blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
1109161a39f73fe01e4a6f4099ad4dad4a0939bc
abdb582b9ab76eaf6df1fdb5843c24fa6fa1ede0
/flendz_test/urls.py
80bc3d35b33735c54f511c2ea63a1065e235799b
[]
no_license
jabykuniyil/flendz
1375341ee97986842d962702e0f1ac7f6d48cae7
ef952f9e14320b9c512b4047c6726ab9ff776120
refs/heads/main
2023-05-27T20:12:36.774259
2021-06-05T04:38:47
2021-06-05T04:38:47
372,798,247
0
0
null
null
null
null
UTF-8
Python
false
false
170
py
from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('test_app.url')), ]
153bedd6b9dfdb762195c22a86d2e1d6dddd83c5
ce083128fa87ca86c65059893aa8882d088461f5
/python/flask-mail-labs/.venv/lib/python2.7/site-packages/babel/dates.py
a8fadc7801e088692658f8de8729ba4a76a892aa
[]
no_license
marcosptf/fedora
581a446e7f81d8ae9a260eafb92814bc486ee077
359db63ff1fa79696b7bc803bcfa0042bff8ab44
refs/heads/master
2023-04-06T14:53:40.378260
2023-03-26T00:47:52
2023-03-26T00:47:52
26,059,824
6
5
null
2022-12-08T00:43:21
2014-11-01T18:48:56
null
UTF-8
Python
false
false
67,706
py
# -*- coding: utf-8 -*- """ babel.dates ~~~~~~~~~~~ Locale dependent formatting and parsing of dates and times. The default locale for the functions in this module is determined by the following environment variables, in that order: * ``LC_TIME``, * ``LC_ALL``, and * ``LANG`` :copyright: (c) 2013 by the Babel Team. :license: BSD, see LICENSE for more details. """ from __future__ import division import re import warnings import pytz as _pytz from datetime import date, datetime, time, timedelta from bisect import bisect_right from babel.core import default_locale, get_global, Locale from babel.util import UTC, LOCALTZ from babel._compat import string_types, integer_types, number_types LC_TIME = default_locale('LC_TIME') # Aliases for use in scopes where the modules are shadowed by local variables date_ = date datetime_ = datetime time_ = time def _get_dt_and_tzinfo(dt_or_tzinfo): """ Parse a `dt_or_tzinfo` value into a datetime and a tzinfo. See the docs for this function's callers for semantics. :rtype: tuple[datetime, tzinfo] """ if dt_or_tzinfo is None: dt = datetime.now() tzinfo = LOCALTZ elif isinstance(dt_or_tzinfo, string_types): dt = None tzinfo = get_timezone(dt_or_tzinfo) elif isinstance(dt_or_tzinfo, integer_types): dt = None tzinfo = UTC elif isinstance(dt_or_tzinfo, (datetime, time)): dt = _get_datetime(dt_or_tzinfo) if dt.tzinfo is not None: tzinfo = dt.tzinfo else: tzinfo = UTC else: dt = None tzinfo = dt_or_tzinfo return dt, tzinfo def _get_datetime(instant): """ Get a datetime out of an "instant" (date, time, datetime, number). .. warning:: The return values of this function may depend on the system clock. If the instant is None, the current moment is used. If the instant is a time, it's augmented with today's date. Dates are converted to naive datetimes with midnight as the time component. >>> _get_datetime(date(2015, 1, 1)) datetime.datetime(2015, 1, 1, 0, 0) UNIX timestamps are converted to datetimes. >>> _get_datetime(1400000000) datetime.datetime(2014, 5, 13, 16, 53, 20) Other values are passed through as-is. >>> x = datetime(2015, 1, 1) >>> _get_datetime(x) is x True :param instant: date, time, datetime, integer, float or None :type instant: date|time|datetime|int|float|None :return: a datetime :rtype: datetime """ if instant is None: return datetime_.utcnow() elif isinstance(instant, integer_types) or isinstance(instant, float): return datetime_.utcfromtimestamp(instant) elif isinstance(instant, time): return datetime_.combine(date.today(), instant) elif isinstance(instant, date) and not isinstance(instant, datetime): return datetime_.combine(instant, time()) # TODO (3.x): Add an assertion/type check for this fallthrough branch: return instant def _ensure_datetime_tzinfo(datetime, tzinfo=None): """ Ensure the datetime passed has an attached tzinfo. If the datetime is tz-naive to begin with, UTC is attached. If a tzinfo is passed in, the datetime is normalized to that timezone. >>> _ensure_datetime_tzinfo(datetime(2015, 1, 1)).tzinfo.zone 'UTC' >>> tz = get_timezone("Europe/Stockholm") >>> _ensure_datetime_tzinfo(datetime(2015, 1, 1, 13, 15, tzinfo=UTC), tzinfo=tz).hour 14 :param datetime: Datetime to augment. :param tzinfo: Optional tznfo. :return: datetime with tzinfo :rtype: datetime """ if datetime.tzinfo is None: datetime = datetime.replace(tzinfo=UTC) if tzinfo is not None: datetime = datetime.astimezone(get_timezone(tzinfo)) if hasattr(tzinfo, 'normalize'): # pytz datetime = tzinfo.normalize(datetime) return datetime def _get_time(time, tzinfo=None): """ Get a timezoned time from a given instant. .. warning:: The return values of this function may depend on the system clock. :param time: time, datetime or None :rtype: time """ if time is None: time = datetime.utcnow() elif isinstance(time, number_types): time = datetime.utcfromtimestamp(time) if time.tzinfo is None: time = time.replace(tzinfo=UTC) if isinstance(time, datetime): if tzinfo is not None: time = time.astimezone(tzinfo) if hasattr(tzinfo, 'normalize'): # pytz time = tzinfo.normalize(time) time = time.timetz() elif tzinfo is not None: time = time.replace(tzinfo=tzinfo) return time def get_timezone(zone=None): """Looks up a timezone by name and returns it. The timezone object returned comes from ``pytz`` and corresponds to the `tzinfo` interface and can be used with all of the functions of Babel that operate with dates. If a timezone is not known a :exc:`LookupError` is raised. If `zone` is ``None`` a local zone object is returned. :param zone: the name of the timezone to look up. If a timezone object itself is passed in, mit's returned unchanged. """ if zone is None: return LOCALTZ if not isinstance(zone, string_types): return zone try: return _pytz.timezone(zone) except _pytz.UnknownTimeZoneError: raise LookupError('Unknown timezone %s' % zone) def get_next_timezone_transition(zone=None, dt=None): """Given a timezone it will return a :class:`TimezoneTransition` object that holds the information about the next timezone transition that's going to happen. For instance this can be used to detect when the next DST change is going to happen and how it looks like. The transition is calculated relative to the given datetime object. The next transition that follows the date is used. If a transition cannot be found the return value will be `None`. Transition information can only be provided for timezones returned by the :func:`get_timezone` function. :param zone: the timezone for which the transition should be looked up. If not provided the local timezone is used. :param dt: the date after which the next transition should be found. If not given the current time is assumed. """ zone = get_timezone(zone) dt = _get_datetime(dt).replace(tzinfo=None) if not hasattr(zone, '_utc_transition_times'): raise TypeError('Given timezone does not have UTC transition ' 'times. This can happen because the operating ' 'system fallback local timezone is used or a ' 'custom timezone object') try: idx = max(0, bisect_right(zone._utc_transition_times, dt)) old_trans = zone._transition_info[idx - 1] new_trans = zone._transition_info[idx] old_tz = zone._tzinfos[old_trans] new_tz = zone._tzinfos[new_trans] except (LookupError, ValueError): return None return TimezoneTransition( activates=zone._utc_transition_times[idx], from_tzinfo=old_tz, to_tzinfo=new_tz, reference_date=dt ) class TimezoneTransition(object): """A helper object that represents the return value from :func:`get_next_timezone_transition`. """ def __init__(self, activates, from_tzinfo, to_tzinfo, reference_date=None): #: the time of the activation of the timezone transition in UTC. self.activates = activates #: the timezone from where the transition starts. self.from_tzinfo = from_tzinfo #: the timezone for after the transition. self.to_tzinfo = to_tzinfo #: the reference date that was provided. This is the `dt` parameter #: to the :func:`get_next_timezone_transition`. self.reference_date = reference_date @property def from_tz(self): """The name of the timezone before the transition.""" return self.from_tzinfo._tzname @property def to_tz(self): """The name of the timezone after the transition.""" return self.to_tzinfo._tzname @property def from_offset(self): """The UTC offset in seconds before the transition.""" return int(self.from_tzinfo._utcoffset.total_seconds()) @property def to_offset(self): """The UTC offset in seconds after the transition.""" return int(self.to_tzinfo._utcoffset.total_seconds()) def __repr__(self): return '<TimezoneTransition %s -> %s (%s)>' % ( self.from_tz, self.to_tz, self.activates, ) def get_period_names(width='wide', context='stand-alone', locale=LC_TIME): """Return the names for day periods (AM/PM) used by the locale. >>> get_period_names(locale='en_US')['am'] u'AM' :param width: the width to use, one of "abbreviated", "narrow", or "wide" :param context: the context, either "format" or "stand-alone" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).day_periods[context][width] def get_day_names(width='wide', context='format', locale=LC_TIME): """Return the day names used by the locale for the specified format. >>> get_day_names('wide', locale='en_US')[1] u'Tuesday' >>> get_day_names('short', locale='en_US')[1] u'Tu' >>> get_day_names('abbreviated', locale='es')[1] u'mar.' >>> get_day_names('narrow', context='stand-alone', locale='de_DE')[1] u'D' :param width: the width to use, one of "wide", "abbreviated", "short" or "narrow" :param context: the context, either "format" or "stand-alone" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).days[context][width] def get_month_names(width='wide', context='format', locale=LC_TIME): """Return the month names used by the locale for the specified format. >>> get_month_names('wide', locale='en_US')[1] u'January' >>> get_month_names('abbreviated', locale='es')[1] u'ene.' >>> get_month_names('narrow', context='stand-alone', locale='de_DE')[1] u'J' :param width: the width to use, one of "wide", "abbreviated", or "narrow" :param context: the context, either "format" or "stand-alone" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).months[context][width] def get_quarter_names(width='wide', context='format', locale=LC_TIME): """Return the quarter names used by the locale for the specified format. >>> get_quarter_names('wide', locale='en_US')[1] u'1st quarter' >>> get_quarter_names('abbreviated', locale='de_DE')[1] u'Q1' >>> get_quarter_names('narrow', locale='de_DE')[1] u'1' :param width: the width to use, one of "wide", "abbreviated", or "narrow" :param context: the context, either "format" or "stand-alone" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).quarters[context][width] def get_era_names(width='wide', locale=LC_TIME): """Return the era names used by the locale for the specified format. >>> get_era_names('wide', locale='en_US')[1] u'Anno Domini' >>> get_era_names('abbreviated', locale='de_DE')[1] u'n. Chr.' :param width: the width to use, either "wide", "abbreviated", or "narrow" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).eras[width] def get_date_format(format='medium', locale=LC_TIME): """Return the date formatting patterns used by the locale for the specified format. >>> get_date_format(locale='en_US') <DateTimePattern u'MMM d, y'> >>> get_date_format('full', locale='de_DE') <DateTimePattern u'EEEE, d. MMMM y'> :param format: the format to use, one of "full", "long", "medium", or "short" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).date_formats[format] def get_datetime_format(format='medium', locale=LC_TIME): """Return the datetime formatting patterns used by the locale for the specified format. >>> get_datetime_format(locale='en_US') u'{1}, {0}' :param format: the format to use, one of "full", "long", "medium", or "short" :param locale: the `Locale` object, or a locale string """ patterns = Locale.parse(locale).datetime_formats if format not in patterns: format = None return patterns[format] def get_time_format(format='medium', locale=LC_TIME): """Return the time formatting patterns used by the locale for the specified format. >>> get_time_format(locale='en_US') <DateTimePattern u'h:mm:ss a'> >>> get_time_format('full', locale='de_DE') <DateTimePattern u'HH:mm:ss zzzz'> :param format: the format to use, one of "full", "long", "medium", or "short" :param locale: the `Locale` object, or a locale string """ return Locale.parse(locale).time_formats[format] def get_timezone_gmt(datetime=None, width='long', locale=LC_TIME, return_z=False): """Return the timezone associated with the given `datetime` object formatted as string indicating the offset from GMT. >>> dt = datetime(2007, 4, 1, 15, 30) >>> get_timezone_gmt(dt, locale='en') u'GMT+00:00' >>> get_timezone_gmt(dt, locale='en', return_z=True) 'Z' >>> get_timezone_gmt(dt, locale='en', width='iso8601_short') u'+00' >>> tz = get_timezone('America/Los_Angeles') >>> dt = tz.localize(datetime(2007, 4, 1, 15, 30)) >>> get_timezone_gmt(dt, locale='en') u'GMT-07:00' >>> get_timezone_gmt(dt, 'short', locale='en') u'-0700' >>> get_timezone_gmt(dt, locale='en', width='iso8601_short') u'-07' The long format depends on the locale, for example in France the acronym UTC string is used instead of GMT: >>> get_timezone_gmt(dt, 'long', locale='fr_FR') u'UTC-07:00' .. versionadded:: 0.9 :param datetime: the ``datetime`` object; if `None`, the current date and time in UTC is used :param width: either "long" or "short" or "iso8601" or "iso8601_short" :param locale: the `Locale` object, or a locale string :param return_z: True or False; Function returns indicator "Z" when local time offset is 0 """ datetime = _ensure_datetime_tzinfo(_get_datetime(datetime)) locale = Locale.parse(locale) offset = datetime.tzinfo.utcoffset(datetime) seconds = offset.days * 24 * 60 * 60 + offset.seconds hours, seconds = divmod(seconds, 3600) if return_z and hours == 0 and seconds == 0: return 'Z' elif seconds == 0 and width == 'iso8601_short': return u'%+03d' % hours elif width == 'short' or width == 'iso8601_short': pattern = u'%+03d%02d' elif width == 'iso8601': pattern = u'%+03d:%02d' else: pattern = locale.zone_formats['gmt'] % '%+03d:%02d' return pattern % (hours, seconds // 60) def get_timezone_location(dt_or_tzinfo=None, locale=LC_TIME, return_city=False): u"""Return a representation of the given timezone using "location format". The result depends on both the local display name of the country and the city associated with the time zone: >>> tz = get_timezone('America/St_Johns') >>> print(get_timezone_location(tz, locale='de_DE')) Kanada (St. John’s) Zeit >>> print(get_timezone_location(tz, locale='en')) Canada (St. John’s) Time >>> print(get_timezone_location(tz, locale='en', return_city=True)) St. John’s >>> tz = get_timezone('America/Mexico_City') >>> get_timezone_location(tz, locale='de_DE') u'Mexiko (Mexiko-Stadt) Zeit' If the timezone is associated with a country that uses only a single timezone, just the localized country name is returned: >>> tz = get_timezone('Europe/Berlin') >>> get_timezone_name(tz, locale='de_DE') u'Mitteleurop\\xe4ische Zeit' .. versionadded:: 0.9 :param dt_or_tzinfo: the ``datetime`` or ``tzinfo`` object that determines the timezone; if `None`, the current date and time in UTC is assumed :param locale: the `Locale` object, or a locale string :param return_city: True or False, if True then return exemplar city (location) for the time zone :return: the localized timezone name using location format """ dt, tzinfo = _get_dt_and_tzinfo(dt_or_tzinfo) locale = Locale.parse(locale) if hasattr(tzinfo, 'zone'): zone = tzinfo.zone else: zone = tzinfo.tzname(dt or datetime.utcnow()) # Get the canonical time-zone code zone = get_global('zone_aliases').get(zone, zone) info = locale.time_zones.get(zone, {}) # Otherwise, if there is only one timezone for the country, return the # localized country name region_format = locale.zone_formats['region'] territory = get_global('zone_territories').get(zone) if territory not in locale.territories: territory = 'ZZ' # invalid/unknown territory_name = locale.territories[territory] if not return_city and territory and len(get_global('territory_zones').get(territory, [])) == 1: return region_format % (territory_name) # Otherwise, include the city in the output fallback_format = locale.zone_formats['fallback'] if 'city' in info: city_name = info['city'] else: metazone = get_global('meta_zones').get(zone) metazone_info = locale.meta_zones.get(metazone, {}) if 'city' in metazone_info: city_name = metazone_info['city'] elif '/' in zone: city_name = zone.split('/', 1)[1].replace('_', ' ') else: city_name = zone.replace('_', ' ') if return_city: return city_name return region_format % (fallback_format % { '0': city_name, '1': territory_name }) def get_timezone_name(dt_or_tzinfo=None, width='long', uncommon=False, locale=LC_TIME, zone_variant=None, return_zone=False): r"""Return the localized display name for the given timezone. The timezone may be specified using a ``datetime`` or `tzinfo` object. >>> dt = time(15, 30, tzinfo=get_timezone('America/Los_Angeles')) >>> get_timezone_name(dt, locale='en_US') u'Pacific Standard Time' >>> get_timezone_name(dt, locale='en_US', return_zone=True) 'America/Los_Angeles' >>> get_timezone_name(dt, width='short', locale='en_US') u'PST' If this function gets passed only a `tzinfo` object and no concrete `datetime`, the returned display name is indenpendent of daylight savings time. This can be used for example for selecting timezones, or to set the time of events that recur across DST changes: >>> tz = get_timezone('America/Los_Angeles') >>> get_timezone_name(tz, locale='en_US') u'Pacific Time' >>> get_timezone_name(tz, 'short', locale='en_US') u'PT' If no localized display name for the timezone is available, and the timezone is associated with a country that uses only a single timezone, the name of that country is returned, formatted according to the locale: >>> tz = get_timezone('Europe/Berlin') >>> get_timezone_name(tz, locale='de_DE') u'Mitteleurop\xe4ische Zeit' >>> get_timezone_name(tz, locale='pt_BR') u'Hor\xe1rio da Europa Central' On the other hand, if the country uses multiple timezones, the city is also included in the representation: >>> tz = get_timezone('America/St_Johns') >>> get_timezone_name(tz, locale='de_DE') u'Neufundland-Zeit' Note that short format is currently not supported for all timezones and all locales. This is partially because not every timezone has a short code in every locale. In that case it currently falls back to the long format. For more information see `LDML Appendix J: Time Zone Display Names <http://www.unicode.org/reports/tr35/#Time_Zone_Fallback>`_ .. versionadded:: 0.9 .. versionchanged:: 1.0 Added `zone_variant` support. :param dt_or_tzinfo: the ``datetime`` or ``tzinfo`` object that determines the timezone; if a ``tzinfo`` object is used, the resulting display name will be generic, i.e. independent of daylight savings time; if `None`, the current date in UTC is assumed :param width: either "long" or "short" :param uncommon: deprecated and ignored :param zone_variant: defines the zone variation to return. By default the variation is defined from the datetime object passed in. If no datetime object is passed in, the ``'generic'`` variation is assumed. The