blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
0dd0fb2d347482fcc39221d04b6a381dab6cd16f
d87acfc6fa8dcf71ac26eebbd6069a938222efc3
/captum/attr/_core/lrp.py
b40829da9c388417e8b280a4ee94afa8983edfd2
[ "BSD-3-Clause" ]
permissive
pytorch/captum
aedeec58d34c7611ae8928144e9f2314f820c1ca
945c582cc0b08885c4e2bfecb020abdfac0122f3
refs/heads/master
2023-09-04T08:49:54.120380
2023-07-08T00:30:37
2023-07-08T00:30:37
204,734,444
4,230
491
BSD-3-Clause
2023-09-08T17:58:15
2019-08-27T15:34:41
Python
UTF-8
Python
false
false
18,328
py
#!/usr/bin/env python3 import typing from collections import defaultdict from typing import Any, cast, List, Tuple, Union import torch.nn as nn from captum._utils.common import ( _format_output, _format_tensor_into_tuples, _is_tuple, _register_backward_hook, _run_forward, ) from captum._utils.gradient import ( apply_gradient_requirements, undo_gradient_requirements, ) from captum._utils.typing import Literal, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr._utils.attribution import GradientAttribution from captum.attr._utils.common import _sum_rows from captum.attr._utils.custom_modules import Addition_Module from captum.attr._utils.lrp_rules import EpsilonRule, PropagationRule from captum.log import log_usage from torch import Tensor from torch.nn import Module from torch.utils.hooks import RemovableHandle class LRP(GradientAttribution): r""" Layer-wise relevance propagation is based on a backward propagation mechanism applied sequentially to all layers of the model. Here, the model output score represents the initial relevance which is decomposed into values for each neuron of the underlying layers. The decomposition is defined by rules that are chosen for each layer, involving its weights and activations. Details on the model can be found in the original paper [https://doi.org/10.1371/journal.pone.0130140]. The implementation is inspired by the tutorial of the same group [https://doi.org/10.1016/j.dsp.2017.10.011] and the publication by Ancona et al. [https://openreview.net/forum?id=Sy21R9JAW]. """ def __init__(self, model: Module) -> None: r""" Args: model (Module): The forward function of the model or any modification of it. Custom rules for a given layer need to be defined as attribute `module.rule` and need to be of type PropagationRule. If no rule is specified for a layer, a pre-defined default rule for the module type is used. """ GradientAttribution.__init__(self, model) self.model = model self._check_rules() @property def multiplies_by_inputs(self) -> bool: return True @typing.overload def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, additional_forward_args: Any = None, return_convergence_delta: Literal[False] = False, verbose: bool = False, ) -> TensorOrTupleOfTensorsGeneric: ... @typing.overload def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, additional_forward_args: Any = None, *, return_convergence_delta: Literal[True], verbose: bool = False, ) -> Tuple[TensorOrTupleOfTensorsGeneric, Tensor]: ... @log_usage() def attribute( self, inputs: TensorOrTupleOfTensorsGeneric, target: TargetType = None, additional_forward_args: Any = None, return_convergence_delta: bool = False, verbose: bool = False, ) -> Union[ TensorOrTupleOfTensorsGeneric, Tuple[TensorOrTupleOfTensorsGeneric, Tensor] ]: r""" Args: inputs (Tensor or tuple[Tensor, ...]): Input for which relevance is propagated. If model takes a single tensor as input, a single input tensor should be provided. If model takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. target (int, tuple, Tensor, or list, optional): Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args (tuple, optional): If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to model in order, following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None return_convergence_delta (bool, optional): Indicates whether to return convergence delta or not. If `return_convergence_delta` is set to True convergence delta will be returned in a tuple following attributions. Default: False verbose (bool, optional): Indicates whether information on application of rules is printed during propagation. Returns: *Tensor* or *tuple[Tensor, ...]* of **attributions** or 2-element tuple of **attributions**, **delta**: - **attributions** (*Tensor* or *tuple[Tensor, ...]*): The propagated relevance values with respect to each input feature. The values are normalized by the output score value (sum(relevance)=1). To obtain values comparable to other methods or implementations these values need to be multiplied by the output score. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. The sum of attributions is one and not corresponding to the prediction score as in other implementations. - **delta** (*Tensor*, returned if return_convergence_delta=True): Delta is calculated per example, meaning that the number of elements in returned delta tensor is equal to the number of of examples in the inputs. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. It has one >>> # Conv2D and a ReLU layer. >>> net = ImageClassifier() >>> lrp = LRP(net) >>> input = torch.randn(3, 3, 32, 32) >>> # Attribution size matches input size: 3x3x32x32 >>> attribution = lrp.attribute(input, target=5) """ self.verbose = verbose self._original_state_dict = self.model.state_dict() self.layers: List[Module] = [] self._get_layers(self.model) self._check_and_attach_rules() self.backward_handles: List[RemovableHandle] = [] self.forward_handles: List[RemovableHandle] = [] is_inputs_tuple = _is_tuple(inputs) inputs = _format_tensor_into_tuples(inputs) gradient_mask = apply_gradient_requirements(inputs) try: # 1. Forward pass: Change weights of layers according to selected rules. output = self._compute_output_and_change_weights( inputs, target, additional_forward_args ) # 2. Forward pass + backward pass: Register hooks to configure relevance # propagation and execute back-propagation. self._register_forward_hooks() normalized_relevances = self.gradient_func( self._forward_fn_wrapper, inputs, target, additional_forward_args ) relevances = tuple( normalized_relevance * output.reshape((-1,) + (1,) * (normalized_relevance.dim() - 1)) for normalized_relevance in normalized_relevances ) finally: self._restore_model() undo_gradient_requirements(inputs, gradient_mask) if return_convergence_delta: return ( _format_output(is_inputs_tuple, relevances), self.compute_convergence_delta(relevances, output), ) else: return _format_output(is_inputs_tuple, relevances) # type: ignore def has_convergence_delta(self) -> bool: return True def compute_convergence_delta( self, attributions: Union[Tensor, Tuple[Tensor, ...]], output: Tensor ) -> Tensor: """ Here, we use the completeness property of LRP: The relevance is conserved during the propagation through the models' layers. Therefore, the difference between the sum of attribution (relevance) values and model output is taken as the convergence delta. It should be zero for functional attribution. However, when rules with an epsilon value are used for stability reasons, relevance is absorbed during propagation and the convergence delta is non-zero. Args: attributions (Tensor or tuple[Tensor, ...]): Attribution scores that are precomputed by an attribution algorithm. Attributions can be provided in form of a single tensor or a tuple of those. It is assumed that attribution tensor's dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. output (Tensor): The output value with respect to which the attribution values are computed. This value corresponds to the target score of a classification model. The given tensor should only have a single element. Returns: *Tensor*: - **delta** Difference of relevance in output layer and input layer. """ if isinstance(attributions, tuple): for attr in attributions: summed_attr = cast( Tensor, sum(_sum_rows(attr) for attr in attributions) ) else: summed_attr = _sum_rows(attributions) return output.flatten() - summed_attr.flatten() def _get_layers(self, model: Module) -> None: for layer in model.children(): if len(list(layer.children())) == 0: self.layers.append(layer) else: self._get_layers(layer) def _check_and_attach_rules(self) -> None: for layer in self.layers: if hasattr(layer, "rule"): layer.activations = {} # type: ignore layer.rule.relevance_input = defaultdict(list) # type: ignore layer.rule.relevance_output = {} # type: ignore pass elif type(layer) in SUPPORTED_LAYERS_WITH_RULES.keys(): layer.activations = {} # type: ignore layer.rule = SUPPORTED_LAYERS_WITH_RULES[type(layer)]() # type: ignore layer.rule.relevance_input = defaultdict(list) # type: ignore layer.rule.relevance_output = {} # type: ignore elif type(layer) in SUPPORTED_NON_LINEAR_LAYERS: layer.rule = None # type: ignore else: raise TypeError( ( f"Module of type {type(layer)} has no rule defined and no" "default rule exists for this module type. Please, set a rule" "explicitly for this module and assure that it is appropriate" "for this type of layer." ) ) def _check_rules(self) -> None: for module in self.model.modules(): if hasattr(module, "rule"): if ( not isinstance(module.rule, PropagationRule) and module.rule is not None ): raise TypeError( ( f"Please select propagation rules inherited from class " f"PropagationRule for module: {module}" ) ) def _register_forward_hooks(self) -> None: for layer in self.layers: if type(layer) in SUPPORTED_NON_LINEAR_LAYERS: backward_handles = _register_backward_hook( layer, PropagationRule.backward_hook_activation, self ) self.backward_handles.extend(backward_handles) else: forward_handle = layer.register_forward_hook( layer.rule.forward_hook # type: ignore ) self.forward_handles.append(forward_handle) if self.verbose: print(f"Applied {layer.rule} on layer {layer}") def _register_weight_hooks(self) -> None: for layer in self.layers: if layer.rule is not None: forward_handle = layer.register_forward_hook( layer.rule.forward_hook_weights # type: ignore ) self.forward_handles.append(forward_handle) def _register_pre_hooks(self) -> None: for layer in self.layers: if layer.rule is not None: forward_handle = layer.register_forward_pre_hook( layer.rule.forward_pre_hook_activations # type: ignore ) self.forward_handles.append(forward_handle) def _compute_output_and_change_weights( self, inputs: Tuple[Tensor, ...], target: TargetType, additional_forward_args: Any, ) -> Tensor: try: self._register_weight_hooks() output = _run_forward(self.model, inputs, target, additional_forward_args) finally: self._remove_forward_hooks() # Register pre_hooks that pass the initial activations from before weight # adjustments as inputs to the layers with adjusted weights. This procedure # is important for graph generation in the 2nd forward pass. self._register_pre_hooks() return output def _remove_forward_hooks(self) -> None: for forward_handle in self.forward_handles: forward_handle.remove() def _remove_backward_hooks(self) -> None: for backward_handle in self.backward_handles: backward_handle.remove() for layer in self.layers: if hasattr(layer.rule, "_handle_input_hooks"): for handle in layer.rule._handle_input_hooks: # type: ignore handle.remove() if hasattr(layer.rule, "_handle_output_hook"): layer.rule._handle_output_hook.remove() # type: ignore def _remove_rules(self) -> None: for layer in self.layers: if hasattr(layer, "rule"): del layer.rule def _clear_properties(self) -> None: for layer in self.layers: if hasattr(layer, "activation"): del layer.activation def _restore_state(self) -> None: self.model.load_state_dict(self._original_state_dict) # type: ignore def _restore_model(self) -> None: self._restore_state() self._remove_backward_hooks() self._remove_forward_hooks() self._remove_rules() self._clear_properties() def _forward_fn_wrapper(self, *inputs: Tensor) -> Tensor: """ Wraps a forward function with addition of zero as a workaround to https://github.com/pytorch/pytorch/issues/35802 discussed in https://github.com/pytorch/captum/issues/143#issuecomment-611750044 #TODO: Remove when bugs are fixed """ adjusted_inputs = tuple( input + 0 if input is not None else input for input in inputs ) return self.model(*adjusted_inputs) SUPPORTED_LAYERS_WITH_RULES = { nn.MaxPool1d: EpsilonRule, nn.MaxPool2d: EpsilonRule, nn.MaxPool3d: EpsilonRule, nn.Conv2d: EpsilonRule, nn.AvgPool2d: EpsilonRule, nn.AdaptiveAvgPool2d: EpsilonRule, nn.Linear: EpsilonRule, nn.BatchNorm2d: EpsilonRule, Addition_Module: EpsilonRule, } SUPPORTED_NON_LINEAR_LAYERS = [nn.ReLU, nn.Dropout, nn.Tanh]
a5ca0dba0718aa09e17d7542056fc9af17a7eb38
49c2492d91789b3c2def7d654a7396e8c6ce6d9f
/ROS/catkin_ws/build/dyros_simulator/dataspeed_can_tools/catkin_generated/pkg.installspace.context.pc.py
aaf615e0d8cdbcc7a35dbfeacc60e39121b30380
[]
no_license
DavidHan008/lockdpwn
edd571165f9188e0ee93da7222c0155abb427927
5078a1b08916b84c5c3723fc61a1964d7fb9ae20
refs/heads/master
2021-01-23T14:10:53.209406
2017-09-02T18:02:50
2017-09-02T18:02:50
102,670,531
0
2
null
2017-09-07T00:11:33
2017-09-07T00:11:33
null
UTF-8
Python
false
false
453
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-ldataspeed_can_tools".split(';') if "-ldataspeed_can_tools" != "" else [] PROJECT_NAME = "dataspeed_can_tools" PROJECT_SPACE_DIR = "/home/dyros-vehicle/gitrepo/lockdpwn/ROS/catkin_ws/install" PROJECT_VERSION = "1.0.4"
d5fc2e9c95367713fde53a9b10a7e522573cc1da
4fe1dc7170d2d44e2c9988c71b08f66d469ee4b8
/Appendices/E/ejE5.py
77ce7a4cada9e676303b27e369f41adfd4fb3073
[]
no_license
ftorresi/PythonLearning
53c0689a6f3e7e219a6314a673a318b25cda82d1
f2aeb5f81d9090a5a5aa69a8d1203688e9f01adf
refs/heads/master
2023-01-12T00:40:05.806774
2020-11-13T14:33:08
2020-11-13T14:33:08
267,460,517
0
0
null
null
null
null
UTF-8
Python
false
false
1,930
py
"""Now we solve the ODE problem u - 10u' = 0 u(0)= 0.2 in [0,20] using HEUN's method""" import numpy as np import matplotlib.pyplot as plt #Exact solution def exact_u(t): return 0.2*np.exp(0.1*t) #u'=f(u,t) as a class class f: def __init__(self): pass def __call__(self,u,t): return 0.1*u #Forward Euler Method as a class class Heun: def __init__(self, f, U0, T, n): if not callable(f): raise TypeError('f is %s, not a function' % type(f)) self.f, self.U0, self.T, self.n = f, U0, T, n self.dt = T/float(n) self.u = np.zeros(n+1) self.t = np.linspace(0,T,n+1) def solve(self): """Compute solution for 0 <= t <= T.""" self.u[0] = float(self.U0) for k in range(self.n): self.k = k self.u[k+1] = self.advance() return self.u, self.t def advance(self): """Advance the solution one time step.""" u, dt, f, k, t = self.u, self.dt, self.f, self.k, self.t f_eval=f(u[k], t[k]) u_mid= u[k] + dt*f_eval u_new = u[k] + 0.5*dt*(f_eval+f(u_mid, t[k+1])) return u_new #Parameters T=20 U0=0.2 #Plot exact solution tgrid=np.linspace(0,T,2001) uexact=exact_u(tgrid) plt.plot(tgrid, uexact, "r-", label="Exact Solution") #Numerical calculations and plots nlist=[4,40,400] f_init=f() for n in nlist: solver=Heun(f=f_init, U0=U0, T=T, n=n) sol, t = solver.solve() plt.plot(t, sol, "--", label="dt=%g"%(t[1]-t[0])) plt.legend() plt.title("u-10u'=0, u(0)=0.2 with Heun's method") plt.xlabel("t") plt.ylabel("u(t)") plt.savefig("ejE5.png") #Save to file (only last solution) with open("ejE5.out","w") as outfile: outfile.write("Numerical Solution to u-10u'=0, u(0)=0.2 with Heun's method\n") outfile.write(" t u(t)\n") for i in range(len(t)): outfile.write("%5.2f %7.4f\n"%(t[i], sol[i]))
cd97fc37637ebbea191dfde0b5de158f4d957ec8
6189f34eff2831e3e727cd7c5e43bc5b591adffc
/WebMirror/management/rss_parser_funcs/feed_parse_extractNorthbladetlBlogspotCom.py
6ae6636f041f4c6171da2a37228f9012d3e74405
[ "BSD-3-Clause" ]
permissive
fake-name/ReadableWebProxy
24603660b204a9e7965cfdd4a942ff62d7711e27
ca2e086818433abc08c014dd06bfd22d4985ea2a
refs/heads/master
2023-09-04T03:54:50.043051
2023-08-26T16:08:46
2023-08-26T16:08:46
39,611,770
207
20
BSD-3-Clause
2023-09-11T15:48:15
2015-07-24T04:30:43
Python
UTF-8
Python
false
false
562
py
def extractNorthbladetlBlogspotCom(item): ''' Parser for 'northbladetl.blogspot.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
aeda73e4de7393ca198519384998e625a5a63d26
6f33381dcb19a042d916b4a452f9cb7438729798
/jabba/graphs/legend.py
6767d1bc8f8140580a6220c89e4327bd31cd22ab
[ "MIT" ]
permissive
puppetlabs/jabba
8308adf5be9ba25efb414f384bf3568854be55e2
71c1d008ab497020fba6ffa12a600721eb3f5ef7
refs/heads/master
2023-06-13T09:17:49.274408
2017-06-30T11:02:27
2017-06-30T11:02:27
185,443,592
0
1
null
2019-05-07T16:54:03
2019-05-07T16:54:02
null
UTF-8
Python
false
false
939
py
import graphviz as gv class Legend(object): """ GraphViz graph for rendering legend """ def __init__(self): # Legend is presented as map (name -> settings) self.items = {} def add_item(self, name, settings): self.items[name] = settings def render(self): legend = gv.Digraph('cluster_legend') legend.body.extend(['label="Legend"']) for name, settings in self.items.items(): legend.node("{}-1".format(name), label="") legend.node("{}-2".format(name), label="") # format label so it doesn't overlap with edge label = " {}".format(name) legend.edge("{}-1".format(name), "{}-2".format(name), label=label, **settings) legend_wrapper = gv.Digraph('cluster_legend_wrapper') legend_wrapper.subgraph(legend) legend_wrapper.body.extend(['style=invis']) return legend_wrapper
61bc8a3a202bc70ca7a6d6c6a4c970e5e87ea59c
06b25df867b9a4741b4ca803eceb254aa50758e9
/editor_api/rest/lum.py
acdf87c0a73ffc1bdb30ca30bc06f1dcb3063474
[ "MIT" ]
permissive
jphuart/swatplus-automatic-workflow
e5ceaa745096926176d9fc45042f836e628d0504
dd2eeb7f882eb2d4ab7e1e5265c10b9beb93ddc4
refs/heads/master
2023-08-15T02:47:40.742352
2021-10-05T14:57:19
2021-10-05T14:57:19
282,170,706
0
0
null
2020-07-24T08:52:25
2020-07-24T08:52:24
null
UTF-8
Python
false
false
19,887
py
from flask_restful import Resource, reqparse, abort from playhouse.shortcuts import model_to_dict from peewee import * from .base import BaseRestModel from database.project import base from database.project.setup import SetupProjectDatabase from database.project.lum import Landuse_lum, Management_sch, Cntable_lum, Cons_prac_lum, Ovn_table_lum, Management_sch_auto, Management_sch_op from database.project.structural import Tiledrain_str, Septic_str, Filterstrip_str, Grassedww_str, Bmpuser_str from database.project.hru_parm_db import Urban_urb from database.project.init import Plant_ini from database.project.decision_table import D_table_dtl from database.datasets.setup import SetupDatasetsDatabase from database.datasets import lum as ds_lum from database import lib from helpers import utils invalid_name_msg = 'Invalid name {name}. Please ensure the value exists in your database.' def get_landuse_args(get_selected_ids=False): parser = reqparse.RequestParser() if get_selected_ids: parser.add_argument('selected_ids', type=int, action='append', required=False, location='json') else: parser.add_argument('id', type=int, required=False, location='json') parser.add_argument('name', type=str, required=True, location='json') parser.add_argument('description', type=str, required=False, location='json') parser.add_argument('cal_group', type=str, required=False, location='json') parser.add_argument('urb_ro', type=str, required=False, location='json') parser.add_argument('plnt_com_name', type=str, required=False, location='json') parser.add_argument('mgt_name', type=str, required=False, location='json') parser.add_argument('cn2_name', type=str, required=False, location='json') parser.add_argument('cons_prac_name', type=str, required=False, location='json') parser.add_argument('urban_name', type=str, required=False, location='json') parser.add_argument('ov_mann_name', type=str, required=False, location='json') parser.add_argument('tile_name', type=str, required=False, location='json') parser.add_argument('sep_name', type=str, required=False, location='json') parser.add_argument('vfs_name', type=str, required=False, location='json') parser.add_argument('grww_name', type=str, required=False, location='json') parser.add_argument('bmp_name', type=str, required=False, location='json') args = parser.parse_args(strict=True) return args def save_landuse_args(self, m, args): m.name = args['name'] m.description = args['description'] m.cal_group = utils.remove_space(args['cal_group']) m.urb_ro = args['urb_ro'] m.plnt_com_id = self.get_id_from_name(Plant_ini, args['plnt_com_name']) m.mgt_id = self.get_id_from_name(Management_sch, args['mgt_name']) m.cn2_id = self.get_id_from_name(Cntable_lum, args['cn2_name']) m.cons_prac_id = self.get_id_from_name(Cons_prac_lum, args['cons_prac_name']) m.urban_id = self.get_id_from_name(Urban_urb, args['urban_name']) m.ov_mann_id = self.get_id_from_name(Ovn_table_lum, args['ov_mann_name']) m.tile_id = self.get_id_from_name(Tiledrain_str, args['tile_name']) m.sep_id = self.get_id_from_name(Septic_str, args['sep_name']) m.vfs_id = self.get_id_from_name(Filterstrip_str, args['vfs_name']) m.grww_id = self.get_id_from_name(Grassedww_str, args['grww_name']) m.bmp_id = self.get_id_from_name(Bmpuser_str, args['bmp_name']) return m.save() class LanduseLumListApi(BaseRestModel): def get(self, project_db, sort, reverse, page, items_per_page): table = Landuse_lum list_name = 'landuse' return self.base_paged_list(project_db, sort, reverse, page, items_per_page, table, list_name, True) class LanduseLumApi(BaseRestModel): def get(self, project_db, id): return self.base_get(project_db, id, Landuse_lum, 'Landuse', True) def delete(self, project_db, id): return self.base_delete(project_db, id, Landuse_lum, 'Landuse') def put(self, project_db, id): args = get_landuse_args() try: SetupProjectDatabase.init(project_db) m = Landuse_lum.get(Landuse_lum.id == id) result = save_landuse_args(self, m, args) if result > 0: return 200 abort(400, message='Unable to update land use properties {id}.'.format(id=id)) except IntegrityError as e: abort(400, message='Land use name must be unique.') except Landuse_lum.DoesNotExist: abort(404, message='Land use properties {id} does not exist'.format(id=id)) except Plant_ini.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['plnt_com_name'])) except Management_sch.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['mgt_name'])) except Cntable_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cn2_name'])) except Cons_prac_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cons_prac_name'])) except Urban_urb.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['urban_name'])) except Ovn_table_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['ov_mann_name'])) except Tiledrain_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['tile_name'])) except Septic_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['sep_name'])) except Filterstrip_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['vfs_name'])) except Grassedww_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['grww_name'])) except Bmpuser_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['bmp_name'])) except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class LanduseLumPostApi(BaseRestModel): def post(self, project_db): args = get_landuse_args() try: SetupProjectDatabase.init(project_db) m = Landuse_lum() result = save_landuse_args(self, m, args) if result > 0: return 200 abort(400, message='Unable to update channel properties {id}.'.format(id=id)) except IntegrityError as e: abort(400, message='Channel properties name must be unique.') except Plant_ini.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['plnt_com_name'])) except Management_sch.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['mgt_name'])) except Cntable_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cn2_name'])) except Cons_prac_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cons_prac_name'])) except Urban_urb.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['urban_name'])) except Ovn_table_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['ov_mann_name'])) except Tiledrain_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['tile_name'])) except Septic_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['sep_name'])) except Filterstrip_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['vfs_name'])) except Grassedww_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['grww_name'])) except Bmpuser_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['bmp_name'])) except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class LanduseLumUpdateManyApi(BaseRestModel): def get(self, project_db): return self.base_name_id_list(project_db, Landuse_lum) def put(self, project_db): SetupProjectDatabase.init(project_db) args = get_landuse_args(True) try: param_dict = {} if args['cal_group'] is not None: param_dict['cal_group'] = utils.remove_space(args['cal_group']) if args['urb_ro'] is not None: param_dict['urb_ro'] = args['urb_ro'] if args['plnt_com_name'] is not None: param_dict['plnt_com_id'] = self.get_id_from_name(Plant_ini, args['plnt_com_name']) if args['mgt_name'] is not None: param_dict['mgt_id'] = self.get_id_from_name(Management_sch, args['mgt_name']) if args['cn2_name'] is not None: param_dict['cn2_id'] = self.get_id_from_name(Cntable_lum, args['cn2_name']) if args['cons_prac_name'] is not None: param_dict['cons_prac_id'] = self.get_id_from_name(Cons_prac_lum, args['cons_prac_name']) if args['urban_name'] is not None: param_dict['urban_id'] = self.get_id_from_name(Urban_urb, args['urban_name']) if args['ov_mann_name'] is not None: param_dict['ov_mann_id'] = self.get_id_from_name(Ovn_table_lum, args['ov_mann_name']) if args['tile_name'] is not None: param_dict['tile_id'] = self.get_id_from_name(Tiledrain_str, args['tile_name']) if args['sep_name'] is not None: param_dict['sep_id'] = self.get_id_from_name(Septic_str, args['sep_name']) if args['vfs_name'] is not None: param_dict['vfs_id'] = self.get_id_from_name(Filterstrip_str, args['vfs_name']) if args['grww_name'] is not None: param_dict['grww_id'] = self.get_id_from_name(Grassedww_str, args['grww_name']) if args['bmp_name'] is not None: param_dict['bmp_id'] = self.get_id_from_name(Bmpuser_str, args['bmp_name']) query = Landuse_lum.update(param_dict).where(Landuse_lum.id.in_(args['selected_ids'])) result = query.execute() if result > 0: return 200 abort(400, message='Unable to update channel properties.') except Plant_ini.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['plnt_com_name'])) except Management_sch.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['mgt_name'])) except Cntable_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cn2_name'])) except Cons_prac_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['cons_prac_name'])) except Urban_urb.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['urban_name'])) except Ovn_table_lum.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['ov_mann_name'])) except Tiledrain_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['tile_name'])) except Septic_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['sep_name'])) except Filterstrip_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['vfs_name'])) except Grassedww_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['grww_name'])) except Bmpuser_str.DoesNotExist: abort(400, message=invalid_name_msg.format(name=args['bmp_name'])) except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) def save_cntable_lum(m, args): m.name = args['name'] m.description = utils.remove_space(args['description']) m.cn_a = args['cn_a'] m.cn_b = args['cn_b'] m.cn_c = args['cn_c'] m.cn_d = args['cn_d'] m.treat = utils.remove_space(args['treat']) m.cond_cov = utils.remove_space(args['cond_cov']) return m.save() class CntableLumListApi(BaseRestModel): def get(self, project_db, sort, reverse, page, items_per_page): table = Cntable_lum list_name = 'cntable' return self.base_paged_list(project_db, sort, reverse, page, items_per_page, table, list_name) class CntableLumApi(BaseRestModel): def get(self, project_db, id): return self.base_get(project_db, id, Cntable_lum, 'Curve Number') def delete(self, project_db, id): return self.base_delete(project_db, id, Cntable_lum, 'Curve Number') def put(self, project_db, id): try: SetupProjectDatabase.init(project_db) args = self.get_args('cntable_lum', project_db) m = Cntable_lum.get(Cntable_lum.id == id) result = save_cntable_lum(m, args) if result > 0: return 200 abort(400, message='Unable to update curve number table {id}.'.format(id=id)) except IntegrityError as e: abort(400, message='Curve number table name must be unique.') except Cntable_lum.DoesNotExist: abort(404, message='Curve number table {id} does not exist'.format(id=id)) except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class CntableLumUpdateManyApi(BaseRestModel): def get(self, project_db): return self.base_name_id_list(project_db, Cntable_lum) def put(self, project_db): try: SetupProjectDatabase.init(project_db) args = self.get_args('cntable_lum', project_db, True) remove_spaces = ['description', 'treat', 'cond_cov'] param_dict = {} for key in args.keys(): if args[key] is not None and key != 'selected_ids': param_dict[key] = utils.remove_space(args[key]) if key in remove_spaces else args[key] query = Cntable_lum.update(param_dict).where(Cntable_lum.id.in_(args['selected_ids'])) result = query.execute() if result > 0: return 200 abort(400, message='Unable to update curve number tables.') except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class CntableLumPostApi(BaseRestModel): def post(self, project_db): try: SetupProjectDatabase.init(project_db) args = self.get_args('cntable_lum', project_db) m = Cntable_lum() result = save_cntable_lum(m, args) if result > 0: return model_to_dict(m), 201 abort(400, message='Unable to update curve number table {id}.'.format(id=id)) except IntegrityError as e: abort(400, message='Curve number table name must be unique.') except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class CntableLumDatasetsApi(BaseRestModel): def get(self, datasets_db, name): return self.base_get_datasets_name(datasets_db, name, ds_lum.Cntable_lum, 'Curve number table') class OvntableLumListApi(BaseRestModel): def get(self, project_db, sort, reverse, page, items_per_page): table = Ovn_table_lum list_name = 'ovntable' return self.base_paged_list(project_db, sort, reverse, page, items_per_page, table, list_name) class OvntableLumApi(BaseRestModel): def get(self, project_db, id): return self.base_get(project_db, id, Ovn_table_lum, 'Mannings n') def delete(self, project_db, id): return self.base_delete(project_db, id, Ovn_table_lum, 'Mannings n') def put(self, project_db, id): return self.base_put(project_db, id, Ovn_table_lum, 'Mannings n') class OvntableLumUpdateManyApi(BaseRestModel): def get(self, project_db): return self.base_name_id_list(project_db, Ovn_table_lum) def put(self, project_db): return self.base_put_many(project_db, Ovn_table_lum, 'Mannings n') class OvntableLumPostApi(BaseRestModel): def post(self, project_db): return self.base_post(project_db, Ovn_table_lum, 'Mannings n') class OvntableLumDatasetsApi(BaseRestModel): def get(self, datasets_db, name): return self.base_get_datasets_name(datasets_db, name, ds_lum.Ovn_table_lum, 'Mannings n table') class ConsPracLumListApi(BaseRestModel): def get(self, project_db, sort, reverse, page, items_per_page): table = Cons_prac_lum list_name = 'cons_prac' return self.base_paged_list(project_db, sort, reverse, page, items_per_page, table, list_name) class ConsPracLumApi(BaseRestModel): def get(self, project_db, id): return self.base_get(project_db, id, Cons_prac_lum, 'Conservation practice') def delete(self, project_db, id): return self.base_delete(project_db, id, Cons_prac_lum, 'Conservation practice') def put(self, project_db, id): return self.base_put(project_db, id, Cons_prac_lum, 'Conservation practice') class ConsPracLumUpdateManyApi(BaseRestModel): def get(self, project_db): return self.base_name_id_list(project_db, Cons_prac_lum) def put(self, project_db): return self.base_put_many(project_db, Cons_prac_lum, 'Conservation practice') class ConsPracLumPostApi(BaseRestModel): def post(self, project_db): return self.base_post(project_db, Cons_prac_lum, 'Conservation practice') class ConsPracLumDatasetsApi(BaseRestModel): def get(self, datasets_db, name): return self.base_get_datasets_name(datasets_db, name, ds_lum.Cons_prac_lum, 'Conservation practices') def get_mgt_args(): parser = reqparse.RequestParser() parser.add_argument('id', type=int, required=False, location='json') parser.add_argument('name', type=str, required=True, location='json') parser.add_argument('auto_ops', type=list, required=False, location='json') parser.add_argument('operations', type=list, required=False, location='json') args = parser.parse_args(strict=True) return args class ManagementSchListApi(BaseRestModel): def get(self, project_db, sort, reverse, page, items_per_page): table = Management_sch list_name = 'mgt_sch' SetupProjectDatabase.init(project_db) total = table.select().count() sort_val = SQL(sort) if reverse == 'true': sort_val = SQL(sort).desc() m = table.select().order_by(sort_val).paginate(int(page), int(items_per_page)) ml = [{'id': v.id, 'name': v.name, 'num_ops': len(v.operations), 'num_auto': len(v.auto_ops)} for v in m] return {'total': total, list_name: ml} class ManagementSchApi(BaseRestModel): def get(self, project_db, id): return self.base_get(project_db, id, Management_sch, 'Management schedule', back_refs=True, max_depth=2) def delete(self, project_db, id): return self.base_delete(project_db, id, Management_sch, 'Management schedule') def put(self, project_db, id): try: SetupProjectDatabase.init(project_db) args = get_mgt_args() m = Management_sch.get(Management_sch.id == id) m.name = args['name'] m.save() new_auto = [] for a in args['auto_ops']: try: dt = D_table_dtl.get((D_table_dtl.file_name == 'lum.dtl') & (D_table_dtl.name == a)) new_auto.append({'management_sch_id': m.id, 'd_table_id': dt.id}) except D_table_dtl.DoesNotExist: abort(404, message='Decision table {name} does not exist'.format(name=a)) new_ops = [] order = 1 for o in args['operations']: new_ops.append({ 'management_sch_id': m.id, 'op_typ': o['op_typ'], 'mon': o['mon'], 'day': o['day'], 'op_data1': o['op_data1'], 'op_data2': o['op_data2'], 'op_data3': o['op_data3'], 'order': o['order'], 'hu_sch': o['hu_sch'] }) order += 1 Management_sch_auto.delete().where(Management_sch_auto.management_sch_id == m.id).execute() lib.bulk_insert(base.db, Management_sch_auto, new_auto) Management_sch_op.delete().where(Management_sch_op.management_sch_id == m.id).execute() lib.bulk_insert(base.db, Management_sch_op, new_ops) return 200 except IntegrityError as e: abort(400, message='Management schedule name must be unique.') except Cons_prac_lum.DoesNotExist: abort(404, message='Management schedule {id} does not exist'.format(id=id)) except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex)) class ManagementSchPostApi(BaseRestModel): def post(self, project_db): try: args = get_mgt_args() m = Management_sch() m.name = args['name'] m.save() new_auto = [] for a in args['auto_ops']: try: dt = D_table_dtl.get((D_table_dtl.file_name == 'lum.dtl') & (D_table_dtl.name == a)) new_auto.append({'management_sch_id': m.id, 'd_table_id': dt.id}) except D_table_dtl.DoesNotExist: abort(404, message='Decision table {name} does not exist'.format(name=a)) new_ops = [] order = 1 for o in args['operations']: new_ops.append({ 'management_sch_id': m.id, 'op_typ': o['op_typ'], 'mon': o['mon'], 'day': o['day'], 'op_data1': o['op_data1'], 'op_data2': o['op_data2'], 'op_data3': o['op_data3'], 'order': o['order'], 'hu_sch': o['hu_sch'] }) order += 1 lib.bulk_insert(base.db, Management_sch_auto, new_auto) lib.bulk_insert(base.db, Management_sch_op, new_ops) return 201 except IntegrityError as e: abort(400, message='Management schedule name must be unique.') except Exception as ex: abort(400, message="Unexpected error {ex}".format(ex=ex))
90254a2e8ba7c81e196fd637cbd4598c1fdaa717
3e1b5d7cb529be1529ae45fa062a423f8328d6d2
/Edgar-new-codes/Getting-10-K- and-10-Q doc links.py
54aab244b45e5b116a35eee0099a5ad3de1aba53
[]
no_license
abhigupta4/Finrsch
260687b3b53d3c94a03dc2b9e640952718033486
ca0b7f1631fbbe109b81403b9ffc36c67c759d23
refs/heads/master
2021-01-19T10:54:19.705213
2017-07-06T12:22:37
2017-07-06T12:22:37
87,913,197
1
0
null
null
null
null
UTF-8
Python
false
false
1,806
py
import requests from bs4 import BeautifulSoup import urlparse def get_file(cur,val): base = 'https://www.sec.gov' r = requests.get(cur) document = BeautifulSoup(r.content,"lxml") links = document.find_all('a') for link in links: if 'Archives' in link.get("href"): print 'Document link' print base+link.get("href") break def take_second_link(cur,cik,val): begin = 'https://www.sec.gov' r = requests.get(cur) document = BeautifulSoup(r.content,"lxml") links = document.find_all('a') for link in links: temp = link.get("href") if 'index' in temp and 'headers' not in temp and cik in temp: print print 'Company link' if val: print "Type 10-K" else: print "Type 10-Q" print begin+temp get_file(begin + temp,val) def find_link1(entire,val): begin = 'https://www.sec.gov/Archives/edgar/data/' for part in entire: if 'data' in part: temp = part.split('/') last = '' for ele in temp[-1]: if ele.isdigit(): last += ele new = begin + temp[-2] + '/' + last take_second_link(new,temp[-2],val) def inside_index(link1): r = requests.get(main_link+link1) document = BeautifulSoup(r.content,"lxml") soup = document.get_text() lines = soup.split("\n") flag = 1 for line in lines: temp = line.split(" ") for i in xrange(len(temp)): if temp[i] == '10-Q' and temp[i-1] == '' and temp[i+1] == '': find_link1(temp,0) break if temp[i] == '10-K' and temp[i-1] == '' and temp[i+1] == '': find_link1(temp,1) break main_link = 'https://www.sec.gov/Archives/edgar/daily-index/2017/QTR2/' r = requests.get(main_link) document = BeautifulSoup(r.content,"lxml") links = document.find_all('a') for link in links: if 'company' in link.get("href") and '.idx' in link.get("href"): inside_index(link.get("href")) # break
ec47bc066bc69f6cf12e1ef76fe29f8be677394c
5667cc877342204b7d54b6c3cc5a9f4854f08829
/.history/apppersona/views_20201101174230.py
3ca271ad58977d9585b9c4096dc875f160abb1d5
[]
no_license
Nyckhos/TestCommit
d62e3f6fefb04ab5647475cc7ead0d72cbd89efa
9aa8e2e35280b7862960cc8a864e9c02ac7f4796
refs/heads/main
2023-01-05T05:57:59.223641
2020-11-02T02:08:18
2020-11-02T02:08:18
309,237,224
2
0
null
2020-11-02T02:30:43
2020-11-02T02:30:43
null
UTF-8
Python
false
false
3,787
py
from django.http import request from django.shortcuts import redirect, render from django.http import HttpResponse from .models import * from .forms import * from django.contrib.auth.models import User from django.contrib.auth import * from django.urls import reverse from django.contrib.auth import login from django.contrib.auth.decorators import * from django.contrib.admin.views.decorators import * from django.shortcuts import render, redirect from django.core.mail import send_mail, BadHeaderError from django.http import HttpResponse from django.contrib.auth.forms import PasswordResetForm from django.contrib.auth.models import User from django.template.loader import render_to_string from django.db.models.query_utils import Q from django.utils.http import urlsafe_base64_encode from django.contrib.auth.tokens import default_token_generator from django.utils.encoding import force_bytes # Create your views here. #@login_required #def index(request): # return render(request,'appersona/index.html') def lista_personas(request): lista = User.objects.all() # Todas las personas return render(request, 'apppersona/lista_personas.html', {'lista': lista}) def lista_tarjetas(request): tarjetas = TarjetaJunaeb.objects.all() return render(request, 'apppersona/lista_tarjetas.html', {'listaTarjetas': tarjetas}) def tarjetas_con_plata(request): tarjetas = TarjetaJunaeb.objects.filter(montoDisponible__gte=1) return render(request, 'apppersona/lista_tarjetas.html', {'listaTarjetas': tarjetas}) def index(request): return render(request, 'apppersona/index.html') def contacto(request): return render(request, 'apppersona/contacto.html') def nosotros(request): return render(request, 'apppersona/nosotros.html') def register(request): if request.method == "POST": form = ExtendedUserCreationForm(request.POST) profile_form = FormularioPersona(request.POST) if form.is_valid() and profile_form.is_valid(): user = form.save() profile = profile_form.save(commit=False) profile.user = user profile.save() username = form.cleaned_data.get('username') password = form.cleaned_data.get('password1') user = authenticate(username=username, password=password) login(request, user) return redirect('index') else: form = ExtendedUserCreationForm() profile_form = FormularioPersona() context = {'form': form, 'profile_form': profile_form} return render(request, "apppersona/registro.html", context) def password_reset_request(request): if request.method == "POST": password_reset_form = PasswordResetForm(request.POST) if password_reset_form.is_valid(): data = password_reset_form.cleaned_data['email'] associated_users = User.objects.filter(Q(email=data)) if associated_users.exists(): for user in associated_users: subject = "Password Reset Requested" email_template_name = "main/password/password_reset_email.txt" c = { "email":user.email, 'domain':'127.0.0.1:8000', 'site_name': 'Website', "uid": urlsafe_base64_encode(force_bytes(user.pk)), "user": user, 'token': default_token_generator.make_token(user), 'protocol': 'http', } email = render_to_string(email_template_name, c) try: send_mail(subject, email, '[email protected]' , [user.email], fail_silently=False) except BadHeaderError: return HttpResponse('Invalid header found.') return redirect ("/password_reset/done/") password_reset_form = PasswordResetForm() return render(request=request, template_name="main/password/password_reset.html", context={"password_reset_form":password_reset_form})
d3bdbc5461a26a5c7fe0183620159be6662d508c
a9a2f66671fadf765d7feb511a4a5d9b9f4ef362
/test/agent/server/local_elastic_agent_test.py
d86d3dc297c43d5bceef33af548cc125f0b9dd84
[ "BSD-3-Clause" ]
permissive
BobLiu20/elastic
64885d164d485976ea8740672c454c212bab4ff8
e371fe57672aea91d2466f5e04884028d8dca649
refs/heads/master
2022-11-11T10:22:20.181835
2020-07-01T23:30:44
2020-07-01T23:32:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,667
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import multiprocessing import os import time import unittest import uuid from unittest.mock import patch import torch import torch.distributed as dist import torch.distributed.rpc as rpc import torchelastic.rendezvous.etcd_rendezvous # noqa: F401 from test_utils import is_tsan from torch.distributed.rpc.backend_registry import BackendType from torchelastic.agent.server.api import ( WorkerGroupFailureException, WorkerSpec, WorkerState, ) from torchelastic.agent.server.local_elastic_agent import LocalElasticAgent from torchelastic.rendezvous.etcd_server import EtcdServer def _happy_function(): return def _sad_function(): raise RuntimeError("sad because i throw") def _bipolar_function(): rank = int(os.environ["RANK"]) if rank % 2 == 0: _happy_function() else: _sad_function() def _distributed_sum(wait): rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) dist.init_process_group(backend="gloo") t = torch.tensor(rank) time.sleep(wait) dist.all_reduce(t, op=dist.reduce_op.SUM) expected_sum = sum(range(world_size)) actual = t.item() if expected_sum != actual: raise RuntimeError(f"Expected rank sum {expected_sum}, got {actual}") def _simulate_work(wait): time.sleep(wait) rank = int(os.environ["RANK"]) return rank def _check_rank_assignment(): group_rank = int(os.environ["GROUP_RANK"]) rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) role_rank = int(os.environ["ROLE_RANK"]) role_world_size = int(os.environ["ROLE_WORLD_SIZE"]) return (group_rank, rank, world_size, role_rank, role_world_size) def echo(msg): return msg def _return_rank_times(a): return int(os.environ["RANK"]) * a def _check_env_function(): # just check these env vars exist, os.environ[...] will naturally throw # if the variable does not exist os.environ["RANK"] os.environ["LOCAL_RANK"] os.environ["ROLE_RANK"] os.environ["GROUP_RANK"] os.environ["LOCAL_WORLD_SIZE"] os.environ["ROLE_WORLD_SIZE"] os.environ["WORLD_SIZE"] os.environ["MASTER_ADDR"] os.environ["MASTER_PORT"] os.environ["TORCHELASTIC_RESTART_COUNT"] os.environ["TORCHELASTIC_MAX_RESTARTS"] os.environ["TORCHELASTIC_RUN_ID"] def _run_agent( run_id, etcd_host, etcd_port, min_size, max_size, func_to_run, args, local_world_size=8, role="test_trainer", output_dict=None, agent_barrier_timeout=300, ): rdzv_handler = dist.rendezvous( f"etcd://{etcd_host}:{etcd_port}/{run_id}" f"?min_workers={min_size}" f"&max_workers={max_size}" ) spec = WorkerSpec( role=role, local_world_size=local_world_size, fn=func_to_run, args=args, rdzv_handler=rdzv_handler, max_restarts=2, monitor_interval=1, ) agent = LocalElasticAgent( spec, start_method="fork", exit_barrier_timeout=agent_barrier_timeout ) res = agent.run() if output_dict is not None: key = str(uuid.uuid4().int) output_dict[key] = (role, res) class LocalElasticAgentTest(unittest.TestCase): @classmethod def setUpClass(cls): # start a standalone, single process etcd server to use for all tests cls._etcd_server = EtcdServer() cls._etcd_server.start() @classmethod def tearDownClass(cls): # stop the standalone etcd server cls._etcd_server.stop() @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_happy_function(self): spec = self._get_worker_spec(fn=_happy_function) agent = LocalElasticAgent(spec, start_method="fork") agent.run() def _get_worker_spec( self, fn, args=(), max_restarts=1, num_agents=1, monitor_interval=0.1, local_world_size=8, ): run_id = str(uuid.uuid4().int) rdzv_handler = dist.rendezvous( f"etcd://{self._etcd_server.get_endpoint()}/{run_id}" f"?min_workers={num_agents}" f"&max_workers={num_agents}" ) spec = WorkerSpec( role="test_trainer", local_world_size=local_world_size, fn=fn, args=args, rdzv_handler=rdzv_handler, max_restarts=max_restarts, monitor_interval=monitor_interval, ) return spec @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_distributed_sum(self): spec = self._get_worker_spec(fn=_distributed_sum, args=(0,)) agent = LocalElasticAgent(spec, start_method="fork") agent.run() class RoleConfig: __slots__ = ["role", "workers", "num_agents", "workers_num", "role_size"] def __init__( self, role: str, workers=None, num_agents: int = 0, workers_num: int = 0 ): self.role = role self.workers = workers if workers_num != 0 and num_agents != 0: self.workers = [workers_num] * num_agents self.role_size = sum(self.workers) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_correct_rank_assignment_heterogeneous(self): roles_config = [ self.RoleConfig("trainer", workers=[1, 2, 3, 4]), self.RoleConfig("ps", workers=[5, 2]), # split configuration to run the last one on the main process self.RoleConfig("master", workers=[8]), ] self.run_configuration(roles_config, 25) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_correct_rank_assignment_homogeneous(self): num_workers = 4 roles_config = [ self.RoleConfig("trainer", num_agents=4, workers_num=num_workers), self.RoleConfig("ps", num_agents=2, workers_num=num_workers), # split configuration to run the last one on the main process self.RoleConfig("master", num_agents=1, workers_num=num_workers), ] self.run_configuration(roles_config, 28) def run_configuration(self, roles_config, expected_world_size): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = sum(len(cfg.workers) for cfg in roles_config) run_id = str(uuid.uuid4().int) procs = [] manager = multiprocessing.Manager() return_dict = manager.dict() default_args = (run_id, host, port, nnodes, nnodes, _check_rank_assignment, ()) for ind in range(len(roles_config) - 1): config = roles_config[ind] for num_workers in config.workers: p = multiprocessing.Process( target=_run_agent, args=(*default_args, num_workers, config.role, return_dict), ) procs.append(p) p.start() # run one on the main process for debugging config = roles_config[len(roles_config) - 1] _run_agent(*default_args, config.workers[0], config.role, return_dict) for i in range(nnodes - 1): p = procs[i] p.join() self.assertEqual(0, p.exitcode) role_info_dict = {role_info.role: role_info for role_info in roles_config} self.verify_rank_consistency(return_dict, role_info_dict, expected_world_size) def verify_rank_consistency(self, return_dict, role_info_dict, expected_world_size): role_ranks = {} global_ranks = [] grouped_ranks = {} for role, res in return_dict.values(): for ( group_rank, rank, world_size, role_rank, role_world_size, ) in res.values(): role_info_config = role_info_dict[role] self.assertEqual(expected_world_size, world_size) self.assertEqual(role_info_config.role_size, role_world_size) if group_rank not in grouped_ranks: grouped_ranks[group_rank] = [] grouped_ranks[group_rank].append((rank, role_rank)) global_ranks.append(rank) if role not in role_ranks: role_ranks[role] = [] role_ranks[role].append(role_rank) global_ranks = sorted(global_ranks) self.assertEqual(list(range(0, expected_world_size)), global_ranks) for role, role_config_info in role_info_dict.items(): self.assertEqual( list(range(0, role_config_info.role_size)), sorted(role_ranks[role]) ) # Make sure that each agent assignes consecutive ranks to workes # The first argument is the global_rank and the second argument # is role_rank for ranks_lst in grouped_ranks.values(): self.verify_ranks_sequential(ranks_lst, 0) self.verify_ranks_sequential(ranks_lst, 1) def verify_ranks_sequential(self, ranks_pairs, rank_idx): ranks = sorted(rank_pair[rank_idx] for rank_pair in ranks_pairs) start_rank, end_rank = ranks[0], ranks[-1] self.assertEqual(list(range(start_rank, end_rank + 1)), ranks) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_distributed_sum_heterogenous(self): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = 4 run_id = str(uuid.uuid4().int) procs = [] default_args = (run_id, host, port, nnodes, nnodes, _distributed_sum, (0,)) for ind in range(nnodes - 1): p = multiprocessing.Process( target=_run_agent, args=(*default_args, ind + 1) ) procs.append(p) p.start() # run one on the main process for debugging _run_agent(*default_args, 8) for i in range(nnodes - 1): p = procs[i] p.join() self.assertEqual(0, p.exitcode) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_sad_function(self): spec = self._get_worker_spec(fn=_sad_function, max_restarts=2) agent = LocalElasticAgent(spec, start_method="fork") with self.assertRaises(WorkerGroupFailureException) as cm: agent.run() excs = cm.exception.get_worker_exceptions() for i in range(spec.local_world_size): self.assertTrue(isinstance(excs[i], Exception)) self.assertEqual(WorkerState.FAILED, agent.get_worker_group().state) self.assertEqual(0, agent._remaining_restarts) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_bipolar_function(self): spec = self._get_worker_spec(fn=_bipolar_function, max_restarts=2) agent = LocalElasticAgent(spec, start_method="fork") with self.assertRaises(Exception): agent.run() self.assertEqual(WorkerState.FAILED, agent.get_worker_group().state) self.assertEqual(0, agent._remaining_restarts) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_check_env_function(self): spec = self._get_worker_spec(fn=_check_env_function, max_restarts=2) agent = LocalElasticAgent(spec, start_method="fork") agent.run() @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_run_check_run_id(self): def return_run_id(): return os.environ["TORCHELASTIC_RUN_ID"] spec = self._get_worker_spec(fn=return_run_id, max_restarts=0) agent = LocalElasticAgent(spec, start_method="fork") ret = agent.run() for i in range(spec.local_world_size): self.assertEqual(spec.rdzv_handler.get_run_id(), ret[i]) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_get_worker_return_values(self): spec = self._get_worker_spec(fn=_return_rank_times, args=(2,)) agent = LocalElasticAgent(spec, start_method="fork") ret_vals = agent.run() self.assertEqual(spec.local_world_size, len(ret_vals)) for i in range(spec.local_world_size): self.assertEqual(i * 2, ret_vals[i]) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_double_agent_happy(self): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = 2 run_id = str(uuid.uuid4().int) procs = [] for _ in range(nnodes - 1): p = multiprocessing.Process( target=_run_agent, args=(run_id, host, port, nnodes, nnodes, _distributed_sum, (0,)), ) procs.append(p) p.start() # run one on the main process for debugging _run_agent(run_id, host, port, nnodes, nnodes, _distributed_sum, (0,)) for i in range(nnodes - 1): p = procs[i] p.join() self.assertEqual(0, p.exitcode) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_double_agent_fault_tolerance(self): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = 2 run_id = str(uuid.uuid4().int) procs = [] for _ in range(nnodes): p = multiprocessing.Process( target=_run_agent, args=(run_id, host, port, nnodes, nnodes, _distributed_sum, (0,)), ) procs.append(p) p.start() # restart odd agents for i in range(nnodes): if i % 2 != 0: procs[i].kill() p = multiprocessing.Process( target=_run_agent, args=(run_id, host, port, nnodes, nnodes, _distributed_sum, (0,)), ) procs[i] = p p.start() for i in range(nnodes): p = procs[i] p.join() self.assertEqual(0, p.exitcode) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_double_agent_elastic(self): host = self._etcd_server.get_host() port = self._etcd_server.get_port() min_size = 1 max_size = 2 run_id = str(uuid.uuid4().int) procs = [] for _ in range(max_size): p = multiprocessing.Process( target=_run_agent, args=(run_id, host, port, min_size, max_size, _distributed_sum, (0,)), ) procs.append(p) p.start() # kill odd agents for i in range(max_size): if i % 2 != 0: procs[i].kill() for i in range(max_size): if i % 2 == 0: p = procs[i] p.join() self.assertEqual(0, p.exitcode) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_torch_rpc(self): """ Simple torch rpc example with torchelastic. Creates two agents (to simulate two node job), each agent runs a single worker. worker0 calls an rpc_sync on worker1. """ # TODO upstream this to torch.distributed.rpc so that users do not have # to redundantly set rank as part of name (e.g. worker0) AND also pass # it explicitly as an argument to rpc.init_rpc def init_rpc(name_prefix, backend): rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) rpc.init_rpc( name=f"{name_prefix}{rank}", backend=backend, rank=rank, world_size=world_size, ) def worker_0(queue, msg): init_rpc("worker", BackendType.PROCESS_GROUP) ret = rpc.rpc_sync(to="worker1", func=echo, args=(msg,)) queue.put(ret) rpc.shutdown() def worker_1(): init_rpc("worker", BackendType.PROCESS_GROUP) rpc.shutdown() def run_agent( run_id, etcd_host, etcd_port, start_method, worker_fn, worker_args=() ): rdzv_handler = dist.rendezvous( f"etcd://{etcd_host}:{etcd_port}/{run_id}" f"?min_workers=2" f"&max_workers=2" ) spec = WorkerSpec( role="test_trainer", local_world_size=1, fn=worker_fn, args=worker_args, rdzv_handler=rdzv_handler, max_restarts=3, monitor_interval=1, ) agent = LocalElasticAgent(spec, start_method) agent.run() run_id = str(uuid.uuid4().int) host = self._etcd_server.get_host() port = self._etcd_server.get_port() start_method = "fork" msg = "hello world" mp_queue = multiprocessing.get_context(start_method).Queue() agent0 = multiprocessing.Process( target=run_agent, args=(run_id, host, port, start_method, worker_0, (mp_queue, msg)), ) agent1 = multiprocessing.Process( target=run_agent, args=(run_id, host, port, start_method, worker_1, ()) ) agent0.start() agent1.start() agent0.join() agent1.join() self.assertEqual(msg, mp_queue.get()) @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_workers_drift_success(self): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = 2 run_id = str(uuid.uuid4().int) procs = [] default_args = (run_id, host, port, nnodes, nnodes, _simulate_work) for _ in range(nnodes - 1): p = multiprocessing.Process( target=_run_agent, args=(*default_args, (10,), 2, "test_trainer", {}, 30), ) procs.append(p) p.start() _run_agent(*default_args, (1,), 2, "test_trainer", {}, 30) for i in range(nnodes - 1): p = procs[i] p.join() self.assertEqual(0, p.exitcode) @patch("torchelastic.utils.store.barrier") @unittest.skipIf(is_tsan(), "test incompatible with tsan") def test_workers_drift_fail(self, barrier_mock): host = self._etcd_server.get_host() port = self._etcd_server.get_port() nnodes = 2 run_id = str(uuid.uuid4().int) procs = [] default_args = (run_id, host, port, nnodes, nnodes, _simulate_work) for _ in range(nnodes - 1): p = multiprocessing.Process( target=_run_agent, args=(*default_args, (60,), 2, "test_trainer", {}, 10), ) procs.append(p) p.start() _run_agent(*default_args, (1,), 2, "test_trainer", {}, 10) barrier_mock.assert_called_once() @patch("torchelastic.utils.store.barrier") def test_barrier_failed(self, barrier_mock): barrier_mock.side_effect = RuntimeError("test error") spec = self._get_worker_spec(fn=_happy_function) agent = LocalElasticAgent(spec, start_method="fork") agent.run() barrier_mock.assert_called_once()
