service_npc_tuning = services.service_npc_manager().get(service_npc_type) if service_npc_tuning is not None: tgt_client = services.client_manager().get(_connection) if tgt_client is None: return False else: household = tgt_client.household services.current_zone().service_npc_service.cancel_service(household, service_npc_tuning) return True return False @sims4.commands.Command('service_npc.toggle_auto_scheduled_services', command_type=CommandType.Automation) def toggle_auto_scheduled_services(enable:bool=None, max_duration:int=240, _connection=None): service_npc_service = services.current_zone().service_npc_service enable_auto_scheduled_services = enable if enable is not None else not service_npc_service._auto_scheduled_services_enabled service_npc_service._auto_scheduled_services_enabled = enable_auto_scheduled_services return True
7ba1d723327bdcf4aef6f5d70f72674ce22431c7
5774101105b47d78adb7a57eefdfa21502bbd70c
/python 语法基础/d14_tkinter_python图形开发界面库/tkinter/3.button控件.py
82895d1a97556d89642d20d2a44eb01bb5377143
[]
no_license
zhlthunder/python-study
34d928f0ebbdcd5543ae0f41baaea955c92f5c56
0f25dd5105ba46791842d66babbe4c3a64819ee5
refs/heads/master
2023-01-12T18:39:47.184978
2018-10-07T23:48:04
2018-10-07T23:48:04
90,516,611
0
1
null
2022-12-26T19:46:22
2017-05-07T07:39:48
HTML
UTF-8
Python
false
false
615
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #author:zhl import tkinter def func(): print("zhl is good man") win=tkinter.Tk() win.title("zhl") win.geometry("400x400+200+0") ##text:定义按钮上显示的命名 ##command 定义点击按钮触发的函数 ##height,width: 设置按钮的宽高 button1=tkinter.Button(win,text="按钮",command=func,width=5,height=5) button1.pack() button2=tkinter.Button(win,text="按钮",command=lambda:print("it is button2"),width=5,height=5) button2.pack() button3=tkinter.Button(win,text="退出",command=win.quit,width=5,height=5) button3.pack() win.mainloop()
3537ab717502779be66add592bf5cff21cb46dca
322e3003cc14c9beb7aa47363ca3c2f6038b82d5
/lecture6/pyspark/basics.py
b7cd3c6d03c81beae10b26d0f9da81724997ec3c
[]
no_license
danielvachalek/MLOps
039a393c71a418383ea46338e2d415e7c3936b56
0746e0380b73d93b2f12a22df04a74de7daf18a0
refs/heads/master
2023-02-09T01:21:53.874657
2021-01-02T22:49:32
2021-01-02T22:49:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,011
py
# Databricks notebook source # MAGIC %md In Cmd 2, the AWS_ACCESS_KEY and AWS_SECRET_KEY variables are set and kept hidden. # COMMAND ---------- AWS_ACCESS_KEY = "AA" AWS_SECRET_KEY = "BB" # COMMAND ---------- sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId", AWS_ACCESS_KEY) sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey", AWS_SECRET_KEY) # COMMAND ---------- df = spark.read.csv("s3://databricks-recsys/u.data",header=True, sep="\t",inferSchema = True) display(df) # COMMAND ---------- s3path = "s3://databricks-recsys/" df.write.parquet(s3path+"u.parquet") # COMMAND ---------- df_parquet = spark.read.parquet(s3path+"u.parquet").show() # COMMAND ---------- pdf = df.toPandas() # COMMAND ---------- pdf.head() # COMMAND ---------- sdf = sqlContext.createDataFrame(pdf) # COMMAND ---------- sdf.describe() # COMMAND ---------- sdf.printSchema() # COMMAND ---------- import databricks.koalas as ks kdf = sdf.to_koalas() kdf['iid'].to_numpy()[:3] # COMMAND ---------- type(ks.from_pandas(pdf)) # COMMAND ---------- sdf.createOrReplaceTempView('sdf') # COMMAND ---------- query = 'select distinct iid from sdf order by iid' spark.sql(query).show() # COMMAND ---------- movies_sdf = spark.read.csv("s3://databricks-recsys/movies_raw.dat",header=False, sep="|",inferSchema = True) display(movies_sdf) # COMMAND ---------- movies_sdf.createOrReplaceTempView('movies_sdf') # COMMAND ---------- query = """ select sdf.iid, avg(sdf.rating) as avg_rating, count(sdf.rating) as num_rating, first(movies_sdf._c1) as movie from sdf,movies_sdf where sdf.iid = movies_sdf._c0 group by iid having num_rating >= 5 order by avg_rating desc limit 10 """ top_movies_sdf = spark.sql(query) # COMMAND ---------- top_movies_kdf = top_movies_sdf.to_koalas() top_movies_kdf.head() # COMMAND ---------- display(top_movies_sdf) # COMMAND ---------- sdf_grouped = sdf.groupBy("iid").agg({'rating':'avg'}) pdf_grouped = sdf_grouped.toPandas() len(pdf_grouped)
79e82a9736205ebba06486b564cb8925c6d74af9
8acffb8c4ddca5bfef910e58d3faa0e4de83fce8
/ml-flask/Lib/site-packages/torch/_utils.py
55f737a5974002ee337bfdaf7d920c2472a0fe84
[ "MIT" ]
permissive
YaminiHP/SimilitudeApp
8cbde52caec3c19d5fa73508fc005f38f79b8418
005c59894d8788c97be16ec420c0a43aaec99b80
refs/heads/master
2023-06-27T00:03:00.404080
2021-07-25T17:51:27
2021-07-25T17:51:27
389,390,951
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
version https://git-lfs.github.com/spec/v1 oid sha256:03a04fffa1996df6bcab4d2bf79566d0e6b7d661fe5e37b292b5a766d648edfa size 19786
e554ed1e3f0ef7ab8afac5e92e7db32e3179c2ce
05a090ee8f9d6dc6bbcc3d20cf8d4a7c8a627bde
/kash/migrations/0003_auto_20201203_1658.py
9da1a6f5d84271275e7fa8f9401985f96c9af90e
[]
no_license
Komilcoder/kash_app
527e84c63b03264f72aba4e2d3039a219beae556
88ab937c3391b1104bbdbf733da49634ea645ecf
refs/heads/master
2023-01-21T00:46:24.482017
2020-12-03T15:52:01
2020-12-03T15:52:01
318,185,103
0
0
null
null
null
null
UTF-8
Python
false
false
1,520
py
# Generated by Django 3.1.4 on 2020-12-03 11:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('kash', '0002_auto_20201203_1648'), ] operations = [ migrations.RemoveField( model_name='news', name='description', ), migrations.RemoveField( model_name='news', name='title', ), migrations.RemoveField( model_name='tag', name='name', ), migrations.AddField( model_name='news', name='description_ru', field=models.CharField(max_length=100, null=True), ), migrations.AddField( model_name='news', name='description_uz', field=models.CharField(max_length=100, null=True), ), migrations.AddField( model_name='news', name='title_ru', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='news', name='title_uz', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='tag', name='name_ru', field=models.CharField(max_length=100, null=True), ), migrations.AddField( model_name='tag', name='name_uz', field=models.CharField(max_length=100, null=True), ), ]
a4aa3cb66427702daeca11f1eba49736ef4dd8e8
e81576012330e6a6024d14f3e241f88ca34b73cd
/python_code/vnev/Lib/site-packages/jdcloud_sdk/services/cps/models/Listener.py
f4508baf200e067c53fd0aa337482b86f24fb929
[ "MIT" ]
permissive
Ureimu/weather-robot
eba6a84147755aa83c941a306bac1a7c4e95e23e
7634195af388538a566ccea9f8a8534c5fb0f4b6
refs/heads/master
2021-01-15T07:23:42.274413
2020-03-23T02:30:19
2020-03-23T02:30:19
242,912,896
0
0
null
null
null
null
UTF-8
Python
false
false
2,761
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class Listener(object): def __init__(self, listenerId=None, loadBalancerId=None, protocol=None, port=None, algorithm=None, stickySession=None, realIp=None, status=None, name=None, description=None, healthCheck=None, healthCheckTimeout=None, healthCheckInterval=None, healthyThreshold=None, unhealthyThreshold=None, healthCheckIp=None, serverGroupId=None): """ :param listenerId: (Optional) 监听器ID :param loadBalancerId: (Optional) 负载均衡ID :param protocol: (Optional) 协议 :param port: (Optional) 端口 :param algorithm: (Optional) 调度算法 :param stickySession: (Optional) 会话保持状态,取值on|off :param realIp: (Optional) 获取真实ip :param status: (Optional) 状态 :param name: (Optional) 名称 :param description: (Optional) 描述 :param healthCheck: (Optional) 健康检查状态,取值on|off :param healthCheckTimeout: (Optional) 健康检查响应的最大超时时间,单位s :param healthCheckInterval: (Optional) 健康检查响应的最大间隔时间,单位s :param healthyThreshold: (Optional) 健康检查结果为success的阈值 :param unhealthyThreshold: (Optional) 健康检查结果为fail的阈值 :param healthCheckIp: (Optional) 健康检查ip :param serverGroupId: (Optional) 服务器组id """ self.listenerId = listenerId self.loadBalancerId = loadBalancerId self.protocol = protocol self.port = port self.algorithm = algorithm self.stickySession = stickySession self.realIp = realIp self.status = status self.name = name self.description = description self.healthCheck = healthCheck self.healthCheckTimeout = healthCheckTimeout self.healthCheckInterval = healthCheckInterval self.healthyThreshold = healthyThreshold self.unhealthyThreshold = unhealthyThreshold self.healthCheckIp = healthCheckIp self.serverGroupId = serverGroupId
d089134e584d9b0d118d8a1e547907c28db88b65
9bc9885e9500083afc2cd6be4ff93ee2eb4fbfbb
/neuropower/apps/designtoolbox/migrations/0016_auto_20160907_1914.py
5dbb860d6d601d9fe11f927ee47970a6189b6b04
[ "MIT" ]
permissive
jokedurnez/neuropower
50297af01bef55fe2c01355f038a9d184cde493d
ed8c1cf29d447b41dfbfbc7a8345443454e62a96
refs/heads/master
2021-01-15T08:36:45.191330
2016-11-20T00:56:30
2016-11-20T00:56:30
51,338,446
1
1
null
null
null
null
UTF-8
Python
false
false
930
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-09-07 19:14 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('designtoolbox', '0015_auto_20160905_1717'), ] operations = [ migrations.AlterField( model_name='designmodel', name='W1', field=models.FloatField(default=0), ), migrations.AlterField( model_name='designmodel', name='W2', field=models.FloatField(default=0.5), ), migrations.AlterField( model_name='designmodel', name='cycles', field=models.IntegerField(default=100), ), migrations.AlterField( model_name='designmodel', name='preruncycles', field=models.IntegerField(default=10), ), ]
74e74455de014475d07e51604e15ca1764c43ed9
7684ffabb75ed2d6396d3a720c56ed0ee09ee77d
/crack_detection/gcloud/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/oslogin/v1alpha/oslogin_v1alpha_client.py
17a96db3d16f3b91f1861878024aa4ac72c32e1d
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
bopopescu/CrackPropAPI
da7cc7a1ef046d20992423f7c7a148e390bb70e7
24c0cfd1f258eeaa7e5e953253b5d778f2fbecb5
refs/heads/master
2022-11-09T07:15:41.142453
2020-07-02T14:34:15
2020-07-02T14:34:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,176
py
"""Generated client library for oslogin version v1alpha.""" # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.py import base_api from googlecloudsdk.third_party.apis.oslogin.v1alpha import oslogin_v1alpha_messages as messages class OsloginV1alpha(base_api.BaseApiClient): """Generated client library for service oslogin version v1alpha.""" MESSAGES_MODULE = messages BASE_URL = u'https://oslogin.googleapis.com/' MTLS_BASE_URL = u'https://oslogin.mtls.googleapis.com/' _PACKAGE = u'oslogin' _SCOPES = [u'https://www.googleapis.com/auth/cloud-platform', u'https://www.googleapis.com/auth/cloud-platform.read-only', u'https://www.googleapis.com/auth/compute', u'https://www.googleapis.com/auth/compute.readonly'] _VERSION = u'v1alpha' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = u'google-cloud-sdk' _CLIENT_CLASS_NAME = u'OsloginV1alpha' _URL_VERSION = u'v1alpha' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new oslogin handle.""" url = url or self.BASE_URL super(OsloginV1alpha, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.users_projects = self.UsersProjectsService(self) self.users_sshPublicKeys = self.UsersSshPublicKeysService(self) self.users = self.UsersService(self) class UsersProjectsService(base_api.BaseApiService): """Service class for the users_projects resource.""" _NAME = u'users_projects' def __init__(self, client): super(OsloginV1alpha.UsersProjectsService, self).__init__(client) self._upload_configs = { } def Delete(self, request, global_params=None): r"""Deletes a POSIX account. Args: request: (OsloginUsersProjectsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}/projects/{projectsId}', http_method=u'DELETE', method_id=u'oslogin.users.projects.delete', ordered_params=[u'name'], path_params=[u'name'], query_params=[u'operatingSystemType'], relative_path=u'v1alpha/{+name}', request_field='', request_type_name=u'OsloginUsersProjectsDeleteRequest', response_type_name=u'Empty', supports_download=False, ) class UsersSshPublicKeysService(base_api.BaseApiService): """Service class for the users_sshPublicKeys resource.""" _NAME = u'users_sshPublicKeys' def __init__(self, client): super(OsloginV1alpha.UsersSshPublicKeysService, self).__init__(client) self._upload_configs = { } def Delete(self, request, global_params=None): r"""Deletes an SSH public key. Args: request: (OsloginUsersSshPublicKeysDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}/sshPublicKeys/{sshPublicKeysId}', http_method=u'DELETE', method_id=u'oslogin.users.sshPublicKeys.delete', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha/{+name}', request_field='', request_type_name=u'OsloginUsersSshPublicKeysDeleteRequest', response_type_name=u'Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Retrieves an SSH public key. Args: request: (OsloginUsersSshPublicKeysGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (SshPublicKey) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}/sshPublicKeys/{sshPublicKeysId}', http_method=u'GET', method_id=u'oslogin.users.sshPublicKeys.get', ordered_params=[u'name'], path_params=[u'name'], query_params=[], relative_path=u'v1alpha/{+name}', request_field='', request_type_name=u'OsloginUsersSshPublicKeysGetRequest', response_type_name=u'SshPublicKey', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates an SSH public key and returns the profile information. This method. supports patch semantics. Args: request: (OsloginUsersSshPublicKeysPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (SshPublicKey) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}/sshPublicKeys/{sshPublicKeysId}', http_method=u'PATCH', method_id=u'oslogin.users.sshPublicKeys.patch', ordered_params=[u'name'], path_params=[u'name'], query_params=[u'updateMask'], relative_path=u'v1alpha/{+name}', request_field=u'sshPublicKey', request_type_name=u'OsloginUsersSshPublicKeysPatchRequest', response_type_name=u'SshPublicKey', supports_download=False, ) class UsersService(base_api.BaseApiService): """Service class for the users resource.""" _NAME = u'users' def __init__(self, client): super(OsloginV1alpha.UsersService, self).__init__(client) self._upload_configs = { } def GetLoginProfile(self, request, global_params=None): r"""Retrieves the profile information used for logging in to a virtual machine. on Google Compute Engine. Args: request: (OsloginUsersGetLoginProfileRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (LoginProfile) The response message. """ config = self.GetMethodConfig('GetLoginProfile') return self._RunMethod( config, request, global_params=global_params) GetLoginProfile.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}/loginProfile', http_method=u'GET', method_id=u'oslogin.users.getLoginProfile', ordered_params=[u'name'], path_params=[u'name'], query_params=[u'operatingSystemType', u'projectId', u'systemId'], relative_path=u'v1alpha/{+name}/loginProfile', request_field='', request_type_name=u'OsloginUsersGetLoginProfileRequest', response_type_name=u'LoginProfile', supports_download=False, ) def ImportSshPublicKey(self, request, global_params=None): r"""Adds an SSH public key and returns the profile information. Default POSIX. account information is set when no username and UID exist as part of the login profile. Args: request: (OsloginUsersImportSshPublicKeyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ImportSshPublicKeyResponse) The response message. """ config = self.GetMethodConfig('ImportSshPublicKey') return self._RunMethod( config, request, global_params=global_params) ImportSshPublicKey.method_config = lambda: base_api.ApiMethodInfo( flat_path=u'v1alpha/users/{usersId}:importSshPublicKey', http_method=u'POST', method_id=u'oslogin.users.importSshPublicKey', ordered_params=[u'parent'], path_params=[u'parent'], query_params=[u'projectId'], relative_path=u'v1alpha/{+parent}:importSshPublicKey', request_field=u'sshPublicKey', request_type_name=u'OsloginUsersImportSshPublicKeyRequest', response_type_name=u'ImportSshPublicKeyResponse', supports_download=False, )
36baeb280fe445880f582412b5f140997661f413
f4f181f2c970a163801b4202fc8d6c92a4e8113d
/google-cloud-sdk/lib/googlecloudsdk/api_lib/compute/addresses_utils.py
c24143684ff0332856f3e3da17ca890a539e8ee5
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "MIT" ]
permissive
Sorsly/subtle
7732a6cb910f5e2f4eed1ac0d3b5979001582340
718e79a3e04f1f57f39b6ebe90dec9e028e88d40
refs/heads/master
2021-05-24T01:21:39.218495
2017-10-28T01:33:58
2017-10-28T01:33:58
83,103,372
0
1
MIT
2020-07-25T11:21:05
2017-02-25T03:33:07
Python
UTF-8
Python
false
false
3,225