following values are valid: ``'generic'``, ``'daylight'`` and ``'standard'``. :param locale: the `Locale` object, or a locale string :param return_zone: True or False. If true then function returns long time zone ID """ dt, tzinfo = _get_dt_and_tzinfo(dt_or_tzinfo) locale = Locale.parse(locale) if hasattr(tzinfo, 'zone'): zone = tzinfo.zone else: zone = tzinfo.tzname(dt) if zone_variant is None: if dt is None: zone_variant = 'generic' else: dst = tzinfo.dst(dt) if dst: zone_variant = 'daylight' else: zone_variant = 'standard' else: if zone_variant not in ('generic', 'standard', 'daylight'): raise ValueError('Invalid zone variation') # Get the canonical time-zone code zone = get_global('zone_aliases').get(zone, zone) if return_zone: return zone info = locale.time_zones.get(zone, {}) # Try explicitly translated zone names first if width in info: if zone_variant in info[width]: return info[width][zone_variant] metazone = get_global('meta_zones').get(zone) if metazone: metazone_info = locale.meta_zones.get(metazone, {}) if width in metazone_info: if zone_variant in metazone_info[width]: return metazone_info[width][zone_variant] # If we have a concrete datetime, we assume that the result can't be # independent of daylight savings time, so we return the GMT offset if dt is not None: return get_timezone_gmt(dt, width=width, locale=locale) return get_timezone_location(dt_or_tzinfo, locale=locale) def format_date(date=None, format='medium', locale=LC_TIME): """Return a date formatted according to the given pattern. >>> d = date(2007, 4, 1) >>> format_date(d, locale='en_US') u'Apr 1, 2007' >>> format_date(d, format='full', locale='de_DE') u'Sonntag, 1. April 2007' If you don't want to use the locale default formats, you can specify a custom date pattern: >>> format_date(d, "EEE, MMM d, ''yy", locale='en') u"Sun, Apr 1, '07" :param date: the ``date`` or ``datetime`` object; if `None`, the current date is used :param format: one of "full", "long", "medium", or "short", or a custom date/time pattern :param locale: a `Locale` object or a locale identifier """ if date is None: date = date_.today() elif isinstance(date, datetime): date = date.date() locale = Locale.parse(locale) if format in ('full', 'long', 'medium', 'short'): format = get_date_format(format, locale=locale) pattern = parse_pattern(format) return pattern.apply(date, locale) def format_datetime(datetime=None, format='medium', tzinfo=None, locale=LC_TIME): r"""Return a date formatted according to the given pattern. >>> dt = datetime(2007, 4, 1, 15, 30) >>> format_datetime(dt, locale='en_US') u'Apr 1, 2007, 3:30:00 PM' For any pattern requiring the display of the time-zone, the third-party ``pytz`` package is needed to explicitly specify the time-zone: >>> format_datetime(dt, 'full', tzinfo=get_timezone('Europe/Paris'), ... locale='fr_FR') u'dimanche 1 avril 2007 \xe0 17:30:00 heure d\u2019\xe9t\xe9 d\u2019Europe centrale' >>> format_datetime(dt, "yyyy.MM.dd G 'at' HH:mm:ss zzz", ... tzinfo=get_timezone('US/Eastern'), locale='en') u'2007.04.01 AD at 11:30:00 EDT' :param datetime: the `datetime` object; if `None`, the current date and time is used :param format: one of "full", "long", "medium", or "short", or a custom date/time pattern :param tzinfo: the timezone to apply to the time for display :param locale: a `Locale` object or a locale identifier """ datetime = _ensure_datetime_tzinfo(_get_datetime(datetime), tzinfo) locale = Locale.parse(locale) if format in ('full', 'long', 'medium', 'short'): return get_datetime_format(format, locale=locale) \ .replace("'", "") \ .replace('{0}', format_time(datetime, format, tzinfo=None, locale=locale)) \ .replace('{1}', format_date(datetime, format, locale=locale)) else: return parse_pattern(format).apply(datetime, locale) def format_time(time=None, format='medium', tzinfo=None, locale=LC_TIME): r"""Return a time formatted according to the given pattern. >>> t = time(15, 30) >>> format_time(t, locale='en_US') u'3:30:00 PM' >>> format_time(t, format='short', locale='de_DE') u'15:30' If you don't want to use the locale default formats, you can specify a custom time pattern: >>> format_time(t, "hh 'o''clock' a", locale='en') u"03 o'clock PM" For any pattern requiring the display of the time-zone a timezone has to be specified explicitly: >>> t = datetime(2007, 4, 1, 15, 30) >>> tzinfo = get_timezone('Europe/Paris') >>> t = tzinfo.localize(t) >>> format_time(t, format='full', tzinfo=tzinfo, locale='fr_FR') u'15:30:00 heure d\u2019\xe9t\xe9 d\u2019Europe centrale' >>> format_time(t, "hh 'o''clock' a, zzzz", tzinfo=get_timezone('US/Eastern'), ... locale='en') u"09 o'clock AM, Eastern Daylight Time" As that example shows, when this function gets passed a ``datetime.datetime`` value, the actual time in the formatted string is adjusted to the timezone specified by the `tzinfo` parameter. If the ``datetime`` is "naive" (i.e. it has no associated timezone information), it is assumed to be in UTC. These timezone calculations are **not** performed if the value is of type ``datetime.time``, as without date information there's no way to determine what a given time would translate to in a different timezone without information about whether daylight savings time is in effect or not. This means that time values are left as-is, and the value of the `tzinfo` parameter is only used to display the timezone name if needed: >>> t = time(15, 30) >>> format_time(t, format='full', tzinfo=get_timezone('Europe/Paris'), ... locale='fr_FR') u'15:30:00 heure normale d\u2019Europe centrale' >>> format_time(t, format='full', tzinfo=get_timezone('US/Eastern'), ... locale='en_US') u'3:30:00 PM Eastern Standard Time' :param time: the ``time`` or ``datetime`` object; if `None`, the current time in UTC is used :param format: one of "full", "long", "medium", or "short", or a custom date/time pattern :param tzinfo: the time-zone to apply to the time for display :param locale: a `Locale` object or a locale identifier """ time = _get_time(time, tzinfo) locale = Locale.parse(locale) if format in ('full', 'long', 'medium', 'short'): format = get_time_format(format, locale=locale) return parse_pattern(format).apply(time, locale) def format_skeleton(skeleton, datetime=None, tzinfo=None, fuzzy=True, locale=LC_TIME): r"""Return a time and/or date formatted according to the given pattern. The skeletons are defined in the CLDR data and provide more flexibility than the simple short/long/medium formats, but are a bit harder to use. The are defined using the date/time symbols without order or punctuation and map to a suitable format for the given locale. >>> t = datetime(2007, 4, 1, 15, 30) >>> format_skeleton('MMMEd', t, locale='fr') u'dim. 1 avr.' >>> format_skeleton('MMMEd', t, locale='en') u'Sun, Apr 1' >>> format_skeleton('yMMd', t, locale='fi') # yMMd is not in the Finnish locale; yMd gets used u'1.4.2007' >>> format_skeleton('yMMd', t, fuzzy=False, locale='fi') # yMMd is not in the Finnish locale, an error is thrown Traceback (most recent call last): ... KeyError: yMMd After the skeleton is resolved to a pattern `format_datetime` is called so all timezone processing etc is the same as for that. :param skeleton: A date time skeleton as defined in the cldr data. :param datetime: the ``time`` or ``datetime`` object; if `None`, the current time in UTC is used :param tzinfo: the time-zone to apply to the time for display :param fuzzy: If the skeleton is not found, allow choosing a skeleton that's close enough to it. :param locale: a `Locale` object or a locale identifier """ locale = Locale.parse(locale) if fuzzy and skeleton not in locale.datetime_skeletons: skeleton = match_skeleton(skeleton, locale.datetime_skeletons) format = locale.datetime_skeletons[skeleton] return format_datetime(datetime, format, tzinfo, locale) TIMEDELTA_UNITS = ( ('year', 3600 * 24 * 365), ('month', 3600 * 24 * 30), ('week', 3600 * 24 * 7), ('day', 3600 * 24), ('hour', 3600), ('minute', 60), ('second', 1) ) def format_timedelta(delta, granularity='second', threshold=.85, add_direction=False, format='long', locale=LC_TIME): """Return a time delta according to the rules of the given locale. >>> format_timedelta(timedelta(weeks=12), locale='en_US') u'3 months' >>> format_timedelta(timedelta(seconds=1), locale='es') u'1 segundo' The granularity parameter can be provided to alter the lowest unit presented, which defaults to a second. >>> format_timedelta(timedelta(hours=3), granularity='day', ... locale='en_US') u'1 day' The threshold parameter can be used to determine at which value the presentation switches to the next higher unit. A higher threshold factor means the presentation will switch later. For example: >>> format_timedelta(timedelta(hours=23), threshold=0.9, locale='en_US') u'1 day' >>> format_timedelta(timedelta(hours=23), threshold=1.1, locale='en_US') u'23 hours' In addition directional information can be provided that informs the user if the date is in the past or in the future: >>> format_timedelta(timedelta(hours=1), add_direction=True, locale='en') u'in 1 hour' >>> format_timedelta(timedelta(hours=-1), add_direction=True, locale='en') u'1 hour ago' The format parameter controls how compact or wide the presentation is: >>> format_timedelta(timedelta(hours=3), format='short', locale='en') u'3 hr' >>> format_timedelta(timedelta(hours=3), format='narrow', locale='en') u'3h' :param delta: a ``timedelta`` object representing the time difference to format, or the delta in seconds as an `int` value :param granularity: determines the smallest unit that should be displayed, the value can be one of "year", "month", "week", "day", "hour", "minute" or "second" :param threshold: factor that determines at which point the presentation switches to the next higher unit :param add_direction: if this flag is set to `True` the return value will include directional information. For instance a positive timedelta will include the information about it being in the future, a negative will be information about the value being in the past. :param format: the format, can be "narrow", "short" or "long". ( "medium" is deprecated, currently converted to "long" to maintain compatibility) :param locale: a `Locale` object or a locale identifier """ if format not in ('narrow', 'short', 'medium', 'long'): raise TypeError('Format must be one of "narrow", "short" or "long"') if format == 'medium': warnings.warn('"medium" value for format param of format_timedelta' ' is deprecated. Use "long" instead', category=DeprecationWarning) format = 'long' if isinstance(delta, timedelta): seconds = int((delta.days * 86400) + delta.seconds) else: seconds = delta locale = Locale.parse(locale) def _iter_patterns(a_unit): if add_direction: unit_rel_patterns = locale._data['date_fields'][a_unit] if seconds >= 0: yield unit_rel_patterns['future'] else: yield unit_rel_patterns['past'] a_unit = 'duration-' + a_unit yield locale._data['unit_patterns'].get(a_unit, {}).get(format) for unit, secs_per_unit in TIMEDELTA_UNITS: value = abs(seconds) / secs_per_unit if value >= threshold or unit == granularity: if unit == granularity and value > 0: value = max(1, value) value = int(round(value)) plural_form = locale.plural_form(value) pattern = None for patterns in _iter_patterns(unit): if patterns is not None: pattern = patterns[plural_form] break # This really should not happen if pattern is None: return u'' return pattern.replace('{0}', str(value)) return u'' def _format_fallback_interval(start, end, skeleton, tzinfo, locale): if skeleton in locale.datetime_skeletons: # Use the given skeleton format = lambda dt: format_skeleton(skeleton, dt, tzinfo, locale=locale) elif all((isinstance(d, date) and not isinstance(d, datetime)) for d in (start, end)): # Both are just dates format = lambda dt: format_date(dt, locale=locale) elif all((isinstance(d, time) and not isinstance(d, date)) for d in (start, end)): # Both are times format = lambda dt: format_time(dt, tzinfo=tzinfo, locale=locale) else: format = lambda dt: format_datetime(dt, tzinfo=tzinfo, locale=locale) formatted_start = format(start) formatted_end = format(end) if formatted_start == formatted_end: return format(start) return ( locale.interval_formats.get(None, "{0}-{1}"). replace("{0}", formatted_start). replace("{1}", formatted_end) ) def format_interval(start, end, skeleton=None, tzinfo=None, fuzzy=True, locale=LC_TIME): """ Format an interval between two instants according to the locale's rules. >>> format_interval(date(2016, 1, 15), date(2016, 1, 17), "yMd", locale="fi") u'15.\u201317.1.2016' >>> format_interval(time(12, 12), time(16, 16), "Hm", locale="en_GB") '12:12 \u2013 16:16' >>> format_interval(time(5, 12), time(16, 16), "hm", locale="en_US") '5:12 AM \u2013 4:16 PM' >>> format_interval(time(16, 18), time(16, 24), "Hm", locale="it") '16:18\u201316:24' If the start instant equals the end instant, the interval is formatted like the instant. >>> format_interval(time(16, 18), time(16, 18), "Hm", locale="it") '16:18' Unknown skeletons fall back to "default" formatting. >>> format_interval(date(2015, 1, 1), date(2017, 1, 1), "wzq", locale="ja") '2015/01/01\uff5e2017/01/01' >>> format_interval(time(16, 18), time(16, 24), "xxx", locale="ja") '16:18:00\uff5e16:24:00' >>> format_interval(date(2016, 1, 15), date(2016, 1, 17), "xxx", locale="de") '15.01.2016 \u2013 17.01.2016' :param start: First instant (datetime/date/time) :param end: Second instant (datetime/date/time) :param skeleton: The "skeleton format" to use for formatting. :param tzinfo: tzinfo to use (if none is already attached) :param fuzzy: If the skeleton is not found, allow choosing a skeleton that's close enough to it. :param locale: A locale object or identifier. :return: Formatted interval """ locale = Locale.parse(locale) # NB: The quote comments below are from the algorithm description in # http://www.unicode.org/reports/tr35/tr35-dates.html#intervalFormats # > Look for the intervalFormatItem element that matches the "skeleton", # > starting in the current locale and then following the locale fallback # > chain up to, but not including root. interval_formats = locale.interval_formats if skeleton not in interval_formats or not skeleton: # > If no match was found from the previous step, check what the closest # > match is in the fallback locale chain, as in availableFormats. That # > is, this allows for adjusting the string value field's width, # > including adjusting between "MMM" and "MMMM", and using different # > variants of the same field, such as 'v' and 'z'. if skeleton and fuzzy: skeleton = match_skeleton(skeleton, interval_formats) else: skeleton = None if not skeleton: # Still no match whatsoever? # > Otherwise, format the start and end datetime using the fallback pattern. return _format_fallback_interval(start, end, skeleton, tzinfo, locale) skel_formats = interval_formats[skeleton] if start == end: return format_skeleton(skeleton, start, tzinfo, fuzzy=fuzzy, locale=locale) start = _ensure_datetime_tzinfo(_get_datetime(start), tzinfo=tzinfo) end = _ensure_datetime_tzinfo(_get_datetime(end), tzinfo=tzinfo) start_fmt = DateTimeFormat(start, locale=locale) end_fmt = DateTimeFormat(end, locale=locale) # > If a match is found from previous steps, compute the calendar field # > with the greatest difference between start and end datetime. If there # > is no difference among any of the fields in the pattern, format as a # > single date using availableFormats, and return. for field in PATTERN_CHAR_ORDER: # These are in largest-to-smallest order if field in skel_formats: if start_fmt.extract(field) != end_fmt.extract(field): # > If there is a match, use the pieces of the corresponding pattern to # > format the start and end datetime, as above. return "".join( parse_pattern(pattern).apply(instant, locale) for pattern, instant in zip(skel_formats[field], (start, end)) ) # > Otherwise, format the start and end datetime using the fallback pattern. return _format_fallback_interval(start, end, skeleton, tzinfo, locale) def get_period_id(time, tzinfo=None, type=None, locale=LC_TIME): """ Get the day period ID for a given time. This ID can be used as a key for the period name dictionary. >>> get_period_names(locale="de")[get_period_id(time(7, 42), locale="de")] u'Morgen' :param time: The time to inspect. :param tzinfo: The timezone for the time. See ``format_time``. :param type: The period type to use. Either "selection" or None. The selection type is used for selecting among phrases such as “Your email arrived yesterday evening” or “Your email arrived last night”. :param locale: the `Locale` object, or a locale string :return: period ID. Something is always returned -- even if it's just "am" or "pm". """ time = _get_time(time, tzinfo) seconds_past_midnight = int(time.hour * 60 * 60 + time.minute * 60 + time.second) locale = Locale.parse(locale) # The LDML rules state that the rules may not overlap, so iterating in arbitrary # order should be alright. for rule_id, rules in locale.day_period_rules.get(type, {}).items(): for rule in rules: if "at" in rule and rule["at"] == seconds_past_midnight: return rule_id start_ok = end_ok = False if "from" in rule and seconds_past_midnight >= rule["from"]: start_ok = True if "to" in rule and seconds_past_midnight <= rule["to"]: # This rule type does not exist in the present CLDR data; # excuse the lack of test coverage. end_ok = True if "before" in rule and seconds_past_midnight < rule["before"]: end_ok = True if "after" in rule and seconds_past_midnight > rule["after"]: start_ok = True if start_ok and end_ok: return rule_id if seconds_past_midnight < 43200: return "am" else: return "pm" def parse_date(string, locale=LC_TIME): """Parse a date from a string. This function uses the date format for the locale as a hint to determine the order in which the date fields appear in the string. >>> parse_date('4/1/04', locale='en_US') datetime.date(2004, 4, 1) >>> parse_date('01.04.2004', locale='de_DE') datetime.date(2004, 4, 1) :param string: the string containing the date :param locale: a `Locale` object or a locale identifier """ # TODO: try ISO format first? format = get_date_format(locale=locale).pattern.lower() year_idx = format.index('y') month_idx = format.index('m') if month_idx < 0: month_idx = format.index('l') day_idx = format.index('d') indexes = [(year_idx, 'Y'), (month_idx, 'M'), (day_idx, 'D')] indexes.sort() indexes = dict([(item[1], idx) for idx, item in enumerate(indexes)]) # FIXME: this currently only supports numbers, but should also support month # names, both in the requested locale, and english numbers = re.findall('(\d+)', string) year = numbers[indexes['Y']] if len(year) == 2: year = 2000 + int(year) else: year = int(year) month = int(numbers[indexes['M']]) day = int(numbers[indexes['D']]) if month > 12: month, day = day, month return date(year, month, day) def parse_time(string, locale=LC_TIME): """Parse a time from a string. This function uses the time format for the locale as a hint to determine the order in which the time fields appear in the string. >>> parse_time('15:30:00', locale='en_US') datetime.time(15, 30) :param string: the string containing the time :param locale: a `Locale` object or a locale identifier :return: the parsed time :rtype: `time` """ # TODO: try ISO format first? format = get_time_format(locale=locale).pattern.lower() hour_idx = format.index('h') if hour_idx < 0: hour_idx = format.index('k') min_idx = format.index('m') sec_idx = format.index('s') indexes = [(hour_idx, 'H'), (min_idx, 'M'), (sec_idx, 'S')] indexes.sort() indexes = dict([(item[1], idx) for idx, item in enumerate(indexes)]) # FIXME: support 12 hour clock, and 0-based hour specification # and seconds should be optional, maybe minutes too # oh, and time-zones, of course numbers = re.findall('(\d+)', string) hour = int(numbers[indexes['H']]) minute = int(numbers[indexes['M']]) second = int(numbers[indexes['S']]) return time(hour, minute, second) class DateTimePattern(object): def __init__(self, pattern, format): self.pattern = pattern self.format = format def __repr__(self): return '<%s %r>' % (type(self).