827e3bcf2fca26a7b7abc2fc74da531da077f856
f6078890ba792d5734d289d7a0b1d429d945a03a
/extra/oconnorcollin_24162_1340359_Collin_O'Connor_1607318_ExtraCredit_week7.py
768973e38dd5ce426badbd6677369e038d6aa08c
[]
no_license
huazhige/EART119_Lab
1c3d0b986a0f59727ee4ce11ded1bc7a87f5b7c0
47931d6f6a2c7bc053cd15cef662eb2f2027712c
refs/heads/master
2020-05-04T23:40:53.709217
2019-06-11T18:30:45
2019-06-11T18:30:45
179,552,067
0
0
null
null
null
null
UTF-8
Python
false
false
5,750
py
# -*- coding: utf-8 -*- """ Created on Mon May 13 08:26:50 2019 @author: collin O'Connor """ import numpy as np import integrate_utils as int_utils #============================================================================== #Question 1 #============================================================================== """ Numerical integration of difinite integrals: ex: f(t) = 3t**2 * exp(t^3) F(t) = exp(t^3) between: a, b with F'(t) =f(t) """ #============================================================================== #fn defs #============================================================================== def fct_f(t): return 3*t**2 * np.exp(t**3) def fct_F(t): return np.exp(t**3) ###########integration fn########## def trapezoidal(fct_x, x0, xn, N): """ composite trapezoidal method impelmentation of eq 3.17 pg 60 in Linge & Langtangen params: fct_x = compute integral of the fn. x0, xn = integration bounds N = number of trapezoids return: value of definite integral of fct_x between x0 and xn """ dx = float(xn-x0)/N #wrtite sum as for loop f_Integ = 0.5*(fct_x(x0) + fct_x(xn)) for i in range(1, N): f_Integ += fct_x(x0 + i*dx) ## write sum in vectorized form #f_Integ = 0.5*(fct_x(x0) + fct_x(xn)) + (fct_x(x0 + dx*np.arange(1, N, 1))).sum() return dx*f_Integ def midpoint( fct_x, x0, xn, N): """ Composite Midpoint method, eq. 3.21 page 66 in Linge & Langtangen :param fct_x: - function whose integral is in question :param x1: - integration bounds :param x2: - integration bounds :param N: - number of trapezoids, chose high number for high accuracy :return: - integral of fct_x between x0 and xn """ dx = float( xn-x0)/N a_xi = x0 + 0.5*dx + np.arange( N)*dx f_int = dx*( fct_x(a_xi)).sum() return f_int #============================================================================== #parameters #============================================================================== xmin, xmax = 0, 1 N = 1000 #============================================================================== #num integration and plotting #============================================================================== #exact solution f_IntExact = fct_F(xmax) - fct_F(xmin) #Trapazoidal method numerical approximation f_IntNum = trapezoidal(fct_f, xmin, xmax, N) #Midpoint method numerical approximation f_mid=midpoint(fct_f, xmin, xmax, N) #compare exact and Numerical print "Question 1:" print 'exact integral: ', f_IntExact print 'Trapazoidal Method Numerical approx.: ', f_IntNum print 'Midpoint Method Numerical approx.: ', f_mid print #============================================================================== #Question 2 #============================================================================== """Compute mean value of fns and compare to the definite integral: f(x)=sin(x) g(x)=2x*exp(x**2) """ def fx(x): return np.sin(x) def gx(x): return 2*x * np.exp(x**2) def mean_val(integral_fx, xmax, xmin): return (1/(xmax - xmin)) * integral_fx print "Question 2:" print 'mean value of f(x): ', round(mean_val(trapezoidal(fx,0, np.pi, 1000), np.pi, 0), 3) print 'integral of f(x): ', round(trapezoidal(fx,0, np.pi, 1000), 3) print 'mean value of g(x): ', round(mean_val(trapezoidal(gx, 0, 1, 1000), 1, 0), 3) print 'Integral of g(x): ', round(trapezoidal(gx, 0, 1, 1000), 3) print #============================================================================== #Question 3 #============================================================================== #================================================ # fct definition #================================================ def fct2_xy( x, y): return (x**2 + y**2)**0.5 def fct_xy( x, y): return x*(y**2) def fct_gxy( x, y): """ - rectangular domain return: -1 for points outside """ f_retVal = -1 if x >= xmin and x <= xmax and y >= ymin and y <= ymax: f_retVal = 1 return f_retVal def fct_Fxy_exact(x, y): return (0.5*(x**2))+ ((1./3)*(y**3)) def fct_exact(r, theta): return theta*((r**3)/3.) #================================================ # parameters #================================================ xmin, xmax = 0, 2 ymin, ymax = 0, 1.5 rmin, rmax = 0, 2 theta_min, theta_max = 0, 2*np.pi #================================================ # compute integral #================================================ #compute definite integral print "Question 3:" print ('exact solution part a: ', round(fct_exact(rmax, theta_max) - fct_exact(rmin, theta_min), 3)) print 'monte Carlo solution part a: ' for n in np.arange(100, 1200, 200): gInt = int_utils.monteCarlo(fct2_xy, fct_gxy, rmin, rmax, theta_min, theta_max, n) #in unt_utils the MonteCarlo method results was supposed to be squared, but they never were. gInt = gInt**2 print 'no. random points', n, 'number integral', round(gInt, 3) print print('exac. sol part b: ', round(fct_Fxy_exact(xmax, ymax) - fct_Fxy_exact(xmin, ymin), 3)) print 'monte Carlo solution part b: ' for n in np.arange(100, 1200, 200): fInt=int_utils.monteCarlo(fct_xy, fct_gxy, xmin+1, xmax+1, ymin, ymax, n ) #in unt_utils the MonteCarlo method results was supposed to be squared, but they never were. fInt = (fInt**2) print 'no. random points', n, 'number integral', round(fInt, 3)
69fe2635469cacf0543c8bdc6588c35e1ff15509
aa1972e6978d5f983c48578bdf3b51e311cb4396
/nitro-python-1.0/nssrc/com/citrix/netscaler/nitro/resource/config/network/vrid6_interface_binding.py
514e8bd208b3024680ba6c2b0c5d4530d8b2a8a3
[ "Python-2.0", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
MayankTahil/nitro-ide
3d7ddfd13ff6510d6709bdeaef37c187b9f22f38
50054929214a35a7bb19ed10c4905fffa37c3451
refs/heads/master
2020-12-03T02:27:03.672953
2017-07-05T18:09:09
2017-07-05T18:09:09
95,933,896
2
5
null
2017-07-05T16:51:29
2017-07-01T01:03:20
HTML
UTF-8
Python
false
false
6,678
py
# # Copyright (c) 2008-2016 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class vrid6_interface_binding(base_resource) : """ Binding class showing the interface that can be bound to vrid6. """ def __init__(self) : self._ifnum = None self._vlan = None self._flags = None self._id = None self.___count = 0 @property def id(self) : r"""Integer value that uniquely identifies a VMAC6 address.<br/>Minimum value = 1<br/>Maximum value = 255. """ try : return self._id except Exception as e: raise e @id.setter def id(self, id) : r"""Integer value that uniquely identifies a VMAC6 address.<br/>Minimum value = 1<br/>Maximum value = 255 """ try : self._id = id except Exception as e: raise e @property def ifnum(self) : r"""Interfaces to bind to the VMAC6, specified in (slot/port) notation (for example, 1/2).Use spaces to separate multiple entries. """ try : return self._ifnum except Exception as e: raise e @ifnum.setter def ifnum(self, ifnum) : r"""Interfaces to bind to the VMAC6, specified in (slot/port) notation (for example, 1/2).Use spaces to separate multiple entries. """ try : self._ifnum = ifnum except Exception as e: raise e @property def flags(self) : r"""Flags. """ try : return self._flags except Exception as e: raise e @property def vlan(self) : r"""The VLAN in which this VRID resides. """ try : return self._vlan except Exception as e: raise e def _get_nitro_response(self, service, response) : r""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(vrid6_interface_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.vrid6_interface_binding except Exception as e : raise e def _get_object_name(self) : r""" Returns the value of object identifier argument """ try : if self.id is not None : return str(self.id) return None except Exception as e : raise e @classmethod def add(cls, client, resource) : try : if resource and type(resource) is not list : updateresource = vrid6_interface_binding() updateresource.id = resource.id updateresource.ifnum = resource.ifnum return updateresource.update_resource(client) else : if resource and len(resource) > 0 : updateresources = [vrid6_interface_binding() for _ in range(len(resource))] for i in range(len(resource)) : updateresources[i].id = resource[i].id updateresources[i].ifnum = resource[i].ifnum return cls.update_bulk_request(client, updateresources) except Exception as e : raise e @classmethod def delete(cls, client, resource) : try : if resource and type(resource) is not list : deleteresource = vrid6_interface_binding() deleteresource.id = resource.id deleteresource.ifnum = resource.ifnum return deleteresource.delete_resource(client) else : if resource and len(resource) > 0 : deleteresources = [vrid6_interface_binding() for _ in range(len(resource))] for i in range(len(resource)) : deleteresources[i].id = resource[i].id deleteresources[i].ifnum = resource[i].ifnum return cls.delete_bulk_request(client, deleteresources) except Exception as e : raise e @classmethod def get(cls, service, id="", option_="") : r""" Use this API to fetch vrid6_interface_binding resources. """ try : if not id : obj = vrid6_interface_binding() response = obj.get_resources(service, option_) else : obj = vrid6_interface_binding() obj.id = id response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, id, filter_) : r""" Use this API to fetch filtered set of vrid6_interface_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = vrid6_interface_binding() obj.id = id option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, id) : r""" Use this API to count vrid6_interface_binding resources configued on NetScaler. """ try : obj = vrid6_interface_binding() obj.id = id option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, id, filter_) : r""" Use this API to count the filtered set of vrid6_interface_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = vrid6_interface_binding() obj.id = id option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class vrid6_interface_binding_response(base_response) : def __init__(self, length=1) : self.vrid6_interface_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.vrid6_interface_binding = [vrid6_interface_binding() for _ in range(length)]
b1480d429e722377d42d9397f4d3dd57384079cc
0add471d82edab23894421dc17429da39b92cc73
/heaviside/ast.py
db8d24717141b5929f91b3a0e6c2f4d5e1c6f583
[ "Apache-2.0" ]
permissive
MHova/heaviside
fac09ae7608306665ee01a46baa2197dc81d649d
9ee9e69343c58124b8c7a119888a195794978cd6
refs/heads/master
2020-05-30T10:08:11.110234
2019-05-30T20:16:52
2019-05-30T20:16:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
24,872
py
# Copyright 2016 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from collections import OrderedDict from funcparserlib.parser import (some, a, skip) from .lexer import Token from .exceptions import CompileError from .utils import isstr ################################################# #### Load AWS Service Integration Definitions#### ################################################# import os import json cur_dir = os.path.dirname(__file__) definitions = os.path.join(cur_dir, 'aws_services.json') with open(definitions, 'r') as fh: AWS_SERVICES = json.load(fh) ################################################# ################################################# # AST Objects class ASTNode(object): def __init__(self, token=None): if token is not None: self.token = token else: self.token = None @property def lineno(self): return self.token.start[0] if self.token else 0 @property def pos(self): return self.token.start[1] if self.token else 0 @property def line(self): return self.token.line if self.token else '' def raise_error(self, msg): raise CompileError(self.lineno, self.pos, self.line, msg) class ASTValue(ASTNode): def __init__(self, value, token): super(ASTValue, self).__init__(token) self.value = value def __repr__(self): return "ASTValue({!r})".format(self.value) class ASTCompOp(ASTNode): def __init__(self, var, op, val): # Use the first token of the expression super(ASTCompOp, self).__init__(var.token) self.var = var self.op = op self.val = val def __repr__(self): return "ASTCompOp({!r} {!r} {!r})".format(self.var, self.op, self.val) class ASTCompNot(ASTNode): def __init__(self, not_, comp): super(ASTCompNot, self).__init__(not_.token) self.comp = comp def __repr__(self): return "ASTCompNot({!r})".format(self.comp) class ASTCompAndOr(ASTNode): op = None def __init__(self, comp, comps): super(ASTCompAndOr, self).__init__(comp.token) self.comps = [comp] for c in comps: self.comps.append(c) def __repr__(self): return "ASTComp{}({!r})".format(self.op, self.comps) class ASTCompAnd(ASTCompAndOr): op = 'And' class ASTCompOr(ASTCompAndOr): op = 'Or' class ASTModKV(ASTValue): def __init__(self, key, value): super(ASTModKV, self).__init__(value, key.token) def __repr__(self): return "<ASTModKV {}:{}>".format(self.name, self.value) class ASTModNext(ASTModKV): name = 'Next' class ASTModTimeout(ASTModKV): name = 'Timeout' class ASTModHeartbeat(ASTModKV): name = 'Heartbeat' class ASTModInput(ASTModKV): name = 'Input' class ASTModResult(ASTModKV): name = 'Result' class ASTModOutput(ASTModKV): name = 'Output' class ASTModData(ASTModKV): name = 'Data' class ASTModParameters(OrderedDict, ASTNode): name = 'Parameters' # NOTE: kpv stands for (key, path marker, value) # where `path marker` is the token for the `$` that denotes is the # value contains a JsonPath def __init__(self, parameters, kpv, kpvs): OrderedDict.__init__(self) ASTNode.__init__(self, parameters.token) self.add_parameter(kpv) for kpv in kpvs: self.add_parameter(kpv) def add_parameter(self, kpv): k,p,v = kpv if p is not None: k.value += '.$' # Parameters that use a JsonPath must have the key # end with `.$` self[k] = v class ASTModRetry(ASTNode): name = 'Retry' def __init__(self, retry, errors, interval, max, backoff): super(ASTModRetry, self).__init__(retry.token) self.errors = errors self.interval = interval self.max = max self.backoff = backoff class ASTModCatch(ASTNode): name = 'Catch' def __init__(self, catch, errors, path, block): super(ASTModCatch, self).__init__(catch.token) self.errors = errors self.path = path self.block = block class ASTModifiers(ASTNode): #??? Subclass dict as well? def __init__(self, mod, mods): super(ASTModifiers, self).__init__(mod.token) self.mods = {} self.add(mod) for m in mods: self.add(m) def add(self, mod): t = type(mod) if t not in self.mods: self.mods[t] = [] self.mods[t].append(mod) def update(self, other): for key in other.mods.keys(): if key not in self.mods: self.mods[key] = [] self.mods[key].extend(other.mods[key]) def __repr__(self): return "\n".join(repr(mod) for mod in self.mods.values()) class ASTState(ASTNode): state_type = '' valid_modifiers = [] multi_modifiers = [ASTModRetry, ASTModCatch] def __init__(self, state, block): super(ASTState, self).__init__(state.token) self.next = None self.end = False if block: comment, modifiers = block else: comment = None modifiers = None if comment: tmp = comment.value.split('\n', 1) if len(tmp) == 1: self.name = tmp[0].strip() self.comment = None else: name, comment = tmp self.name = name.strip() self.comment = '\n'.join([l.strip() for l in comment.split('\n')]) else: self.name = 'Line{}'.format(self.lineno) self.comment = None def get(type_): if modifiers is None: return None vals = modifiers.mods.get(type_) if vals is None: return None del modifiers.mods[type_] name = type_.name if hasattr(type_, 'name') else str(type_.__name__) if type_ not in self.valid_modifiers: vals[0].raise_error("{} state cannot contain a {} modifier".format(self.state_type, name)) if type_ not in self.multi_modifiers: if len(vals) > 1: vals[1].raise_error("{} state can only contain one {} modifier".format(self.state_type, name)) vals = vals[0] return vals self.next = get(ASTModNext) self.timeout = get(ASTModTimeout) self.heartbeat = get(ASTModHeartbeat) self.input = get(ASTModInput) self.result = get(ASTModResult) self.output = get(ASTModOutput) self.data = get(ASTModData) self.parameters = get(ASTModParameters) self.retry = get(ASTModRetry) self.catch = get(ASTModCatch) if modifiers is not None and len(modifiers.mods) > 0: type_ = list(modifiers.mods.keys())[0] modifiers.mods[type_][0].raise_error("Unknown state modifer '{}'".format(type_)) def __repr__(self): return "<ASTState {}:{}>".format(self.state_type, self.name) class ASTStatePass(ASTState): state_type = 'Pass' valid_modifiers = [ASTModInput, ASTModResult, ASTModOutput, ASTModData] class ASTStateGoto(ASTStatePass): """Custom version of Pass that exposes / sets the 'next' modifier""" valid_modifiers = [ASTModNext] def __init__(self, state, label): # Create the state_modifer block manually block = (None, ASTModifiers( ASTModNext(label, label.value), [] ) ) super(ASTStateGoto, self).__init__(state, block) class ASTStateSuccess(ASTState): state_type = 'Succeed' valid_modifiers = [ASTModInput, ASTModOutput] class ASTStateFail(ASTState): state_type = 'Fail' def __init__(self, state, error, cause, block): super(ASTStateFail, self).__init__(state, block) self.error = error self.cause = cause class ASTStateTask(ASTState): state_type = 'Task' valid_modifiers = [ASTModTimeout, ASTModHeartbeat, ASTModInput, ASTModResult, ASTModOutput, ASTModParameters, ASTModRetry, ASTModCatch] valid_services = ['Arn', 'Lambda', 'Activity'] def __init__(self, service, function, name, block): super(ASTStateTask, self).__init__(service, block) if service.value not in self.valid_services and \ service.value not in AWS_SERVICES.keys(): service.raise_error('Invalid Task service') if function is None: if service.value in ('Lambda', 'Activity', 'Arn'): if name is None: service.raise_error('{} task requires a function name argument'.format(service.value)) function = name name = None else: service.raise_error('{} task requires a function to call'.format(service.value)) else: if service.value in ('Lambda', 'Activity', 'Arn'): function.raise_error('Unexpected function name') else: try: function.lookup = function.value # Save value for looking up when checking kwargs function.value = AWS_SERVICES[service.value][function.value]['name'] except KeyError: function.raise_error('Invalid Task function') if name is not None: name.raise_error('Unexpected argument') if service.value == 'Arn' and not function.value.startswith('arn:aws:'): function.raise_error("ARN must start with 'arn:aws:'") if service.value in ('Lambda', 'Activity') and self.parameters is not None: tuple(self.parameters.keys())[0].raise_error('Unexpected keyword argument') if service.value not in ('Lambda', 'Activity', 'Arn'): required = AWS_SERVICES[service.value][function.lookup]['required_keys'] required = copy.copy(required) # will be mutating to determine missing required arguments optional = AWS_SERVICES[service.value][function.lookup]['optional_keys'] sync = AWS_SERVICES[service.value][function.lookup]['sync'] if self.parameters: # self.parameters can be None either if no `parameters:` block is provided # or if there is a syntax error in the `parameters:` block for key in self.parameters.keys(): k = key.value if k.endswith('.$'): k = k[:-2] # remove the `.$`, which donates that the key uses a JsonPath if k == 'sync': sync = self.parameters[key] if type(sync) != bool: key.raise_error("Synchronous value must be a boolean") del self.parameters[key] elif k in required: required.remove(k) elif k not in optional: key.raise_error("Invalid keyword argument") if sync == True: function.value += '.sync' if len(required) > 0: missing = ", ".join(required) function.raise_error("Missing required keyword arguments: {}".format(missing)) self.service = service self.function = function class ASTStateWait(ASTState): state_type = 'Wait' valid_modifiers = [ASTModInput, ASTModOutput] def __init__(self, state, wait_type, wait_val, block): super(ASTStateWait, self).__init__(state, block) self.type = wait_type self.val = wait_val class ASTStateChoice(ASTState): state_type = 'Choice' valid_modifiers = [ASTModInput, ASTModOutput] DEFAULT = None def __init__(self, state, comment, transform): super(ASTStateChoice, self).__init__(state, (comment, transform)) # Use an OrderedDict so that logic comparisons happen in the # same order as in the source file self.branches = OrderedDict() # DP ???: Should ASTStateChoice subclasses override the state_type value? class ASTStateWhile(ASTStateChoice): def __init__(self, state, comp, block, transform): comment, states = block super(ASTStateWhile, self).__init__(state, comment, transform) self.branches[comp] = states class ASTStateIfElse(ASTStateChoice): def __init__(self, state, comp, block, elif_, else_, transform): comment, states = block super(ASTStateIfElse, self).__init__(state, comment, transform) self.branches[comp] = states if elif_ is not None: for comp_, states_ in elif_: self.branches[comp_] = states_ if else_ is not None: self.branches[ASTStateChoice.DEFAULT] = else_ class ASTStateSwitch(ASTStateChoice): def __init__(self, state, var, comment, cases, default, transform): super(ASTStateSwitch, self).__init__(state, comment, transform) class EQToken(object): def __init__(self): self.value = '==' eq = EQToken() for case, val, states in cases: comp = ASTCompOp(var, eq, val) self.branches[comp] = states if default is not None: default, states = default self.branches[ASTStateChoice.DEFAULT] = states class ASTParallelBranch(ASTNode): def __init__(self, parallel, states): super(ASTParallelBranch, self).__init__(parallel.token) self.states = states class ASTStateParallel(ASTState): state_type = 'Parallel' valid_modifiers = [ASTModInput, ASTModResult, ASTModOutput, ASTModRetry, ASTModCatch] def __init__(self, state, block, parallels, transform, error): comment, states = block if transform is not None and error is not None: transform.update(error) elif transform is None and error is not None: transform = error super(ASTStateParallel, self).__init__(state, (comment, transform)) self.branches = [ASTParallelBranch(state, states)] if parallels is not None: for parallel, states_ in parallels: self.branches.append(ASTParallelBranch(parallel, states_)) class ASTModVersion(ASTModKV): pass class ASTStepFunction(ASTNode): def __init__(self, comment, version, timeout, states): super(ASTStepFunction, self).__init__() # ???: use the first states's token? self.comment = comment self.version = version self.timeout = timeout self.states = states def __repr__(self): return "\n".join(repr(state) for state in self.states) ############################## # AST Modification Functions # TERMINAL_STATES = ( ASTStateSuccess, ASTStateFail ) def link_branch(branch): """Helper method for link() that reassigns the results to the given branch""" if hasattr(branch, 'states'): branch.states = link(branch.states) else: branch.raise_error("Trying to link non-branch state") return branch def link(states, final=None): """AST Transform function that links together the states of a branch Performs the following actions: * Sets the next / end attributes for all encountered ASTState objects * If the final state is a ASTStateChoice and there is no default state one is created, as you cannot terminate on a Choice state * Makes the ASTStateWhile into a full loop * If there is a Catch modifier or the state is a Choice state the sub-states for each are recursivly linked and pulled up to the current level * The branches for all Parallel states are recursivly linked Args: states (list) : List of ASTState objects final (String) : Name of the next state to link the final state to or None to have the final state terminate Returns: list : List of ASTState objects with end/next set Note: This is a different list than the input list """ linked = [] total = len(states) for i in range(total): state = states[i] linked.append(state) next_ = states[i+1].name if i+1 < total else final if state.next is not None: pass # State has already been linked elif isinstance(state, TERMINAL_STATES): pass elif isinstance(state, ASTStateChoice): if ASTStateChoice.DEFAULT not in state.branches: next__ = next_ # prevent branches from using the new end state if next__ is None: # Choice cannot be terminal state, add a Success state to # terminate on next__ = ASTStateSuccess(state, None) next__.name = state.name + "Default" linked.append(next__) next__ = next__.name state.branches[ASTStateChoice.DEFAULT] = next__ # Point the last state of the loop to the conditional, completing the loop construct if isinstance(state, ASTStateWhile): key = list(state.branches.keys())[0] state_ = state.branches[key][-1] if not isinstance(state_, TERMINAL_STATES): state_ = ASTStatePass(state, None) state_.name = state.name + "Loop" state_.next = state.name state.branches[key].append(state_) else: state.end = next_ is None state.next = next_ if state.catch is not None: for catch in state.catch: states_ = catch.block linked_ = link(states_, final=next_) catch.next = linked_[0].name linked.extend(linked_) # Different states use the branches variable in different ways if isinstance(state, ASTStateChoice): for key in state.branches: states_ = state.branches[key] if isstr(states_): continue # already linked linked_ = link(state.branches[key], final=next_) # convert the branch from a list of states to the name of the next state # this is done because the branch states are moved to the appropriate # location for the step function state.branches[key] = linked_[0].name linked.extend(linked_) elif isinstance(state, ASTStateParallel): for branch in state.branches: link_branch(branch) return linked MAX_NAME_LENGTH = 128 def check_names(branch): """Recursivly checks all state names to ensure they are valid Checks performed: * Name is not greater than 128 characters * No duplicate state names Args: branch (list): List of ASTState objects Raises: CompileError : If any of the checks fail """ if not hasattr(branch, 'states'): branch.raise_error("Trying to check names for non-branch state") to_process = [branch.states] while len(to_process) > 0: states = to_process.pop(0) names = set() # State names are unique to the branch for state in states: if len(state.name) > MAX_NAME_LENGTH: state.raise_error("Name exceedes {} characters".format(MAX_NAME_LENGTH)) if state.name in names: state.raise_error("Duplicate state name '{}'".format(state.name)) names.add(state.name) if isinstance(state, ASTStateParallel): for branch in state.branches: to_process.append(branch.states) def resolve_arns(branch, region = '', account_id = ''): """AST Transform that sets the `arn` attribute for ASTStateTasks Args: branch (list): List of ASTState objects region (str): AWS Region where the Lambdas / Activities reside account_id (str): AWS Account ID where the Lambdas / Activities reside """ if not hasattr(branch, 'states'): branch.raise_error("Trying to resolve arns for non-branch state") for state in branch.states: if isinstance(state, ASTStateTask): if state.service.value == 'Arn': # ARN value already checked for 'arn:aws:' prefix in ASTStateTask constructor state.arn = state.function.value else: # arn:partition:service:region:account:task_type:name if state.service.value == 'Lambda': service = 'lambda' task_type = 'function' else: service = 'states' task_type = state.service.value.lower() if state.service.value not in ('Lambda', 'Activity'): region = '' account_id = '' parts = ['arn', 'aws', service, region, account_id, task_type, state.function.value] state.arn = ":".join(parts) elif isinstance(state, ASTStateParallel): for branch in state.branches: resolve_arns(branch, region, account_id) def verify_goto_targets(branch): """Recursivly checks that all Goto states target valid state names Valid state names are those states in the current branch. This means that a Goto cannot target states in another parallel branch or from a parallel branch to the main body of the Step Function Args: branch (list): List of ASTState objects Raises: CompileError : If a Goto state targets an invalid state """ if not hasattr(branch, 'states'): branch.raise_error("Trying to check goto targets for non-branch state") to_process = [branch.states] while len(to_process) > 0: states = to_process.pop(0) names = set() # Need to know all of the valid state names for the branch for state in states: names.add(state.name) if isinstance(state, ASTStateParallel): for branch in state.branches: to_process.append(branch.states) for state in states: if isinstance(state.next, ASTModNext): if state.next.value not in names: state.next.raise_error("Goto target '{}' doesn't exist".format(state.next.value)) class StateVisitor(object): """Generic base class for heaviside users to create a visitor that can modify ASTStateTasks """ def dispatch(self, state): """Dispatch the given state to the approprate handler function Args: state (ASTState): State to dispatch """ if isinstance(state, ASTStateTask): self.handle_task(state) else: raise ValueError('State type {} not supported'.format(type(state))) def visit(self, branch): """Visit all states in all branches of the state machine and dispatch them to be handled the subclass Args: branch (list): List of ASTState objects """ if not hasattr(branch, 'states'): raise ValueError("Trying to visit non-branch state: {}".format(branch)) for state in branch.states: self.dispatch(state) if isinstance(state, ASTStateParallel): for branch in state.branches: self.visit(branch) def handle_task(self, state): """ASTStateTask handler function placeholder Args: state (ASTStateTask): State to handle """ pass
4e6f7728e1ccc0ee08f9eab26f26539c32f245f1
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02779/s326665097.py
af3b88d1cfb1a25941fa607ee97b983b715cf65f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
from collections import Counter n = int(input()) a = list(map(int, input().split())) c = Counter(a) new = c.values() for i in new: if i != 1: re = "NO" break else: re = "YES" print(re)
2bc1c55aa465d41767f5a4a17e88f2902fa650a2
115b5356242176b8873ae7e43cd313e41cbd0ee6
/webstuff/webscraper/tidytext.py
057e7c3a5a8d77e0574b55b38fb0fe5b7a3b444a
[]
no_license
squeakus/bitsandbytes
b71ec737431bc46b7d93969a7b84bc4514fd365b
218687d84db42c13bfd9296c476e54cf3d0b43d2
refs/heads/master
2023-08-26T19:37:15.190367
2023-07-18T21:41:58
2023-07-18T21:42:14
80,018,346
2
4
null
2022-06-22T04:08:35
2017-01-25T13:46:28
C
UTF-8
Python
false
false
976
py
from BeautifulSoup import BeautifulSoup import re page = open('out2.txt','r') for idx,line in enumerate(page): parts = line.split(';') for part in parts: #print part, '\n' if part.startswith('var point = new GLatLng'): print "\n", part.lstrip('var point = new GLatLng') m = re.search('table(.+?)table', line) if m: found = m.group(1) found = '<table' + found +'table>' found = found.replace('\\','') soup = BeautifulSoup(found) info = soup.findAll('tr',{'class':'wind_row'}) name = soup.findAll('a') print name[0].text for data in info: direction = str(data.find('img')) direction = direction.rstrip('.png" />') direction = direction.lstrip('<img src="images/wind/') print direction n = re.search('Wind:(.+?)km', str(data)) if n: speed = n.group(1) print speed
d091376ea903c1328ac580659f780419ba14131f
5f834f8aa0603f4f7adc56fdcd5e227538931f81
/diab_logisReg.py
2ce02d3f7c7d13896c4c7c0870cb4b25f1af7a59
[]
no_license
Kamal-prog-code/HealthCare
d9a613bcb315a04b14feead97bb4367034f91606
2d2fe464a5d25c1373634663dc1eaf07a9064a30
refs/heads/main
2023-01-20T22:17:55.157525
2020-12-05T20:50:03
2020-12-05T20:50:03
318,627,358
0
0
null
null
null
null
UTF-8
Python
false
false
1,462
py
from pyspark.ml.feature import VectorAssembler from pyspark.sql import SparkSession from pyspark.ml.feature import StandardScaler from pyspark.ml.classification import LogisticRegression from pyspark.mllib.evaluation import BinaryClassificationMetrics from pyspark.ml.classification import RandomForestClassifier import pickle import os spark = SparkSession.builder.appName('HSP').getOrCreate() df=spark.read.csv('hdfs://localhost:9000/user/BigDataProj/diab.csv',inferSchema=True,header=True) from pyspark.sql.functions import col from sklearn.linear_model import LogisticRegression new_data = df.select(*(col(c).cast("float").alias(c) for c in df.columns)) from pyspark.sql.functions import col,count,isnan,when from sklearn.preprocessing import StandardScaler new_data.select([count(when(col(c).isNull(),c)).alias(c) for c in new_data.columns]).show() cols=new_data.columns cols.remove("Outcome") assembler = VectorAssembler(inputCols=cols,outputCol="features") data=assembler.transform(new_data) # data.select("features",'Outcome').show(truncate=False) train, tesT = df.randomSplit([0.7, 0.3]) x_col = new_data.columns x_train = train.toPandas()[x_col[:-1]].values y_train = train.toPandas()['Outcome'].values sc = StandardScaler() x_train = sc.fit_transform(x_train) cls = LogisticRegression() cls.fit(x_train,y_train) save_path = 'prediction/' completeName = os.path.join(save_path, "dblogR.pkl") pickle.dump(cls, open(completeName, 'wb'))
b25f51bd9909f386f89f3058a2323e1d1b8c133f
6c2608bc87b522da77c792e20330989de17b3005
/Chap-7/ex179.py
43c10f227985eb4652d2196644fcc6bc8c504dfe
[]
no_license
AleByron/AleByron-The-Python-Workbook-second-edition
8a0b408c1bbd90c82e6b837fc898ee10341ca8fa
491b2fd394aa04e29a4b2dbe9a615c547e239028
refs/heads/main
2023-01-13T21:01:17.757669
2020-11-11T01:29:28
2020-11-11T01:29:28
306,487,964
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
def square(n,g): if 0<n-g**2<10**-12: return g else: g = square(n,(g+(n/g))/2) return g def main(): n = 32 g = 1 print(square(n,g)) main()
bfb90c8755e3b83e9062e88376453a3cfeeee7ec
9c2edc273db48dcb6d31a937510476b7c0b0cc61
/pyopengl_sample/tutorial1.py
0fd92b98d815dd26d6457ba6f9ac33791867e7e0
[]
no_license
miyamotok0105/python_sample
4d397ac8a3a723c0789c4c3e568f3319dd754501
77101c981bf4f725acd20c9f4c4891b29fbaea61
refs/heads/master
2022-12-19T22:53:44.949782
2020-05-05T05:09:22
2020-05-05T05:09:22
81,720,469
1
0
null
2022-11-22T02:22:55
2017-02-12T11:15:08
Jupyter Notebook
UTF-8
Python
false
false
391
py
#!/usr/bin/python from OpenGL.GL import * from OpenGL.GLUT import * def draw(): glClearColor(1.0, 0.0, 0.0, 0.0) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) glFlush() glutSwapBuffers() glutInit(sys.argv) glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH) glutInitWindowSize(320, 240) glutCreateWindow("PyOpenGL 1") glutDisplayFunc(draw) glutMainLoop()
0d918889f8d20d3a4695849eb65eab1ae2ad9c9d
edfd1db2b48d4d225bc58be32fbe372a43415112
/team-task/airflow2.0/dags/efirmant/lesson3.challenge2.py
ea755ca01b0b78617310f0d87c4b0b0748206373
[]
no_license
rwidjojo/airflow-training
ed83cb9e97ca85ef06de1426f2f41014881a1f22
ac82040d8ddc3859df5576eee08d397e824016f1
refs/heads/main
2023-08-12T21:01:17.672059
2021-01-04T09:17:48
2021-01-04T09:17:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
import logging from datetime import timedelta from airflow import DAG from airflow.utils.dates import days_ago from airflow.operators.bash_operator import BashOperator from airflow.operators.python_operator import PythonOperator from airflow.hooks.postgres_hook import PostgresHook owner = 'efirmant' # Replace with your short name default_args = { 'owner': owner, 'depends_on_past': False, 'start_date': days_ago(2), } dag = DAG( f'{owner}.lesson3.challenge2', default_args=default_args, description='Read data from postgresql', schedule_interval=None, ) def read_data(): db_conn = PostgresHook(postgres_conn_id='efirmant_posgres2') result = db_conn.get_records('SELECT order_date, count(order_id) from efirmant_orders GROUP BY order_date') for row in result: logging.info(row) read_task = PythonOperator( task_id="read", python_callable=read_data, dag=dag )
3b97278167640c790740fbd6e9a435d1e87ce6e0
baaa8c9486e02f4232f4926cf4e1a2eeee1199b4
/accounts/admin.py
2395fb1f93dfca90cba93acc7edf2da53b6c172c
[]
no_license
bondarenkoav/helpdesk
b2be867605d484c34aaea4d8bea876c633947f14
866ea2dc6ee5182d6310d800b301270b38490fd2
refs/heads/master
2023-01-08T09:44:15.852016
2022-12-28T10:53:39
2022-12-28T10:53:39
93,615,791
0
0
null
null
null
null
UTF-8
Python
false
false
2,047
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from accounts.models import Profile class ProfileInline(admin.StackedInline): model = Profile can_delete = False verbose_name = u'Профиль' verbose_name_plural = u'Профиль' fk_name = 'user' class CustomUserAdmin(UserAdmin): inlines = (ProfileInline, ) def get_inline_instances(self, request, obj=None): if not obj: return list() return super(CustomUserAdmin, self).get_inline_instances(request, obj) # class ProfileInline(admin.StackedInline): # model = Profile # can_delete = False # verbose_name = u'Профиль' # verbose_name_plural = u'Профиль' # fk_name = 'user' # # # # @admin.register(User) # class CustomUserAdmin(UserAdmin): # inlines = (ProfileInline, ) # list_display = ('username', 'last_name', 'first_name', 'is_active', # 'get_phone', 'get_birthday', 'get_groups', 'get_location') # list_filter = ('is_active', 'groups') # search_fields = ('username', 'first_name', 'last_name') # # list_select_related = True # # def get_groups(self, instance): # list_groups = '' # for group in instance.groups.all(): # if list_groups == '': # list_groups = group.name # else: # list_groups = list_groups + ', ' + group.name # return list_groups # get_groups.short_description = u'Группы' # # def get_location(self, instance): # return instance.profile.location # get_location.short_description = u'Город' # # def get_birthday(self, instance): # return instance.profile.birthday # get_birthday.short_description = u'Дата рождения' # # def get_phone(self, instance): # return instance.profile.phone # get_phone.short_description = u'Номер' admin.site.unregister(User) admin.site.register(User, CustomUserAdmin)
8e291920bc9258758fe57e54877cada173a13eef
63bf6161532eefa72aa3be8b01cde601b08507dc
/python-mapping-example/fhir_model_generator/tests/model/slot_tests.py
ad3cec096349f05c2c4414e7b0a4ae6fc7aac7a8
[ "Apache-2.0" ]
permissive
Healthedata1/mFHIR
4ef370b87e03e973918e5683977d32fe262655bc
1b4ea441cfa08b661416a3badedf7e90f2809163
refs/heads/master
2022-12-10T21:07:03.948406
2021-06-18T01:58:23
2021-06-18T01:58:23
129,964,251
9
5
null
2022-12-09T05:23:54
2018-04-17T20:57:15
HTML
UTF-8
Python
false
false
6,767
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.1-9346c8cc45 on 2020-02-10. # 2020, SMART Health IT. import os import io import unittest import json from model import slot from model.fhirdate import FHIRDate class SlotTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or \ os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'fhir-parser', 'downloads')) with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("Slot", js["resourceType"]) return slot.Slot(js) def testSlot1(self): inst = self.instantiate_from("slot-example-busy.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot1(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot1(inst2) def implSlot1(self, inst): self.assertEqual(inst.comment, "Assessments should be performed before requesting appointments in this slot.") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:15:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:15:00Z") self.assertEqual(inst.id, "1") self.assertEqual(inst.identifier[0].system, "http://example.org/identifiers/slots") self.assertEqual(inst.identifier[0].value, "123132") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertTrue(inst.overbooked) self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:00:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:00:00Z") self.assertEqual(inst.status, "busy") self.assertEqual(inst.text.status, "generated") def testSlot2(self): inst = self.instantiate_from("slot-example.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot2(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot2(inst2) def implSlot2(self, inst): self.assertEqual(inst.appointmentType.coding[0].code, "WALKIN") self.assertEqual(inst.appointmentType.coding[0].display, "A previously unscheduled walk-in visit") self.assertEqual(inst.appointmentType.coding[0].system, "http://terminology.hl7.org/CodeSystem/v2-0276") self.assertEqual(inst.comment, "Assessments should be performed before requesting appointments in this slot.") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:30:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:30:00Z") self.assertEqual(inst.id, "example") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.serviceType[0].coding[0].code, "57") self.assertEqual(inst.serviceType[0].coding[0].display, "Immunization") self.assertEqual(inst.specialty[0].coding[0].code, "408480009") self.assertEqual(inst.specialty[0].coding[0].display, "Clinical immunology") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:15:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:15:00Z") self.assertEqual(inst.status, "free") self.assertEqual(inst.text.status, "generated") def testSlot3(self): inst = self.instantiate_from("slot-example-unavailable.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot3(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot3(inst2) def implSlot3(self, inst): self.assertEqual(inst.comment, "Dr Careful is out of the office") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T09:45:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T09:45:00Z") self.assertEqual(inst.id, "3") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:30:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:30:00Z") self.assertEqual(inst.status, "busy-unavailable") self.assertEqual(inst.text.status, "generated") def testSlot4(self): inst = self.instantiate_from("slot-example-tentative.json") self.assertIsNotNone(inst, "Must have instantiated a Slot instance") self.implSlot4(inst) js = inst.as_json() self.assertEqual("Slot", js["resourceType"]) inst2 = slot.Slot(js) self.implSlot4(inst2) def implSlot4(self, inst): self.assertEqual(inst.comment, "Dr Careful is out of the office") self.assertEqual(inst.end.date, FHIRDate("2013-12-25T10:00:00Z").date) self.assertEqual(inst.end.as_json(), "2013-12-25T10:00:00Z") self.assertEqual(inst.id, "2") self.assertEqual(inst.meta.tag[0].code, "HTEST") self.assertEqual(inst.meta.tag[0].display, "test health data") self.assertEqual(inst.meta.tag[0].system, "http://terminology.hl7.org/CodeSystem/v3-ActReason") self.assertEqual(inst.serviceCategory[0].coding[0].code, "17") self.assertEqual(inst.serviceCategory[0].coding[0].display, "General Practice") self.assertEqual(inst.start.date, FHIRDate("2013-12-25T09:45:00Z").date) self.assertEqual(inst.start.as_json(), "2013-12-25T09:45:00Z") self.assertEqual(inst.status, "busy-tentative") self.assertEqual(inst.text.status, "generated") if __name__ == '__main__': unittest.main()
63cf4e7fc790f00047e1d1b4a59e089134a6a4ce
1113e8eec4ccbbcd00c6a9b5466c5239b6f0eb03
/cpos/foundation/_callable/core.py
d5bcbc5bd5bde2ddfb68fa7a980ecfe3e94c65cb
[]
no_license
yizhong120110/CPOS
a05858c84e04ce4aa48b3bfb43ee49264ffc5270
68ddf3df6d2cd731e6634b09d27aff4c22debd8e
refs/heads/master
2021-09-01T17:59:53.802095
2017-12-28T05:43:06
2017-12-28T05:43:06
106,247,188
0
0
null
null
null
null
UTF-8
Python
false
false
6,495
py
# -*- coding: utf-8 -*- import textwrap import sys import os from ..substrate.utils.logger import logger from ..substrate.interfaces import Clarified class Callable(object): def __init__(self, py_code, fragment_name=''): self.d = {'py_code':py_code,'fragment_name':fragment_name} def run(self, np,np_local): """ # 在np中注册py_code """ try: #logger.ods (str(self.d['py_code']) , lv = 'dev' , cat = 'foundation.callable') exec(self.d['py_code'],np,np_local) return True except: logger.oes("callable error:" , lv = 'error' , cat = 'foundation.callable') return False def get_name (self): return self.d['fragment_name'] class DynamicRuntime(Clarified): NAME = "DynamicRuntime" # np_init_code and udp_np should be deprecated , keeping it is just for the compatibility with old codes. # Runtime and Callable should be used like test cases showed below. def __init__ (self,np_init_code='',upd_np={}, np = {}, np_local = None): self.np = np self.np_local = np_local self.np_init_code = np_init_code self.prepare_environment() self.np.update(upd_np) def call(self,callable_object): return callable_object.run(self.np,self.np_local) def prepare_environment(self): ca = Callable(textwrap.dedent(self.np_init_code.replace('\r', ''))) self.call(ca) return True def last_result (self): # equel to the "_" variable in the py console. if '_' in (self.np.keys()): return self.np['_'] return None def var (self,var_name): # equel to the "_" variable in the py console. if var_name in (self.np.keys()): return self.np[var_name] return None def statement_dynamic_call (statement = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if statement != '': if not dr.call( Callable( statement ) ): return None return dr def direct_dynamic_call (module_name = '',func_name = '',args = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if dr.var('_') is None: dr = statement_dynamic_call('_ = None',dr) if module_name != '': statement = 'from %s import %s' % (module_name,'*' if func_name == '' else func_name) dr = statement_dynamic_call(statement,dr) if func_name != '' and func_name != '*': statement = '_ = %s(%s) or _'%(func_name, args) dr = statement_dynamic_call(statement,dr) if not dr: return None return dr def direct_dynamic_call_pyfile (pyfile='' , root='' ,func_name = '',args = '', runtime = None): # args like this : p1=value,p2=value,p3=value , in string. dr = runtime or DynamicRuntime() if dr.var('_') is None: dr = statement_dynamic_call('_ = None',dr) if pyfile != '': root = os.path.abspath(root) + os.sep pyfile = os.path.abspath(os.path.join(root, pyfile.strip('/\\'))) statement = open(pyfile,mode='rb').read() dr = statement_dynamic_call(statement,dr) if func_name != '': statement = '_ = %s(%s) or _'%(func_name, args) dr = statement_dynamic_call(statement,dr) if not dr: return None return dr scall = statement_dynamic_call dcall = direct_dynamic_call dcallpy = direct_dynamic_call_pyfile ####################################################################### #TEST a = 0 def __test_call (): global a a = 100 print ('__test_call') return 0 def _test1 (): # 使用globals()会对当前环境造成影响,导致open不能正常使用 #dr = DynamicRuntime(np=globals()) dr = DynamicRuntime(np=locals()) dr = dcall('os',runtime = dr) if dr: dr = dcall(func_name = 'times',args = '',runtime = dr) if dr: dr = dcall(func_name = 'print',args = '_',runtime = dr) if dr: dr = dcall(func_name = 'times',args = '',runtime = dr) if dr: dr = dcall(func_name = 'print',args = '_',runtime = dr) if dr: dr = scall('print(\' Hello \')',runtime = dr) if dr: dr = scall('__test_call()',runtime = dr) print(a) def _test2 (): b = 1 c = 1 dr = DynamicRuntime( np = locals()) scall('b = b + 1',dr) print(dr) print(b) ## note! we have to obtain the resualt manually. The 'b = b + 1' call will not touch the 'b' in this scope. # why? ???? #refer to python doc [exec]: #Note #The default locals act as described for function locals() below: # modifications to the default locals dictionary should not be attempted. Pass an explicit locals dictionary # if you need to see effects of the code on locals after function exec() returns. # print (dr.var('b')) def _test3 (): dr = scall('t3 = "this is t3" ') print(dr.var('t3')) dr = scall('t4 = t3 + " and t4" ',dr) print(dr.var('t4')) def _test4 (): # 如果下面这句执行报错,则说明本地环境被破坏,是np=globals()造成的 #print("++++++++++==========",help(open)) dr = dcallpy(os.path.abspath( __file__ ),'_test4_print') dr = dcallpy(func_name='_test4_print_2' ,args='1111' ,runtime=dr) dr = dcallpy(func_name='_test4_print_3' ,args='1111,2222' ,runtime=dr) def _test4_print(): print("===== my name is _test4_print") def _test4_print_2(aaaa): print("===== my name is _test4_print_2 %s"%(aaaa)) def _test4_print_3(aaaa,bbbbb): print("===== my name is _test4_print_3 %s %s"%(aaaa,bbbbb)) def _test5 (): dr = scall('') dr.np['aaaaa'] = 'test is aaaaa' dr = dcall(func_name = 'print',args = 'aaaaa',runtime = dr) if __name__ == '__main__': _test1() print('==========================================================') _test2() print('==========================================================') _test3() print('==========================================================') _test4() print('==========================================================') _test5()
bd48767328d1904968baef929946d37d9b971dcd