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common classes and functions for addresses.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import name_generator from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.compute import flags as compute_flags class AddressesMutator(base_classes.BaseAsyncMutator): """Base class for modifying addresses.""" @property def service(self): if self.global_request: return self.compute.globalAddresses else: return self.compute.addresses @property def resource_type(self): return 'addresses' @property def method(self): return 'Insert' def GetAddress(self, args, address, address_ref): return self.messages.Address( address=address, description=args.description, name=address_ref.Name()) def CreateRequests(self, args): """Overrides.""" names, addresses = self._GetNamesAndAddresses(args) if not args.name: args.name = names address_refs = self.ADDRESSES_ARG.ResolveAsResource( args, self.resources, scope_lister=compute_flags.GetDefaultScopeLister( self.compute_client, self.project)) self.global_request = getattr(address_refs[0], 'region', None) is None requests = [] for address, address_ref in zip(addresses, address_refs): address_msg = self.GetAddress( args, address, address_ref) if self.global_request: requests.append(self.messages.ComputeGlobalAddressesInsertRequest( address=address_msg, project=address_ref.project)) else: requests.append(self.messages.ComputeAddressesInsertRequest( address=address_msg, region=address_ref.region, project=address_ref.project)) return requests def _GetNamesAndAddresses(self, args): """Returns names and addresses provided in args.""" if not args.addresses and not args.name: raise exceptions.ToolException( 'At least one name or address must be provided.') if args.name: names = args.name else: # If we dont have any names then we must some addresses. names = [name_generator.GenerateRandomName() for _ in args.addresses] if args.addresses: addresses = args.addresses else: # If we dont have any addresses then we must some names. addresses = [None] * len(args.name) if len(addresses) != len(names): raise exceptions.ToolException( 'If providing both, you must specify the same number of names as ' 'addresses.') return names, addresses
e699cda227ba68d9a3a9122ca69be7e2ae5c1a57
67ddedc825a4852349bb3e54f7d31cdeb34c64aa
/contrib/testgen/gen_key_io_test_vectors.py
cfcf70fa73dc3d37f054a9d4084749fe247c87dc
[ "MIT" ]
permissive
geranium-coin/geranium
3500632ed8e666d30d1b28494b1b7b5003c18ecc
93c08aa10ea151f4efd8337c1d5599ee7e8d58ea
refs/heads/master
2022-07-28T21:28:55.717800
2022-01-10T17:30:13
2022-01-10T17:30:13
440,774,432
2
0
MIT
2022-01-04T08:33:10
2021-12-22T07:39:53
C++
UTF-8
Python
false
false
10,266
py
#!/usr/bin/env python3 # Copyright (c) 2012-2018 The Geranium Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Generate valid and invalid base58 address and private key test vectors. Usage: PYTHONPATH=../../test/functional/test_framework ./gen_key_io_test_vectors.py valid 50 > ../../src/test/data/key_io_valid.json PYTHONPATH=../../test/functional/test_framework ./gen_key_io_test_vectors.py invalid 50 > ../../src/test/data/key_io_invalid.json ''' # 2012 Wladimir J. van der Laan # Released under MIT License import os from itertools import islice from base58 import b58encode_chk, b58decode_chk, b58chars import random from binascii import b2a_hex from segwit_addr import bech32_encode, decode, convertbits, CHARSET, Encoding # key types PUBKEY_ADDRESS = 0 SCRIPT_ADDRESS = 5 PUBKEY_ADDRESS_TEST = 111 SCRIPT_ADDRESS_TEST = 196 PUBKEY_ADDRESS_REGTEST = 111 SCRIPT_ADDRESS_REGTEST = 196 PRIVKEY = 128 PRIVKEY_TEST = 239 PRIVKEY_REGTEST = 239 # script OP_0 = 0x00 OP_1 = 0x51 OP_2 = 0x52 OP_3 = 0x53 OP_16 = 0x60 OP_DUP = 0x76 OP_EQUAL = 0x87 OP_EQUALVERIFY = 0x88 OP_HASH160 = 0xa9 OP_CHECKSIG = 0xac pubkey_prefix = (OP_DUP, OP_HASH160, 20) pubkey_suffix = (OP_EQUALVERIFY, OP_CHECKSIG) script_prefix = (OP_HASH160, 20) script_suffix = (OP_EQUAL,) p2wpkh_prefix = (OP_0, 20) p2wsh_prefix = (OP_0, 32) p2tr_prefix = (OP_1, 32) metadata_keys = ['isPrivkey', 'chain', 'isCompressed', 'tryCaseFlip'] # templates for valid sequences templates = [ # prefix, payload_size, suffix, metadata, output_prefix, output_suffix # None = N/A ((PUBKEY_ADDRESS,), 20, (), (False, 'main', None, None), pubkey_prefix, pubkey_suffix), ((SCRIPT_ADDRESS,), 20, (), (False, 'main', None, None), script_prefix, script_suffix), ((PUBKEY_ADDRESS_TEST,), 20, (), (False, 'test', None, None), pubkey_prefix, pubkey_suffix), ((SCRIPT_ADDRESS_TEST,), 20, (), (False, 'test', None, None), script_prefix, script_suffix), ((PUBKEY_ADDRESS_REGTEST,), 20, (), (False, 'regtest', None, None), pubkey_prefix, pubkey_suffix), ((SCRIPT_ADDRESS_REGTEST,), 20, (), (False, 'regtest', None, None), script_prefix, script_suffix), ((PRIVKEY,), 32, (), (True, 'main', False, None), (), ()), ((PRIVKEY,), 32, (1,), (True, 'main', True, None), (), ()), ((PRIVKEY_TEST,), 32, (), (True, 'test', False, None), (), ()), ((PRIVKEY_TEST,), 32, (1,), (True, 'test', True, None), (), ()), ((PRIVKEY_REGTEST,), 32, (), (True, 'regtest', False, None), (), ()), ((PRIVKEY_REGTEST,), 32, (1,), (True, 'regtest', True, None), (), ()) ] # templates for valid bech32 sequences bech32_templates = [ # hrp, version, witprog_size, metadata, encoding, output_prefix ('bc', 0, 20, (False, 'main', None, True), Encoding.BECH32, p2wpkh_prefix), ('bc', 0, 32, (False, 'main', None, True), Encoding.BECH32, p2wsh_prefix), ('bc', 1, 32, (False, 'main', None, True), Encoding.BECH32M, p2tr_prefix), ('bc', 2, 2, (False, 'main', None, True), Encoding.BECH32M, (OP_2, 2)), ('tb', 0, 20, (False, 'test', None, True), Encoding.BECH32, p2wpkh_prefix), ('tb', 0, 32, (False, 'test', None, True), Encoding.BECH32, p2wsh_prefix), ('tb', 1, 32, (False, 'test', None, True), Encoding.BECH32M, p2tr_prefix), ('tb', 3, 16, (False, 'test', None, True), Encoding.BECH32M, (OP_3, 16)), ('bcrt', 0, 20, (False, 'regtest', None, True), Encoding.BECH32, p2wpkh_prefix), ('bcrt', 0, 32, (False, 'regtest', None, True), Encoding.BECH32, p2wsh_prefix), ('bcrt', 1, 32, (False, 'regtest', None, True), Encoding.BECH32M, p2tr_prefix), ('bcrt', 16, 40, (False, 'regtest', None, True), Encoding.BECH32M, (OP_16, 40)) ] # templates for invalid bech32 sequences bech32_ng_templates = [ # hrp, version, witprog_size, encoding, invalid_bech32, invalid_checksum, invalid_char ('tc', 0, 20, Encoding.BECH32, False, False, False), ('bt', 1, 32, Encoding.BECH32M, False, False, False), ('tb', 17, 32, Encoding.BECH32M, False, False, False), ('bcrt', 3, 1, Encoding.BECH32M, False, False, False), ('bc', 15, 41, Encoding.BECH32M, False, False, False), ('tb', 0, 16, Encoding.BECH32, False, False, False), ('bcrt', 0, 32, Encoding.BECH32, True, False, False), ('bc', 0, 16, Encoding.BECH32, True, False, False), ('tb', 0, 32, Encoding.BECH32, False, True, False), ('bcrt', 0, 20, Encoding.BECH32, False, False, True), ('bc', 0, 20, Encoding.BECH32M, False, False, False), ('tb', 0, 32, Encoding.BECH32M, False, False, False), ('bcrt', 0, 20, Encoding.BECH32M, False, False, False), ('bc', 1, 32, Encoding.BECH32, False, False, False), ('tb', 2, 16, Encoding.BECH32, False, False, False), ('bcrt', 16, 20, Encoding.BECH32, False, False, False), ] def is_valid(v): '''Check vector v for validity''' if len(set(v) - set(b58chars)) > 0: return is_valid_bech32(v) result = b58decode_chk(v) if result is None: return is_valid_bech32(v) for template in templates: prefix = bytearray(template[0]) suffix = bytearray(template[2]) if result.startswith(prefix) and result.endswith(suffix): if (len(result) - len(prefix) - len(suffix)) == template[1]: return True return is_valid_bech32(v) def is_valid_bech32(v): '''Check vector v for bech32 validity''' for hrp in ['bc', 'tb', 'bcrt']: if decode(hrp, v) != (None, None): return True return False def gen_valid_base58_vector(template): '''Generate valid base58 vector''' prefix = bytearray(template[0]) payload = bytearray(os.urandom(template[1])) suffix = bytearray(template[2]) dst_prefix = bytearray(template[4]) dst_suffix = bytearray(template[5]) rv = b58encode_chk(prefix + payload + suffix) return rv, dst_prefix + payload + dst_suffix def gen_valid_bech32_vector(template): '''Generate valid bech32 vector''' hrp = template[0] witver = template[1] witprog = bytearray(os.urandom(template[2])) encoding = template[4] dst_prefix = bytearray(template[5]) rv = bech32_encode(encoding, hrp, [witver] + convertbits(witprog, 8, 5)) return rv, dst_prefix + witprog def gen_valid_vectors(): '''Generate valid test vectors''' glist = [gen_valid_base58_vector, gen_valid_bech32_vector] tlist = [templates, bech32_templates] while True: for template, valid_vector_generator in [(t, g) for g, l in zip(glist, tlist) for t in l]: rv, payload = valid_vector_generator(template) assert is_valid(rv) metadata = {x: y for x, y in zip(metadata_keys,template[3]) if y is not None} hexrepr = b2a_hex(payload) if isinstance(hexrepr, bytes): hexrepr = hexrepr.decode('utf8') yield (rv, hexrepr, metadata) def gen_invalid_base58_vector(template): '''Generate possibly invalid vector''' # kinds of invalid vectors: # invalid prefix # invalid payload length # invalid (randomized) suffix (add random data) # corrupt checksum corrupt_prefix = randbool(0.2) randomize_payload_size = randbool(0.2) corrupt_suffix = randbool(0.2) if corrupt_prefix: prefix = os.urandom(1) else: prefix = bytearray(template[0]) if randomize_payload_size: payload = os.urandom(max(int(random.expovariate(0.5)), 50)) else: payload = os.urandom(template[1]) if corrupt_suffix: suffix = os.urandom(len(template[2])) else: suffix = bytearray(template[2]) val = b58encode_chk(prefix + payload + suffix) if random.randint(0,10)<1: # line corruption if randbool(): # add random character to end val += random.choice(b58chars) else: # replace random character in the middle n = random.randint(0, len(val)) val = val[0:n] + random.choice(b58chars) + val[n+1:] return val def gen_invalid_bech32_vector(template): '''Generate possibly invalid bech32 vector''' no_data = randbool(0.1) to_upper = randbool(0.1) hrp = template[0] witver = template[1] witprog = bytearray(os.urandom(template[2])) encoding = template[3] if no_data: rv = bech32_encode(encoding, hrp, []) else: data = [witver] + convertbits(witprog, 8, 5) if template[4] and not no_data: if template[2] % 5 in {2, 4}: data[-1] |= 1 else: data.append(0) rv = bech32_encode(encoding, hrp, data) if template[5]: i = len(rv) - random.randrange(1, 7) rv = rv[:i] + random.choice(CHARSET.replace(rv[i], '')) + rv[i + 1:] if template[6]: i = len(hrp) + 1 + random.randrange(0, len(rv) - len(hrp) - 4) rv = rv[:i] + rv[i:i + 4].upper() + rv[i + 4:] if to_upper: rv = rv.swapcase() return rv def randbool(p = 0.5): '''Return True with P(p)''' return random.random() < p def gen_invalid_vectors(): '''Generate invalid test vectors''' # start with some manual edge-cases yield "", yield "x", glist = [gen_invalid_base58_vector, gen_invalid_bech32_vector] tlist = [templates, bech32_ng_templates] while True: for template, invalid_vector_generator in [(t, g) for g, l in zip(glist, tlist) for t in l]: val = invalid_vector_generator(template) if not is_valid(val): yield val, if __name__ == '__main__': import sys import json iters = {'valid':gen_valid_vectors, 'invalid':gen_invalid_vectors} try: uiter = iters[sys.argv[1]] except IndexError: uiter = gen_valid_vectors try: count = int(sys.argv[2]) except IndexError: count = 0 data = list(islice(uiter(), count)) json.dump(data, sys.stdout, sort_keys=True, indent=4) sys.stdout.write('\n')
10ef50de6e155b9bb542e5c845172fff8a2bb9e6
16e26614611ae87de81388b435d88b142ca6189e
/pywind/decc/Report.py
d66f3fe5a42edfea4de68937f5228223d475ef93
[]
no_license
tomwadley/pywind
d1d36007b0196730cba1389ef7940dd0ccabe5df
0d86ff1c9a67b2f446e62c1471257e38bdc1d03c
refs/heads/master
2021-04-09T15:41:49.823115
2013-06-26T09:18:24
2013-06-26T09:18:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,726
py
from cookielib import CookieJar import csv from datetime import datetime import urllib2 from pywind.decc.geo import osGridToLatLong, LatLon def field_to_attr(fld): fld = fld.lower() for c in [' ', '-', '/']: fld = fld.replace(c, '_') return fld class DeccRecord(object): FIELDS = ['Reference', 'NFFO/SRO/NI-NFFO/Non-NFFO', 'General Technology', 'Technology Type', 'Section 36', 'Contractor (/Applicant)', 'Site Name', 'Installed Capacity (Elec)', 'CHP', 'OffShore Wind Round', 'Address 1', 'Address 2', 'Address 3', 'Address 4', 'Town', 'County', 'District', 'Region', 'Country', 'X Coord', 'Y Coord', 'Pre-consent', 'Post-consent', 'Application Submitted', 'Application Determined', 'Construction Date', 'Planning Officer Recommendation', 'Appeal Determined', 'Appeal Ref Number', 'Date on which generation commenced', 'Green Belt', 'National Park', 'AONB', 'Heritage Coast', 'Special Landscape Area', 'Employment Use', 'Natural Environment', 'Other Land Use', 'Built Heritage/ Archaeology', 'Project Specific', 'Relevant Supporting Details', 'Developer Last Contacted', 'LPA / CC Last Contacted', 'LPA Name', 'Record Last Updated' ] DATE_FIELDS = ['record_last_updated', 'application_submitted', 'application_determined', 'appeal_determined' ] BOOLEAN_FIELDS = ['section_36', 'green_belt', 'national_park', 'aonb', 'heritage_coast', 'special_landscape_area', 'employment_use', 'natural_environment', 'other_land_use', 'built_heritage__archaeology', 'project_specific' ] INT_FIELDS = ['x_coord', 'y_coord'] def __init__(self, row): for i in range(len(self.FIELDS)): attr = field_to_attr(self.FIELDS[i]) setattr(self, attr, row[i]) for f in self.BOOLEAN_FIELDS: val = getattr(self, f, None) if val is None: continue setattr(self, f, False if val.lower() == 'false' else True) for f in self.DATE_FIELDS: val = getattr(self, f, None) if val is None: continue if val == '': setattr(self, f, None) else: setattr(self, f, datetime.strptime(val, "%Y-%m-%d").date()) for f in self.INT_FIELDS: val = getattr(self, f, 0) if val == '': val = 0 setattr(self, f, float(val)) mw_capacity = getattr(self, 'installed_capacity_(elec)', 0) mw_capacity = float(mw_capacity.replace(',', '')) setattr(self, 'installed_capacity_(elec)', mw_capacity * 1000) setattr(self, 'capacity', getattr(self, 'installed_capacity_(elec)')) # Convert x,y to lat/lon latlon = osGridToLatLong(int(self.x_coord), self.y_coord) latlon.convert(LatLon.WGS84) setattr(self, 'lat', latlon.lat) setattr(self, 'lon', latlon.lon) def Dump(self): for f in self.FIELDS: print "%-30s: %s" % (f, getattr(self, field_to_attr(f), '')) class MonthlyExtract(object): URL = "https://restats.decc.gov.uk/app/reporting/decc/monthlyextract/style/csv/csvwhich/reporting.decc.monthlyextract" def __init__(self): self.cookieJar = CookieJar() cookie_handler = urllib2.HTTPCookieProcessor(self.cookieJar) httpsHandler = urllib2.HTTPSHandler(debuglevel = 0) self.opener = urllib2.build_opener(cookie_handler, httpsHandler) self.records = [] def __len__(self): return len(self.records) def get_data(self): resp = self.opener.open(self.URL) if resp.code != 200: return False reader = csv.reader(resp) for row in reader: if row[0] == 'Reference': continue d = DeccRecord(row) self.records.append(d) return True
47005a3669df2d29e09979c2bfd2bb18fede9e59
b7e52aeabebf7448e31723d406755809cac63099
/source/calc_fsun_tree/SConstruct
9e270b942ba10dbe21a51f6c85d05cb22f763ba5
[ "BSD-3-Clause" ]
permissive
bucricket/projectMASviirs
df31af86e024499ff87d2c2b707e3b9d24813f7c
705abc89505122351f0ef78e0edb950b7e3b7f48
refs/heads/master
2021-01-01T18:31:16.748864
2018-05-30T15:14:07
2018-05-30T15:14:07
98,354,619
0
1
null
null
null
null
UTF-8
Python
false
false
1,013
#!python import os import platform import subprocess AddOption('--prefix', dest='prefix', type='string', nargs=1, action='store', metavar='DIR', help='installation prefix') env = Environment(PREFIX = GetOption('prefix')) prefix = os.environ.get('PREFIX') base1 = os.path.abspath(os.path.join(prefix,os.pardir)) base = os.path.join(base1,'work') sourcePath = os.path.join(base,'source') binPath = os.path.join(prefix,'bin') # Comment lines start with the # symbol # The following sets up an Compile Environment Object with gfortran as the linker. env = Environment(LINK='gfortran') env.Append(F90FLAGS = ['-ffree-line-length-512']) # The next line of code is an array of the source files names used in the program. # The next line is the actual code that links the executable. env.Program is generates an executable. make_csv = env.Program(target='make_csv', source= 'make_csv.f90') env.Install(binPath, make_csv) env.Alias('install', binPath)
030faf212e0c96085fe19ef5907653e0f6de769f