__name__, self.pattern) def __unicode__(self): return self.pattern def __mod__(self, other): if type(other) is not DateTimeFormat: return NotImplemented return self.format % other def apply(self, datetime, locale): return self % DateTimeFormat(datetime, locale) class DateTimeFormat(object): def __init__(self, value, locale): assert isinstance(value, (date, datetime, time)) if isinstance(value, (datetime, time)) and value.tzinfo is None: value = value.replace(tzinfo=UTC) self.value = value self.locale = Locale.parse(locale) def __getitem__(self, name): char = name[0] num = len(name) if char == 'G': return self.format_era(char, num) elif char in ('y', 'Y', 'u'): return self.format_year(char, num) elif char in ('Q', 'q'): return self.format_quarter(char, num) elif char in ('M', 'L'): return self.format_month(char, num) elif char in ('w', 'W'): return self.format_week(char, num) elif char == 'd': return self.format(self.value.day, num) elif char == 'D': return self.format_day_of_year(num) elif char == 'F': return self.format_day_of_week_in_month() elif char in ('E', 'e', 'c'): return self.format_weekday(char, num) elif char == 'a': # TODO: Add support for the rest of the period formats (a*, b*, B*) return self.format_period(char) elif char == 'h': if self.value.hour % 12 == 0: return self.format(12, num) else: return self.format(self.value.hour % 12, num) elif char == 'H': return self.format(self.value.hour, num) elif char == 'K': return self.format(self.value.hour % 12, num) elif char == 'k': if self.value.hour == 0: return self.format(24, num) else: return self.format(self.value.hour, num) elif char == 'm': return self.format(self.value.minute, num) elif char == 's': return self.format(self.value.second, num) elif char == 'S': return self.format_frac_seconds(num) elif char == 'A': return self.format_milliseconds_in_day(num) elif char in ('z', 'Z', 'v', 'V', 'x', 'X', 'O'): return self.format_timezone(char, num) else: raise KeyError('Unsupported date/time field %r' % char) def extract(self, char): char = str(char)[0] if char == 'y': return self.value.year elif char == 'M': return self.value.month elif char == 'd': return self.value.day elif char == 'H': return self.value.hour elif char == 'h': return (self.value.hour % 12 or 12) elif char == 'm': return self.value.minute elif char == 'a': return int(self.value.hour >= 12) # 0 for am, 1 for pm else: raise NotImplementedError("Not implemented: extracting %r from %r" % (char, self.value)) def format_era(self, char, num): width = {3: 'abbreviated', 4: 'wide', 5: 'narrow'}[max(3, num)] era = int(self.value.year >= 0) return get_era_names(width, self.locale)[era] def format_year(self, char, num): value = self.value.year if char.isupper(): week = self.get_week_number(self.get_day_of_year()) if week == 0: value -= 1 year = self.format(value, num) if num == 2: year = year[-2:] return year def format_quarter(self, char, num): quarter = (self.value.month - 1) // 3 + 1 if num <= 2: return ('%%0%dd' % num) % quarter width = {3: 'abbreviated', 4: 'wide', 5: 'narrow'}[num] context = {'Q': 'format', 'q': 'stand-alone'}[char] return get_quarter_names(width, context, self.locale)[quarter] def format_month(self, char, num): if num <= 2: return ('%%0%dd' % num) % self.value.month width = {3: 'abbreviated', 4: 'wide', 5: 'narrow'}[num] context = {'M': 'format', 'L': 'stand-alone'}[char] return get_month_names(width, context, self.locale)[self.value.month] def format_week(self, char, num): if char.islower(): # week of year day_of_year = self.get_day_of_year() week = self.get_week_number(day_of_year) if week == 0: date = self.value - timedelta(days=day_of_year) week = self.get_week_number(self.get_day_of_year(date), date.weekday()) return self.format(week, num) else: # week of month week = self.get_week_number(self.value.day) if week == 0: date = self.value - timedelta(days=self.value.day) week = self.get_week_number(date.day, date.weekday()) return '%d' % week def format_weekday(self, char='E', num=4): """ Return weekday from parsed datetime according to format pattern. >>> format = DateTimeFormat(date(2016, 2, 28), Locale.parse('en_US')) >>> format.format_weekday() u'Sunday' 'E': Day of week - Use one through three letters for the abbreviated day name, four for the full (wide) name, five for the narrow name, or six for the short name. >>> format.format_weekday('E',2) u'Sun' 'e': Local day of week. Same as E except adds a numeric value that will depend on the local starting day of the week, using one or two letters. For this example, Monday is the first day of the week. >>> format.format_weekday('e',2) '01' 'c': Stand-Alone local day of week - Use one letter for the local numeric value (same as 'e'), three for the abbreviated day name, four for the full (wide) name, five for the narrow name, or six for the short name. >>> format.format_weekday('c',1) '1' :param char: pattern format character ('e','E','c') :param num: count of format character """ if num < 3: if char.islower(): value = 7 - self.locale.first_week_day + self.value.weekday() return self.format(value % 7 + 1, num) num = 3 weekday = self.value.weekday() width = {3: 'abbreviated', 4: 'wide', 5: 'narrow', 6: 'short'}[num] if char == 'c': context = 'stand-alone' else: context = 'format' return get_day_names(width, context, self.locale)[weekday] def format_day_of_year(self, num): return self.format(self.get_day_of_year(), num) def format_day_of_week_in_month(self): return '%d' % ((self.value.day - 1) // 7 + 1) def format_period(self, char): period = {0: 'am', 1: 'pm'}[int(self.value.hour >= 12)] for width in ('wide', 'narrow', 'abbreviated'): period_names = get_period_names(context='format', width=width, locale=self.locale) if period in period_names: return period_names[period] raise ValueError('Could not format period %s in %s' % (period, self.locale)) def format_frac_seconds(self, num): """ Return fractional seconds. Rounds the time's microseconds to the precision given by the number \ of digits passed in. """ value = self.value.microsecond / 1000000 return self.format(round(value, num) * 10**num, num) def format_milliseconds_in_day(self, num): msecs = self.value.microsecond // 1000 + self.value.second * 1000 + \ self.value.minute * 60000 + self.value.hour * 3600000 return self.format(msecs, num) def format_timezone(self, char, num): width = {3: 'short', 4: 'long', 5: 'iso8601'}[max(3, num)] if char == 'z': return get_timezone_name(self.value, width, locale=self.locale) elif char == 'Z': if num == 5: return get_timezone_gmt(self.value, width, locale=self.locale, return_z=True) return get_timezone_gmt(self.value, width, locale=self.locale) elif char == 'O': if num == 4: return get_timezone_gmt(self.value, width, locale=self.locale) # TODO: To add support for O:1 elif char == 'v': return get_timezone_name(self.value.tzinfo, width, locale=self.locale) elif char == 'V': if num == 1: return get_timezone_name(self.value.tzinfo, width, uncommon=True, locale=self.locale) elif num == 2: return get_timezone_name(self.value.tzinfo, locale=self.locale, return_zone=True) elif num == 3: return get_timezone_location(self.value.tzinfo, locale=self.locale, return_city=True) return get_timezone_location(self.value.tzinfo, locale=self.locale) # Included additional elif condition to add support for 'Xx' in timezone format elif char == 'X': if num == 1: return get_timezone_gmt(self.value, width='iso8601_short', locale=self.locale, return_z=True) elif num in (2, 4): return get_timezone_gmt(self.value, width='short', locale=self.locale, return_z=True) elif num in (3, 5): return get_timezone_gmt(self.value, width='iso8601', locale=self.locale, return_z=True) elif char == 'x': if num == 1: return get_timezone_gmt(self.value, width='iso8601_short', locale=self.locale) elif num in (2, 4): return get_timezone_gmt(self.value, width='short', locale=self.locale) elif num in (3, 5): return get_timezone_gmt(self.value, width='iso8601', locale=self.locale) def format(self, value, length): return ('%%0%dd' % length) % value def get_day_of_year(self, date=None): if date is None: date = self.value return (date - date.replace(month=1, day=1)).days + 1 def get_week_number(self, day_of_period, day_of_week=None): """Return the number of the week of a day within a period. This may be the week number in a year or the week number in a month. Usually this will return a value equal to or greater than 1, but if the first week of the period is so short that it actually counts as the last week of the previous period, this function will return 0. >>> format = DateTimeFormat(date(2006, 1, 8), Locale.parse('de_DE')) >>> format.get_week_number(6) 1 >>> format = DateTimeFormat(date(2006, 1, 8), Locale.parse('en_US')) >>> format.get_week_number(6) 2 :param day_of_period: the number of the day in the period (usually either the day of month or the day of year) :param day_of_week: the week day; if ommitted, the week day of the current date is assumed """ if day_of_week is None: day_of_week = self.value.weekday() first_day = (day_of_week - self.locale.first_week_day - day_of_period + 1) % 7 if first_day < 0: first_day += 7 week_number = (day_of_period + first_day - 1) // 7 if 7 - first_day >= self.locale.min_week_days: week_number += 1 return week_number PATTERN_CHARS = { 'G': [1, 2, 3, 4, 5], # era 'y': None, 'Y': None, 'u': None, # year 'Q': [1, 2, 3, 4, 5], 'q': [1, 2, 3, 4, 5], # quarter 'M': [1, 2, 3, 4, 5], 'L': [1, 2, 3, 4, 5], # month 'w': [1, 2], 'W': [1], # week 'd': [1, 2], 'D': [1, 2, 3], 'F': [1], 'g': None, # day 'E': [1, 2, 3, 4, 5, 6], 'e': [1, 2, 3, 4, 5, 6], 'c': [1, 3, 4, 5, 6], # week day 'a': [1], # period 'h': [1, 2], 'H': [1, 2], 'K': [1, 2], 'k': [1, 2], # hour 'm': [1, 2], # minute 's': [1, 2], 'S': None, 'A': None, # second 'z': [1, 2, 3, 4], 'Z': [1, 2, 3, 4, 5], 'O': [1, 4], 'v': [1, 4], # zone 'V': [1, 2, 3, 4], 'x': [1, 2, 3, 4, 5], 'X': [1, 2, 3, 4, 5] # zone } #: The pattern characters declared in the Date Field Symbol Table #: (http://www.unicode.org/reports/tr35/tr35-dates.html#Date_Field_Symbol_Table) #: in order of decreasing magnitude. PATTERN_CHAR_ORDER = "GyYuUQqMLlwWdDFgEecabBChHKkjJmsSAzZOvVXx" _pattern_cache = {} def parse_pattern(pattern): """Parse date, time, and datetime format patterns. >>> parse_pattern("MMMMd").format u'%(MMMM)s%(d)s' >>> parse_pattern("MMM d, yyyy").format u'%(MMM)s %(d)s, %(yyyy)s' Pattern can contain literal strings in single quotes: >>> parse_pattern("H:mm' Uhr 'z").format u'%(H)s:%(mm)s Uhr %(z)s' An actual single quote can be used by using two adjacent single quote characters: >>> parse_pattern("hh' o''clock'").format u"%(hh)s o'clock" :param pattern: the formatting pattern to parse """ if type(pattern) is DateTimePattern: return pattern if pattern in _pattern_cache: return _pattern_cache[pattern] result = [] for tok_type, tok_value in tokenize_pattern(pattern): if tok_type == "chars": result.append(tok_value.replace('%', '%%')) elif tok_type == "field": fieldchar, fieldnum = tok_value limit = PATTERN_CHARS[fieldchar] if limit and fieldnum not in limit: raise ValueError('Invalid length for field: %r' % (fieldchar * fieldnum)) result.append('%%(%s)s' % (fieldchar * fieldnum)) else: raise NotImplementedError("Unknown token type: %s" % tok_type) _pattern_cache[pattern] = pat = DateTimePattern(pattern, u''.join(result)) return pat def tokenize_pattern(pattern): """ Tokenize date format patterns. Returns a list of (token_type, token_value) tuples. ``token_type`` may be either "chars" or "field". For "chars" tokens, the value is the literal value. For "field" tokens, the value is a tuple of (field character, repetition count). :param pattern: Pattern string :type pattern: str :rtype: list[tuple] """ result = [] quotebuf = None charbuf = [] fieldchar = [''] fieldnum = [0] def append_chars(): result.append(('chars', ''.join(charbuf).replace('\0', "'"))) del charbuf[:] def append_field(): result.append(('field', (fieldchar[0], fieldnum[0]))) fieldchar[0] = '' fieldnum[0] = 0 for idx, char in enumerate(pattern.replace("''", '\0')): if quotebuf is None: if char == "'": # quote started if fieldchar[0]: append_field() elif charbuf: append_chars() quotebuf = [] elif char in PATTERN_CHARS: if charbuf: append_chars() if char == fieldchar[0]: fieldnum[0] += 1 else: if fieldchar[0]: append_field() fieldchar[0] = char fieldnum[0] = 1 else: if fieldchar[0]: append_field() charbuf.append(char) elif quotebuf is not None: if char == "'": # end of quote charbuf.extend(quotebuf) quotebuf = None else: # inside quote quotebuf.append(char) if fieldchar[0]: append_field() elif charbuf: append_chars() return result def untokenize_pattern(tokens): """ Turn a date format pattern token stream back into a string. This is the reverse operation of ``tokenize_pattern``. :type tokens: Iterable[tuple] :rtype: str """ output = [] for tok_type, tok_value in tokens: if tok_type == "field": output.append(tok_value[0] * tok_value[1]) elif tok_type == "chars": if not any(ch in PATTERN_CHARS for ch in tok_value): # No need to quote output.append(tok_value) else: output.append("'%s'" % tok_value.replace("'", "''")) return "".join(output) def split_interval_pattern(pattern): """ Split an interval-describing datetime pattern into multiple pieces. > The pattern is then designed to be broken up into two pieces by determining the first repeating field. - http://www.unicode.org/reports/tr35/tr35-dates.html#intervalFormats >>> split_interval_pattern(u'E d.M. \u2013 E d.M.') [u'E d.M. \u2013 ', 'E d.M.'] >>> split_interval_pattern("Y 'text' Y 'more text'") ["Y 'text '", "Y 'more text'"] >>> split_interval_pattern(u"E, MMM d \u2013 E") [u'E, MMM d \u2013 ', u'E'] >>> split_interval_pattern("MMM d") ['MMM d'] >>> split_interval_pattern("y G") ['y G'] >>> split_interval_pattern(u"MMM d \u2013 d") [u'MMM d \u2013 ', u'd'] :param pattern: Interval pattern string :return: list of "subpatterns" """ seen_fields = set() parts = [[]] for tok_type, tok_value in tokenize_pattern(pattern): if tok_type == "field": if tok_value[0] in seen_fields: # Repeated field parts.append([]) seen_fields.clear() seen_fields.add(tok_value[0]) parts[-1].append((tok_type, tok_value)) return [untokenize_pattern(tokens) for tokens in parts] def match_skeleton(skeleton, options, allow_different_fields=False): """ Find the closest match for the given datetime skeleton among the options given. This uses the rules outlined in the TR35 document. >>> match_skeleton('yMMd', ('yMd', 'yMMMd')) 'yMd' >>> match_skeleton('yMMd', ('jyMMd',), allow_different_fields=True) 'jyMMd' >>> match_skeleton('yMMd', ('qyMMd',), allow_different_fields=False) >>> match_skeleton('hmz', ('hmv',)) 'hmv' :param skeleton: The skeleton to match :type skeleton: str :param options: An iterable of other skeletons to match against :type options: Iterable[str] :return: The closest skeleton match, or if no match was found, None. :rtype: str|None """ # TODO: maybe implement pattern expansion? # Based on the implementation in # http://source.icu-project.org/repos/icu/icu4j/trunk/main/classes/core/src/com/ibm/icu/text/DateIntervalInfo.java # Filter out falsy values and sort for stability; when `interval_formats` is passed in, there may be a None key. options = sorted(option for option in options if option) if 'z' in skeleton and not any('z' in option for option in options): skeleton = skeleton.replace('z', 'v') get_input_field_width = dict(t[1] for t in tokenize_pattern(skeleton) if t[0] == "field").get best_skeleton = None best_distance = None for option in options: get_opt_field_width = dict(t[1] for t in tokenize_pattern(option) if t[0] == "field").get distance = 0 for field in PATTERN_CHARS: input_width = get_input_field_width(field, 0) opt_width = get_opt_field_width(field, 0) if input_width == opt_width: continue if opt_width == 0 or input_width == 0: if not allow_different_fields: # This one is not okay option = None break distance += 0x1000 # Magic weight constant for "entirely different fields" elif field == 'M' and ((input_width > 2 and opt_width <= 2) or (input_width <= 2 and opt_width > 2)): distance += 0x100 # Magic weight for "text turns into a number" else: distance += abs(input_width - opt_width) if not option: # We lost the option along the way (probably due to "allow_different_fields") continue if not best_skeleton or distance < best_distance: best_skeleton = option best_distance = distance if distance == 0: # Found a perfect match! break return best_skeleton
ca2951f89c8fcf239e756f26b15ef01148feb032
3b50605ffe45c412ee33de1ad0cadce2c5a25ca2
/python/paddle/fluid/tests/custom_op/test_multi_out_jit.py
7e252e048b64c9b158fabe21b818fbccaf71a26c
[ "Apache-2.0" ]
permissive
Superjomn/Paddle
f5f4072cf75ac9ecb0ff528876ee264b14bbf8d1
7a0b0dab8e58b6a3b28b3b82c43d55c9bd3d4188
refs/heads/develop
2023-02-04T20:27:54.244843
2023-01-26T15:31:14
2023-01-26T15:31:14
66,896,049
4
1
Apache-2.0
2023-04-14T02:29:52
2016-08-30T01:45:54
C++
UTF-8
Python
false
false
3,680
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import numpy as np from utils import extra_cc_args, paddle_includes import paddle from paddle.utils.cpp_extension import get_build_directory, load from paddle.utils.cpp_extension.extension_utils import run_cmd # Because Windows don't use docker, the shared lib already exists in the # cache dir, it will not be compiled again unless the shared lib is removed. file = '{}\\multi_out_jit\\multi_out_jit.pyd'.format(get_build_directory()) if os.name == 'nt' and os.path.isfile(file): cmd = 'del {}'.format(file) run_cmd(cmd, True) # Compile and load custom op Just-In-Time. multi_out_module = load( name='multi_out_jit', sources=['multi_out_test_op.cc'], extra_include_paths=paddle_includes, # add for Coverage CI extra_cxx_cflags=extra_cc_args, # test for cflags verbose=True, ) class TestMultiOutputDtypes(unittest.TestCase): def setUp(self): self.custom_op = multi_out_module.multi_out self.dtypes = ['float32', 'float64'] self.devices = ['cpu'] def run_static(self, device, dtype): paddle.set_device(device) x_data = np.random.uniform(-1, 1, [4, 8]).astype(dtype) with paddle.static.scope_guard(paddle.static.Scope()): with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name='X', shape=[None, 8], dtype=dtype) outs = self.custom_op(x) exe = paddle.static.Executor() exe.run(paddle.static.default_startup_program()) res = exe.run( paddle.static.default_main_program(), feed={'X': x_data}, fetch_list=outs, ) return res def check_multi_outputs(self, outs, is_dynamic=False): out, zero_float64, one_int32 = outs if is_dynamic: zero_float64 = zero_float64.numpy() one_int32 = one_int32.numpy() # Fake_float64 self.assertTrue('float64' in str(zero_float64.dtype)) np.testing.assert_array_equal( zero_float64, np.zeros([4, 8]).astype('float64') ) # ZFake_int32 self.assertTrue('int32' in str(one_int32.dtype)) np.testing.assert_array_equal( one_int32, np.ones([4, 8]).astype('int32') ) def test_static(self): paddle.enable_static() for device in self.devices: for dtype in self.dtypes: res = self.run_static(device, dtype) self.check_multi_outputs(res) paddle.disable_static() def test_dynamic(self): for device in self.devices: for dtype in self.dtypes: paddle.set_device(device) x_data = np.random.uniform(-1, 1, [4, 8]).astype(dtype) x = paddle.to_tensor(x_data) outs = self.custom_op(x) self.assertTrue(len(outs) == 3) self.check_multi_outputs(outs, True) if __name__ == '__main__': unittest.main()