5e629210c351f369208155a11f395d47be9b837b
/conditionCompleteion/src/osd/objectService/unitTests/test_diskfile.py
9dd7b4b3b27b4b0cd4619e36e37b004d5c54ebc0
[]
no_license
confi-surya/pythonicPracto
028f2a50bc595b90bee95b235ec9218da3e45fe5
c366afd9ab54b8cacda767189f1a13efb5f961b2
refs/heads/master
2020-03-23T12:56:55.843408
2018-07-19T11:51:59
2018-07-19T14:37:13
141,572,623
0
0
null
null
null
null
UTF-8
Python
false
false
23,853
py
import cPickle as pickle import os import errno import mock import unittest import email import tempfile import uuid #import xattr from shutil import rmtree from time import time from tempfile import mkdtemp from hashlib import md5 from contextlib import closing, nested from gzip import GzipFile from eventlet import tpool from osd.objectService.unitTests import FakeLogger, temptree from osd.objectService.unitTests import mock as unit_mock from osd.objectService import diskfile from osd.common import utils #from osd.common.utils import hash_path, mkdirs, normalize_timestamp from osd.common.utils import mkdirs, normalize_timestamp from osd.common.ring.ring import hash_path from osd.common import ring from osd.common.exceptions import DiskFileNotExist, DiskFileQuarantined, \ DiskFileDeviceUnavailable, DiskFileDeleted, DiskFileNotOpen, \ DiskFileError, ReplicationLockTimeout, PathNotDir, DiskFileCollision, \ DiskFileExpired, SwiftException, DiskFileNoSpace import osd class TestDiskFileManager(unittest.TestCase): def setUp(self): self.tmpdir = mkdtemp() self.testdir = os.path.join(self.tmpdir,'test_object_server_disk_file_mgr') mkdirs(os.path.join(self.testdir,"export", "fs1")) mkdirs(os.path.join(self.testdir,"export", "fs1")) self.filesystems = os.path.join(os.path.join(self.testdir,"export")) self._orig_tpool_exc = tpool.execute tpool.execute = lambda f, *args, **kwargs: f(*args, **kwargs) self.conf = dict(filesystems=self.filesystems,mount_check='false', keep_cache_size=2 * 1024) self.df_mgr = diskfile.DiskFileManager(self.conf,FakeLogger()) def tearDown(self): rmtree(self.tmpdir, ignore_errors=1) def test_construct_filesystem_path(self): res_path = self.df_mgr.construct_filesystem_path("abc") self.assertEqual(os.path.join(self.filesystems,"abc"),res_path) def test_get_filesystem_path(self): res_path = self.df_mgr.get_filesystem_path("abc") self.assertEqual(os.path.join(self.filesystems,"abc"),res_path) class TestDiskFile(unittest.TestCase): def setUp(self): """ Setup the test""" self.tmpdir = mkdtemp() self.testdir = os.path.join(self.tmpdir,'test_object_server_disk_file') self.filesystems = os.path.join(os.path.join(self.testdir,"export")) self.filesystem = "fs1" mkdirs(os.path.join(self.filesystems,self.filesystem)) self._orig_tpool_exc = tpool.execute tpool.execute = lambda f, *args, **kwargs: f(*args, **kwargs) self.conf = dict(filesystems=self.filesystems, mount_check='false', keep_cache_size=2 * 1024, ) self.df_mgr = diskfile.DiskFileManager(self.conf, FakeLogger()) def tearDown(self): """tear down the test""" rmtree(self.tmpdir, ignore_errors=1) tpool.execute = self._orig_tpool_exc def _create_ondisk_file(self, df, data, timestamp, metadata=None): """ create the data amd meta data file""" if timestamp is None: timestamp = time() timestamp = normalize_timestamp(timestamp) if not metadata: metadata = {} if 'X-Timestamp' not in metadata: metadata['X-Timestamp'] = normalize_timestamp(timestamp) if 'ETag' not in metadata: etag = md5() etag.update(data) metadata['ETag'] = etag.hexdigest() if 'name' not in metadata: metadata['name'] = '/a/c/o' if 'Content-Length' not in metadata: metadata['Content-Length'] = str(len(data)) hash_name = df._name_hash mkdirs(df._datadir) mkdirs(df._metadir) data_file = os.path.join(df._datadir, df._name_hash + ".data") meta_file = os.path.join(df._metadir, df._name_hash + ".meta") with open(data_file, 'wb') as f: f.write(data) with open(meta_file,'wb') as f: f.write(pickle.dumps(metadata, diskfile.PICKLE_PROTOCOL)) f.write("EOF") def _simple_get_diskfile(self, acc_dir="a1", cont_dir='d1', obj_dir='o1', account='a', container='c', obj='o'): """create the DiskFile object""" return self.df_mgr.get_diskfile(self.filesystem, acc_dir, cont_dir, obj_dir, account, container, obj) def _create_test_file(self, data, timestamp=None, metadata=None, account='a', container='c', obj='o'): """ creates the test file and opens it""" if metadata is None: metadata = {} metadata.setdefault('name', '/%s/%s/%s' % (account, container, obj)) df = self._simple_get_diskfile(account=account, container=container, obj=obj) self._create_ondisk_file(df, data, timestamp, metadata) df = self._simple_get_diskfile(account=account, container=container, obj=obj) df.open() return df def test_open_not_exist(self): """ Test for DiskFileNotExist Exception""" df = self._simple_get_diskfile() self.assertRaises(DiskFileNotExist, df.open) def test_open_expired(self): """Test for DiskFileExpired Exception. although it will not be used in Hydra """ self.assertRaises(DiskFileExpired, self._create_test_file, '1234567890', metadata={'X-Delete-At': '0'}) def test_open_not_expired(self): """ DiskFileExpired exception should not be raised""" try: self._create_test_file( '1234567890', metadata={'X-Delete-At': str(2 * int(time()))}) except SwiftException as err: self.fail("Unexpected swift exception raised: %r" % err) def test_get_metadata(self): """get metadata """ df = self._create_test_file('1234567890', timestamp=42) md = df.get_metadata() self.assertEqual(md['X-Timestamp'], normalize_timestamp(42)) def test_read_metadata(self): """ read metadata """ self._create_test_file('1234567890', timestamp=42) df = self._simple_get_diskfile() md = df.read_metadata() self.assertEqual(md['X-Timestamp'], normalize_timestamp(42)) def test_get_metadata_not_opened(self): """ get metadata when the metadata field is not populated""" df = self._simple_get_diskfile() self.assertRaises(DiskFileNotOpen, df.get_metadata) def test_not_opened(self): """ test DiskFileNotOpen exception""" df = self._simple_get_diskfile() try: with df: pass except DiskFileNotOpen: pass else: self.fail("Expected DiskFileNotOpen exception") def _get_open_disk_file(self, invalid_type=None, obj_name='o', fsize=1024, csize=8, mark_deleted=False, prealloc=False, ts=None, mount_check=False, extra_metadata=None): '''returns a DiskFile''' df = self._simple_get_diskfile(obj=obj_name) data = '0' * fsize etag = md5() if ts is not None: timestamp = ts else: timestamp = normalize_timestamp(time()) with df.create() as writer: upload_size = writer.write(data) etag.update(data) etag = etag.hexdigest() metadata = { 'ETag': etag, 'X-Timestamp': timestamp, 'Content-Length': str(upload_size), } metadata.update(extra_metadata or {}) writer.put(metadata) if invalid_type == 'ETag': etag = md5() etag.update('1' + '0' * (fsize - 1)) etag = etag.hexdigest() metadata['ETag'] = etag diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Content-Length': metadata['Content-Length'] = fsize - 1 diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Bad-Content-Length': metadata['Content-Length'] = 'zero' diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Missing-Content-Length': del metadata['Content-Length'] diskfile.write_metadata(writer._fd_meta, metadata) elif invalid_type == 'Bad-X-Delete-At': metadata['X-Delete-At'] = 'bad integer' diskfile.write_metadata(writer._fd_meta, metadata) if mark_deleted: df.delete(timestamp) data_file = [os.path.join(df._datadir, fname) for fname in sorted(os.listdir(df._datadir), reverse=True) if fname.endswith('.data')] meta_file = [os.path.join(df._metadir, fname) for fname in sorted(os.listdir(df._metadir), reverse=True) if fname.endswith('.meta')] ''' if invalid_type == 'Corrupt-Xattrs': # We have to go below read_metadata/write_metadata to get proper # corruption. meta_xattr = open(meta_file,'rb').read() wrong_byte = 'X' if meta_xattr[0] != 'X' else 'Y' xattr.setxattr(data_files[0], "user.osd.metadata", wrong_byte + meta_xattr[1:]) elif invalid_type == 'Truncated-Xattrs': meta_xattr = xattr.getxattr(data_files[0], "user.osd.metadata") xattr.setxattr(data_files[0], "user.osd.metadata", meta_xattr[:-1]) ''' if invalid_type == 'Missing-Name': with open(meta_file,'r') as fd: md = diskfile.read_metadata(fd) del md['name'] fd = os.open(meta_file,os.O_WRONLY|os.O_TRUNC) diskfile.write_metadata(fd, md) elif invalid_type == 'Bad-Name': with open(meta_file,'r') as fd: md = diskfile.read_metadata(fd) md['name'] = md['name'] + 'garbage' fd = os.open(meta_file,os.O_WRONLY|os.O_TRUNC) diskfile.write_metadata(fd, md) self.conf['disk_chunk_size'] = csize self.conf['mount_check'] = mount_check self.df_mgr = diskfile.DiskFileManager(self.conf, FakeLogger()) df = self._simple_get_diskfile(obj=obj_name) df.open() if invalid_type == 'Zero-Byte': fp = open(df._data_file, 'w') fp.close() df.unit_test_len = fsize return df @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_delete(self, write): df = self._get_open_disk_file() ts = time() df.delete('data') data_file_name = df._name_hash + ".data" meta_file_name = df._name_hash + ".meta" dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(data_file_name not in set(dl)) self.assertTrue(meta_file_name in set(ml)) df.delete('meta') dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(meta_file_name not in set(ml)) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_open_deleted(self, write): df = self._get_open_disk_file() df.delete('data') df.delete('meta') data_file_name = df._name_hash + ".data" meta_file_name = df._name_hash + ".meta" dl = os.listdir(df._datadir) ml = os.listdir(df._metadir) self.assertTrue(data_file_name not in set(dl)) self.assertTrue(meta_file_name not in set(ml)) df = self._simple_get_diskfile() self.assertRaises(DiskFileNotExist, df.open) def test_listdir_enoent(self): oserror = OSError() oserror.errno = errno.ENOENT self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', side_effect=oserror): self.assertEqual(self.df_mgr._listdir('path'), []) self.assertEqual(self.df_mgr.logger.error.mock_calls, []) def test_listdir_other_oserror(self): oserror = OSError() self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', side_effect=oserror): self.assertEqual(self.df_mgr._listdir('path'), []) self.df_mgr.logger.error.assert_called_once_with( 'ERROR: Skipping %r due to error with listdir attempt: %s', 'path', oserror) def test_listdir(self): self.df_mgr.logger.error = mock.MagicMock() with mock.patch('os.listdir', return_value=['abc', 'def']): self.assertEqual(self.df_mgr._listdir('path'), ['abc', 'def']) self.assertEqual(self.df_mgr.logger.error.mock_calls, []) def test_diskfile_names(self): df = self._simple_get_diskfile() self.assertEqual(df.account, 'a') self.assertEqual(df.container, 'c') self.assertEqual(df.obj, 'o') @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_diskfile_content_length_not_open(self, write): df = self._simple_get_diskfile() exc = None try: df.content_length except DiskFileNotOpen as err: exc = err self.assertEqual(str(exc), '') def test_diskfile_content_length(self): self._get_open_disk_file() df = self._simple_get_diskfile() with df.open(): self.assertEqual(df.content_length, 1024) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_diskfile_timestamp_not_open(self, write): df = self._simple_get_diskfile() exc = None try: df.timestamp except DiskFileNotOpen as err: exc = err self.assertEqual(str(exc), '') def test_diskfile_timestamp(self): self._get_open_disk_file(ts='1383181759.12345') df = self._simple_get_diskfile() with df.open(): self.assertEqual(df.timestamp, '1383181759.12345') def test_write_metdata(self): df = self._create_test_file('1234567890') timestamp = normalize_timestamp(time()) metadata = {'X-Timestamp': timestamp, 'X-Object-Meta-test': 'data'} metadata['name'] = '/a/c/o' metadata['Content-Length'] = '10' df.write_metadata(metadata) metadata = df.read_metadata() self.assertEquals(metadata['X-Object-Meta-test'],'data') ''' def test_create_close_oserror(self): df = self.df_mgr.get_diskfile(self.filesystem, '0', 'abc', '123', 'xyz') with mock.patch("osd.obj.diskfile.os.close", mock.MagicMock(side_effect=OSError( errno.EACCES, os.strerror(errno.EACCES)))): try: with df.create(): pass except Exception as err: self.fail("Unexpected exception raised: %r" % err) else: pass ''' def test_disk_file_mkstemp_creates_dir(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() with df.create(): self.assert_(os.path.exists(tmpdir)) def test_disk_file_create_tmp_file(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() file_name = '_'.join([hash_path(df.account), hash_path(df.account, df.container), df._name_hash]) with df.create(): self.assert_(os.path.exists(df._tmpdir)) self.assert_(os.path.exists(os.path.join(df._tmpdir, file_name + ".data"))) self.assert_(os.path.exists(os.path.join(df._tmpdir, file_name + ".meta"))) def test_disk_file_finalize_put(self): tmpdir = os.path.join(self.filesystems, self.filesystem) os.rmdir(tmpdir) df = self._simple_get_diskfile() metadata = {'X-metadata-value':'data'} file_name = '_'.join([hash_path(df.account), hash_path(df.account, df.container), df._name_hash]) with df.create() as writer: self.assertTrue(os.path.exists(df._tmpdir)) self.assertTrue(os.path.exists(os.path.join(df._tmpdir, file_name + ".data"))) self.assertTrue(os.path.exists(os.path.join(df._tmpdir, file_name + ".meta"))) writer.put(metadata) self.assertTrue(os.path.exists(os.path.join(df._datadir, df._name_hash + ".data"))) self.assertTrue(os.path.exists(os.path.join(df._metadir, df._name_hash + ".meta"))) self.assertTrue(os.path.exists(df._tmpdir)) self.assertFalse(os.path.exists(os.path.join(df._tmpdir, df._name_hash + ".data"))) self.assertFalse(os.path.exists(os.path.join(df._tmpdir, df._name_hash + ".meta"))) def test_disk_file_reader_iter(self): df = self._create_test_file('1234567890') reader = df.reader() self.assertEqual(''.join(reader), '1234567890') def test_disk_file_reader_iter_w_quarantine(self): df = self._create_test_file('1234567890') reader = df.reader() reader._obj_size += 1 self.assertRaises(DiskFileQuarantined, ''.join, reader) def test_disk_file_app_iter_corners(self): df = self._create_test_file('1234567890') quarantine_msgs = [] reader = df.reader() self.assertEquals(''.join(reader.app_iter_range(0, None)), '1234567890') df = self._simple_get_diskfile() with df.open(): reader = df.reader() self.assertEqual(''.join(reader.app_iter_range(5, None)), '67890') def test_disk_file_app_iter_range_w_none(self): df = self._create_test_file('1234567890') reader = df.reader() self.assertEqual(''.join(reader.app_iter_range(None, None)), '1234567890') def test_disk_file_app_iter_partial_closes(self): df = self._create_test_file('1234567890') reader = df.reader() it = reader.app_iter_range(0, 5) self.assertEqual(''.join(it), '12345') self.assertTrue(reader._fp is None) @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_disk_file_app_iter_ranges(self, write): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(0, 10), (10, 20), (20, 30)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('0123456789' in value) self.assertTrue('1123456789' in value) self.assertTrue('2123456789' in value) """ def test_disk_file_app_iter_ranges_w_quarantine(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() reader._obj_size += 1 try: it = reader.app_iter_ranges([(0, 30)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) except DiskFileQuarantined as e: err = e #self.assertEqual('DiskFileQuarantined',str(err)) self.assertTrue('0123456789' in value) self.assertTrue('1123456789' in value) self.assertTrue('2123456789' in value) """ def test_disk_file_app_iter_ranges_w_no_etag_quarantine(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(0, 10)], 'plain/text', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('0123456789' in value) def test_disk_file_app_iter_ranges_edges(self): df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([(3, 10), (0, 2)], 'application/whatever', '\r\n--someheader\r\n', 30) value = ''.join(it) self.assertTrue('3456789' in value) self.assertTrue('01' in value) def test_disk_file_large_app_iter_ranges(self): # This test case is to make sure that the disk file app_iter_ranges # method all the paths being tested. long_str = '01234567890' * 65536 target_strs = ['3456789', long_str[0:65590]] df = self._create_test_file(long_str) reader = df.reader() it = reader.app_iter_ranges([(3, 10), (0, 65590)], 'plain/text', '5e816ff8b8b8e9a5d355497e5d9e0301', 655360) # The produced string actually missing the MIME headers # need to add these headers to make it as real MIME message. # The body of the message is produced by method app_iter_ranges # off of DiskFile object. header = ''.join(['Content-Type: multipart/byteranges;', 'boundary=', '5e816ff8b8b8e9a5d355497e5d9e0301\r\n']) value = header + ''.join(it) parts = map(lambda p: p.get_payload(decode=True), email.message_from_string(value).walk())[1:3] self.assertEqual(parts, target_strs) def test_disk_file_app_iter_ranges_empty(self): # This test case tests when empty value passed into app_iter_ranges # When ranges passed into the method is either empty array or None, # this method will yield empty string df = self._create_test_file('012345678911234567892123456789') reader = df.reader() it = reader.app_iter_ranges([], 'application/whatever', '\r\n--someheader\r\n', 100) self.assertEqual(''.join(it), '') df = self._simple_get_diskfile() with df.open(): reader = df.reader() it = reader.app_iter_ranges(None, 'app/something', '\r\n--someheader\r\n', 150) self.assertEqual(''.join(it), '') @mock.patch('osd.objectService.diskfile.DiskFileWriter.write', return_value=0) def test_keep_cache(self, write): df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as foo: for _ in df.reader(): pass self.assertTrue(foo.called) df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as bar: for _ in df.reader(keep_cache=False): pass self.assertTrue(bar.called) df = self._get_open_disk_file(fsize=65) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as boo: for _ in df.reader(keep_cache=True): pass self.assertFalse(boo.called) df = self._get_open_disk_file(fsize=5 * 1024, csize=256) with mock.patch("osd.objectService.diskfile.drop_buffer_cache") as goo: for _ in df.reader(keep_cache=True): pass self.assertTrue(goo.called) if __name__ =="__main__": unittest.main()
37a08b96698b20dd1fea9d7b61d6b4b83fbb7d5e
2672a2b664ed12f190b68deb51476b451a524561
/portal/config.py
e45d5065a743935fa64b17b3a1a2a8ea6266d98c
[]
no_license
LCBRU/genvasc_portal_web
9a2a27b4a2ba0fb2db402efc96eea8b2ed0a86e6
11eb562a5e92fd05fd5a902b7e062a2813e7b3f7
refs/heads/master
2023-01-09T09:59:07.301366
2023-01-07T14:44:07
2023-01-07T14:44:07
132,786,398
0
0
null
2022-01-11T13:17:30
2018-05-09T16:45:40
Python
UTF-8
Python
false
false
2,527
py
import os from dotenv import load_dotenv # Load environment variables from '.env' file. load_dotenv() class BaseConfig(object): REMEMBER_COOKIE_NAME = 'GENVASC Remember Me' REMEMBER_COOKIE_DURATION = 1 MAIL_SERVER = os.environ['MAIL_SERVER'] MAIL_DEBUG = os.environ['MAIL_DEBUG'] SECURITY_EMAIL_SENDER = os.environ['LCBRUIT_EMAIL_ADDRESS'] SECRET_KEY = os.environ['GGPP_FLASK_SECRET_KEY'] DEBUG = os.environ['GGPP_FLASK_DEBUG'] == 'True' SQLALCHEMY_DATABASE_URI = os.environ['SQLALCHEMY_DATABASE_URI'] SQLALCHEMY_TRACK_MODIFICATIONS = ( os.environ['GGPP_SQLALCHEMY_TRACK_MODIFICATIONS'] == 'True' ) SQLALCHEMY_ECHO = os.environ['GGPP_SQLALCHEMY_ECHO'] == 'True' SECURITY_PASSWORD_HASH = os.environ['GGPP_SECURITY_PASSWORD_HASH'] SECURITY_PASSWORD_SALT = os.environ['GGPP_SECURITY_PASSWORD_SALT'] SECURITY_TRACKABLE = os.environ['GGPP_SECURITY_TRACKABLE'] == 'True' SMTP_SERVER = 'localhost' APPLICATION_EMAIL_ADDRESS = os.environ['LCBRUIT_EMAIL_ADDRESS'] ERROR_EMAIL_SUBJECT = 'GENVASC Portal Error' SECURITY_CHANGEABLE = True SECURITY_RECOVERABLE = True MAIL_DEFAULT_SENDER = os.environ["LCBRUIT_EMAIL_ADDRESS"] # Admin user ADMIN_EMAIL_ADDRESS = os.environ['ADMIN_EMAIL_ADDRESS'] ADMIN_FIRST_NAME = os.environ['ADMIN_FIRST_NAME'] ADMIN_LAST_NAME = os.environ['ADMIN_LAST_NAME'] ADMIN_PASSWORD = os.environ['ADMIN_PASSWORD'] # Celery Settings broker_url=os.environ["BROKER_URL"] result_backend=os.environ["CELERY_RESULT_BACKEND"] CELERY_RATE_LIMIT=os.environ["CELERY_RATE_LIMIT"] CELERY_REDIRECT_STDOUTS_LEVEL=os.environ["CELERY_REDIRECT_STDOUTS_LEVEL"] CELERY_DEFAULT_QUEUE=os.environ["CELERY_DEFAULT_QUEUE"] # Celery Schedules PRACTICE_ETL_SCHEDULE_MINUTE=os.environ["PRACTICE_ETL_SCHEDULE_MINUTE"] PRACTICE_ETL_SCHEDULE_HOUR=os.environ["PRACTICE_ETL_SCHEDULE_HOUR"] # Databases PRACTICE_DATABASE_URI=os.environ["PRACTICE_DATABASE_URI"] RECRUIT_DATABASE_URI=os.environ["RECRUIT_DATABASE_URI"] IMPORT_DATABASE_URI=os.environ["IMPORT_DATABASE_URI"] class TestConfig(BaseConfig): """Configuration for automated testing""" TESTING = True SQLALCHEMY_DATABASE_URI="sqlite://" PRACTICE_DATABASE_URI="sqlite://" RECRUIT_DATABASE_URI="sqlite://" WTF_CSRF_ENABLED = False SMTP_SERVER = None SQLALCHEMY_ECHO = False broker_url=os.environ["BROKER_URL"] + '/test' class TestConfigCRSF(TestConfig): WTF_CSRF_ENABLED = True
3dd764efee547895b61b17074bef1e80ee82a562
9bb6795a12d6e042b962704dab9ec59d92d54e8f
/1_numpy/2_reshape.py
b5d60e8241460327f2b7b83d534050593e76005f
[]
no_license
kimsoosoo0928/Perfect_Guide
c5177037512cb06814f0bbfcb70a22d14c9ec1fb
9b615d320957babb1a918fb38282062998a1e5c4
refs/heads/main
2023-07-18T12:29:03.353274
2021-08-29T00:31:28
2021-08-29T00:31:28
396,668,104
1
0
null
null
null
null
UTF-8
Python
false
false
1,093
py
import numpy as np array1 = np.arange(10) print('array1 : \n', array1) array2 = array1.reshape(2,5) print('array2 : \n', array2) array3 = array1.reshape(5,2) print('array3 : \n', array3) ''' array1 : [0 1 2 3 4 5 6 7 8 9] array2 : [[0 1 2 3 4] [5 6 7 8 9]] array3 : [[0 1] [2 3] [4 5] [6 7] [8 9]] ''' array1 = np.arange(10) print(array1) array2 = array1.reshape(-1,5) print('array2 shape : ', array2.shape) array3 = array1.reshape(5,-1) print('array3 shape : ', array3.shape) ''' [0 1 2 3 4 5 6 7 8 9] array2 shape : (2, 5) array3 shape : (5, 2) ''' array1 = np.arange(8) array3d = array1.reshape((2,2,2)) print('array3d : \n', array3d.tolist()) array5 = array1.reshape((-1,1)) print('array5 : \n', array5.tolist()) print('array5 shape : \n', array5.shape) array6 = array1.reshape((-1,1)) print('array6 : \n', array6.tolist()) print('array6 shape : \n', array6.shape) ''' array3d : [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] array5 : [[0], [1], [2], [3], [4], [5], [6], [7]] array5 shape : (8, 1) array6 : [[0], [1], [2], [3], [4], [5], [6], [7]] array6 shape : (8, 1) '''
8764d59d46a5444c80f139b86086313daedfab35
711756b796d68035dc6a39060515200d1d37a274
/output_cog/optimized_44595.py
4b502c0083653180de1a265b86c37f599c2c98b6
[]
no_license
batxes/exocyst_scripts
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
a6c487d5053b9b67db22c59865e4ef2417e53030
refs/heads/master
2020-06-16T20:16:24.840725
2016-11-30T16:23:16
2016-11-30T16:23:16
75,075,164
0
0
null
null
null
null
UTF-8
Python
false
false
10,838
py
import _surface import chimera try: import chimera.runCommand except: pass from VolumePath import markerset as ms try: from VolumePath import Marker_Set, Link new_marker_set=Marker_Set except: from VolumePath import volume_path_dialog d= volume_path_dialog(True) new_marker_set= d.new_marker_set marker_sets={} surf_sets={} if "Cog2_GFPN" not in marker_sets: s=new_marker_set('Cog2_GFPN') marker_sets["Cog2_GFPN"]=s s= marker_sets["Cog2_GFPN"] mark=s.place_marker((556.227, 579.162, 346.569), (0.89, 0.1, 0.1), 18.4716) if "Cog2_0" not in marker_sets: s=new_marker_set('Cog2_0') marker_sets["Cog2_0"]=s s= marker_sets["Cog2_0"] mark=s.place_marker((577.62, 567.506, 410.007), (0.89, 0.1, 0.1), 17.1475) if "Cog2_1" not in marker_sets: s=new_marker_set('Cog2_1') marker_sets["Cog2_1"]=s s= marker_sets["Cog2_1"] mark=s.place_marker((592.146, 544.952, 487.833), (0.89, 0.1, 0.1), 17.1475) if "Cog2_GFPC" not in marker_sets: s=new_marker_set('Cog2_GFPC') marker_sets["Cog2_GFPC"]=s s= marker_sets["Cog2_GFPC"] mark=s.place_marker((499.902, 472.089, 412.099), (0.89, 0.1, 0.1), 18.4716) if "Cog2_Anch" not in marker_sets: s=new_marker_set('Cog2_Anch') marker_sets["Cog2_Anch"]=s s= marker_sets["Cog2_Anch"] mark=s.place_marker((650.184, 533.797, 673.199), (0.89, 0.1, 0.1), 18.4716) if "Cog3_GFPN" not in marker_sets: s=new_marker_set('Cog3_GFPN') marker_sets["Cog3_GFPN"]=s s= marker_sets["Cog3_GFPN"] mark=s.place_marker((561.491, 577.074, 392.605), (1, 1, 0), 18.4716) if "Cog3_0" not in marker_sets: s=new_marker_set('Cog3_0') marker_sets["Cog3_0"]=s s= marker_sets["Cog3_0"] mark=s.place_marker((560.64, 577.701, 391.737), (1, 1, 0.2), 17.1475) if "Cog3_1" not in marker_sets: s=new_marker_set('Cog3_1') marker_sets["Cog3_1"]=s s= marker_sets["Cog3_1"] mark=s.place_marker((548.961, 593.488, 372.017), (1, 1, 0.2), 17.1475) if "Cog3_2" not in marker_sets: s=new_marker_set('Cog3_2') marker_sets["Cog3_2"]=s s= marker_sets["Cog3_2"] mark=s.place_marker((524.868, 604.785, 363.173), (1, 1, 0.2), 17.1475) if "Cog3_3" not in marker_sets: s=new_marker_set('Cog3_3') marker_sets["Cog3_3"]=s s= marker_sets["Cog3_3"] mark=s.place_marker((520.518, 631.661, 369.594), (1, 1, 0.2), 17.1475) if "Cog3_4" not in marker_sets: s=new_marker_set('Cog3_4') marker_sets["Cog3_4"]=s s= marker_sets["Cog3_4"] mark=s.place_marker((493.613, 634.177, 377.669), (1, 1, 0.2), 17.1475) if "Cog3_5" not in marker_sets: s=new_marker_set('Cog3_5') marker_sets["Cog3_5"]=s s= marker_sets["Cog3_5"] mark=s.place_marker((484.765, 629.11, 404.082), (1, 1, 0.2), 17.1475) if "Cog3_GFPC" not in marker_sets: s=new_marker_set('Cog3_GFPC') marker_sets["Cog3_GFPC"]=s s= marker_sets["Cog3_GFPC"] mark=s.place_marker((573.32, 581.782, 367.095), (1, 1, 0.4), 18.4716) if "Cog3_Anch" not in marker_sets: s=new_marker_set('Cog3_Anch') marker_sets["Cog3_Anch"]=s s= marker_sets["Cog3_Anch"] mark=s.place_marker((401.368, 681.202, 444.553), (1, 1, 0.4), 18.4716) if "Cog4_GFPN" not in marker_sets: s=new_marker_set('Cog4_GFPN') marker_sets["Cog4_GFPN"]=s s= marker_sets["Cog4_GFPN"] mark=s.place_marker((517.783, 644.929, 605.75), (0, 0, 0.8), 18.4716) if "Cog4_0" not in marker_sets: s=new_marker_set('Cog4_0') marker_sets["Cog4_0"]=s s= marker_sets["Cog4_0"] mark=s.place_marker((517.783, 644.929, 605.75), (0, 0, 0.8), 17.1475) if "Cog4_1" not in marker_sets: s=new_marker_set('Cog4_1') marker_sets["Cog4_1"]=s s= marker_sets["Cog4_1"] mark=s.place_marker((523.844, 630.733, 581.449), (0, 0, 0.8), 17.1475) if "Cog4_2" not in marker_sets: s=new_marker_set('Cog4_2') marker_sets["Cog4_2"]=s s= marker_sets["Cog4_2"] mark=s.place_marker((527.23, 614.474, 557.945), (0, 0, 0.8), 17.1475) if "Cog4_3" not in marker_sets: s=new_marker_set('Cog4_3') marker_sets["Cog4_3"]=s s= marker_sets["Cog4_3"] mark=s.place_marker((535.187, 601.124, 533.882), (0, 0, 0.8), 17.1475) if "Cog4_4" not in marker_sets: s=new_marker_set('Cog4_4') marker_sets["Cog4_4"]=s s= marker_sets["Cog4_4"] mark=s.place_marker((545.343, 599.826, 507.38), (0, 0, 0.8), 17.1475) if "Cog4_5" not in marker_sets: s=new_marker_set('Cog4_5') marker_sets["Cog4_5"]=s s= marker_sets["Cog4_5"] mark=s.place_marker((558.97, 603.517, 482.597), (0, 0, 0.8), 17.1475) if "Cog4_6" not in marker_sets: s=new_marker_set('Cog4_6') marker_sets["Cog4_6"]=s s= marker_sets["Cog4_6"] mark=s.place_marker((569.17, 602.239, 455.675), (0, 0, 0.8), 17.1475) if "Cog4_GFPC" not in marker_sets: s=new_marker_set('Cog4_GFPC') marker_sets["Cog4_GFPC"]=s s= marker_sets["Cog4_GFPC"] mark=s.place_marker((362.68, 662.516, 597.87), (0, 0, 0.8), 18.4716) if "Cog4_Anch" not in marker_sets: s=new_marker_set('Cog4_Anch') marker_sets["Cog4_Anch"]=s s= marker_sets["Cog4_Anch"] mark=s.place_marker((769.647, 538.552, 302.63), (0, 0, 0.8), 18.4716) if "Cog5_GFPN" not in marker_sets: s=new_marker_set('Cog5_GFPN') marker_sets["Cog5_GFPN"]=s s= marker_sets["Cog5_GFPN"] mark=s.place_marker((601.522, 590.816, 476.849), (0.3, 0.3, 0.3), 18.4716) if "Cog5_0" not in marker_sets: s=new_marker_set('Cog5_0') marker_sets["Cog5_0"]=s s= marker_sets["Cog5_0"] mark=s.place_marker((601.522, 590.816, 476.849), (0.3, 0.3, 0.3), 17.1475) if "Cog5_1" not in marker_sets: s=new_marker_set('Cog5_1') marker_sets["Cog5_1"]=s s= marker_sets["Cog5_1"] mark=s.place_marker((577.776, 574.478, 480.971), (0.3, 0.3, 0.3), 17.1475) if "Cog5_2" not in marker_sets: s=new_marker_set('Cog5_2') marker_sets["Cog5_2"]=s s= marker_sets["Cog5_2"] mark=s.place_marker((561.588, 550.307, 477.712), (0.3, 0.3, 0.3), 17.1475) if "Cog5_3" not in marker_sets: s=new_marker_set('Cog5_3') marker_sets["Cog5_3"]=s s= marker_sets["Cog5_3"] mark=s.place_marker((569.861, 522.146, 475.878), (0.3, 0.3, 0.3), 17.1475) if "Cog5_GFPC" not in marker_sets: s=new_marker_set('Cog5_GFPC') marker_sets["Cog5_GFPC"]=s s= marker_sets["Cog5_GFPC"] mark=s.place_marker((545.922, 522.059, 353.142), (0.3, 0.3, 0.3), 18.4716) if "Cog5_Anch" not in marker_sets: s=new_marker_set('Cog5_Anch') marker_sets["Cog5_Anch"]=s s= marker_sets["Cog5_Anch"] mark=s.place_marker((600.455, 513.149, 596.661), (0.3, 0.3, 0.3), 18.4716) if "Cog6_GFPN" not in marker_sets: s=new_marker_set('Cog6_GFPN') marker_sets["Cog6_GFPN"]=s s= marker_sets["Cog6_GFPN"] mark=s.place_marker((563.384, 545.507, 397.988), (0.21, 0.49, 0.72), 18.4716) if "Cog6_0" not in marker_sets: s=new_marker_set('Cog6_0') marker_sets["Cog6_0"]=s s= marker_sets["Cog6_0"] mark=s.place_marker((563.305, 545.338, 397.921), (0.21, 0.49, 0.72), 17.1475) if "Cog6_1" not in marker_sets: s=new_marker_set('Cog6_1') marker_sets["Cog6_1"]=s s= marker_sets["Cog6_1"] mark=s.place_marker((537.502, 535.552, 393.737), (0.21, 0.49, 0.72), 17.1475) if "Cog6_2" not in marker_sets: s=new_marker_set('Cog6_2') marker_sets["Cog6_2"]=s s= marker_sets["Cog6_2"] mark=s.place_marker((523.419, 556.314, 405.96), (0.21, 0.49, 0.72), 17.1475) if "Cog6_3" not in marker_sets: s=new_marker_set('Cog6_3') marker_sets["Cog6_3"]=s s= marker_sets["Cog6_3"] mark=s.place_marker((510.924, 572.397, 425.288), (0.21, 0.49, 0.72), 17.1475) if "Cog6_4" not in marker_sets: s=new_marker_set('Cog6_4') marker_sets["Cog6_4"]=s s= marker_sets["Cog6_4"] mark=s.place_marker((510.416, 600.039, 430.598), (0.21, 0.49, 0.72), 17.1475) if "Cog6_5" not in marker_sets: s=new_marker_set('Cog6_5') marker_sets["Cog6_5"]=s s= marker_sets["Cog6_5"] mark=s.place_marker((515.45, 624.916, 418.683), (0.21, 0.49, 0.72), 17.1475) if "Cog6_6" not in marker_sets: s=new_marker_set('Cog6_6') marker_sets["Cog6_6"]=s s= marker_sets["Cog6_6"] mark=s.place_marker((510.866, 649.168, 405.149), (0.21, 0.49, 0.72), 17.1475) if "Cog6_GFPC" not in marker_sets: s=new_marker_set('Cog6_GFPC') marker_sets["Cog6_GFPC"]=s s= marker_sets["Cog6_GFPC"] mark=s.place_marker((595.256, 639.773, 414.377), (0.21, 0.49, 0.72), 18.4716) if "Cog6_Anch" not in marker_sets: s=new_marker_set('Cog6_Anch') marker_sets["Cog6_Anch"]=s s= marker_sets["Cog6_Anch"] mark=s.place_marker((423.904, 655.559, 395.424), (0.21, 0.49, 0.72), 18.4716) if "Cog7_GFPN" not in marker_sets: s=new_marker_set('Cog7_GFPN') marker_sets["Cog7_GFPN"]=s s= marker_sets["Cog7_GFPN"] mark=s.place_marker((625.146, 604.894, 419.111), (0.7, 0.7, 0.7), 18.4716) if "Cog7_0" not in marker_sets: s=new_marker_set('Cog7_0') marker_sets["Cog7_0"]=s s= marker_sets["Cog7_0"] mark=s.place_marker((611.326, 582.726, 424.898), (0.7, 0.7, 0.7), 17.1475) if "Cog7_1" not in marker_sets: s=new_marker_set('Cog7_1') marker_sets["Cog7_1"]=s s= marker_sets["Cog7_1"] mark=s.place_marker((581.353, 535.47, 439.284), (0.7, 0.7, 0.7), 17.1475) if "Cog7_2" not in marker_sets: s=new_marker_set('Cog7_2') marker_sets["Cog7_2"]=s s= marker_sets["Cog7_2"] mark=s.place_marker((552.729, 488.233, 454.57), (0.7, 0.7, 0.7), 17.1475) if "Cog7_GFPC" not in marker_sets: s=new_marker_set('Cog7_GFPC') marker_sets["Cog7_GFPC"]=s s= marker_sets["Cog7_GFPC"] mark=s.place_marker((568.434, 467.24, 378.12), (0.7, 0.7, 0.7), 18.4716) if "Cog7_Anch" not in marker_sets: s=new_marker_set('Cog7_Anch') marker_sets["Cog7_Anch"]=s s= marker_sets["Cog7_Anch"] mark=s.place_marker((501.281, 441.109, 532.012), (0.7, 0.7, 0.7), 18.4716) if "Cog8_0" not in marker_sets: s=new_marker_set('Cog8_0') marker_sets["Cog8_0"]=s s= marker_sets["Cog8_0"] mark=s.place_marker((533.796, 590.685, 408.018), (1, 0.5, 0), 17.1475) if "Cog8_1" not in marker_sets: s=new_marker_set('Cog8_1') marker_sets["Cog8_1"]=s s= marker_sets["Cog8_1"] mark=s.place_marker((551.47, 584.314, 429.623), (1, 0.5, 0), 17.1475) if "Cog8_2" not in marker_sets: s=new_marker_set('Cog8_2') marker_sets["Cog8_2"]=s s= marker_sets["Cog8_2"] mark=s.place_marker((571.799, 570.297, 444.162), (1, 0.5, 0), 17.1475) if "Cog8_3" not in marker_sets: s=new_marker_set('Cog8_3') marker_sets["Cog8_3"]=s s= marker_sets["Cog8_3"] mark=s.place_marker((596.698, 560.943, 455.419), (1, 0.5, 0), 17.1475) if "Cog8_4" not in marker_sets: s=new_marker_set('Cog8_4') marker_sets["Cog8_4"]=s s= marker_sets["Cog8_4"] mark=s.place_marker((617.449, 542.988, 465.281), (1, 0.5, 0), 17.1475) if "Cog8_5" not in marker_sets: s=new_marker_set('Cog8_5') marker_sets["Cog8_5"]=s s= marker_sets["Cog8_5"] mark=s.place_marker((633.66, 525.076, 482.118), (1, 0.5, 0), 17.1475) if "Cog8_GFPC" not in marker_sets: s=new_marker_set('Cog8_GFPC') marker_sets["Cog8_GFPC"]=s s= marker_sets["Cog8_GFPC"] mark=s.place_marker((602.35, 559.943, 417.847), (1, 0.6, 0.1), 18.4716) if "Cog8_Anch" not in marker_sets: s=new_marker_set('Cog8_Anch') marker_sets["Cog8_Anch"]=s s= marker_sets["Cog8_Anch"] mark=s.place_marker((667.147, 487.057, 548.033), (1, 0.6, 0.1), 18.4716) for k in surf_sets.keys(): chimera.openModels.add([surf_sets[k]])
7fa50c182bf54b2fbf51441eefa0f324279633e7
1431b07074b96c7baa6a43a99717da2a658424af
/test/utils/Test_Zip_Folder.py
d6ecc3e784eaacfbffe1988284d8bf95e88f557b
[ "Apache-2.0" ]
permissive
almeidam/pbx-gs-python-utils
054a7334070627bc27f682ed78c2986230d1cfab
3f8987dd2d1fc27d1d262385280d7303009f5453
refs/heads/master
2020-04-30T10:44:46.179729
2019-03-20T13:59:01
2019-03-20T13:59:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
import json from unittest import TestCase from utils.Dev import Dev from utils.Files import Files from utils.Misc import Misc from utils.Zip_Folder import Zip_Folder class Test_Zip_Folder(TestCase): def test__using_with__no_params(self): with Zip_Folder() as (zip_file): assert zip_file is None def test__using_with_params(self): target_folder = Files.current_folder() with Zip_Folder(target_folder) as (zip_file): assert Files.exists(zip_file) is True assert Files.exists(zip_file) is False
5e991e4e3dc2696c8cfb6c76836a9bc9521137d2
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/built-in/nlp/Bert-text-classification_for_PyTorch/transformers/src/transformers/models/marian/modeling_flax_marian.py
9d8b44c5f9da84470baadab2b4eafaf3dfea6fd6
[ "GPL-1.0-or-later", "Apache-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
63,778
py
# coding=utf-8 # Copyright 2021 The Marian Team Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax Marian model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import numpy as np import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from jax import lax from jax.random import PRNGKey from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import logging from .configuration_marian import MarianConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" _CONFIG_FOR_DOC = "MarianConfig" _TOKENIZER_FOR_DOC = "MarianTokenizer" MARIAN_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`MarianConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ MARIAN_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ MARIAN_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ MARIAN_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`MarianTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = np.zeros_like(input_ids) shifted_input_ids[:, 1:] = input_ids[:, :-1] shifted_input_ids[:, 0] = decoder_start_token_id shifted_input_ids = np.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Marian class FlaxMarianAttention(nn.Module): config: MarianConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->Marian class FlaxMarianEncoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Marian class FlaxMarianEncoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->Marian class FlaxMarianDecoderLayer(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxMarianAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Marian class FlaxMarianDecoderLayerCollection(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxMarianDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxMarianEncoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianEncoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale positions = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FlaxMarianDecoder(nn.Module): config: MarianConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxMarianDecoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explictly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxMarianModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.encoder = FlaxMarianEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxMarianDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxMarianPreTrainedModel(FlaxPreTrainedModel): config_class = MarianConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: MarianConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxMarianForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(MARIAN_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MarianConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Marian Model transformer outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING, ) class FlaxMarianModel(FlaxMarianPreTrainedModel): config: MarianConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxMarianModule append_call_sample_docstring( FlaxMarianModel, _TOKENIZER_FOR_DOC, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC ) class FlaxMarianMTModule(nn.Module): config: MarianConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxMarianModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += self.final_logits_bias.astype(self.dtype) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The MARIAN Model with a language modeling head. Can be used for translation.", MARIAN_START_DOCSTRING ) class FlaxMarianMTModel(FlaxMarianPreTrainedModel): module_class = FlaxMarianMTModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MarianConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxMarianAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def _adapt_logits_for_beam_search(self, logits): """This function enforces the padding token never to be generated.""" logits = logits.at[:, :, self.config.pad_token_id].set(float("-inf")) return logits def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_MARIAN_MT_DOCSTRING = """ Returns: Example: ```python >>> from transformers import MarianTokenizer, FlaxMarianMTModel >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids >>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences >>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True) >>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.* ``` """ overwrite_call_docstring( FlaxMarianMTModel, MARIAN_INPUTS_DOCSTRING + FLAX_MARIAN_MT_DOCSTRING, ) append_replace_return_docstrings(FlaxMarianMTModel, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
69acf6cb42853141e98f121c77a9d61f1f1a30cf
2c926b4847a44c7f831d47ed0160751d3248e8f4
/venv/lib/python3.8/site-packages/hubspot/automation/actions/models/single_field_dependency.py
f18ca6bf64e6504458c415ed11f6e4ab7e527d5a
[]
no_license
Women-in-Tech-Society/WITS_Site
c42cd2c9abe1b5515b80be82dc876a6c3842e42a
5dbf22f5ee5a36358f6f279af4c13d86d31653c5
refs/heads/main
2023-05-11T02:34:05.531902
2021-06-01T01:05:12
2021-06-01T01:05:12
278,658,100
0
5
null
2022-11-22T18:41:35
2020-07-10T14:43:28
Python
UTF-8
Python
false
false
6,688
py
# coding: utf-8 """ Custom Workflow Actions Create custom workflow actions # noqa: E501 The version of the OpenAPI document: v4 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.automation.actions.configuration import Configuration class SingleFieldDependency(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { "dependency_type": "str", "dependent_field_names": "list[str]", "controlling_field_name": "str", } attribute_map = { "dependency_type": "dependencyType", "dependent_field_names": "dependentFieldNames", "controlling_field_name": "controllingFieldName", } def __init__( self, dependency_type="SINGLE_FIELD", dependent_field_names=None, controlling_field_name=None, local_vars_configuration=None, ): # noqa: E501 """SingleFieldDependency - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._dependency_type = None self._dependent_field_names = None self._controlling_field_name = None self.discriminator = None self.dependency_type = dependency_type self.dependent_field_names = dependent_field_names self.controlling_field_name = controlling_field_name @property def dependency_type(self): """Gets the dependency_type of this SingleFieldDependency. # noqa: E501 :return: The dependency_type of this SingleFieldDependency. # noqa: E501 :rtype: str """ return self._dependency_type @dependency_type.setter def dependency_type(self, dependency_type): """Sets the dependency_type of this SingleFieldDependency. :param dependency_type: The dependency_type of this SingleFieldDependency. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and dependency_type is None ): # noqa: E501 raise ValueError( "Invalid value for `dependency_type`, must not be `None`" ) # noqa: E501 allowed_values = ["SINGLE_FIELD"] # noqa: E501 if ( self.local_vars_configuration.client_side_validation and dependency_type not in allowed_values ): # noqa: E501 raise ValueError( "Invalid value for `dependency_type` ({0}), must be one of {1}".format( # noqa: E501 dependency_type, allowed_values ) ) self._dependency_type = dependency_type @property def dependent_field_names(self): """Gets the dependent_field_names of this SingleFieldDependency. # noqa: E501 :return: The dependent_field_names of this SingleFieldDependency. # noqa: E501 :rtype: list[str] """ return self._dependent_field_names @dependent_field_names.setter def dependent_field_names(self, dependent_field_names): """Sets the dependent_field_names of this SingleFieldDependency. :param dependent_field_names: The dependent_field_names of this SingleFieldDependency. # noqa: E501 :type: list[str] """ if ( self.local_vars_configuration.client_side_validation and dependent_field_names is None ): # noqa: E501 raise ValueError( "Invalid value for `dependent_field_names`, must not be `None`" ) # noqa: E501 self._dependent_field_names = dependent_field_names @property def controlling_field_name(self): """Gets the controlling_field_name of this SingleFieldDependency. # noqa: E501 :return: The controlling_field_name of this SingleFieldDependency. # noqa: E501 :rtype: str """ return self._controlling_field_name @controlling_field_name.setter def controlling_field_name(self, controlling_field_name): """Sets the controlling_field_name of this SingleFieldDependency. :param controlling_field_name: The controlling_field_name of this SingleFieldDependency. # noqa: E501 :type: str """ if ( self.local_vars_configuration.client_side_validation and controlling_field_name is None ): # noqa: E501 raise ValueError( "Invalid value for `controlling_field_name`, must not be `None`" ) # noqa: E501 self._controlling_field_name = controlling_field_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SingleFieldDependency): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, SingleFieldDependency): return True return self.to_dict() != other.to_dict()
d75ab97fb9184a24f45a05f01fc83903b2dc748e
6f8aec72f983715b1dcc1e067e980a440440423a
/bruteguard/patterns/singleton.py
a9f7c0f51adf9d2ce958d11132938a6d7c1b1ffb
[ "MIT" ]
permissive
dcopm999/django-brute-guard
41cef7c1f98b275c0ef2176424c8ef1e75002fdb
e4c629d81f1cc732ddae2a43042e92ea423884b8
refs/heads/master
2023-08-02T06:16:54.219332
2021-09-30T05:45:10
2021-09-30T05:45:10
409,435,237
0
0
MIT
2021-09-30T05:45:10
2021-09-23T03:32:47
Python
UTF-8
Python
false
false
1,076
py
from typing import Dict class SingletonMeta(type): """ В Python класс Одиночка можно реализовать по-разному. Возможные способы включают себя базовый класс, декоратор, метакласс. Мы воспользуемся метаклассом, поскольку он лучше всего подходит для этой цели. """ _instances: Dict[type, type] = {} def __call__(cls, *args, **kwargs): """ Данная реализация не учитывает возможное изменение передаваемых аргументов в `__init__`. """ if cls not in cls._instances: instance = super().__call__(*args, **kwargs) cls._instances[cls] = instance return cls._instances[cls] class Singleton(object): def __new__(cls): if not hasattr(cls, "instance"): cls.instance = super(Singleton, cls).__new__(cls) return cls.instance
9bf099e4570aab4e3c827aba4cfa379cb7ad7196
a86cb1d0cc2c01ccc5b7d03d25a1b98d4f8b66ca
/day_18/crawling_03.py
08ce38608a68158041385e8770f169492843e3ce
[]
no_license
yongseongCho/python_201911
020efd812df909f6d1150c6a15a9a4fa6ee946b6
f4696fac81a101d13a95ca0ca602e6478b4d2f58
refs/heads/master
2020-09-12T12:44:46.364259
2019-12-19T13:17:08
2019-12-19T13:17:08
222,429,853
0
0
null
null
null
null
UTF-8
Python
false
false
1,321
py
# -*- coding: utf-8 -*- from bs4 import BeautifulSoup as bs html = ''' <td class="title"> <div class="tit3"> <a href="/movie/bi/mi/basic.nhn?code=181710" title="포드 V 페라리">포드 V 페라리</a> </div> </td> ''' soup = bs(html, 'html.parser') # BeautifulSoup 객체의 find 메소드 # 태그의 이름과 속성의 정보를 조합하여 # 검색하는 경우 활용 # - find 메소드는 검색 결과를 하나만 반환 # - 최초에 발견된 첫 번째 태그를 반환 # 첫 번째로 검색된 td 태그의 객체를 반환 tag = soup.find(name='td') print(f'tag -> {tag}') # 첫 번째로 검색된 a 태그의 객체를 반환 tag = soup.find(name='a') print(f'tag -> {tag}') # 첫 번째로 검색된 # class 속성이 title인 객체를 반환 tag = soup.find(attrs={'class':'title'}) print(f'tag -> {tag}') # 첫 번째로 검색된 # class 속성이 tit3인 객체를 반환 tag = soup.find(attrs={'class':'tit3'}) print(f'tag -> {tag}') # 첫 번째로 검색된 # 태그의 이름이 td이고, # class 속성이 tit3인 객체를 반환 # - 존재하지 않는 경우 None 값이 반환 tag = soup.find(name='td', attrs={'class':'tit3'}) print(f'tag -> {tag}')
90adc3801f23ed865f8ce3373066f9a2a5ee43e3
e2bd8debf59f71e2c7fabea03cc108618944b2b0
/el_pagination/paginators.py
6da5231fca53a0b0e1e586150ed4c8803e1d1b0e
[]
no_license
successar/Quizz
874c7c8656c33973d5d4f9563073b0434573a333
2244ff13568db92e3ff88156982ec44c83418199
refs/heads/master
2021-01-21T13:11:45.960397
2016-05-11T10:34:48
2016-05-11T10:34:48
53,747,315
1
1
null
2016-05-07T15:00:41
2016-03-12T18:36:34
Python
UTF-8
Python
false
false
4,359
py
"""Customized Django paginators.""" from __future__ import unicode_literals from math import ceil from django.core.paginator import ( EmptyPage, Page, PageNotAnInteger, Paginator, ) class CustomPage(Page): """Handle different number of items on the first page.""" def start_index(self): """Return the 1-based index of the first item on this page.""" paginator = self.paginator # Special case, return zero if no items. if paginator.count == 0: return 0 elif self.number == 1: return 1 return ( (self.number - 2) * paginator.per_page + paginator.first_page + 1) def end_index(self): """Return the 1-based index of the last item on this page.""" paginator = self.paginator # Special case for the last page because there can be orphans. if self.number == paginator.num_pages: return paginator.count return (self.number - 1) * paginator.per_page + paginator.first_page class BasePaginator(Paginator): """A base paginator class subclassed by the other real paginators. Handle different number of items on the first page. """ def __init__(self, object_list, per_page, **kwargs): if 'first_page' in kwargs: self.first_page = kwargs.pop('first_page') else: self.first_page = per_page super(BasePaginator, self).__init__(object_list, per_page, **kwargs) def get_current_per_page(self, number): return self.first_page if number == 1 else self.per_page class DefaultPaginator(BasePaginator): """The default paginator used by this application.""" def page(self, number): number = self.validate_number(number) if number == 1: bottom = 0 else: bottom = ((number - 2) * self.per_page + self.first_page) top = bottom + self.get_current_per_page(number) if top + self.orphans >= self.count: top = self.count return CustomPage(self.object_list[bottom:top], number, self) def _get_num_pages(self): if self._num_pages is None: if self.count == 0 and not self.allow_empty_first_page: self._num_pages = 0 else: hits = max(0, self.count - self.orphans - self.first_page) try: self._num_pages = int(ceil(hits / float(self.per_page))) + 1 except ZeroDivisionError: self._num_pages = 0 # fallback to a safe value return self._num_pages num_pages = property(_get_num_pages) class LazyPaginator(BasePaginator): """Implement lazy pagination.""" def validate_number(self, number): try: number = int(number) except ValueError: raise PageNotAnInteger('That page number is not an integer') if number < 1: raise EmptyPage('That page number is less than 1') return number def page(self, number): number = self.validate_number(number) current_per_page = self.get_current_per_page(number) if number == 1: bottom = 0 else: bottom = ((number - 2) * self.per_page + self.first_page) top = bottom + current_per_page # Retrieve more objects to check if there is a next page. objects = list(self.object_list[bottom:top + self.orphans + 1]) objects_count = len(objects) if objects_count > (current_per_page + self.orphans): # If another page is found, increase the total number of pages. self._num_pages = number + 1 # In any case, return only objects for this page. objects = objects[:current_per_page] elif (number != 1) and (objects_count <= self.orphans): raise EmptyPage('That page contains no results') else: # This is the last page. self._num_pages = number return CustomPage(objects, number, self) def _get_count(self): raise NotImplementedError count = property(_get_count) def _get_num_pages(self): return self._num_pages num_pages = property(_get_num_pages) def _get_page_range(self): raise NotImplementedError page_range = property(_get_page_range)
2a739b751d27912b4ec246d9d6c54a4b4576bb53
441ee516fa509a66eb6a6132ed0fbafeae1a06ae
/uploadf/models.py
ecd3c53d7d6062ba60639a19f3c1636e76875306
[]