cc6e36ce306a46c1accc3e979362de34b6063b7e
/game/management/commands/import_games.py
1be5196a35dfa7b39b0710727bda8fd09f034eca
[]
no_license
bartromgens/petanque-stats-server
d51995e2b4d288a0a99563347c3bf3db863918bf
9f7e48a7670b1c2c89f1bfcb2ac5ed8c8e9a7fe0
refs/heads/master
2020-03-22T19:23:18.230361
2018-07-29T00:46:02
2018-07-29T00:46:02
140,524,341
0
0
null
null
null
null
UTF-8
Python
false
false
2,058
py
import json import uuid from django.core.management.base import BaseCommand from django.contrib.auth.models import User from django.db import transaction from game.models import Game, Team, ScoreTeam, Player class Command(BaseCommand): help = 'Import scores from a custom format' players_filepath = 'data/players.json' games_filepath = 'data/games.json' @transaction.atomic def handle(self, *args, **options): print('BEGIN: import games') # Command.create_admin() Command.create_users() games = Command.create_games() for game in games: print(game) print('END: import games') @staticmethod def create_admin(): User.objects.create_superuser( username='admin', email='[email protected]', password='admin' ) @staticmethod def create_users(): with open(Command.players_filepath, 'r') as players_file: players_json = json.load(players_file) for username in players_json['players']: User.objects.create_user( username=username, email=username + '@test.com', password=uuid.uuid4().hex[:10] ) @staticmethod def create_games(): games = [] with open(Command.games_filepath, 'r') as players_file: games_json = json.load(players_file) for game_data in games_json['games']: games.append(Command.create_game(game_data)) return games @staticmethod def create_game(game_data): game = Game.objects.create(max_score=game_data['max_score']) for score in game_data['scores']: team_players_ids = [] for name in score['players']: team_players_ids.append(Player.get_by_name(name).id) team = Team.get_or_create_team(team_players_ids) game.teams.add(team) ScoreTeam.objects.create(team=team, game=game, score=score['score']) game.save() return game
6d25cc07becb9e59f730a67748abcca1e17b92d4
770f7b7155c33d2f8c27846b93b9b73db45b2e2a
/gofedinfra/system/plugins/simpleetcdstorage/fakeartefactdriver.py
10293902c919cd5c9cb74e6cf1c783345335fd8e
[]
no_license
gofed/infra
b0f6186486e8aa7c8c640411ee92d6648cbc77ec
2f402bbdf1e5fa7cb68262cc3408a2fc1436269f
refs/heads/master
2022-10-16T02:46:09.226939
2018-06-07T23:16:44
2018-06-08T11:31:37
48,703,326
1
5
null
2022-10-11T11:17:16
2015-12-28T17:08:28
Python
UTF-8
Python
false
false
346
py
from .artefactdriver import ArtefactDriver class FakeArtefactDriver(ArtefactDriver): def __init__(self, artefact): ArtefactDriver.__init__(self, artefact) self.data = {} def store(self, input): key = self._generateKey(input) self.data[key] = input def retrieve(self, data): key = self._generateKey(data) return self.data[key]
742e69c1a22297de8f0a8cd58cecab3389d6f888
a281d09ed91914b134028c3a9f11f0beb69a9089
/tests/integration/docusaurus/connecting_to_your_data/cloud/gcs/pandas/inferred_and_runtime_yaml_example.py
e7ed0539f4232487def269d75f60499c9e167e07
[ "Apache-2.0" ]
permissive
CarstenFrommhold/great_expectations
4e67bbf43d21bc414f56d576704259a4eca283a5
23d61c5ed26689d6ff9cec647cc35712ad744559
refs/heads/develop
2023-01-08T10:01:12.074165
2022-11-29T18:50:18
2022-11-29T18:50:18
311,708,429
0
0
Apache-2.0
2020-11-10T15:52:05
2020-11-10T15:52:04
null
UTF-8
Python
false
false
4,209
py
from typing import List # <snippet> from ruamel import yaml import great_expectations as ge from great_expectations.core.batch import Batch, BatchRequest, RuntimeBatchRequest # </snippet> # <snippet> context = ge.get_context() # </snippet> # <snippet> datasource_yaml = rf""" name: my_gcs_datasource class_name: Datasource execution_engine: class_name: PandasExecutionEngine data_connectors: default_runtime_data_connector_name: class_name: RuntimeDataConnector batch_identifiers: - default_identifier_name default_inferred_data_connector_name: class_name: InferredAssetGCSDataConnector bucket_or_name: <YOUR_GCS_BUCKET_HERE> prefix: <BUCKET_PATH_TO_DATA> default_regex: pattern: (.*)\.csv group_names: - data_asset_name """ # </snippet> # Please note this override is only to provide good UX for docs and tests. # In normal usage you'd set your path directly in the yaml above. datasource_yaml = datasource_yaml.replace("<YOUR_GCS_BUCKET_HERE>", "test_docs_data") datasource_yaml = datasource_yaml.replace( "<BUCKET_PATH_TO_DATA>", "data/taxi_yellow_tripdata_samples" ) context.test_yaml_config(datasource_yaml) # <snippet> context.add_datasource(**yaml.load(datasource_yaml)) # </snippet> # Here is a RuntimeBatchRequest using a path to a single CSV file # <snippet> batch_request = RuntimeBatchRequest( datasource_name="my_gcs_datasource", data_connector_name="default_runtime_data_connector_name", data_asset_name="<YOUR_MEANGINGFUL_NAME>", # this can be anything that identifies this data_asset for you runtime_parameters={"path": "<PATH_TO_YOUR_DATA_HERE>"}, # Add your GCS path here. batch_identifiers={"default_identifier_name": "default_identifier"}, ) # </snippet> # Please note this override is only to provide good UX for docs and tests. # In normal usage you'd set your path directly in the BatchRequest above. batch_request.runtime_parameters[ "path" ] = f"gs://test_docs_data/data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_2019-01.csv" # <snippet> context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True ) validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite" ) print(validator.head()) # </snippet> # NOTE: The following code is only for testing and can be ignored by users. assert isinstance(validator, ge.validator.validator.Validator) batch_list: List[Batch] = context.get_batch_list(batch_request=batch_request) assert len(batch_list) == 1 batch: Batch = batch_list[0] assert batch.data.dataframe.shape[0] == 10000 # Here is a BatchRequest naming a data_asset # <snippet> batch_request = BatchRequest( datasource_name="my_gcs_datasource", data_connector_name="default_inferred_data_connector_name", data_asset_name="<YOUR_DATA_ASSET_NAME>", ) # </snippet> # Please note this override is only to provide good UX for docs and tests. # In normal usage you'd set your data asset name directly in the BatchRequest above. batch_request.data_asset_name = ( "data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_2019-01" ) context.create_expectation_suite( expectation_suite_name="test_suite", overwrite_existing=True ) validator = context.get_validator( batch_request=batch_request, expectation_suite_name="test_suite" ) print(validator.head()) # NOTE: The following code is only for testing and can be ignored by users. assert isinstance(validator, ge.validator.validator.Validator) assert [ds["name"] for ds in context.list_datasources()] == ["my_gcs_datasource"] assert set( context.get_available_data_asset_names()["my_gcs_datasource"][ "default_inferred_data_connector_name" ] ) == { "data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_2019-01", "data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_2019-02", "data/taxi_yellow_tripdata_samples/yellow_tripdata_sample_2019-03", } batch_list: List[Batch] = context.get_batch_list(batch_request=batch_request) assert len(batch_list) == 1 batch: Batch = batch_list[0] assert batch.data.dataframe.shape[0] == 10000
f6b23ffa695566bdecd4607042fa580e550c11b6
e25b0dc781cc291da63e9af1319666cb3e3fd94b
/Real_exp2/Codes/preprocess_real_data_classes.py
9158d1c83f17bf31c9c8a6ae3787751cedef4e7e
[]
no_license
nastaran75/JMLR-Reg
2621e123a847e0d72bccd5938ab8f06d3aa875c1
0daff201b4a462817f7f0caef2a87c46706cb612
refs/heads/master
2021-02-04T01:50:19.367050
2020-03-28T08:22:09
2020-03-28T08:22:09
243,599,352
0
0
null
null
null
null
UTF-8
Python
false
false
11,283
py
import sys from os import listdir from os.path import isfile, join import numpy.random as rand import math import codecs import csv import random #import fasttext from myutil import * import numpy as np import numpy.linalg as LA from scipy.io import arff import shutil #from PIL import Image # from sklearn.preprocessing import StandardScaler # from sklearn.decomposition import PCA #from real_data_classes import * def check_sc(data_file): data=load_data( data_file) # n,dim = data['X'].shape # for feature in range( dim ): # data['X'][:,feature] = np.true_divide( data['X'][:,feature], LA.norm( data['X'][:,feature].flatten() ) ) # save( data, data_file) d_mat = data['dist_mat'] save( d_mat, data_file + '_dist_mat') del data['dist_mat'] save( data, data_file ) return def map_y(arr): return np.array([ x*(float(2)/3) + float(1/3) for x in arr ]) # return # data=load_data( data_file ) # data['Y'] = map_y( data['Y']) # data['test']['Y'] = map_y( data['test']['Y']) # save( data, data_file) # print np.unique(data['Y']) # print np.average(data['c']['0.0'].flatten()) # x_norm = LA.norm(data['X'],axis=1) # a = np.array( [ LA.norm(row)**2 for row in data['X'] ]) # print np.max( a) return # data= load_data( data_file) # print data['0.5']['low'].shape # plt.plot(data['0.1']['low']) # plt.show() # return # print data['c']['0.001'].shape # return x_norm = LA.norm(data['X'],axis=1) plt.plot( x_norm ) plt.show() def check_gaussian(): n=100 m=10 std = float( sys.argv[1]) p=float( sys.argv[2]) x = rand.normal(0,std,100) plt.plot( x**2 , label='continuous') c=[] for sample in range(n): sum = 0 for i in range(m): x = np.random.uniform(0,1) if x < p: sum += 0.25 c.append(float(sum)/m) plt.plot( c, label = 'discrete') plt.legend() plt.grid() # plt.ylim([0,.5]) plt.show() def plot_range_of_lambda( data_file): lamb = float( sys.argv[1]) # def lower_bound_lambda( c,y,x_m): # l_gamma = float(c)/(y**2) # print l_gamma # return l_gamma*x_m / (1-l_gamma) data= load_data( data_file ) gamma_lower_bound = np.array( [ data['c']['0.5'][i]/float( data['Y'][i]**2 ) for i in range( data['X'].shape[0] ) ] ) gamma_upper_bound = lamb /( lamb + np.max( LA.norm( data['X'], axis = 1 ).flatten() )**2 ) plt.plot( gamma_lower_bound, label = 'gamma lower bound') plt.plot( gamma_upper_bound* np.ones( data['X'].shape[0] ) , label = 'gamma upper bound') print np.max( LA.norm( data['X'], axis = 1 ).flatten() )**2 plt.legend() plt.show() class Generate_human_error: def __init__(self, data_file): # print data_file self.data = load_data( data_file ) if 'c' in self.data: del self.data['c'] del self.data['test']['c'] self.n, self.dim = self.data['X'].shape # sc = StandardScaler() # self.data['X'] = sc.fit_transform(self.data['X']) # self.data['test']['X'] = sc.transform( self.data['test']['X']) def normalize_features(self, delta = .0001 ): n,dim = self.data['X'].shape for feature in range( dim ): self.data['X'][:,feature] = np.true_divide( self.data['X'][:,feature], LA.norm( self.data['X'][:,feature].flatten() ) ) self.data['test']['X'][:,feature] = np.true_divide( self.data['test']['X'][:,feature], LA.norm( self.data['test']['X'][:,feature].flatten() ) ) # print np.max( [ LA.norm(x.flatten()) for x in self.data['X']] ) # self.data['Y']=np.array([ y if y > 0 else delta for y in self.data['Y']]) # self.data['test']['Y']=np.array([ y if y > 0 else delta for y in self.data['test']['Y']]) def white_Gauss(self, std=1, n=1 , upper_bound = False, y_vec = None ): init_noise = rand.normal(0,std,n) if upper_bound : return np.array( [ noise if noise/y < 0.3 else 0.1*y for noise,y in zip(init_noise, y_vec) ]) else: return init_noise def data_independent_noise( self, list_of_std, upper_bound = False ): self.data['c'] = {} self.data['test']['c']={} for std in list_of_std: self.data['c'][str(std)] = self.white_Gauss( std, self.data['Y'].shape[0], upper_bound , self.data['Y'] ) ** 2 self.data['test']['c'][str(std)] = self.white_Gauss( std, self.data['test']['Y'].shape[0], upper_bound, self.data['test']['Y']) ** 2 def variable_std_Gauss( self, std_const ,x ): n = x.shape[0] x_norm = LA.norm( x, axis=1 ).flatten() std_vector = std_const * np.reciprocal( x_norm ) # print 'rnd shape ', rand.normal( 0, 2 , 1 ).shape tmp = np.array( [ rand.normal( 0, s ,1)[0] for s in std_vector ]) # print 'tmp.shape', tmp.shape return tmp def data_dependent_noise( self, list_of_std ): self.data['c'] = {} self.data['test']['c']={} for std in list_of_std: self.data['c'][str(std)] = self.variable_std_Gauss( std, self.data['X']) ** 2 self.data['test']['c'][str(std)] = self.variable_std_Gauss( std, self.data['test']['X']) ** 2 def modify_y_values( self ): def get_num_category( y, y_t): y = np.concatenate(( y.flatten(), y_t.flatten() ), axis = 0 ) return np.unique( y ).shape[0] def map_range(v, l, h, l_new, h_new): # print '****' # print v # tmp = float(v-l)*(( h_new - l_new)/float( h-l))+ l_new # print tmp # return tmp return float(v-l)*(( h_new - l_new)/float( h-l))+ l_new num_cat = get_num_category( self.data['Y'], self.data['test']['Y']) print num_cat self.data['Y'] = np.array( [ map_range(i, 0, 1, float(1)/num_cat, 1 ) for i in self.data['Y']]).flatten() self.data['test']['Y'] = np.array( [ map_range(i, 0, 1, float(1)/num_cat, 1 ) for i in self.data['test']['Y']]).flatten() def get_discrete_noise( self, p , num_cat): m=10 c=[] for sample in range( self.n ): sum = 0 for i in range(m): x = np.random.uniform(0,1) if x < p: sum += (float(1)/num_cat)**2 c.append(float(sum)/m) return np.array(c) def discrete_noise( self, list_of_p ): def get_num_category( y, y_t): y = np.concatenate(( y.flatten(), y_t.flatten() ), axis = 0 ) return np.unique( y ).shape[0] num_cat = get_num_category( self.data['Y'], self.data['test']['Y'] ) if 'c' not in self.data: self.data['c'] = {} if 'c' not in self.data['test']: self.data['test']['c']={} for p in list_of_p: self.data['c'][str(p)] = self.get_discrete_noise( p, num_cat ) self.data['test']['c'][str(p)] = self.get_discrete_noise( p, num_cat ) def vary_discrete( self, list_of_frac): def get_num_category( y, y_t): y = np.concatenate(( y.flatten(), y_t.flatten() ), axis = 0 ) return np.unique( y ).shape[0] def nearest( i ): return np.argmin( self.data['dist_mat'][i]) self.normalize_features() num_cat = get_num_category( self.data['Y'], self.data['test']['Y']) print 'num_category', num_cat n=self.data['X'].shape[0] indices = np.arange( n ) random.shuffle(indices) # err = (( float(1)/num_cat )**2 )/20 #print self.data['Y']prop={'size': 15}, self.data['low']={} self.data['c']={} self.data['test']['c']={} for frac in list_of_frac: num_low = int(frac*n) self.data['low'][str(frac)]=indices[:num_low] # self.data['c'][str(frac)] = np.array( [ 0.001 if i in self.data['low'][str(frac)] else 0.08 for i in range(n) ] ) # self.data['test']['c'][str(frac)] = np.array( [ 0.001 if nearest(i) in self.data['low'][str(frac)] else 0.15 for i in range( self.data['test']['X'].shape[0]) ] ) # for stare 11 for messidor 0.001 # self.data['c'][str(frac)] = np.array( # [0.0008 if i in self.data['low'][str(frac)] else 0.08 for i in range(n)]) # self.data['test']['c'][str(frac)] = np.array( # [0.0008 if nearest(i) in self.data['low'][str(frac)] else 0.25 for i in # range(self.data['test']['X'].shape[0])]) # messidor final # self.data['c'][str(frac)] = np.array( # [0.0001 if i in self.data['low'][str(frac)] else 0.4 for i in range(n)]) # self.data['test']['c'][str(frac)] = np.array( # [0.0001 if nearest(i) in self.data['low'][str(frac)] else 0.4 for i in # range(self.data['test']['X'].shape[0])]) #stare11 final # self.data['c'][str(frac)] = np.array( # [0.0001 if i in self.data['low'][str(frac)] else 0.1 for i in range(n)]) # self.data['test']['c'][str(frac)] = np.array( # [0.0001 if nearest(i) in self.data['low'][str(frac)] else 0.25 for i in # range(self.data['test']['X'].shape[0])]) # stare5 final self.data['c'][str(frac)] = np.array( [0.0001 if i in self.data['low'][str(frac)] else 0.1 for i in range(n)]) self.data['test']['c'][str(frac)] = np.array( [0.0001 if nearest(i) in self.data['low'][str(frac)] else 0.1 for i in range(self.data['test']['X'].shape[0])]) def save_data(self, data_file): save( self.data , data_file) def generate_human_error( path, file_name_list): option ='vary_discrete' list_of_std = [0.2, 0.4, 0.6, 0.8] for file_name in file_name_list: data_file = path + 'data/' + file_name +'_pca50' obj = Generate_human_error( data_file ) obj.vary_discrete( list_of_std ) obj.save_data( path + 'data/' + file_name + '_pca50' ) def compute_dist_dict( data_file ): data = load_data( data_file) num_test = data['test']['X'].shape[0] num_train = data['X'].shape[0] data['dist_mat']=np.zeros((num_test,num_train)) for te,i in zip(data['test']['X'], range(num_test)): for tr,j in zip(data['X'], range(num_train)): data['dist_mat'][i,j]=LA.norm( te-tr) save( data, data_file ) return # save( data['dist_mat'] , data_file + '_dist_mat') # dist_dict = {} # for i, dist_arr in zip(range( num_test), data['dist_mat']): # dist_dict[str(i)] = np.argmin(dist_arr) # data['dist_dict'] = dist_dict # del data['dist_mat'] # save( data, data_file ) def main(): path = '../Real_Data_Results/' file_name = 'stare5' generate_human_error( path , [file_name]) print 'done' compute_dist_dict( path + 'data/' + file_name + '_pca50') return if __name__=="__main__": main()