665a296262fe97164ada5fc3e0db919390d90e00
e45d2faad9389886a82ff5176853b1ff6e37caae
/simplecv/017_face_detect.py
e93e398dd543658092ca32de34f80eb4096d57e8
[]
no_license
allenmo/python_study
6320aa4cd80fe46ccf73076015c67bdcb6338d30
7aff5d810ca6e791d62235d57c072a8dc14457ca
refs/heads/master
2021-03-24T12:00:33.079530
2016-11-22T23:35:58
2016-11-22T23:35:58
55,770,379
0
0
null
null
null
null
UTF-8
Python
false
false
678
py
from SimpleCV import * cam = Camera() disp = Display() size = cam.getImage().size() segment = HaarCascade("face.xml") while disp.isNotDone(): img = cam.getImage() autoface = img.findHaarFeatures(segment) lenFace = len(autoface) if ( lenFace > 0 ): for i in range(0,lenFace): face = autoface[i] x = face.x y = face.y width = face.width() height = face.height() img.dl().centeredRectangle((x,y),(width,height),Color.LIME) img.applyLayers() img.drawText("Num of Face: " + str(lenFace), x = size[0]-150, y = size[1]-30, color = Color.LIME, fontsize = 24) img.show()
f90334a1939d9b22c35a1f046ae87e4ce66693cb
ac305c6739541e84857e297f8eb1b19417978548
/module_128.py
b9ba541614d3ccd041e0fe0728a597cc18a34050
[]
no_license
imhardikj/git_test
d6608d6c02e0bc454f9dd31ffbbc5704a7046a61
43f0de2e9ac09ecd4fdfee27879fd8ae354a0685
refs/heads/master
2020-03-27T21:56:46.394739
2018-09-03T11:27:58
2018-09-03T11:27:58
147,189,474
0
0
null
null
null
null
UTF-8
Python
false
false
1,214
py
"""A set of classes used to represent electric cars.""" from module_121 import Car class Battery(): """A simple attempt to model a battery for an electric car.""" def __init__(self, battery_size=70): """Initialize the batteery's attributes.""" self.battery_size = battery_size def describe_battery(self): """Print a statement describing the battery size.""" print("This car has a " + str(self.battery_size) + "-kWh battery.") def get_range(self): """Print a statement about the range this battery provides.""" if self.battery_size == 70: range = 240 elif self.battery_size == 85: range = 270 message = "This car can go approximately " + str(range) message += " miles on a full charge." print(message) class ElectricCar(Car): """Models aspects of a car, specific to electric vehicles.""" def __init__(self, make, model, year): """ Initialize attributes of the parent class. Then initialize attributes specific to an electric car. """ super().__init__(make, model, year) self.battery = Battery()
3c840954bad45d6884f9cadc51628038511b55ba
d6475dda9db9ea6e447db2b4d75d2ebdf454e9d8
/polls/models.py
fefdac850f120944eee69c1278d883e9925f2e2d
[]
no_license
yoophi/django_polls
3d92b01f239ed6933b7593408b788f7adf2e6c31
f94c0ff6307cbdd2d3c65a6b5131a515b6fe67af
refs/heads/master
2021-01-10T00:57:18.706884
2016-03-24T14:50:38
2016-03-24T14:50:38
54,241,666
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
from __future__ import unicode_literals import datetime from django.db import models from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible @python_2_unicode_compatible class Question(models.Model): question_text = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text def was_published_recently(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.pub_date <= now was_published_recently.admin_order_field = 'pub_date' was_published_recently.boolean = True was_published_recently.short_description = 'Published recently?' @python_2_unicode_compatible class Choice(models.Model): question = models.ForeignKey(Question) choice_text = models.CharField(max_length=200) votes = models.IntegerField(default=0) def __str__(self): return self.choice_text
c9585d56b0fe94af3866093cae1b512d95ca70cb
fe3265b72e691c6df8ecd936c25b6d48ac33b59a
/tests/components/fritz/test_button.py
36af1c27f5e0bcf2f1852749964ed9cdf872c95c
[ "Apache-2.0" ]
permissive
bdraco/home-assistant
dcaf76c0967783a08eec30ce704e5e9603a2f0ca
bfa315be51371a1b63e04342a0b275a57ae148bd
refs/heads/dev
2023-08-16T10:39:15.479821
2023-02-21T22:38:50
2023-02-21T22:38:50
218,684,806
13
7
Apache-2.0
2023-02-21T23:40:57
2019-10-31T04:33:09
Python
UTF-8
Python
false
false
2,402
py
"""Tests for Fritz!Tools button platform.""" from unittest.mock import patch import pytest from homeassistant.components.button import DOMAIN as BUTTON_DOMAIN, SERVICE_PRESS from homeassistant.components.fritz.const import DOMAIN from homeassistant.config_entries import ConfigEntryState from homeassistant.const import ATTR_ENTITY_ID, STATE_UNKNOWN from homeassistant.core import HomeAssistant from homeassistant.setup import async_setup_component from .const import MOCK_USER_DATA from tests.common import MockConfigEntry async def test_button_setup(hass: HomeAssistant, fc_class_mock, fh_class_mock) -> None: """Test setup of Fritz!Tools buttons.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_USER_DATA) entry.add_to_hass(hass) assert await async_setup_component(hass, DOMAIN, {}) await hass.async_block_till_done() assert entry.state == ConfigEntryState.LOADED buttons = hass.states.async_all(BUTTON_DOMAIN) assert len(buttons) == 4 for button in buttons: assert button.state == STATE_UNKNOWN @pytest.mark.parametrize( ("entity_id", "wrapper_method"), [ ("button.mock_title_firmware_update", "async_trigger_firmware_update"), ("button.mock_title_reboot", "async_trigger_reboot"), ("button.mock_title_reconnect", "async_trigger_reconnect"), ("button.mock_title_cleanup", "async_trigger_cleanup"), ], ) async def test_buttons( hass: HomeAssistant, entity_id: str, wrapper_method: str, fc_class_mock, fh_class_mock, ) -> None: """Test Fritz!Tools buttons.""" entry = MockConfigEntry(domain=DOMAIN, data=MOCK_USER_DATA) entry.add_to_hass(hass) assert await async_setup_component(hass, DOMAIN, {}) await hass.async_block_till_done() assert entry.state == ConfigEntryState.LOADED button = hass.states.get(entity_id) assert button assert button.state == STATE_UNKNOWN with patch( f"homeassistant.components.fritz.common.AvmWrapper.{wrapper_method}" ) as mock_press_action: await hass.services.async_call( BUTTON_DOMAIN, SERVICE_PRESS, {ATTR_ENTITY_ID: entity_id}, blocking=True, ) await hass.async_block_till_done() mock_press_action.assert_called_once() button = hass.states.get(entity_id) assert button.state != STATE_UNKNOWN
827c7b9b76801ff6a9ebbc2f8342fe133931ca45
f17de2f1a2804033a7b7fc74a0d09f964fe1d876
/hungerExpress/food/migrations/0003_auto_20180331_1736.py
a285d1dd32068594eea223b405926bad96304f74
[]
no_license
udwivedi394/djangoProjects
60d6eb275ce75dab3884f1a9c68e01226625c4e2
22075b7f850d796afe5a0c06411eb5ff762357b7
refs/heads/master
2021-09-10T21:54:44.363710
2018-04-03T01:58:27
2018-04-03T01:58:27
126,106,563
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
# Generated by Django 2.0.3 on 2018-03-31 12:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('food', '0002_auto_20180331_1725'), ] operations = [ migrations.AlterField( model_name='restaurant', name='contact_no', field=models.CharField(max_length=20), ), ]
f6cc20c827f453c325a7d6abd1a137191b4f3eb1
76356eb3f3963051a15f7dfe6867586293bd7534
/models/pruned/random_pruning/imagenet/resnet50_5.py
49f3cdf8fcafef99f746b8dc1da08175cd959536
[]
no_license
ICIdsl/performance_modelling
f59c74c0c6b2e60457694978f9a6d2251f3a70c2
c48cf66db8e530797d0106a737c5c7da0852423c
refs/heads/master
2023-07-07T22:32:30.718833
2021-08-13T12:48:37
2021-08-13T12:48:37
394,321,871
4
0
null
null
null
null
UTF-8
Python
false
false
19,795
py
import torch import torch.nn as nn import torch.nn.functional as F class ResNet50(nn.Module): def __init__(self, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(3, 62, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) self.bn1 = nn.BatchNorm2d(62, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) self.layer1_0_conv1 = nn.Conv2d(62, 63, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_0_bn1 = nn.BatchNorm2d(63, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_0_conv2 = nn.Conv2d(63, 63, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer1_0_bn2 = nn.BatchNorm2d(63, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_0_conv3 = nn.Conv2d(63, 251, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_0_bn3 = nn.BatchNorm2d(251, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_0_downsample_0 = nn.Conv2d(62, 251, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_0_downsample_1 = nn.BatchNorm2d(251, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_1_conv1 = nn.Conv2d(251, 63, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_1_bn1 = nn.BatchNorm2d(63, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_1_conv2 = nn.Conv2d(63, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer1_1_bn2 = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_1_conv3 = nn.Conv2d(64, 251, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_1_bn3 = nn.BatchNorm2d(251, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_2_conv1 = nn.Conv2d(251, 63, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_2_bn1 = nn.BatchNorm2d(63, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_2_conv2 = nn.Conv2d(63, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer1_2_bn2 = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_2_conv3 = nn.Conv2d(64, 251, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer1_2_bn3 = nn.BatchNorm2d(251, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_0_conv1 = nn.Conv2d(251, 127, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_0_bn1 = nn.BatchNorm2d(127, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_0_conv2 = nn.Conv2d(127, 125, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) self.layer2_0_bn2 = nn.BatchNorm2d(125, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_0_conv3 = nn.Conv2d(125, 482, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_0_bn3 = nn.BatchNorm2d(482, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_0_downsample_0 = nn.Conv2d(251, 482, kernel_size=(1, 1), stride=(2, 2), bias=False) self.layer2_0_downsample_1 = nn.BatchNorm2d(482, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_1_conv1 = nn.Conv2d(482, 127, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_1_bn1 = nn.BatchNorm2d(127, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_1_conv2 = nn.Conv2d(127, 127, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer2_1_bn2 = nn.BatchNorm2d(127, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_1_conv3 = nn.Conv2d(127, 482, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_1_bn3 = nn.BatchNorm2d(482, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_2_conv1 = nn.Conv2d(482, 127, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_2_bn1 = nn.BatchNorm2d(127, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_2_conv2 = nn.Conv2d(127, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer2_2_bn2 = nn.BatchNorm2d(126, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_2_conv3 = nn.Conv2d(126, 482, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_2_bn3 = nn.BatchNorm2d(482, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_3_conv1 = nn.Conv2d(482, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_3_bn1 = nn.BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_3_conv2 = nn.Conv2d(128, 127, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer2_3_bn2 = nn.BatchNorm2d(127, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer2_3_conv3 = nn.Conv2d(127, 482, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer2_3_bn3 = nn.BatchNorm2d(482, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_0_conv1 = nn.Conv2d(482, 255, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_0_bn1 = nn.BatchNorm2d(255, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_0_conv2 = nn.Conv2d(255, 252, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) self.layer3_0_bn2 = nn.BatchNorm2d(252, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_0_conv3 = nn.Conv2d(252, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_0_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_0_downsample_0 = nn.Conv2d(482, 939, kernel_size=(1, 1), stride=(2, 2), bias=False) self.layer3_0_downsample_1 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_1_conv1 = nn.Conv2d(939, 253, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_1_bn1 = nn.BatchNorm2d(253, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_1_conv2 = nn.Conv2d(253, 253, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer3_1_bn2 = nn.BatchNorm2d(253, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_1_conv3 = nn.Conv2d(253, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_1_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_2_conv1 = nn.Conv2d(939, 255, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_2_bn1 = nn.BatchNorm2d(255, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_2_conv2 = nn.Conv2d(255, 254, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer3_2_bn2 = nn.BatchNorm2d(254, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_2_conv3 = nn.Conv2d(254, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_2_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_3_conv1 = nn.Conv2d(939, 253, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_3_bn1 = nn.BatchNorm2d(253, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_3_conv2 = nn.Conv2d(253, 254, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer3_3_bn2 = nn.BatchNorm2d(254, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_3_conv3 = nn.Conv2d(254, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_3_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_4_conv1 = nn.Conv2d(939, 250, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_4_bn1 = nn.BatchNorm2d(250, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_4_conv2 = nn.Conv2d(250, 251, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer3_4_bn2 = nn.BatchNorm2d(251, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_4_conv3 = nn.Conv2d(251, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_4_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_5_conv1 = nn.Conv2d(939, 252, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_5_bn1 = nn.BatchNorm2d(252, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_5_conv2 = nn.Conv2d(252, 253, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer3_5_bn2 = nn.BatchNorm2d(253, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer3_5_conv3 = nn.Conv2d(253, 939, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer3_5_bn3 = nn.BatchNorm2d(939, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_0_conv1 = nn.Conv2d(939, 503, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_0_bn1 = nn.BatchNorm2d(503, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_0_conv2 = nn.Conv2d(503, 502, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) self.layer4_0_bn2 = nn.BatchNorm2d(502, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_0_conv3 = nn.Conv2d(502, 1965, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_0_bn3 = nn.BatchNorm2d(1965, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_0_downsample_0 = nn.Conv2d(939, 1965, kernel_size=(1, 1), stride=(2, 2), bias=False) self.layer4_0_downsample_1 = nn.BatchNorm2d(1965, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_1_conv1 = nn.Conv2d(1965, 505, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_1_bn1 = nn.BatchNorm2d(505, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_1_conv2 = nn.Conv2d(505, 503, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer4_1_bn2 = nn.BatchNorm2d(503, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_1_conv3 = nn.Conv2d(503, 1965, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_1_bn3 = nn.BatchNorm2d(1965, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_2_conv1 = nn.Conv2d(1965, 504, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_2_bn1 = nn.BatchNorm2d(504, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_2_conv2 = nn.Conv2d(504, 505, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.layer4_2_bn2 = nn.BatchNorm2d(505, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer4_2_conv3 = nn.Conv2d(505, 1965, kernel_size=(1, 1), stride=(1, 1), bias=False) self.layer4_2_bn3 = nn.BatchNorm2d(1965, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1)) self.fc = nn.Linear(in_features=1965, out_features=1000, bias=True) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x, inplace=True) x = self.maxpool(x) x_main = x x_main = self.layer1_0_conv1(x_main) x_main = self.layer1_0_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_0_conv2(x_main) x_main = self.layer1_0_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_0_conv3(x_main) x_main = self.layer1_0_bn3(x_main) x_residual = x x_residual = self.layer1_0_downsample_0(x_residual) x_residual = self.layer1_0_downsample_1(x_residual) x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer1_1_conv1(x_main) x_main = self.layer1_1_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_1_conv2(x_main) x_main = self.layer1_1_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_1_conv3(x_main) x_main = self.layer1_1_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer1_2_conv1(x_main) x_main = self.layer1_2_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_2_conv2(x_main) x_main = self.layer1_2_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer1_2_conv3(x_main) x_main = self.layer1_2_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer2_0_conv1(x_main) x_main = self.layer2_0_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_0_conv2(x_main) x_main = self.layer2_0_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_0_conv3(x_main) x_main = self.layer2_0_bn3(x_main) x_residual = x x_residual = self.layer2_0_downsample_0(x_residual) x_residual = self.layer2_0_downsample_1(x_residual) x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer2_1_conv1(x_main) x_main = self.layer2_1_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_1_conv2(x_main) x_main = self.layer2_1_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_1_conv3(x_main) x_main = self.layer2_1_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer2_2_conv1(x_main) x_main = self.layer2_2_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_2_conv2(x_main) x_main = self.layer2_2_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_2_conv3(x_main) x_main = self.layer2_2_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer2_3_conv1(x_main) x_main = self.layer2_3_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_3_conv2(x_main) x_main = self.layer2_3_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer2_3_conv3(x_main) x_main = self.layer2_3_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_0_conv1(x_main) x_main = self.layer3_0_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_0_conv2(x_main) x_main = self.layer3_0_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_0_conv3(x_main) x_main = self.layer3_0_bn3(x_main) x_residual = x x_residual = self.layer3_0_downsample_0(x_residual) x_residual = self.layer3_0_downsample_1(x_residual) x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_1_conv1(x_main) x_main = self.layer3_1_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_1_conv2(x_main) x_main = self.layer3_1_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_1_conv3(x_main) x_main = self.layer3_1_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_2_conv1(x_main) x_main = self.layer3_2_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_2_conv2(x_main) x_main = self.layer3_2_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_2_conv3(x_main) x_main = self.layer3_2_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_3_conv1(x_main) x_main = self.layer3_3_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_3_conv2(x_main) x_main = self.layer3_3_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_3_conv3(x_main) x_main = self.layer3_3_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_4_conv1(x_main) x_main = self.layer3_4_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_4_conv2(x_main) x_main = self.layer3_4_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_4_conv3(x_main) x_main = self.layer3_4_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer3_5_conv1(x_main) x_main = self.layer3_5_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_5_conv2(x_main) x_main = self.layer3_5_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer3_5_conv3(x_main) x_main = self.layer3_5_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer4_0_conv1(x_main) x_main = self.layer4_0_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_0_conv2(x_main) x_main = self.layer4_0_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_0_conv3(x_main) x_main = self.layer4_0_bn3(x_main) x_residual = x x_residual = self.layer4_0_downsample_0(x_residual) x_residual = self.layer4_0_downsample_1(x_residual) x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer4_1_conv1(x_main) x_main = self.layer4_1_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_1_conv2(x_main) x_main = self.layer4_1_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_1_conv3(x_main) x_main = self.layer4_1_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x_main = x x_main = self.layer4_2_conv1(x_main) x_main = self.layer4_2_bn1(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_2_conv2(x_main) x_main = self.layer4_2_bn2(x_main) x_main = F.relu(x_main, inplace=True) x_main = self.layer4_2_conv3(x_main) x_main = self.layer4_2_bn3(x_main) x_residual = x x = F.relu(x_main + x_residual, inplace=True) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet50(**kwargs): return ResNet50(**kwargs)
ff01db056009a80fa1000e2954fbb76c769b6e7e
a3d2620bbf25002c7b182600c2e40f8f06555e91
/exc/exc/wsgi.py
8d7d6db299d15b0077bd2774bf300955b5612354
[]
no_license
alejo8591/backend-lab
782736a82933f705f825a1194369bfe13e86c0ec
4a02a9552083a7c877e91b0f8b81e37a8650cf54
refs/heads/master
2016-09-03T03:53:43.878240
2015-11-26T06:35:38
2015-11-26T06:35:38
3,911,349
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
""" WSGI config for exc project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "exc.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
968290c1917596dac408fca7d1a91f4c18315524
3024cafafbfc75193105af7f225d3b12eb2aea46
/DjangoProjects/project24/iplapp/models.py
b6932bc062b857864ce7ec33dc7f0cac6088b6d7
[]
no_license
jaishankarg24/Django-Rest-Framework
33266f6825d51abb8a512426baedf59f2ee957c8
809ee9208ffbef4202a8f4058a84f5322793af52
refs/heads/master
2023-03-02T20:56:38.051060
2021-02-12T05:37:48
2021-02-12T05:37:48
338,233,009
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
from django.db import models # Create your models here. class IplTable(models.Model): name = models.CharField( max_length=50) age = models.IntegerField() country = models.CharField( max_length=50)
5c5ff093f8e4848fe2435494f5abccda014f4507
84a1f9d626828b6ecaee4ef037081f4d8750a990
/编程/9月/9.12/习题答案.py
df9a5234a978fced165131300f75ac2e75628528
[]
no_license
dujiaojingyu/Personal-programming-exercises
5a8f001efa038a0cb3b6d0aa10e06ad2f933fe04
72a432c22b52cae3749e2c18cc4244bd5e831f64
refs/heads/master
2020-03-25T17:36:40.734446
2018-10-01T01:47:36
2018-10-01T01:47:36
143,986,099
1
0
null
null
null
null
UTF-8
Python
false
false
6,921
py
#coding=utf-8 import linecache import time now = time.time() #代码开始时间 # 前期准备,整理数据 data_keys = ('bid', 'uid', 'username', 'v_class', 'content', 'img', 'created_at', 'source', 'rt_num', 'cm_num', 'rt_uid', 'rt_username', 'rt_v_class', 'rt_content', 'rt_img', 'src_rt_num', 'src_cm_num', 'gender', 'rt_bid', 'location', 'rt_mid', 'mid', 'lat', 'lon', 'lbs_type', 'lbs_title', 'poiid', 'links', 'hashtags', 'ats', 'rt_links', 'rt_hashtags', 'rt_ats', 'v_url', 'rt_v_url') keys = {data_keys[k]:k for k in xrange(0,len(data_keys))} f = linecache.getlines('t.txt') lines = [x[1:-1].split('","') for x in f] #拆分 #1 输出用户总数 users = set([line[keys['username']] for line in lines]) user_total = len(set(users)) assert type(user_total) == int #2 每一个用户的名字 list users = list(users) assert type(users) == list #3 有多少个2012年11月发布的tweets lines_from_2012_11 = filter(lambda line:line[keys['created_at']].startswith('2012-11'),lines) lines_total_from_2012_11 = len(lines_from_2012_11) assert type(lines_total_from_2012_11) == int # # #4 该文本里,有哪几天的数据? # # users_by_date = [line[keys['created_at']].split(' ')[0] for line in lines] # # lines_by_created = list(set(users_by_date)) # # lines_by_created.sort() # # assert type(lines_by_created) == list # # # #5 该文本里,在哪个小时发布的数据最多? # # todo 这里用time模块做时间转换最好。下例只为讲解拆分方法 # # hours = [int(line[keys['created_at']][11:13]) for line in lines] # # total_by_hour = [(h,hours.count(h)) for h in xrange(0,24) ] # # total_by_hour.sort(key=lambda k:k[1],reverse=True) # # max_hour = total_by_hour[0][0] # # assert type(max_hour) == int # # # #6 该文本里,输出在每一天发表tweets最多的用户 # # dateline_by_user = {k:dict() for k in lines_by_created} # # for line in lines: # dateline = line[keys['created_at']].split(' ')[0] # username = line[keys['username']] # if dateline_by_user[dateline].has_key(username): # dateline_by_user[dateline][username] += 1 # else: # dateline_by_user[dateline][username] = 1 # # for k,v in dateline_by_user.items(): # us = v.items() # us.sort(key=lambda k:k[1],reverse=True) # dateline_by_user[k] = {us[0][0]:us[0][1]} # # assert type(dateline_by_user) == dict # # # #7 请按照时间顺序输出 2012-11-03 每个小时的发布tweets的频率 # # lines_from_2012_11_03 = filter(lambda line:line[keys['created_at']].startswith('2012-11-03'),lines) # # hourlines_from_2012_11_03 = {str(i):0 for i in xrange(0,24)} # # for line in lines_from_2012_11_03: # hour = line[keys['created_at']][11:13] # hourlines_from_2012_11_03[str(int(hour))] += 1 # # hour_timeline_from_2012_11_03 = [(k,v) for k,v in hourlines_from_2012_11_03.items()] # hour_timeline_from_2012_11_03.sort(key=lambda k:int(k[0])) # # assert type(hour_timeline_from_2012_11_03) == list # # # #8 统计该文本里,来源的相关信息和次数 # # source = set([k[keys['source']] for k in lines]) # source_dict = {s:0 for s in source} # for line in lines: # source_name = line[keys['source']] # source_dict[source_name] += 1 # source_list = [(k,v) for k,v in source_dict.items()] # source_list.sort(key=lambda k:k[1],reverse=True) # assert type(source_list) == list # # # #9 计算转发URL中:以:"https://twitter.com/umiushi_no_uta"开头的有几个 # # umi_total = 0 # for line in lines: # if line[keys['rt_v_url']].startswith('https://twitter.com/umiushi_no_uta'): # umi_total += 1 # assert type(umi_total) == int # # # #10 UID为573638104的用户 发了多少个微博 # # tweets_total_from_573638104 = 0 # for line in lines: # if line[keys['uid']] == '573638104' : # tweets_total_from_573638104 += 1 # assert type(tweets_total_from_573638104) == int # # # #11 定义一个函数,该函数可放入任意多的用户uid参数(如果不存在则返回null),函数返回发微薄数最多的用户uid。 # # def get_user_by_max_tweets(*uids): # # ''' # @deprecated:参数可为字符串或者数字 # ''' # # if len(uids) > 0: # uids = filter(lambda u:type(u) == int or u.isdigit(),uids) # uids = map(str,uids) # if len(uids) > 0: # uids_dict = {x:0 for x in uids} # for line in lines: # uid = line[keys['uid']] # if uid in uids: # uids_dict[uid] += 1 # uids_and_tweets_total = [(x,y) for x,y in uids_dict.items()] # uids_and_tweets_total.sort(key=lambda k:k[1],reverse=True) # return uids_and_tweets_total[0][0] # return "null" # # # assert get_user_by_max_tweets() == 'null' # assert get_user_by_max_tweets('ab','cds') == 'null' # assert get_user_by_max_tweets('ab','cds','123b') == 'null' # assert get_user_by_max_tweets('12342','cd') == '12342' # assert get_user_by_max_tweets('28803555',28803555) == '28803555' # assert get_user_by_max_tweets('28803555',28803555,'96165754') == '28803555' # # # #12 该文本里,谁发的微博内容长度最长 # # lines_by_content_length = [(line[keys['username']],len(line[keys['content']])) for line in lines] # lines_by_content_length.sort(key=lambda k:k[1],reverse=True) # user_by_max_content = lines_by_content_length[0][0] # # todo 如果有多个最多怎么办? # assert type(user_by_max_content) == str # # # #13 该文本里,谁转发的URL最多 # # lines_by_rt = [(line[keys['uid']],int(line[keys['rt_num']])) for line in lines if line[keys['rt_num']] != ''] # lines_by_rt.sort(key=lambda k:k[1],reverse=True) # user_by_max_rt = lines_by_rt[0][0] # assert type(user_by_max_rt) == str # # # #14 该文本里,11点钟,谁发的微博次数最多。 # # lines_on_hour11 = filter(lambda line:line[keys['created_at']].startswith('11',11,13),lines) # lines_by_uid_on_hour11 = {k[keys['uid']]:0 for k in lines_on_hour11} # for line in lines_on_hour11: # uid = line[keys['uid']] # lines_by_uid_on_hour11[uid] += 1 # d = [(k,v) for k,v in lines_by_uid_on_hour11.items()] # d.sort(key=lambda k:k[1],reverse=True) # uid_by_max_tweets_on_hour11 = d[0][0] # # todo 如果有多个最多怎么办? # assert type(uid_by_max_tweets_on_hour11) == str # # # #15 该文本里,哪个用户的源微博URL次数最多。 (要求:输出用户的uid,字符串格式。) # # uid_by_v_url = {k[keys['uid']]:0 for k in lines} # for line in lines: # uid = line[keys['uid']] # if lines[keys['v_url']] != '': # uid_by_v_url[uid] += 1 # uid_sort_by_v_url = [(k,v) for k,v in uid_by_v_url.items()] # uid_sort_by_v_url.sort(key=lambda k:k[1],reverse=True) # uid_by_max_v_url = uid_sort_by_v_url[0][0] # # todo 如果有多个最多怎么办? # assert type(uid_by_max_v_url) == str # # print '运算时间:%s'%(time.time() - now) #整体运行时间
95aa037242063b122b3bd33f7bb1314f54c46850
11ad104b0309a2bffd7537d05e2ab3eaf4aed0ca
/tests/helpers/test_storage_remove.py
9a447771ea630816f159fba84f8ff655f447eb56
[ "Apache-2.0" ]
permissive
koying/home-assistant
15e5d01a45fd4373b3d286e1b2ca5aba1311786d
9fc92ab04e0d1933cc23e89b4095714aee725f8b
refs/heads/dev
2023-06-24T01:15:12.150720
2020-11-01T12:27:33
2020-11-01T12:27:33
189,232,923
2
1
Apache-2.0
2023-01-13T06:04:15
2019-05-29T13:39:02
Python
UTF-8
Python
false
false
1,252
py
"""Tests for the storage helper with minimal mocking.""" import asyncio from datetime import timedelta import os from homeassistant.helpers import storage from homeassistant.util import dt from tests.async_mock import patch from tests.common import async_fire_time_changed, async_test_home_assistant async def test_removing_while_delay_in_progress(tmpdir): """Test removing while delay in progress.""" loop = asyncio.get_event_loop() hass = await async_test_home_assistant(loop) test_dir = await hass.async_add_executor_job(tmpdir.mkdir, "storage") with patch.object(storage, "STORAGE_DIR", test_dir): real_store = storage.Store(hass, 1, "remove_me") await real_store.async_save({"delay": "no"}) assert await hass.async_add_executor_job(os.path.exists, real_store.path) real_store.async_delay_save(lambda: {"delay": "yes"}, 1) await real_store.async_remove() assert not await hass.async_add_executor_job(os.path.exists, real_store.path) async_fire_time_changed(hass, dt.utcnow() + timedelta(seconds=1)) await hass.async_block_till_done() assert not await hass.async_add_executor_job(os.path.exists, real_store.path) await hass.async_stop()
34906a49299704ce8c70279a90752f8f06fab619
7c8bd2e26fdabf1555e0150272ecf035f6c21bbd
/ps프로젝트/BS/숫자카드2.py
8734a278232da1fa846614d424d7f3945e467c48
[]
no_license
hyeokjinson/algorithm
44090c2895763a0c53d48ff4084a96bdfc77f953
46c04e0f583d4c6ec4f51a24f19a373b173b3d5c
refs/heads/master
2021-07-21T10:18:43.918149
2021-03-27T12:27:56
2021-03-27T12:27:56
245,392,582
1
0
null
null
null
null
UTF-8
Python
false
false
619
py
from collections import Counter def check(v): lt=0 rt=n-1 cnt=0 while lt<=rt: mid=(lt+rt)//2 if arr[mid]==v: return 1 elif arr[mid]>v: rt=mid-1 else: lt=mid+1 return 0 if __name__ == '__main__': n=int(input()) arr=list(map(int,input().split())) arr.sort() m=int(input()) arr1=list(map(int,input().split())) c=Counter(arr) res=[] for i in range(m): if check(arr1[i]): res.append(c[arr1[i]]) else: res.append(0) for x in res: print(x,end=' ')
9d7d2d581d50ca04cf1b4329b5b87bf803707862
c2e6b6119a1d03bc293572d568d21a6b76762a1f
/ex.py
30c1077d8fe6fac7ee1c285147c7a62bef2ee59a
[]
no_license
kafura-kafiri/Fesss
24a92e5185881066b0d2f61d1649ab0e43a0f479
7b660723237dfbdbd3ba9772a9d2a9c771807bb7
refs/heads/master
2021-05-03T17:17:54.799918
2018-02-06T16:06:40
2018-02-06T16:06:40
120,443,736
0
0
null
null
null
null
UTF-8
Python
false
false
2,280
py
# LSTM for international airline passengers problem with regression framing import numpy from pandas import read_csv import datetime import math from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error # fix random seed for reproducibility numpy.random.seed(7) # load the dataset def parse(x): return datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') dataframe = read_csv('fesss.csv', parse_dates=['Date'], engine='python', date_parser=parse) dataset = dataframe.values start = dataset[0, 0] for i in range(len(dataset)): _start = dataset[i, 0] dataset[i, 0] = (dataset[i, 0] - start).total_seconds() start = _start dataset = dataset.astype('float32') # normalize the dataset delta_scaler = MinMaxScaler(feature_range=(0, 1)) delay_scaler = MinMaxScaler(feature_range=(0, 1)) # print(dataset) def scale(scaler, dataset, i): data = dataset[:, i] data = data.reshape(data.shape[0], 1) data = scaler.fit_transform(data) dataset[:, i] = data.reshape(data.shape[0]) return dataset dataset = scale(delta_scaler, dataset, 0) dataset = scale(delay_scaler, dataset, 1) # convert an array of values into a dataset matrix def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset) - look_back): l = [dataset[i + 1][0]] l.extend(dataset[i:(i + look_back), 1]) l.append(dataset[i + 1][2]) dataX.append(l) dataY.append(dataset[i + look_back, 0]) return numpy.array(dataX), numpy.array(dataY) look_back = 1 dataX, dataY = create_dataset(dataset, look_back) # reshape input to be [samples, time steps, features] dataX = numpy.reshape(dataX, (dataX.shape[0], 1, dataX.shape[1])) print(dataset) print(dataX) print(dataY) # create and fit the LSTM network model = Sequential() model.add(LSTM(4, input_shape=(1, look_back + 2))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(dataX, dataY, epochs=100, batch_size=1, verbose=2) # make predictions trainPredict = model.predict(dataX) from math import sqrt rmse = sqrt(mean_squared_error(dataY, trainPredict)) print('RMSE: %.3f' % rmse)
8ef2d2abe68d0b5499e760395b40896a467518c4
2e9193625039cbd93a76a1ac1115e84599c6afcd
/HashTable/hashtableImp.py
1f19d4d3fcdd4ca486866e38beb7dbb1a273fa65
[]
no_license
hieudx149/DatastructAndAlgorithms
d54b79c3375dfb17989160a1d2dc74505061eae5
a5f147b2f644f2a273c50756c9d297fa8b6bcd08
refs/heads/master
2023-06-16T13:38:32.039274
2021-07-13T10:35:54
2021-07-13T10:35:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,581
py
class hash_table: def __init__(self, size): self.size = size self.data = [None]*self.size def __str__(self): # As in the array implementation, this method is used to print the attributes of the class object in a dictionary format return str(self.__dict__) def _hash(self, key): hash = 0 for i in range(len(key)): hash = (hash + ord(key[i])*i) % self.size return hash def set(self, key, value): address = self._hash(key) if not self.data[address]: self.data[address] = [[key, value]] else: self.data[address].append([key, value]) print(self.data) def get(self, key): address = self._hash(key) bucket = self.data[address] if bucket: for i in range(len(bucket)): if bucket[i][0] == key: return bucket[i][1] return None def keys(self): list_key = [] for i in range(self.size): if self.data[i]: for j in range(len(self.data[i])): list_key.append(self.data[i][j][0]) return list_key def values(self): list_value = [] for i in range(self.size): if self.data[i]: for j in range(len(self.data[i])): list_value.append(self.data[i][j][1]) return list_value new_hash = hash_table(5) new_hash.set('duong', 100) new_hash.set('xuan', 200) new_hash.set('hieu', 300) print(new_hash.keys()) print(new_hash.values())
43b720aa6186d5142bf19c70b95377a6e09392e7
5b4312ddc24f29538dce0444b7be81e17191c005
/autoware.ai/1.12.0_cuda/build/memsic_imu/catkin_generated/generate_cached_setup.py
a7913516ce6d717d1e4e1c8927d7d0035dfa6bef
[ "MIT" ]
permissive
muyangren907/autoware
b842f1aeb2bfe7913fb2be002ea4fc426b4e9be2
5ae70f0cdaf5fc70b91cd727cf5b5f90bc399d38
refs/heads/master
2020-09-22T13:08:14.237380
2019-12-03T07:12:49
2019-12-03T07:12:49
225,167,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,360
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/melodic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/melodic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in "/opt/ros/melodic".split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/memsic_imu/devel/env.sh') output_filename = '/home/muyangren907/autoware/autoware.ai/1.12.0_cuda/build/memsic_imu/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: #print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
3dd7a6c1cc0e7b493acc79ecedfa610981f4a0c2
6e8d58340f2be5f00d55e2629052c0bbc9dcf390
/eggs/numpy-1.6.0-py2.7-linux-x86_64-ucs4.egg/numpy/f2py/auxfuncs.py
a12d92b7ea6a8df62af61ded3a2fcb333b26d37c
[ "CC-BY-2.5", "MIT" ]
permissive
JCVI-Cloud/galaxy-tools-prok
e57389750d33ac766e1658838cdb0aaf9a59c106
3c44ecaf4b2e1f2d7269eabef19cbd2e88b3a99c
refs/heads/master
2021-05-02T06:23:05.414371
2014-03-21T18:12:43
2014-03-21T18:12:43
6,092,693
0
2
NOASSERTION
2020-07-25T20:38:17
2012-10-05T15:57:38
Python
UTF-8
Python
false
false
19,936
py