no_license
Shirhussain/FileUpload
3237627020ec322d4097e757b64f9f0c64feb4e7
19d2e848d7d05fd46838f9140c0a5658bbca281a
refs/heads/master
2022-08-26T13:26:23.859084
2020-05-27T22:02:36
2020-05-27T22:02:36
264,777,859
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
from django.db import models class Book(models.Model): title = models.CharField(max_length=100) author = models.CharField(max_length=50) pdf = models.FileField(upload_to="mag/") cover = models.ImageField(upload_to="mag/cover/", null=True, blank=True) def __str__(self): return self.title def delete(self,*args, **kwargs): self.pdf.delete() self.cover.delete() super().delete(*args, **kwargs)
fbf9ee05f41aa879f6e8efe0d638a2ad5f92c86f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/53/usersdata/94/21421/submittedfiles/matriz2.py
0d65cb52f0ea2e9536be7e87278cf3364bd3fd2d
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,374
py
# -*- coding: utf-8 -*- from __future__ import division import numpy as np def soma_diagonal_principal(a): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,i] return soma def soma_diagonal_secundaria(a): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,a.shape[0]-i-1]: return soma def soma_linha(a): a=[] for i in range (0,a.shape[0],1): soma=0 for j in range (0,a.shape[1],1): soma=soma+a[i,j] a.append(soma) return c def soma_coluna(a): a=[] for j in range(0,a.shape[1],1): soma=0 for i in range(0,a.shape[0],1): soma=soma+a[i,j] a.append(soma) return d def magico(a): sdp=soma_diagonal_principal(a) sds=soma_diagonal_secundaria(a) sl=soma_linha(a) sc=soma_coluna(a) cont=0 for i in range(0,len(sl),1): if sdp==sds==sl[i]==sc[i]: cont=cont+1 if cont==len(sl): return True else: return False linhas=input('digite a quantidade de linhas') colunas=input('digite a quantidade de colunas') a=np.zeros((linhas,colunas)) for i in range (0,a.shape[0],1): for j in range(0,a.shape[1],1): a[i,j]=input('digite um elemento:') if magico(a): print ('S') else: print ('N')
5cbebc094716ebcd2abe250c57520dee3117a1d0
d7d25574246fd8585396a02ebd2ca8450e49b082
/leetcode-py/leetcode1041.py
44b0f6df2298740f5cbbebe712ae04d38cac1548
[]
no_license
cicihou/LearningProject
b6b1de2300e574835f253935d0c0ae693b194020
3a5649357e0f21cbbc5e238351300cd706d533b3
refs/heads/master
2022-12-04T06:18:14.856766
2022-11-29T08:54:16
2022-11-29T08:54:16
141,606,471
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
class Solution: def isRobotBounded(self, instructions: str) -> bool: ''' lc 657 的变种 这个问题比较 tricky,其实更接近数学问题 实际上只要判断机器人最后是否面朝北,就可以知道是不是回到了原点 关于为什么 instructions *= 4 是最小限度的解释: https://leetcode.com/problems/robot-bounded-in-circle/discuss/850437/Python-O(n)-solution-explained https://leetcode.com/problems/robot-bounded-in-circle/discuss/290915/Python-Concise-%2B-Explanation note: 这个 direc 的判断思想好好记一下,我自己写的时候直觉要用两个数组表达左右方向,其实左右方向只是周期不同 ''' direc = [(0, 1), (-1, 0), (0, -1), (1, 0)] d = 0 start = (0, 0) instructions *= 4 for ch in instructions: if ch == 'G': nx, ny = direc[d] start = start[0] + nx, start[1] + ny else: if ch == 'L': d = (d + 1) % 4 if ch == 'R': d = (d + 3) % 4 return start == (0, 0) ''' 更加 tricky 的数学解法:判断机器人是否朝北,不朝北就一定能走回来 https://leetcode.com/problems/robot-bounded-in-circle/discuss/291221/Python-O(N)-time-O(1)-space-beats-100-detailed-explanations ''' direc = [(0, 1), (-1, 0), (0, -1), (1, 0)] d = 0 start = (0, 0) for ch in instructions: if ch == 'L': d = (d+1) % 4 elif ch == 'R': d = (d+3) % 4 else: nx, ny = direc[d] start = start[0] + nx, start[1] + ny return start == (0, 0) or d != 0
460d5b12c08e5d071fb4b61103902d08761bbfd6
7239d389894613ef132edb1198a4f47cb2b65f92
/packages/python/plotly/plotly/graph_objs/histogram/_hoverlabel.py
fbe525403ca58725c86a720504b77e42a4dc7ec7
[ "MIT" ]
permissive
fast3dd13sa/plotly.py
2169417b72481ff2937b5a9ce90d426cd1cccd80
e778c6b5e6ae9665d7a5e2ddb666f43806df3959
refs/heads/master
2022-04-26T01:11:46.345181
2020-04-27T19:49:56
2020-04-27T19:49:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,798
py
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Hoverlabel(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "histogram" _path_str = "histogram.hoverlabel" _valid_props = { "align", "alignsrc", "bgcolor", "bgcolorsrc", "bordercolor", "bordercolorsrc", "font", "namelength", "namelengthsrc", } # align # ----- @property def align(self): """ Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines The 'align' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'right', 'auto'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["align"] @align.setter def align(self, val): self["align"] = val # alignsrc # -------- @property def alignsrc(self): """ Sets the source reference on Chart Studio Cloud for align . The 'alignsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["alignsrc"] @alignsrc.setter def alignsrc(self, val): self["alignsrc"] = val # bgcolor # ------- @property def bgcolor(self): """ Sets the background color of the hover labels for this trace The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bgcolorsrc # ---------- @property def bgcolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bgcolor . The 'bgcolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bgcolorsrc"] @bgcolorsrc.setter def bgcolorsrc(self, val): self["bgcolorsrc"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the border color of the hover labels for this trace. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # bordercolorsrc # -------------- @property def bordercolorsrc(self): """ Sets the source reference on Chart Studio Cloud for bordercolor . The 'bordercolorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["bordercolorsrc"] @bordercolorsrc.setter def bordercolorsrc(self, val): self["bordercolorsrc"] = val # font # ---- @property def font(self): """ Sets the font used in hover labels. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.histogram.hoverlabel.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color colorsrc Sets the source reference on Chart Studio Cloud for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for family . size sizesrc Sets the source reference on Chart Studio Cloud for size . Returns ------- plotly.graph_objs.histogram.hoverlabel.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # namelength # ---------- @property def namelength(self): """ Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. The 'namelength' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [-1, 9223372036854775807] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|numpy.ndarray """ return self["namelength"] @namelength.setter def namelength(self, val): self["namelength"] = val # namelengthsrc # ------------- @property def namelengthsrc(self): """ Sets the source reference on Chart Studio Cloud for namelength . The 'namelengthsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["namelengthsrc"] @namelengthsrc.setter def namelengthsrc(self, val): self["namelengthsrc"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . """ def __init__( self, arg=None, align=None, alignsrc=None, bgcolor=None, bgcolorsrc=None, bordercolor=None, bordercolorsrc=None, font=None, namelength=None, namelengthsrc=None, **kwargs ): """ Construct a new Hoverlabel object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.histogram.Hoverlabel` align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for align . bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for bgcolor . bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for bordercolor . font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for namelength . Returns ------- Hoverlabel """ super(Hoverlabel, self).__init__("hoverlabel") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.histogram.Hoverlabel constructor must be a dict or an instance of :class:`plotly.graph_objs.histogram.Hoverlabel`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Populate data dict with properties # ---------------------------------- _v = arg.pop("align", None) _v = align if align is not None else _v if _v is not None: self["align"] = _v _v = arg.pop("alignsrc", None) _v = alignsrc if alignsrc is not None else _v if _v is not None: self["alignsrc"] = _v _v = arg.pop("bgcolor", None) _v = bgcolor if bgcolor is not None else _v if _v is not None: self["bgcolor"] = _v _v = arg.pop("bgcolorsrc", None) _v = bgcolorsrc if bgcolorsrc is not None else _v if _v is not None: self["bgcolorsrc"] = _v _v = arg.pop("bordercolor", None) _v = bordercolor if bordercolor is not None else _v if _v is not None: self["bordercolor"] = _v _v = arg.pop("bordercolorsrc", None) _v = bordercolorsrc if bordercolorsrc is not None else _v if _v is not None: self["bordercolorsrc"] = _v _v = arg.pop("font", None) _v = font if font is not None else _v if _v is not None: self["font"] = _v _v = arg.pop("namelength", None) _v = namelength if namelength is not None else _v if _v is not None: self["namelength"] = _v _v = arg.pop("namelengthsrc", None) _v = namelengthsrc if namelengthsrc is not None else _v if _v is not None: self["namelengthsrc"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
174ab03d35f1b83c388a52575470a997450147eb
444a9480bce2035565332d4d4654244c0b5cd47b
/research/cv/centerface/dependency/centernet/src/lib/datasets/sample/multi_pose.py
5f4ff97eb3a893a418e55fcd8f149478108e8a22
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
9,604
py
""" MIT License Copyright (c) 2019 Xingyi Zhou All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import cv2 from dependency.centernet.src.lib.utils.image import color_aug from dependency.centernet.src.lib.utils.image import get_affine_transform, affine_transform from dependency.centernet.src.lib.utils.image import gaussian_radius, draw_umich_gaussian from dependency.extd.utils.augmentations import anchor_crop_image_sampling def get_border(border, size): """ Get border """ i = 1 while size - border // i <= border // i: # size > 2 * (border // i) i *= 2 return border // i def coco_box_to_bbox(box): """ (x1, y1, w, h) -> (x1, y1, x2, y2) """ bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]], dtype=np.float32) return bbox def preprocess_train(image, target, config): """ Preprocess training data """ data_rng = np.random.RandomState(123) eig_val = np.array([0.2141788, 0.01817699, 0.00341571], dtype=np.float32) eig_vec = np.array([ [-0.58752847, -0.69563484, 0.41340352], [-0.5832747, 0.00994535, -0.81221408], [-0.56089297, 0.71832671, 0.41158938] ], dtype=np.float32) mean = np.array([0.40789654, 0.44719302, 0.47026115], dtype=np.float32).reshape((1, 1, 3)) std = np.array([0.28863828, 0.27408164, 0.27809835], dtype=np.float32).reshape((1, 1, 3)) num_objs = len(target) anns = [] for each in target: ann = {} ann['bbox'] = each[0:4] ann['keypoints'] = each[4:] anns.append(ann) cv2.setNumThreads(0) img, anns = anchor_crop_image_sampling(image, anns) _, width = img.shape[0], img.shape[1] c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32) s = max(img.shape[0], img.shape[1]) * 1.0 rot = 0 flipped = False if config.rand_crop: #s = s * np.random.choice(np.arange(0.8, 1.3, 0.05)) # for 768*768 or 800* 800 s = s * np.random.choice(np.arange(0.6, 1.0, 0.05)) # for 512 * 512 border = s * np.random.choice([0.1, 0.2, 0.25]) w_border = get_border(border, img.shape[1]) # w > 2 * w_border h_border = get_border(border, img.shape[0]) # h > 2 * h_border c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border) c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border) else: sf = config.scale cf = config.shift c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) if np.random.random() < config.rotate: rf = config.rotate rot = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if np.random.random() < config.flip: # opt.flip = 0.5 flipped = True img = img[:, ::-1, :] c[0] = width - c[0] - 1 trans_input = get_affine_transform(c, s, rot, [config.input_res, config.input_res]) inp = cv2.warpAffine(img, trans_input, (config.input_res, config.input_res), flags=cv2.INTER_LINEAR) inp = (inp.astype(np.float32) / 255.) if config.color_aug: color_aug(data_rng, inp, eig_val, eig_vec) inp = (inp - mean) / std inp = inp.transpose(2, 0, 1) output_res = config.output_res num_joints = config.num_joints max_objs = config.max_objs trans_output_rot = get_affine_transform(c, s, rot, [output_res, output_res]) trans_output = get_affine_transform(c, s, 0, [output_res, output_res]) # map hm = np.zeros((config.num_classes, output_res, output_res), dtype=np.float32) hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32) wh = np.zeros((output_res, output_res, 2), dtype=np.float32) reg = np.zeros((output_res, output_res, 2), dtype=np.float32) ind = np.zeros((output_res, output_res), dtype=np.float32) # as float32, need no data_type change later reg_mask = np.zeros((max_objs), dtype=np.uint8) wight_mask = np.zeros((output_res, output_res, 2), dtype=np.float32) kps = np.zeros((output_res, output_res, num_joints * 2), dtype=np.float32) kps_mask = np.zeros((output_res, output_res, num_joints * 2), dtype=np.float32) # hp_offset = np.zeros((max_objs * num_joints, 2), dtype=np.float32) hp_ind = np.zeros((max_objs * num_joints), dtype=np.int64) hp_mask = np.zeros((max_objs * num_joints), dtype=np.int64) draw_gaussian = draw_umich_gaussian gt_det = [] for k in range(num_objs): ann = anns[k] bbox = coco_box_to_bbox(ann['bbox']) # [x,y,w,h]--[x1,y1,x2,y2] cls_id = 0 #int(ann['category_id']) - 1 pts = np.array(ann['keypoints'], np.float32).reshape(num_joints, 3) # (x,y,0/1) if flipped: bbox[[0, 2]] = width - bbox[[2, 0]] - 1 pts[:, 0] = width - pts[:, 0] - 1 for e in config.flip_idx: # flip_idx = [[0, 1], [3, 4]] pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy() bbox[:2] = affine_transform(bbox[:2], trans_output) # [0, 1] -- (x1, y1) bbox[2:] = affine_transform(bbox[2:], trans_output) # [2, 3] -- (x2, y2) bbox = np.clip(bbox, 0, output_res - 1) h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] if (h > 0 and w > 0) or (rot != 0): radius = gaussian_radius((math.ceil(h), math.ceil(w))) radius = max(0, int(radius)) ct = np.array([(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) ct_int = ct.astype(np.int32) ind[ct_int[1], ct_int[0]] = 1.0 wh[ct_int[1], ct_int[0], :] = np.log(1. * w / 4), np.log(1. * h / 4) reg[ct_int[1], ct_int[0], :] = ct[0] - ct_int[0], ct[1] - ct_int[1] reg_mask[k] = 1.0 wight_mask[ct_int[1], ct_int[0], 0] = 1 wight_mask[ct_int[1], ct_int[0], 1] = 1 # if w*h <= 20: # can get what we want sometime, but unstable # wight_mask[k] = 15 if w*h <= 40: wight_mask[ct_int[1], ct_int[0], 0] = 5 wight_mask[ct_int[1], ct_int[0], 1] = 5 if w*h <= 20: wight_mask[ct_int[1], ct_int[0], 0] = 10 wight_mask[ct_int[1], ct_int[0], 1] = 10 if w*h <= 10: wight_mask[ct_int[1], ct_int[0], 0] = 15 wight_mask[ct_int[1], ct_int[0], 1] = 15 if w*h <= 4: wight_mask[ct_int[1], ct_int[0], 0] = 0.1 wight_mask[ct_int[1], ct_int[0], 1] = 0.1 num_kpts = pts[:, 2].sum() if num_kpts == 0: hm[cls_id, ct_int[1], ct_int[0]] = 0.9999 hp_radius = gaussian_radius((math.ceil(h), math.ceil(w))) hp_radius = max(0, int(hp_radius)) for j in range(num_joints): if pts[j, 2] > 0: pts[j, :2] = affine_transform(pts[j, :2], trans_output_rot) if pts[j, 0] >= 0 and pts[j, 0] < output_res and pts[j, 1] >= 0 and pts[j, 1] < output_res: kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = pts[j, :2] - ct_int kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 1] = kps[ct_int[1], ct_int[0], j * 2 : j * 2 + 1] / w kps[ct_int[1], ct_int[0], j * 2 + 1: j * 2 + 2] = kps[ct_int[1], ct_int[0], j * 2 + 1 : j * 2 + 2] / h kps_mask[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = 1.0 pt_int = pts[j, :2].astype(np.int32) hp_offset[k * num_joints + j] = pts[j, :2] - pt_int hp_ind[k * num_joints + j] = pt_int[1] * output_res + pt_int[0] hp_mask[k * num_joints + j] = 1 draw_gaussian(hm_hp[j], pt_int, hp_radius) kps_mask[ct_int[1], ct_int[0], j * 2 : j * 2 + 2] = \ 0.0 if ann['bbox'][2] * ann['bbox'][3] <= 8.0 else 1.0 draw_gaussian(hm[cls_id], ct_int, radius) gt_det.append([ct[0] - w / 2, ct[1] - h / 2, ct[0] + w / 2, ct[1] + h / 2, 1] + pts[:, :2].reshape(num_joints * 2).tolist() + [cls_id]) return inp, hm, reg_mask, ind, wh, wight_mask, reg, kps_mask, kps
c8fe58376e632a3abf6fabe21b845ea9bfca8392
493d5df9420ef94d9c5e82acb2d163e2a8c639b7
/memo_app/forms.py
f9a73ac5260ef3004567845ec9abe38b54032eea
[]
no_license
reina0207/django
0e3d6422c137be52978526128112ebf319e0f462
c42744935043efdcc4b9f3f14641105d082d691a
refs/heads/master
2023-08-13T14:10:59.979651
2021-10-17T01:48:48
2021-10-17T01:48:48
417,983,393
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
from django import forms from .models import Memo class PostForm(forms.ModelForm): class Meta: model = Memo fields = ['content'] widgets = { 'content':forms.Textarea }
cfbbe9fd87346ac41ce6d9352492c08480e4ec86
3cdbe5f5810a035ae168f8ff01c39f58c571e428
/golf/migrations/0047_auto_20171013_0759.py
3a2a55b2b3c56503895e31b0b55d1c431628e5d5
[ "MIT" ]
permissive
kenrumer/scorekeeper
ebd6467e2ecde3da96bb08ef77a56f967cbde00e
c7f22676e84dfdf6ca3361c6ff56719f68fce31f
refs/heads/master
2021-01-22T05:01:11.370869
2018-01-12T07:13:20
2018-01-12T07:13:20
102,276,714
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-13 07:59 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('golf', '0046_auto_20171013_0021'), ] operations = [ migrations.RemoveField( model_name='round', name='tournament', ), migrations.AddField( model_name='round', name='tournament_date', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='golf.TournamentDate', verbose_name='Tournament and Date'), ), ]
d5c5779cb06cd034955a358e57ccad53113de7b0
bfc25f1ad7bfe061b57cfab82aba9d0af1453491
/data/external/repositories/141822/AXA_Telematics-master/Features/modules_janto/featureFun.py
6077221b9a1eba16c0182067048fda6cda0a3b49
[ "MIT" ]
permissive
Keesiu/meta-kaggle
77d134620ebce530d183467202cf45639d9c6ff2
87de739aba2399fd31072ee81b391f9b7a63f540
refs/heads/master
2020-03-28T00:23:10.584151
2018-12-20T19:09:50
2018-12-20T19:09:50
147,406,338
0
1
null
null
null
null
UTF-8
Python
false
false
5,821
py
# -*- coding: utf-8 -*- """ (c) 2015 @author: Janto Oellrich email: [email protected] CONTENT: Contains FEATURE EXTRACTION funtions for the AXA telematics competition. FUNCTION LIST: features: creates feature vector for one trip driverFrame: creates feature matrix containing features of all trips of one driver createFeatmat: create feature matrix for all drivers """ from load import * from modules import * from paths import * def features(trip,plotting=False): """ Extracts features of a trip dataframe. OUTPUT: np.array including features list of angles between points in deg """ # 1. duration duration = len(trip) # 2. speed: euclidean distance between adjacent points speed = np.sum(np.diff(trip,axis=0)**2,axis=1)**0.5 ### 2.1. smooth GPS data (by convolution) #### smooth_speed = movingaverage(speed,10) #smooth_speed[np.where(smooth_speed>65)[0]] = smooth_speed[np.where(smooth_speed>65)[0]-1] # head changes head = np.diff(trip,axis=0) head_x,head_y = head[:,0],head[:,1] head_quantiles_x = ss.mstats.mquantiles(head_x,np.linspace(0.02,0.99,10)) head_quantiles_y = ss.mstats.mquantiles(head_y,np.linspace(0.02,0.99,10)) # compute speed statistics mean_speed = smooth_speed.mean() max_speed = max(smooth_speed) std_speed = speed.std() # 3. acceleration smooth_accel = np.diff(smooth_speed) # 3.1 get all negative acceleration values accel_s = np.array(smooth_accel) neg_accel = accel_s[accel_s<0] pos_accel = accel_s[accel_s>0] # 3.3 average breaking strength mean_breaking = neg_accel.mean() mean_acceleration = pos_accel.mean() # summary statistics std_breaking = neg_accel.std() std_acceleration = pos_accel.std() # 4. total distance traveled total_dist = np.sum(smooth_speed,axis=0) # 5. relative standzeit (last 5% are discarded due standing) last = round(len(trip)*0.05) eps = 1 # threshold for determining standing # relative standzeit speed_red = np.array(speed)[:last] standzeit = len(speed_red[speed_red<0+eps])/float(duration) #### DRIVING STYLE REALTED FEATURES #### # 1. acceleration from stop # 1.1 get end of stops: where is speed near zero end_stops = stops(smooth_speed) n_stops = len(end_stops) # how many stops # 1.2 how does the driver accelerate from stop? end_stops = end_stops.astype(int)[:-1,1] # following interval interval = 7 # 7 seconds following end of stop # only those which dont exceed indices of trip end_stops = end_stops[end_stops+interval<len(smooth_speed)-1] n_stops = len(end_stops) if n_stops>1: anfahren = np.zeros(shape=(1,n_stops)) # initialize array for i in range(n_stops): # slope at acceleration start = end_stops[i] anfahren[0,i] = np.diff([smooth_speed[start],smooth_speed[start+interval]]) else: anfahren = np.array([0]) # compute statistics mean_anfahren = anfahren.mean() max_anfahren = anfahren.max() std_anfahren = anfahren.std() # end cell last_cell = rounddown(normalize(trip[-2:,:]),30)[-1] # determine trip is a back-home trip if last_cell[0]==0 and last_cell[1]==0: hometrip=1 else: hometrip=0 # speed quantiles speed_quantiles = ss.mstats.mquantiles(smooth_speed,np.linspace(0.02,0.99,25)) # acceleration quantiles accel_quantiles = ss.mstats.mquantiles(smooth_accel,np.linspace(0.02,0.99,25)) ################# PLOTS ################# if plotting: figure() x = range(1,len(trip)) # x values for plotting #plot(x,total_dist,label='velocity') #speed hold('on') #plot(x,accel,color='red',alpha=0.6,label='acceleration') #acceleration grid('on') xlabel('time') # plot smoothed speed data plot(smooth_speed,color='k',label='Spline Interpol') # plot smoothed accelerationd data plot(smooth_accel,'red',label='Acceleration') legend(loc='best') #legend() ###################################### return np.concatenate((speed_quantiles,accel_quantiles,head_quantiles_x,head_quantiles_y,np.array([duration,total_dist,standzeit,std_speed,std_breaking,std_acceleration,std_anfahren,mean_anfahren,max_anfahren,n_stops,hometrip]))) def driverFrame(driver,n_features=10): # initialize dataframe trips = np.zeros(shape=(200,n_features)) # load all trips at once all_trips = loadDriver(driver) counter = 0 for trip in all_trips: trips[counter,:] = features(trip,False) counter += 1 return trips def createFeatmat(): """ Computes the features of all trips and stores them in a matrix. """ driverFolder = DATA # driver IDs drivers = sorted([int(folderName) for folderName in os.listdir(driverFolder)]) print 'Creating feature matrix...' n_feat = 81 for i,driver in enumerate(drivers): if i == 0: featmat = driverFrame(driver,n_feat) else: featmat = np.vstack((featmat,driverFrame(driver,n_feat))) print '\t\t{0} trips, {1} features'.format(featmat.shape[0],featmat.shape[1]) # write to file np.save(os.path.join(FEATURES,'featurematrix1.npy')) return featmat
7b1d36e6759d21e129f1ccb505e5824290d24a31
02d8a8b44dc9f8f3c63c2f62f24ceaee7d94fd12
/apps/profile/views.py
ef24c418f7057f9700edd7b07e9c9801961c3ee3
[]
no_license
bladas/transfer
0970a4290e2e92e56853a64211ab3e79c479c0aa
54c61b7bf340af4f48c7c7162805697b0417f4d7
refs/heads/master
2023-01-04T12:45:36.784275
2019-12-08T17:34:36
2019-12-08T17:34:36
224,606,015
0
0
null
2022-11-22T04:52:01
2019-11-28T08:31:59
Python
UTF-8
Python
false
false
2,751
py
from django.shortcuts import render, redirect from django.views.generic import ListView, FormView from apps.orders.models import * from django.core import mail from django.template.loader import render_to_string conection = mail.get_connection() conection.open() class ProfileView(ListView): template_name = 'profile.html' model = Order # paginate_by = 5 def get_queryset(self): pass def get_context_data(self, **kwargs): # Call the base implementation first to get a context context = super().get_context_data(**kwargs) # Add in a QuerySet of all the books context['OrderFalse'] = Order.objects.filter(end=False).order_by('-id') context['OrderTrue'] = Order.objects.filter(end=True).order_by('-id') return context def post(self, request, *args, **kwargs): print(self.request.POST) if self.request.method == "POST": order_id = self.request.POST.get('order_id') objects = Order.objects.get(pk=order_id) print(objects.email) email = objects.email message = render_to_string('message/positive_message.html', {}) message2 = render_to_string('message/negative_message.html', {}) if self.request.POST.get('materialExampleRadios') == '1': # Order.objects.update(end=True) Order.objects.filter(pk=order_id).update(flag = 'Одобрено', end=True) with mail.get_connection() as connection: msg = mail.EmailMessage( 'Заказ трансфера по испанни', message, '[email protected]', [email], connection=connection, ) msg.content_subtype = "html" msg.send() print("Отправлено одобрение") return redirect('/') elif self.request.POST.get('materialExampleRadios') == '2': # Order.objects.update() # Order.objects.update(flag = 'Отклонено') Order.objects.filter(pk=order_id).update(flag = 'Отклонено',end=True) with mail.get_connection() as connection: msg = mail.EmailMessage( 'Заказ трансфера по испанни', message2, '[email protected]', [email], connection=connection, ) msg.content_subtype = "html" msg.send() print("Отправлено отказ") return redirect('/')
ae3dc2f7bf203c611851ed1cdfa6151cfb952a15
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-1/c748512c4c45e257bc625ccf036e18c86d69f1c8-<main>-fix.py
759edf1deb6fc8e4fa82cf7d84981a26157ee87e
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,832
py
def main(): 'Main program body.' api_key = get_api_key() parser = argparse.ArgumentParser(description='Start a new Shippable run.') parser.add_argument('project', metavar='account/project', help='Shippable account/project') target = parser.add_mutually_exclusive_group() target.add_argument('--branch', help='branch name') target.add_argument('--run', metavar='ID', help='Shippable run ID') parser.add_argument('--key', metavar='KEY', default=api_key, required=(not api_key), help='Shippable API key') parser.add_argument('--env', nargs=2, metavar=('KEY', 'VALUE'), action='append', help='environment variable to pass') if argcomplete: argcomplete.autocomplete(parser) args = parser.parse_args() headers = dict(Authorization=('apiToken %s' % args.key)) data = dict(projectFullNames=args.project) url = 'https://api.shippable.com/projects' response = requests.get(url, data, headers=headers) if (response.status_code != 200): raise Exception(response.content) result = response.json() if (len(result) != 1): raise Exception(('Received %d items instead of 1 looking for %s in:\n%s' % (len(result), args.project, json.dumps(result, indent=4, sort_keys=True)))) project_id = response.json()[0]['id'] data = dict(globalEnv=dict(((kp[0], kp[1]) for kp in (args.env or [])))) if args.branch: data['branchName'] = args.branch elif args.run: data['runId'] = args.run url = ('https://api.shippable.com/projects/%s/newBuild' % project_id) response = requests.post(url, json=data, headers=headers) if (response.status_code != 200): raise Exception(('HTTP %s: %s\n%s' % (response.status_code, response.reason, response.content))) print(json.dumps(response.json(), indent=4, sort_keys=True))
104fc669d2af9fa208c4aed1d720c01d359a05f9
e98f2775d0b7b9aca26e4ef6a3c08ca0100a1442
/tensorflow_federated/python/core/backends/mapreduce/test_utils.py
f1aeca67ea8ccadf1f89de7152c7f2c39569ec29
[ "Apache-2.0" ]
permissive
sgpohlj87/federated
54131d8e62a3df1b0bb396d11ba6e6a2e1ada11d
ca179ac0e2c0cf9c33169d13fbb44668cbab6982
refs/heads/master
2020-07-18T22:34:06.001195
2019-09-03T22:12:33
2019-09-03T22:13:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,890
py
# Lint as: python2, python3 # Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils that support unit tests in this component.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import tensorflow as tf import tensorflow_federated as tff from tensorflow_federated.python.core.api import computation_types from tensorflow_federated.python.core.api import computations from tensorflow_federated.python.core.backends.mapreduce import canonical_form from tensorflow_federated.python.core.impl.compiler import building_blocks def get_temperature_sensor_example(): """Constructs `canonical_form.CanonicalForm` for temperature sensors example. The temperature sensor example computes the fraction of sensors that report temperatures over the threshold. Returns: An instance of `canonical_form.CanonicalForm`. """ @computations.tf_computation def initialize(): return {'num_rounds': tf.constant(0)} # The state of the server is a singleton tuple containing just the integer # counter `num_rounds`. server_state_type = computation_types.NamedTupleType([('num_rounds', tf.int32) ]) @computations.tf_computation(server_state_type) def prepare(state): return {'max_temperature': 32.0 + tf.cast(state.num_rounds, tf.float32)} # The initial state of the client is a singleton tuple containing a single # float `max_temperature`, which is the threshold received from the server. client_state_type = computation_types.NamedTupleType([('max_temperature', tf.float32)]) # The client data is a sequence of floats. client_data_type = computation_types.SequenceType(tf.float32) @computations.tf_computation(client_data_type, client_state_type) def work(data, state): """See the `canonical_form.CanonicalForm` definition of `work`.""" def fn(s, x): return { 'num': s['num'] + 1, 'max': tf.maximum(s['max'], x), } reduce_result = data.reduce({ 'num': np.int32(0), 'max': np.float32(-459.67) }, fn) return ({ 'is_over': reduce_result['max'] > state.max_temperature }, { 'num_readings': reduce_result['num'] }) # The client update is a singleton tuple with a Boolean-typed `is_over`. client_update_type = computation_types.NamedTupleType([('is_over', tf.bool)]) # The accumulator for client updates is a pair of counters, one for the # number of clients over threshold, and the other for the total number of # client updates processed so far. accumulator_type = computation_types.NamedTupleType([('num_total', tf.int32), ('num_over', tf.int32)]) @computations.tf_computation def zero(): return collections.OrderedDict([('num_total', tf.constant(0)), ('num_over', tf.constant(0))]) @computations.tf_computation(accumulator_type, client_update_type) def accumulate(accumulator, update): return collections.OrderedDict([ ('num_total', accumulator.num_total + 1), ('num_over', accumulator.num_over + tf.cast(update.is_over, tf.int32)) ]) @computations.tf_computation(accumulator_type, accumulator_type) def merge(accumulator1, accumulator2): return collections.OrderedDict([ ('num_total', accumulator1.num_total + accumulator2.num_total), ('num_over', accumulator1.num_over + accumulator2.num_over) ]) @computations.tf_computation(merge.type_signature.result) def report(accumulator): return { 'ratio_over_threshold': (tf.cast(accumulator['num_over'], tf.float32) / tf.cast(accumulator['num_total'], tf.float32)) } # The type of the combined update is a singleton tuple containing a float # named `ratio_over_threshold`. combined_update_type = computation_types.NamedTupleType([ ('ratio_over_threshold', tf.float32) ]) @computations.tf_computation(server_state_type, combined_update_type) def update(state, update): return ({'num_rounds': state.num_rounds + 1}, update) return canonical_form.CanonicalForm(initialize, prepare, work, zero, accumulate, merge, report, update) def get_mnist_training_example(): """Constructs `canonical_form.CanonicalForm` for mnist training. Returns: An instance of `canonical_form.CanonicalForm`. """ model_nt = collections.namedtuple('Model', 'weights bias') server_state_nt = (collections.namedtuple('ServerState', 'model num_rounds')) # Start with a model filled with zeros, and the round counter set to zero. @computations.tf_computation def initialize(): return server_state_nt( model=model_nt(weights=tf.zeros([784, 10]), bias=tf.zeros([10])), num_rounds=tf.constant(0)) server_state_tff_type = server_state_nt( model=model_nt(weights=(tf.float32, [784, 10]), bias=(tf.float32, [10])), num_rounds=tf.int32) client_state_nt = ( collections.namedtuple('ClientState', 'model learning_rate')) # Pass the model to the client, along with a dynamically adjusted learning # rate that starts at 0.1 and decays exponentially by a factor of 0.9. @computations.tf_computation(server_state_tff_type) def prepare(state): learning_rate = 0.1 * tf.pow(0.9, tf.cast(state.num_rounds, tf.float32)) return client_state_nt(model=state.model, learning_rate=learning_rate) batch_nt = collections.namedtuple('Batch', 'x y') batch_tff_type = batch_nt(x=(tf.float32, [None, 784]), y=(tf.int32, [None])) dataset_tff_type = computation_types.SequenceType(batch_tff_type) model_tff_type = model_nt( weights=(tf.float32, [784, 10]), bias=(tf.float32, [10])) client_state_tff_type = client_state_nt( model=model_tff_type, learning_rate=tf.float32) loop_state_nt = collections.namedtuple('LoopState', 'num_examples total_loss') update_nt = collections.namedtuple('Update', 'model num_examples loss') stats_nt = collections.namedtuple('Stats', 'num_examples loss') # Train the model locally, emit the loclaly-trained model and the number of # examples as an update, and the average loss and the number of examples as # local client stats. @computations.tf_computation(dataset_tff_type, client_state_tff_type) def work(data, state): # pylint: disable=missing-docstring model_vars = model_nt( weights=tf.Variable(initial_value=state.model.weights, name='weights'), bias=tf.Variable(initial_value=state.model.bias, name='bias')) with tf.control_dependencies([tf.global_variables_initializer()]): init_model = tf.group( tf.assign(model_vars.weights, state.model.weights), tf.assign(model_vars.bias, state.model.bias)) optimizer = tf.train.GradientDescentOptimizer(state.learning_rate) @tf.function def reduce_fn(loop_state, batch): pred_y = tf.nn.softmax( tf.matmul(batch.x, model_vars.weights) + model_vars.bias) loss = -tf.reduce_mean( tf.reduce_sum( tf.one_hot(batch.y, 10) * tf.log(pred_y), reduction_indices=[1])) with tf.control_dependencies([optimizer.minimize(loss)]): return loop_state_nt( num_examples=loop_state.num_examples + 1, total_loss=loop_state.total_loss + loss) with tf.control_dependencies([init_model]): loop_state = data.reduce( loop_state_nt(num_examples=0, total_loss=np.float32(0.0)), reduce_fn) num_examples = loop_state.num_examples total_loss = loop_state.total_loss with tf.control_dependencies([num_examples, total_loss]): loss = total_loss / tf.cast(num_examples, tf.float32) return (update_nt(model=model_vars, num_examples=num_examples, loss=loss), stats_nt(num_examples=num_examples, loss=loss)) accumulator_nt = update_nt # Initialize accumulators for aggregation with zero model and zero examples. @computations.tf_computation def zero(): return accumulator_nt( model=model_nt(weights=tf.zeros([784, 10]), bias=tf.zeros([10])), num_examples=tf.constant(0), loss=tf.constant(0.0, dtype=tf.float32)) update_tff_type = update_nt( model=model_tff_type, num_examples=tf.int32, loss=tf.float32) accumulator_tff_type = update_tff_type # We add an update to an accumulator with the update's model multipled by the # number of examples, so we can compute a weighted average in the end. @computations.tf_computation(accumulator_tff_type, update_tff_type) def accumulate(accumulator, update): scaling_factor = tf.cast(update.num_examples, tf.float32) scaled_model = tf.nest.map_structure(lambda x: x * scaling_factor, update.model) return accumulator_nt( model=tf.nest.map_structure(tf.add, accumulator.model, scaled_model), num_examples=accumulator.num_examples + update.num_examples, loss=accumulator.loss + update.loss * scaling_factor) # Merging accumulators does not involve scaling. @computations.tf_computation(accumulator_tff_type, accumulator_tff_type) def merge(accumulator1, accumulator2): return accumulator_nt( model=tf.nest.map_structure(tf.add, accumulator1.model, accumulator2.model), num_examples=accumulator1.num_examples + accumulator2.num_examples, loss=accumulator1.loss + accumulator2.loss) report_nt = accumulator_nt # The result of aggregation is produced by dividing the accumulated model by # the total number of examples. Same for loss. @computations.tf_computation(accumulator_tff_type) def report(accumulator): scaling_factor = 1.0 / tf.cast(accumulator.num_examples, tf.float32) scaled_model = model_nt( weights=accumulator.model.weights * scaling_factor, bias=accumulator.model.bias * scaling_factor) return report_nt( model=scaled_model, num_examples=accumulator.num_examples, loss=accumulator.loss * scaling_factor) report_tff_type = accumulator_tff_type metrics_nt = collections.namedtuple('Metrics', 'num_rounds num_examples loss') # Pass the newly averaged model along with an incremented round counter over # to the next round, and output the counters and loss as server metrics. @computations.tf_computation(server_state_tff_type, report_tff_type) def update(state, report): num_rounds = state.num_rounds + 1 return (server_state_nt(model=report.model, num_rounds=num_rounds), metrics_nt( num_rounds=num_rounds, num_examples=report.num_examples, loss=report.loss)) return canonical_form.CanonicalForm(initialize, prepare, work, zero, accumulate, merge, report, update) def construct_example_training_comp(): """Constructs a `tff.utils.IterativeProcess` via the FL API.""" np.random.seed(0) sample_batch = collections.OrderedDict([('x', np.array([[1., 1.]], dtype=np.float32)), ('y', np.array([[0]], dtype=np.int32))]) def model_fn(): """Constructs keras model.""" keras_model = tf.keras.models.Sequential([ tf.keras.layers.Dense( 1, activation=tf.nn.softmax, kernel_initializer='zeros', input_shape=(2,)) ]) def loss_fn(y_true, y_pred): return tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred)) keras_model.compile( loss=loss_fn, optimizer=tf.keras.optimizers.SGD(learning_rate=0.01), metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]) return tff.learning.from_compiled_keras_model(keras_model, sample_batch) return tff.learning.build_federated_averaging_process(model_fn) def computation_to_building_block(comp): return building_blocks.ComputationBuildingBlock.from_proto( comp._computation_proto) # pylint: disable=protected-access
ab0a2ba6e4d3d375e56ab4ac661c7d7ddf068306
ec80f504ab4511e27c7e4afe801b8e6b8ddf6900
/examples/ex_cnn_cascade_training_face_detection/12net_detection_training.py
0f64a4a441f8628405401d4cb2a8c19f4f58f298
[ "MIT" ]
permissive
ssteveminq/deepgaze
afdc3aeb7d0b0ba247a3cf5850981f899abb3082
6df11f3799b36d7d0d45fbbb77be21eec456ddd4
refs/heads/master
2021-01-25T10:06:11.775804
2019-04-11T18:18:14
2019-04-11T18:18:14
123,338,160
0
1
MIT
2018-02-28T20:23:47
2018-02-28T20:23:47
null
UTF-8
Python
false
false
12,414
py
#!/usr/bin/env python # The MIT License (MIT) # Copyright (c) 2017 Massimiliano Patacchiola # https://mpatacchiola.github.io # https://mpatacchiola.github.io/blog/ # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle import cv2 # to visualize a preview import datetime import os def main(): # Load the standard file image_size = 12 batch_size = 64 patch_size = 5 num_labels = 2 num_channels = 3 # colour tot_epochs = 10000 # epochs # Change this path based on your datasets location pickle_file_positive = "./positive_dataset_12net_98452.pickle" pickle_file_negative = "./negative_dataset_12net_198081.pickle" with open(pickle_file_positive, 'rb') as f: save = pickle.load(f) train_dataset_positive = save['training_dataset'] train_label_positive = save['training_label'] del save # hint to help gc free up memory # Here we take only part of the train and test set print('Training set', train_dataset_positive.shape, train_label_positive.shape) with open(pickle_file_negative, 'rb') as f: save = pickle.load(f) train_dataset_negative = save['training_dataset'] train_label_negative = save['training_label'] del save # hint to help gc free up memory # Here we take only part of the train and test set print('Training set', train_dataset_negative.shape, train_label_negative.shape) # Creating the test set taking the first 100 images test_dataset = np.concatenate((train_dataset_positive[0:100, :, :], train_dataset_negative[0:100, :, :]), axis=0) test_label = np.concatenate((train_label_positive[0:100, :], train_label_negative[0:100, :]), axis=0) train_dataset_positive = train_dataset_positive[100:, :, :] train_dataset_negative = train_dataset_negative[100:, :, :] train_label_positive = train_label_positive[100:, :] train_label_negative = train_label_negative[100:, :] #Estimating the number of elements in both datasets total_positive = train_dataset_positive.shape[0] total_negative = train_dataset_negative.shape[0] # Normalisation #train_dataset -= 127 #validation_dataset -= 127 #test_dataset -= 127 #train_dataset /= 255 #validation_dataset /= 255 #test_dataset /= 255 graph = tf.Graph() with graph.as_default(): tf_initializer = None #tf.random_normal_initializer() # Input data. tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_test_dataset = tf.placeholder(tf.float32, shape=(None, image_size, image_size, num_channels)) # Conv layer # [patch_size, patch_size, num_channels, depth] conv1_weights = tf.get_variable("conv1_12d_w", [3, 3, num_channels, 16], initializer=tf_initializer) conv1_biases = tf.Variable(tf.zeros([16]), name="conv1_12d_b") # Dense layer # [ 5*5 * previous_layer_out , num_hidden] wd1 # after pooling the 12x12 image is reduced to size 6x6 dense1_weights = tf.get_variable("dense1_12d_w", [6 * 6 * 16, 16], initializer=tf_initializer) dense1_biases = tf.Variable(tf.random_normal(shape=[16]), name="dense1_12d_b") # Output layer layer_out_weights = tf.get_variable("out_12d_w", [16, num_labels], initializer=tf_initializer) layer_out_biases = tf.Variable(tf.random_normal(shape=[num_labels]), name="out_12d_b") # dropout (keep probability) keep_prob = tf.placeholder(tf.float32) # Model. def model(data, _dropout=1.0): X = tf.reshape(data, shape=[-1, image_size, image_size, num_channels]) print("SHAPE X: " + str(X.get_shape())) # Convolution Layer 1 conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(X, conv1_weights, strides=[1, 1, 1, 1], padding='SAME'), conv1_biases)) print("SHAPE conv1: " + str(conv1.get_shape())) # Max Pooling (down-sampling) pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME') print("SHAPE pool1: " + str(pool1.get_shape())) # Apply Normalization norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75) # Apply Dropout norm1 = tf.nn.dropout(norm1, _dropout) # Fully connected layer dense1 = tf.reshape(norm1, [-1, dense1_weights.get_shape().as_list()[0]]) # Reshape conv3 print("SHAPE dense1: " + str(dense1.get_shape())) dense1 = tf.nn.relu(tf.matmul(dense1, dense1_weights) + dense1_biases) # Relu dense1 = tf.nn.dropout(dense1, _dropout) # Output layer out = tf.matmul(dense1, layer_out_weights) + layer_out_biases print("SHAPE out: " + str(out.get_shape())) # Return the output with logits return out # Training computation. logits = model(tf_train_dataset, keep_prob) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) #- Adding the regularization terms to the loss #beta = 5e-4 #it was: 5e-4 = 0.0005 #loss += (beta * tf.nn.l2_loss(conv1_weights)) #loss += (beta * tf.nn.l2_loss(dense1_weights)) #loss += (beta * tf.nn.l2_loss(layer_out_weights)) loss_summ = tf.summary.scalar("loss", loss) # Find the batch accuracy and save it in summary accuracy = tf.equal(tf.argmax(tf_train_labels, 1), tf.argmax(logits, 1)) accuracy = tf.reduce_mean(tf.cast(accuracy, tf.float32)) accuracy_summary = tf.summary.scalar("accuracy", accuracy) # Optimizer. # learning_rate = 0.001 #it was: 0.001 global_step = tf.Variable(0, trainable=False) # count the number of steps taken. #learning_rate = tf.train.exponential_decay(0.000098, global_step, 15000, 0.1, staircase=True) #lrate_summ = tf.scalar_summary("learning rate", learning_rate) #optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) #optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss, global_step=global_step) #optimizer = tf.train.RMSPropOptimizer(learning_rate=0.001, decay=0.9, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp').minimize(loss, global_step=global_step) #optimizer = tf.train.AdagradOptimizer(learning_rate=0.00625).minimize(loss, global_step=global_step) #optimizer = tf.train.MomentumOptimizer(learning_rate=0.0001, momentum=0.95).minimize(loss, global_step=global_step) optimizer = tf.train.AdadeltaOptimizer(learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False, name='Adadelta').minimize(loss, global_step=global_step) # Predictions for the training, validation, and test data. train_prediction = logits # Call test_prediction and pass the test inputs to have test accuracy test_prediction = model(tf_test_dataset) _, test_accuracy = tf.metrics.accuracy(labels=tf.argmax(test_label, 1), predictions=tf.argmax(test_prediction, 1)) _, test_recall = tf.metrics.recall(labels=tf.argmax(test_label, 1), predictions=tf.argmax(test_prediction, 1)) _, test_precision = tf.metrics.precision(labels=tf.argmax(test_label, 1), predictions=tf.argmax(test_prediction, 1)) _, test_false_positives = tf.metrics.false_positives(labels=tf.argmax(test_label, 1), predictions=tf.argmax(test_prediction, 1)) _, test_false_negatives = tf.metrics.false_negatives(labels=tf.argmax(test_label, 1), predictions=tf.argmax(test_prediction, 1)) # Save all the variables saver = tf.train.Saver() with tf.Session(graph=graph) as session: # Summary definition merged_summaries = tf.summary.merge_all() now = datetime.datetime.now() log_path = "./logs/log_12net_detection_" + str(now.hour) + str(now.minute) + str(now.second) writer_summaries = tf.summary.FileWriter(log_path, session.graph) tf.global_variables_initializer().run() tf.local_variables_initializer().run() # tf.initialize_all_variables().run() print('Initialized') for step in range(tot_epochs): # Pick random images in euqal number from positive and negative dataset quantity_positive = int(batch_size/2) quantity_negative = batch_size - quantity_positive indices_positive = np.random.randint(total_positive, size=quantity_positive) indices_negative = np.random.randint(total_negative, size=quantity_negative) batch_data = np.concatenate((np.take(train_dataset_positive, indices_positive, axis=0), np.take(train_dataset_negative, indices_negative, axis=0))) batch_labels = np.concatenate((np.take(train_label_positive, indices_positive, axis=0), np.take(train_label_negative, indices_negative, axis=0))) feed_dict = {tf_train_dataset: batch_data, tf_train_labels: batch_labels, keep_prob: 1.0} _, acc, l, predictions, my_summary = session.run([optimizer, accuracy, loss, train_prediction, merged_summaries], feed_dict=feed_dict) writer_summaries.add_summary(my_summary, step) if (step % 100 == 0): print("") print("Loss at step: ", step, " is " , l) print("Global Step: " + str(global_step.eval()) + " of " + str(tot_epochs)) #print("Learning Rate: " + str(learning_rate.eval())) print("Minibatch size: " + str(batch_labels.shape)) print("Accuracy: " + str(acc)) print("") # Save and test the network checkpoint_path = "./checkpoints/12net_detection_" + str(now.hour) + str(now.minute) + str(now.second) if not os.path.exists(checkpoint_path): os.makedirs(checkpoint_path) saver.save(session, checkpoint_path + "/cnn_12net_detection" , global_step=step) # save the session feed_dict = {tf_test_dataset: test_dataset, keep_prob: 1.0} test_acc, test_rec, test_prec, test_fp, test_fn = session.run([test_accuracy, test_recall, test_precision, test_false_positives, test_false_negatives], feed_dict=feed_dict) print("# Tot. images tested: " + str(test_dataset.shape[0])) print("# Test accuracy: " + str(test_acc)) print("# Test recall: " + str(test_rec)) print("# Test precision: " + str(test_prec)) print("# Test false positives: " + str(test_fp)) print("# Test false negatives: " + str(test_fn)) print("") if __name__ == "__main__": main()
4598001c5648f08752ef2002d4ba2a58a4b810b4
94e06376dc265c7bf1a2e51acb9714d02b21503a
/python打卡/day9_数字.py
0303d4bab06f6795e5925726a39bafdecf382745
[]
no_license
zhangquanliang/python
4b2db32bed4e4746c8c49c309563f456dc41c6be
f45ef96e385b1cd6c5dfb53bf81042d953a9ec46
refs/heads/master
2021-04-26T23:30:12.217397
2019-03-20T06:18:14
2019-03-20T06:18:14
124,005,916
11
2
null
null
null
null
UTF-8
Python
false
false
640
py
# -*- coding: utf-8 -*- # 1. 内嵌整数列表中的指相加 def nested_sum(t): a = 0 for x in t: for y in x: a += y print(a) # 2. 接受数字列表,返回累计和 def cumsum(t): list = [] a = 0 for x in t: a += x list.append(a) print(list) # 3. 接受一个列表,返回新列表,包含除第一个和最后一个元素外的所有值 def middle(t): t.pop(0) t.pop() print(t) # t = [1, 2, 3, 4, 1212, 121] # middle(t) # 4. 斐波纳契数列 a, b = 0, 1 for i in range(1, 13): print('第%s个月:%s对兔子' % (i, b)) a, b = b, a + b
68107dada2e7dd7dc4eabd477e86ea95d7540946
e719bcfde03c0be2c84a7f1e13d12b80fa00ea84
/session2/draw_2.py
0780ebd4934bca50609387bc0e008130c608d56c
[]
no_license
minhduc9699/phamMinhDuc-D4E17
53b80e53ff175f0357fb01c9876aa12b343ca060
363b61745a206f33c5cfa3532a5abd920fcf4ad1
refs/heads/master
2023-01-22T08:25:14.210959
2020-12-05T04:53:38
2020-12-05T04:53:38
308,668,542
0
1
null
null
null
null
UTF-8
Python
false
false
154
py
from turtle import * speed(-1) for edge in range(3, 11): print(edge) for i in range(edge): forward(100) left(360/edge) mainloop()
b53a79653da1f30b4346d7cee4b0c1ab43348665
74167e4c1061b454d1ab1c2140a1fc2f4540ee2e
/accounts/models.py
fc5a140def7581969baf9c6413966fd5a150517c
[]
no_license
Pagante/ProjectCart
f72a1a611445f66c1320c0c21e1832d3ecf67a2a
4f065a02a8235c6744768328af5c1e103321ed44
refs/heads/main
2023-06-05T23:53:10.316222
2021-06-27T21:47:28
2021-06-27T21:47:28
380,840,906
0
0
null
null
null
null
UTF-8
Python
false
false
2,861
py
from django.db import models from django.contrib.auth.models import BaseUserManager,AbstractBaseUser # Create your models here. class MyAccountManager(BaseUserManager): def create_user(self, first_name, last_name, username, email, password=None): if not 'email': raise ValueError('User must have an email') if not username: raise ValueError('User must have a username') user = self.model( email = self.normalize_email(email), username = username, first_name = first_name, last_name = last_name ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, first_name, last_name, username, email, password): user = self.create_user ( email = self.normalize_email(email), username = username, password= password, first_name= first_name, last_name= last_name, ) user.is_admin = True user.is_active = True user.is_staff = True user.is_superadmin = True user.save(using= self._db) return user class Account(AbstractBaseUser): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) username = models.CharField(max_length=100, unique=True) email = models.CharField(max_length=100, unique=100) phone_number = models.CharField(max_length=50) # required Field date_joined = models.DateTimeField(auto_now_add=True) last_login = models.DateTimeField(auto_now_add=True) is_admin = models.BooleanField(default=False) is_staff = models.BooleanField(default=False) is_active = models.BooleanField(default=False) is_superadmin = models.BooleanField(default=False) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username', 'first_name', 'last_name'] objects = MyAccountManager() def fullName(self): return f"{self.first_name} {self.last_name}" def __str__(self): return self.email def has_perm(self, perm, obj=None): return self.is_admin def has_module_perms(self, obj_module): return True class UserProfile(models.Model): user = models.OneToOneField(Account, on_delete=models.CASCADE) address_line_1 = models.CharField(blank=True, max_length=100) address_line_2 = models.CharField(blank=True, max_length=100) profile_picture = models.ImageField(upload_to='userprofile', blank=True) city = models.CharField(blank=True, max_length=50) state = models.CharField(blank=True, max_length=50) country = models.CharField(blank=True, max_length=50) def __str__(self): return self.user.first_name def fullAddress(self): return f'{self.address_line_1} {self.address_line_2}'
cd46193f2107a70f24bf853229b251e11f09edd3
5989e503a733e8b29f4c502008446a75c2b43ff8