a49e2981e3bf1e5622c75bb54165b0f55cecfe87
31c94ea00f0f6673f161a21a529f2272e7460a34
/bindapi/routerApi.py
4ea16209cd1e7101e783bcfeaa0d6ef1853e83b0
[]
no_license
xgocn/bindapi
0d3e51f696a9d3ec5dde4e05d1c2d5eb2fe52f5a
343f07176de43c3e5ffc9b26c479c47c289fdc0e
refs/heads/master
2023-03-15T08:01:22.550448
2018-05-09T06:19:22
2018-05-09T06:19:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
# -*- coding: utf-8 -*- # author: kiven from rest_framework.routers import DefaultRouter router = DefaultRouter() from bind.views import DomainViewSet, RecordViewSet, AllDomainViewSet, XfrAclViewSet router.register(r'domains', DomainViewSet) router.register(r'records', RecordViewSet) router.register(r'xfracls', XfrAclViewSet) router.register(r'alldomains', AllDomainViewSet, base_name='alldomains') from analyze.views import DomainNodeViewSet, DomainStatusViewSet router.register(r'domainnodes', DomainNodeViewSet) router.register(r'domainstatus', DomainStatusViewSet)
17b6a63f5fd62343b7a3cb8a859ed7ef5cd184f7
521648e4e12366760da7baff15d35201e0b19a5e
/django_ansible/shell.py
5dc1d4613af2d30156968e00bd67fc7c89c10b8e
[]
no_license
sashgorokhov/django-ansible
b54f596f7d50d239474eb2d4fd8e85c0da21f959
ad32255b7c87bcada1bd6c8aa250c1ec52c8cd49
refs/heads/master
2021-01-22T07:52:55.457727
2017-02-13T19:46:23
2017-02-13T19:46:23
81,864,171
1
0
null
null
null
null
UTF-8
Python
false
false
919
py
import subprocess import logging logger = logging.getLogger(__name__) def _try_decode(b): try: return b.decode() except: return b def run(executable, args, env=None, cwd=None, **kwargs): """ :param kwargs: Additional arguments passed to subprocess.run function :rtype: subprocess.CompletedProcess """ completed = subprocess.run( args=args, executable=executable, env=env, cwd=cwd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs ) logger.info('$ %s %s (env: %s)', executable, str(args), str(env)) if completed.returncode != 0: logger.warning('Exited with code %s', completed.returncode) if completed.stderr: logger.warning(_try_decode(completed.stderr)) if completed.stdout: logger.debug(_try_decode(completed.stdout)) return completed
c31338954ced6e76da2274aa4b6340be2e11225e
aa8e6259f33bdcfdf21434da5185f31aa6927195
/gtf_admm_gird_v1.py
ded9bf78405dafb35b2100bc464273be8ad8622f
[]
no_license
Ryanshuai/graph_trend_filtering_py
b32448cfdc4c50a9dfde144abe73e878891f26de
243969bf7dd97e483693ac88e45ab2192cd4edbf
refs/heads/master
2020-11-27T07:13:22.116640
2019-12-24T20:56:05
2019-12-24T20:56:05
229,349,019
2
0
null
null
null
null
UTF-8
Python
false
false
1,927
py
import numpy as np from numpy.linalg import norm from grid_system import grid_system_2d, grid_system_3d from get_Delta_grid import get_Delta_grid from soft_thresh import soft_thresh from construct_O import construct_O def gtf_admm_grid_v1(y: np.array, k, lamb, rho, max_iter=1000): y_size = y.size y_shape = y.shape y_dim = y.ndim if y_dim == 2: D = get_Delta_grid(y_shape, 'gtf2d', 0) elif y_dim == 3: D = get_Delta_grid(y_shape, 'gtf3d', 0) else: raise AssertionError('Grids with dimension > 3 not supported') O = construct_O(D, k) if k % 2 == 0: O = O[:O.shape[1], :] y = y.reshape((y_size, 1), order='F') x = y.copy() z = np.zeros_like(y, dtype=np.float64) u = z.copy() for i in range(max_iter): if y_dim == 2: b = (O.T @ (rho * z - u) + y).reshape(y_shape, order='F') x = grid_system_2d(b, k + 1, rho) elif y_dim == 3: b = (O.T @ (rho * z - u) + y).reshape(y_shape, order='F') x = grid_system_3d(b, k + 1, rho) x = x.reshape((y_size, 1), order='F') Ox = O @ x z_new = soft_thresh(Ox + u / rho, lamb / rho) s = rho * norm(O.T @ (z_new - z)) z = z_new u += rho * (Ox - z) r = norm(Ox - z) tol_abs = 1e-5 tol_rel = 1e-4 eps_pri = np.sqrt(y.size) * tol_abs + tol_rel * max(norm(Ox), norm(z)) eps_dual = np.sqrt(y.size) * tol_abs + tol_rel * norm(O.T @ u) if r < eps_pri and s < eps_dual: print('converged.') break if i % 1 == 0: print('{} [r, s]={}, {}, [eps_pri, eps_dual]={},{}'.format(i, r, s, eps_pri, eps_dual)) tau = 2 if r > 10 * s: rho *= tau elif s > 10 * s: rho /= tau else: # no break print('Reached maxiter.') return x.reshape(y_shape, order='F')
28dccbb9398db07f45d327d9f7177a7907e88734
974d04d2ea27b1bba1c01015a98112d2afb78fe5
/python/paddle/distributed/launch/controllers/ipu_controller.py
bf2c5f34b3bdf946f0f16b99225771bd139022e5
[ "Apache-2.0" ]
permissive
PaddlePaddle/Paddle
b3d2583119082c8e4b74331dacc4d39ed4d7cff0
22a11a60e0e3d10a3cf610077a3d9942a6f964cb
refs/heads/develop
2023-08-17T21:27:30.568889
2023-08-17T12:38:22
2023-08-17T12:38:22
65,711,522
20,414
5,891
Apache-2.0
2023-09-14T19:20:51
2016-08-15T06:59:08
C++
UTF-8
Python
false
false
6,679
py
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys from paddle.distributed.launch.job.container import Container from .collective import CollectiveController, ControleMode class IPUController(CollectiveController): @classmethod def enable(cls, ctx): if ctx.args.training_script == "ipu": ctx.logger.debug(f"{cls.__name__} enabled") ctx.args.run_mode = ControleMode.IPU return True else: return False def parse_ipu_args(self, args_list): parser = argparse.ArgumentParser() parser.add_argument( "--hosts", type=str, help="The hosts for IPU distributd training." ) parser.add_argument( "--nproc_per_host", type=int, help="The number of processes launched per host.", ) parser.add_argument( "--ipus_per_replica", type=int, help="The number of IPUs requested per replica.", ) parser.add_argument( "--ipu_partition", type=str, help="The partition name of IPU devices.", ) parser.add_argument( "--vipu_server", type=str, help="The ip of the IPU device manager." ) parser.add_argument( "training_script", type=str, help="The full path to the IPU distributed training program/script to be launched in parallel. e.g., ``training.py``.", ) parser.add_argument('training_script_args', nargs=argparse.REMAINDER) return parser.parse_args(args_list) def replace_training_script(self): # IPU distributed computing is based on PopRun which is a wrapper of MPI. self.ctx.args.training_script = "poprun" poprun_args = self.parse_ipu_args(self.ctx.args.training_script_args) num_ipus = int(self.ctx.args.devices) # The number of replicas for data parallel assert ( num_ipus % poprun_args.ipus_per_replica ) == 0, "The number of IPUs:{} mod the number of IPUs per replica:{} must == 0".format( num_ipus, poprun_args.ipus_per_replica ) num_replicas = num_ipus // poprun_args.ipus_per_replica self.ctx.logger.info(f"The number of total replicas is {num_replicas}.") # The number of processes num_nodes = len(poprun_args.hosts.split(',')) num_procs = num_nodes * poprun_args.nproc_per_host self.ctx.logger.info(f"The number of total processes is {num_procs}.") assert ( num_replicas % num_procs ) == 0, "The number of replicas:{} mod the number of processes:{} must == 0".format( num_replicas, num_procs ) # hosts and endpoints hosts = poprun_args.hosts.replace(' ', '').split(',') endpoints = [x + ":8090" for x in hosts] # args for poprun poprun_command = [] poprun_command.append(f'--num-instances={num_procs}') poprun_command.append(f'--num-replicas={num_replicas}') poprun_command.append( f'--ipus-per-replica={poprun_args.ipus_per_replica}' ) poprun_command.append('--host={}'.format(','.join(hosts))) poprun_command.append(f'--vipu-partition={poprun_args.ipu_partition}') poprun_command.append(f'--vipu-server-host={poprun_args.vipu_server}') poprun_command.extend( [ '--update-partition=no', '--vipu-server-timeout=120', '--print-topology=yes', '--numa-aware=yes', ] ) # global envs global_envs = '--mpi-local-args=\'' log_level = os.getenv('POPART_LOG_LEVEL', None) if log_level: global_envs += f'-x POPART_LOG_LEVEL={log_level} ' global_envs += ( '-x PADDLE_TRAINERS_NUM={} -x PADDLE_TRAINER_ENDPOINTS={}'.format( num_procs, ','.join(endpoints) ) ) global_envs += '\'' poprun_command.append(global_envs) # local envs for idx in range(num_procs): cur_endpoint = endpoints[idx // poprun_args.nproc_per_host] rank_in_node = idx % poprun_args.nproc_per_host poprun_command.append( '--instance-mpi-local-args={}:\"-x PADDLE_TRAINER_ID={} -x PADDLE_CURRENT_ENDPOINT={} -x PADDLE_RANK_IN_NODE={}\"'.format( idx, idx, cur_endpoint, rank_in_node ) ) # executor poprun_command.append(sys.executable) # script and script args poprun_command.append(poprun_args.training_script) poprun_command.extend(poprun_args.training_script_args) # for debug print("----------- PopRun Command -----------") print("poprun \\") for i in range(len(poprun_command) - 1): print("%s \\" % (poprun_command[i])) print("%s" % (poprun_command[len(poprun_command) - 1])) print("---------------------------------------") # replace training_script_args self.ctx.args.training_script_args = poprun_command def _get_entrypoint(self): entrypoint = [self.ctx.args.training_script] entrypoint.extend(self.ctx.args.training_script_args) entrypoint = [" ".join(entrypoint)] return entrypoint def new_container( self, entrypoint=None, envs={}, use_ctx_env=True, out=None, err=None ): c = Container( entrypoint=(entrypoint or self._get_entrypoint()), env=(self.ctx.get_envs() if use_ctx_env else {}), ) c.outfile, c.errfile = self._get_out_err_file(out, err) c.update_env(envs) # Need subprocess.Popen(shell=True) for PopRun command c.shell = True return c def run(self): # Replace the training script with the PopRun command self.replace_training_script() self.build_job() self.build_pod() self.deploy_pod() self.watch()
e2f068cbe30c6a0e2ced7c56d424860a07838c8b
d0cd3064e1b24542e02518961fd6643af56738f0
/ticha-django-site/handwritten_texts/views.py
96faec09e23c5252e504753c7de6a6f472a2b205
[]
no_license
zhanpengwang888/Docker-Test
126bd74301b7550de753eb7539795e20ace285c5
2f0eefb684622d6eead3977697e8ccf4761ba1be
refs/heads/master
2022-12-15T11:49:46.899365
2017-09-29T21:02:05
2017-09-29T21:02:05
104,515,096
0
0
null
2022-12-07T23:56:40
2017-09-22T20:16:17
HTML
UTF-8
Python
false
false
1,899
py
from django.shortcuts import render from .models import HandwrittenText from django.views.generic import ListView class HandwrittenListView(ListView): model = HandwrittenText template_name = 'handwritten_texts/list.html' EN_TO_ES = { 'title': 'título', "language": "idioma", "document_type": "tipo_del_documento", "material_type": "material_type", "archive": "archivo", "collection": "colección", "call_number": "número_de_etiqueta", "page": "páginas", "date_digitized": "date_digitized", "year": "year", "town_modern_official": "pueblo", "primary_parties": "personajes_principales", "slug": "slug", "town_short": "town_short", "date": "fecha", "has_translation": "has_translation", "transcription": "transcription", "scribe": "escribano", "is_translation": "is_translation", "witnesses": "testigos", "acknowledgements": "agradecimientos", "permission_file": "permission_file", "percent_needs_review": "percent_needs_review", "requester_project": "requester_project", "timeline_text": "timeline_spanish_text", "timeline_headline": "timeline_spanish_headline" } def handwritten_text_detail_view(request, slug): """Custom view to supply the HandwrittenText detail template with its fields in the proper language. """ man = HandwrittenText.objects.get(slug=slug) translated_man = {} for en_key, es_key in EN_TO_ES.items(): if request.LANGUAGE_CODE == 'es': try: translated_man[en_key] = getattr(man, es_key) except AttributeError: translated_man[en_key] = getattr(man, en_key) else: translated_man[en_key] = getattr(man, en_key) context = {'man': translated_man, 'omeka_id': man.omeka_id} return render(request, 'handwritten_texts/detail.html', context) def redirect_view(request): return render(request, 'handwritten_texts/redirect.html')
c13e18406862b21208f3d0eabecafed60a527fec
0b1002296d0686daae2ec0e83cafbba9833bf837
/utils/test.py
20fbd142451833f7a9d51ceac556d2b719c2efae
[]
no_license
williamzxl/tmp1
b35f967ee62b25c65976b5c0a59cd71b315c2029
0213bac933435ae15dfc10997aa6b07300e2f580
refs/heads/master
2021-06-10T01:37:35.060796
2018-12-21T06:38:14
2018-12-21T06:38:14
162,676,016
1
0
null
2021-06-01T23:13:05
2018-12-21T06:37:07
Python
UTF-8
Python
false
false
122
py
a = {'groupID': '2475', 'newF': 3, 'sysID': '11-Hubei-Reading-4', 'taskID': '37037'} print(a.keys()) print(list(a.keys()))
0a4496a02194dde02d89f94e065bb5e8d08c414d
b77cc1448ae2c68589c5ee24e1a0b1e53499e606
/leave/migrations/0011_auto_20170216_1404.py
583d88c706e6ecb11c94de53c4d77eac4b435c0f
[]
no_license
PregTech-c/Hrp_system
a5514cf6b4c778bf7cc58e8a6e8120ac7048a0a7
11d8dd3221497c536dd7df9028b9991632055b21
refs/heads/master
2022-10-09T07:54:49.538270
2018-08-21T11:12:04
2018-08-21T11:12:04
145,424,954
1
1
null
2022-10-01T09:48:53
2018-08-20T13:58:31
JavaScript
UTF-8
Python
false
false
421
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-02-16 11:04 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('leave', '0010_auto_20170215_1712'), ] operations = [ migrations.RenameModel( old_name='LeaveRequestMessage', new_name='LeaveRequestApplication', ), ]
7b88efcd16638abbf9a7b7bf5405d75f01442fa0
4ef12965654c4bc9d6a0635ecf8188ecf2defed8
/my_new_application_1046/wsgi.py
3cb6a828d03839b76f908d22de5a1756e8c484a1
[]
no_license
crowdbotics-apps/my-new-application-1046
2d30662ae59e1675d0fee78789898852a1b81b45
e3ee98e6318bac0a61b3519d148b4b6b80c9c6f5
refs/heads/master
2022-12-21T22:11:11.515569
2019-02-23T00:42:41
2019-02-23T00:42:41
172,153,638
0
0
null
2022-12-08T01:40:51
2019-02-23T00:41:51
Python
UTF-8
Python
false
false
424
py
""" WSGI config for my_new_application_1046 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "my_new_application_1046.settings") application = get_wsgi_application()
109a21b79abddfbc7f76c75cdba728b887a8d0ef
9343c9a43e1940b6ca7e96d0891edef385389083
/labs/lab3/train_hvd_1.py
197c1a2711684a9cc98dccd1718f112ce9c71686
[ "MIT" ]
permissive
luyuliu/CSE-5194
4441301d283820e45d64b3503061221082cf334b
52970106c21b30e64d4cf1df26bec09929494060
refs/heads/master
2020-07-09T17:19:47.994233
2019-12-26T15:13:56
2019-12-26T15:13:56
204,032,088
1
0
null
null
null
null
UTF-8
Python
false
false
9,253
py