#!/usr/bin/env python """ Auxiliary functions for f2py2e. Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the NumPy (BSD style) LICENSE. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/07/24 19:01:55 $ Pearu Peterson """ __version__ = "$Revision: 1.65 $"[10:-1] import __version__ f2py_version = __version__.version import pprint import sys import types import cfuncs errmess=sys.stderr.write #outmess=sys.stdout.write show=pprint.pprint options={} debugoptions=[] wrapfuncs = 1 if sys.version_info[0] >= 3: from functools import reduce def outmess(t): if options.get('verbose',1): sys.stdout.write(t) def debugcapi(var): return 'capi' in debugoptions def _isstring(var): return 'typespec' in var and var['typespec']=='character' and (not isexternal(var)) def isstring(var): return _isstring(var) and not isarray(var) def ischaracter(var): return isstring(var) and 'charselector' not in var def isstringarray(var): return isarray(var) and _isstring(var) def isarrayofstrings(var): # leaving out '*' for now so that # `character*(*) a(m)` and `character a(m,*)` # are treated differently. Luckily `character**` is illegal. return isstringarray(var) and var['dimension'][-1]=='(*)' def isarray(var): return 'dimension' in var and (not isexternal(var)) def isscalar(var): return not (isarray(var) or isstring(var) or isexternal(var)) def iscomplex(var): return isscalar(var) and var.get('typespec') in ['complex','double complex'] def islogical(var): return isscalar(var) and var.get('typespec')=='logical' def isinteger(var): return isscalar(var) and var.get('typespec')=='integer' def isreal(var): return isscalar(var) and var.get('typespec')=='real' def get_kind(var): try: return var['kindselector']['*'] except KeyError: try: return var['kindselector']['kind'] except KeyError: pass def islong_long(var): if not isscalar(var): return 0 if var.get('typespec') not in ['integer','logical']: return 0 return get_kind(var)=='8' def isunsigned_char(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var)=='-1' def isunsigned_short(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var)=='-2' def isunsigned(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var)=='-4' def isunsigned_long_long(var): if not isscalar(var): return 0 if var.get('typespec') != 'integer': return 0 return get_kind(var)=='-8' def isdouble(var): if not isscalar(var): return 0 if not var.get('typespec')=='real': return 0 return get_kind(var)=='8' def islong_double(var): if not isscalar(var): return 0 if not var.get('typespec')=='real': return 0 return get_kind(var)=='16' def islong_complex(var): if not iscomplex(var): return 0 return get_kind(var)=='32' def iscomplexarray(var): return isarray(var) and var.get('typespec') in ['complex','double complex'] def isint1array(var): return isarray(var) and var.get('typespec')=='integer' \ and get_kind(var)=='1' def isunsigned_chararray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='-1' def isunsigned_shortarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='-2' def isunsignedarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='-4' def isunsigned_long_longarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='-8' def issigned_chararray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='1' def issigned_shortarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='2' def issigned_array(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='4' def issigned_long_longarray(var): return isarray(var) and var.get('typespec') in ['integer', 'logical']\ and get_kind(var)=='8' def isallocatable(var): return 'attrspec' in var and 'allocatable' in var['attrspec'] def ismutable(var): return not (not 'dimension' in var or isstring(var)) def ismoduleroutine(rout): return 'modulename' in rout def ismodule(rout): return ('block' in rout and 'module'==rout['block']) def isfunction(rout): return ('block' in rout and 'function'==rout['block']) #def isfunction_wrap(rout): # return wrapfuncs and (iscomplexfunction(rout) or isstringfunction(rout)) and (not isexternal(rout)) def isfunction_wrap(rout): if isintent_c(rout): return 0 return wrapfuncs and isfunction(rout) and (not isexternal(rout)) def issubroutine(rout): return ('block' in rout and 'subroutine'==rout['block']) def issubroutine_wrap(rout): if isintent_c(rout): return 0 return issubroutine(rout) and hasassumedshape(rout) def hasassumedshape(rout): if rout.get('hasassumedshape'): return True for a in rout['args']: for d in rout['vars'].get(a,{}).get('dimension',[]): if d==':': rout['hasassumedshape'] = True return True return False def isroutine(rout): return isfunction(rout) or issubroutine(rout) def islogicalfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return islogical(rout['vars'][a]) return 0 def islong_longfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return islong_long(rout['vars'][a]) return 0 def islong_doublefunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return islong_double(rout['vars'][a]) return 0 def iscomplexfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return iscomplex(rout['vars'][a]) return 0 def iscomplexfunction_warn(rout): if iscomplexfunction(rout): outmess("""\ ************************************************************** Warning: code with a function returning complex value may not work correctly with your Fortran compiler. Run the following test before using it in your applications: $(f2py install dir)/test-site/{b/runme_scalar,e/runme} When using GNU gcc/g77 compilers, codes should work correctly. **************************************************************\n""") return 1 return 0 def isstringfunction(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return isstring(rout['vars'][a]) return 0 def hasexternals(rout): return 'externals' in rout and rout['externals'] def isthreadsafe(rout): return 'f2pyenhancements' in rout and 'threadsafe' in rout['f2pyenhancements'] def hasvariables(rout): return 'vars' in rout and rout['vars'] def isoptional(var): return ('attrspec' in var and 'optional' in var['attrspec'] and 'required' not in var['attrspec']) and isintent_nothide(var) def isexternal(var): return ('attrspec' in var and 'external' in var['attrspec']) def isrequired(var): return not isoptional(var) and isintent_nothide(var) def isintent_in(var): if 'intent' not in var: return 1 if 'hide' in var['intent']: return 0 if 'inplace' in var['intent']: return 0 if 'in' in var['intent']: return 1 if 'out' in var['intent']: return 0 if 'inout' in var['intent']: return 0 if 'outin' in var['intent']: return 0 return 1 def isintent_inout(var): return 'intent' in var and ('inout' in var['intent'] or 'outin' in var['intent']) and 'in' not in var['intent'] and 'hide' not in var['intent'] and 'inplace' not in var['intent'] def isintent_out(var): return 'out' in var.get('intent',[]) def isintent_hide(var): return ('intent' in var and ('hide' in var['intent'] or ('out' in var['intent'] and 'in' not in var['intent'] and (not l_or(isintent_inout,isintent_inplace)(var))))) def isintent_nothide(var): return not isintent_hide(var) def isintent_c(var): return 'c' in var.get('intent',[]) # def isintent_f(var): # return not isintent_c(var) def isintent_cache(var): return 'cache' in var.get('intent',[]) def isintent_copy(var): return 'copy' in var.get('intent',[]) def isintent_overwrite(var): return 'overwrite' in var.get('intent',[]) def isintent_callback(var): return 'callback' in var.get('intent',[]) def isintent_inplace(var): return 'inplace' in var.get('intent',[]) def isintent_aux(var): return 'aux' in var.get('intent',[]) def isintent_aligned4(var): return 'aligned4' in var.get('intent',[]) def isintent_aligned8(var): return 'aligned8' in var.get('intent',[]) def isintent_aligned16(var): return 'aligned16' in var.get('intent',[]) isintent_dict = {isintent_in:'INTENT_IN',isintent_inout:'INTENT_INOUT', isintent_out:'INTENT_OUT',isintent_hide:'INTENT_HIDE', isintent_cache:'INTENT_CACHE', isintent_c:'INTENT_C',isoptional:'OPTIONAL', isintent_inplace:'INTENT_INPLACE', isintent_aligned4:'INTENT_ALIGNED4', isintent_aligned8:'INTENT_ALIGNED8', isintent_aligned16:'INTENT_ALIGNED16', } def isprivate(var): return 'attrspec' in var and 'private' in var['attrspec'] def hasinitvalue(var): return '=' in var def hasinitvalueasstring(var): if not hasinitvalue(var): return 0 return var['='][0] in ['"',"'"] def hasnote(var): return 'note' in var def hasresultnote(rout): if not isfunction(rout): return 0 if 'result' in rout: a=rout['result'] else: a=rout['name'] if a in rout['vars']: return hasnote(rout['vars'][a]) return 0 def hascommon(rout): return 'common' in rout def containscommon(rout): if hascommon(rout): return 1 if hasbody(rout): for b in rout['body']: if containscommon(b): return 1 return 0 def containsmodule(block): if ismodule(block): return 1 if not hasbody(block): return 0 for b in block['body']: if containsmodule(b): return 1 return 0 def hasbody(rout): return 'body' in rout def hascallstatement(rout): return getcallstatement(rout) is not None def istrue(var): return 1 def isfalse(var): return 0 class F2PYError(Exception): pass class throw_error: def __init__(self,mess): self.mess = mess def __call__(self,var): mess = '\n\n var = %s\n Message: %s\n' % (var,self.mess) raise F2PYError,mess def l_and(*f): l,l2='lambda v',[] for i in range(len(f)): l='%s,f%d=f[%d]'%(l,i,i) l2.append('f%d(v)'%(i)) return eval('%s:%s'%(l,' and '.join(l2))) def l_or(*f): l,l2='lambda v',[] for i in range(len(f)): l='%s,f%d=f[%d]'%(l,i,i) l2.append('f%d(v)'%(i)) return eval('%s:%s'%(l,' or '.join(l2))) def l_not(f): return eval('lambda v,f=f:not f(v)') def isdummyroutine(rout): try: return rout['f2pyenhancements']['fortranname']=='' except KeyError: return 0 def getfortranname(rout): try: name = rout['f2pyenhancements']['fortranname'] if name=='': raise KeyError if not name: errmess('Failed to use fortranname from %s\n'%(rout['f2pyenhancements'])) raise KeyError except KeyError: name = rout['name'] return name def getmultilineblock(rout,blockname,comment=1,counter=0): try: r = rout['f2pyenhancements'].get(blockname) except KeyError: return if not r: return if counter>0 and type(r) is type(''): return if type(r) is type([]): if counter>=len(r): return r = r[counter] if r[:3]=="'''": if comment: r = '\t/* start ' + blockname + ' multiline ('+`counter`+') */\n' + r[3:] else: r = r[3:] if r[-3:]=="'''": if comment: r = r[:-3] + '\n\t/* end multiline ('+`counter`+')*/' else: r = r[:-3] else: errmess("%s multiline block should end with `'''`: %s\n" \ % (blockname,repr(r))) return r def getcallstatement(rout): return getmultilineblock(rout,'callstatement') def getcallprotoargument(rout,cb_map={}): r = getmultilineblock(rout,'callprotoargument',comment=0) if r: return r if hascallstatement(rout): outmess('warning: callstatement is defined without callprotoargument\n') return from capi_maps import getctype arg_types,arg_types2 = [],[] if l_and(isstringfunction,l_not(isfunction_wrap))(rout): arg_types.extend(['char*','size_t']) for n in rout['args']: var = rout['vars'][n] if isintent_callback(var): continue if n in cb_map: ctype = cb_map[n]+'_typedef' else: ctype = getctype(var) if l_and(isintent_c,l_or(isscalar,iscomplex))(var): pass elif isstring(var): pass #ctype = 'void*' else: ctype = ctype+'*' if isstring(var) or isarrayofstrings(var): arg_types2.append('size_t') arg_types.append(ctype) proto_args = ','.join(arg_types+arg_types2) if not proto_args: proto_args = 'void' #print proto_args return proto_args def getusercode(rout): return getmultilineblock(rout,'usercode') def getusercode1(rout): return getmultilineblock(rout,'usercode',counter=1) def getpymethoddef(rout): return getmultilineblock(rout,'pymethoddef') def getargs(rout): sortargs,args=[],[] if 'args' in rout: args=rout['args'] if 'sortvars' in rout: for a in rout['sortvars']: if a in args: sortargs.append(a) for a in args: if a not in sortargs: sortargs.append(a) else: sortargs=rout['args'] return args,sortargs def getargs2(rout): sortargs,args=[],rout.get('args',[]) auxvars = [a for a in rout['vars'].keys() if isintent_aux(rout['vars'][a])\ and a not in args] args = auxvars + args if 'sortvars' in rout: for a in rout['sortvars']: if a in args: sortargs.append(a) for a in args: if a not in sortargs: sortargs.append(a) else: sortargs=auxvars + rout['args'] return args,sortargs def getrestdoc(rout): if 'f2pymultilines' not in rout: return None k = None if rout['block']=='python module': k = rout['block'],rout['name'] return rout['f2pymultilines'].get(k,None) def gentitle(name): l=(80-len(name)-6)//2 return '/*%s %s %s*/'%(l*'*',name,l*'*') def flatlist(l): if type(l)==types.ListType: return reduce(lambda x,y,f=flatlist:x+f(y),l,[]) return [l] def stripcomma(s): if s and s[-1]==',': return s[:-1] return s def replace(str,d,defaultsep=''): if type(d)==types.ListType: return map(lambda d,f=replace,sep=defaultsep,s=str:f(s,d,sep),d) if type(str)==types.ListType: return map(lambda s,f=replace,sep=defaultsep,d=d:f(s,d,sep),str) for k in 2*d.keys(): if k=='separatorsfor': continue if 'separatorsfor' in d and k in d['separatorsfor']: sep=d['separatorsfor'][k] else: sep=defaultsep if type(d[k])==types.ListType: str=str.replace('#%s#'%(k),sep.join(flatlist(d[k]))) else: str=str.replace('#%s#'%(k),d[k]) return str def dictappend(rd,ar): if type(ar)==types.ListType: for a in ar: rd=dictappend(rd,a) return rd for k in ar.keys(): if k[0]=='_': continue if k in rd: if type(rd[k])==str: rd[k]=[rd[k]] if type(rd[k])==types.ListType: if type(ar[k])==types.ListType: rd[k]=rd[k]+ar[k] else: rd[k].append(ar[k]) elif type(rd[k])==types.DictType: if type(ar[k])==types.DictType: if k=='separatorsfor': for k1 in ar[k].keys(): if k1 not in rd[k]: rd[k][k1]=ar[k][k1] else: rd[k]=dictappend(rd[k],ar[k]) else: rd[k]=ar[k] return rd def applyrules(rules,d,var={}): ret={} if type(rules)==types.ListType: for r in rules: rr=applyrules(r,d,var) ret=dictappend(ret,rr) if '_break' in rr: break return ret if '_check' in rules and (not rules['_check'](var)): return ret if 'need' in rules: res = applyrules({'needs':rules['need']},d,var) if 'needs' in res: cfuncs.append_needs(res['needs']) for k in rules.keys(): if k=='separatorsfor': ret[k]=rules[k]; continue if type(rules[k])==str: ret[k]=replace(rules[k],d) elif type(rules[k])==types.ListType: ret[k]=[] for i in rules[k]: ar=applyrules({k:i},d,var) if k in ar: ret[k].append(ar[k]) elif k[0]=='_': continue elif type(rules[k])==types.DictType: ret[k]=[] for k1 in rules[k].keys(): if type(k1)==types.FunctionType and k1(var): if type(rules[k][k1])==types.ListType: for i in rules[k][k1]: if type(i)==types.DictType: res=applyrules({'supertext':i},d,var) if 'supertext' in res: i=res['supertext'] else: i='' ret[k].append(replace(i,d)) else: i=rules[k][k1] if type(i)==types.DictType: res=applyrules({'supertext':i},d) if 'supertext' in res: i=res['supertext'] else: i='' ret[k].append(replace(i,d)) else: errmess('applyrules: ignoring rule %s.\n'%`rules[k]`) if type(ret[k])==types.ListType: if len(ret[k])==1: ret[k]=ret[k][0] if ret[k]==[]: del ret[k] return ret
5cbcaaa43ef258823c6c27044d41b401cda0c79d
6b301b0b0d5fea69e6ab6d3fcfd0a9741143a9b7
/config/jupyter/.ipython/profile_default/startup/00-setup-spark.py
0219daccbe9e74cbcbd99ab8d59a1f0b6a772a72
[ "BSD-3-Clause", "MIT", "LicenseRef-scancode-other-permissive", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "BSD-2-Clause" ]
permissive
frankiegu/pipeline
c7a166e80ccc6a351c32fb1918a41268f2380140
3526f58cc9b4d824a23300cd60c647a753902774
refs/heads/master
2021-01-11T06:09:36.914324
2016-10-03T05:33:41
2016-10-03T05:33:41
69,836,618
1
0
null
2016-10-03T02:56:09
2016-10-03T02:56:09
null
UTF-8
Python
false
false
489
py
import glob import os import sys # Setup SPARK_HOME spark_home = os.getenv('SPARK_HOME', None) if not spark_home: raise ValueError('SPARK_HOME environment variable is not set') # System sys.path sys.path.insert(0, os.path.join(spark_home, 'python')) for lib in glob.glob(os.path.join(spark_home, 'python/lib/py4j-*-src.zip')): sys.path.insert(0, lib) os.environ['PYSPARK_SUBMIT_ARGS']='--master %s %s pyspark-shell' % (os.getenv('SPARK_MASTER'), os.getenv('SPARK_SUBMIT_ARGS'))
bc4d8fdf44a8f6da59b0a8ead9eefac7907e6a29
b3455474da0bc27c913ff88908be0d0bddba352d
/5.AI/1.Machine Learning/196_mushroom_train2.py
0919272787d2e7922608902f2ded949c86259dab
[]
no_license
rntva/JumpToPython
7286bc94e40b553fa7b9fbca7934f2e35f63b54e
090f0ed5bf28ae7832e5edde11936b71b4fb324b
refs/heads/master
2021-05-01T02:33:44.528975
2018-07-18T08:24:07
2018-07-18T08:24:07
121,182,629
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.model_selection import train_test_split #데이터 읽기 mr = pd.read_csv("mushroom.csv", header=None) #데이터 내부의 분류 변수 전개 label = [] data = [] attr_list = [] for row_index, row in mr.iterrows() : label.append(row.ix[0]) exdata = [] for col, v in enumerate(row.ix[1:]) : if row_index == 0 : attr = {"dic" : {}, "cnt" : 0} attr_list.append(attr) else : attr = attr_list[col] #버섯의 특징 기호를 배열로 나타내기 d = [0,0,0,0,0,0,0,0,0,0,0,0] if v in attr["dic"] : idx = attr["dic"][v] else : idx = attr["cnt"] attr["dic"][v] = idx attr["cnt"] += 1 d[idx] = 1 exdata += d data.append(exdata) #학습, 데트스 데이터 나누기 data_train, data_test, label_train, label_test = train_test_split(data, label) #학습시키기 clf = RandomForestClassifier() clf.fit(data_train, label_train) #예측하기 pre = clf.predict(data_test) #결과테스트 ac_score = metrics.accuracy_score(label_test, pre) print("정답률", ac_score)
fedb6ed76a5d7115dd820e753d6a9561b86a1f9e
36e27ca74b734994fb2e5cd4e328e7b82202d8cd
/nodarb/migrations/0007_nodarb_tips_rada.py
23417ec23dc96ae31da304e4df5cc8abde817eeb
[]
no_license
svabis/vf
5e9513f3a767a9561e2fb8bd3e37bb3c03d113dd
d83a4afd177e4f7007a9ce824ae5ed36f18654fc
refs/heads/master
2020-05-21T21:19:59.952463
2018-06-04T11:11:50
2018-06-04T11:11:50
84,647,341
0
0
null
null
null
null
UTF-8
Python
false
false
404
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('nodarb', '0006_auto_20170311_1644'), ] operations = [ migrations.AddField( model_name='nodarb_tips', name='rada', field=models.BooleanField(default=True), ), ]
a891b7dbf6d6642a5556df699356d8e6d45ea81e
9eef031728a6cdcd681cad9ba6b0709269383905
/examples/test/test_analyzer.py
bd467f4878203aa3e45a31a9040cd5ead57b0c12
[ "BSD-2-Clause", "BSD-3-Clause" ]
permissive
kbeckmann/liteeth
906b6f30b5d3be28f2bfac91704c7d5ddf26e85e
54acf9fd76c226d7760294ffde86418e52e0951b
refs/heads/master
2022-12-24T17:02:42.834415
2020-08-24T20:14:35
2020-08-24T20:14:35
300,029,015
0
0
NOASSERTION
2020-09-30T19:03:51
2020-09-30T19:03:50
null
UTF-8
Python
false
false
570
py
#!/usr/bin/env python3 # # This file is part of LiteEth. # # Copyright (c) 2015-2018 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause from litex import RemoteClient wb = RemoteClient() wb.open() # # # from litescope.software.driver.analyzer import LiteScopeAnalyzerDriver analyzer = LiteScopeAnalyzerDriver(wb.regs, "analyzer", debug=True) analyzer.configure_trigger(cond={}) analyzer.configure_subsampler(1) analyzer.run(offset=128, length=256) analyzer.wait_done() analyzer.upload() analyzer.save("dump.vcd") # # # wb.close()
ffb723bce5647ba3b185cf4e227e25b2ff78a4d7
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_2/frdyon001/question2.py
26dadb99dfec05c266eb818b46161070e84fcf6d
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
2,854
py