/src/aids/migrations/0080_auto_20191104_1028.py
e61367fa67ca3885c3616e240f880421e5dac253
[]
no_license
samuelpath/aides-territoires
399a6a7b0607ef5a8d2b327247446b239f5b1a42
5793bd49d7157a34e08c29e56a46e1e3ead0651f
refs/heads/master
2022-12-20T14:35:18.671563
2020-08-21T08:00:33
2020-08-21T08:00:33
288,424,578
0
0
null
2020-08-18T10:27:17
2020-08-18T10:27:16
null
UTF-8
Python
false
false
389
py
# Generated by Django 2.2.5 on 2019-11-04 09:28 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('aids', '0079_remove_aid_subvention_rate'), ] operations = [ migrations.RenameField( model_name='aid', old_name='subvention_rate_range', new_name='subvention_rate', ), ]
1e838cff1c3206fca261549ede085035a1794d7c
b301f5d799fb973f12ff457c94a3fb54f5c6fd6b
/pages/views.py
56e3848a96f39428eb0488fb6874d562f048fe72
[]
no_license
MahmudulHassan5809/DjangoHousingSellingProject
ca3a8b9e3d83dd87532b33295e56e50ba7e9576d
82d02e04fe2a0cd510f160ad4159f40f4e5779d3
refs/heads/master
2020-04-09T08:01:41.092034
2018-12-03T11:24:13
2018-12-03T11:24:13
160,179,800
1
0
null
null
null
null
UTF-8
Python
false
false
852
py
from django.shortcuts import render,redirect from django.http import HttpResponse from listings.choices import price_choices , bedroom_choices , state_choices from listings.models import Listing from realtors.models import Realtor # Create your views here. def index(request): #return HttpResponse('Hello'); listings = Listing.objects.order_by('-list_date').filter(is_published=True); return render(request , 'pages/index.html',{'listings' : listings , 'state_choices' : state_choices, 'bedroom_choices' : bedroom_choices, 'price_choices' : price_choices, }) def about(request): realtors = Realtor.objects.order_by('-hire_date') mvp_realtors = Realtor.objects.all().filter(is_mvp=True) context = { 'realtors' : realtors, 'mvp_realtors' : mvp_realtors } return render(request , 'pages/about.html',context)
fb58a27373295fd23e4e441d7160e90f57d8c58a
9df2fb0bc59ab44f026b0a2f5ef50c72b2fb2ceb
/sdk/paloaltonetworks/azure-mgmt-paloaltonetworksngfw/generated_samples/local_rulestacks_create_or_update_minimum_set_gen.py
eb4b8b0451f4477d85ec725f4dfa1603454d7a23
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
openapi-env-test/azure-sdk-for-python
b334a2b65eeabcf9b7673879a621abb9be43b0f6
f61090e96094cfd4f43650be1a53425736bd8985
refs/heads/main
2023-08-30T14:22:14.300080
2023-06-08T02:53:04
2023-06-08T02:53:04
222,384,897
1
0
MIT
2023-09-08T08:38:48
2019-11-18T07:09:24
Python
UTF-8
Python
false
false
1,765
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.paloaltonetworksngfw import PaloAltoNetworksNgfwMgmtClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-paloaltonetworksngfw # USAGE python local_rulestacks_create_or_update_minimum_set_gen.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = PaloAltoNetworksNgfwMgmtClient( credential=DefaultAzureCredential(), subscription_id="2bf4a339-294d-4c25-b0b2-ef649e9f5c27", ) response = client.local_rulestacks.begin_create_or_update( resource_group_name="rgopenapi", local_rulestack_name="lrs1", resource={"location": "eastus", "properties": {}}, ).result() print(response) # x-ms-original-file: specification/paloaltonetworks/resource-manager/PaloAltoNetworks.Cloudngfw/preview/2022-08-29-preview/examples/LocalRulestacks_CreateOrUpdate_MinimumSet_Gen.json if __name__ == "__main__": main()
a94e1bb1dc306e6a03ea0107933cb542bdaea003
50671b3e4e8ed7e9702c9941bb71fdbf92dffbe6
/src/cogs/events.py
0b28700d34057dbeef8be93aeb3c40ea8a08314b
[]
no_license
pikoUsername/Emulator
3dd67d0d3934c2ec9283b9b52edebec31c654326
96e6563c7cbcea051e4e41a377d917a2a9f5528a
refs/heads/main
2023-02-27T22:42:43.154987
2021-02-09T14:51:56
2021-02-09T14:51:56
321,045,486
0
0
null
null
null
null
UTF-8
Python
false
false
3,199
py
import os import sys from discord.ext import commands from discord.ext.commands import errors import discord from loguru import logger from ..models import Guild from ..utils.notify import notify_all_owners class DiscordEvents(commands.Cog, name="Events"): __slots__ = "bot", def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_ready(self): if os.environ.get("notify_admins"): await notify_all_owners(self.bot, text="BOT STARTED") @commands.Cog.listener() async def on_guild_join(self, guild: discord.Guild): g = await Guild.query.where(guild.id == Guild.guild_id).gino.first() g.add_guild(guild) @commands.Cog.listener() async def on_guild_remove(self, guild: discord.Guild): await self.bot.fm.delete_all_guild_files(guild.id) g = await Guild.get_guild(guild.id) await g.delete() logger.info("leaved and deleted thats guild folder") @commands.Cog.listener() async def on_command_error(self, ctx, err): if isinstance(err, errors.MissingRequiredArgument) or isinstance(err, errors.BadArgument): helper = str(ctx.invoked_subcommand) if ctx.invoked_subcommand else str(ctx.command) await ctx.send_help(helper) elif isinstance(err, errors.CommandInvokeError): logger.exception(f"{err}, {sys.exc_info()}") if "2000 or fewer" in str(err) and len(ctx.message.clean_content) > 1900: return await ctx.send( "You attempted to make the command display more than 2,000 characters...\n" "Both error and command will be ignored." ) await ctx.send(embed=discord.Embed( title="Error on processing Command", description=f"```{err}```", ), delete_after=30) elif isinstance(err, errors.MissingPermissions): await ctx.send(embed=discord.Embed( title=f"Fail {self.bot.X_EMOJI}", description="Permission ERROR")) elif isinstance(err, errors.CheckFailure): await ctx.send(embed=discord.Embed( title=f"Fail {self.bot.X_EMOJI}", description="You cant made this")) elif isinstance(err, errors.MaxConcurrencyReached): await ctx.send( "You've reached max capacity of command usage at once, please finish the previous one...", delete_after=30) elif isinstance(err, errors.CommandOnCooldown): await ctx.send( f"This command is on cool down... try again in {err.retry_after:.2f} seconds.", delete_after=30) elif isinstance(err, errors.CommandNotFound): pass elif isinstance(err, errors.NoPrivateMessage): await ctx.send( embed=discord.Embed(title="Private message Not work", description="Bot work only in guild channels")) else: logger.exception(err) await self.bot.send_error(ctx, err) def setup(bot): bot.add_cog(DiscordEvents(bot))
6fc2e9842a862e151818555c40bd68c1fe986ae7
aa5d98396184ab9dc479075b37a3664c385de027
/tests/selenium/breadcrumb_test.py
8ae1041e04352b0b8d70180fdda1d4cfface3872
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
uk-gov-mirror/ONSdigital.sbr-ui
c6a66cd6982e9e98a991eadbb8cef0f1fb6ba2bf
48bbfdc59e393dd4d2d008b8414ac96d2e2be44f
refs/heads/master
2021-10-12T00:02:34.160448
2018-10-17T14:59:04
2018-10-17T14:59:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,910
py
import unittest from selenium import webdriver from tests.helper_methods import create_selenium_config from tests.constants import BASE_URL, SEARCH_URL from tests.constants import ENTERPRISE, LOCAL_UNIT, REPORTING_UNIT, LEGAL_UNIT, COMPANY_HOUSE, VALUE_ADDED_TAX, PAY_AS_YOU_EARN from tests.constants import BREADCRUMB_SEARCH_ID, BREADCRUMB_SELECTED_ID, BREADCRUMB_ENT_ID, BREADCRUMB_LEU_ID from tests.constants import SEARCH_BUTTON_ID, PERIOD_INPUT_ID, UNIT_TYPE_INPUT_ID from tests.constants import USERNAME_INPUT_ID, PASSWORD_INPUT_ID, SEARCH_INPUT_ID, LOGIN_BUTTON_ID, LOGOUT_BUTTON_ID from tests.constants import ERN, UBRN, RURN, LURN, VATREF, PAYEREF, CRN, PERIOD from tests.constants import ADMIN_USERNAME, ADMIN_PASSWORD class BreadcrumbTest(unittest.TestCase): """ The breadcrumb is present on each unit page and allows navigation up the unit hierarchy. TODO: test for when a breadcrumb link returns 404/500 """ def setUp(self): self.options = create_selenium_config() self.driver = webdriver.Firefox(firefox_options=self.options) self.driver.get(BASE_URL) self.driver.find_element_by_id(USERNAME_INPUT_ID).send_keys(ADMIN_USERNAME) self.driver.find_element_by_id(PASSWORD_INPUT_ID).send_keys(ADMIN_PASSWORD) self.driver.find_element_by_id(LOGIN_BUTTON_ID).click() def tearDown(self): self.driver.find_element_by_id(LOGOUT_BUTTON_ID).click() self.driver.quit() def search_by_unit_id_type_period(self, unit_id, unit_type, period): self.driver.find_element_by_id(SEARCH_INPUT_ID).send_keys(unit_id) self.driver.find_element_by_id(UNIT_TYPE_INPUT_ID).send_keys(unit_type) self.driver.find_element_by_id(PERIOD_INPUT_ID).send_keys(period) self.driver.find_element_by_id(SEARCH_BUTTON_ID).click() def assert_breadcrumb_item_text_and_url(self, breadcrumb_id, unit_id, unit_type, period): breadcrumb_item = self.driver.find_element_by_id(breadcrumb_id) self.assertEqual(breadcrumb_item.text, f'{unit_type} - {unit_id}') target_url = f'{SEARCH_URL}/periods/{period}/types/{unit_type}/units/{unit_id}' self.assertEqual(breadcrumb_item.get_attribute('href'), target_url) def assert_current_breadcrumb_item_text(self, expected_text): current_item_text = self.driver.find_element_by_id(BREADCRUMB_SELECTED_ID).text self.assertEqual(current_item_text, expected_text) def assert_breadcrumb_search_href(self): href = self.driver.find_element_by_id(BREADCRUMB_SEARCH_ID).get_attribute('href') self.assertEqual(href, SEARCH_URL) def test_ent_breadcrumb(self): self.search_by_unit_id_type_period(ERN, ENTERPRISE, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{ENTERPRISE}/units/{ERN}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'ENT - {ERN}') def test_lou_breadcrumb(self): self.search_by_unit_id_type_period(LURN, LOCAL_UNIT, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{LOCAL_UNIT}/units/{LURN}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'LOU - {LURN}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) def test_reu_breadcrumb(self): self.search_by_unit_id_type_period(RURN, REPORTING_UNIT, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{REPORTING_UNIT}/units/{RURN}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'REU - {RURN}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) def test_leu_breadcrumb(self): self.search_by_unit_id_type_period(UBRN, LEGAL_UNIT, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{LEGAL_UNIT}/units/{UBRN}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'LEU - {UBRN}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) def test_ch_breadcrumb(self): self.search_by_unit_id_type_period(CRN, COMPANY_HOUSE, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{COMPANY_HOUSE}/units/{CRN}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'CRN - {CRN}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) self.assert_breadcrumb_item_text_and_url(BREADCRUMB_LEU_ID, UBRN, LEGAL_UNIT, PERIOD) def test_vat_breadcrumb(self): self.search_by_unit_id_type_period(VATREF, VALUE_ADDED_TAX, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{VALUE_ADDED_TAX}/units/{VATREF}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'VAT - {VATREF}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) self.assert_breadcrumb_item_text_and_url(BREADCRUMB_LEU_ID, UBRN, LEGAL_UNIT, PERIOD) def test_paye_breadcrumb(self): self.search_by_unit_id_type_period(PAYEREF, PAY_AS_YOU_EARN, '201810') self.assertEqual(self.driver.current_url, f'{SEARCH_URL}/periods/{PERIOD}/types/{PAY_AS_YOU_EARN}/units/{PAYEREF}') self.assert_breadcrumb_search_href() self.assert_current_breadcrumb_item_text(f'PAYE - {PAYEREF}') self.assert_breadcrumb_item_text_and_url(BREADCRUMB_ENT_ID, ERN, ENTERPRISE, PERIOD) self.assert_breadcrumb_item_text_and_url(BREADCRUMB_LEU_ID, UBRN, LEGAL_UNIT, PERIOD) if __name__ == '__main__': unittest.main()
40fec2d844ff14fbb903f58d6e96f8e46ad3fe8c
f83934dd60d4961848c0a86f6d7fbe07b79a1d63
/glumpy/graphics/collections/__init__.py
c497f742a32eb93341c0ab317f56e2fc37a848d5
[]
no_license
brianholland/glumpy
2a31e2f5fd039d1debb30dd010ad36c458f329cf
a691082385e02db9b1d461847b9e36d8534630fa
refs/heads/master
2020-12-25T21:43:58.743259
2015-11-30T11:04:46
2015-11-30T11:04:46
46,670,630
0
0
null
2015-11-30T11:04:46
2015-11-22T17:10:24
Python
UTF-8
Python
false
false
951
py
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2014, Nicolas P. Rougier. All rights reserved. # Distributed under the terms of the new BSD License. # ----------------------------------------------------------------------------- from . collection import Collection from . base_collection import BaseCollection from . path_collection import PathCollection from . point_collection import PointCollection from . glyph_collection import GlyphCollection from . marker_collection import MarkerCollection from . polygon_collection import PolygonCollection from . segment_collection import SegmentCollection from . triangle_collection import TriangleCollection from . raw_path_collection import RawPathCollection from . raw_triangle_collection import RawTriangleCollection from . agg_path_collection import AggPathCollection from . agg_fast_path_collection import AggFastPathCollection
57e0b43bd157f5140c109b02d53b65caeebdb426
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-7747.py
21059574743466a564b66ececa453e5f67f1165b
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,474
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: $FuncBody # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
c71de68d5d8e1ed94307b087f795dddfc08ddc00
7b8b03b7818a1fea58f174ff8c18b43578a6233f
/tests/core/test_models.py
b6c868d65b928963cc11299b613fc8c6b8eeec36
[]
no_license
defance/coins_ph
400e4316a2d9a63752b21190ca7f1b0543b85343
2f0d3038f5dcca4c0f8711a1b095c6078799eb0b
refs/heads/master
2020-04-30T19:15:58.398453
2019-03-21T22:30:16
2019-03-21T22:30:16
177,033,466
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
from django.test import TestCase from tests.factories import AccountFactory class TestTransactionAccount(TestCase): def test_update_balance(self): account = AccountFactory(balance=10) account.update_balance(42) account.refresh_from_db() self.assertEquals(account.balance, 52)
3188d90a661c2d9b856f8af75351df705de6d1bf
26762585d08aa774af9f104472c97a8c7a9df181
/generators/v4d_super_station_2.py
1ff715d9c377df692ba6d0c4d8295bd62762d559
[]
no_license
OxfordSKA/SKA1-low-layouts
379fbe5c056dc73706b1073f09e485880ecfa180
49e3ba2af4a447be38af03dde1d11898e3f8300b
refs/heads/master
2021-01-17T17:10:41.469929
2016-08-12T10:48:24
2016-08-12T10:48:24
47,823,977
1
1
null
null
null
null
UTF-8
Python
false
false
11,178
py
"""Module to generate super-stations for trail v4d spec. layouts""" # -*- coding: utf-8 -*- from __future__ import print_function import matplotlib.pyplot as pyplot import numpy from numpy.random import rand import shutil import os from os.path import join from math import radians def rotate_coords(x, y, angle): """Rotate array of x, y coordinates counter clockwise by angle, in deg.""" xr = x * numpy.cos(radians(angle)) - y * numpy.sin(radians(angle)) yr = x * numpy.sin(radians(angle)) + y * numpy.cos(radians(angle)) return xr, yr def gridgen(num_points, diameter, min_dist, max_trials=1000): def grid_position(x, y, scale, grid_size): jx = int(round(x * scale)) + grid_size / 2 jy = int(round(y * scale)) + grid_size / 2 return jx, jy def get_trail_position(r): x = -r + 2.0 * r * rand() y = -r + 2.0 * r * rand() return x, y # Grid size and scaling onto the grid grid_size = min(100, int(round(float(diameter) / min_dist))) grid_cell = float(diameter) / grid_size # Grid sector cell size scale = 1.0 / grid_cell # Scaling onto the sector grid. check_width = 1 r = diameter / 2.0 # Radius r_sq = r**2 # Radius, squared min_dist_sq = min_dist**2 # minimum distance, squared r_ant = min_dist / 2.0 # Pre-allocate coordinate arrays x = numpy.zeros(num_points) y = numpy.zeros(num_points) # Grid meta-data grid_i_start = numpy.zeros((grid_size, grid_size), dtype='i8') grid_i_end = numpy.zeros((grid_size, grid_size), dtype='i8') grid_count = numpy.zeros((grid_size, grid_size), dtype='i8') grid_i_next = numpy.zeros(num_points, dtype='i8') n = num_points n_req = num_points num_tries = 0 try_count = list() for j in range(n_req): done = False while not done: # Generate a trail position xt, yt = get_trail_position(r) rt = (xt**2 + yt**2)**0.5 # Check if the point is inside the diameter. if rt + r_ant > r: num_tries += 1 # Check if min distance is met. else: jx, jy = grid_position(xt, yt, scale, grid_size) y0 = max(0, jy - check_width) y1 = min(grid_size, jy + check_width + 1) x0 = max(0, jx - check_width) x1 = min(grid_size, jx + check_width + 1) d_min = diameter # Set initial min to diameter. for ky in range(y0, y1): for kx in range(x0, x1): if grid_count[kx, ky] > 0: kh1 = grid_i_start[kx, ky] for kh in range(grid_count[kx, ky]): dx = xt - x[kh1] dy = yt - y[kh1] d_min = min((dx**2 + dy**2)**0.5, d_min) kh1 = grid_i_next[kh1] if d_min >= min_dist: x[j] = xt y[j] = yt if grid_count[jx, jy] == 0: grid_i_start[jx, jy] = j else: grid_i_next[grid_i_end[jx, jy]] = j grid_i_end[jx, jy] = j grid_count[jx, jy] += 1 try_count.append(num_tries) num_tries = 0 done = True else: num_tries += 1 if num_tries >= max_trials: n = j - 1 done = True if num_tries >= max_trials: break if n < n_req: x = x[0:n] y = y[0:n] return x, y, try_count def gen_super_stations(): """Generation 85 super-stations by rotation""" # ========================================================================= num_super_stations = 85 num_stations_per_super_station = 6 max_tries_per_station = 5 diameter_gridgen = 40.0 # m diameter = 35.0 # m antenna_diameter = 1.5 num_ant_station_gridgen = 300 num_ant_station = 256 ss_diameter = 100.0 st_diameter = diameter angles = numpy.arange(num_stations_per_super_station - 1) * \ (360.0 / float(num_stations_per_super_station - 1)) angles += 90.0 r0 = diameter sx = r0 * numpy.cos(numpy.radians(angles)) sy = r0 * numpy.sin(numpy.radians(angles)) sx = numpy.insert(sx, 0, 0.0) sy = numpy.insert(sy, 0, 0.0) ss_model_dir = 'v4d_r_90m_180ant_ss_uniform.tm' if os.path.isdir(ss_model_dir): shutil.rmtree(ss_model_dir) os.makedirs(ss_model_dir) st_model_dir = 'v4d_r_90m_180ant_st_uniform.tm' if os.path.isdir(st_model_dir): shutil.rmtree(st_model_dir) os.makedirs(st_model_dir) ss_angles = -360.0 * numpy.random.random(num_super_stations) + 360.0 # ========================================================================= ss_ant_x = numpy.zeros((num_stations_per_super_station, num_ant_station)) ss_ant_y = numpy.zeros_like(ss_ant_x) st_ant_x = numpy.zeros((num_stations_per_super_station, num_ant_station)) st_ant_y = numpy.zeros_like(st_ant_x) ss_enu = numpy.zeros((num_ant_station * num_stations_per_super_station, 2)) st_enu = numpy.zeros((num_ant_station, 2)) # ========================================================================= circle = pyplot.Circle((0.0, 0.0), ss_diameter / 2.0, color='r', linestyle='--', fill=False, alpha=0.3, lw=2.0) fig1 = pyplot.figure(figsize=(8, 8)) ax1 = fig1.add_subplot(111, aspect='equal') ax1.set_xlabel('East [m]') ax1.set_ylabel('North [m]') ax1.grid() ax1.set_xlim(-60, 60) ax1.set_ylim(-60, 60) line1, = ax1.plot([], [], 'k+') label1 = ax1.text(0.02, 0.98, '', ha='left', va='top', style='italic', color='k', transform=ax1.transAxes, fontsize='x-small') circle = pyplot.Circle((0.0, 0.0), ss_diameter / 2.0, color='r', linestyle='--', fill=False, alpha=0.3, lw=2.0) ax1.add_artist(circle) fig2 = pyplot.figure(figsize=(8, 8)) ax2 = fig2.add_subplot(111, aspect='equal') ax2.set_xlabel('East [m]') ax2.set_ylabel('North [m]') ax2.grid() ax2.set_xlim(-60, 60) ax2.set_ylim(-60, 60) circle = pyplot.Circle((0.0, 0.0), ss_diameter / 2.0, color='r', linestyle='--', fill=False, alpha=0.3, lw=2.0) ax2.add_artist(circle) fig3 = pyplot.figure(figsize=(8, 8)) ax3 = fig3.add_subplot(111, aspect='equal') ax3.set_xlabel('East [m]') ax3.set_ylabel('North [m]') ax3.grid() ax3.set_xlim(-20, 20) ax3.set_ylim(-20, 20) line3, = ax3.plot([], [], 'k+') label3 = ax3.text(0.02, 0.98, '', ha='left', va='top', style='italic', color='k', transform=ax3.transAxes, fontsize='x-small') circle = pyplot.Circle((0.0, 0.0), st_diameter / 2.0, color='r', linestyle='--', fill=False, alpha=0.3, lw=2.0) ax3.add_artist(circle) fig4 = pyplot.figure(figsize=(8, 8)) ax4 = fig4.add_subplot(111, aspect='equal') ax4.set_xlabel('East [m]') ax4.set_ylabel('North [m]') ax4.grid() ax4.set_xlim(-20, 20) ax4.set_ylim(-20, 20) circle = pyplot.Circle((0.0, 0.0), st_diameter / 2.0, color='r', linestyle='--', fill=False, alpha=0.3, lw=2.0) ax4.add_artist(circle) # ========================================================================= for i in range(num_super_stations): print('== super station %i == : ' % i, end='') for j in range(num_stations_per_super_station): print('%i' % j, end='') trial = 0 while trial < max_tries_per_station: print('.', end='') ax, ay, _ = gridgen(num_ant_station_gridgen, diameter_gridgen, antenna_diameter, max_trials=10000) if ax.shape[0] == num_ant_station_gridgen: ar = (ax**2 + ay**2)**0.5 # Sort by radius sort_idx = ar.argsort() ax = ax[sort_idx] ay = ay[sort_idx] ax = ax[:num_ant_station] ay = ay[:num_ant_station] ss_ant_x[j, :] = ax + sx[j] ss_ant_y[j, :] = ay + sy[j] st_ant_x[j, :] = ax st_ant_y[j, :] = ay break else: trial += 1 continue if trial == max_tries_per_station: print() print('Error, Failed to find enough antennas for station ' '%i/%i' % (ax.shape[0], num_ant_station_gridgen)) return print() # Rotate super-station ss_ant_x, ss_ant_y = rotate_coords(ss_ant_x, ss_ant_y, ss_angles[i]) # Write station and super-station folders station_dir = 'station%03i' % i os.makedirs(join(ss_model_dir, station_dir)) ss_enu[:, 0] = ss_ant_x.flatten() ss_enu[:, 1] = ss_ant_y.flatten() station_file = join(ss_model_dir, station_dir, 'layout.txt') numpy.savetxt(station_file, ss_enu, fmt='% -16.12f % -16.12f') line1.set_data(ss_enu[:, 0], ss_enu[:, 1]) label1.set_text('super station %03i' % i) fig1.savefig(join(ss_model_dir, 'station_%03i.png' % i)) ax2.plot(ss_enu[:, 0], ss_enu[:, 1], 'k+', alpha=0.1) # Write station folders for j in range(num_stations_per_super_station): station_id = i * num_stations_per_super_station + j station_dir = 'station%03i' % station_id os.makedirs(join(st_model_dir, station_dir)) st_enu[:, 0] = st_ant_x[j, :].flatten() st_enu[:, 1] = st_ant_y[j, :].flatten() station_file = join(st_model_dir, station_dir, 'layout.txt') numpy.savetxt(station_file, st_enu, fmt='% -16.12f % -16.12f') # Plot station and add to station superposition line3.set_data(st_enu[:, 0], st_enu[:, 1]) label3.set_text('station %03i' % station_id) fig3.savefig(join(st_model_dir, 'station_%03i.png' % station_id)) ax4.plot(st_enu[:, 0], st_enu[:, 1], 'k+', alpha=0.1) fig2.savefig(join(ss_model_dir, 'all_stations.png')) fig4.savefig(join(st_model_dir, 'all_stations.png')) ss_layout = numpy.zeros((num_super_stations, 3)) numpy.savetxt(join(ss_model_dir, 'layout.txt'), ss_layout, fmt='%3.1f %3.1f %3.1f') total_stations = num_super_stations * num_stations_per_super_station st_layout = numpy.zeros((total_stations, 3)) numpy.savetxt(join(st_model_dir, 'layout.txt'), st_layout, fmt='%3.1f %3.1f %3.1f') if __name__ == '__main__': gen_super_stations()
f800d6b3ca316df0db0ffe4717caaddae33260f8
3ea684487ef727fb2f8d16a030769f32a4f4003a
/datahq/apps/receiver/bootstrap.py
90c3fa6dc99fc38cd04840c76b173a531f02f9b5
[]
no_license
adewinter/data-hq
5781e6669e0625ea9ae7cf94ec77c528485c2951
ca03656c835f8caa5156326500c05bb83ab931ca
refs/heads/master
2021-01-18T12:48:26.584454
2010-08-19T13:15:03
2010-08-19T13:15:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
import os from django.conf import settings # make our directories if they're not there for dir in [settings.RECEIVER_SUBMISSION_PATH, settings.RECEIVER_ATTACHMENT_PATH, settings.RECEIVER_EXPORT_PATH]: if not os.path.isdir(dir): os.mkdir(dir)
19cc849f50ba984019a615ec3532eb04f622db66
3efee0cf2bd9e0c34bfdd94ab24a15cb88c04509
/PWEM_examples/kxky_bandstructure_benchmark_plotting_with_fdfd.py
20872b8c10843e1edc1184e3d3cbe5d7ee1b70bd
[ "MIT" ]
permissive
luwl85/Rigorous-Coupled-Wave-Analysis
bf5016ec70525f5e7bf59dfa93a03902afdfac12
a28fdf90b5b5fc0fedacc8bb44a0a0c2f2a02143
refs/heads/master
2023-04-25T20:46:45.397976
2021-05-20T22:17:54
2021-05-20T22:17:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
import sys import os import scipy.io import matplotlib.pyplot as plt import numpy as np import plotly import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from mpl_toolkits.mplot3d import Axes3D matlab_data =os.path.join('kxky_photonic_circle_bandstructure.mat'); mat = scipy.io.loadmat(matlab_data) print(mat.keys()) wvlen_scan = np.squeeze(mat['wvlen_scan']); omega_scan = 1/wvlen_scan; ky_spectra = np.squeeze(mat['ky_spectra']); print(ky_spectra.shape) ky_scan = np.linspace(-np.pi, np.pi, 400); X,Y = np.meshgrid(omega_scan, ky_scan); print(X.shape) #first dimension is ky... second dimension is kx... fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X, Y, np.real(ky_spectra[:,:,0]), marker='.') plt.show();
75a3cd2e9f625d1e43a53e0412340d4ddac9a76a
9923e30eb99716bfc179ba2bb789dcddc28f45e6
/swagger-codegen/python/test/test_asset.py
4d4822c956810304a52b9be4b031c37a4dfaaa89
[]
no_license
silverspace/samsara-sdks
cefcd61458ed3c3753ac5e6bf767229dd8df9485
c054b91e488ab4266f3b3874e9b8e1c9e2d4d5fa
refs/heads/master
2020-04-25T13:16:59.137551
2019-03-01T05:49:05
2019-03-01T05:49:05
172,804,041
2
0
null
null
null
null
UTF-8
Python
false
false
6,361
py
# coding: utf-8 """ Samsara API # Introduction Samsara provides API endpoints for interacting with Samsara Cloud, so that you can build powerful applications and custom solutions with sensor data. Samsara has endpoints available to track and analyze sensors, vehicles, and entire fleets. The Samsara Cloud API is a [RESTful API](https://en.wikipedia.org/wiki/Representational_state_transfer) accessed by an [HTTP](https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol) client such as wget or curl, or HTTP libraries of most modern programming languages including python, ruby, java. We use built-in HTTP features, like HTTP authentication and HTTP verbs, which are understood by off-the-shelf HTTP clients. We allow you to interact securely with our API from a client-side web application (though you should never expose your secret API key). [JSON](http://www.json.org/) is returned by all API responses, including errors. If you’re familiar with what you can build with a REST API, the following API reference guide will be your go-to resource. API access to the Samsara cloud is available to all Samsara administrators. To start developing with Samsara APIs you will need to [obtain your API keys](#section/Authentication) to authenticate your API requests. If you have any questions you can reach out to us on [[email protected]](mailto:[email protected]) # Endpoints All our APIs can be accessed through HTTP requests to URLs like: ```curl https://api.samsara.com/<version>/<endpoint> ``` All our APIs are [versioned](#section/Versioning). If we intend to make breaking changes to an API which either changes the response format or request parameter, we will increment the version. # Authentication To authenticate your API request you will need to include your secret token. You can manage your API tokens in the [Dashboard](https://cloud.samsara.com). They are visible under `Settings->Organization->API Tokens`. Your API tokens carry many privileges, so be sure to keep them secure. Do not share your secret API tokens in publicly accessible areas such as GitHub, client-side code, and so on. Authentication to the API is performed via [HTTP Basic Auth](https://en.wikipedia.org/wiki/Basic_access_authentication). Provide your API token as the basic access_token value in the URL. You do not need to provide a password. ```curl https://api.samsara.com/<version>/<endpoint>?access_token={access_token} ``` All API requests must be made over [HTTPS](https://en.wikipedia.org/wiki/HTTPS). Calls made over plain HTTP or without authentication will fail. # Request Methods Our API endpoints use [HTTP request methods](https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods) to specify the desired operation to be performed. The documentation below specified request method supported by each endpoint and the resulting action. ## GET GET requests are typically used for fetching data (like data for a particular driver). ## POST POST requests are typically used for creating or updating a record (like adding new tags to the system). With that being said, a few of our POST requests can be used for fetching data (like current location data of your fleet). ## PUT PUT requests are typically used for updating an existing record (like updating all devices associated with a particular tag). ## PATCH PATCH requests are typically used for modifying an existing record (like modifying a few devices associated with a particular tag). ## DELETE DELETE requests are used for deleting a record (like deleting a tag from the system). # Response Codes All API requests will respond with appropriate [HTTP status code](https://en.wikipedia.org/wiki/List_of_HTTP_status_codes). Your API client should handle each response class differently. ## 2XX These are successful responses and indicate that the API request returned the expected response. ## 4XX These indicate that there was a problem with the request like a missing parameter or invalid values. Check the response for specific [error details](#section/Error-Responses). Requests that respond with a 4XX status code, should be modified before retrying. ## 5XX These indicate server errors when the server is unreachable or is misconfigured. In this case, you should retry the API request after some delay. # Error Responses In case of a 4XX status code, the body of the response will contain information to briefly explain the error reported. To help debugging the error, you can refer to the following table for understanding the error message. | Status Code | Message | Description | |-------------|----------------|-------------------------------------------------------------------| | 401 | Invalid token | The API token is invalid and could not be authenticated. Please refer to the [authentication section](#section/Authentication). | | 404 | Page not found | The API endpoint being accessed is invalid. | | 400 | Bad request | Default response for an invalid request. Please check the request to make sure it follows the format specified in the documentation. | # Versioning All our APIs are versioned. Our current API version is `v1` and we are continuously working on improving it further and provide additional endpoints. If we intend to make breaking changes to an API which either changes the response format or request parameter, we will increment the version. Thus, you can use our current API version worry free. # FAQs Check out our [responses to FAQs here](https://kb.samsara.com/hc/en-us/sections/360000538054-APIs). Don’t see an answer to your question? Reach out to us on [[email protected]](mailto:[email protected]). # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import samsara from samsara.models.asset import Asset # noqa: E501 from samsara.rest import ApiException class TestAsset(unittest.TestCase): """Asset unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAsset(self): """Test Asset""" # FIXME: construct object with mandatory attributes with example values # model = samsara.models.asset.Asset() # noqa: E501 pass if __name__ == '__main__': unittest.main()
6821205dff8d4bf5af67bd99c4b092e8d390a3c3
5c533e2cf1f2fa87e55253cdbfc6cc63fb2d1982
/python/pymonad/monad_parse.py
a37f2195d1412f89bfddadf9d4bb469858d0db09
[]
no_license
philzook58/python
940c24088968f0d5c655e2344dfa084deaefe7c6
6d43db5165c9bcb17e8348a650710c5f603e6a96
refs/heads/master
2020-05-25T15:42:55.428149
2018-05-14T03:33:29
2018-05-14T03:33:29
69,040,196
0
1
null
null
null
null
UTF-8
Python
false
false
312
py
# parser is of form string -> [(symbol, therestofstring), (other possiblity), (other possiblity), ...] #parserbind needsto return def parsebind(parser , parserproducer): def combinerparser(string): possibleparses = parser(string) for (symb, restofstring) in possibleparses: return combinedparser
befc484720fc8b2dd7e72ad047976b06972d3b9b
05526f4941be395c0d41b4eed16ede6ae45b5e3a
/src/ossify/tokenizer.py
902357cd116b2634aebe40f9a5b4c593ae199181
[ "BSD-3-Clause" ]
permissive
ndevenish/ossify
940606d75932597aedac2e0377f1f18ee249a126
5045b0cee309093ad2ccf35a4b1d92c4bb2783f3
refs/heads/master
2022-07-14T19:58:55.616828
2020-05-09T00:28:19
2020-05-09T00:28:19
261,609,497
0
0
null
null
null
null
UTF-8
Python
false
false
15,238
py
import io import re import sys import token import tokenize from token import tok_name from tokenize import TokenInfo from typing import Iterator, List numchars = "0123456789" reNamelike = re.compile(r"[A-Za-z_]") reWhitespace = re.compile("[ \t\n]+") reName = re.compile(r"[A-Za-z_]\w*") reStringStart = re.compile(r'"""|"|\'\'\'|\'') def read_number(data): if "3" in data: print(data) # Cheat for now # -1 because will always be a newline, but sometimes that newline # is an escaped newline s = io.StringIO(data[:-1]) toke = next(tokenize.generate_tokens(s.readline)) if toke.type == token.NUMBER: return toke.string return False def character_generator(file_interface, encoding="utf-8", verbose=False): raw_data = file_interface.read() try: data = raw_data.decode(encoding) except AttributeError: data = raw_data pos, maxlen = 0, len(data) line_start, line_end = 0, 0 line_no = 0 while pos < maxlen: # if pos > 3050: # return _previous_pos = pos if line_end <= pos: line_no += 1 # work out the line end for line-slicing line_start = line_end line_end = data.find("\n", pos) + 1 if line_end == 0: line_end = maxlen line = data[line_start:line_end] line_remaining = data[pos:line_end] # print(line) if verbose: print( "Processing line: \033[37m" + repr( data[line_start:pos] + "_e_[30;1m|_e_[0m" + data[pos:line_end] ).replace("_e_", "\033") ) if data[pos] == "\\" and not (pos + 1) == maxlen and data[pos + 1] == "\n": # Handle swallowing escaped newlines if verbose: print("Escaped newline") pos += 2 line_no += 1 elif match := reWhitespace.match(data, pos=pos): newlines = match.group().count("\n") if "\n" in match.group(): yield TokenInfo( type=token.NEWLINE, string="\n", start=(line_no, pos), end=(line_no + newlines, match.end()), line=line, ) else: yield TokenInfo( type=token.OP, string=" ", start=(line_no, pos), end=(line_no, match.end()), line=line, ) pos = match.end() line_no += newlines # elif data[pos] == "\t": # if verbose: # print(f"{pos}: Tab (sent space)") # yield TokenInfo( # type=token.OP, # string=" ", # start=(line_no, pos), # end=(line_no, pos), # line=line, # ) # pos += 1 elif data[pos] == "\n": if verbose: print(f"{pos}: NEWLINE") pos += 1 yield TokenInfo( type=token.NEWLINE, string="\n", start=(line_no, pos - 1), end=(line_no, pos), line=line, ) elif (string := reStringStart.match(data, pos=pos)) and ( pos == 0 or data[pos - 1] in " \n\t{}=" ): quote_type = string.group() end_pattern = r"(?<!\\)" + quote_type re_endquote = re.compile(end_pattern, re.M | re.S) end_match = re_endquote.search(data, pos=pos + len(quote_type)) assert end_match, "Unterminated string" contents = data[ string.start() + len(quote_type) : end_match.end() - len(quote_type) ] start_l = line_no line_no += contents.count("\n") # Found the start of some string # data.find(quote_type, pos=pos+len(string)) if verbose: print(f"STRING: {contents!r}") full_str = quote_type + contents + quote_type yield TokenInfo( type=token.STRING, string=full_str, start=(start_l, pos), end=(line_no + 1, pos + len(full_str)), line="", ) pos = end_match.end() elif name := reName.match(data, pos=pos): if verbose: print(f"{pos}: NAME {name.group()}") yield TokenInfo( type=token.NAME, string=name.group(), start=(line_no, name.start()), end=(line_no, name.end()), line=line, ) pos += len(name.group()) elif data[pos] in "0123456789": yield TokenInfo( type=token.NUMBER, string=data[pos], start=(line_no, pos), end=(line_no, pos), line=line, ) pos += 1 else: if verbose: print(f"OP: {data[pos]}") yield TokenInfo( type=token.OP, string=data[pos], start=(line_no, pos), end=(line_no, pos + 1), line=line, ) # print("Something else?") pos += 1 assert pos != _previous_pos, "Didn't advance position" yield TokenInfo( type=token.NEWLINE, string="\n", start=(line_no, pos), end=(line_no, pos), line="", ) yield TokenInfo( type=token.ENDMARKER, string="", start=(line_no, pos + 1), end=(line_no, pos + 1), line="", ) return None def simple_generator(file_interface, encoding="utf-8", verbose=True): # # needcont: Currently processing a continuing string # contstr: The string currently being built # endprog: The match condition for ending a continuing string raw_data = file_interface.read() try: data = raw_data.decode(encoding) except AttributeError: data = raw_data # last_line = b"" # line = b"" # line_no = 0 # while True: # try: # last_line = line # line = file_interface() # except StopIteration: # line = b"" # if encoding is not None: # line = line.decode(encoding) # line_no += 1 # pos, max = 0, len(line) pos, maxlen = 0, len(data) line_start, line_end = 0, 0 line_no = 0 while pos < maxlen: # if pos > 3050: # return _previous_pos = pos if line_end <= pos: line_no += 1 # work out the line end for line-slicing line_start = line_end line_end = data.find("\n", pos) + 1 if line_end == 0: line_end = maxlen line = data[line_start:line_end] line_remaining = data[pos:line_end] if verbose: print( "Processing line: \033[37m" + repr( data[line_start:pos] + "_e_[30;1m|_e_[0m" + data[pos:line_end] ).replace("_e_", "\033") ) if match := reWhitespace.match(line_remaining): # Skip whitespace pos += match.end() elif data[pos] == "\\" and not (pos + 1) == maxlen and data[pos + 1] == "\n": # Handle swallowing escaped newlines if verbose: print("Escaped newline") pos += 2 elif data[pos] == "\n": if verbose: print(f"NEWLINE") pos += 1 yield TokenInfo( type=token.NEWLINE, string="\n", start=(line_no, pos - 1), end=(line_no, pos), line=line, ) elif match := reName.match(line_remaining): if verbose: print(f"NAME: {match.group(0)}") pos += match.end() yield TokenInfo( type=token.NAME, string=match.group(0), start=(line_no, match.start()), end=(line_no, match.end()), line=line, ) elif data[pos] == "#": pos = line_end elif number := read_number(line_remaining): if verbose: print(f"NUMBER: {number}") yield TokenInfo( type=token.NUMBER, string=number, start=(line_no, pos), end=(line_no, pos + len(number)), line=line, ) pos += len(number) elif string := reStringStart.match(data, pos=pos): quote_type = string.group() end_pattern = r"(?<!\\)" + quote_type re_endquote = re.compile(end_pattern, re.M | re.S) end_match = re_endquote.search(data, pos=pos + len(quote_type)) assert end_match, "Unterminated string" contents = data[ string.start() + len(quote_type) : end_match.end() - len(quote_type) ] # Found the start of some string # data.find(quote_type, pos=pos+len(string)) if verbose: print(f"STRING: {contents!r}") pos = end_match.end() else: if verbose: print(f"CHAR: {data[pos]}") yield TokenInfo( type=token.OP, string=data[pos], start=(line_no, pos), end=(line_no, pos + 1), line=line, ) # print("Something else?") pos += 1 assert pos != _previous_pos, "Didn't advance position" return TokenInfo(type=token.ENDMARKER, string="", start=pos, end=pos, line="") Mark = int # NewType('Mark', int) exact_token_types = token.EXACT_TOKEN_TYPES # type: ignore def shorttok(tok: tokenize.TokenInfo) -> str: return ( "%-25.25s" % f"{tok.start[0]}.{tok.start[1]}: {token.tok_name[tok.type]}:{tok.string!r}" ) class Tokenizer: """Caching wrapper for the tokenize module. This is pretty tied to Python's syntax. """ _tokens: List[tokenize.TokenInfo] def __init__( self, tokengen: Iterator[tokenize.TokenInfo], *, verbose: bool = False ): self._tokengen = tokengen self._tokens = [] self._index = 0 self._verbose = verbose if verbose: self.report(False, False) def getnext(self) -> tokenize.TokenInfo: """Return the next token and updates the index.""" cached = True while self._index == len(self._tokens): tok = next(self._tokengen) if tok.type in (tokenize.COMMENT, tokenize.INDENT, tokenize.DEDENT,): continue # Transform NL to NEWLINE if tok.type == token.NL: tok = tokenize.TokenInfo( token.NEWLINE, tok.string, start=tok.start, end=tok.end, line=tok.line, ) if tok.type == token.ERRORTOKEN and tok.string.isspace(): continue self._tokens.append(tok) cached = False tok = self._tokens[self._index] self._index += 1 if self._verbose: self.report(cached, False) return tok def peek(self) -> tokenize.TokenInfo: """Return the next token *without* updating the index.""" while self._index == len(self._tokens): tok = next(self._tokengen) if tok.type in (tokenize.COMMENT, tokenize.INDENT, tokenize.DEDENT,): continue # Transform NL to NEWLINE if tok.type == token.NL: tok = tokenize.TokenInfo( token.NEWLINE, tok.string, start=tok.start, end=tok.end, line=tok.line, ) if tok.type == token.ERRORTOKEN and tok.string.isspace(): continue self._tokens.append(tok) return self._tokens[self._index] def diagnose(self) -> tokenize.TokenInfo: if not self._tokens: self.getnext() return self._tokens[-1] def mark(self) -> Mark: return self._index def reset(self, index: Mark) -> None: if index == self._index: return assert 0 <= index <= len(self._tokens), (index, len(self._tokens)) old_index = self._index self._index = index if self._verbose: self.report(True, index < old_index) def report(self, cached: bool, back: bool) -> None: if back: fill = "-" * self._index + "-" elif cached: fill = "-" * self._index + ">" else: fill = "-" * self._index + "*" if self._index == 0: print(f"{fill} (Bof)") else: tok = self._tokens[self._index - 1] print(f"{fill} {shorttok(tok)}") def main(): import argparse # Helper error handling routines def perror(message): sys.stderr.write(message) sys.stderr.write("\n") def error(message, filename=None, location=None): if location: args = (filename,) + location + (message,) perror("%s:%d:%d: error: %s" % args) elif filename: perror("%s: error: %s" % (filename, message)) else: perror("error: %s" % message) sys.exit(1) # Parse the arguments and options parser = argparse.ArgumentParser(prog="python -m tokenize") parser.add_argument( dest="filename", nargs="?", metavar="filename.py", help="the file to tokenize; defaults to stdin", ) parser.add_argument( "-e", "--exact", dest="exact", action="store_true", help="display token names using the exact type", ) args = parser.parse_args() try: # Tokenize the input if args.filename: filename = args.filename with open(filename, "r") as f: tokens = list(character_generator(f)) else: filename = "<stdin>" tokens = character_generator(sys.stdin, None) # Output the tokenization for token in tokens: token_type = token.type if args.exact: token_type = token.exact_type token_range = "%d,%d-%d,%d:" % (token.start + token.end) print("%-20s%-15s%-15r" % (token_range, tok_name[token_type], token.string)) except SyntaxError as err: error(err, filename) except OSError as err: error(err) except KeyboardInterrupt: print("interrupted\n") except Exception as err: perror("unexpected error: %s" % err) raise if __name__ == "__main__": main()
94a1445b5d73052a0e9fbc2caed1e94ae674a0da
4f2b9848ee1cf41017b424c7367a240f93625e86
/doc/tutorial/config.py
cdb60e8b8cc1f8f18664a9d5edb55b488c038574
[ "Apache-2.0" ]
permissive
martin-dostal-eli/python-icat
f5cc0e497376d7264db1af2bb9ad588e29a9bd7b
8c882a3095f2dd7276a7c0edba44dc9b3ef4eedd
refs/heads/master
2023-08-18T02:12:30.267009
2021-07-20T11:24:25
2021-07-20T11:24:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
#! /usr/bin/python from __future__ import print_function import icat import icat.config config = icat.config.Config(needlogin=False, ids=False) client, conf = config.getconfig() print("Connect to %s\nICAT version %s" % (conf.url, client.apiversion))
e797642929d74abf07f38be4d559a60c4edc39c4
a7b07e14f58008e4c9567a9ae67429cedf00e1dc
/lib/jnpr/healthbot/swagger/models/rule_schema_variable.py
630dceaecb69d32efa58bd7ea4450d2121bdd4cb
[ "Apache-2.0" ]
permissive
dmontagner/healthbot-py-client
3750d8375bc4fa7bedcdbc6f85f17fb812c19ea9
0952e0a9e7ed63c9fe84879f40407c3327735252
refs/heads/master
2020-08-03T12:16:38.428848
2019-09-30T01:57:24
2019-09-30T01:57:24
211,750,200
0
0
Apache-2.0
2019-09-30T01:17:48
2019-09-30T01:17:47
null
UTF-8
Python
false
false
6,447
py
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 1.0.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class RuleSchemaVariable(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'description': 'str', 'name': 'str', 'type': 'str', 'value': 'str' } attribute_map = { 'description': 'description', 'name': 'name', 'type': 'type', 'value': 'value' } def __init__(self, description=None, name=None, type=None, value=None): # noqa: E501 """RuleSchemaVariable - a model defined in Swagger""" # noqa: E501 self._description = None self._name = None self._type = None self._value = None self.discriminator = None if description is not None: self.description = description self.name = name self.type = type if value is not None: self.value = value @property def description(self): """Gets the description of this RuleSchemaVariable. # noqa: E501 Description about the variable # noqa: E501 :return: The description of this RuleSchemaVariable. # noqa: E501 :rtype: str """ return self._description @description.setter def description(self, description): """Sets the description of this RuleSchemaVariable. Description about the variable # noqa: E501 :param description: The description of this RuleSchemaVariable. # noqa: E501 :type: str """ self._description = description @property def name(self): """Gets the name of this RuleSchemaVariable. # noqa: E501 Variable name used in the playbook. Should be of pattern [a-zA-Z][a-zA-Z0-9_-]* # noqa: E501 :return: The name of this RuleSchemaVariable. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this RuleSchemaVariable. Variable name used in the playbook. Should be of pattern [a-zA-Z][a-zA-Z0-9_-]* # noqa: E501 :param name: The name of this RuleSchemaVariable. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 if name is not None and len(name) > 64: raise ValueError("Invalid value for `name`, length must be less than or equal to `64`") # noqa: E501 if name is not None and not re.search('^[a-zA-Z][a-zA-Z0-9_-]*$', name): # noqa: E501 raise ValueError("Invalid value for `name`, must be a follow pattern or equal to `/^[a-zA-Z][a-zA-Z0-9_-]*$/`") # noqa: E501 self._name = name @property def type(self): """Gets the type of this RuleSchemaVariable. # noqa: E501 Type of value supported. This information will be used by UI to display options available for the values # noqa: E501 :return: The type of this RuleSchemaVariable. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this RuleSchemaVariable. Type of value supported. This information will be used by UI to display options available for the values # noqa: E501 :param type: The type of this RuleSchemaVariable. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 allowed_values = ["int", "float", "string", "boolean", "device-group", "device", "sensor-argument"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def value(self): """Gets the value of this RuleSchemaVariable. # noqa: E501 Default value for the variable # noqa: E501 :return: The value of this RuleSchemaVariable. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this RuleSchemaVariable. Default value for the variable # noqa: E501 :param value: The value of this RuleSchemaVariable. # noqa: E501 :type: str """ self._value = value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RuleSchemaVariable): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
913a809b21dce8f948f0e742c823d688bef2cbc7
6032f996f989d521dbdee23ce6c1fbd778d8e964
/qanta/wikipedia/categories.py
b5dedd32b88990ad251a82da1ae4cf7fe424ea37
[ "MIT" ]
permissive
npow/qb
9af1c07afd10f6aad9dbcbdd9209c6fde0e4347f
044e623d2cbda96209fa1fdedffefa2208c98755
refs/heads/master
2020-05-26T15:41:13.864334
2019-05-26T16:47:07
2019-05-26T16:47:07
188,290,907
0
0
null
2019-05-23T19:02:23
2019-05-23T19:02:23
null
UTF-8
Python
false
false
1,525
py
""" Process Wikipedia category links """ import json import re import csv import click import tqdm @click.group() def categorylinks_cli(): pass @categorylinks_cli.command() @click.argument('categories_csv') @click.argument('out_jsonl') def clean(categories_csv, out_jsonl): with open(categories_csv) as in_f, open(out_jsonl, 'w') as out_f: for line in csv.reader(in_f): if len(line) == 2: if re.match(r'[a-zA-Z0-9\-\_\s]+', line[1]): out_f.write(json.dumps({ 'id': int(line[0]), 'cat': line[1] })) out_f.write('\n') @categorylinks_cli.command() @click.argument('category_csv') @click.argument('out_json') def disambiguate(category_csv, out_json): disambiguation_pages = set() blacklist = { 'Articles_with_links_needing_disambiguation_from_April_2018', 'All_articles_with_links_needing_disambiguation' } with open(category_csv) as f: reader = csv.reader(f) for r in tqdm.tqdm(reader, mininterval=1): page_id, category = r[0], r[1] l_category = category.lower() if ((category not in blacklist) and ('disambiguation' in l_category) and ('articles_with_links_needing_disambiguation' not in l_category)): disambiguation_pages.add(int(page_id)) with open(out_json, 'w') as f: json.dump(list(disambiguation_pages), f)
7a2fcbba659bb83f947490fc946a7ff3ba4665d2
eefb06b0d8c8c98c1e9cfc4c3852d5c453eb5429
/data/input/ARMmbed/htrun/mbed_host_tests/host_tests_plugins/host_test_plugins.py
1c965fab88a3dc757f8bce97bec9d4293718641b
[]
no_license
bopopescu/pythonanalyzer
db839453bde13bf9157b76e54735f11c2262593a
8390a0139137574ab237b3ff5fe8ea61e8a0b76b
refs/heads/master
2022-11-22T02:13:52.949119
2019-05-07T18:42:52
2019-05-07T18:42:52
282,079,884
0
0
null
2020-07-23T23:46:09
2020-07-23T23:46:08
null
UTF-8
Python
false
false
7,762
py