from __future__ import print_function import argparse import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import torch.utils.data.distributed import horovod.torch as hvd import collections import random, time, os import torch from utils import read_words, create_batches, to_var from gated_cnn import GatedCNN import torch.nn.functional as F from torch.utils.data import DistributedSampler, DataLoader from torch.nn.parallel import DistributedDataParallelCPU, DistributedDataParallel, DataParallel import torch.multiprocessing as mp import torch.distributed as dist from model_2 import SomeNet # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=80, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help='number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 3e-3)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() vocab_size = 2000 seq_len = 21 embd_size = 200 n_layers = 10 kernel = (5, embd_size) out_chs = 64 res_block_count = 5 batch_size = args.batch_size rank = 0 world_size = 2 # Horovod: initialize library. hvd.init() torch.manual_seed(args.seed) if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} words = read_words('/users/PAS1588/liuluyu0378/lab1/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled', seq_len, kernel[0]) word_counter = collections.Counter(words).most_common(vocab_size-1) vocab = [w for w, _ in word_counter] w2i = dict((w, i) for i, w in enumerate(vocab, 1)) w2i['<unk>'] = 0 print('vocab_size', vocab_size) print('w2i size', len(w2i)) data = [w2i[w] if w in w2i else 0 for w in words] data = create_batches(data, batch_size, seq_len) split_idx = int(len(data) * 0.8) training_data = data[:split_idx] test_data = data[split_idx:] rank = hvd.rank() training_length = len(training_data) test_length = len(test_data) training_data = training_data[int(rank * training_length / hvd.size()): int((rank + 1)* training_length / hvd.size())] test_data = test_data[int(rank * test_length / hvd.size()): int((rank + 1)* test_length / hvd.size())] print('train samples:', len(training_data)) print('test samples:', len(test_data)) train_dataset = training_data # Horovod: use DistributedSampler to partition the training data. train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=hvd.size(), rank=hvd.rank()) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=80, sampler=train_sampler, **kwargs) test_dataset = test_data # Horovod: use DistributedSampler to partition the test data. test_sampler = torch.utils.data.distributed.DistributedSampler( test_dataset, num_replicas=hvd.size(), rank=hvd.rank()) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.test_batch_size, sampler=test_sampler, **kwargs) model = GatedCNN(seq_len, vocab_size, embd_size, n_layers, kernel, out_chs, res_block_count, vocab_size) if args.cuda: # Move model to GPU. model.cuda() # Horovod: scale learning rate by the number of GPUs. optimizer = optim.Adam(model.parameters(), lr=args.lr * hvd.size()) total_comm_time = time.time() # Horovod: broadcast parameters & optimizer state. adf = time.time() hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) bdf = time.time() # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression) total_comm_time = time.time() - total_comm_time total_training_comm_time = 0 def train(epoch): start = 0 end = 0 epoch_comm_time = 0 model.train() # Horovod: set epoch to sampler for shuffling. train_sampler.set_epoch(epoch) for batch_idx, (data, target) in enumerate(train_dataset): a = time.time() # for i in range(len(data)): # print(len(data[0][0])) # data[i] = to_var(torch.stack(data[i])) # data = torch.stack(data) # target = torch.stack(target) data = to_var(torch.LongTensor(data)) # (bs, seq_len) target = to_var(torch.LongTensor(target)) # (bs,) if args.cuda: data, target = data.cuda(), target.cuda() output = model(data) loss = F.cross_entropy(output, target) start = time.time() optimizer.zero_grad() end = time.time() epoch_comm_time = end - start + epoch_comm_time loss.backward() start = time.time() optimizer.step() end = time.time() epoch_comm_time = end - start + epoch_comm_time b = time.time() if batch_idx % args.log_interval == 0: # Horovod: use train_sampler to determine the number of examples in # this worker's partition. if hvd.rank() == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_dataset), 100. * batch_idx / len(train_dataset), loss.item())) print("Train time: ", b -a) return epoch_comm_time def metric_average(val, name): tensor = torch.tensor(val) avg_tensor = hvd.allreduce(tensor, name=name) return avg_tensor.item() def test(): model.eval() test_loss = 0. test_accuracy = 0. counter = 0 correct = 0 for data, target in test_dataset: data = to_var(torch.LongTensor(data)) # (bs, seq_len) target = to_var(torch.LongTensor(target)) # (bs,) if args.cuda: data, target = data.cuda(), target.cuda() output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target).item() _, pred_ids = torch.max(output, 1) # get the index of the max log-probability pred = output.data.max(1, keepdim=True)[1] correct += torch.sum(pred_ids == target).data.item() counter += data.size(0) test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum() # print('Test Acc: {:.2f} % ({}/{})'.format(100 * correct / counter, correct, counter)) # print('Test Loss: {:.4f}'.format(losses/counter)) # # Horovod: use test_sampler to determine the number of examples in # # this worker's partition. test_loss /= counter test_accuracy /= counter # Horovod: average metric values across workers. test_loss = metric_average(test_loss, 'avg_loss') test_accuracy = metric_average(test_accuracy, 'avg_accuracy') # Horovod: print output only on first rank. if hvd.rank() == 0: print('\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n'.format( test_loss, 100. * test_accuracy)) aa = time.time() for epoch in range(1, args.epochs + 1): total_training_comm_time += train(epoch) bb = time.time() total_training_time = bb - aa training_minus_epoch_comm_time = total_training_time - total_training_comm_time total_comm_time += total_training_comm_time print("************* Total train time: ", total_training_time, "***************") print("************* Total training minus comm time: ", training_minus_epoch_comm_time, "***************") print("************* Total comm time: ", total_comm_time, "***************") print("************* Broadcast time: ", bdf - adf, "***************") print("************* allinall time: ", total_training_comm_time, "***************") test()
cf5d0a7771e323b24bd3ee042f85b1bcbe5f004f
2233f520493f64c6070dd3e77722e53a7dd738e8
/day5/my_devices_na.py
2721f252d62d9ee537165a0fe29a355f3aca4d31
[ "Apache-2.0" ]
permissive
mpjeffin/pynet-ons-oct17
690bb31600b8ef5131439bb25ddce35b4855ba6a
d0daf9c250f79bc34b3b8b06b67004f56ef834a2
refs/heads/master
2021-09-07T00:00:02.234456
2018-02-13T19:58:11
2018-02-13T19:58:11
125,467,721
1
0
null
2018-03-16T05:26:10
2018-03-16T05:26:10
null
UTF-8
Python
false
false
1,517
py
""" pynet-rtr1 (Cisco IOS) 184.105.247.70 pynet-rtr2 (Cisco IOS) 184.105.247.71 pynet-sw1 (Arista EOS) 184.105.247.72 pynet-sw2 (Arista EOS) 184.105.247.73 pynet-sw3 (Arista EOS) 184.105.247.74 pynet-sw4 (Arista EOS) 184.105.247.75 juniper-srx 184.105.247.76 """ from getpass import getpass password = getpass("Enter standard password: ") cisco_rtr1 = dict( hostname='184.105.247.70', device_type='ios', username='pyclass', password=password, optional_args = {} ) cisco_rtr2 = dict( hostname='184.105.247.71', device_type='ios', username='pyclass', password=password, optional_args = {} ) arista_sw1 = dict( hostname='184.105.247.72', device_type='eos', username='pyclass', password=password, optional_args = {} ) arista_sw2 = dict( hostname='184.105.247.73', device_type='eos', username='pyclass', password=password, optional_args = {} ) juniper_srx = dict( hostname='184.105.247.76', device_type='junos', username='pyclass', password=password, optional_args = {} ) juniper1 = dict( hostname='juniper1.twb-tech.com', device_type='junos', username='pyclass', password=password, optional_args = {} ) juniper2 = dict( hostname='juniper2.twb-tech.com', device_type='junos', username='pyclass', password=password, optional_args = {} ) device_list = [ cisco_rtr1, cisco_rtr2, arista_sw1, arista_sw2, juniper_srx, ]
438dfdf0b19a083bd9b1157b53d2919d688c2a8a
958b0471c52eff93415216cdd1a2b2ad3947a89b
/blueoil/templates/lmnet/object_detection.tpl.py
cf5170303d51745396007741b7ffa0160df7ae0d
[ "Apache-2.0" ]
permissive
fumihwh/blueoil
4deb606e334b8456e7ace41e3f091ad6dc41afb6
acb5a270f201f34fe5a5b27a4b395d9c3a838b27
refs/heads/master
2020-04-01T22:29:27.525697
2018-10-18T09:23:37
2018-10-18T09:23:37
153,711,347
1
0
null
2018-10-19T01:49:02
2018-10-19T01:49:02
null
UTF-8
Python
false
false
4,402
py
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from easydict import EasyDict import tensorflow as tf from lmnet.common import Tasks from lmnet.networks.object_detection.{{network_module}} import {{network_class}} from lmnet.datasets.{{dataset_module}} import {{dataset_class}} from lmnet.data_processor import Sequence from lmnet.pre_processor import ( ResizeWithGtBoxes, DivideBy255, ) from lmnet.post_processor import ( FormatYoloV2, ExcludeLowScoreBox, NMS, ) from lmnet.data_augmentor import ( Brightness, Color, Contrast, FlipLeftRight, Hue, SSDRandomCrop, ) from lmnet.quantizations import ( binary_channel_wise_mean_scaling_quantizer, linear_mid_tread_half_quantizer, ) IS_DEBUG = False NETWORK_CLASS = {{network_class}} # TODO(wakisaka): should be hidden. generate dataset class on the fly. DATASET_CLASS = type('DATASET_CLASS', ({{dataset_class}},), {{dataset_class_property}}) IMAGE_SIZE = {{image_size}} BATCH_SIZE = {{batch_size}} DATA_FORMAT = "NHWC" TASK = Tasks.OBJECT_DETECTION # In order to get instance property `classes`, instantiate DATASET_CLASS. CLASSES = DATASET_CLASS(subset="train", batch_size=1).classes MAX_EPOCHS = {{max_epochs}} SAVE_STEPS = {{save_steps}} TEST_STEPS = {{test_steps}} SUMMARISE_STEPS = {{summarise_steps}} # distributed training IS_DISTRIBUTION = False # pretrain IS_PRETRAIN = False PRETRAIN_VARS = [] PRETRAIN_DIR = "" PRETRAIN_FILE = "" PRE_PROCESSOR = Sequence([ ResizeWithGtBoxes(size=IMAGE_SIZE), DivideBy255() ]) anchors = [ (1.3221, 1.73145), (3.19275, 4.00944), (5.05587, 8.09892), (9.47112, 4.84053), (11.2364, 10.0071) ] score_threshold = 0.05 nms_iou_threshold = 0.5 nms_max_output_size = 100 POST_PROCESSOR = Sequence([ FormatYoloV2( image_size=IMAGE_SIZE, classes=CLASSES, anchors=anchors, data_format=DATA_FORMAT, ), ExcludeLowScoreBox(threshold=score_threshold), NMS(iou_threshold=nms_iou_threshold, max_output_size=nms_max_output_size, classes=CLASSES,), ]) NETWORK = EasyDict() NETWORK.OPTIMIZER_CLASS = tf.train.MomentumOptimizer NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9} NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant # In the origianl yolov2 Paper, with a starting learning rate of 10−3, dividing it by 10 at 60 and 90 epochs. # Train data num per epoch is 16551 step_per_epoch = int(16551 / BATCH_SIZE) NETWORK.LEARNING_RATE_KWARGS = { "values": [5e-4, 2e-2, 5e-3, 5e-4], "boundaries": [step_per_epoch, step_per_epoch * 80, step_per_epoch * 120], } NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ANCHORS = anchors NETWORK.OBJECT_SCALE = 5.0 NETWORK.NO_OBJECT_SCALE = 1.0 NETWORK.CLASS_SCALE = 1.0 NETWORK.COORDINATE_SCALE = 1.0 NETWORK.LOSS_IOU_THRESHOLD = 0.6 NETWORK.WEIGHT_DECAY_RATE = 0.0005 NETWORK.SCORE_THRESHOLD = score_threshold NETWORK.NMS_IOU_THRESHOLD = nms_iou_threshold NETWORK.NMS_MAX_OUTPUT_SIZE = nms_max_output_size NETWORK.SEEN_THRESHOLD = 8000 # quantize NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = { 'bit': 2, 'max_value': 2.0 } NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} NETWORK.QUANTIZE_FIRST_CONVOLUTION = True NETWORK.QUANTIZE_LAST_CONVOLUTION = False # dataset DATASET = EasyDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT DATASET.PRE_PROCESSOR = PRE_PROCESSOR DATASET.AUGMENTOR = Sequence([ FlipLeftRight(is_bounding_box=True), Brightness((0.75, 1.25)), Color((0.75, 1.25)), Contrast((0.75, 1.25)), Hue((-10, 10)), SSDRandomCrop(min_crop_ratio=0.7), ])
1c6b5467cecb01f1ce0b31daf841a086b27f5729
2305ce053d16652d31823bd07faf38553b4f9b63
/books/CrackingCodesWithPython/Chapter07/PracticeQuestions/Question2.py
8a2180532dbdb37385f07898cf49f7569908be5b
[ "MIT" ]
permissive
leihuagh/python-tutorials
cff3c5e250a152252d4b725bca19f55721483249
33831b983d7bd1491e367b6c7654e687d5ba709b
refs/heads/master
2020-03-29T17:59:31.226400
2018-09-24T08:41:26
2018-09-24T08:41:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
# Is each spam a global or local variable? spam = 42 # global/local def foo(): global spam spam = 99 # global/local print(spam) foo() # mind == blown
ffce63d94730102d0599826ce2ea7e70963a22c9
0c9ec5d4bafca45505f77cbd3961f4aff5c10238
/openapi-python-client/openapi_client/models/process_instance_modification_dto.py
a2247513acf2154c0228b1c01bcedaba8beea8c1
[ "Apache-2.0" ]
permissive
yanavasileva/camunda-bpm-examples
98cd2930f5c8df11a56bf04845a8ada5b3bb542d
051f8f28c62845e68ce4059ab64264c5a0bdc009
refs/heads/master
2022-10-19T20:07:21.278160
2020-05-27T15:28:27
2020-05-27T15:28:27
267,320,400
0
0
Apache-2.0
2020-05-27T14:35:22
2020-05-27T13:00:01
null
UTF-8
Python
false
false
7,337
py
# coding: utf-8 """ Camunda BPM REST API OpenApi Spec for Camunda BPM REST API. # noqa: E501 The version of the OpenAPI document: 7.13.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from openapi_client.configuration import Configuration class ProcessInstanceModificationDto(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'skip_custom_listeners': 'bool', 'skip_io_mappings': 'bool', 'instructions': 'list[ProcessInstanceModificationInstructionDto]', 'annotation': 'str' } attribute_map = { 'skip_custom_listeners': 'skipCustomListeners', 'skip_io_mappings': 'skipIoMappings', 'instructions': 'instructions', 'annotation': 'annotation' } def __init__(self, skip_custom_listeners=None, skip_io_mappings=None, instructions=None, annotation=None, local_vars_configuration=None): # noqa: E501 """ProcessInstanceModificationDto - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._skip_custom_listeners = None self._skip_io_mappings = None self._instructions = None self._annotation = None self.discriminator = None self.skip_custom_listeners = skip_custom_listeners self.skip_io_mappings = skip_io_mappings if instructions is not None: self.instructions = instructions if annotation is not None: self.annotation = annotation @property def skip_custom_listeners(self): """Gets the skip_custom_listeners of this ProcessInstanceModificationDto. # noqa: E501 Skip execution listener invocation for activities that are started or ended as part of this request. # noqa: E501 :return: The skip_custom_listeners of this ProcessInstanceModificationDto. # noqa: E501 :rtype: bool """ return self._skip_custom_listeners @skip_custom_listeners.setter def skip_custom_listeners(self, skip_custom_listeners): """Sets the skip_custom_listeners of this ProcessInstanceModificationDto. Skip execution listener invocation for activities that are started or ended as part of this request. # noqa: E501 :param skip_custom_listeners: The skip_custom_listeners of this ProcessInstanceModificationDto. # noqa: E501 :type: bool """ self._skip_custom_listeners = skip_custom_listeners @property def skip_io_mappings(self): """Gets the skip_io_mappings of this ProcessInstanceModificationDto. # noqa: E501 Skip execution of [input/output variable mappings](https://docs.camunda.org/manual/7.13/user-guide/process-engine/variables/#input-output-variable-mapping) for activities that are started or ended as part of this request. # noqa: E501 :return: The skip_io_mappings of this ProcessInstanceModificationDto. # noqa: E501 :rtype: bool """ return self._skip_io_mappings @skip_io_mappings.setter def skip_io_mappings(self, skip_io_mappings): """Sets the skip_io_mappings of this ProcessInstanceModificationDto. Skip execution of [input/output variable mappings](https://docs.camunda.org/manual/7.13/user-guide/process-engine/variables/#input-output-variable-mapping) for activities that are started or ended as part of this request. # noqa: E501 :param skip_io_mappings: The skip_io_mappings of this ProcessInstanceModificationDto. # noqa: E501 :type: bool """ self._skip_io_mappings = skip_io_mappings @property def instructions(self): """Gets the instructions of this ProcessInstanceModificationDto. # noqa: E501 JSON array of modification instructions. The instructions are executed in the order they are in. # noqa: E501 :return: The instructions of this ProcessInstanceModificationDto. # noqa: E501 :rtype: list[ProcessInstanceModificationInstructionDto] """ return self._instructions @instructions.setter def instructions(self, instructions): """Sets the instructions of this ProcessInstanceModificationDto. JSON array of modification instructions. The instructions are executed in the order they are in. # noqa: E501 :param instructions: The instructions of this ProcessInstanceModificationDto. # noqa: E501 :type: list[ProcessInstanceModificationInstructionDto] """ self._instructions = instructions @property def annotation(self): """Gets the annotation of this ProcessInstanceModificationDto. # noqa: E501 An arbitrary text annotation set by a user for auditing reasons. # noqa: E501 :return: The annotation of this ProcessInstanceModificationDto. # noqa: E501 :rtype: str """ return self._annotation @annotation.setter def annotation(self, annotation): """Sets the annotation of this ProcessInstanceModificationDto. An arbitrary text annotation set by a user for auditing reasons. # noqa: E501 :param annotation: The annotation of this ProcessInstanceModificationDto. # noqa: E501 :type: str """ self._annotation = annotation def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ProcessInstanceModificationDto): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ProcessInstanceModificationDto): return True return self.to_dict() != other.to_dict()
c0eb4bc8412ecaaaa4487ae33bba16b07ed34654
0b5ab7349485da4ea40ca343bc50f4cab74c917c
/week06/c11_02.py
6f2b70e99e3507ef95e9e833368280cb7b5ebef7
[]
no_license
workherd/Python006-006
9bf2782ccda037de9af98eb7daa87fd1edeb3caf
7aa176c3cf4effd015802b550edfb70f859e94d9
refs/heads/main
2023-04-29T14:37:43.545376
2021-05-16T04:13:08
2021-05-16T04:13:08
323,247,475
1
0
null
2020-12-21T06:13:42
2020-12-21T06:13:42
null
UTF-8
Python
false
false
712
py