# Student Number: FRDYON001 # Name: Yonela Ford # 30 Second Rule Expert # Date: 08 March 2014 def rule(): print("Welcome to the 30 Second Rule Expert") print("------------------------------------") print("Answer the following questions by selecting from among the options.") ans=input("Did anyone see you? (yes/no)\n") if (ans=="yes"): ans=input("Was it a boss/lover/parent? (yes/no)\n") if (ans=="yes"): ans=input("Was it expensive? (yes/no)\n") if (ans=="yes"): ans=input("Can you cut off the part that touched the floor? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Your call.") elif (ans=="no"): ans=input("Is it chocolate? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Don't eat it.") elif (ans=="no"): print("Decision: Eat it.") elif (ans=="no"): ans=input("Was it sticky? (yes/no)\n") if (ans=="yes"): ans=input("Is it a raw steak? (yes/no)\n") if (ans=="yes"): ans=input("Are you a puma? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Don't eat it.") elif (ans=="no"): ans=input("Did the cat lick it? (yes/no)\n") if (ans=="yes"): ans=input("Is your cat healthy? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Your call.") elif (ans=="no"): print( "Decision: Eat it.") elif (ans=="no"): ans=input("Is it an Emausaurus? (yes/no)\n") if (ans=="yes"): ans=input("Are you a Megalosaurus? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Don't eat it.") elif (ans=="no"): ans=input("Did the cat lick it? (yes/no)\n") if (ans=="yes"): ans=input("Is your cat healthy? (yes/no)\n") if (ans=="yes"): print("Decision: Eat it.") elif (ans=="no"): print("Decision: Your call.") elif (ans=="no"): print("Decision: Eat it.") rule()
8651ed35b2eb2e819fafde9dad2ea2b5c37309a2
9354603c34bd8e0e477f8777054dbd775c994ea4
/webhr/urls.py
b8fc022d061ed07a32c02af440fd47c815a9bd56
[]
no_license
Drjimoh/the-hr-project
8c661ee2b5052b8e919dfcdb75827246bcf8d8ea
fc5d2085c7d4da0326cedc66342b0f9f058136d5
refs/heads/master
2020-05-20T16:20:02.217053
2019-05-08T18:58:44
2019-05-08T18:58:44
185,664,268
2
0
null
null
null
null
UTF-8
Python
false
false
1,106
py
"""webhr URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from cvranker import views from django.contrib.admin.views.decorators import staff_member_required urlpatterns = [ path('admin/', admin.site.urls), path('api', staff_member_required(views.ApiView.as_view()), name='api view'), path('', views.add_cv, name= 'Homepage'), path('ranks', views.get_top_cvs, name='Ranks'), path('generate', views.GenerateScoredCvView.as_view(), name='generate'), ]
a53ec68b0e8ce40a7cda19097562ab614461ffc1
b05761d771bb5a85d39d370c649567c1ff3eb089
/venv/lib/python3.10/site-packages/pip/_internal/operations/install/wheel.py
6a5fa1d94277dc9ee39c696ded14e23b17d938e6
[]
no_license
JawshyJ/Coding_Practice
88c49cab955eab04609ec1003b6b8c20f103fc06
eb6b229d41aa49b1545af2120e6bee8e982adb41
refs/heads/master
2023-02-19T10:18:04.818542
2023-02-06T21:22:58
2023-02-06T21:22:58
247,788,631
4
0
null
null
null
null
UTF-8
Python
false
false
33,185
py
"""Support for installing and building the "wheel" binary package format. """ import collections import compileall import contextlib import csv import importlib import logging import os.path import re import shutil import sys import warnings from base64 import urlsafe_b64decode, urlsafe_b64encode from email.message import Message from itertools import chain, filterfalse, starmap from typing import ( IO, TYPE_CHECKING, Any, BinaryIO, Callable, Dict, Iterable, Iterator, List, NewType, Optional, Sequence, Set, Tuple, Union, cast, ) from zipfile import ZipFile, ZipInfo from pip._vendor import pkg_resources from pip._vendor.distlib.scripts import ScriptMaker from pip._vendor.distlib.util import get_export_entry from pip._vendor.pkg_resources import Distribution from pip._vendor.six import ensure_str, ensure_text, reraise from pip._internal.exceptions import InstallationError from pip._internal.locations import get_major_minor_version from pip._internal.models.direct_url import DIRECT_URL_METADATA_NAME, DirectUrl from pip._internal.models.scheme import SCHEME_KEYS, Scheme from pip._internal.utils.filesystem import adjacent_tmp_file, replace from pip._internal.utils.misc import captured_stdout, ensure_dir, hash_file, partition from pip._internal.utils.unpacking import ( current_umask, is_within_directory, set_extracted_file_to_default_mode_plus_executable, zip_item_is_executable, ) from pip._internal.utils.wheel import parse_wheel, pkg_resources_distribution_for_wheel if TYPE_CHECKING: from typing import Protocol class File(Protocol): src_record_path = None # type: RecordPath dest_path = None # type: str changed = None # type: bool def save(self): # type: () -> None pass logger = logging.getLogger(__name__) RecordPath = NewType('RecordPath', str) InstalledCSVRow = Tuple[RecordPath, str, Union[int, str]] def rehash(path, blocksize=1 << 20): # type: (str, int) -> Tuple[str, str] """Return (encoded_digest, length) for path using hashlib.sha256()""" h, length = hash_file(path, blocksize) digest = 'sha256=' + urlsafe_b64encode( h.digest() ).decode('latin1').rstrip('=') return (digest, str(length)) def csv_io_kwargs(mode): # type: (str) -> Dict[str, Any] """Return keyword arguments to properly open a CSV file in the given mode. """ return {'mode': mode, 'newline': '', 'encoding': 'utf-8'} def fix_script(path): # type: (str) -> bool """Replace #!python with #!/path/to/python Return True if file was changed. """ # XXX RECORD hashes will need to be updated assert os.path.isfile(path) with open(path, 'rb') as script: firstline = script.readline() if not firstline.startswith(b'#!python'): return False exename = firstline[2:] firstline = b'#!/usr/bin/env ' + exename + os.linesep.encode("ascii") rest = script.read() # If the file is installed from the pool, let's unlink it before # writing the new version. if not os.access(path, os.W_OK): os.unlink(path) with open(path, 'wb') as script: script.write(firstline) script.write(rest) return True def wheel_root_is_purelib(metadata): # type: (Message) -> bool return metadata.get("Root-Is-Purelib", "").lower() == "true" def get_entrypoints(distribution): # type: (Distribution) -> Tuple[Dict[str, str], Dict[str, str]] # get the entry points and then the script names try: console = distribution.get_entry_map('console_scripts') gui = distribution.get_entry_map('gui_scripts') except KeyError: # Our dict-based Distribution raises KeyError if entry_points.txt # doesn't exist. return {}, {} def _split_ep(s): # type: (pkg_resources.EntryPoint) -> Tuple[str, str] """get the string representation of EntryPoint, remove space and split on '=' """ split_parts = str(s).replace(" ", "").split("=") return split_parts[0], split_parts[1] # convert the EntryPoint objects into strings with module:function console = dict(_split_ep(v) for v in console.values()) gui = dict(_split_ep(v) for v in gui.values()) return console, gui def message_about_scripts_not_on_PATH(scripts): # type: (Sequence[str]) -> Optional[str] """Determine if any scripts are not on PATH and format a warning. Returns a warning message if one or more scripts are not on PATH, otherwise None. """ if not scripts: return None # Group scripts by the path they were installed in grouped_by_dir = collections.defaultdict(set) # type: Dict[str, Set[str]] for destfile in scripts: parent_dir = os.path.dirname(destfile) script_name = os.path.basename(destfile) grouped_by_dir[parent_dir].add(script_name) # We don't want to warn for directories that are on PATH. not_warn_dirs = [ os.path.normcase(i).rstrip(os.sep) for i in os.environ.get("PATH", "").split(os.pathsep) ] # If an executable sits with sys.executable, we don't warn for it. # This covers the case of venv invocations without activating the venv. not_warn_dirs.append(os.path.normcase(os.path.dirname(sys.executable))) warn_for = { parent_dir: scripts for parent_dir, scripts in grouped_by_dir.items() if os.path.normcase(parent_dir) not in not_warn_dirs } # type: Dict[str, Set[str]] if not warn_for: return None # Format a message msg_lines = [] for parent_dir, dir_scripts in warn_for.items(): sorted_scripts = sorted(dir_scripts) # type: List[str] if len(sorted_scripts) == 1: start_text = "script {} is".format(sorted_scripts[0]) else: start_text = "scripts {} are".format( ", ".join(sorted_scripts[:-1]) + " and " + sorted_scripts[-1] ) msg_lines.append( "The {} installed in '{}' which is not on PATH." .format(start_text, parent_dir) ) last_line_fmt = ( "Consider adding {} to PATH or, if you prefer " "to suppress this warning, use --no-warn-script-location." ) if len(msg_lines) == 1: msg_lines.append(last_line_fmt.format("this directory")) else: msg_lines.append(last_line_fmt.format("these directories")) # Add a note if any directory starts with ~ warn_for_tilde = any( i[0] == "~" for i in os.environ.get("PATH", "").split(os.pathsep) if i ) if warn_for_tilde: tilde_warning_msg = ( "NOTE: The current PATH contains path(s) starting with `~`, " "which may not be expanded by all applications." ) msg_lines.append(tilde_warning_msg) # Returns the formatted multiline message return "\n".join(msg_lines) def _normalized_outrows(outrows): # type: (Iterable[InstalledCSVRow]) -> List[Tuple[str, str, str]] """Normalize the given rows of a RECORD file. Items in each row are converted into str. Rows are then sorted to make the value more predictable for tests. Each row is a 3-tuple (path, hash, size) and corresponds to a record of a RECORD file (see PEP 376 and PEP 427 for details). For the rows passed to this function, the size can be an integer as an int or string, or the empty string. """ # Normally, there should only be one row per path, in which case the # second and third elements don't come into play when sorting. # However, in cases in the wild where a path might happen to occur twice, # we don't want the sort operation to trigger an error (but still want # determinism). Since the third element can be an int or string, we # coerce each element to a string to avoid a TypeError in this case. # For additional background, see-- # https://github.com/pypa/pip/issues/5868 return sorted( (ensure_str(record_path, encoding='utf-8'), hash_, str(size)) for record_path, hash_, size in outrows ) def _record_to_fs_path(record_path): # type: (RecordPath) -> str return record_path def _fs_to_record_path(path, relative_to=None): # type: (str, Optional[str]) -> RecordPath if relative_to is not None: # On Windows, do not handle relative paths if they belong to different # logical disks if os.path.splitdrive(path)[0].lower() == \ os.path.splitdrive(relative_to)[0].lower(): path = os.path.relpath(path, relative_to) path = path.replace(os.path.sep, '/') return cast('RecordPath', path) def _parse_record_path(record_column): # type: (str) -> RecordPath p = ensure_text(record_column, encoding='utf-8') return cast('RecordPath', p) def get_csv_rows_for_installed( old_csv_rows, # type: List[List[str]] installed, # type: Dict[RecordPath, RecordPath] changed, # type: Set[RecordPath] generated, # type: List[str] lib_dir, # type: str ): # type: (...) -> List[InstalledCSVRow] """ :param installed: A map from archive RECORD path to installation RECORD path. """ installed_rows = [] # type: List[InstalledCSVRow] for row in old_csv_rows: if len(row) > 3: logger.warning('RECORD line has more than three elements: %s', row) old_record_path = _parse_record_path(row[0]) new_record_path = installed.pop(old_record_path, old_record_path) if new_record_path in changed: digest, length = rehash(_record_to_fs_path(new_record_path)) else: digest = row[1] if len(row) > 1 else '' length = row[2] if len(row) > 2 else '' installed_rows.append((new_record_path, digest, length)) for f in generated: path = _fs_to_record_path(f, lib_dir) digest, length = rehash(f) installed_rows.append((path, digest, length)) for installed_record_path in installed.values(): installed_rows.append((installed_record_path, '', '')) return installed_rows def get_console_script_specs(console): # type: (Dict[str, str]) -> List[str] """ Given the mapping from entrypoint name to callable, return the relevant console script specs. """ # Don't mutate caller's version console = console.copy() scripts_to_generate = [] # Special case pip and setuptools to generate versioned wrappers # # The issue is that some projects (specifically, pip and setuptools) use # code in setup.py to create "versioned" entry points - pip2.7 on Python # 2.7, pip3.3 on Python 3.3, etc. But these entry points are baked into # the wheel metadata at build time, and so if the wheel is installed with # a *different* version of Python the entry points will be wrong. The # correct fix for this is to enhance the metadata to be able to describe # such versioned entry points, but that won't happen till Metadata 2.0 is # available. # In the meantime, projects using versioned entry points will either have # incorrect versioned entry points, or they will not be able to distribute # "universal" wheels (i.e., they will need a wheel per Python version). # # Because setuptools and pip are bundled with _ensurepip and virtualenv, # we need to use universal wheels. So, as a stopgap until Metadata 2.0, we # override the versioned entry points in the wheel and generate the # correct ones. This code is purely a short-term measure until Metadata 2.0 # is available. # # To add the level of hack in this section of code, in order to support # ensurepip this code will look for an ``ENSUREPIP_OPTIONS`` environment # variable which will control which version scripts get installed. # # ENSUREPIP_OPTIONS=altinstall # - Only pipX.Y and easy_install-X.Y will be generated and installed # ENSUREPIP_OPTIONS=install # - pipX.Y, pipX, easy_install-X.Y will be generated and installed. Note # that this option is technically if ENSUREPIP_OPTIONS is set and is # not altinstall # DEFAULT # - The default behavior is to install pip, pipX, pipX.Y, easy_install # and easy_install-X.Y. pip_script = console.pop('pip', None) if pip_script: if "ENSUREPIP_OPTIONS" not in os.environ: scripts_to_generate.append('pip = ' + pip_script) if os.environ.get("ENSUREPIP_OPTIONS", "") != "altinstall": scripts_to_generate.append( 'pip{} = {}'.format(sys.version_info[0], pip_script) ) scripts_to_generate.append( f'pip{get_major_minor_version()} = {pip_script}' ) # Delete any other versioned pip entry points pip_ep = [k for k in console if re.match(r'pip(\d(\.\d)?)?$', k)] for k in pip_ep: del console[k] easy_install_script = console.pop('easy_install', None) if easy_install_script: if "ENSUREPIP_OPTIONS" not in os.environ: scripts_to_generate.append( 'easy_install = ' + easy_install_script ) scripts_to_generate.append( 'easy_install-{} = {}'.format( get_major_minor_version(), easy_install_script ) ) # Delete any other versioned easy_install entry points easy_install_ep = [ k for k in console if re.match(r'easy_install(-\d\.\d)?$', k) ] for k in easy_install_ep: del console[k] # Generate the console entry points specified in the wheel scripts_to_generate.extend(starmap('{} = {}'.format, console.items())) return scripts_to_generate class ContentAddressablePool: def __init__(self, cache_dir, save, symlink): # type: (str, bool, bool) -> None self.cache_dir = cache_dir self.save = save self.symlink = symlink def path_for_digest(self, digest): # type: (str) -> str return os.path.join( self.cache_dir, 'pool', digest[:2], digest[2:4], digest[4:6], digest[6:] ) class ZipBackedFile: def __init__( self, src_record_path, # type: RecordPath dest_path, # type: str zip_file, # type: ZipFile sha256_hash, # type: Optional[str] pool, # type: Optional[ContentAddressablePool] ): # type: (...) -> None self.src_record_path = src_record_path self.dest_path = dest_path self._zip_file = zip_file self.changed = False self.sha256_hash = sha256_hash self.pool = pool def _getinfo(self): # type: () -> ZipInfo return self._zip_file.getinfo(self.src_record_path) def save(self): # type: () -> None # When we open the output file below, any existing file is truncated # before we start writing the new contents. This is fine in most # cases, but can cause a segfault if pip has loaded a shared # object (e.g. from pyopenssl through its vendored urllib3) # Since the shared object is mmap'd an attempt to call a # symbol in it will then cause a segfault. Unlinking the file # allows writing of new contents while allowing the process to # continue to use the old copy. if os.path.exists(self.dest_path): os.unlink(self.dest_path) def _save(dest_path, writable=True): # type: (str, bool) -> None # directory creation is lazy and after file filtering # to ensure we don't install empty dirs; empty dirs can't be # uninstalled. parent_dir = os.path.dirname(dest_path) ensure_dir(parent_dir) zipinfo = self._getinfo() with self._zip_file.open(zipinfo) as f: with open(dest_path, "wb") as dest: shutil.copyfileobj(f, dest) if zip_item_is_executable(zipinfo): set_extracted_file_to_default_mode_plus_executable( dest_path, writable=writable ) if self.sha256_hash is not None and self.pool is not None: cached_path = self.pool.path_for_digest(self.sha256_hash) if not os.path.isfile(cached_path): if not self.pool.save: # We're not going to use the pool. _save(self.dest_path, writable=True) return # Save to cache and symlink from there. _save(cached_path, writable=False) parent_dir = os.path.dirname(self.dest_path) ensure_dir(parent_dir) if self.pool.symlink: os.symlink(cached_path, self.dest_path) return # Fall back to a hard link. This might not work in all # platforms and situations, so fall back to regular # copying if this fails. try: os.link(cached_path, self.dest_path) return except OSError: # This is moderately expected. Fall back to copy. pass _save(self.dest_path, writable=True) class ScriptFile: def __init__(self, file): # type: (File) -> None self._file = file self.src_record_path = self._file.src_record_path self.dest_path = self._file.dest_path self.changed = False def save(self): # type: () -> None self._file.save() self.changed = fix_script(self.dest_path) class MissingCallableSuffix(InstallationError): def __init__(self, entry_point): # type: (str) -> None super().