""" mbed SDK Copyright (c) 2011-2015 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Przemyslaw Wirkus <[email protected]> """ import os import sys import platform from os import access, F_OK from sys import stdout from time import sleep from subprocess import call class HostTestPluginBase: """ Base class for all plugins used with host tests """ ########################################################################### # Interface: ########################################################################### ########################################################################### # Interface attributes defining plugin name, type etc. ########################################################################### name = "HostTestPluginBase" # Plugin name, can be plugin class name type = "BasePlugin" # Plugin type: ResetMethod, Copymethod etc. capabilities = [] # Capabilities names: what plugin can achieve # (e.g. reset using some external command line tool) required_parameters = [] # Parameters required for 'kwargs' in plugin APIs: e.g. self.execute() stable = False # Determine if plugin is stable and can be used ########################################################################### # Interface methods ########################################################################### def setup(self, *args, **kwargs): """ Configure plugin, this function should be called before plugin execute() method is used. """ return False def execute(self, capability, *args, **kwargs): """! Executes capability by name @param capability Capability name @param args Additional arguments @param kwargs Additional arguments @details Each capability e.g. may directly just call some command line program or execute building pythonic function @return Capability call return value """ return False def is_os_supported(self, os_name=None): """! @return Returns true if plugin works (supportes) under certain OS @os_name String describing OS. See self.mbed_os_support() and self.mbed_os_info() @details In some cases a plugin will not work under particular OS mainly because command / software used to implement plugin functionality is not available e.g. on MacOS or Linux. """ return True ########################################################################### # Interface helper methods - overload only if you need to have custom behaviour ########################################################################### def print_plugin_error(self, text): """! Function prints error in console and exits always with False @param text Text to print """ print "Plugin error: %s::%s: %s"% (self.name, self.type, text) return False def print_plugin_info(self, text, NL=True): """! Function prints notification in console and exits always with True @param text Text to print @param NL Newline will be added behind text if this flag is True """ if NL: print "Plugin info: %s::%s: %s"% (self.name, self.type, text) else: print "Plugin info: %s::%s: %s"% (self.name, self.type, text), return True def print_plugin_char(self, char): """ Function prints char on stdout """ stdout.write(char) stdout.flush() return True def check_mount_point_ready(self, destination_disk, init_delay=0.2, loop_delay=0.25): """! Waits until destination_disk is ready and can be accessed by e.g. copy commands @return True if mount point was ready in given time, False otherwise @param destination_disk Mount point (disk) which will be checked for readiness @param init_delay - Initial delay time before first access check @param loop_delay - polling delay for access check """ result = False # Let's wait for 30 * loop_delay + init_delay max if not access(destination_disk, F_OK): self.print_plugin_info("Waiting for mount point '%s' to be ready..."% destination_disk, NL=False) sleep(init_delay) for i in range(30): if access(destination_disk, F_OK): result = True break sleep(loop_delay) self.print_plugin_char('.') return result def check_parameters(self, capability, *args, **kwargs): """! This function should be ran each time we call execute() to check if none of the required parameters is missing @return Returns True if all parameters are passed to plugin, else return False @param capability Capability name @param args Additional parameters @param kwargs Additional parameters """ missing_parameters = [] for parameter in self.required_parameters: if parameter not in kwargs: missing_parameters.append(parameter) if len(missing_parameters): self.print_plugin_error("execute parameter(s) '%s' missing!"% (', '.join(missing_parameters))) return False return True def run_command(self, cmd, shell=True): """! Runs command from command line. @param cmd Command to execute @param shell True if shell command should be executed (eg. ls, ps) @details Function prints 'cmd' return code if execution failed @return True if command successfully executed """ result = True try: ret = call(cmd, shell=shell) if ret: self.print_plugin_error("[ret=%d] Command: %s"% (int(ret), cmd)) return False except Exception as e: result = False self.print_plugin_error("[ret=%d] Command: %s"% (int(ret), cmd)) self.print_plugin_error(str(e)) return result def mbed_os_info(self): """! Returns information about host OS @return Returns tuple with information about OS and host platform """ result = (os.name, platform.system(), platform.release(), platform.version(), sys.platform) return result def mbed_os_support(self): """! Function used to determine host OS @return Returns None if host OS is unknown, else string with name @details This function should be ported for new OS support """ result = None os_info = self.mbed_os_info() if (os_info[0] == 'nt' and os_info[1] == 'Windows'): result = 'Windows7' elif (os_info[0] == 'posix' and os_info[1] == 'Linux' and ('Ubuntu' in os_info[3])): result = 'Ubuntu' elif (os_info[0] == 'posix' and os_info[1] == 'Linux'): result = 'LinuxGeneric' elif (os_info[0] == 'posix' and os_info[1] == 'Darwin'): result = 'Darwin' return result
5957be3eebf4bcc847582b8b20f6771924155403
4c9580b2e09e2b000e27a1c9021b12cf2747f56a
/chapter05/chapter05_example01/chapter05_example01/settings.py
6bdae198873c43cd8667c6b9aac8266fb69c6642
[]
no_license
jzplyy/xiaoyue_mall
69072c0657a6878a4cf799b8c8218cc7d88c8d12
4f9353d6857d1bd7dc54151ca8b34dcb4671b8dc
refs/heads/master
2023-06-26T02:48:03.103635
2021-07-22T15:51:07
2021-07-22T15:51:07
388,514,311
1
0
null
null
null
null
UTF-8
Python
false
false
3,368
py
""" Django settings for chapter05_example01 project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import sys BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, os.path.join(BASE_DIR, 'chapter05_example01\\apps')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gj(^a0w1e_)p4_+%9y4q3i#7yz_423=^ze4+9-wpj!8sci=esy' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'goods' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'chapter05_example01.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'chapter05_example01.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
53f85d5e77b251fd803da0cc317dc6dac3e3fd02
b74e9be747c1a99fc5d67ca096157f512baf02ca
/tools/harness-automation/cases/reed_5_2_4.py
151fa67c0fb6cee9b74e8e983fa7bb67a1aea761
[ "BSD-3-Clause", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
amccool/openthread
468838cebc083d234192926aacb0e3efc0a83463
1e9d3c1dbfd66aa48c4cbb1dda0b41c9f05fefc7
refs/heads/master
2021-01-16T23:03:46.503666
2016-09-06T03:21:05
2016-09-06T03:21:05
67,469,844
0
0
BSD-3-Clause
2019-11-01T20:11:16
2016-09-06T03:23:32
C++
UTF-8
Python
false
false
1,846
py
#!/usr/bin/env python # # Copyright (c) 2016, Nest Labs, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest from autothreadharness.harness_case import HarnessCase class REED_5_2_4(HarnessCase): suite = 16 case = '5 2 4' golden_devices_required = 17 def on_dialog(self, dialog, title): pass if __name__ == '__main__': unittest.main()
ef8495ed987b371d3c9c09347e179d7fee0cfd92
6320fef2ea7376c2b35f97f1a5af004e90f09098
/1-2주차 실습(복습)/venv/Lib/site-packages/pygame/tests/test_utils/__init__.py
fd3ec69cb674929081e3d41837df1458fa33d018
[]
no_license
Dplo1514/ploaistudy
7aa08d7f71653748a9e32dcc09ee8f6cec0aaed9
e35e42b1e5f0c90cc1e2a59993a1ef73d8872d0c
refs/heads/master
2023-09-03T00:45:55.601651
2021-10-24T12:19:38
2021-10-24T12:19:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,442
py
#################################### IMPORTS ################################### is_pygame_pkg = __name__.startswith("pygame.tests.") import tempfile, sys, pygame, time, os ################################################################################ # Python 3.x compatibility try: xrange_ = xrange except NameError: xrange_ = range try: raw_input_ = raw_input except NameError: raw_input_ = input if sys.version_info[0] == 3: def tostring(row): """Convert row of bytes to string. Expects `row` to be an ``array``. """ return row.tobytes() else: def tostring(row): """Convert row of bytes to string. Expects `row` to be an ``array``. """ return row.tostring() import unittest if not hasattr(unittest.TestCase, "subTest"): import contextlib @contextlib.contextmanager def subTest(self, msg=None, **params): yield return unittest.TestCase.subTest = subTest def geterror(): return sys.exc_info()[1] class AssertRaisesRegexMixin(object): """Provides a way to prevent DeprecationWarnings in python >= 3.2. For this mixin to override correctly it needs to be before the unittest.TestCase in the multiple inheritance hierarchy. e.g. class TestClass(AssertRaisesRegexMixin, unittest.TestCase) This class/mixin and its usage can be removed when pygame no longer supports python < 3.2. """ def assertRaisesRegex(self, *args, **kwargs): try: return super(AssertRaisesRegexMixin, self).assertRaisesRegex( *args, **kwargs ) except AttributeError: try: return super(AssertRaisesRegexMixin, self).assertRaisesRegexp( *args, **kwargs ) except AttributeError: self.skipTest("No assertRaisesRegex/assertRaisesRegexp method") ################################################################################ this_dir = os.path.dirname(os.path.abspath(__file__)) trunk_dir = os.path.split(os.path.split(this_dir)[0])[0] if is_pygame_pkg: test_module = "tests" else: test_module = "test" def trunk_relative_path(relative): return os.path.normpath(os.path.join(trunk_dir, relative)) def fixture_path(path): return trunk_relative_path(os.path.join(test_module, "fixtures", path)) def example_path(path): return trunk_relative_path(os.path.join("examples", path)) sys.path.insert(0, trunk_relative_path(".")) ################################## TEMP FILES ################################## def get_tmp_dir(): return tempfile.mkdtemp() ################################################################################ def question(q): return raw_input_("\n%s (y/n): " % q.rstrip(" ")).lower().strip() == "y" def prompt(p): return raw_input_("\n%s (press enter to continue): " % p.rstrip(" ")) #################################### HELPERS ################################### def rgba_between(value, minimum=0, maximum=255): if value < minimum: return minimum elif value > maximum: return maximum else: return value def combinations(seqs): """ Recipe 496807 from ActiveState Python CookBook Non recursive technique for getting all possible combinations of a sequence of sequences. """ r = [[]] for x in seqs: r = [i + [y] for y in x for i in r] return r def gradient(width, height): """ Yields a pt and corresponding RGBA tuple, for every (width, height) combo. Useful for generating gradients. Actual gradient may be changed, no tests rely on specific values. Used in transform.rotate lossless tests to generate a fixture. """ for l in xrange_(width): for t in xrange_(height): yield (l, t), tuple(map(rgba_between, (l, t, l, l + t))) def rect_area_pts(rect): for l in xrange_(rect.left, rect.right): for t in xrange_(rect.top, rect.bottom): yield l, t def rect_perimeter_pts(rect): """ Returns pts ((L, T) tuples) encompassing the perimeter of a rect. The order is clockwise: topleft to topright topright to bottomright bottomright to bottomleft bottomleft to topleft Duplicate pts are not returned """ clock_wise_from_top_left = ( [(l, rect.top) for l in xrange_(rect.left, rect.right)], [(rect.right - 1, t) for t in xrange_(rect.top + 1, rect.bottom)], [(l, rect.bottom - 1) for l in xrange_(rect.right - 2, rect.left - 1, -1)], [(rect.left, t) for t in xrange_(rect.bottom - 2, rect.top, -1)], ) for line in clock_wise_from_top_left: for pt in line: yield pt def rect_outer_bounds(rect): """ Returns topleft outerbound if possible and then the other pts, that are "exclusive" bounds of the rect ?------O |RECT| ?|0)uterbound |----| O O """ return ([(rect.left - 1, rect.top)] if rect.left else []) + [ rect.topright, rect.bottomleft, rect.bottomright, ] def import_submodule(module): m = __import__(module) for n in module.split(".")[1:]: m = getattr(m, n) return m class SurfaceSubclass(pygame.Surface): """A subclassed Surface to test inheritance.""" def __init__(self, *args, **kwargs): super(SurfaceSubclass, self).__init__(*args, **kwargs) self.test_attribute = True def test(): """ Lightweight test for helpers """ r = pygame.Rect(0, 0, 10, 10) assert rect_outer_bounds(r) == [(10, 0), (0, 10), (10, 10)] # tr # bl # br assert len(list(rect_area_pts(r))) == 100 r = pygame.Rect(0, 0, 3, 3) assert list(rect_perimeter_pts(r)) == [ (0, 0), (1, 0), (2, 0), # tl -> tr (2, 1), (2, 2), # tr -> br (1, 2), (0, 2), # br -> bl (0, 1), # bl -> tl ] print("Tests: OK") ################################################################################
665dcc52eba524df257caff6e50e0b2f063ee789
ae65873c3584cef7139066b224daad04410af6d2
/Top10Words.py
b6f4ffe80cc71c2040700a1f7c86913682066030
[]
no_license
rajatkashyap/Python
2240c7472d07803c460c7a55d570e20694b694f9
f74c85c65b0e209a5f7ab25b653d42835222faaf
refs/heads/master
2022-06-25T19:20:52.847498
2022-06-08T14:40:45
2022-06-08T14:40:45
145,714,257
0
0
null
2022-04-25T00:18:37
2018-08-22T13:39:14
Python
UTF-8
Python
false
false
558
py
f=open('UHC.txt') dict={} words=f.read().split() for word in words: w=word.lower() dict[w]=dict.get(w,0)+1 #print dict str_tups=[] for k,v in dict.items(): str_tups.append((v,k)) #print str_tups str_tups.sort(reverse=True) print str_tups[:10] keys=dict.keys() values=dict.values() #print keys #print values values.sort(reverse=True) for i in range(10): for key in keys: if dict[key]==values[i]: print key,values[i] ''' for i in range(10): for d in dict: if d[keys[i]]==values[i]: print d '''
9ad9f1f73f94769307e72df7e57956a71565790a
e741d661b1cbb1d48eff4adff3ce8d424b0b3aee
/meiduo_mall/apps/payment/apps.py
d314f1fe58cfc99b4a93ba784b8eadf87541370a
[ "MIT" ]
permissive
Tao-bug/meiduo_project
09b3900ab7e1436ee3201c53461a9c119d1f56db
e3a24eac2c8231d0e27f6a7fa639dd36baa410b0
refs/heads/master
2022-07-16T02:18:22.319641
2019-11-12T13:54:23
2019-11-12T13:54:23
218,697,808
0
0
MIT
2022-07-01T00:55:01
2019-10-31T06:20:01
JavaScript
UTF-8
Python
false
false
94
py
from django.apps import AppConfig class PaymentConfig(AppConfig): name = 'apps.payment'
718c1a3aa265318be8f270943122a2fef285e6e9
59d48214613a195573b5a0a1f10b32c889172155
/alexa/reciPullLambda/ask_sdk_model/canfulfill/can_fulfill_intent_request.py
61ffc9fb00f47a05ab691639b45bca434c75fe2e
[ "MIT" ]
permissive
ReciPull/recipull.github.io
60861ebb7a6d77d39907c6332e346194ce4ad107
e6b800af02658bb7948297c4ddc1b7af6d978839
refs/heads/master
2023-01-08T19:03:11.864298
2019-06-13T05:07:39
2019-06-13T05:07:39
180,684,629
1
0
MIT
2022-12-09T22:33:18
2019-04-11T00:33:03
Python
UTF-8
Python
false
false
6,414
py
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum from ask_sdk_model.request import Request if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.dialog_state import DialogState from ask_sdk_model.intent import Intent class CanFulfillIntentRequest(Request): """ An object that represents a request made to skill to query whether the skill can understand and fulfill the intent request with detected slots, before actually asking the skill to take action. Skill should be aware this is not to actually take action, skill should handle this request without causing side-effect, skill should not modify some state outside its scope or has an observable interaction with its calling functions or the outside world besides returning a value, such as playing sound,turning on/off lights, committing a transaction or a charge. :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param dialog_state: :type dialog_state: (optional) ask_sdk_model.dialog_state.DialogState :param intent: :type intent: (optional) ask_sdk_model.intent.Intent """ deserialized_types = { 'object_type': 'str', 'request_id': 'str', 'timestamp': 'datetime', 'locale': 'str', 'dialog_state': 'ask_sdk_model.dialog_state.DialogState', 'intent': 'ask_sdk_model.intent.Intent' } # type: Dict attribute_map = { 'object_type': 'type', 'request_id': 'requestId', 'timestamp': 'timestamp', 'locale': 'locale', 'dialog_state': 'dialogState', 'intent': 'intent' } # type: Dict def __init__(self, request_id=None, timestamp=None, locale=None, dialog_state=None, intent=None): # type: (Optional[str], Optional[datetime], Optional[str], Optional[DialogState], Optional[Intent]) -> None """An object that represents a request made to skill to query whether the skill can understand and fulfill the intent request with detected slots, before actually asking the skill to take action. Skill should be aware this is not to actually take action, skill should handle this request without causing side-effect, skill should not modify some state outside its scope or has an observable interaction with its calling functions or the outside world besides returning a value, such as playing sound,turning on/off lights, committing a transaction or a charge. :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param dialog_state: :type dialog_state: (optional) ask_sdk_model.dialog_state.DialogState :param intent: :type intent: (optional) ask_sdk_model.intent.Intent """ self.__discriminator_value = "CanFulfillIntentRequest" # type: str self.object_type = self.__discriminator_value super(CanFulfillIntentRequest, self).__init__(object_type=self.__discriminator_value, request_id=request_id, timestamp=timestamp, locale=locale) self.dialog_state = dialog_state self.intent = intent def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, CanFulfillIntentRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
4a5a3b8daa86ac399ae0a0cc3604254a77635bbf
00cb405170a6a9572bef0ec8f373813eada08c03
/Agario/Window.py
bb5038b0e49d302d2ded8589eaacfcc9884a849c
[]
no_license
MarcPartensky/Python-Games
c0ad2857be5832d6029642bb0a96bc8e403a12e3
ebfcaaf4a028eddb36bbc99184eb3f7a86eb24ed
refs/heads/master
2022-09-03T00:04:16.402288
2022-08-12T17:10:22
2022-08-12T17:10:22
166,606,022
2
1
null
2021-03-07T16:20:15
2019-01-19T23:56:04
Python
UTF-8
Python
false
false
1,621
py
import pygame from pygame.locals import * class Window: made=0 def __init__(self,game=None,size=None,font="monospace",set=True): Window.made+=1 self.number=Window.made self.title=game.name self.font=font self.open=True pygame.init() self.setSize(size) self.font = pygame.font.SysFont(self.font, 65) self.screen=pygame.display.set_mode(self.size) pygame.display.set_caption(self.title) def setSize(self,size=None): if size is None: info = pygame.display.Info() self.size=(info.current_w/2,info.current_h/2) else: self.size=size def pop_up(self,message): pass def scale(self,picture,size): return pygame.transform.scale(picture,size) def check(self): for event in pygame.event.get(): if event.type == pygame.QUIT: self.open=False def select(self): while self.open: self.check() for event in pygame.event.get(): if event.type == MOUSEBUTTONDOWN and event.button == 1: return (event.pos[0],event.pos[1]) def point(self): for event in pygame.event.get(): return (event.pos[0],event.pos[1]) def flip(self): pygame.display.flip() def drawBackground(self,background): if type(background) is tuple: self.screen self.screen.blit(picture, position) def drawPicture(self,picture,position): self.screen.blit(picture, position) def display(page): pass
13fc2d742161aea7d1a51f351cac30e21bcd181e
172eb751b879d36d95b04d81db87a501cd18d8a1
/ImageNetGroundTruth/utils.py
ade17f70a1d804e602c97056b666102575e5f3e0
[]
no_license
byh1321/Pruning_Quantization_Estimation
447bd3d806fe17611d665e56d7796af4e05ee400
772969c5a58259e387c88829dd936274199212e8
refs/heads/master
2023-05-03T19:25:29.957732
2021-06-03T17:53:38
2021-06-03T17:53:38
289,804,307
0
0
null
null
null
null
UTF-8
Python
false
false
24,298
py
'''Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress. ''' import os import sys import time import math import torch import torch.nn as nn import torch.nn.init as init import scipy.misc from scipy import ndimage import numpy as np def get_mean_and_std(dataset): '''Compute the mean and std value of dataset.''' dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in dataloader: for i in range(3): mean[i] += inputs[:,i,:,:].mean() std[i] += inputs[:,i,:,:].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) TOTAL_BAR_LENGTH = 40. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % format_time(step_time)) L.append(' | Tot: %s' % format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f ########################################################################## # Codes under this line is written by YH.Byun def print_4Dtensor_to_png(tensor, filename): npimg = np.array(tensor,dtype=float) npimg = npimg.squeeze(0) scipy.misc.toimage(npimg).save(filename+".png") def genblurkernel(sigma): order = 0 radius = int(4 * float(sigma) + 0.5) kernel = scipy.ndimage.filters._gaussian_kernel1d(sigma, order, radius) return kernel def setMask(net, area, val): mask = maskGen(net) for i in range(len(mask)): num_filter = mask[i].size()[0] depth = mask[i].size()[1] if len(mask[i].size()) == 2: if i == (len(mask)-1): mask[i][:,0:int(depth*area)] = val #print(mask[i].size()) #print('0, ',depth*area) else: mask[i][0:int(num_filter*area),0:int(depth*area)] = val #print(mask[i].size()) #print(num_filter*area,',',depth*area) elif len(mask[i].size()) == 4: if i == 0: mask[i][0:int(num_filter*area),:,:,:] = val #print(mask[i].size()) #print(num_filter*area,',0,0,0') else: mask[i][0:int(num_filter*area),0:int(depth*area),:,:] = val #print(mask[i].size()) #print(num_filter*area,',',depth*area,',0,0') return mask def saveInitialParameter(net, initparam): net_param = [] for m in net.modules(): if isinstance(m, nn.Conv2d): net_param.append(m.weight.data) elif isinstance(m, nn.Linear): net_param.append(m.weight.data) torch.save(net_param, initparam) print("saving initial parameters") def quantize(net, pprec): for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.round(m.weight.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.weight.data = torch.clamp(m.weight.data, -2, 2 - 2**(-pprec)) elif isinstance(m, nn.Linear): m.weight.data = torch.round(m.weight.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.weight.data = torch.clamp(m.weight.data, -2, 2 - 2**(-pprec)) return net def printLayers(net): for m in net.modules(): if isinstance(m, nn.Conv2d): print(m) elif isinstance(m, nn.Linear): print(m) def maskGen(net, isbias=0, isempty = 1): mask = [] if isempty: for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(torch.zeros(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.zeros(m.weight.data.size()).size()) elif isinstance(m, nn.Linear): mask.append(torch.zeros(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.zeros(m.weight.data.size()).size()) else: for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(torch.ones(m.weight.data.size())) if isbias == 1: mask.append(torch.ones(m.bias.data.size())) #print(torch.ones(m.weight.data.size()).size()) elif isinstance(m, nn.Linear): mask.append(torch.ones(m.weight.data.size())) if isbias == 1: mask.append(torch.zeros(m.bias.data.size())) #print(torch.ones(m.weight.data.size()).size()) return mask def pruneNetwork(net, mask): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.grad.data = torch.mul(m.weight.grad.data,mask[index].cuda()) m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.grad.data = torch.mul(m.weight.grad.data,mask[index].cuda()) m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 return net def paramsGet(net): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): if index == 0: params = m.weight.view(-1,) index += 1 else: params = torch.cat((params,m.weight.view(-1,)),0) index += 1 elif isinstance(m, nn.Linear): params = torch.cat((params,m.weight.view(-1,)),0) index += 1 return params def findThreshold(params, pr): thres=0 while 1: tmp = (torch.abs(params.data)<thres).type(torch.FloatTensor) result = torch.sum(tmp)/params.size()[0] if (pr/100)<result: #print("threshold : {}".format(thres)) return thres else: thres += 0.0001 #def findThreshold(params, pr): # params_sorted, indice = torch.sort(params) # index = int(pr * params.size()[0] / 100) # print(params_sorted[13228760]) # print(params.size()) # print(index) # return params_sorted[index].item() def getPruningMask(net, thres): index = 0 mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append((torch.abs(m.weight.data)>thres).type(torch.FloatTensor)) index += 1 elif isinstance(m, nn.Linear): mask.append((torch.abs(m.weight.data)>thres).type(torch.FloatTensor)) index += 1 return mask def netMaskMul(net, mask, isbias=0, isbatch=0): index = 0 if isbatch: for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 else: for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.mul(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.mul(m.bias.data,mask[index].cuda()) index += 1 return net def addNetwork(net, net2, isbias=0): index = 0 mask = saveNetwork(net2, isbias) for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 return net def netMaskAdd(net, mask, isbias=0, isbatch=0): index = 0 if isbatch: for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 else: for m in net.modules(): if isinstance(m, nn.Conv2d): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.weight.data = torch.add(m.weight.data,mask[index].cuda()) index += 1 if isbias == 1: m.bias.data = torch.add(m.bias.data,mask[index].cuda()) index += 1 return net def saveNetwork(net, isbias=0): mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): mask.append(m.weight.data) if isbias: mask.append(m.bias.data) elif isinstance(m, nn.Linear): mask.append(m.weight.data) if isbias: mask.append(m.bias.data) return mask def saveBatch(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.BatchNorm2d): if isempty: mask.append(torch.zeros(m.weight.size())) mask.append(torch.zeros(m.bias.size())) else: mask.append(m.weight.data) mask.append(m.bias.data) return mask def printLayerName(net): index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): print(index, " : Conv2d layer, ", m.weight.size()) index += 1 elif isinstance(m, nn.Linear): print(index, " : FC layer, ", m.weight.size()) index += 1 elif isinstance(m, nn.BatchNorm2d): print(index, " : BatchNorm2d layer, ", m.weight.size()) index += 1 return net def freezeNetwork(net): for m in net.modules(): if isinstance(m, nn.Conv2d): for param in m.parameters(): param.requires_grad = False elif isinstance(m, nn.Linear): for param in m.parameters(): param.requires_grad = False elif isinstance(m, nn.BatchNorm2d): for param in m.parameters(): param.requires_grad = False return net def absorb_bn(module, bn_module): w = module.weight.data if module.bias is None: zeros = torch.Tensor(module.out_channels).zero_().type(w.type()) module.bias = nn.Parameter(zeros) b = module.bias.data invstd = bn_module.running_var.clone().add_(bn_module.eps).pow_(-0.5) w.mul_(invstd.view(w.size(0), 1, 1, 1).expand_as(w)) b.add_(-bn_module.running_mean).mul_(invstd) if bn_module.affine: w.mul_(bn_module.weight.data.view(w.size(0), 1, 1, 1).expand_as(w)) b.mul_(bn_module.weight.data).add_(bn_module.bias.data) bn_module.register_buffer('running_mean', torch.zeros(module.out_channels).cuda()) bn_module.register_buffer('running_var', torch.ones(module.out_channels).cuda()) bn_module.register_parameter('weight', None) bn_module.register_parameter('bias', None) bn_module.affine = False def is_bn(m): return isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d) def is_absorbing(m): return isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear) def search_absorbe_bn(model): prev = None for m in model.children(): if is_bn(m) and is_absorbing(prev): m.absorbed = True absorb_bn(prev, m) search_absorbe_bn(m) prev = m #swap bias in net with bias in net2 def swapBias(net, net2): mask_bias = saveBias(net2) mask_bias_null = saveBias(net2, isempty=1) index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 return net def saveBias(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.Conv2d): if isempty: mask.append(torch.zeros(m.bias.data.size())) else: mask.append(m.bias.data) elif isinstance(m, nn.Linear): if isempty: mask.append(torch.zeros(m.bias.data.size())) else: mask.append(m.bias.data) return mask def concatMask(mask1, mask2): index = 0 for i in range(len(mask1)): mask1[index] = ((mask1[index] + mask2[index]) != 0).type(torch.FloatTensor) index += 1 return mask1 def getExtendedMask(mask): index = torch.FloatTensor() for i in range(len(mask)): if mask[i].dim() == 4: mask_size = mask[i].size()[0] * mask[i].size()[1] * mask[i].size()[2] * mask[i].size()[3] if mask[i].size()[2] == 1: if mask[i].size()[1] % 3 == 1: index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1]+2,1,1) index_for_print[:,:-2,:,:] = mask[i].data elif mask[i].size()[1] % 3 == 2: index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1]+1,1,1) index_for_print[:,:-1,:,:] = mask[i].data else: index_for_print = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) else: index_for_print = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) else: mask_size = mask[i].size()[0] * mask[i].size()[1] index_for_print = torch.zeros(mask[i].size()[0], mask[i].size()[1] + 1) index_for_print[:,:-1] = mask[i].data index_for_print = index_for_print.view(-1,3) index_for_print = (torch.sum(index_for_print, dim=1) != 0).type(torch.FloatTensor) index = torch.cat((index, index_for_print),0) return index def quantBatch(net, intbit, pprec): for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.running_var.data = torch.round(m.running_var.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.running_var.data = torch.clamp(m.running_var.data, max=1, min=2**(-intbit)) m.weight.data = torch.round(m.weight.data / (2 ** -(15))) * (2 ** -(15)) m.weight.data = torch.clamp(m.weight.data,-(2) ** intbit, 2 ** intbit) m.bias.data = torch.round(m.bias.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.bias.data = torch.clamp(m.bias.data,-(2) ** intbit, 2 ** intbit) m.running_mean.data = torch.round(m.running_mean.data / (2 ** -(pprec))) * (2 ** -(pprec)) m.running_mean.data = torch.clamp(m.running_mean.data,-(2) ** intbit, 2 ** intbit) return net def swapBiasandBatch(net, net2): mask_bias = saveBias(net2, isbatch=1) mask_bias_null = saveBias(net2, isempty=1, isbatch=1) index = 0 for m in net.modules(): if isinstance(m, nn.Conv2d): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.Linear): m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) index += 1 elif isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask_weight_null[index].cuda()) m.weight.data = torch.add(m.weight.data,mask_weight[index].cuda()) m.bias.data = torch.mul(m.bias.data,mask_bias_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_bias[index].cuda()) m.running_mean.data = torch.mul(m.running_mean.data,mask_running_mean_null[index].cuda()) m.running_mean.data = torch.add(m.running_mean.data,mask_running_mean[index].cuda()) m.running_var.data = torch.mul(m.running_var.data,mask_running_var_null[index].cuda()) m.running_var.data = torch.add(m.running_var.data,mask_running_var[index].cuda()) return net def swapBatch(net, net2): mask_batch = saveBatch(net2) mask_batch_null = saveBatch(net2, isempty=1) index = 0 for m in net.modules(): if isinstance(m, nn.BatchNorm2d): m.weight.data = torch.mul(m.weight.data,mask_batch_null[index].cuda()) m.weight.data = torch.add(m.weight.data,mask_batch[index].cuda()) index += 1 m.bias.data = torch.mul(m.bias.data,mask_batch_null[index].cuda()) m.bias.data = torch.add(m.bias.data,mask_batch[index].cuda()) index += 1 m.running_mean.data = torch.mul(m.running_mean.data,mask_batch_null[index].cuda()) m.running_mean.data = torch.add(m.running_mean.data,mask_batch[index].cuda()) index += 1 m.running_var.data = torch.mul(m.running_var.data,mask_batch_null[index].cuda()) m.running_var.data = torch.add(m.running_var.data,mask_batch[index].cuda()) index += 1 return net def saveBatch(net, isempty=0): mask = [] for m in net.modules(): if isinstance(m, nn.BatchNorm2d): if isempty: mask.append(torch.zeros(m.weight.data.size())) mask.append(torch.zeros(m.bias.data.size())) mask.append(torch.zeros(m.running_mean.data.size())) mask.append(torch.zeros(m.running_var.data.size())) else: mask.append(m.weight.data) mask.append(m.bias.data) mask.append(m.running_mean.data) mask.append(m.running_var.data) return mask def printFeature(feature, filename): f = open(filename, 'w') for i in range(feature.data.size()[1]): for j in range(feature.data.size()[2]): for k in range(feature.data.size()[3]): print(feature.data[0,i,j,k].item(), file=f, end=',') print('',file=f) print('',file=f) f.close() return def printconv1_0(net): for m in net.modules(): if isinstance(m, nn.Conv2d): print(m.weight[0]) try: print(m.bias[0]) except: print("There is no bias") pass return def printbatch1(net): for m in net.modules(): if isinstance(m, nn.BatchNorm2d): print(m.weight) print(m.bias) print(m.running_mean) print(m.running_var) return def printlinear1_0(net): for m in net.modules(): if isinstance(m, nn.Linear): print(m.weight[0]) try: print(m.bias[0]) except: print("There is no bias") pass return def float_to_hex(float_): temp = float_ * 2**7 # Scale the number up. temp = torch.round(temp) # Turn it into an integer. temp = int(temp) temp = temp & 0xff return '{:02x}'.format(temp) def float_to_hex_16(float_): temp = float_ * 2**8 # Scale the number up. temp = torch.round(temp) # Turn it into an integer. temp = int(temp) temp = temp & 0xffff return '{:04x}'.format(temp) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res from math import cos, pi def adjust_learning_rate(optimizer, epoch, iteration, num_iter, ne, init_lr): lr = optimizer.param_groups[0]['lr'] warmup_epoch = 5 warmup_iter = warmup_epoch * num_iter current_iter = iteration + epoch * num_iter max_iter = ne * num_iter lr = init_lr * (1 + cos(pi * (current_iter - warmup_iter) / (max_iter - warmup_iter))) / 2 if epoch < warmup_epoch: lr = init_lr * current_iter / warmup_iter for param_group in optimizer.param_groups: param_group['lr'] = lr
037c0297e6528cdbf68ecb8b3295c9ce74f0598e
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/143/usersdata/126/62651/submittedfiles/av2_p3_m2.py
7d22e7aa5f8b510c2f6ca3d97182ffc3fc5c67bd
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
653
py
# -*- coding: utf-8 -*- def listadegraus(a): b=[] for i in range(0,len(a)-1,1): if a[i]>a[i+1]: cont=0 for i in range(a[i],a[i+1],-1): cont=cont+1 b.insert(0,cont) elif a[i]<a[i+1]: cont=0 for i in range(a[i],a[i+1],1): cont=cont+1 b.insert(0,cont) elif a[i]==a[i+1]: cont=0 b.insert(0,cont) return(b) n=int(input('digite a quantidade de termos da lista:')) a=[] for i in range(0,n,1): m=int(input('digite um valor:')) a.append(m) print(listadegraus(a))
df82e709433df0b153edd7d9aea14060851ad2cf
c31c8095ce4d4e9686e3e7ad6b004342e49671fa
/forum/classes/archives/CLASS_Lieu.py
c5b8db114583e2f045264fd8b45f2735706e116e
[]
no_license
Lionalisk/arrakambre
7bcc96dea2ca2a471572bfb1646256f1382ce25b
2caece9be5eebf21ddfa87a6c821c32b5d5019a2
refs/heads/master
2020-12-07T19:31:24.471090
2020-01-09T10:14:29
2020-01-09T10:14:29
232,782,172
0
0
null
null
null
null
UTF-8
Python
false
false
1,184
py
from django.db import models from forum.models import Maison from forum.classes.CLASS_Perso import * print('BBBB') class Lieu(models.Model): nom = models.CharField(max_length=100, unique=True) description = models.TextField(default='') image = models.CharField(max_length=40, default = 'lieu_none.jpg') maison = models.ForeignKey(Maison, verbose_name="Maison", null=True, on_delete=models.SET_NULL, blank=True) passages = models.ManyToManyField('self', blank=True) lieu_parent = models.ForeignKey('self', verbose_name="Lieu", null=True, on_delete=models.DO_NOTHING, blank=True) dissimulation = models.SmallIntegerField(default=0) defense_garde = models.SmallIntegerField(default=0) defense_assault = models.SmallIntegerField(default=0) defense_intrusion = models.SmallIntegerField(default=0) perso_autorise = models.ManyToManyField('Perso', blank=True, related_name = 'persos_autorises') # liste des personnes autorisees par le maitre des lieux a entrer secret = models.BooleanField(default=False) proprietaire = models.ForeignKey('Perso', null=True, on_delete=models.SET_NULL, blank=True, related_name = 'proprietaire') #action = def __str__(self): return self.nom
da6fa81c852b746e1fded343f4e04a7e146e335e
39b8aa964883b2bde4349e0c9c38e3233c310548
/src/Power of Four.py
96d2db9a48b59d6376e2dbcb8be1027d9d34085f
[]
no_license
orifake/leetcode-python
053b82491e0b8d6197dd12d92eec5883211285db
8e375ebebe0a0285efefc33ed61afb22f41d0c75
refs/heads/master
2023-03-09T14:32:17.833456
2021-02-26T16:09:31
2021-02-26T16:09:31
264,466,829
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
import math class Solution(object): def isPowerOfFour(self, num): """ :type num: int :rtype: bool """ return num > 0 and (num & (num - 1)) == 0 and \ ((num & 0b01010101010101010101010101010101) == num) class Solution2: def isPowerOfFour(self, num: int) -> bool: if num <= 0: return False return (math.log10(num) / math.log10(4)) % 1 == 0 t = Solution() print(t.isPowerOfFour(4))
17eb256179da0f291fdd0e5d21d32169501672e1
e21ed71610f9d1004dfa21206300c0e9f3887e89
/modulo_2/Codewars/dev-junior/find_even_array.py
beb4a2bad5d9a8b39ec87d16249da6a0ba36113a
[]
no_license
hpfn/wttd-2017-exerc
c0c79ee0cb3b5b331932787d280deee679357bc1
b1bf1394d2e2adc29257b7c4273af21b8509335f
refs/heads/master
2020-12-30T11:29:13.218980
2017-10-03T19:04:03
2017-10-03T19:04:03
91,572,803
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
# coding=utf-8 def find_even_index(arr): tam_arr = len(arr) for x in range(tam_arr): if sum(arr[:x]) == sum(arr[x+1:]): return x return -1
be24fff7640880924ac1b8352d63c9ce128039bd
49beeee0d9aff3b776545cb553ef1bf15dd9f190
/example/example/views.py
6c06b12a01b8dad493049a74201b5a5b9af1ada9
[ "MIT" ]
permissive
bluedisk/django-korean-fields
238364cf4f766db824adec832aaa2d83619cded1
b655e23d9a73e61cb217e34719ee6a2509f8f475
refs/heads/master
2020-03-19T09:55:10.974426
2018-11-10T15:02:02
2018-11-10T15:02:02
136,327,803
5
0
null
null
null
null
UTF-8
Python
false
false
595
py
# -*- coding: utf-8 -*- from django.forms import forms, CharField from django.http import HttpResponse from django.shortcuts import render from korean.fields import JuminFormField class TestForm(forms.Form): jumin1 = JuminFormField() jumin2 = JuminFormField() def demo(request): if request.method == 'POST': form = TestForm(request.POST) if form.is_valid(): return HttpResponse('success : ' + form.cleaned_data['jumin']) else: form = TestForm(initial={'jumin1': '010203-4567890'}) return render(request, 'demo.html', {'form': form})
d47c3724879680967f10765f503c820e7982fb3f
714d4d2796e9b5771a1850a62c9ef818239f5e77
/components/metrics/DEPS
2f4d413d44817a460d2dc1304dd4027f1f530765
[ "BSD-3-Clause" ]
permissive
CapOM/ChromiumGStreamerBackend
6c772341f815d62d4b3c4802df3920ffa815d52a
1dde005bd5d807839b5d45271e9f2699df5c54c9
refs/heads/master
2020-12-28T19:34:06.165451
2015-10-21T15:42:34
2015-10-23T11:00:45
45,056,006
2
0
null
2015-10-27T16:58:16
2015-10-27T16:58:16
null
UTF-8
Python
false
false
243
# This component is shared with the Chrome OS build, so it's important to limit # dependencies to a minimal set. include_rules = [ "-components", "+components/compression", "+components/metrics", "+components/variations", "-net", ]
7fb4ea8ca62ee742cb03add25202bb3018bba0d6
8562adfbeb7cf901aeeaf004dc1e53c286a24d48
/beg86.py
ba49d5c28d0528682212047ecc0dd3986de5a4fc
[]
no_license
sarureddi/isogram
1d4f8a7566a1df0f4a7b42502be60a1fafaabc10
3aca7e1172977cd116c0902761d70ded84402310
refs/heads/master
2020-06-03T11:03:43.392152
2019-06-12T09:54:11
2019-06-12T09:54:11
191,544,013
0
0
null
null
null
null
UTF-8
Python
false
false
93
py
si1=str(input()) l=len(si1) s=set(si1) if(l==len(s)): print("Yes") else: print("No")
d3b6e9f0e660a6ab3559ab5e2029a46b8e10bf27
255efb54075eb8cc2412bf1d5c936a97a003337e
/xt/environment/__init__.py
69338935f833cbdd1def7455667f8075e68b8eed
[ "MIT" ]
permissive
jinqiuzhao/xingtian
914a4d48c62fd8b3d4ddd0479e9bab54bbe5cba7
95953dc6109c96e68dcdeb9755b3679ff51742d4
refs/heads/master
2023-06-06T06:20:28.815549
2021-07-02T10:00:42
2021-07-02T10:00:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Build environment module. Do encapsulation for different simulations. Unify the single and multi-agents. """ from __future__ import division, print_function from xt.framework import Registers def env_builder(env_name, env_info, **kwargs): """ Build the interface func for creating environment. :param env_name:the name of environment :param env_info: the config info of environment :return:environment instance """ return Registers.env[env_name](env_info, **kwargs)
d98e426c5ffa96200e49a63c91cbb1ac43216323
220e3fe31f00df908dc8d00c507400425f924cc3
/examples/multi_system/act6/unload.py
bf0fcc574b45c2f7fcf2d21c030c21e4aa89ff1f
[ "MIT" ]
permissive
danielmitterdorfer/Thespian
3ed700d9fc6da35becfe801d3ab3bb68c86bddbc
f59439df8a6147b90ec31b44924d6a1b620f09d9
refs/heads/master
2021-01-19T05:06:33.005708
2017-07-31T04:44:03
2017-07-31T04:44:03
65,544,862
0
0
null
2016-08-12T10:22:29
2016-08-12T10:22:29
null
UTF-8
Python
false
false
238
py
from thespian.actors import ActorSystem, Actor, ValidateSource, ValidatedSource import sys portnum = int(sys.argv[1]) srchash = sys.argv[2] asys = ActorSystem('multiprocTCPBase', {'Admin Port': portnum}) asys.unloadActorSource(srchash)
46e48392571cf7b50609181560a7a5b5cfd54d72
1d665f40197ba89f756e862c0e62a889c42cddfb
/commission/migrations/0007_auto_20150407_2034.py
2b1be1c3a9965aa2314ab05057b9179433f0c7eb
[ "MIT" ]
permissive
Ourinternet/website
8d9f9ddfe7d17fb0bb11b978cf3a7cd34af456ed
648203c0d0620da2d11b3b0e398ee218b5bef5df
refs/heads/master
2021-01-21T21:49:06.834576
2016-03-16T20:43:58
2016-03-16T20:43:58
15,683,988
1
0
null
null
null
null
UTF-8
Python
false
false
429
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('commission', '0006_auto_20150407_1825'), ] operations = [ migrations.AlterField( model_name='feature', name='link', field=models.CharField(max_length=1024, null=True, blank=True), ), ]
044985b9b265586f2b071cc1296c5845a039b17d
56b7e5ed6941fc4b83148e00bd51421dc3ac993a
/Indeed/Expire Map.py
2b1778212c66da456e0bb6bd3e0defd2bbc1db77
[]
no_license
samir-0711/Leetcode-Python
f960e15015a3f2fd88f723d7f9237945a7133553
d75876ae96bcd85c67bbfbf91bbc0f0bc773e97c
refs/heads/master
2022-12-18T05:27:48.224001
2020-09-30T21:03:42
2020-09-30T21:03:42
300,061,318
0
0
null
2020-09-30T20:59:42
2020-09-30T20:59:42
null
UTF-8
Python
false
false
722
py
import time class Data: def __init__(self, value, duration): self.value = value self.duration = duration self.startTime = int(round(time.time())) class ExpireMap: def __init__(self): self.map = {} def get(self, key): data = self.map[key] if data == None: return None currTime = int(round(time.time())) if currTime - data.startTime <= data.duration: return data.value else: del data def set(self, key, value, duration): data = Data(value, duration) self.map[key] = data test1 = ExpireMap() test1.set(1, 5, 3) time.sleep(2) print test1.get(1) time.sleep(2) print test1.get(1)
6d9a899cc5415e40329693b80d3cc1bbf9759db2
a257bf65a2a1ba2c6841dd25c89d98c5672e4e57
/BackEnd/Semana22/DjangoRestFramework/DjangoRestFramework/wsgi.py
424593130b609b9f268eda5e5d98d2c974645dad
[]
no_license
jorgegarba/CodiGo9
190cb67e3c7f9cbad271baf62657bda7ca03ec42
3b85c36a3ed8d2d5ee1d0fb6e8ca18599621fe47
refs/heads/master
2023-01-22T22:31:00.244982
2020-03-31T17:59:37
2020-03-31T17:59:37
211,982,487
6
5
null
2023-01-05T05:23:27
2019-10-01T00:21:25
JavaScript
UTF-8
Python
false
false
415
py
""" WSGI config for DjangoRestFramework project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DjangoRestFramework.settings') application = get_wsgi_application()
6f9219124cdf28edd912b1cbde65e7ea17aece30
7b315bbe8c85ce05e6c51112e985ae1b392d83f5
/desafio_calcipv4/__init__.py
52688559769bae42e626eb8e42a779ae27f16e24
[]
no_license
Cica013/aprendendoPython
e9f993b1b144e294a338a53f2bc36673d3cd00a6
9c964f2322e3d52b39a811aceec64b169bab4e10
refs/heads/main
2023-08-10T20:12:47.640239
2021-10-06T21:01:19
2021-10-06T21:01:19
385,755,818
0
0
null
null
null
null
UTF-8
Python
false
false
104
py
from classes.calcipv4 import CalcIpv4 calc_ipv4 = CalcIpv4(ip='192.168.0.1', mascara='255.255.255.0')
0bebf2b16ff727c6ad6f1d7aca0f42970ec1dc48
bed559d18b0a9604e6d18879e1f3837d228d1440
/rx/backpressure/pausable.py
631ce64e952fd6f555f3e9866c6f605c96299a8e
[ "Apache-2.0" ]
permissive
jesonjn/RxPY
a80b7a8f0a3a8a6ddcb7f3ed678d2f8411cad84e
9dfb62979f2c54b93bbb8c0ee5fa18cfae4d73d0
refs/heads/master
2020-12-29T00:25:17.866220
2014-11-15T10:24:05
2014-11-15T10:24:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,932
py
from six import add_metaclass from rx import Observable from rx.internal import ExtensionMethod from rx.disposables import CompositeDisposable, Disposable from rx.subjects import Subject class PausableObservable(Observable): def __init__(self, source, subject=None): self.source = source self.subject = subject or Subject() self.is_paused = True super(PausableObservable, self).__init__(self.subscribe) def subscribe(self, observer): conn = self.source.publish() subscription = conn.subscribe(observer) connection = [Disposable.empty()] def on_next(b): if b: connection[0] = conn.connect() else: connection[0].dispose() connection[0] = Disposable.empty() pausable = self.subject.distinct_until_changed().subscribe(on_next) return CompositeDisposable(subscription, connection[0], pausable) def pause(self): if self.is_paused: return self.is_paused = True self.subject.on_next(False) def resume(self): if not self.is_paused: return self.is_paused = False self.subject.on_next(True) @add_metaclass(ExtensionMethod) class ObservablePausable(Observable): """Uses a meta class to extend Observable with the methods in this class""" def pausable(self, pauser): """Pauses the underlying observable sequence based upon the observable sequence which yields True/False. Example: pauser = rx.Subject() source = rx.Observable.interval(100).pausable(pauser) Keyword parameters: pauser -- {Observable} The observable sequence used to pause the underlying sequence. Returns the observable {Observable} sequence which is paused based upon the pauser.""" return PausableObservable(self, pauser)
b891a21e50fd7f9a52706f2b802ad343cca4ea72
c1bd12405d244c5924a4b069286cd9baf2c63895
/azure-mgmt-compute/azure/mgmt/compute/v2018_04_01/models/compute_management_client_enums.py
94796a92c7936618c37a51b7bf0ec2a9b37639ee
[ "MIT" ]
permissive
lmazuel/azure-sdk-for-python
972708ad5902778004680b142874582a284a8a7c
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
refs/heads/master
2022-08-16T02:32:14.070707
2018-03-29T17:16:15
2018-03-29T17:16:15
21,287,134
1
3
MIT
2019-10-25T15:56:00
2014-06-27T19:40:56
Python
UTF-8
Python
false
false
1,085
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class StorageAccountTypes(str, Enum): standard_lrs = "Standard_LRS" premium_lrs = "Premium_LRS" class OperatingSystemTypes(str, Enum): windows = "Windows" linux = "Linux" class DiskCreateOption(str, Enum): empty = "Empty" attach = "Attach" from_image = "FromImage" import_enum = "Import" copy = "Copy" restore = "Restore" class SnapshotStorageAccountTypes(str, Enum): standard_lrs = "Standard_LRS" premium_lrs = "Premium_LRS" standard_zrs = "Standard_ZRS" class AccessLevel(str, Enum): none = "None" read = "Read"
cddab9580d9af9da3a18d635c9717ed2acc1f201
4bc2d855558ccb962991f997e9779919031687dd
/capstone/causalmodel/migrations/0001_initial.py
d9fe267a7a9b8e4c5697913127b312847c7b2554
[]
no_license
jmblontoc/Likha-Capstone
80081e44b7ad6457eb776432e623c6db8b7a17e2
e1c32911b58cd1419c8e1a554ac32210456d201d
refs/heads/master
2022-12-10T03:26:32.946638
2018-12-09T04:33:10
2018-12-09T04:33:10
134,726,142
0
1
null
2022-11-25T23:52:42
2018-05-24T14:21:36
Python
UTF-8
Python
false
false
1,187
py
# Generated by Django 2.0.5 on 2018-06-27 15:33 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='DataMap', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('metric', models.CharField(max_length=255)), ('value', models.DecimalField(decimal_places=2, max_digits=10)), ('threshold', models.DecimalField(decimal_places=2, max_digits=10)), ], ), migrations.CreateModel( name='RootCause', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ], ), migrations.AddField( model_name='datamap', name='root_cause', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='causalmodel.RootCause'), ), ]
770781cf8434a6484eb3418aafba1bd504f0315d
1a819b4d69a7c455199b638b1609d3284ecbf255
/alttprbot_srl/racebot.py
c760ffc28d30de0301fd73fb1bf3fb04a1d6a28b
[]
no_license
Maxor14/sahasrahbot
5167355a23a4e9d91171b583fe8065acd0ab99a6
9183933869f87743d94867cf52c463179d0b687a
refs/heads/master
2021-05-22T21:30:54.015013
2020-04-01T01:01:47
2020-04-01T01:01:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,951
py
import asyncio import math import re import ircmessage from alttprbot.database import spoiler_races, srl_races from alttprbot.tournament import league from alttprbot.util.srl import srl_race_id from alttprbot_srl import alt_hunter, discord_integration from config import Config as c starting = re.compile( "\\x034\\x02The race will begin in 10 seconds!\\x03\\x02") go = re.compile("\\x034\\x02GO!\\x03\\x02") newroom = re.compile( "Race initiated for (.*)\. Join\\x034 (#srl-[a-z0-9]{5}) \\x03to participate\.") runnerdone = re.compile( "(.*) (has forfeited from the race\.|has finished in .* place with a time of [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.)") racedone = re.compile( "^Status: Complete \| Game: .*$" ) srl_game_whitelist = [ 'The Legend of Zelda: A Link to the Past Hacks', 'A Link to the Past & Super Metroid Combo Randomizer' ] async def topic_change_handler(target, source, message, client): if not (source == 'RaceBot' or source == 'synack'): return if target.startswith('#srl-') and racedone.search(message): await asyncio.sleep(5) await league.process_league_race_finish(target, client) async def handler(target, source, message, client): if not (source == 'RaceBot' or source == 'synack'): return srl_id = srl_race_id(target) if target == '#speedrunslive': result = newroom.search(message) if result and result.group(1) in srl_game_whitelist: if not c.DEBUG: await asyncio.sleep(1) await client.join(result.group(2)) await asyncio.sleep(60) await client.message(result.group(2), "Hi! I'm SahasrahBot, your friendly robotic elder and ALTTPR/SMZ3 seed roller. To see what I can do, visit https://sahasrahbot.synack.live") else: print(f'would have joined {result.group(2)}') if target.startswith('#srl-'): if starting.match(message) or message == 'test starting': race = await srl_races.get_srl_race_by_id(srl_id) if race: if not client.in_channel(target): await client.join(target) await client.message(target, f".setgoal {race['goal']}") if race['message'] is not None: await asyncio.sleep(15) await client.message(target, race['message']) await srl_races.delete_srl_race(srl_id) if go.match(message) or message == 'test go': # spoilers race = await spoiler_races.get_spoiler_race_by_id(srl_id) if race: await client.message(target, 'Sending spoiler log...') await client.message(target, '---------------') await client.message(target, f"This race\'s spoiler log: {race['spoiler_url']}") await client.message(target, '---------------') await client.message(target, 'GLHF! :mudora:') await countdown_timer( ircbot=client, duration_in_seconds=race['studytime'], srl_channel=target, beginmessage=True, ) await spoiler_races.delete_spoiler_race(srl_id) await discord_integration.discord_race_start(srl_id) await alt_hunter.check_race(srl_id) if message == 'test complete': await topic_change_handler(target, source, message, client) result = runnerdone.search(message) if result: await discord_integration.discord_race_finish(result.group(1), srl_id) async def countdown_timer(ircbot, duration_in_seconds, srl_channel, beginmessage=False): loop = asyncio.get_running_loop() reminders = [1800, 1500, 1200, 900, 600, 300, 120, 60, 30, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] start_time = loop.time() end_time = loop.time() + duration_in_seconds while True: # print(datetime.datetime.now()) timeleft = math.ceil(start_time - loop.time() + duration_in_seconds) # print(timeleft) if timeleft in reminders: minutes = math.floor(timeleft/60) seconds = math.ceil(timeleft % 60) if minutes == 0 and seconds > 10: msg = f'{seconds} second(s) remain!' elif minutes == 0 and seconds <= 10: msg = ircmessage.style( f"{seconds} second(s) remain!", fg='green', bold=True) else: msg = f'{minutes} minute(s), {seconds} seconds remain!' await ircbot.message(srl_channel, msg) reminders.remove(timeleft) if loop.time() >= end_time: if beginmessage: await ircbot.message(srl_channel, ircmessage.style('Log study has finished. Begin racing!', fg='red', bold=True)) break await asyncio.sleep(.5)
07c821b253d8b2176af47cd42bb65e0f706db38a
3109e3a7f2f2dccc5a806695f0adbe0fed879112
/ecommerce/Loma/migrations/0022_auto_20190204_1200.py
4724c3c1c3f80c03fa75c1a13fc32a1f6bb13401
[]
no_license
Maheshwari2604/ecommercee
9ebbf18b4fbf933a0d9641009f7f17ce836de587
4411e7e10eccda907711200d2c0d873db3d7f803
refs/heads/master
2020-04-20T18:03:49.575124
2019-02-12T16:02:05
2019-02-12T16:02:05
169,007,411
1
1
null
null
null
null
UTF-8
Python
false
false
466