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2021/1/30 21:06 # @Author : john # @File : c11.py # 使用type元类创建类 def pop_value(self, dict_value): for key in self.keys(): if self.__getitem__(key) == dict_value: self.pop(key) break # 元类要求,必须继承自type class DelValue(type): # 元类要求,必须实现new方法 def __new__(cls, name, bases, attrs): attrs['pop_value'] = pop_value return type.__new__(cls, name, bases, attrs) class DelDictValue(dict, metaclass=DelValue): pass d = DelDictValue() d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' d.pop_value('C') for k,v in d.items(): print(k,v)
477f6768361db49f12efc9b40192ff00dd8077a5
1f2860bf84fa87e2d6c3b5e5b1a62e76879a642a
/q41_50/049.py
5ff4e3fbd4c56fc5ad1ac2c8c1db93e208b34745
[]
no_license
Vegctrp/pic100knock
222dc4c981e7d20180a2338184109987f56d1518
134a41c9a3fcfc49667a26625cfeaf7bc4a91899
refs/heads/master
2020-07-08T17:17:43.869124
2019-09-23T15:23:08
2019-09-23T15:23:08
203,730,580
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
import cv2 import numpy as np import lib4150 import matplotlib.pyplot as plt import sys,os sys.path.append(os.getcwd()) from q01_10 import lib0110 if __name__ == '__main__': img = cv2.imread("Gasyori100knock/Question_41_50/imori.jpg") img2 = lib0110.OTSU_binarization(lib0110.BGR2GRAY(img)) out = lib4150.Opening_operation(img2, 1) cv2.imshow("imori", out) cv2.waitKey(0) cv2.imwrite("q41_50/049.jpg", out) cv2.destroyAllWindows()
2b381525fefdeac0ef1e5cd6af040849d7ab9e4e
99b0631baa2fd9ab2455d848b47febf581916272
/zhijieketang/chapter11/ch11.3.6.py
5ed6d9e5c1c618b89767775b7f3df937094f87bb
[]
no_license
seceast/PyProjects
a934e366cb619f2610d75b9a0fb47d818814a4de
7be7193b4126ce920a3d3ffa4ef5d8743b3fa7d1
refs/heads/master
2023-03-07T22:23:21.229489
2021-02-25T05:37:58
2021-02-25T05:37:58
265,480,151
0
0
null
null
null
null
UTF-8
Python
false
false
641
py
# coding=utf-8 # 代码文件:chapter11/ch11.3.6.py class Animal(object): """定义动物类""" def __init__(self, age, sex=1, weight=0.0): self.age = age # 定义年龄实例变量 self.sex = sex # 定义性别实例变量 self.weight = weight # 定义体重实例变量 def eat(self): self.weight += 0.05 print('eat...') def run(self): self.weight -= 0.01 print('run...') a1 = Animal(2, 0, 10.0) print('a1体重:{0:0.2f}'.format(a1.weight)) a1.eat() print('a1体重:{0:0.2f}'.format(a1.weight)) a1.run() print('a1体重:{0:0.2f}'.format(a1.weight))
30d160a89cb021b89ffa3a81257339d90f223c24
b44df2be270793884ca5bd5e79d22c991edae001
/app/auth/views.py
9ac180988110a27bb0106dfd45b959fc130d2335
[]
no_license
Wakarende/Blog
d45c423be8a86227ad4106bbdae429a79ef3dcf2
2e2d2f89c55c4f5dbe0cf6fe09f83212bf905f5c
refs/heads/master
2023-04-23T00:18:47.343723
2021-05-05T06:46:51
2021-05-05T06:46:51
363,127,105
0
0
null
null
null
null
UTF-8
Python
false
false
1,424
py
from flask import render_template,redirect,url_for,flash,request from . import auth from flask_login import login_required,login_user,logout_user from ..models import User from .forms import RegistrationForm,LoginForm from .. import db from ..email import mail_message @auth.route('/login', methods=['GET','POST']) def login(): login_form = LoginForm() if login_form.validate_on_submit(): user = User.query.filter_by(email = login_form.email.data).first() if user is not None and user.verify_password(login_form.password.data): login_user(user,login_form.remember.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or Password') title = "Login" return render_template('auth/login.html',login_form = login_form,title=title) @auth.route('/register',methods = ["GET","POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email = form.email.data, username = form.username.data,password = form.password.data) db.session.add(user) db.session.commit() mail_message("Welcome to My J Word","email/welcome_user",user.email,user=user) return redirect(url_for('auth.login')) title = "New Account" return render_template('auth/register.html',registration_form = form) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
96ea774d03c563f4d521a7284d56912681fc110b
10d98fecb882d4c84595364f715f4e8b8309a66f
/genomics_ood/images_ood/eval.py
af9737b30f6b5e2487d99c451162174c16c47aad
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
afcarl/google-research
51c7b70d176c0d70a5ee31ea1d87590f3d6c6f42
320a49f768cea27200044c0d12f394aa6c795feb
refs/heads/master
2021-12-02T18:36:03.760434
2021-09-30T20:59:01
2021-09-30T21:07:02
156,725,548
1
0
Apache-2.0
2018-11-08T15:13:53
2018-11-08T15:13:52
null
UTF-8
Python
false
false
11,626
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Evaluating Likelihood Ratios based on pixel_cnn model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow.compat.v1 as tf from genomics_ood.images_ood import pixel_cnn from genomics_ood.images_ood import utils tf.compat.v1.disable_v2_behavior() flags.DEFINE_string('model_dir', '/tmp/expfashion/rescaleFalse/', 'Directory to write results and logs.') flags.DEFINE_string('data_dir', '/tmp/image_data', 'Directory to data np arrays.') flags.DEFINE_integer('ckpt_step', 10, 'The step of the selected ckpt.') flags.DEFINE_string('exp', 'fashion', 'cifar or fashion') flags.DEFINE_integer( 'repeat_id', -1, ('We run 10 independent experiments to get the mean and variance of AUROC.', 'repeat_id=i indicates the i-th independent run.', 'repeat_id=-1 indecates only one independent run.')) FLAGS = flags.FLAGS REG_WEIGHT_LIST = [0, 10, 100] MUTATION_RATE_LIST = [0.1, 0.2, 0.3] def load_datasets(exp, data_dir): if exp == 'fashion': datasets = utils.load_fmnist_datasets(data_dir) else: datasets = utils.load_cifar_datasets(data_dir) return datasets def find_ckpt_match_param(reg_weight, mutation_rate, repeat_id, ckpt_step): """Find model ckpt that is trained based on mutation_rate and reg_weight.""" param_dir = 'reg%.2f_mr%.2f' % (reg_weight, mutation_rate) ckpt_dir = os.path.join(FLAGS.model_dir, param_dir) if repeat_id == -1: ckpt_repeat_dir = os.path.join(ckpt_dir, 'model') else: # each param_dir may have multiple independent runs try: repeat_dir_list = tf.compat.v1.gfile.ListDirectory(ckpt_dir) except tf.errors.NotFoundError: return None repeat_dir = repeat_dir_list[repeat_id] ckpt_repeat_dir = os.path.join(ckpt_dir, repeat_dir, 'model') ckpt_file = utils.get_ckpt_at_step(ckpt_repeat_dir, ckpt_step) # print('ckpt_file={}'.format(ckpt_file)) return ckpt_file def create_model_and_restore_ckpt(ckpt_file): """Restore model from ckpt.""" # load params params_json_file = os.path.join(os.path.dirname(ckpt_file), 'params.json') params = utils.load_hparams(params_json_file) # Define a Pixel CNN network input_shape = (params['n_dim'], params['n_dim'], params['n_channel']) dist = pixel_cnn.PixelCNN( image_shape=input_shape, dropout_p=params['dropout_p'], reg_weight=params['reg_weight'], num_resnet=params['num_resnet'], num_hierarchies=params['num_hierarchies'], num_filters=params['num_filters'], num_logistic_mix=params['num_logistic_mix'], use_weight_norm=params['use_weight_norm'], rescale_pixel_value=params['rescale_pixel_value'], ) saver = tf.compat.v1.train.Saver(max_to_keep=50000) init_op = tf.compat.v1.global_variables_initializer() # restore ckpt sess = tf.compat.v1.Session() tf.compat.v1.keras.backend.set_session(sess) sess.run(init_op) saver.restore(sess, ckpt_file) return dist, params, sess def load_data_and_model_and_pred(exp, data_dir, reg_weight, mutation_rate, repeat_id, ckpt_step, eval_mode, return_per_pixel=False): """Load datasets, load model ckpt, and eval the model on the datasets.""" tf.compat.v1.reset_default_graph() # load datasets datasets = load_datasets(exp, data_dir) # load model ckpt_file = find_ckpt_match_param(reg_weight, mutation_rate, repeat_id, ckpt_step) if not ckpt_file: # no ckpt file is found return None, None dist, params, sess = create_model_and_restore_ckpt(ckpt_file) # Evaluations preds_in = utils.eval_on_data( datasets['%s_in' % eval_mode], utils.image_preprocess, params, dist, sess, return_per_pixel=return_per_pixel) if eval_mode == 'val': if exp == 'fashion': preds_ood = utils.eval_on_data( datasets['val_ood'], utils.image_preprocess, params, dist, sess, return_per_pixel=return_per_pixel) else: preds_ood = utils.eval_on_data( datasets['val_in'], utils.image_preprocess_grey, params, dist, sess, return_per_pixel=return_per_pixel) elif eval_mode == 'test': preds_ood = utils.eval_on_data( datasets['test_ood'], utils.image_preprocess, params, dist, sess, return_per_pixel=return_per_pixel) return preds_in, preds_ood def compute_auc_llr(preds_in, preds_ood, preds0_in, preds0_ood): """Compute AUC for LLR.""" # check if samples are in the same order assert np.array_equal(preds_in['labels'], preds0_in['labels']) assert np.array_equal(preds_ood['labels'], preds0_ood['labels']) # evaluate AUROC for OOD detection auc = utils.compute_auc( preds_in['log_probs'], preds_ood['log_probs'], pos_label=0) llr_in = preds_in['log_probs'] - preds0_in['log_probs'] llr_ood = preds_ood['log_probs'] - preds0_ood['log_probs'] auc_llr = utils.compute_auc(llr_in, llr_ood, pos_label=0) return auc, auc_llr def print_and_write(f, context): print(context + '\n') f.write(context + '\n') def plot_heatmap(n, data, plt_file, colorbar=True): """Plot heatmaps (Figure 3 in the paper).""" sns.set_style('whitegrid') sns.set(style='ticks', rc={'lines.linewidth': 4}) cmap_reversed = ListedColormap(sns.color_palette('Greys_r', 6).as_hex()) fig, axes = plt.subplots(nrows=n, ncols=n, figsize=(2 * n - 2, 2 * n - 2)) i = 0 for ax in axes.flat: im = ax.imshow(data[i], vmin=0, vmax=6, cmap=cmap_reversed) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) i += 1 fig.subplots_adjust(right=0.9) if colorbar: cbar_ax = fig.add_axes([0.95, 0.15, 0.05, 0.7]) fig.colorbar(im, cax=cbar_ax) cbar_ax.tick_params(labelsize=20) with tf.gfile.Open(plt_file, 'wb') as sp: plt.savefig(sp, format='pdf', bbox_inches='tight') def main(unused_argv): # write results to file out_dir = os.path.join(FLAGS.model_dir, 'results') tf.compat.v1.gfile.MakeDirs(out_dir) out_f = tf.compat.v1.gfile.Open( os.path.join(out_dir, 'run%d.txt' % FLAGS.repeat_id), 'w') ## Find best bkg model using validation datasets (NotMNIST/CIFAR_grey) # foreground model preds_in, preds_ood = load_data_and_model_and_pred(FLAGS.exp, FLAGS.data_dir, 0.0, 0.0, FLAGS.repeat_id, FLAGS.ckpt_step, 'val') # background model auc_llr_reg_mr = np.zeros((len(REG_WEIGHT_LIST), len(MUTATION_RATE_LIST))) for reg_weight in REG_WEIGHT_LIST: for mutation_rate in MUTATION_RATE_LIST: preds0_in, preds0_ood = load_data_and_model_and_pred( FLAGS.exp, FLAGS.data_dir, reg_weight, mutation_rate, FLAGS.repeat_id, FLAGS.ckpt_step, 'val') if not (preds0_in and preds0_ood): print('reg_weight={}, mutation_rate={}, ckpt not found, skip'.format( reg_weight, mutation_rate)) continue auc, auc_llr = compute_auc_llr(preds_in, preds_ood, preds0_in, preds0_ood) auc_llr_reg_mr[REG_WEIGHT_LIST.index(reg_weight), MUTATION_RATE_LIST.index(mutation_rate)] = auc_llr print('reg_weight={}, mutation_rate={}, auc_likelihood={}, auc_llr={}' .format(reg_weight, mutation_rate, auc, auc_llr)) reg_idx, mr_idx = np.unravel_index(auc_llr_reg_mr.argmax(), auc_llr_reg_mr.shape) selected_reg = REG_WEIGHT_LIST[reg_idx] selected_mr = MUTATION_RATE_LIST[mr_idx] print_and_write(out_f, 'auc_llr_reg_mr={}'.format(auc_llr_reg_mr)) print_and_write(out_f, 'selected reg={}, mr={}'.format(selected_reg, selected_mr)) ## Final test on FashionMNIST-MNIST/CIFAR-SVHN # foreground model preds_in, preds_ood = load_data_and_model_and_pred( FLAGS.exp, FLAGS.data_dir, 0.0, 0.0, FLAGS.repeat_id, FLAGS.ckpt_step, 'test', return_per_pixel=True) # background model preds0_in, preds0_ood = load_data_and_model_and_pred( FLAGS.exp, FLAGS.data_dir, selected_reg, selected_mr, FLAGS.repeat_id, FLAGS.ckpt_step, 'test', return_per_pixel=True) auc, auc_llr = compute_auc_llr(preds_in, preds_ood, preds0_in, preds0_ood) print_and_write(out_f, 'final test, auc={}, auc_llr={}'.format(auc, auc_llr)) out_f.close() # plot heatmaps (Figure 3) if FLAGS.exp == 'fashion': n = 4 # FashionMNIST log_probs_in = preds_in['log_probs'] log_probs_pp_in, log_probs0_pp_in = preds_in[ 'log_probs_per_pixel'], preds0_in['log_probs_per_pixel'] n_sample_in = len(log_probs_in) log_probs_in_sorted = sorted( range(n_sample_in), key=lambda k: log_probs_in[k], reverse=True) ids_seq = np.arange(1, n_sample_in, int(n_sample_in / (n * n))) ## pure likelihood data = [ log_probs_pp_in[log_probs_in_sorted[ids_seq[i]]] + 6 for i in range(n * n) ] plt_file = os.path.join( out_dir, 'run%d_heatmap_fashionmnist_p(x).pdf' % FLAGS.repeat_id) plot_heatmap(n, data, plt_file) ## LLR data = [ log_probs_pp_in[log_probs_in_sorted[ids_seq[i]]] - log_probs0_pp_in[log_probs_in_sorted[ids_seq[i]]] for i in range(n * n) ] plt_file = os.path.join( out_dir, 'run%d_heatmap_fashionmnist_LLR(x).pdf' % FLAGS.repeat_id) plot_heatmap(n, data, plt_file) # MNIST log_probs_ood = preds_ood['log_probs'] log_probs_pp_ood, log_probs0_pp_ood = preds_ood[ 'log_probs_per_pixel'], preds0_ood['log_probs_per_pixel'] n_sample_ood = len(log_probs_ood) log_probs_ood_sorted = sorted( range(n_sample_ood), key=lambda k: log_probs_ood[k], reverse=True) ids_seq = np.arange(1, n_sample_ood, int(n_sample_ood / (n * n))) ## pure likelihood data = [ log_probs_pp_ood[log_probs_ood_sorted[ids_seq[i]]] + 6 for i in range(n * n) ] plt_file = os.path.join(out_dir, 'run%d_heatmap_mnist_p(x).pdf' % FLAGS.repeat_id) plot_heatmap(n, data, plt_file) ## LLR data = [ log_probs_pp_ood[log_probs_ood_sorted[ids_seq[i]]] - log_probs0_pp_ood[log_probs_ood_sorted[ids_seq[i]]] for i in range(n * n) ] plt_file = os.path.join(out_dir, 'run%d_heatmap_mnist_LLR(x).pdf' % FLAGS.repeat_id) plot_heatmap(n, data, plt_file) if __name__ == '__main__': app.run(main)
71f210792e7bb560ed5a7e5db4e79a338bba1c63
ba15fac9fbe53578d3823ceeac67fc338e2312e9
/tests/functional/filters/e2e_filtering.py
2980783ed05dd42c1c343efb2ed74a65e966af43
[ "Apache-2.0" ]
permissive
dblenkus/resolwe-bio-py
0694dcc32f485ccdd5ad43496ccef985c83819c7
b6610ef26625492f39fdeef846d3e5a89a0009b3
refs/heads/master
2021-01-21T03:33:39.831803
2020-05-25T14:29:46
2020-05-26T07:48:34
55,721,959
0
0
null
2016-04-07T19:26:12
2016-04-07T19:26:12
null
UTF-8
Python
false
false
3,627
py
from __future__ import absolute_import, division, print_function, unicode_literals import os import unittest import six from ..base import FILES_PATH, BaseResdkFunctionalTest class BaseResdkFilteringTest(BaseResdkFunctionalTest): def setUp(self): super().setUp() self.endpoint = self.res.data def _get_ids(self, query): """Return id's of objects in query.""" return [getattr(elm, "id") for elm in query] def _check_filter(self, query_args, expected): response = self._get_ids(self.endpoint.filter(**query_args)) expected = self._get_ids(expected) six.assertCountEqual(self, response, expected) @staticmethod def datetime_to_str(datetime): return datetime.strftime("%Y-%m-%dT%H:%M:%S.%f%z") class TestDataFilter(BaseResdkFilteringTest): def setUp(self): super().setUp() self.endpoint = self.res.data self.data1 = self.res.run( slug="upload-fasta-nucl", input={ "src": os.path.join(FILES_PATH, "genome.fasta.gz"), "species": "Homo sapiens", "build": "hg38", }, data_name="Data 1", ) self.data2 = self.res.run( slug="upload-fasta-nucl", input={ "src": os.path.join(FILES_PATH, "genome.fasta.gz"), "species": "Homo sapiens", "build": "hg38", }, data_name="Data 2", ) def tearDown(self): super().tearDown() self.data1.delete(force=True) self.data2.delete(force=True) def test_id(self): self._check_filter({"id": self.data1.id}, [self.data1]) self._check_filter({"id": self.data2.id}, [self.data2]) self._check_filter({"id__in": [self.data1.id]}, [self.data1]) self._check_filter( {"id__in": [self.data1.id, self.data2.id]}, [self.data1, self.data2] ) class TestProcessFilter(BaseResdkFilteringTest): def setUp(self): super().setUp() self.endpoint = self.res.process self.star = self.res.process.get(slug="alignment-star") self.hisat2 = self.res.process.get(slug="alignment-hisat2") def test_id(self): self._check_filter({"id": self.star.id}, [self.star]) self._check_filter({"id": self.hisat2.id}, [self.hisat2]) self._check_filter({"id__in": [self.star.id]}, [self.star]) self._check_filter( {"id__in": [self.star.id, self.hisat2.id]}, [self.star, self.hisat2] ) def test_iterate_method(self): workflows = list( self.res.process.filter(type="data:workflow").iterate(chunk_size=10) ) # Use ``assertGreater`` to avoid updating this test each time # after new workflow is added / removed. self.assertGreater(len(workflows), 30) class TestFeatureFilter(BaseResdkFilteringTest): def setUp(self): super().setUp() self.endpoint = self.res.feature self.ft1 = self.res.feature.get( source="ENSEMBL", feature_id="id_001", species="Homo sapiens", ) self.ft2 = self.res.feature.get( source="ENSEMBL", feature_id="id_002", species="Mus musculus", ) @unittest.skip("Turn on when one can prepare KnowledgeBase and ES index for it.") def test_id(self): self._check_filter({"feature_id": self.ft1.feature_id}, [self.ft1]) self._check_filter( {"feature_id__in": [self.ft1.feature_id, self.ft2.feature_id]}, [self.ft1, self.ft2], )