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-02-04 06:30 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Loma', '0021_auto_20190203_1829'), ] operations = [ migrations.AlterField( model_name='promocode_model', name='promocode_name', field=models.CharField(max_length=11), ), ]
8c1b2c443b10f64ad81dbb48b78341c22ec527dc
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/discount_info_v3.py
3eeec1c5d49a77c443407f9193187e6c6e93816a
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,663
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class DiscountInfoV3: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'discount_id': 'str', 'discount_value': 'str', 'discount_type': 'int', 'orders': 'list[OrderV3]' } attribute_map = { 'discount_id': 'discount_id', 'discount_value': 'discount_value', 'discount_type': 'discount_type', 'orders': 'orders' } def __init__(self, discount_id=None, discount_value=None, discount_type=None, orders=None): """DiscountInfoV3 - a model defined in huaweicloud sdk""" self._discount_id = None self._discount_value = None self._discount_type = None self._orders = None self.discriminator = None self.discount_id = discount_id self.discount_value = discount_value self.discount_type = discount_type self.orders = orders @property def discount_id(self): """Gets the discount_id of this DiscountInfoV3. 订单的可用折扣ID。 支付订单时,输入该参数的值,即可使用折扣。 :return: The discount_id of this DiscountInfoV3. :rtype: str """ return self._discount_id @discount_id.setter def discount_id(self, discount_id): """Sets the discount_id of this DiscountInfoV3. 订单的可用折扣ID。 支付订单时,输入该参数的值,即可使用折扣。 :param discount_id: The discount_id of this DiscountInfoV3. :type: str """ self._discount_id = discount_id @property def discount_value(self): """Gets the discount_value of this DiscountInfoV3. 折扣率或者满减值,如果折扣模式是一口价,这个值为空。 :return: The discount_value of this DiscountInfoV3. :rtype: str """ return self._discount_value @discount_value.setter def discount_value(self, discount_value): """Sets the discount_value of this DiscountInfoV3. 折扣率或者满减值,如果折扣模式是一口价,这个值为空。 :param discount_value: The discount_value of this DiscountInfoV3. :type: str """ self._discount_value = discount_value @property def discount_type(self): """Gets the discount_type of this DiscountInfoV3. 折扣类型,取值为 0:促销折扣1:合同折扣2:商务优惠3:合作伙伴授予折扣609:订单调价折扣 :return: The discount_type of this DiscountInfoV3. :rtype: int """ return self._discount_type @discount_type.setter def discount_type(self, discount_type): """Sets the discount_type of this DiscountInfoV3. 折扣类型,取值为 0:促销折扣1:合同折扣2:商务优惠3:合作伙伴授予折扣609:订单调价折扣 :param discount_type: The discount_type of this DiscountInfoV3. :type: int """ self._discount_type = discount_type @property def orders(self): """Gets the orders of this DiscountInfoV3. 可使用折扣的订单列表。 具体请参见表3。 :return: The orders of this DiscountInfoV3. :rtype: list[OrderV3] """ return self._orders @orders.setter def orders(self, orders): """Sets the orders of this DiscountInfoV3. 可使用折扣的订单列表。 具体请参见表3。 :param orders: The orders of this DiscountInfoV3. :type: list[OrderV3] """ self._orders = orders def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DiscountInfoV3): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
4e8fb660e0be3d0885aa9b36d0333165ee44736b
a33ee2ee3d67526fa353060b7efe48398d38e8db
/demovibes/webview/views.py
cc242832d23da2a871237f1c2cc6ad7ce9bc131c
[]
no_license
rj76/demovibes-cvgm
5666164f57a5458872f6add1eb18620aa0fd5072
8c0f5e011baec3c9b732165c9c74dd07c87c290f
refs/heads/master
2023-06-02T11:41:16.093070
2021-06-19T02:28:38
2021-06-19T02:28:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
86,960
py
from webview import models as m from webview import forms as f from webview import common from webview.decorators import atomic, cached_method from openid_provider.models import TrustedRoot from mybaseview import MyBaseView from tagging.models import TaggedItem import tagging.utils from forum import models as fm from django.template import Context, loader from django.utils.html import escape from django.utils.translation import ugettext as _ from django.http import HttpResponseRedirect, HttpResponseNotFound, HttpResponse from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth import logout from django.shortcuts import get_object_or_404, redirect from django.template import TemplateDoesNotExist from django.conf import settings from django.views.generic.simple import direct_to_template from django.core.urlresolvers import reverse from django.core.paginator import Paginator, EmptyPage, InvalidPage from django.core.cache import cache from django.contrib.contenttypes.models import ContentType from django.contrib.auth import authenticate, login from django.db.models import Count, Sum, Avg, Max from django.db.models import Q as DQ import logging import datetime import j2shim import hashlib import re import random L = logging.getLogger('webview.views') class WebView(MyBaseView): basetemplate = "webview/" class SongView(WebView): def initialize(self): songid = self.kwargs['song_id'] self.context['song'] = self.song = get_object_or_404(m.Song, id=songid) class SongAddScreenshot(SongView): def GET(self): return create_screenshot(self.request, self.song) class CompilationView(WebView): def initialize(self): compid = self.kwargs['compilation_id'] self.context['compilation'] = self.compilation = get_object_or_404(m.Compilation, id=compid) class CompilationAddScreenshot(CompilationView): def GET(self): return create_screenshot(self.request, self.compilation) class ProfileView(WebView): def initialize(self): username = self.kwargs['user'] self.user = get_object_or_404(m.User, username = username) self.profile = common.get_profile(self.user) def check_permissions(self): return self.profile.viewable_by(self.request.user) class ListByLetter(WebView): """ List a model by letter, if given. Model need to have "startswith" and letter var need to be "letter" """ model = None alphalist_cache_prefix = "ListByLetter-alphalist-" desc_function = None # Support for that should be included in the template list_title = "List" letter_url_name = "" all_url_name = "" def initialize (self): query_hexdigest = hashlib.md5 (str(self.get_objects ().query)).hexdigest() self.__alphalist_cache_key = self.alphalist_cache_prefix + query_hexdigest alphalist = self.get_alphalist () letter = self.kwargs.get ("letter", False) if letter and not letter in alphalist or letter == '-': letter = '#' self.letter = letter self.context ['letter'] = letter self.context ['al'] = alphalist def get_list_title (self): return self.list_title def get_objects (self): return self.model.objects.all() def get_alphalist (self): @cached_method (key = self.__alphalist_cache_key, timeout = 3) def get (): return map (lambda x: x['startswith'] == '#' and '-' or x['startswith'], self.get_objects ().distinct().values ('startswith').order_by('startswith')) return get () def set_context(self): if self.model: if self.letter: results = self.get_objects().filter (startswith = self.letter) else: results = self.get_objects() return {'object_list' : results, 'list_title' : self.get_list_title (), 'letter_url_name' : self.letter_url_name, 'all_url_name' : self.all_url_name, 'desc_function' : self.desc_function} return {} class AjaxifyView(WebView): redirect_to = "dv-root" def GET(self): if not self.request.is_ajax(): self.redirect(self.redirect_to) return HttpResponse("") def make_ajax_return(self): return HttpResponse("You forgot to define 'make_ajax_return', mate!") def POST(self): if not self.request.user.is_authenticated(): if self.request.is_ajax(): return HttpResponse("") return self.redirect("/account/signin/") songid = self.request.POST.get("songid") if songid: self.song = m.Song.objects.get(id = songid) self.handle_form(self.request.POST) if self.request.is_ajax(): return self.make_ajax_return() self.redirect(self.request.META.get('HTTP_REFERER') or self.redirect_to) def check_muted(request): profile = request.user.get_profile() muted = profile.is_muted() if muted: return j2shim.r2r('webview/muted.html', {'muted' : muted}, request) #------------------------------------------------------- class ListSmileys(WebView): template = "smileys.html" def set_context(self): return {'smileys': settings.SMILEYS} class PlaySong(SongView): template="playsong.html" def check_permissions(self): return self.song.downloadable_by(self.request.user) def set_context(self): limit = None if m.CHEROKEE_SECRET: key = "urlgenlimit_%s" % self.request.user.id number = m.get_cherokee_limit(self.request.user).get("number",0) limit = number - cache.get(key, 0) self.song.log(self.request.user, "Song preview / download") return {'song': self.song, 'limit': limit} class AddCompilation(WebView): template = "add_compilation.html" login_required = True forms = [ (f.CreateCompilationForm, "compform"), ] action = "created" def pre_view(self): self.context['songsinput']="" def save_compilation(self, compdata, songs): newcf = compdata.save(commit=False) if not newcf.id: newcf.created_by = self.request.user newcf.status = "U" newcf.last_updated = datetime.datetime.now() # Fixes bug of new compilations not appearing in Recent Updates newcf.save() compdata.save_m2m() artists = [] playtime = 0 newcf.reset_songs() for index, S in enumerate(songs): newcf.add_song(S, index) playtime = playtime + S.get_songlength() for a in S.get_metadata().artists.all(): if a not in artists: artists.append(a) newcf.running_time = playtime newcf.prod_artists.clear() for a in artists: newcf.prod_artists.add(a) newcf.save() newcf.log(self.request.user, "Compilation %s" % self.action) return newcf def POST(self): songstr = self.request.POST.get("songsinput", "").split(",") self.context['songsinput'] = self.request.POST.get("songsinput", "") songs = [] if songstr: for S in songstr: # By default songsinput is empty but in fact we have one entry in list (u'') # So the code will goes here ... but not valid S if S: songs.append(m.Song.objects.get(id=S)) if self.forms_valid and songs: newcf = self.save_compilation(self.context["compform"], songs) self.redirect(newcf) class EditCompilation(AddCompilation): staff_required = True action = "edited" def form_compform_init(self): ci = self.kwargs.get("comp_id") self.c = m.Compilation.objects.get(id=ci) return {'instance': self.c} def post_view(self): if not self.context['songsinput']: songs = self.c.get_songs() self.context['songsinput'] = ','.join([ str(s.id) for s in songs ]) def about_pages(request, page): try: return direct_to_template(request, template="about/%s.html" % page) except TemplateDoesNotExist: return HttpResponseNotFound() @login_required def inbox(request): pms = request.GET.get('type','') delete = request.GET.get('delete','') if delete: try: delpm = int(delete) pm = m.PrivateMessage.objects.get(pk = delpm, to = request.user) except: return HttpResponseNotFound() pm.visible = False pm.save() if pms == "sent": mails = m.PrivateMessage.objects.filter(sender = request.user, visible = True) else: pms = "received" #to remove injects mails = m.PrivateMessage.objects.filter(to = request.user, visible = True) return j2shim.r2r('webview/inbox.html', {'mails' : mails, 'pms': pms}, request=request) @login_required def read_pm(request, pm_id): pm = get_object_or_404(m.PrivateMessage, id = pm_id) if pm.to == request.user: pm.unread = False pm.save() return j2shim.r2r('webview/view_pm.html', {'pm' : pm}, request=request) if pm.sender == request.user: return j2shim.r2r('webview/view_pm.html', {'pm' : pm}, request=request) return HttpResponseRedirect(reverse('dv-inbox')) @login_required def send_pm(request): r = check_muted(request) if r: return r if request.method == 'POST': form = f.PmForm(request.POST) if form.is_valid(): F = form.save(commit=False) F.sender=request.user F.save() m.send_notification("%s sent you a <a href='%s'>message</a> with title '%s'" % (escape(F.sender.username), F.get_absolute_url(), escape(F.subject)), F.to) return HttpResponseRedirect(reverse('dv-inbox')) else: title = request.GET.get('title', "") to = request.GET.get('to', "") try: U = m.User.objects.get(username=to) except: U = None form = f.PmForm(initial= {'to': U, 'subject' : title}) return j2shim.r2r('webview/pm_send.html', {'form' : form}, request) class addComment(SongView): """ Add a comment to a song. """ login_required = True def pre_view(self): self.redirect(self.song) def POST(self): r = check_muted(self.request) if r: return r comment = self.request.POST.get("Comment", "").strip() if comment: m.SongComment.objects.create(comment = comment, song = self.song, user = self.request.user) if getattr(settings, "NOTIFY_NEW_SONG_COMMENT", False): m.send_notification("%s commented on the song <a href='%s'>%s</a>" % (escape(self.request.user.username), self.song.get_absolute_url(), escape(self.song.title)), None, 2) def site_about(request): """ Support for a generic 'About' function """ return j2shim.r2r('webview/site-about.html', { }, request) def chat(request): """ Support for a generic 'chat' page """ return j2shim.r2r('webview/chat.html', { }, request) class ListQueue(WebView): """ Display the current song, the next songs in queue, and the latest 20 songs in history. Also provides a way to view DJRandom mood. """ template = "queue_list.html" def set_context(self): # DJRandom status - - - - - - - -- djrandom_options = m.DJRandomOptions.snapshot () mood = djrandom_options.mood avoid_explicit = djrandom_options.avoid_explicit mood_form = f.DJRandomMoodForm (initial = {'mood' : mood}) mood_html = mood_form.get_mood_html (set_by = mood.comment) ae_form = f.DJRandomAvoidExplicitForm (initial = {'avoid_explicit' : avoid_explicit}) ae_html = ae_form.get_avoid_explicit_html (set_by = avoid_explicit.comment) return {'djrandom_mood_html' : mood_html, 'djrandom_mood_field_html' : mood_form.get_mood_field_html (), 'djrandom_avoid_explicit_html' : ae_html, 'djrandom_avoid_explicit_field_html' : ae_form.get_avoid_explicit_field_html (), 'now_playing' : "", 'history' : common.get_history(), 'queue' : common.get_queue(), } # Slightly modified template of list_songs, to show songs via year def list_year(request, year_id): songs = m.Song.active.filter (songmetadata__active = True, songmetadata__release_year = year_id).order_by('title') params = { 'object_list' : songs, 'year' : year_id, 'letter_url_name' : "dv-year" } return j2shim.r2r ('webview/year_list.html', params, request) def list_song(request, song_id): song = get_object_or_404 (m.Song, id = song_id) # Simple queries, it is expected that they are evaluated from inside the template only # .. otherwise cache is quite useless. Just try to keep it simple here comps = m.Compilation.objects.filter (songs__id = song.id) remixes = m.Song.active.filter (songmetadata__active = True, songmetadata__remix_of_id = song.id) def calc_tag_cloud (): tags = m.Tag.objects.filter (id__in = song.tags).annotate (count = Count ("items")) return tagging.utils.calculate_cloud (tags) params = { 'object' : song, 'vote_range': [1, 2, 3, 4, 5], 'comps' : comps, 'remixes' : remixes, 'related_f': (lambda: m.Song.tagged.related_to (song, num = 5)), 'tags_f': calc_tag_cloud } return j2shim.r2r ('webview/song_detail.html', params, request) # This can probbably be made a generic object def list_screenshot(request, screenshot_id): screenshot = get_object_or_404(m.Screenshot, id=screenshot_id) return j2shim.r2r('webview/screenshot_detail.html', { 'object' : screenshot }, request) class ViewUserFavs(ProfileView): """ List the favorites of a user """ template = "user_favorites.html" def set_context(self): favorites = m.Favorite.objects.filter(user = self.user) return {'favorites':favorites, 'favuser': self.user} class MyProfile(WebView): template = "my_profile.html" login_required = True forms = [(f.ProfileForm, "form")] def initialize(self): self.profile = common.get_profile(self.request.user) if self.profile.have_artist(): self.context['lic'] = f.LicenseForm() self.links = LinkCheck("U", object = self.profile) def pre_view(self): rootid = self.request.REQUEST.get("killroot", False) if rootid and rootid.isdigit(): root = TrustedRoot.objects.get(id=rootid) if root.openid.user == self.request.user: root.delete() return self.redirect("dv-my_profile") def handle_artistedit(self): L = f.LicenseForm(self.request.POST) if L.is_valid(): artist = self.request.user.artist lic = L.cleaned_data['license'] for song in artist.get_songs(): song.log(self.request.user, "License Mass Change to %s" % lic) song.license = lic song.save() self.redirect("dv-my_profile") def POST(self): if self.profile.have_artist() and self.request.POST.get("artistdata"): self.handle_artistedit() elif self.forms_valid and self.links.is_valid(self.request.POST): self.context['form'].save() self.links.save(self.profile) self.redirect("dv-my_profile") def form_form_init(self): return {'instance': self.profile} def set_context(self): return {'profile': self.profile, 'links': self.links} class ViewProfile(ProfileView): """ View a user's profile """ template = "view_profile.html" def set_context(self): return {'profile': self.profile} def search(request): """ Return the first 40 matches of songs, artists and groups. """ if request.method == 'POST' and "Search" in request.POST: searchterm = request.POST['Search'] result_limit = getattr(settings, 'SEARCH_LIMIT', 40) if settings.USE_FULLTEXT_SEARCH == True: users = m.User.objects.filter(username__search = searchterm)[:result_limit] songs = m.Song.objects.select_related(depth=1).filter(title__search = searchterm)[:result_limit] artists = m.Artist.objects.filter(handle__search = searchterm)|m.Artist.objects.filter(name__search = searchterm)[:result_limit] groups = m.Group.objects.filter(name__search = searchterm)[:result_limit] compilations = m.Compilation.objects.filter(name__search = searchterm)[:result_limit] labels = m.Label.objects.filter(name__search = searchterm)[:result_limit] else: users = m.User.objects.filter(username__icontains = searchterm)[:result_limit] songs = m.Song.objects.select_related(depth=1).filter(title__icontains = searchterm)[:result_limit] artists = m.Artist.objects.filter(handle__icontains = searchterm)|m.Artist.objects.filter(name__icontains = searchterm)[:result_limit] groups = m.Group.objects.filter(name__icontains = searchterm)[:result_limit] compilations = m.Compilation.objects.filter(name__icontains = searchterm)[:result_limit] labels = m.Label.objects.filter(name__icontains = searchterm)[:result_limit] return j2shim.r2r('webview/search.html', \ { 'songs' : songs, 'artists' : artists, 'groups' : groups, 'users' : users, 'compilations' : compilations, 'labels' : labels }, \ request=request) return j2shim.r2r('webview/search.html', {}, request=request) def show_approvals(request): """ Shows the most recently approved songs in it's own window """ result_limit = getattr(settings, 'UPLOADED_SONG_COUNT', 150) songs = m.SongApprovals.objects.order_by('-id')[:result_limit] return j2shim.r2r('webview/recent_approvals.html', { 'songs': songs , 'settings' : settings }, request=request) class ListArtists(ListByLetter): template = "artist_list.html" model = m.Artist list_title = "Complete Artist List" letter_url_name = "dv-artists_letter" all_url_name = "dv-artists" class ListGroups(ListByLetter): template = "group_list.html" model = m.Group class ListLabels(ListByLetter): template = "label_list.html" model = m.Label class ListComilations(ListByLetter): template = "compilation_list.html" model = m.Compilation list_title = "Complete Compilation / Album / Production List" letter_url_name = "dv-compilations_letter" all_url_name = "dv-compilations" class ListSongs(ListByLetter): template = "song_list.html" model = m.Song list_title = "List Of Songs" letter_url_name = "dv-songs_letter" all_url_name = "dv-songs" class ListScreenshots(ListByLetter): template = "screenshot_list.html" model = m.Screenshot list_title = "Gallery Of Images" letter_url_name = "dv-screenshots_letter" all_url_name = "dv-screenshots" def get_objects(self): return self.model.objects.filter(status="A") class ThemeClass(WebView): def initialize(self): themeid = self.kwargs['theme_id'] self.context['theme'] = self.theme = get_object_or_404(m.Theme, id=themeid) class ThemeInfo(ThemeClass): template = "theme_details.html" class ThemeEdit(ThemeClass): template = "theme_edit.html" forms = [(f.ThemeForm, "form")] login_required = True def form_form_init(self): return {'instance': self.theme} def POST(self): if self.forms_valid and self.request.user == self.theme.creator: self.context['form'].save() self.redirect(self.context['theme']) class ThemeAddImage(ThemeClass): def GET(self): if self.request.user == self.theme.creator: return create_screenshot(self.request, self.theme) self.redirect("/") class ThemeList(WebView): template = "themes_list.html" def get_objects(self): q = m.Theme.objects.filter (active=True) q = q.annotate (user_count = Count("userprofile")) # Add user who didn't care to select a theme themeless = m.Userprofile.objects.filter (theme = None).count () if themeless: default_theme = m.Theme.objects.all().order_by("-default") if default_theme: default_theme = default_theme[0] for t in q: if t.id == default_theme.id: t.user_count += themeless return q def POST(self): id = int(self.request.POST.get("theme_id")) theme = m.Theme.objects.get(id=id) if self.request.user.is_authenticated(): p = self.request.user.get_profile() p.theme = theme p.save() self.redirect("dv-themelist") def set_context(self): return {"themes": self.get_objects() } @login_required def log_out(request): """ Show a user a form, and then logs user out if a form is sent in to that address. """ if request.method == 'POST': logout(request) return HttpResponseRedirect("/") return j2shim.r2r('webview/logout.html', {}, request=request) class songHistory(SongView): """ List queue history of song """ template = "song_history.html" def set_context(self): return {'requests': self.song.queue_set.all()} class songVotes(SongView): """ List vote history of song """ template = "song_votes.html" def set_context(self): return {'votelist': self.song.songvote_set.all()} class songComments(SongView): """ List the comments belonging to a song """ template = "song_comments.html" def set_context(self): return {'commentlist': self.song.songcomment_set.all()} def view_compilation(request, comp_id): """ Try to view a compilation entry. """ permission = request.user.has_perm("webview.make_session") comp = get_object_or_404(m.Compilation, id=comp_id) # Find it, or return a 404 error if permission: sessionform = f.CreateSessionForm() else: sessionform = False if request.method == "POST" and permission: sessionform = f.CreateSessionForm(request.POST) if sessionform.is_valid(): desc = sessionform.cleaned_data['description'] playtime = sessionform.cleaned_data['time'] for song in comp.get_songs(): m.Queue.objects.create(song=song, played=False, playtime=playtime, requested_by = request.user, description = desc) common.get_queue(True) return redirect("dv-queue") return j2shim.r2r('webview/compilation.html', { 'comp' : comp, 'user' : request.user , 'sessionform': sessionform}, request=request) class OnelinerHistorySearch(WebView): template = "oneliner_search.html" forms = [(f.OnelinerHistory, "form")] results = [] staff_required = True def POST(self): if self.forms_valid: r = m.Oneliner.objects.all() data = self.context["form"].cleaned_data user = data["username"] if user: user = m.User.objects.get(username=user) r = r.filter(user=user) start = data["start"] num = data["results"] self.results = r[start:num+start] def set_context(self): return {"results": self.results} def oneliner(request): oneliner = m.Oneliner.objects.select_related(depth=1).order_by('-id')[:20] return j2shim.r2r('webview/oneliner.html', {'oneliner' : oneliner}, \ request=request) @login_required def oneliner_submit(request): """ Add a text line to the oneliner. Returns user to referrer position, or to / """ message = request.POST.get('Line').strip() common.add_oneliner(request.user, message) try: refer = request.META['HTTP_REFERER'] return HttpResponseRedirect(refer) except: return HttpResponseRedirect("/") @login_required def list_favorites(request): """ Display a user's favorites. """ user = request.user songs = m.Favorite.objects.filter(user=user) try: user_profile = m.Userprofile.objects.get(user = user) use_pages = user_profile.paginate_favorites except: # In the event it bails, revert to pages hehe use_pages = True if(use_pages): paginator = Paginator(songs, settings.PAGINATE) page = int(request.GET.get('page', '1')) try: songlist = paginator.page(page) except (EmptyPage, InvalidPage): songlist = paginator.page(paginator.num_pages) return j2shim.r2r('webview/favorites.html', \ {'songs': songlist.object_list, 'page' : page, 'page_range' : paginator.page_range}, \ request=request) return j2shim.r2r('webview/favorites.html', { 'songs': songs }, request=request) class QueueSong(AjaxifyView): redirect_to = "dv-queue" def handle_form(self, form): self.r = common.queue_song(self.song, self.request.user) def make_ajax_return(self): if self.r: return HttpResponse("""<span style="display:none">l</span> <img class="song_tail" src="%slock.png" title="Locked" alt="Locked"/>""" % settings.MEDIA_URL) return HttpResponse("") class ChangeFavorite(AjaxifyView): redirect_to = "dv-favorites" def handle_form(self, form): P = form.get if P("change") == "remove": Q = m.Favorite.objects.filter(user = self.request.user, song = self.song) for x in Q: x.delete() # For running Favorite.delete() logic m.send_notification("Song removed from your favorites", self.request.user) if P("change") == "add": try: m.Favorite.objects.create(user = self.request.user, song = self.song) m.send_notification("Song added to your favorites", self.request.user) except: pass def make_ajax_return(self): s = "{{ display.favorite(song, user) }}" c = {'song': self.song, 'user': self.request.user} return HttpResponse(j2shim.render_string(s, c)) class VoteSong(AjaxifyView): redirect_to = "dv-root" @atomic("vote") def handle_form(self, form): self.int_vote = int(form.get("vote", form.get("ajaxvote"))) if self.int_vote <= 5 and self.int_vote > 0: self.song.set_vote(self.int_vote, self.request.user) def make_ajax_return(self): s = "{{ display.song_vote(song, value) }}" c = {'song': self.song, 'value': self.int_vote} return HttpResponse(j2shim.render_string(s, c)) class LinkCheck(object): def __init__(self, linktype, object = None, status = 0, user = None, add=False): self.type = linktype self.add = add self.verified = [] self.user = user self.status = status self.object = object self.valid = False self.get_list() self.title = "External Resources" def get_link_for(self, o, generic): if not o or not generic: return None bla = ContentType.objects.get_for_model(o) r = m.GenericLink.objects.filter(content_type__pk=bla.id, object_id=o.id, link=generic) return r and r[0] or None def get_list(self): self.linklist = m.GenericBaseLink.objects.filter(linktype = self.type) r = [] for x in self.linklist: val = self.get_link_for(self.object, x) value=val and val.value or "" r.append({'link': x, 'value': value, "error": "", "comment": ""}) self.links = r return self.linklist def __unicode__(self): return self.as_table() def as_table(self): """ Print links form as table """ return j2shim.r2s('webview/t/linksform.html', \ {'links': self.links, 'title': self.title }) def is_valid(self, postdict): """ Check if given links are valid according to given regex """ self.valid = True for entry in self.links: l = entry['link'] # GenericBaseLink object key = "LL_%s" % l.id if postdict.has_key(key): val = postdict[key].strip() if val: ckey = key+"_comment" comment = postdict.has_key(ckey) and postdict[ckey].strip() or "" #Fill out dict in case it needs to be returned to user entry['value'] = val entry['comment'] = comment if re.match(l.regex + "$", val): self.verified.append((l, val, comment)) #Add to approved list else: self.valid = False entry['error'] = "The input did not match expected value" else: self.verified.append((l, "", "")) #No value for this link return self.valid def save(self, obj): """ Save links to database """ if self.verified and self.valid: for l, val, comment in self.verified: r = self.get_link_for(obj, l) if val: if r and not self.add: r.value = val r.save() else: m.GenericLink.objects.create( content_object=obj, value=val, link=l, status = self.status, comment = comment, user = self.user ) else: if r and not self.add: r.delete() obj.save() # For caching @permission_required('webview.change_songmetadata') def new_songinfo_list(request): alink = request.GET.get("alink", False) status = request.GET.get("status", False) if alink and status.isdigit(): link = get_object_or_404(m.GenericLink, id=alink) link.status = int(status) link.content_object.save() link.save() nusonginfo = m.SongMetaData.objects.filter(checked=False).order_by('added') # Oldest info events will be shown first nulinkinfo = m.GenericLink.objects.filter(status=1) c = {'metainfo': nusonginfo, 'linkinfo': nulinkinfo} return j2shim.r2r("webview/list_newsonginfo.html", c, request) @permission_required('webview.change_songmetadata') def list_songinfo_for_song(request, song_id): song = get_object_or_404(m.Song, id=song_id) metalist = m.SongMetaData.objects.filter(song=song) c = {'metalist':metalist, 'song': song} return j2shim.r2r("webview/list_songinfo.html", c, request) @login_required def add_songlinks(request, song_id): song = get_object_or_404(m.Song, id=song_id) links = LinkCheck("S", status=1, user = request.user, add = True) if request.method == "POST": if links.is_valid(request.POST): links.save(song) return redirect(song) c = {'song': song, 'links': links} return j2shim.r2r("webview/add_songlinks.html", c, request) @permission_required('webview.change_songmetadata') def view_songinfo(request, songinfo_id): meta = get_object_or_404(m.SongMetaData, id=songinfo_id) post_ok = getattr(settings, 'ADMIN_EMAIL_ON_INFO_APPROVE', False) # Do we send an email on info approve? if request.method == "POST": if request.POST.has_key("activate") and request.POST["activate"]: if post_ok : if not meta.checked and meta.user: meta.user.get_profile().send_message( subject="Song info approved", message="Your metadata for song [song]%s[/song] is now active :)" % meta.song.id, sender = request.user ) meta.song.log(request.user, "Approved song metadata") meta.set_active() if request.POST.has_key("deactivate") and request.POST["deactivate"]: if not meta.checked and meta.user: meta.user.get_profile().send_message( subject="Song info not approved", message="Your metadata for song [song]%s[/song] was not approved :(" % meta.song.id, sender = request.user ) meta.checked = True meta.song.log(request.user, "Rejected metadata %s" % meta.id) meta.save() c = {'meta': meta } return j2shim.r2r("webview/view_songinfo.html", c, request) #Not done class editSonginfo(SongView): template = "edit_songinfo.html" forms = [f.EditSongMetadataForm, "form"] login_required = True def form_form_init(self): if self.method == "POST": meta = m.SongMetaData(song=self.song, user=self.request.user) else: meta = self.song.get_metadata() meta.comment = "" return {'instance': meta} def POST(self): if self.forms_valid: self.context['form'].save() self.redirect(self.context['song']) @login_required def edit_songinfo(request, song_id): song = get_object_or_404(m.Song, id=song_id) meta = song.get_metadata() meta.comment = "" form2 = False if (request.user.get_profile().have_artist() and request.user.artist in meta.artists.all()) or (request.user.is_staff): form2 = f.SongLicenseForm(instance=song) if request.method == "POST": meta = m.SongMetaData(song=song, user=request.user) if form2 and request.POST.get("special") == "licchange": form2 = f.SongLicenseForm(request.POST, instance=song) if form2.is_valid(): s = form2.save() song.log(request.user, "Changed song license to %s" % s.license) return redirect(song) else: form = f.EditSongMetadataForm(request.POST, instance=meta) if form.is_valid(): form.save() return redirect(song) else: form = f.EditSongMetadataForm(instance=meta) c = {'form': form, 'song': song, 'form2': form2} return j2shim.r2r("webview/edit_songinfo.html", c, request) @login_required def upload_song(request, artist_id): # Check to see if Uploading is currently disabled DisableUploads = getattr(settings, 'DISABLE_UPLOADS', False) if DisableUploads: # Uploads are currently disabled in the system return HttpResponseRedirect(reverse('dv-queue')) artist = get_object_or_404(m.Artist, id=artist_id) auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_UPLOADS', 0) artist_auto_approve = getattr(settings, 'ARTIST_AUTO_APPROVE_UPLOADS', 1) links = LinkCheck("S", user = request.user) # Quick test to see if the artist is currently active. If not, bounce # To the current queue! if artist.status != 'A': return HttpResponseRedirect(reverse('dv-queue')) if request.method == 'POST': if artist_auto_approve and artist.link_to_user == request.user: # Auto Approved Song. Set Active, Add to Recent Uploads list status = 'A' else: status = 'U' # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' a = m.Song(uploader = request.user, status = status) form = f.UploadForm(request.POST, request.FILES, instance = a) infoform = f.SongMetadataForm(request.POST) if links.is_valid(request.POST) and form.is_valid() and infoform.is_valid(): new_song = form.save(commit=False) new_song.save() songinfo = infoform.save(commit=False) songinfo.user = request.user songinfo.song = new_song songinfo.checked = True songinfo.save() infoform.save_m2m() form.save_m2m() songinfo.artists.add(artist) songinfo.set_active() links.save(new_song) if(new_song.status == 'A'): # Auto Approved! try: # If the song entry exists, we shouldn't care exist = m.SongApprovals.objects.get(song = new_song) except: # Should throw when the song isn't found in the DB Q = m.SongApprovals(song = new_song, approved_by=request.user, uploaded_by=request.user) Q.save() return HttpResponseRedirect(new_song.get_absolute_url()) else: form = f.UploadForm() infoform = f.SongMetadataForm() return j2shim.r2r('webview/upload.html', \ {'form' : form, 'infoform': infoform, 'artist' : artist, 'links': links }, \ request=request) @permission_required('webview.change_song') def activate_upload(request): if "song" in request.GET and "status" in request.GET: songid = int(request.GET['song']) status = request.GET['status'] song = m.Song.objects.get(id=songid) url = m.Site.objects.get_current() if status == 'A': stat = "Accepted" song.status = "A" song.log(request.user, "Approved song") if status == 'R': stat = "Rejected" song.status = 'R' song.log(request.user, "Rejected song") # This used to be propriatary, it is now a template. AAK mail_tpl = loader.get_template('webview/email/song_approval.txt') c = Context({ 'songid' : songid, 'song' : song, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) song.save() # Only add if song is approved! Modified to check to see if song exists first! # There is probbably a better way of doing this crude check! AAK if(status == 'A'): try: # If the song entry exists, we shouldn't care exist = m.SongApprovals.objects.get(song = song) except: # Should throw when the song isn't found in the DB Q = m.SongApprovals(song=song, approved_by=request.user, uploaded_by=song.uploader) Q.save() if getattr(settings, "NOTIFY_NEW_SONG_APPROVED", False): m.send_notification("Song <a href='%s'>%s</a> was accepted and is now avaliable for queuing!" % ( song.get_absolute_url(), escape(song.title), ), None, 2) if song.uploader.get_profile().pm_accepted_upload and status == 'A' or status == 'R': song.uploader.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Song Upload Status Changed To: %s" % stat ) songs = m.Song.objects.filter(status = "U").order_by('added') return j2shim.r2r('webview/uploaded_songs.html', {'songs' : songs}, request=request) def showRecentChanges(request): # Get some default stat values artist_limit = getattr(settings, 'RECENT_ARTIST_VIEW_LIMIT', 20) song_limit = getattr(settings, 'RECENT_SONG_VIEW_LIMIT', 20) label_limit = getattr(settings, 'RECENT_LABEL_VIEW_LIMIT', 20) group_limit = getattr(settings, 'RECENT_GROUP_VIEW_LIMIT', 20) comp_limit = getattr(settings, 'RECENT_COMP_VIEW_LIMIT', 20) # Make a list of stuff needed for the stats page songlist = m.Song.objects.order_by('-songmetadata__added')[:song_limit] artistlist = m.Artist.objects.order_by('-last_updated')[:artist_limit] labellist = m.Label.objects.order_by('-last_updated')[:label_limit] grouplist = m.Group.objects.order_by('-last_updated')[:group_limit] complist = m.Compilation.objects.order_by('-last_updated')[:comp_limit] # And now return this as a template. default page cache is 5 minutes, which is ample enough # To show real changes, without stressing out the SQL loads return j2shim.r2r('webview/recent_changes.html', {'songs' : songlist, 'artists' : artistlist, 'groups' : grouplist, 'labels' : labellist, 'compilations' : complist}, request=request) class UsersOverview (WebView): template = "users_overview.html" def set_context (self): limit = 50 country_stats_q = m.User.objects.values ("userprofile__country") country_stats_q = country_stats_q.annotate (count = Count("pk")) country_stats_q = country_stats_q.order_by ('-count', "userprofile__country") by_votes_q = m.User.objects.values ("username", 'userprofile__country') by_votes_q = by_votes_q.annotate (count = Count("songvote"), avg = Avg('songvote__vote')) by_votes_q = by_votes_q.order_by ('-count') by_votes_q = by_votes_q [:limit] by_oneliner_q = m.User.objects.values ("username", 'userprofile__country') by_oneliner_q = by_oneliner_q.annotate (count = Count("oneliner")) by_oneliner_q = by_oneliner_q.order_by ('-count') by_oneliner_q = by_oneliner_q [:limit] by_uploads_q = m.SongApprovals.objects.values ("uploaded_by__username", 'uploaded_by__userprofile__country') by_uploads_q = by_uploads_q.annotate (count = Count("pk")) by_uploads_q = by_uploads_q.order_by ('-count') by_uploads_q = by_uploads_q [:limit] by_tagging_q = m.TagHistory.objects.values ("user__username", 'user__userprofile__country') by_tagging_q = by_tagging_q.annotate (count = Count("pk")) by_tagging_q = by_tagging_q.order_by ('-count') by_tagging_q = by_tagging_q [:limit] by_requester_q = m.Queue.objects.values ("requested_by__username", 'requested_by__userprofile__country') by_requester_q = by_requester_q.annotate (count = Count("pk"), avg = Avg ("song__rating")) by_requester_q = by_requester_q.order_by ('-count') by_requester_q = by_requester_q [:limit] by_comments_q = m.SongComment.objects.values ("user__username", 'user__userprofile__country') by_comments_q = by_comments_q.annotate (count = Count("pk")) by_comments_q = by_comments_q.order_by ('-count') by_comments_q = by_comments_q [:limit] by_posts_q = fm.Post.objects.values ("author__username", 'author__userprofile__country') by_posts_q = by_posts_q.annotate (count = Count("pk")) by_posts_q = by_posts_q.order_by ('-count') by_posts_q = by_posts_q [:limit] # We can return queries, since they are lazy. It is supposed that access is cached in html return {'by_votes_q' : by_votes_q, 'by_oneliner_q' : by_oneliner_q, 'by_requester_q' : by_requester_q, 'by_comments_q' : by_comments_q, 'by_posts_q' : by_posts_q, 'by_tagging_q' : by_tagging_q, 'by_uploads_q' : by_uploads_q, 'country_stats_q' : country_stats_q} class RadioOverview (WebView): # This is supposed to be cached both on HTML level (to avoid overheads on HTML rendering) # and on code level to avoid set_context method overheads template = "radio_overview.html" @cached_method (key = "RadioOverview-get_total_played_length", timeout = 60) def get_total_played (self): q = m.Song.active.extra ( select = {"total_played_length" : "sum(song_length * times_played)", "total_times_played" : "sum(times_played)"}) return list (q.values ("total_played_length", "total_times_played")) [0] @cached_method (key = "RadioOverview-stats_by_status", timeout = 60) def list_stats_by_status (self): return self.__list_grouped_by (m.Song.objects, 'status') @cached_method (key = "RadioOverview-votes_by_status", timeout = 60) def list_votes_stats (self): return self.__list_grouped_by (m.Song.active, 'rating_votes', limit = 6) @cached_method (key = "RadioOverview-source_stats", timeout = 60) def list_source_stats (self): type_by_id = {None : m.Struct (title = "----------------")} for type in m.SongType.objects.all(): type_by_id [type.id] = type stats = self.__list_grouped_by (m.Song.active.filter (songmetadata__active = True), 'songmetadata__type') for stat in stats: stat ['source'] = type_by_id [stat['songmetadata__type']].title return stats @cached_method (key = "RadioOverview-country_stats", timeout = 86400) def list_country_stats (self): return self.__list_grouped_by ( m.Song.active.filter (songmetadata__active = True), 'songmetadata__artists__home_country', order_by = ['-count', 'songmetadata__artists__home_country']) @cached_method (key = "RadioOverview-set_context", timeout = 60) def set_context (self): # Overview stats_by_status = self.list_stats_by_status () total_songs = 0 total_length = 0 unlocked_songs = 0 unlocked_length = 0 status_dict = dict (m.Song.STATUS_CHOICES) for stat in stats_by_status: stat ['status'] = status_dict [stat ['status']] total_songs += stat ['count'] total_length += stat ['total_playtime'] unlocked_songs += stat ['unlocked_count'] unlocked_length += stat ['unlocked_playtime'] # Result return {'vote_stats' : self.list_votes_stats (), "stats_by_status" : stats_by_status, "source_stats" : self.list_source_stats (), "country_stats" : self.list_country_stats (), 'total_length' : total_length, 'total_songs' : total_songs, 'unlocked_length' : unlocked_length, 'unlocked_songs' : unlocked_songs, 'total_played' : self.get_total_played ()} def __list_grouped_by (self, qmanager, field, limit = None, order_by = None): # It is hard or impossible to write that with current django without issuing two queries # because django doesn't support expressions in annotations... def qfiltered (f = None): q = qmanager if f: q = q.filter (f) q = q.values (field) q = q.annotate (count = Count("pk"), total_playtime = Sum('song_length')) if order_by: q = q.order_by (*order_by) else: q = q.order_by (field) if limit: return q [:limit] else: return q.all () # Get total by_field = {} stats = qfiltered () for stat in stats: by_field [stat[field]] = stat stat ['unlocked_count'] = 0 stat ['unlocked_playtime'] = 0 # Mix-in playable stats for pstat in qfiltered (m.Song.unlocked_condition()): fieldv = pstat [field] if fieldv in by_field: stat = by_field [fieldv] stat ['unlocked_count'] = pstat ['count'] stat ['unlocked_playtime'] = pstat ['total_playtime'] # Force evaluation, otherwise django's cache doesn't cache it at all! :E return list (stats) class RadioStatus(WebView): template = "stat_songs.html" def list_favorites(self): return m.Song.objects.order_by('-num_favorited') def list_voted(self): limit = getattr(settings, "RADIO_STATUS_VOTED_MIN_VOTES", 1) return m.Song.objects.filter(rating_votes__gt = limit - 1).order_by('-rating','-rating_votes') def list_leastvotes (self): return m.Song.objects.filter (m.Song.unlocked_condition ()).order_by ('rating_votes', '?')[:100] def list_forgotten (self): q = m.Song.active.filter (m.Song.unlocked_condition ()) q = q.annotate (last_requested = Max("queue__requested")) q = q.order_by ('last_requested') q = q[:100] return q def list_random(self): max_id = m.Song.objects.order_by('-id')[0].id max_songs = m.Song.objects.filter(status="A").count() num_songs = 100 num_songs = num_songs < max_songs and num_songs or max_songs songlist = [] r_done = [] r = random.randint(0, max_id+1) while len(songlist) < num_songs: r_list = [] curr_count = (num_songs - len(songlist) + 2) for x in range(curr_count): while r in r_done: r = random.randint(0, max_id+1) r_list.append(r) r_done.extend(r_list) songlist.extend([s for s in m.Song.objects.filter(id__in=r_list, status="A")]) return songlist def list_mostvotes(self): return m.Song.objects.order_by('-rating_votes') def list_queued2(self): return m.Song.objects.filter(m.Song.unlocked_condition()).order_by('times_played', 'locked_until') def list_queued(self): return m.Song.objects.filter(status="A").order_by('-times_played') def initialize(self): self.stats = { 'random': ("A selection of random songs from the database!", "rating_votes", "# Votes", self.list_random), 'leastvotes': ("Songs with the least number of votes in the database.", "rating_votes", "# Votes", self.list_leastvotes), 'forgotten': ("Songs which have not been played in a long time (or not al all).", "times_played", "# Plays", self.list_forgotten), 'favorites': ("Songs which appear on more users favourite lists.", "num_favorited", "# Faves", self.list_favorites), 'voted': ("The highest rated songs in the database.", "rating", "Rating", self.list_voted), 'queued': ("The most played songs in the database.", "times_played", "# Plays", self.list_queued), 'unplayed': ("The least played songs in the database.", "times_played", "# Plays", self.list_queued2), 'mostvotes': ("Songs with the highest number of votes cast.", "rating_votes", "# Votes", self.list_mostvotes), } self.stattype = self.kwargs.get("stattype", "") def set_context(self): if self.stattype in self.stats.keys(): title, stat, name, songs = self.stats[self.stattype] return {'songs': songs()[:100], 'title': title, 'numsongs': 100, 'stat': stat, 'name': name} self.template = "radio_status.html" return {'keys' : self.stats} class HelpusWithArtists (ListArtists): list_title = "Artists with incorrect/missing information" letter_url_name = "dv-helpus-artist_letter" all_url_name = "dv-helpus-artist" condition = ~DQ (home_country__in = m.country_codes2, status = 'A') condition |= DQ (artist_pic = '', status = 'A') def get_objects (self): return self.model.objects.filter (self.condition) def desc_function (self, artist): """Describe what is wrong with an artist.""" problems = [] if artist.status == 'A': country_lc = artist.home_country.lower() if country_lc == "": problems.append (_("no country")) elif country_lc not in m.country_codes2: problems.append (_("unknown country (" + artist.home_country + ")")) if artist.artist_pic == "": problems.append (_("no picture")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class HelpusWithSongs (ListSongs): list_title = "Songs with problems" letter_url_name = "dv-helpus-song_letter" all_url_name = "dv-helpus-song" # Kaput condition = DQ (status = 'K') # Active but no compilation condition |= DQ (status = 'A', compilationsonglist = None, songmetadata__active = True, songmetadata__type__compilation_expected = True) # No source (song type) condition |= DQ (status = 'A', songmetadata__type = None, songmetadata__active = True) def get_objects (self): q = self.model.objects.filter (self.condition) q = q.annotate (comps_count = Count("compilationsonglist__pk")) # I hate that but until it is not django 1.4 we can't do better q = q.extra (select = {'compilation_expected' : '`webview_songtype`.`compilation_expected`', 'songtype' : '`webview_songtype`.`id`'}) return q def desc_function (self, song): """Describe what is wrong with an artist.""" problems = [] if song.status == 'K': problems.append ("bad status") if song.compilation_expected and song.comps_count == 0 and song.status == 'A': problems.append ("no compilations") if song.status == 'A' and song.songtype == None: problems.append ("no source") if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return problems else: # WTF? why are we here then? return "" class HelpusWithComps (ListComilations): list_title = "Compilations with problems" letter_url_name = "dv-helpus-comp_letter" all_url_name = "dv-helpus-comp" def get_objects (self): # That is the only way.. ;( Django's contenttype magic inserts content_type_id=29 into where clause # making it impossible to filter screenshots=None, so we have to use inner join active_and_with_image_q = self.model.objects.filter (status = 'A', screenshots__image__status = 'A') # Active and without an image condition = DQ (status = 'A') & ~DQ (pk__in = active_and_with_image_q) # Active and no songs (messed up via admin interface or songs are deleted...) condition |= DQ (status = 'A', songs = None) q = self.model.objects.filter (condition) q = q.annotate (screenshots_count = Count("screenshots"), songs_count = Count ("songs")) return q def desc_function (self, comp): """Describe what is wrong with the compilation.""" problems = [] if comp.status == 'A': if comp.screenshots_count == 0: problems.append (_("no cover image")) if comp.songs_count == 0: problems.append (_("no songs")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class HelpusWithScreenshots (ListScreenshots): list_title = "Images with problems" letter_url_name = "dv-helpus-screenshot_letter" all_url_name = "dv-helpus-screenshot" # Connected to nothing condition = DQ (status = 'A', screenshotobjectlink = None) def get_objects (self): q = self.model.objects.filter (self.condition) q = q.annotate (slink_count = Count("screenshotobjectlink")) return q def desc_function (self, scr): """Describe what is wrong with the screenshot.""" problems = [] if scr.status == 'A': if scr.slink_count == 0: problems.append (_("connected to nothing")) if problems: problems = ", ".join (problems) problems = problems[0].upper() + problems[1:] return " - " + problems + "." else: # WTF? why are we here then? return "" class TagCloud(WebView): template = "tag_cloud.html" cache_key = "tag_cloud" cache_duration = 24*60*60 def get_cache_key(self): tag_id = cache.get("tagver", 0) key = "tag_cloud_%s" % tag_id return key def set_cached_context(self): min_count = getattr(settings, 'TAG_CLOUD_MIN_COUNT', 1) tags = m.Song.tags.cloud(min_count=min_count) return {'tags': tags} class MuteOneliner(WebView): template = "oneliner_mute.html" forms = [ (f.MuteOnelinerForm, "banform"), ] def check_permissions(self): return self.request.user.has_perm("webview.add_mute_oneliner") def POST(self): if self.forms_valid: data = self.context["banform"].cleaned_data user = data["username"] endtime = datetime.datetime.now() + datetime.timedelta(minutes=data["mute_minutes"]) entry = m.OnelinerMuted( user=user, muted_to=endtime, reason=data["reason"], added_by=self.request.user, details=data["details"], ) if data["ban_ip"]: profile = user.get_profile() if profile.last_ip: entry.ip_ban = profile.last_ip entry.save() if getattr(m.settings, "BAN_ANNOUNCE", False): m.send_notification("User '%s' have been silenced for %s minutes. Reason: %s" % (user.username,data["mute_minutes"], data["reason"]), None) user.get_profile().log(self.request.user, "Silenced for %s minutes. Reason: %s" % (data["mute_minutes"], data["reason"])) self.redirect("dv-muteoneliner") def set_context(self): active = m.OnelinerMuted.objects.filter(muted_to__gt=datetime.datetime.now()) history = m.OnelinerMuted.objects.filter(muted_to__lt=datetime.datetime.now())[:10] return {"active": active, "history": history} class TagDetail(WebView): template = "tag_detail.html" cache_duration = 24 * 60 * 60 def get_cache_key(self): tag_id = cache.get ("tagver", 0) key = "tagdetail_%s_%s" % (self.kwargs.get("tag", ""), tag_id) return hashlib.md5(key).hexdigest() def set_cached_context(self): tag = self.kwargs.get ("tag", "") songs = TaggedItem.objects.get_by_model (m.Song, tag) related = m.quickly_get_related_tags (songs, exclude_tags_str = tag, limit_to_model = m.Song, count = True) related = tagging.utils.calculate_cloud (related) return {'songs' : songs, 'related' : related, 'tag' : tag} class TagEdit(SongView): login_required=True template = "tag_edit.html" def POST(self): t = self.request.POST.get('tags', "") self.song.tags = re.sub(r'[^a-zA-Z0-9!_\-?& ]+', '', t) self.song.log(self.request.user, "Edited tags") self.song.save() # For updating the "last changed" value m.TagHistory.objects.create(user=self.request.user, song=self.song, tags = self.request.POST['tags']) try: cache.incr("tagver") except: cache.set("tagver", 1) return self.redirect(self.song) def set_context(self): tags = tagging.utils.edit_string_for_tags(self.song.tags) changes = m.TagHistory.objects.filter(song=self.song).order_by('-id')[:5] return {'tags': tags, 'changes': changes} @login_required def create_artist(request): """ Simple form to allow registereed users to create a new artist entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_ARTIST', 0) links = LinkCheck("A") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' a = m.Artist(created_by = request.user, status = status) form = f.CreateArtistForm(request.POST, request.FILES, instance = a) if form.is_valid() and links.is_valid(request.POST): new_artist = form.save(commit=False) new_artist.save() form.save_m2m() links.save(new_artist) return HttpResponseRedirect(new_artist.get_absolute_url()) else: form = f.CreateArtistForm() return j2shim.r2r('webview/create_artist.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_artist') def activate_artists(request): """ Shows the most recently added artists who have a 'U' status in their upload marker """ if "artist" in request.GET and "status" in request.GET: artistid = int(request.GET['artist']) status = request.GET['status'] artist = m.Artist.objects.get(id=artistid) url = m.Site.objects.get_current() # Pull this into a variable if status == 'A': stat = "Accepted" artist.log(request.user, "Activated artist") artist.status = "A" if status == 'R': stat = "Rejected" artist.log(request.user, "Rejected artist") artist.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/artist_approval.txt') c = Context({ 'artist' : artist, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) artist.save() # Send the email to inform the user of their request status if artist.created_by.get_profile().email_on_artist_add and status == 'A' or status == 'R': artist.created_by.get_profile().send_message(sender = request.user, message = mail_tpl.render(c), subject = u"Artist %s : %s" % (artist.handle, stat) ) artists = m.Artist.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_artists.html', { 'artists': artists }, request=request) @login_required def create_group(request): """ Simple form to allow registereed users to create a new group entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_GROUP', 0) links = LinkCheck("G") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': g = m.Group(created_by = request.user, status = status) form = f.CreateGroupForm(request.POST, request.FILES, instance = g) if form.is_valid() and links.is_valid(request.POST): new_group = form.save(commit=False) new_group.save() form.save_m2m() links.save(new_group) return HttpResponseRedirect(new_group.get_absolute_url()) else: form = f.CreateGroupForm() return j2shim.r2r('webview/create_group.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_group') def activate_groups(request): """ Shows the most recently added groups who have a 'U' status in their upload marker """ if "group" in request.GET and "status" in request.GET: groupid = int(request.GET['group']) status = request.GET['status'] group = m.Group.objects.get(id=groupid) if status == 'A': stat = "Accepted" group.status = "A" if status == 'R': stat = "Rejected" group.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/group_approval.txt') c = Context({ 'group' : group, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) group.save() # Send the email to inform the user of their request status if group.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': group.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Group Request Status Changed To: %s" % stat ) groups = m.Group.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_groups.html', { 'groups': groups }, request=request) @permission_required('webview.change_compilation') def activate_compilations(request): """ Shows the most recently added compilations who have a 'U' status in their upload marker """ if "compilation" in request.GET and "status" in request.GET: compilationid = int(request.GET['compilation']) status = request.GET['status'] compilation = m.Compilation.objects.get(id=compilationid) if status == 'A': stat = "Accepted" compilation.status = "A" if status == 'R': stat = "Rejected" compilation.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/compilation_approval.txt') c = Context({ 'compilation' : compilation, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) compilation.save() # Send the email to inform the user of their request status if compilation.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': compilation.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Compilation Request Status Changed To: %s" % stat ) compilations = m.Compilation.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_compilations.html', { 'compilations': compilations }, request=request) @login_required def create_label(request): """ Simple form to allow registereed users to create a new label entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_LABEL', 0) links = LinkCheck("L") if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': l = m.Label(created_by = request.user, status = status) form = f.CreateLabelForm(request.POST, request.FILES, instance = l) if form.is_valid() and links.is_valid(request.POST): new_label = form.save(commit=False) new_label.save() form.save_m2m() links.save(new_label) return HttpResponseRedirect(new_label.get_absolute_url()) else: form = f.CreateLabelForm() return j2shim.r2r('webview/create_label.html', \ {'form' : form, 'links': links }, \ request=request) @permission_required('webview.change_label') def activate_labels(request): """ Shows the most recently added labels who have a 'U' status in their upload marker """ if "label" in request.GET and "status" in request.GET: labelid = int(request.GET['label']) status = request.GET['status'] this_label = m.Label.objects.get(id=labelid) if status == 'A': stat = "Accepted" this_label.status = "A" if status == 'R': stat = "Rejected" this_label.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/label_approval.txt') c = Context({ 'label' : this_label, 'site' : m.Site.objects.get_current(), 'stat' : stat, }) this_label.save() # Send the email to inform the user of their request status if this_label.created_by.get_profile().email_on_group_add and status == 'A' or status == 'R': this_label.created_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Label Request Status Changed To: %s" % stat ) labels = m.Label.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_labels.html', { 'labels': labels }, request=request) @login_required def create_screenshot(request, obj=None): """ Simple form to allow registereed users to create a new screenshot entry. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_SCREENSHOT', 0) error="" if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'U' if request.method == 'POST': new_screenshot = None l = m.Screenshot(added_by = request.user, status = status) form = f.CreateScreenshotForm(request.POST, request.FILES, instance = l) form2 = f.GenericInfoForm(request.POST) if form2.is_valid(): connectval = request.POST.get("connectto") ct = form2.cleaned_data['content_type'] id = form2.cleaned_data['object_id'] # User links existing screenshot instead of creating new. if connectval: try: if connectval.isdigit(): new_screenshot = m.Screenshot.objects.get(id=connectval) else: new_screenshot = m.Screenshot.objects.get(name=connectval) if not new_screenshot.is_active(): error = "'{0}' is not active! Get an admin to approve it.".format(connectval) new_screenshot = None else: m.ScreenshotObjectLink.objects.create(content_type=ct, object_id=id, image=new_screenshot) new_screenshot.save() except: error = "Screenshot not found!" if not connectval and form.is_valid(): new_screenshot = form.save(commit=False) new_screenshot.save() form.save_m2m() m.ScreenshotObjectLink.objects.create(content_type=ct, object_id=id, image=new_screenshot) # Generate a request for the thumbnail new_screenshot.create_thumbnail() new_screenshot.save() # Leave this place :) if new_screenshot: return HttpResponseRedirect(new_screenshot.get_absolute_url()) else: if obj: ct = ContentType.objects.get_for_model(obj.__class__) i = {'content_type': ct, 'object_id': obj.id } else: i = {} form = f.CreateScreenshotForm() form2 = f.GenericInfoForm(initial=i) return j2shim.r2r('webview/create_screenshot.html', \ {'form' : form, 'form2': form2, "obj":obj, 'error':error }, \ request=request) @permission_required('webview.change_screenshot') def activate_screenshots(request): """ Shows the most recently added labels who have a 'U' status in their upload marker """ if "screenshot" in request.GET and "status" in request.GET: screenshotid = int(request.GET['screenshot']) status = request.GET['status'] this_screenshot = m.Screenshot.objects.get(id=screenshotid) url = m.Site.objects.get_current() if status == 'A': stat = "Accepted" this_screenshot.status = "A" if status == 'R': stat = "Rejected" this_screenshot.status = 'R' # Prepare a mail template to inform user of the status of their request mail_tpl = loader.get_template('webview/email/screenshot_approval.txt') c = Context({ 'screenshot' : this_screenshot, 'site' : m.Site.objects.get_current(), 'stat' : stat, 'url' : url, }) this_screenshot.save() # Send the email to inform the user of their request status if this_screenshot.added_by.get_profile().email_on_group_add and status == 'A' or status == 'R': this_screenshot.added_by.get_profile().send_message( sender = request.user, message = mail_tpl.render(c), subject = "Screenshot Request Status Changed To: %s" % stat ) screenshots = m.Screenshot.objects.filter(status = "U").order_by('last_updated') return j2shim.r2r('webview/pending_screenshots.html', { 'screenshots': screenshots }, request=request) @permission_required('webview.change_screenshot') def rebuild_thumb(request, screenshot_id): screenshot = get_object_or_404(m.Screenshot, id=screenshot_id) #m.Screenshot.objects.get(id=screenshot_id) #get_object_or_404(m.Screenshot, id=screenshot_id) screenshot.create_thumbnail() screenshot.save() return j2shim.r2r('webview/screenshot_detail.html', { 'object' : screenshot }, request) def users_online(request): timefrom = datetime.datetime.now() - datetime.timedelta(minutes=5) userlist = m.Userprofile.objects.filter(last_activity__gt=timefrom).order_by('user__username') return j2shim.r2r('webview/online_users.html', {'userlist' : userlist}, request=request) @login_required def set_rating_autovote(request, song_id, user_rating): """ Set a user's rating on a song. From 0 to 5 """ int_vote = int(user_rating) if int_vote <= 5 and int_vote > 0: S = m.Song.objects.get(id = song_id) S.set_vote(int_vote, request.user) #add_event(event="nowplaying") # Successful vote placed. try: refer = request.META['HTTP_REFERER'] return HttpResponseRedirect(refer) except: return HttpResponseRedirect("/") # If the user tries any funny business, we redirect to the queue. No messing! return HttpResponseRedirect(reverse("dv-queue")) @login_required def set_rating(request, song_id): """ Set a user's rating on a song. From 0 to 5 """ if request.method == 'POST': try: R = int(request.POST['Rating']) except: return HttpResponseRedirect(reverse('dv-song', args=[song_id])) if R <= 5 and R >= 1: S = m.Song.objects.get(id = song_id) S.set_vote(R, request.user) return HttpResponseRedirect(S.get_absolute_url()) def link_category(request, slug): """ View all links associated with a specific link category slug """ link_cat = get_object_or_404(m.LinkCategory, id_slug = slug) link_data_txt = m.Link.objects.filter(status="A").filter(link_type="T").filter(url_cat=link_cat) # See what linkage data we have return j2shim.r2r('webview/links_category.html', \ {'links_txt' : link_data_txt, 'cat' : link_cat}, \ request=request) @login_required def link_create(request): """ User submitted links appear using this form for moderators to approve. Once sent, they are directed to A generic 'Thanks' page. """ auto_approve = getattr(settings, 'ADMIN_AUTO_APPROVE_LINK', 0) if request.method == 'POST': # Check to see if moderation settings allow for the check if request.user.is_staff and auto_approve == 1: # Automatically approved due to Moderator status status = 'A' else: status = 'P' l = m.Link(submitted_by = request.user, status = status) form = f.CreateLinkForm(request.POST, request.FILES, instance = l) if form.is_valid(): new_link = form.save(commit=False) new_link.save() form.save_m2m() return j2shim.r2r('webview/link_added.html', request=request) # Redirect to 'Thanks!' screen! else: form = f.CreateLinkForm() return j2shim.r2r('webview/create_link.html', { 'form' : form }, request=request) @permission_required('webview.change_link') def activate_links(request): """ Show all currently pending links in the system. Only the l33t may access. """ if "link" in request.GET and "status" in request.GET: linkid = int(request.GET['link']) status = request.GET['status'] this_link = m.Link.objects.get(id=linkid) if status == 'A': this_link.status = "A" this_link.log(request.user, "Accepted link") this_link.approved_by = request.user if status == 'R': this_link.status = "R" this_link.log(request.user, "Rejected link") this_link.approved_by = request.user # Save this to the DB this_link.save() #links = Link.objects.filter(status = "P") links_txt = m.Link.objects.filter(status="P").filter(link_type="T") #links_but = Link.objects.filter(status="P").filter(link_type="U") #links_ban = Link.objects.filter(status="P").filter(link_type="B") return j2shim.r2r('webview/pending_links.html', { 'text_links' : links_txt }, request=request) def site_links(request): """ Show all active links for this site """ link_cats = m.LinkCategory.objects.all() # All categories in the system return j2shim.r2r('webview/site-links.html', { 'link_cats' : link_cats }, request=request) def memcached_status(request): try: import memcache except ImportError: return HttpResponseRedirect("/") if not (request.user.is_authenticated() and request.user.is_staff): return HttpResponseRedirect("/") # get first memcached URI match = re.match( "memcached://([.\w]+:\d+)", settings.CACHE_BACKEND ) if not match: return HttpResponseRedirect("/") host = memcache._Host(match.group(1)) host.connect() host.send_cmd("stats") class Stats: pass stats = Stats() while 1: line = host.readline().split(None, 2) if line[0] == "END": break stat, key, value = line try: # convert to native type, if possible value = int(value) if key == "uptime": value = datetime.timedelta(seconds=value) elif key == "time": value = datetime.datetime.fromtimestamp(value) except ValueError: pass setattr(stats, key, value) host.close_socket() return j2shim.r2r( 'webview/memcached_status.html', dict( stats=stats, hit_rate=100 * stats.get_hits / stats.cmd_get, time=datetime.datetime.now(), # server time ), request=request) class LicenseList(WebView): template = "licenselist.html" def set_context(self): licenses = m.SongLicense.objects.all() return {'licenses': licenses} class License(WebView): template = "license.html" def set_context(self): id = self.kwargs.get("id") license = m.SongLicense.objects.get(id=id) return {'license': license} class Login(MyBaseView): template="registration/login.html" MAX_FAILS_PER_HOUR = getattr(settings, "MAX_FAILED_LOGINS_PER_HOUR", 5) def pre_view(self): self.context['next'] = self.request.REQUEST.get("next", "") self.context['username'] = self.request.REQUEST.get("username", "") self.context['error'] = "" def check_limit(self, keys): for key in keys: if cache.get(key, 0) > self.MAX_FAILS_PER_HOUR: return True return False def add_to_limit(self, keys): for key in keys: if cache.get(key, None) == None: cache.set(key, 1, 60*60) else: cache.incr(key) def POST(self): ip = self.request.META.get("REMOTE_ADDR") username = self.request.POST.get('username', "") password = self.request.POST.get('password', "") key1 = hashlib.md5("loginfail" + username).hexdigest() key2 = hashlib.md5("loginfail" + ip).hexdigest() if self.check_limit((key1, key2)): self.context['error'] = _("Too many failed logins. Please wait an hour before trying again.") return False next = self.request.POST.get("next", False) if not username or not password: self.context['error'] = _(u"You need to supply a username and password") return user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(self.request, user) return self.redirect(next or 'dv-root') else: self.context['error'] = _(u"I'm sorry, your account have been disabled.") else: self.add_to_limit((key1, key2)) self.context['error'] = _(u"I'm sorry, the username or password seem to be wrong.") def play_stream(request): streamurl = getattr(settings, "FLASH_STREAM_URL", False) if not streamurl: surl = m.RadioStream.objects.filter(streamtype="M").order_by('?') if surl: streamurl = surl[0].url else: streamurl = "No MP3 Streams!" return j2shim.r2r( 'webview/radioplay.html', dict( streamurl=streamurl, ), request=request) def upload_progress(request): """ Return JSON object with information about the progress of an upload. """ progress_id = '' if 'X-Progress-ID' in request.GET: progress_id = request.GET['X-Progress-ID'] elif 'X-Progress-ID' in request.META: progress_id = request.META['X-Progress-ID'] if progress_id: from django.utils import simplejson cache_key = "%s_%s" % (request.META['REMOTE_ADDR'], progress_id) data = cache.get(cache_key) return HttpResponse(simplejson.dumps(data)) else: return HttpResponseServerError('Server Error: You must provide X-Progress-ID header or query param.')
9c68ae44c857794289d718b86b9cf28781944546
d49f38323dc30a3cb4a581b451f7db7eec220324
/app.py
c50f59488d7cad0a63272dce103f97c62cf594dd
[]
no_license
bbiyongel/NaverAPI-telegram
0e67259ed2faa86860014f0a5ff1ee0528175b67
bfcffdb03c6c2cb2387aee461490c520542227bf
refs/heads/master
2022-01-15T19:50:28.409431
2019-07-12T09:00:15
2019-07-12T09:00:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,740
py
from pprint import pprint from flask import Flask, request import requests from decouple import config import random app = Flask(__name__) token = config('TELEGRAM_TOKEN') base_url = f"https://api.telegram.org/bot{token}" naver_client_id = config('NAVER_CLIENT_ID') naver_client_secret = config('NAVER_CLIENT_SECRET') @app.route(f'/{token}', methods=['POST']) # def telegram(): response = request.get_json() chat_id = response.get('message').get('chat').get('id') # 사진 파일이 온다면, if response.get('message').get('photo'): # 사진 파일의 id를 가져온다 file_id = response.get('message').get('photo')[-1].get('file_id') # 텔레그램 서버에 파일의 경로를 받아온다. file_response = requests.get( f'{base_url}/getFile?file_id={file_id}').json() # 파일 경로를 통해 URL을 만든다. file_path = file_response.get('result').get('file_path') file_url = f'https://api.telegram.org/file/bot{token}/{file_path}' # print(file_url) response = requests.get(file_url, stream=True) image = response.raw.read() # 2. URL 설정 naver_url = 'https://openapi.naver.com/v1/vision/celebrity' # 3. 요청보내기! POST headers = {'X-Naver-Client-Id': naver_client_id, 'X-Naver-Client-Secret': naver_client_secret } response = requests.post(naver_url, headers=headers, files={'image': image}).json() if response.get('faces'): best = response.get('faces')[0].get('celebrity') if best.get('confidence') > 0.2: text = f"{best.get('confidence')*100}%만큼 {best.get('value')}를 닮으셨네요" else: text = "연예인을 닮지 않음..." else: text = "사람 아닌듯" # print(text) api_url = f'{base_url}/sendMessage?chat_id={chat_id}&text={text}' requests.get(api_url) # text가 온다면 elif response.get('message').get('text'): # 사용자가 보낸 메시지를 text 변수에 저장, 사용자 정보는 chat_id에 저장 text = response.get('message').get('text') chat_id = response.get('message').get('chat').get('id') if '/번역 ' == text[0:4]: headers = {'X-Naver-Client-Id': naver_client_id, 'X-Naver-Client-Secret': naver_client_secret } data = { 'source': 'ko', 'target': 'en', 'text': text[4:] } # data = { # 'source': 'en', # 'target': 'ko', # 'text': 'War never again! Never again war!' # } response = requests.post(naver_url, headers=headers, data=data).json() text = response.get('message').get('result').get('translatedText') # if 인사말이 오면, 나만의 인사해주기 elif '안녕' in text or 'hi' in text: text = '간디' elif '로또' in text: text = sorted(random.sample(range(1,46), 6)) # 마지막 url 만들어서 메시지 보내기 if text=='호우': text = '장마임' if text=='패드립': text = '패드립 머신 가동' api_url = f'{base_url}/sendMessage?chat_id={chat_id}&text={text}' requests.get(api_url) return 'OK', 200 # 200 : 응답 상태 코드 if __name__ == '__main__': import os port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
1c07148d7ab0dac268d97289f85bcfd5323f3892
4c7ccea26d2a6f7197fcdd7b8413652cea199485
/IPython/SdA/StackeddAutoencoder.py
88ef597fa78dc3337214ffa36a0bb97d7a894564
[]
no_license
cgallego/Section3
77fc1c8e5f6dfa273775f165cfb54f28c05e0f52
1745cb018811541b6ece603f2762ef05cc263b3b
refs/heads/master
2021-01-19T06:41:31.153702
2016-08-08T16:45:43
2016-08-08T16:45:43
60,637,315
0
0
null
null
null
null
UTF-8
Python
false
false
14,074
py
""" Stacked denoising auto-encoders (SdA) using Theano. Denoising autoencoders are the building blocks for SdA. They are based on auto-encoders as the ones used in Bengio et al. 2007. An autoencoder takes an input x and first maps it to a hidden representation y = f_{\theta}(x) = s(Wx+b), parameterized by \theta={W,b}. The resulting latent representation y is then mapped back to a "reconstructed" vector z \in [0,1]^d in input space z = g_{\theta'}(y) = s(W'y + b'). The weight matrix W' can optionally be constrained such that W' = W^T, in which case the autoencoder is said to have tied weights. The network is trained such that to minimize the reconstruction error (the error between x and z). For the denosing autoencoder, during training, first x is corrupted into \tilde{x}, where \tilde{x} is a partially destroyed version of x by means of a stochastic mapping. Afterwards y is computed as before (using \tilde{x}), y = s(W\tilde{x} + b) and z as s(W'y + b'). The reconstruction error is now measured between z and the uncorrupted input x, which is computed as the cross-entropy : - \sum_{k=1}^d[ x_k \log z_k + (1-x_k) \log( 1-z_k)] References : - P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol: Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08, 1096-1103, 2008 - Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle: Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19, 2007 """ import os import sys import timeit import matplotlib.pyplot as plt import numpy as np import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from MultilayerPerceptron import HiddenLayer from dAutoencoder import dA from LogisticRegression import LogisticRegression # start-snippet-1 class SdA(object): """Stacked denoising auto-encoder class (SdA) A stacked denoising autoencoder model is obtained by stacking several dAs. The hidden layer of the dA at layer `i` becomes the input of the dA at layer `i+1`. The first layer dA gets as input the input of the SdA, and the hidden layer of the last dA represents the output. Note that after pretraining, the SdA is dealt with as a normal MLP, the dAs are only used to initialize the weights. """ def __init__( self, numpy_rng, theano_rng=None, n_ins=None, hidden_layers_sizes=None, corruption_levels=None, n_outs=None ): """ This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the sdA :type n_layers_sizes: list of ints :param n_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network :type corruption_levels: list of float :param corruption_levels: amount of corruption to use for each layer """ self.sigmoid_layers = [] self.dA_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels # The SdA is an MLP, for which all weights of intermediate layers # are shared with a different denoising autoencoders # We will first construct the SdA as a deep multilayer perceptron, # and when constructing each sigmoidal layer we also construct a # denoising autoencoder that shares weights with that layer # During pretraining we will train these autoencoders (which will # lead to chainging the weights of the MLP as well) # During finetunining we will finish training the SdA by doing # stochastich gradient descent on the MLP for i in range(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden units of # the layer below or the input size if we are on the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the hidden # layer below or the input of the SdA if you are on the first # layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... # but we are going to only declare that the parameters of the # sigmoid_layers are parameters of the StackedDAA # the visible biases in the dA are parameters of those # dA, but not the SdA self.params.extend(sigmoid_layer.params) # Construct a denoising autoencoder that shared weights with this # layer dA_layer = dA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b) self.dA_layers.append(dA_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs ) self.params.extend(self.logLayer.params) # construct a function that implements one step of finetunining # compute the cost for second phase of training, # defined as the negative log likelihood self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) def pretraining_functions(self, train_set_x, np_train_y, batch_size): ''' Generates a list of functions, each of them implementing one step in trainnig the dA corresponding to the layer with same index. The function will require as input the minibatch index, and to train a dA you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared variable that contains all datapoints used for training the dA :type batch_size: int :param batch_size: size of a [mini]batch :type learning_rate: float :param learning_rate: learning rate used during training for any of the dA layers ''' # index to a [mini]batch index = T.lscalar('index') # index to a minibatch corruption_level = T.scalar('corruption') # % of corruption to use learning_rate = T.scalar('lr') # learning rate to use # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for dAuto,kdA in zip(self.dA_layers, range(len(self.dA_layers))): print(kdA,dAuto) # get the cost and the updates list cost, updates = dAuto.get_cost_updates(corruption_level, learning_rate) # compile the theano function fn = theano.function( inputs=[ index, theano.In(corruption_level, value=0.2), theano.In(learning_rate, value=0.1) ], outputs=cost, updates=updates, givens={ self.x: train_set_x[batch_begin: batch_end] } ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size, learning_rate): '''Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `test` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `test` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage ''' (train_set_x, train_set_y) = datasets[0] (valid_set_x, valid_set_y) = datasets[1] (test_set_x, test_set_y) = datasets[2] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_valid_batches //= batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_test_batches //= batch_size # compute number of minibatches for training, validation and testing index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # compute list of fine-tuning updates updates = [ (param, param - gparam * learning_rate) for param, gparam in zip(self.params, gparams) ] train_fn = theano.function( inputs=[index], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: train_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='train' ) test_score_i = theano.function( [index], self.errors, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='test' ) valid_score_i = theano.function( [index], self.errors, givens={ self.x: valid_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: valid_set_y[ index * batch_size: (index + 1) * batch_size ] }, name='valid' ) # Create a function that scans the entire validation set def valid_score(): return [valid_score_i(i) for i in range(n_valid_batches)] # Create a function that scans the entire test set def test_score(): return [test_score_i(i) for i in range(n_test_batches)] return train_fn, valid_score, test_score def sigmoid_activate(self, Xtest, W, b): # code and compute sigmoid_input = Xtest sigmoid_output = np.tanh(np.dot(sigmoid_input, W.get_value(borrow=True)) + b.get_value(borrow=True)) return sigmoid_output def softmax_activate(self, Xtest, logLayer): # code and compute softmax_input = Xtest v = np.exp( np.dot(softmax_input, logLayer.W.get_value(borrow=True)) + logLayer.b.get_value(borrow=True)) softmax_output = v/np.sum(v) return softmax_output def predict_functions(self, Xtest): ''' Given a set_x of examples produce a vector y' of predictions by the sDA. ''' tmp = Xtest for L in self.sigmoid_layers: tmp = self.sigmoid_activate( tmp, L.W, L.b ) # finalize with log layer tmp = self.softmax_activate( tmp, self.logLayer ) return tmp
9ca3d949f4eba7c4f5c4434c364d62be9b136a99
aa4024b6a846d2f6032a9b79a89d2e29b67d0e49
/UMLRT2Kiltera_MM/graph_MT_post__Model.py
3f264f3c35aea6264d6efa85f991b713f54237a9
[ "MIT" ]
permissive
levilucio/SyVOLT
41311743d23fdb0b569300df464709c4954b8300
0f88827a653f2e9d3bb7b839a5253e74d48379dc
refs/heads/master
2023-08-11T22:14:01.998341
2023-07-21T13:33:36
2023-07-21T13:33:36
36,246,850
3
2
MIT
2023-07-21T13:33:39
2015-05-25T18:15:26
Python
UTF-8
Python
false
false
2,610
py
""" __graph_MT_post__Model.py___________________________________________________________ Automatically generated graphical appearance ---> MODIFY DIRECTLY WITH CAUTION ___________________________________________________________________________ """ import tkFont from graphEntity import * from GraphicalForm import * from ATOM3Constraint import * class graph_MT_post__Model(graphEntity): def __init__(self, x, y, semObject = None): self.semanticObject = semObject self.sizeX, self.sizeY = 172, 82 graphEntity.__init__(self, x, y) self.ChangesAtRunTime = 0 self.constraintList = [] if self.semanticObject: atribs = self.semanticObject.attributesToDraw() else: atribs = None self.graphForms = [] self.imageDict = self.getImageDict() def DrawObject(self, drawing, showGG = 0): self.dc = drawing if showGG and self.semanticObject: self.drawGGLabel(drawing) h = drawing.create_oval(self.translate([189.0, 62.0, 189.0, 62.0]), tags = (self.tag, 'connector'), outline = '', fill = '' ) self.connectors.append( h ) h = drawing.create_rectangle(self.translate([20.0, 20.0, 190.0, 100.0]), tags = self.tag, stipple = '', width = 1, outline = 'black', fill = 'moccasin') self.gf4 = GraphicalForm(drawing, h, "gf4") self.graphForms.append(self.gf4) font = tkFont.Font( family='Arial', size=12, weight='normal', slant='roman', underline=0) h = drawing.create_text(self.translate([110.0, 41.0, 110.0, 12.0])[:2], tags = self.tag, font=font, fill = 'black', anchor = 'center', text = 'MT_post__Model_S', width = '0', justify= 'left', stipple='' ) self.gf66 = GraphicalForm(drawing, h, 'gf66', fontObject=font) self.graphForms.append(self.gf66) helv12 = tkFont.Font ( family="Helvetica", size=12, weight="bold" ) h = drawing.create_text(self.translate([-3, -3]), font=helv12, tags = (self.tag, self.semanticObject.getClass()), fill = "black", text=self.semanticObject.MT_label__.toString()) self.attr_display["MT_label__"] = h self.gf_label = GraphicalForm(drawing, h, 'gf_label', fontObject=helv12) self.graphForms.append(self.gf_label) def postCondition( self, actionID, * params): return None def preCondition( self, actionID, * params): return None def getImageDict( self ): imageDict = dict() return imageDict new_class = graph_MT_post__Model
[ "levi" ]
levi
e6a2a28a5d17ffa3424d45048710a8687df2c863
9256eeff108787245a1d9a8e27f80c04377ba10f
/src/datasets/mnist.py
49071693a70659a10514560cc67cff58309b79cf
[ "MIT" ]
permissive
martinhavlicek/meta-inference-public
99a22daef937921deb9f677f68aa1c954e456e55
3cad0b84acd407f3d790f3d75d3045f62bdbf250
refs/heads/master
2022-04-12T14:15:42.514426
2020-03-31T21:39:50
2020-03-31T21:39:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,748
py
import math import numpy as np from PIL import Image from torchvision import datasets from torchvision import transforms # ----- ROTATED MNIST ----- ROTATIONS = np.arange(-180, 180, 20) DEFAULT_ROTATIONS = ROTATIONS[0::2] UNSEEN_ROTATIONS = ROTATIONS[1::2] DEFAULT_ROTATIONS_SPARSE = np.array([-160, -80, 0, 80, 160]) UNSEEN_ROTATIONS_SPARSE = np.array([-180, -140, -120, -100, -60, -40, -20, 20, 40, 60, 100, 120, 140]) DEFAULT_ROTATIONS_DISJOINT = ROTATIONS[:len(ROTATIONS) // 2 + 1] UNSEEN_ROTATIONS_DISJOINT = ROTATIONS[len(ROTATIONS) // 2 + 1:] ALL_ROTATIONS = ROTATIONS DEFAULT_ROTATIONS_DICT = { 'standard': DEFAULT_ROTATIONS, 'sparse': DEFAULT_ROTATIONS_SPARSE, 'disjoint': DEFAULT_ROTATIONS_DISJOINT } UNSEEN_ROTATIONS_DICT = { 'standard': UNSEEN_ROTATIONS, 'sparse': UNSEEN_ROTATIONS_SPARSE, 'disjoint': UNSEEN_ROTATIONS_DISJOINT } def load_many_rotated_mnist(data_dir, image_size=32, train=True, rotations=DEFAULT_ROTATIONS): """ Load 10 different MNIST datasets where the image in each dataset has a particular rotation. """ return [ load_rotated_mnist( data_dir, image_size=image_size, train=train, rotation=rotation) for rotation in rotations ] def load_rotated_mnist(data_dir, image_size=32, train=True, rotation=0): """ Load a MNIST dataset where each image has a rotation. """ rotate_image = rotate_transform(rotation) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), rotate_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def rotate_transform(angle): def f(img): return transforms.functional.rotate(img, angle) return f # ----- SCALED MNIST ----- SCALES = np.arange(0.5, 2.0, 0.1) DEFAULT_SCALES = SCALES[0::2] UNSEEN_SCALES = SCALES[1::2] DEFAULT_SCALES_SPARSE = np.array([0.6, 1.0 ,1.4, 1.8]) UNSEEN_SCALES_SPARSE = np.array([0.5, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.5, 1.6, 1.7, 1.9]) DEFAULT_SCALES_DISJOINT = SCALES[:len(SCALES) // 2 + 1] UNSEEN_SCALES_DISJOINT = SCALES[len(SCALES) // 2 + 1:] ALL_SCALES = SCALES DEFAULT_SCALES_DICT = { 'standard': DEFAULT_SCALES, 'sparse': DEFAULT_SCALES_SPARSE, 'disjoint': DEFAULT_SCALES_DISJOINT } UNSEEN_SCALES_DICT = { 'standard': UNSEEN_SCALES, 'sparse': UNSEEN_SCALES_SPARSE, 'disjoint': UNSEEN_SCALES_DISJOINT } def load_many_scaled_mnist( data_dir, image_size=32, train=True, scales=DEFAULT_SCALES): """ Load 10 different MNIST datasets where the image in each dataset has a particular scale. """ return [ load_scaled_mnist( data_dir, image_size=image_size, train=train, scale=scale) for scale in scales ] def load_scaled_mnist(data_dir, image_size=32, train=True, scale=1): """ Load a MNIST dataset where each image has is scaled by a scale. """ scale_image = scale_transform(scale) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), scale_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def scale_transform(scale): def f(img): size = img.size i, j, h, w = get_crop_params(img, scale, ratio=1) return transforms.functional.resized_crop( img, i, j, h, w, size, Image.BILINEAR) return f def get_crop_params(img, scale, ratio=1): w = img.size[0] * scale h = img.size[1] * scale i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w # ----- SHEARED MNIST ----- SHEARS = np.arange(-180, 180, 20) DEFAULT_SHEARS = SHEARS[0::2] UNSEEN_SHEARS = SHEARS[1::2] DEFAULT_SHEARS_SPARSE = np.array([-160, -80, 0, 80, 160]) UNSEEN_SHEARS_SPARSE = np.array([-180, -140, -120, -100, -60, -40, -20, 20, 40, 60, 100, 120, 140]) DEFAULT_SHEARS_DISJOINT = SHEARS[:len(SHEARS) // 2 + 1] UNSEEN_SHEARS_DISJOINT = SHEARS[len(SHEARS) // 2 + 1:] ALL_SHEARS = SHEARS DEFAULT_SHEARS_DICT = { 'standard': DEFAULT_SHEARS, 'sparse': DEFAULT_SHEARS_SPARSE, 'disjoint': DEFAULT_SHEARS_DISJOINT } UNSEEN_SHEARS_DICT = { 'standard': UNSEEN_SHEARS, 'sparse': UNSEEN_SHEARS_SPARSE, 'disjoint': UNSEEN_SHEARS_DISJOINT } def load_many_sheared_mnist(data_dir, image_size=32, train=True, shears=DEFAULT_SHEARS): """ Load 10 different MNIST datasets where the image in each dataset has a particular shear. """ return [ load_sheared_mnist( data_dir, image_size=image_size, train=train, shear=shear) for shear in shears ] def load_sheared_mnist(data_dir, image_size=32, train=True, shear=0): """ Load a MNIST dataset where each image has a rotation. """ shear_image = shear_transform(shear) image_transforms = [ transforms.Resize(image_size), transforms.CenterCrop(image_size), shear_image, transforms.ToTensor(), ] image_transforms = transforms.Compose(image_transforms) dset = datasets.MNIST(data_dir, train=train, download=True, transform=image_transforms) return dset def shear_transform(shear): def f(img): return transforms.functional.affine(img, 0, (0, 0), 1, shear) return f
ac81e7a4a5a4e1eec99fc4dd938031a42d326728
1064db5dfd154c4bc600e0e03841b0f73f0eefbc
/home/migrations/0008_auto_20200529_0800.py
55f78b9f74855b21f14e8caf061dee753c0981a6
[]
no_license
crowdbotics-apps/web-29-dev-5196
3303921a0e5c8794e8e67f55c9841f3ec7610c16
7beda8f7d57ce9b9858a46f7e3940d6eed4b5725
refs/heads/master
2023-05-26T23:00:23.271209
2020-05-29T12:47:07
2020-05-29T12:47:07
267,768,914
0
0
null
2021-06-13T04:08:30
2020-05-29T04:59:18
Python
UTF-8
Python
false
false
342
py
# Generated by Django 2.2.12 on 2020-05-29 08:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("home", "0007_customtext_kjhkh"), ] operations = [ migrations.RenameField( model_name="customtext", old_name="kjhkh", new_name="ghfnhgfgjh", ), ]
b5c1fff82ac0901d1ae985cd1826ca4b47c6f5af
5b93930ce8280b3cbc7d6b955df0bfc5504ee99c
/nodes/Bisong19Building/I_PartVIII/C_Chapter47/index.py
cce9e2225cec24eabc5302e3a2817b1a5b9cd72f
[]
no_license
nimra/module_gen
8749c8d29beb700cac57132232861eba4eb82331
2e0a4452548af4fefd4cb30ab9d08d7662122cf4
refs/heads/master
2022-03-04T09:35:12.443651
2019-10-26T04:40:49
2019-10-26T04:40:49
213,980,247
0
1
null
null
null
null
UTF-8
Python
false
false
4,830
py
# Lawrence McAfee # ~~~~~~~~ import ~~~~~~~~ from modules.node.HierNode import HierNode from modules.node.LeafNode import LeafNode from modules.node.Stage import Stage from modules.node.block.CodeBlock import CodeBlock as cbk from modules.node.block.ImageBlock import ImageBlock as ibk from modules.node.block.MarkdownBlock import MarkdownBlock as mbk from .A_Overviewof.index import Overviewof as A_Overviewof from .B_Createa.index import Createa as B_Createa from .C_BuildContainers.index import BuildContainers as C_BuildContainers from .D_Compilethe.index import Compilethe as D_Compilethe from .E_Uploadand.index import Uploadand as E_Uploadand # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # CHAPTER 47 # # # # Deploying # an End-to-­End Machine # Learning Solution # on Kubeflow Pipelines # A Kubeflow pipeline component is an implementation of a pipeline task. A component # is a step in the workflow. Each task takes one or more artifacts as input and may produce # one or more artifacts as output. # Each component usually includes two parts: # # • Client code: The code that talks to endpoints to submit jobs, for # example, code to connect with the Google Cloud Machine Learning # Engine. # # • Runtime code: The code that does the actual job and usually runs in # the cluster, for example, the code that prepares the model for training # on Cloud MLE. # A component consists of an interface (inputs/outputs), the implementation # (a Docker container image and command-line arguments), and metadata (name, # description). # # # # # 687 # © Ekaba Bisong 2019 # E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform, # https://doi.org/10.1007/978-1-4842-4470-8_47 # # Chapter 47 Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines # # # Overview of a Simple End-to-End Solution Pipeline # In this simple example, we will implement a deep neural regressor network to predict the # closing prices of Bitcoin crypto-currency. The machine learning code itself is pretty basic # as it is not the focus of this article. The goal here is to orchestrate a machine learning # engineering solution using microservice architectures on Kubernetes with Kubeflow # Pipelines. The code for this chapter is in the book code repository. Clone the repository # from the GCP Cloud Shell. # The pipeline consists of the following components: # # 1. Move raw data hosted on GitHub to a storage bucket. # # 2. Transform the dataset using Google Dataflow. # # 3. Carry out hyper-parameter training on Cloud Machine # Learning Engine. # # 4. Train the model with the optimized hyper-parameters. # # 5. Deploy the model for serving on Cloud MLE. # # # # Create a Container Image for Each Component # First, we’ll package the client and runtime code into a Docker image. This image # also contains the secure service account key to authenticate against GCP. For example, # the component to transform the dataset using Dataflow has the following files built into # its image: # • __ Dockerfile: Dockerfile to build the Docker image. # # • __ build.sh: Script to initiate the container build and upload to # Google Container Registry. # # • __ dataflow_transform.py: Code to run the beam pipeline on # Cloud Dataflow. # # • __ service_account.json: Secure key to authenticate container # on GCP. # # • __ local_test.sh: Script to run the image pipeline component # locally. # # # 688 # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Content(LeafNode): def __init__(self): super().__init__( "Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines", # Stage.REMOVE_EXTRANEOUS, # Stage.ORIG_BLOCKS, # Stage.CUSTOM_BLOCKS, # Stage.ORIG_FIGURES, # Stage.CUSTOM_FIGURES, # Stage.CUSTOM_EXERCISES, ) self.add(mbk("# Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines")) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ class Chapter47(HierNode): def __init__(self): super().__init__("Chapter 47: Deploying an End-to-­End Machine Learning Solution on Kubeflow Pipelines") self.add(Content()) self.add(A_Overviewof()) self.add(B_Createa()) self.add(C_BuildContainers()) self.add(D_Compilethe()) self.add(E_Uploadand()) # eof
efbfb275ecf4ddfacfe040a07abe20a304942382
866dee1b3d01b863c31332ec81330d1b5ef5c6fa
/openquake.hazardlib/openquake/hazardlib/gsim/campbell_bozorgnia_2003.py
d16f63883e1925478903cecb7406eb1dbb6030d7
[ "MIT", "AGPL-3.0-only" ]
permissive
rainzhop/ConvNetQuake
3e2e1a040952bd5d6346905b83f39889c6a2e51a
a3e6de3f7992eac72f1b9883fec36b8c7fdefd48
refs/heads/master
2020-08-07T16:41:03.778293
2019-11-01T01:49:00
2019-11-01T01:49:00
213,527,701
0
0
MIT
2019-10-08T02:08:00
2019-10-08T02:08:00
null
UTF-8
Python
false
false
8,419
py
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2014-2016 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. """ Module exports :class:`CampbellBozorgnia2003NSHMP2007`. """ from __future__ import division import numpy as np from openquake.hazardlib.gsim.base import GMPE, CoeffsTable from openquake.hazardlib import const from openquake.hazardlib.imt import PGA, SA class CampbellBozorgnia2003NSHMP2007(GMPE): """ Implements GMPE developed by Kenneth W. Campbell and Yousef Bozorgnia and published as "Updated Near-Source Ground-Motion (Attenuation) Relations for the Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Responce Spectra", Bulletin of the Seismological Society of America, Vol. 93, No. 1, pp. 314-331, 2003. The class implement the equation as modified by the United States Geological Survey - National Seismic Hazard Mapping Project (USGS-NSHMP) for the 2007 Alaska model (http://earthquake.usgs.gov/hazards/products/ak/2007/). The class replicates the equation as coded in ``subroutine getCamp2000`` in ``hazFXv7.f`` available from http://earthquake.usgs.gov/hazards/products/ak/2007/software/. The equation compute mean value for the 'firm rock' conditon. """ #: Supported tectonic region type is 'active shallow crust' (see Abstract) DEFINED_FOR_TECTONIC_REGION_TYPE = const.TRT.ACTIVE_SHALLOW_CRUST #: Supported intensity measure types are PGA and SA (see Abstract) DEFINED_FOR_INTENSITY_MEASURE_TYPES = set([ PGA, SA ]) #: Supported intensity measure component is the geometric mean of two #: horizontal components (see paragraph 'Strong-Motion Database', page 316) DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = const.IMC.AVERAGE_HORIZONTAL #: Supported standard deviation type is Total (see equations 11, 12 pp. 319 #: 320) DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([ const.StdDev.TOTAL ]) #: No sites parameters are required. Mean value is computed for #: 'firm rock'. REQUIRES_SITES_PARAMETERS = set(()) #: Required rupture parameters are magnitude, rake and dip (eq. 1 and #: following, page 319). REQUIRES_RUPTURE_PARAMETERS = set(('mag', 'rake', 'dip')) #: Required distance measure are RRup and Rjb (eq. 1 and following, #: page 319). REQUIRES_DISTANCES = set(('rrup', 'rjb')) def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See :meth:`superclass method <.base.GroundShakingIntensityModel.get_mean_and_stddevs>` for spec of input and result values. """ assert all(stddev_type in self.DEFINED_FOR_STANDARD_DEVIATION_TYPES for stddev_type in stddev_types) C = self.COEFFS[imt] mean = self._get_mean( C, rup.mag, rup.rake, rup.dip, dists.rrup, dists.rjb ) stddevs = self._get_stddevs(C, rup.mag, stddev_types, dists.rrup.size) return mean, stddevs def _get_mean(self, C, mag, rake, dip, rrup, rjb): """ Return mean value (eq. 1, page 319). """ f1 = self._compute_magnitude_scaling(C, mag) f2 = self._compute_distance_scaling(C, mag, rrup) f3 = self._compute_faulting_mechanism(C, rake, dip) f4 = self._compute_far_source_soil_effect(C) f5 = self._compute_hanging_wall_effect(C, rjb, rrup, dip, mag) mean = ( C['c1'] + f1 + C['c4'] * np.log(np.sqrt(f2)) + f3 + f4 + f5 ) return mean def _get_stddevs(self, C, mag, stddev_types, num_sites): """ Return standard deviation as defined in eq.11 page 319. """ std = C['c16'] + np.zeros(num_sites) if mag < 7.4: std -= 0.07 * mag else: std -= 0.518 # only the 'total' standard deviation is supported, therefore the # std is always the same for all types stddevs = [std for _ in stddev_types] return stddevs def _compute_magnitude_scaling(self, C, mag): """ Compute and return magnitude scaling term (eq.2, page 319) """ return C['c2'] * mag + C['c3'] * (8.5 - mag) ** 2 def _compute_distance_scaling(self, C, mag, rrup): """ Compute distance scaling term (eq.3, page 319). The distance scaling assumes the near-source effect of local site conditions due to 50% very firm soil and soft rock and 50% firm rock. """ g = C['c5'] + C['c6'] * 0.5 + C['c7'] * 0.5 return ( rrup ** 2 + (np.exp(C['c8'] * mag + C['c9'] * (8.5 - mag) ** 2) * g) ** 2 ) def _compute_faulting_mechanism(self, C, rake, dip): """ Compute faulting mechanism term (see eq. 5, page 319). Reverse faulting is defined as occurring on steep faults (dip > 45) and rake in (22.5, 157.5). Thrust faulting is defined as occurring on shallow dipping faults (dip <=45) and rake in (22.5, 157.5) """ # flag for reverse faulting frv = float((dip > 45) and (22.5 <= rake <= 157.5)) # flag for thrust faulting fth = float((dip <= 45) and (22.5 <= rake <= 157.5)) return C['c10'] * frv + C['c11'] * fth def _compute_far_source_soil_effect(self, C): """ Compute far-source effect of local site conditions (see eq. 6, page 319) assuming 'firm rock' conditions. """ return C['c14'] def _compute_hanging_wall_effect(self, C, rjb, rrup, dip, mag): """ Compute hanging-wall effect (see eq. 7, 8, 9 and 10 page 319). Considers correct version of equation 8 as given in the erratum and not in the original paper. """ # eq. 8 (to be noticed that the USGS-NSHMP implementation defines # the hanging-wall term for all rjb distances, while in the original # manuscript, hw is computed only for rjb < 5). Again the 'firm rock' # is considered hw = np.zeros_like(rjb) if dip <= 70.: hw = (5. - rjb) / 5. # eq. 9 f_m = 1 if mag > 6.5 else mag - 5.5 # # eq. 10 f_rrup = C['c15'] + np.zeros_like(rrup) idx = rrup < 8 f_rrup[idx] *= rrup[idx] / 8 # eq. 7 (to be noticed that the f3 factor is not included # while this is defined in the original manuscript) f_hw = hw * f_m * f_rrup return f_hw #: Coefficient table (table 4, page 321. Coefficients for horizontal #: component and for corrected PGA) COEFFS = CoeffsTable(sa_damping=5, table="""\ IMT c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 pga -4.033 0.812 0.036 -1.061 0.041 -0.005 -0.018 0.766 0.034 0.343 0.351 -0.123 -0.138 -0.289 0.370 0.920 0.10 -2.661 0.812 0.060 -1.308 0.166 -0.009 -0.068 0.621 0.046 0.224 0.313 -0.146 -0.253 -0.299 0.370 0.958 0.20 -2.771 0.812 0.030 -1.153 0.098 -0.014 -0.038 0.704 0.026 0.296 0.342 -0.148 -0.183 -0.330 0.370 0.981 0.30 -2.999 0.812 0.007 -1.080 0.059 -0.007 -0.022 0.752 0.007 0.359 0.385 -0.162 -0.157 -0.453 0.370 0.984 0.50 -3.556 0.812 -0.035 -0.964 0.023 -0.002 -0.004 0.842 -0.036 0.406 0.479 -0.122 -0.130 -0.528 0.370 0.990 1.0 -3.867 0.812 -0.101 -0.964 0.019 0 0 0.842 -0.105 0.329 0.338 -0.073 -0.072 -0.607 0.281 1.021 2.0 -4.311 0.812 -0.180 -0.964 0.019 0 0 0.842 -0.187 0.060 0.064 -0.124 -0.116 -0.649 0.160 1.021 """)
de3acc9720419a15a1a42835f76a34d6293154c3
16c77266859989d156fe3f4d0ce3a37a1898ad38
/dacc/xls/write.py
1fad19e6f9792761fed509ba748792ebd263a457
[ "MIT" ]
permissive
SRHerzog/ut
92620e66be2ea9707d9cd3cf390179326ed2eefe
894bd5607eb76676aaea7a37ed8a91b5fb5e805e
refs/heads/master
2021-06-30T19:15:46.131299
2017-09-15T20:47:35
2017-09-15T20:47:35
103,696,926
0
0
null
2017-09-15T20:08:10
2017-09-15T20:08:10
null
UTF-8
Python
false
false
3,367
py
__author__ = 'thor' import os import pandas as pd from pandas import ExcelWriter from openpyxl import load_workbook from openpyxl.reader.excel import InvalidFileException try: from xlwings import Workbook, Sheet except ImportError as e: print(e) def multiple_dfs_to_multiple_sheets(df_list, xls_filepath, sheet_list=None, **kwargs): """ Writes multiple dataframes in different excel sheets. Input: * xls_filepath: The excel file to write into * And then there's several choices: * df_list (a list of dataframes) and sheet_list (a list of corresponding names) * df_list = a list of {sheet_name: dataframe} * df_list = a list of (sheet_name, dataframe) tuples, when the order of the sheets matters) --> If no sheet names are given, the function either gives the name of the dataframe (if any), or simply iterates over sheet numbers... """ if sheet_list is None: if isinstance(df_list, dict): # df_list, sheet_list = zip(df_list.values(), df_list.keys()) df_list, sheet_list = df_list.values(), df_list.keys() elif isinstance(df_list[0], tuple): sheet_list = map(lambda x: x[0], df_list) df_list = map(lambda x: x[1], df_list) else: sheet_list = [] for i, df in enumerate(df_list): name = df.name if not name: name = "sheet {}".format(i) sheet_list.append(name) writer = ExcelWriter(xls_filepath) for df, sheet_name in zip(df_list, sheet_list): df.to_excel(writer, sheet_name, **kwargs) writer.save() def df_to_excel_without_overwriting_it(df, xls_filepath, sheet_name, **kwargs): """ write df to an excel sheet without overwriting the whole excel file if it exists (may need to create the excel with some data in it already for this to work) """ try: book = load_workbook(xls_filepath) writer = pd.ExcelWriter(xls_filepath, engine='openpyxl') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) try: df.to_excel(excel_writer=writer, sheet_name=sheet_name, **kwargs) except TypeError: df = _replace_non_numeric_non_strings_with_strings(df) df.to_excel(excel_writer=writer, sheet_name=sheet_name, **kwargs) writer.save() except InvalidFileException: try: df.to_excel(excel_writer=xls_filepath, sheet_name=sheet_name, **kwargs) except TypeError: df = _replace_non_numeric_non_strings_with_strings(df) df.to_excel(excel_writer=writer, sheet_name=sheet_name, **kwargs) def clear_sheet_contents_without_changing_formatting(xls_filepath, sheet_name): if os.path.exist(xls_filepath): # else do nothing with Workbook(fullname=xls_filepath, app_visible=False) as wkb: Sheet(sheet=sheet_name, wkb=wkb).clear_contents() def _replace_non_numeric_non_strings_with_strings(df): index_names = df.index.names df = df.reset_index(drop=False, inplace=False) for c in df.columns: if df[c].dtype.name == 'object': if not isinstance(df[c].iloc[0], basestring): df[c] = df[c].apply(str) df = df.set_index(index_names) return df