9375ac379d9e628b7e3443a2979108c2d4b929d6
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/sieve/e7fe59df2209451392330ca4b6e3a767.py
92ce912956b69c6858c7563937f5b3852a638d3c
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
408
py
def sieve(lim): rng = range(2,lim+1) output = range(2,lim+1) for i in range(len(rng)): count = 0 for j in range(len(output)): if output[count] != rng[i]: if not output[count] % rng[i]: output.remove(output[count]) count -= 1 count += 1 return output
394523d7bb019d8ca4af4992d2c5ef47409c3c40
88a02059cbf16303dad9745a774230b2e078410f
/1163.py
4ea1e789406c0eacec92cc075cfdac006f318799
[]
no_license
nekoTheShadow/my_answers_of_yukicoder
2e3a94b6dab214fda1ae3c53f879190e6eedc31f
d607dee056a84f08305a51d6eb0bac9faa5d74ed
refs/heads/master
2022-01-16T06:31:48.776630
2022-01-04T08:11:27
2022-01-04T08:11:27
132,351,091
0
0
null
null
null
null
UTF-8
Python
false
false
691
py
n, x = map(int, input().split()) a = list(map(int, input().split())) b = list(map(int, input().split())) for i in range(n): a[i] -= x m = sum(a) if m >= 0: print(0) exit() if max(a) < 0: print(-1) exit() dp = [{} for _ in range(n+1)] dp[0][m] = 0 for i in range(n): for k in dp[i]: if k in dp[i+1]: dp[i+1][k] = min(dp[i+1][k], dp[i][k]) else: dp[i+1][k] = dp[i][k] if k-a[i] in dp[i+1]: dp[i+1][k-a[i]] = min(dp[i+1][k-a[i]], dp[i][k]+b[i]) else: dp[i+1][k-a[i]] = dp[i][k]+b[i] ans = float('inf') for k in dp[n]: if k >= 0: ans = min(ans, dp[n][k]) print(ans)
8b69bf2b7c8280abd5c5fdb09ed901c008f23423
c744f3ae44ab1a692b4b6a39ce2c3045c81406c4
/venv/bin/pip
67066d339c88af6a7e54c8d3ea9ae96a32c1bbb3
[ "Apache-2.0" ]
permissive
qq529952515/OA
f1e56d37c8e4b35b6f2e9bbdd0fb8370b90cc64d
ccf17b17b3122f9650bb1ab939befad784e9b4e0
refs/heads/master
2023-05-07T22:16:04.130146
2020-05-17T07:20:59
2020-05-17T07:20:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
236
#!/home/yc/feature_As/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
0f0f5d0b1c85ad0e5682d38e9cb7c54b8cbd0dd4
6c29a72dfe9eed38f4667babf74c3ae98983be6f
/tests/test_fixtures.py
445ff550251b679e46e044775df9352aed857bb4
[ "Apache-2.0" ]
permissive
ryan-rs/pytest-examples
0149f79a069a2fb272486d3bf25a756c341f38e8
9ca2368c5e86f651497e42bb304415cf2ae3a0df
refs/heads/master
2020-03-26T15:04:17.374972
2018-11-27T16:38:47
2018-11-27T16:38:47
145,020,977
0
0
NOASSERTION
2018-11-12T19:14:40
2018-08-16T17:43:30
Python
UTF-8
Python
false
false
3,540
py
# -*- coding: utf-8 -*- # ====================================================================================================================== # Imports # ====================================================================================================================== import os import pytest # ====================================================================================================================== # Fixtures # ====================================================================================================================== @pytest.fixture def prefix(): """A message prefix.""" return 'The start of the message.' @pytest.fixture def message(): """The message""" return '\nThe message!\n' @pytest.fixture def suffix(): """A message suffix.""" return 'The end of the message.\n' @pytest.fixture def static_message_fixture(tmpdir_factory, prefix, message, suffix): """A fixture which provides a static message.""" filename = tmpdir_factory.mktemp('data').join('static_message.txt').strpath file_contents = "{0}{1}{2}".format(prefix, message, suffix) with open(filename, 'w') as f: f.write(file_contents) return filename @pytest.fixture def static_message_with_setup_teardown_fixture(tmpdir_factory, prefix, message, suffix): """A fixture which provides a static message, but uses a custom setup/teardown.""" # Setup filename = '/tmp/static_message.txt' file_contents = "{0}{1}{2}".format(prefix, message, suffix) with open(filename, 'w') as f: f.write(file_contents) # Deliver yield filename # Teardown os.remove(filename) @pytest.fixture def dyanmic_message_fixture_factory(tmpdir_factory, prefix, suffix): """A fixture which provides a dynamic message.""" filename = tmpdir_factory.mktemp('data').join('dynamic_message.txt').strpath def _factory(message): file_contents = "{0}{1}{2}".format(prefix, message, suffix) with open(filename, 'w') as f: f.write(file_contents) return filename return _factory # ====================================================================================================================== # Test Cases # ====================================================================================================================== @pytest.mark.test_id('747ba3e0-aafb-11e8-bfa2-0025227c8120') @pytest.mark.jira('ASC-891') def test_static_message(static_message_fixture, prefix, message, suffix): """Verify that the file contains the correct message.""" with open(static_message_fixture, 'r') as f: assert f.read() == "{0}{1}{2}".format(prefix, message, suffix) @pytest.mark.test_id('747b9fc6-aafb-11e8-bfa2-0025227c8120') @pytest.mark.jira('ASC-891') def test_static_message_with_setup_teardown(static_message_with_setup_teardown_fixture, prefix, message, suffix): """Verify that the file contains the correct message.""" with open(static_message_with_setup_teardown_fixture, 'r') as f: assert f.read() == "{0}{1}{2}".format(prefix, message, suffix) @pytest.mark.test_id('747b9b84-aafb-11e8-bfa2-0025227c8120') @pytest.mark.jira('ASC-891') def test_dynamic_message(dyanmic_message_fixture_factory, prefix, suffix): """Verify that the file contains the correct message.""" custom_message = 'Wow! Much Custom!' with open(dyanmic_message_fixture_factory(custom_message), 'r') as f: assert f.read() == "{0}{1}{2}".format(prefix, custom_message, suffix)
8f3823f30e9fe5b91a24c5a069368f02949d4f3d
a590cb0c9b232ad98d17a9917a36930c6a2c03f8
/8kyu/Pre-FizzBuzz Workout 1.py
3362f123258850350be517a6632dd369785ccf29
[]
no_license
AbbyGeek/CodeWars
6e10c10cbdb11f2df17a657d11ff5ffa79a5fb0b
64dddda9f2a14a0592cc946b35302c4bd9bc569e
refs/heads/master
2020-12-21T00:14:53.665879
2020-01-26T01:16:41
2020-01-26T01:16:41
236,252,030
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
def pre_fizz(n): return [x+1 for x in range(n)]
485f78bf0f29fec745e66e6f68080ca1aaf408bf
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02574/s928939056.py
075c9216b7de983528e8012b9dc8198741dc64ee
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
614
py
from math import gcd from functools import reduce k=10**6+1 def judge(n,a): c=[0]*k for x in a: c[x]+=1 #対応する数の個数を記録 t=any(sum(c[i::i])>1 for i in range(2,k)) #自身を約数に持つ数が2つ以上与えられたリストに存在するような数が一つでもあるかどうか t+=reduce(gcd,a)>1 #全体について1以外の公約数があれば1加える return ['pairwise','setwise','not'][t]+' coprime' #全体に公約数があればt=2,全体の公約数が1で公約数持つペアがあればt=1 n=int(input()) a=list(map(int,input().split())) print(judge(n,a))
9651901898793df56347602451eb1e0ee5a21e22
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03729/s784741556.py
223dc3c245f8c168dc6e9e30b687ce73313cf6ab
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
a, b, c = input().split() if a[-1] == b[0] and b[-1] == c[0]: ans = "YES" else: ans = "NO" print(ans)
1619841e22d47095341a3633936eb0d746446e6c
1ff31cedc4794083e213e6637deaacab49cfdd9a
/pyatv/mrp/tlv8.py
c8675b1741300017851aee0f599941efce39e7b5
[ "MIT" ]
permissive
dschu012/pyatv
910cefec45fcfe94fe9b3fee59672299215db24b
6496548aee09ff95f5515abb172c1ba19b9d995b
refs/heads/master
2020-12-04T06:35:25.957921
2020-01-01T14:38:54
2020-01-01T18:35:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,613
py
"""Implementation of TLV8 used by MRP/HomeKit pairing process. Note that this implementation only supports one level of value, i.e. no dicts in dicts. """ # Some of the defined tags used by the pairing process TLV_METHOD = '0' TLV_IDENTIFIER = '1' TLV_SALT = '2' TLV_PUBLIC_KEY = '3' TLV_PROOF = '4' TLV_ENCRYPTED_DATA = '5' TLV_SEQ_NO = '6' TLV_ERROR = '7' TLV_BACK_OFF = '8' TLV_SIGNATURE = '10' def read_tlv(data): """Parse TLV8 bytes into a dict. If value is larger than 255 bytes, it is split up in multiple chunks. So the same tag might occurr several times. """ def _parse(data, pos, size, result=None): if result is None: result = {} if pos >= size: return result tag = str(data[pos]) length = data[pos+1] value = data[pos+2:pos+2+length] if tag in result: result[tag] += value # value > 255 is split up else: result[tag] = value return _parse(data, pos+2+length, size, result) return _parse(data, 0, len(data)) def write_tlv(data): """Convert a dict to TLV8 bytes.""" tlv = b'' for key, value in data.items(): tag = bytes([int(key)]) length = len(value) pos = 0 # A tag with length > 255 is added multiple times and concatenated into # one buffer when reading the TLV again. while pos < len(value): size = min(length, 255) tlv += tag tlv += bytes([size]) tlv += value[pos:pos+size] pos += size length -= size return tlv
6beaf98b5e814440dd35939b8f93ddfce0c683ae
51108a50ffb48ad154f587c230045bb783f22240
/bflib/items/writing/base.py
44c7befeebcb6caac2b247b0ad366f89b2244aba
[ "MIT" ]
permissive
ChrisLR/BasicDungeonRL
c90bd0866c457557cccbad24e14689d5d6db7b00
b293d40bd9a0d3b7aec41b5e1d58441165997ff1
refs/heads/master
2021-06-15T13:56:53.888646
2019-08-05T16:33:57
2019-08-05T16:33:57
104,269,987
3
0
MIT
2019-08-05T16:28:23
2017-09-20T21:35:19
Python
UTF-8
Python
false
false
125
py
from bflib.items import listing from bflib.items.base import Item @listing.register_type class WritingItem(Item): pass
e075f370a97eb97ee3fc17ee4c6814539f1e7217
c22253c12dbcd0332a97374eb556e5a38844c893
/lib/plugin/logic.py
7680f611e22cce67c6675c604f1da3c469c9e911
[]
no_license
passdacom/SJVA3
eb7a6731a4edce763757949845247d2f4ec2718c
f204804d983b7d96f56a82abd39b3f3bb3d25ab5
refs/heads/main
2023-08-31T21:55:39.679826
2021-10-19T03:00:32
2021-10-19T03:00:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,113
py
# -*- coding: utf-8 -*- ######################################################### # python import os import traceback import time import threading import platform # third-party # sjva 공용 from framework import db, scheduler from framework.job import Job from framework.util import Util ######################################################### class Logic(object): db_default = { 'recent_menu_plugin' : '', } def __init__(self, P): self.P = P def plugin_load(self): try: self.P.logger.debug('%s plugin_load', self.P.package_name) self.db_init() for module in self.P.module_list: module.migration() for module in self.P.module_list: module.plugin_load() if module.sub_list is not None: for sub_name, sub_instance in module.sub_list.items(): sub_instance.plugin_load() if self.P.ModelSetting is not None: for module in self.P.module_list: key = f'{module.name}_auto_start' if self.P.ModelSetting.has_key(key) and self.P.ModelSetting.get_bool(key): self.scheduler_start(module.name) if module.sub_list is not None: for sub_name, sub_instance in module.sub_list.items(): key = f'{module.name}_{sub_name}_auto_start' if self.P.ModelSetting.has_key(key) and self.P.ModelSetting.get_bool(key): self.scheduler_start_sub(module.name, sub_name) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def db_init(self): try: if self.P.ModelSetting is None: return for key, value in Logic.db_default.items(): if db.session.query(self.P.ModelSetting).filter_by(key=key).count() == 0: db.session.add(self.P.ModelSetting(key, value)) for module in self.P.module_list: if module.sub_list is not None: for name, sub_instance in module.sub_list.items(): if sub_instance.db_default is not None: for key, value in sub_instance.db_default.items(): if db.session.query(self.P.ModelSetting).filter_by(key=key).count() == 0: db.session.add(self.P.ModelSetting(key, value)) if module.db_default is not None: for key, value in module.db_default.items(): if db.session.query(self.P.ModelSetting).filter_by(key=key).count() == 0: db.session.add(self.P.ModelSetting(key, value)) db.session.commit() except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def plugin_unload(self): try: self.P.logger.debug('%s plugin_unload', self.P.package_name) for module in self.P.module_list: module.plugin_unload() if module.sub_list is not None: for sub_name, sub_instance in module.sub_list.items(): sub_instance.plugin_unload() except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def scheduler_start(self, sub): try: job_id = '%s_%s' % (self.P.package_name, sub) module = self.get_module(sub) job = Job(self.P.package_name, job_id, module.get_scheduler_interval(), self.scheduler_function, module.get_scheduler_desc(), False, args=sub) scheduler.add_job_instance(job) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def scheduler_stop(self, sub): try: job_id = '%s_%s' % (self.P.package_name, sub) scheduler.remove_job(job_id) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def scheduler_function(self, sub): try: module = self.get_module(sub) module.scheduler_function() except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def reset_db(self,sub): try: module = self.get_module(sub) return module.reset_db() except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def one_execute(self, sub): self.P.logger.debug('one_execute :%s', sub) try: job_id = '%s_%s' % (self.P.package_name, sub) if scheduler.is_include(job_id): if scheduler.is_running(job_id): ret = 'is_running' else: scheduler.execute_job(job_id) ret = 'scheduler' else: def func(): time.sleep(2) self.scheduler_function(sub) threading.Thread(target=func, args=()).start() ret = 'thread' except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) ret = 'fail' return ret def immediately_execute(self, sub): self.P.logger.debug('immediately_execute :%s', sub) try: def func(): time.sleep(1) self.scheduler_function(sub) threading.Thread(target=func, args=()).start() ret = {'ret':'success', 'msg':'실행합니다.'} except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) ret = {'ret' : 'danger', 'msg':str(exception)} return ret def get_module(self, sub): try: for module in self.P.module_list: if module.name == sub: return module except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def process_telegram_data(self, data, target=None): try: for module in self.P.module_list: if target is None or target.startswith(module.name): module.process_telegram_data(data, target=target) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) ####################################################### # 플러그인 - 모듈 - 서브 구조하에서 서브 관련 함수 def scheduler_start_sub(self, module_name, sub_name): try: #self.P.logger.warning('scheduler_start_sub') job_id = f'{self.P.package_name}_{module_name}_{sub_name}' ins_module = self.get_module(module_name) ins_sub = ins_module.sub_list[sub_name] job = Job(self.P.package_name, job_id, ins_sub.get_scheduler_interval(), ins_sub.scheduler_function, ins_sub.get_scheduler_desc(), False, args=None) scheduler.add_job_instance(job) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def scheduler_stop_sub(self, module_name, sub_name): try: job_id = f'{self.P.package_name}_{module_name}_{sub_name}' scheduler.remove_job(job_id) except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def scheduler_function_sub(self, module_name, sub_name): try: ins_module = self.get_module(module_name) ins_sub = ins_module.sub_list[sub_name] ins_sub.scheduler_function() except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) def one_execute_sub(self, module_name, sub_name): try: job_id = f'{self.P.package_name}_{module_name}_{sub_name}' if scheduler.is_include(job_id): if scheduler.is_running(job_id): ret = 'is_running' else: scheduler.execute_job(job_id) ret = 'scheduler' else: def func(): time.sleep(2) self.scheduler_function_sub(module_name, sub_name) threading.Thread(target=func, args=()).start() ret = 'thread' except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) ret = 'fail' return ret def immediately_execute_sub(self, module_name, sub_name): self.P.logger.debug(f'immediately_execute : {module_name} {sub_name}') try: def func(): time.sleep(1) self.scheduler_function_sub(module_name, sub_name) threading.Thread(target=func, args=()).start() ret = {'ret':'success', 'msg':'실행합니다.'} except Exception as exception: self.P.logger.error('Exception:%s', exception) self.P.logger.error(traceback.format_exc()) ret = {'ret' : 'danger', 'msg':str(exception)} return ret
c37fddbe72a4bf5e7895fef5d2695c5dec44a3c9
f3c2fa4c6ef32e01b98ac56a2e25419152d69208
/gpio-utils/radiosimulator.py
2c6810bd11fb90a6e076c1bbac1c5bd5e6bd0e97
[ "MIT" ]
permissive
deets/brombeerquark
bd4687d42f9466cd5f6843df6a49e647cf3e2fcc
9314bc6adaf19ee3868612c8aafdce0f1ebbabb9
refs/heads/master
2021-07-19T07:02:22.427227
2021-02-28T12:45:57
2021-02-28T12:45:57
47,883,045
0
0
null
null
null
null
UTF-8
Python
false
false
4,399
py
from __future__ import print_function from functools import partial import time import threading import Queue from tfa import TimedFiniteAutomaton def simulate_gpio_events(queue): time.sleep(1.0) # just increase volume by pressing/releasing once queue.put("volume+pressed") queue.put("volume+released") time.sleep(3.0) # now just hold volume+pressed til 11! queue.put("volume+pressed") time.sleep(7.0) queue.put("volume+released") # now just hold volume-pressed til we are back to 1 queue.put("volume-pressed") time.sleep(7.0) queue.put("volume-released") # finally, toggle play/pause queue.put("volume-pressed") time.sleep(0.1) queue.put("volume+pressed") # let go of both buttons queue.put("volume-release") queue.put("volume+released") class Radio(object): MINVOL, MAXVOL = 1, 11 SAME_TIME_THRESHOLD = .3 def __init__(self): self._volume = self.MINVOL self.playing = True automat = TimedFiniteAutomaton("idle") automat.add_state("volume_up") automat.add_state("volume_down") automat.add_state("nudge_up") automat.add_state("nudge_down") automat.add_state("volume_up_or_toggle") automat.add_state("volume_down_or_toggle") automat.add_state("toggle_play_pause") # waiting for either volume change or toggling play/pause automat.add_transition("idle", "volume_up_or_toggle", "volume+pressed") automat.add_transition("idle", "volume_down_or_toggle", "volume-pressed") # after self.SAME_TIME_THRESHOLD seconds, we will transition to volue up/down # we will re-enter the state on .5 timer events to further increase volume automat.add_transition("volume_up_or_toggle", "volume_up", self.SAME_TIME_THRESHOLD) automat.add_transition("volume_down_or_toggle", "volume_down", self.SAME_TIME_THRESHOLD) automat.add_transition("volume_up", "volume_up", .5) automat.add_transition("volume_down", "volume_down", .5) automat.add_transition("volume_up", "idle", "volume+released") automat.add_transition("volume_down", "idle", "volume-released") # when we wait for toggle_play_pause, but already release, # just nudge the volume once in the respective direction! automat.add_transition("volume_up_or_toggle", "nudge_up", "volume+released") automat.add_transition("nudge_up", "idle") automat.add_transition("volume_down_or_toggle", "nudge_down", "volume-released") automat.add_transition("nudge_down", "idle") # if within this timeframe the opposite key was pressed, toggle! automat.add_transition("volume_up_or_toggle", "toggle_play_pause", "volume-pressed") automat.add_transition("volume_down_or_toggle", "toggle_play_pause", "volume+pressed") # from play_pause, transition automatically back to idle automat.add_transition("toggle_play_pause", "idle") self._automat = automat self._automat.add_state_change_listener(self._react_to_state_changes) print(automat.dot()) def _react_to_state_changes(self, _from, to, _on): if to in ("volume_up", "nudge_up"): self.volume += 1 elif to in ("volume_down", "nudge_down"): self.volume -= 1 elif to == "toggle_play_pause": self.playing = not self.playing @property def volume(self): return self._volume @volume.setter def volume(self, value): self._volume = min(max(value, self.MINVOL), self.MAXVOL) def run(self): q = Queue.Queue() t = threading.Thread(target=partial(simulate_gpio_events, q)) t.daemon = True t.start() self._automat.add_state_change_listener(self._print_status) while True: try: event = q.get(block=True, timeout=.1) except Queue.Empty: #timeout self._automat.tick() else: print("feed", event) self._automat.feed(event) def _print_status(self, *_a): print("Playing: {}, Volume: {}, State: {} ".format( self.playing, self.volume, self._automat.state, ) ) def main(): radio = Radio() radio.run() if __name__ == '__main__': main()
342f10467123051dda12ff9cfcfa59cb2048ea18
7bdc1a3565ba8964658a749fb05ddc27f20d0a33
/scripts/mvn_incremental
d92faf0f5cebe8ccda4cf17fbd1335426c57b1b4
[]
no_license
wuan/ci-tools
375cd64d0197e7e482255661c998f11e06c3e404
6796ee0a9f0b11a4c4ac7c05bdad047e6edd3313
refs/heads/master
2020-12-24T16:24:02.820016
2016-03-04T07:33:19
2016-03-04T07:33:19
39,160,905
0
1
null
null
null
null
UTF-8
Python
false
false
1,229
#!/usr/bin/env python # coding=utf-8 """ Copyright 2015 Andreas Würl Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from optparse import OptionParser import os import sys from citools.maven import Pom if __name__ == '__main__': pom = Pom(os.path.join(os.getcwd(), "pom.xml")) modules = set(pom.modules) parser = OptionParser() (options, args) = parser.parse_args() if len(args) == 1: target = args[0] persistence = Persistence(target + '.db') report = persistence.report if report is not None: with open('junit.xml', 'w') as junit_result_file: TestSuite.to_file(junit_result_file, report.test_suites, False, "latin1")
03d53a2fa862909aa754424596e338d8baa4977a
03cbc74c3b5c3147e2a5ccfe668594350ac32e09
/lib/game_controller.py
9ce9f53324d0447b7aa41f4d4860de35d7426544
[]
no_license
yapo/scoreboard
51e1b5ae07ad23390b920c2a8cad13f4e9e71a4f
f35457125e377d19d912509b3b7c7749fc5a15aa
refs/heads/master
2021-01-18T12:05:53.859445
2014-08-30T21:33:58
2014-08-30T21:33:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,895
py
import sys class game_controller(object): def __init__(self, config): self.config = config self.player1 = player('white') self.player2 = player('black') self.last_scored_player = None self.victory_callbacks = [] self.danger_zone_callbacks = [] self.combo_breaker_callbacks = [] self.first_blood_callbacks = [] def reset(self): self.player1.reset() self.player2.reset() def score(self, player_label): # identify the players player = self.player1 if player_label == 'white' else self.player2 other_player = self.player2 if player == self.player1 else self.player1 is_combo_breaker = other_player.combo_counter > 2 if player is not self.last_scored_player: player.combo_breaker() other_player.combo_breaker() self.last_scored_player = player # score player.score() self.player1.show_score() self.player2.show_score() # raise game events if player.goal_counter == self.config.max_goals: self.victory(player) elif player.goal_counter == 1 and other_player.goal_counter == 0: self.execute_callbacks(self.first_blood_callbacks) elif player.goal_counter == self.config.max_goals - 1: self.execute_callbacks(self.danger_zone_callbacks) elif is_combo_breaker: self.execute_callbacks(self.combo_breaker_callbacks) def add_handler(self, event_name, handler = None): callbacks = { 'victory': self.victory_callbacks, 'danger_zone': self.danger_zone_callbacks, 'first_blood': self.first_blood_callbacks, 'combo_breaker': self.combo_breaker_callbacks } if event_name in callbacks: callbacks[event_name].append(handler) return len(callbacks[event_name]) - 1 else: raise Exception('non valid event name: {}'.format(event_name)) def execute_callbacks(self, callbacks): winner = self.get_winner() loser = self.player1 if not self.player1 == winner else self.player2 for callback in callbacks: if callback is not None: callback(winner, loser) def victory(self, player): print "victory ... player {} wins".format(player.label) player.winner = True self.execute_callbacks(self.victory_callbacks) def get_winner(self): return self.player1 if self.player1.goal_counter >= self.player2.goal_counter else self.player2 def get_scored_player(self): return self.last_scored_player def get_other_player(self, player): return self.player1 if player is not self.player1 else self.player2 class player(object): def __init__(self, label): self.label = label self.goal_counter = 0 self.combo_counter = 0 self.winner = False def reset(self): print "{}: reset".format(self.label) self.goal_counter = 0 self.combo_counter = 0 def score(self): self.goal_counter += 1 self.combo_counter += 1 def show_score(self): print "{}: score - {}: combos {}".format(self.label, self.goal_counter, self.combo_counter) def combo_breaker(self): self.combo_counter = 0
[ "root@raspberrypi.(none)" ]
root@raspberrypi.(none)
b7c52a665189f194d3ae5023e42cd32fef26b8e8
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/5/lqi.py
c5b5b09a028ae3b0d4730ed13c933d52455fff36
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'lQI': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
dff6b6a5b2d3975ef21308b798a270290acf6b65
006341ca12525aa0979d6101600e78c4bd9532ab
/CMS/Zope-3.2.1/Dependencies/twisted-Zope-3.2.1/twisted/vfs/pathutils.py
a5eb45e442945312b73e304ec7158ad550551c8a
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "ZPL-2.1", "Python-2.0", "ICU", "LicenseRef-scancode-public-domain", "BSD-3-Clause", "ZPL-2.0" ]
permissive
germanfriday/code-examples-sandbox
d0f29e20a3eed1f8430d06441ac2d33bac5e4253
4c538584703754c956ca66392fdcecf0a0ca2314
refs/heads/main
2023-05-30T22:21:57.918503
2021-06-15T15:06:47
2021-06-15T15:06:47
377,200,448
0
0
null
null
null
null
UTF-8
Python
false
false
4,390
py
from zope.interface import Interface, Attribute, implements def getAbsoluteSegments(path, cwd='/'): """ @param path: either a string or a list of string segments which specifys the desired path. may be relative to the cwd @param cwd: optional string specifying the current working directory returns a list of string segments which most succinctly describe how to get to path from root """ if not isinstance(path, list): paths = path.split("/") else: paths = path if len(paths) and paths[0] == "": paths = paths[1:] else: paths = cwd.split("/") + paths result = [] for path in paths: if path == "..": if len(result) > 1: result = result[:-1] else: result = [] elif path not in ("", "."): result.append(path) return result def fetch(root, path, cwd='/'): """ @param root: IFileSystemContainer which represents the root node of the filesystem @param path: either a string or a list of string segments which specifys the desired path. may be relative to the cwd @param cwd: optional string specifying the current working directory returns node described by path relative to the cwd """ paths = getAbsoluteSegments(path, cwd) currNode = root for path in paths: currNode = currNode.child(path) return currNode def basename(path, cwd='/'): return getAbsoluteSegments(path, cwd)[-1] def dirname(path, cwd='/'): return "/" + "/".join(getAbsoluteSegments(path, cwd)[:-1]) def getRoot(node): while node.parent is not node: node = node.parent return node def getSegments(node): ret = [] while node.parent is not node: ret.append(node.name) node = node.parent ret.reverse() return ret class IFileSystem(Interface): root = Attribute("root IFileSystemNode of the IFileSystem") pathToCWD = Attribute("path to current working directory") def absPath(path): """ returns a normalized absolutized version of the pathname path """ def splitPath(path): """ returns a normalized absolutized version of the pathname path split on the filesystem's directory seperator """ def joinPath(tail, head): """ joins the two paths, tail and head """ def dirname(path): """ returns the directory name of the container for path """ def basename(path): """ returns the base name of pathname path """ def fetch(path): """ returns a node object representing the file with pathname path """ def _getImplicitChildren(dir): """ returns implicit children for a given dir this is placed in the filesystem so that the same directory can have different implicit children depending on what sort of filesystem it has been placed in - may not be the best idea ... returns a list of 2 element tuples: [ ( path, nodeObject ) ] eg. [ ( ".", dir ), ( "..", dir.parent ) ] """ class FileSystem: """ Wraps unix-like VFS backends, in which directory separator is '/', root's path is '/', and all directories have '.' and '..'. Effectively, this is just a convenience wrapper around the other functions in this module which remembers the root node and the current working directory. """ implements(IFileSystem) def __init__(self, root, pathToCWD="/"): self.root = root self.root.filesystem = self self.pathToCWD = pathToCWD def absPath(self, path): return "/" + "/".join(self.splitPath(path)) def splitPath(self, path): return getAbsoluteSegments(path, self.pathToCWD) def joinPath(self, tail, head): if tail == "/": return tail + head else: return tail + "/" + head def dirname(self, path): return dirname(path, self.pathToCWD) def basename(self, path): return basename(path, self.pathToCWD) def fetch(self, pathToFile="."): return fetch(self.root, pathToFile, self.pathToCWD) def _getImplicitChildren(self, dir): return [(".", dir), ("..", dir.parent)]
2e37a656e0edae2639a95df75b96978d92948395
6c547e3312e2d1bd3dab123b831053ed7aef7b6d
/pages/MYCL/gain_loss/realized.py
cdacebeed29d6225098e87c9886c149079ecb7fb
[]
no_license
kenito2050/BICL
8c4239f1e897e4dfc04aa35e827816242b41d5dd
82891aba56cc49c9cf96ce82472847c4cb10828f
refs/heads/master
2020-12-31T22:10:44.784193
2020-02-10T23:00:10
2020-02-10T23:00:10
239,039,817
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
from selenium.webdriver.common.by import By from config_globals import * class realized(): def __init__(self, driver): self.driver = driver def Page_Elements(self): # Table Header self.table_header = self.driver.find_element(By.XPATH, "/html/body/div[1]/div[3]/div/div/ui-view/div/div[2]/div[3]/div/table") # Table self.table = self.driver.find_element(By.XPATH, "/html/body/div[1]/div[3]/div/div/ui-view/div/div[2]/div[3]/div/table/tbody") return self # Actions def verify_Total_Displays(self, test_case_ID, browser, env, time_stamp): columns = self.driver.find_elements(By.XPATH, "/html/body/div[1]/div[3]/div/div/ui-view/div/div[2]/div[5]/div/table/tbody") text_displays = False for item in columns: text = columns[0].text if ("Total" in text): text_displays = True break break try: assert text_displays is True except AssertionError: screenshot_name = "FAIL" + "_" + test_case_ID + "_" + browser + "_" + env + "_" + time_stamp + ".png" saved_screenshot_location = str(screenshot_directory / screenshot_name) self.driver.get_screenshot_as_file(saved_screenshot_location) raise
7088ef175232c41f87a46face5ef3c3f34a5927d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02256/s464205146.py
66f0c6b76ec4f68636fea32269d78178a8e85ded
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
778
py
a, b = map(int, input().split()) c = [] if a > b: a, b = b, a if b%a == 0: print(a) else: while True: for i in range(a): x = i + 2 #print(a, x) if a%x == 0: if b%x == 0: c.append(x) a = a//x b = b//x #print(c) break elif b%(a//x) == 0: c.append(a//x) a = x b = b//(a//x) #print(c) break #if x%1000 == 0: #print(x) if x > a**0.5: break if x > a**0.5: break s = 1 for j in c: s = s * j print(s)
e5889701fc9377bce8eda18387d6adaea7a0c042
50bd113a98b1657d735a933c0fcc446dd8c35e3e
/companies/migrations/0011_auto_20190807_0332.py
59e7718a743d90f137978161d15d48a3cf61152f
[ "Apache-2.0" ]
permissive
fuseumass/hackerforce
ab0d7e2fcb0c25276eac977fd628a0c67411e059
dfb6ac1304a7db21853765de9da795e8e9ef20bf
refs/heads/development
2022-12-23T09:44:38.319260
2019-12-05T00:11:59
2019-12-28T06:22:01
194,482,639
13
7
Apache-2.0
2022-12-08T03:16:40
2019-06-30T06:21:44
CSS
UTF-8
Python
false
false
575
py
# Generated by Django 2.2.3 on 2019-08-07 07:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('companies', '0010_auto_20190807_0322'), ] operations = [ migrations.AlterField( model_name='industry', name='color', field=models.CharField(choices=[('blue', 'blue'), ('green', 'green'), ('purple', 'purple'), ('orange', 'orange'), ('yellow', 'yellow'), ('red', 'red'), ('brown', 'brown'), ('pink', 'pink'), ('gray', 'gray')], max_length=10), ), ]
88065cf2fd2349c82ab8c1843bf968f43a975af1
98be00ee32971cade82d10c067aff532c3394a62
/geeksforgeeks/linked_list_merge_sort.py
200e6d2c43b2057dfa6cccd4818f7680ebebc6f6
[]
no_license
vigneshhari/Competitive_solutions
5ab34933ea8d84eab67bdef9bb9e4562f6b90782
7a35e1386e5cff71cb5746b6797ccc0f03ceb3f4
refs/heads/master
2023-01-11T02:53:01.456863
2022-12-29T13:50:03
2022-12-29T13:50:03
115,146,700
4
2
null
2019-10-26T09:15:03
2017-12-22T20:03:51
Python
UTF-8
Python
false
false
391
py
class ll: next = None def __init__(self,val): self.val = val def setnext(self,next): self.next = next def stringll(node): if(node == None):return "" return str(node.val) + " " + stringll(node.next) head = ll(-1) looper = head for i in range(input()): temp = ll(input()) looper.setnext(temp) looper = looper.next print stringll(head)