__init__( "Invalid script entry point: {} - A callable " "suffix is required. Cf https://packaging.python.org/" "specifications/entry-points/#use-for-scripts for more " "information.".format(entry_point) ) def _raise_for_invalid_entrypoint(specification): # type: (str) -> None entry = get_export_entry(specification) if entry is not None and entry.suffix is None: raise MissingCallableSuffix(str(entry)) class PipScriptMaker(ScriptMaker): def make(self, specification, options=None): # type: (str, Dict[str, Any]) -> List[str] _raise_for_invalid_entrypoint(specification) return super().make(specification, options) def _install_wheel( name, # type: str wheel_zip, # type: ZipFile wheel_path, # type: str scheme, # type: Scheme pycompile=True, # type: bool noop=False, # type: bool warn_script_location=True, # type: bool direct_url=None, # type: Optional[DirectUrl] requested=False, # type: bool pool=None, # type: Optional[ContentAddressablePool] ): # type: (...) -> None """Install a wheel. :param name: Name of the project to install :param wheel_zip: open ZipFile for wheel being installed :param scheme: Distutils scheme dictating the install directories :param req_description: String used in place of the requirement, for logging :param pycompile: Whether to byte-compile installed Python files :param warn_script_location: Whether to check that scripts are installed into a directory on PATH :param pool: An optional content-addressable pool cache :raises UnsupportedWheel: * when the directory holds an unpacked wheel with incompatible Wheel-Version * when the .dist-info dir does not match the wheel """ info_dir, metadata = parse_wheel(wheel_zip, name) if wheel_root_is_purelib(metadata): lib_dir = scheme.purelib else: lib_dir = scheme.platlib distribution = pkg_resources_distribution_for_wheel( wheel_zip, name, wheel_path ) record_text = distribution.get_metadata('RECORD') record_rows = list(csv.reader(record_text.splitlines())) digests = {} # type: Dict[RecordPath, str] if pool is not None: for row in record_rows: if len(row) < 3: continue parsed_record_path = _parse_record_path(row[0]) if '=' not in row[1]: continue digest_name, b64hash = row[1].split('=', 1) if digest_name != 'sha256': continue digests[parsed_record_path] = urlsafe_b64decode(f'{b64hash}=').hex() # Record details of the files moved # installed = files copied from the wheel to the destination # changed = files changed while installing (scripts #! line typically) # generated = files newly generated during the install (script wrappers) installed = {} # type: Dict[RecordPath, RecordPath] changed = set() # type: Set[RecordPath] generated = [] # type: List[str] def record_installed(srcfile, destfile, modified=False): # type: (RecordPath, str, bool) -> None """Map archive RECORD paths to installation RECORD paths.""" newpath = _fs_to_record_path(destfile, lib_dir) installed[srcfile] = newpath if modified: changed.add(_fs_to_record_path(destfile)) def all_paths(): # type: () -> Iterable[RecordPath] names = wheel_zip.namelist() # If a flag is set, names may be unicode in Python 2. We convert to # text explicitly so these are valid for lookup in RECORD. decoded_names = map(ensure_text, names) for name in decoded_names: yield cast("RecordPath", name) def is_dir_path(path): # type: (RecordPath) -> bool return path.endswith("/") def assert_no_path_traversal(dest_dir_path, target_path): # type: (str, str) -> None if not is_within_directory(dest_dir_path, target_path): message = ( "The wheel {!r} has a file {!r} trying to install" " outside the target directory {!r}" ) raise InstallationError( message.format(wheel_path, target_path, dest_dir_path) ) def root_scheme_file_maker(zip_file, dest): # type: (ZipFile, str) -> Callable[[RecordPath], File] def make_root_scheme_file(record_path): # type: (RecordPath) -> File normed_path = os.path.normpath(record_path) dest_path = os.path.join(dest, normed_path) assert_no_path_traversal(dest, dest_path) return ZipBackedFile( record_path, dest_path, zip_file, digests.get(record_path), pool ) return make_root_scheme_file def data_scheme_file_maker(zip_file, scheme): # type: (ZipFile, Scheme) -> Callable[[RecordPath], File] scheme_paths = {} for key in SCHEME_KEYS: encoded_key = ensure_text(key) scheme_paths[encoded_key] = ensure_text( getattr(scheme, key), encoding=sys.getfilesystemencoding() ) def make_data_scheme_file(record_path): # type: (RecordPath) -> File normed_path = os.path.normpath(record_path) try: _, scheme_key, dest_subpath = normed_path.split(os.path.sep, 2) except ValueError: message = ( "Unexpected file in {}: {!r}. .data directory contents" " should be named like: '<scheme key>/<path>'." ).format(wheel_path, record_path) raise InstallationError(message) try: scheme_path = scheme_paths[scheme_key] except KeyError: valid_scheme_keys = ", ".join(sorted(scheme_paths)) message = ( "Unknown scheme key used in {}: {} (for file {!r}). .data" " directory contents should be in subdirectories named" " with a valid scheme key ({})" ).format( wheel_path, scheme_key, record_path, valid_scheme_keys ) raise InstallationError(message) dest_path = os.path.join(scheme_path, dest_subpath) assert_no_path_traversal(scheme_path, dest_path) return ZipBackedFile( record_path, dest_path, zip_file, digests.get(record_path), pool ) return make_data_scheme_file def is_data_scheme_path(path): # type: (RecordPath) -> bool return path.split("/", 1)[0].endswith(".data") paths = all_paths() file_paths = filterfalse(is_dir_path, paths) root_scheme_paths, data_scheme_paths = partition( is_data_scheme_path, file_paths ) make_root_scheme_file = root_scheme_file_maker( wheel_zip, ensure_text(lib_dir, encoding=sys.getfilesystemencoding()), ) files = map(make_root_scheme_file, root_scheme_paths) def is_script_scheme_path(path): # type: (RecordPath) -> bool parts = path.split("/", 2) return ( len(parts) > 2 and parts[0].endswith(".data") and parts[1] == "scripts" ) other_scheme_paths, script_scheme_paths = partition( is_script_scheme_path, data_scheme_paths ) make_data_scheme_file = data_scheme_file_maker(wheel_zip, scheme) other_scheme_files = map(make_data_scheme_file, other_scheme_paths) files = chain(files, other_scheme_files) # Get the defined entry points console, gui = get_entrypoints(distribution) def is_entrypoint_wrapper(file): # type: (File) -> bool # EP, EP.exe and EP-script.py are scripts generated for # entry point EP by setuptools path = file.dest_path name = os.path.basename(path) if name.lower().endswith('.exe'): matchname = name[:-4] elif name.lower().endswith('-script.py'): matchname = name[:-10] elif name.lower().endswith(".pya"): matchname = name[:-4] else: matchname = name # Ignore setuptools-generated scripts return (matchname in console or matchname in gui) script_scheme_files = map(make_data_scheme_file, script_scheme_paths) script_scheme_files = filterfalse( is_entrypoint_wrapper, script_scheme_files ) script_scheme_files = map(ScriptFile, script_scheme_files) files = chain(files, script_scheme_files) if noop: # Nothing to do here. return for file in files: file.save() record_installed(file.src_record_path, file.dest_path, file.changed) def pyc_source_file_paths(): # type: () -> Iterator[str] # We de-duplicate installation paths, since there can be overlap (e.g. # file in .data maps to same location as file in wheel root). # Sorting installation paths makes it easier to reproduce and debug # issues related to permissions on existing files. for installed_path in sorted(set(installed.values())): full_installed_path = os.path.join(lib_dir, installed_path) if not os.path.isfile(full_installed_path): continue if not full_installed_path.endswith('.py'): continue yield full_installed_path def pyc_output_path(path): # type: (str) -> str """Return the path the pyc file would have been written to. """ return importlib.util.cache_from_source(path) # Compile all of the pyc files for the installed files if pycompile: with captured_stdout() as stdout: with warnings.catch_warnings(): warnings.filterwarnings('ignore') for path in pyc_source_file_paths(): # Python 2's `compileall.compile_file` requires a str in # error cases, so we must convert to the native type. path_arg = ensure_str( path, encoding=sys.getfilesystemencoding() ) success = compileall.compile_file( path_arg, force=True, quiet=True ) if success: pyc_path = pyc_output_path(path) assert os.path.exists(pyc_path) pyc_record_path = cast( "RecordPath", pyc_path.replace(os.path.sep, "/") ) record_installed(pyc_record_path, pyc_path) logger.debug(stdout.getvalue()) maker = PipScriptMaker(None, scheme.scripts) # Ensure old scripts are overwritten. # See https://github.com/pypa/pip/issues/1800 maker.clobber = True # Ensure we don't generate any variants for scripts because this is almost # never what somebody wants. # See https://bitbucket.org/pypa/distlib/issue/35/ maker.variants = {''} # This is required because otherwise distlib creates scripts that are not # executable. # See https://bitbucket.org/pypa/distlib/issue/32/ maker.set_mode = True # Generate the console and GUI entry points specified in the wheel scripts_to_generate = get_console_script_specs(console) gui_scripts_to_generate = list(starmap('{} = {}'.format, gui.items())) generated_console_scripts = maker.make_multiple(scripts_to_generate) generated.extend(generated_console_scripts) generated.extend( maker.make_multiple(gui_scripts_to_generate, {'gui': True}) ) if warn_script_location: msg = message_about_scripts_not_on_PATH(generated_console_scripts) if msg is not None: logger.warning(msg) generated_file_mode = 0o666 & ~current_umask() @contextlib.contextmanager def _generate_file(path, **kwargs): # type: (str, **Any) -> Iterator[BinaryIO] with adjacent_tmp_file(path, **kwargs) as f: yield f os.chmod(f.name, generated_file_mode) replace(f.name, path) dest_info_dir = os.path.join(lib_dir, info_dir) # Record pip as the installer installer_path = os.path.join(dest_info_dir, 'INSTALLER') with _generate_file(installer_path) as installer_file: installer_file.write(b'pip\n') generated.append(installer_path) # Record the PEP 610 direct URL reference if direct_url is not None: direct_url_path = os.path.join(dest_info_dir, DIRECT_URL_METADATA_NAME) with _generate_file(direct_url_path) as direct_url_file: direct_url_file.write(direct_url.to_json().encode("utf-8")) generated.append(direct_url_path) # Record the REQUESTED file if requested: requested_path = os.path.join(dest_info_dir, 'REQUESTED') with open(requested_path, "wb"): pass generated.append(requested_path) rows = get_csv_rows_for_installed( record_rows, installed=installed, changed=changed, generated=generated, lib_dir=lib_dir) # Record details of all files installed record_path = os.path.join(dest_info_dir, 'RECORD') with _generate_file(record_path, **csv_io_kwargs('w')) as record_file: # The type mypy infers for record_file is different for Python 3 # (typing.IO[Any]) and Python 2 (typing.BinaryIO). We explicitly # cast to typing.IO[str] as a workaround. writer = csv.writer(cast('IO[str]', record_file)) writer.writerows(_normalized_outrows(rows)) @contextlib.contextmanager def req_error_context(req_description): # type: (str) -> Iterator[None] try: yield except InstallationError as e: message = "For req: {}. {}".format(req_description, e.args[0]) reraise( InstallationError, InstallationError(message), sys.exc_info()[2] ) def install_wheel( name, # type: str wheel_path, # type: str scheme, # type: Scheme req_description, # type: str pycompile=True, # type: bool noop=False, # type: bool warn_script_location=True, # type: bool direct_url=None, # type: Optional[DirectUrl] requested=False, # type: bool pool=None, # type: Optional[ContentAddressablePool] ): # type: (...) -> None with ZipFile(wheel_path, allowZip64=True) as z: with req_error_context(req_description): _install_wheel( name=name, wheel_zip=z, wheel_path=wheel_path, scheme=scheme, pycompile=pycompile, noop=noop, warn_script_location=warn_script_location, direct_url=direct_url, requested=requested, pool=pool, )
371ee8cb4b4f7e37636a6fbfe01b1f1ba8180744
f8b5aafac15f408a48fabf853a918015c927e6fe
/bk_tomo/venv/venv27/bin/openstack
ef4239b2369d1cd6ac9e4daa1bf696a84ace7ec5
[]
no_license
to30/tmp
bda1ac0ca3fc61e96c2a1c491367b698d7e97937
ec809683970af6787728c2c41f161f416155982a
refs/heads/master
2021-01-01T04:25:52.040770
2016-05-13T16:34:59
2016-05-13T16:34:59
58,756,087
0
1
null
null
null
null
UTF-8
Python
false
false
243
#!/home/tomo/venv/venv27/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from openstackclient.shell import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
c82fba8ab01d1d077471b17f9aead11553d75109
f24edb38dd4f7de8a7683afbbc9ab2a4237a361e
/venv/lib/python3.6/site-packages/pip/_internal/network/auth.py
64c6fd42fd13ad6212d709ee2ae711d0ca0f6507
[]
no_license
ngecu/automate_django_data_filling
882220f84a6b4af5484d4b136c740a803ccccfd2
d6b7095904878f06e4aae6beb2156113a6145c21
refs/heads/main
2023-02-26T02:36:26.582387
2021-01-31T15:50:22
2021-01-31T15:50:22
317,846,258
0
0
null
null
null
null
UTF-8
Python
false
false
11,537
py
"""Network Authentication Helpers Contains interface (MultiDomainBasicAuth) and associated glue code for providing credentials in the context of network requests. """ import logging from pip._vendor.requests.auth import AuthBase, HTTPBasicAuth from pip._vendor.requests.utils import get_netrc_auth from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._internal.utils.misc import ( ask, ask_input, ask_password, remove_auth_from_url, split_auth_netloc_from_url, ) from pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Any, Dict, List, Optional, Tuple from pip._vendor.requests.models import Request, Response from pip._internal.vcs.versioncontrol import AuthInfo Credentials = Tuple[str, str, str] logger = logging.getLogger(__name__) try: import keyring # noqa except ImportError: keyring = None except Exception as exc: logger.warning( "Keyring is skipped due to an exception: %s", str(exc), ) keyring = None def get_keyring_auth(url, username): # type: (str, str) -> Optional[AuthInfo] """Return the tuple auth for a given url from keyring.""" global keyring if not url or not keyring: return None try: try: get_credential = keyring.get_credential except AttributeError: pass else: logger.debug("Getting credentials from keyring for %s", url) cred = get_credential(url, username) if cred is not None: return cred.username, cred.password return None if username: logger.debug("Getting password from keyring for %s", url) password = keyring.get_password(url, username) if password: return username, password except Exception as exc: logger.warning( "Keyring is skipped due to an exception: %s", str(exc), ) keyring = None return None class MultiDomainBasicAuth(AuthBase): def __init__(self, prompting=True, index_urls=None): # type: (bool, Optional[List[str]]) -> None prompting = prompting index_urls = index_urls passwords = {} # type: Dict[str, AuthInfo] # When the user is prompted to enter credentials and keyring is # available, we will offer to save them. If the user accepts, # this value is set to the credentials they entered. After the # request authenticates, the caller should call # ``save_credentials`` to save these. _credentials_to_save = None # type: Optional[Credentials] def _get_index_url(self, url): # type: (str) -> Optional[str] """Return the original index URL matching the requested URL. Cached or dynamically generated credentials may work against the original index URL rather than just the netloc. The provided url should have had its username and password removed already. If the original index url had credentials then they will be included in the return value. Returns None if no matching index was found, or if --no-index was specified by the user. """ if not url or not index_urls: return None for u in index_urls: prefix = remove_auth_from_url(u).rstrip("/") + "/" if url.startswith(prefix): return u return None def _get_new_credentials(self, original_url, allow_netrc=True, allow_keyring=True): # type: (str, bool, bool) -> AuthInfo """Find and return credentials for the specified URL.""" # Split the credentials and netloc from the url. url, netloc, url_user_password = split_auth_netloc_from_url( original_url, ) # Start with the credentials embedded in the url username, password = url_user_password if username is not None and password is not None: logger.debug("Found credentials in url for %s", netloc) return url_user_password # Find a matching index url for this request index_url = _get_index_url(url) if index_url: # Split the credentials from the url. index_info = split_auth_netloc_from_url(index_url) if index_info: index_url, _, index_url_user_password = index_info logger.debug("Found index url %s", index_url) # If an index URL was found, try its embedded credentials if index_url and index_url_user_password[0] is not None: username, password = index_url_user_password if username is not None and password is not None: logger.debug("Found credentials in index url for %s", netloc) return index_url_user_password # Get creds from netrc if we still don't have them if allow_netrc: netrc_auth = get_netrc_auth(original_url) if netrc_auth: logger.debug("Found credentials in netrc for %s", netloc) return netrc_auth # If we don't have a password and keyring is available, use it. if allow_keyring: # The index url is more specific than the netloc, so try it first kr_auth = ( get_keyring_auth(index_url, username) or get_keyring_auth(netloc, username) ) if kr_auth: logger.debug("Found credentials in keyring for %s", netloc) return kr_auth return username, password def _get_url_and_credentials(self, original_url): # type: (str) -> Tuple[str, Optional[str], Optional[str]] """Return the credentials to use for the provided URL. If allowed, netrc and keyring may be used to obtain the correct credentials. Returns (url_without_credentials, username, password). Note that even if the original URL contains credentials, this function may return a different username and password. """ url, netloc, _ = split_auth_netloc_from_url(original_url) # Use any stored credentials that we have for this netloc username, password = passwords.get(netloc, (None, None)) if username is None and password is None: # No stored credentials. Acquire new credentials without prompting # the user. (e.g. from netrc, keyring, or the URL itself) username, password = _get_new_credentials(original_url) if username is not None or password is not None: # Convert the username and password if they're None, so that # this netloc will show up as "cached" in the conditional above. # Further, HTTPBasicAuth doesn't accept None, so it makes sense to # cache the value that is going to be used. username = username or "" password = password or "" # Store any acquired credentials. passwords[netloc] = (username, password) assert ( # Credentials were found (username is not None and password is not None) or # Credentials were not found (username is None and password is None) ), "Could not load credentials from url: {}".format(original_url) return url, username, password def __call__(self, req): # type: (Request) -> Request # Get credentials for this request url, username, password = _get_url_and_credentials(req.url) # Set the url of the request to the url without any credentials req.url = url if username is not None and password is not None: # Send the basic auth with this request req = HTTPBasicAuth(username, password)(req) # Attach a hook to handle 401 responses req.register_hook("response", handle_401) return req # Factored out to allow for easy patching in tests def _prompt_for_password(self, netloc): # type: (str) -> Tuple[Optional[str], Optional[str], bool] username = ask_input("User for {}: ".format(netloc)) if not username: return None, None, False auth = get_keyring_auth(netloc, username) if auth and auth[0] is not None and auth[1] is not None: return auth[0], auth[1], False password = ask_password("Password: ") return username, password, True # Factored out to allow for easy patching in tests def _should_save_password_to_keyring(self): # type: () -> bool if not keyring: return False return ask("Save credentials to keyring [y/N]: ", ["y", "n"]) == "y" def handle_401(self, resp, **kwargs): # type: (Response, **Any) -> Response # We only care about 401 responses, anything else we want to just # pass through the actual response if resp.status_code != 401: return resp # We are not able to prompt the user so simply return the response if not prompting: return resp parsed = urllib_parse.urlparse(resp.url) # Prompt the user for a new username and password username, password, save = _prompt_for_password(parsed.netloc) # Store the new username and password to use for future requests _credentials_to_save = None if username is not None and password is not None: passwords[parsed.netloc] = (username, password) # Prompt to save the password to keyring if save and _should_save_password_to_keyring(): _credentials_to_save = (parsed.netloc, username, password) # Consume content and release the original connection to allow our new # request to reuse the same one. resp.content resp.raw.release_conn() # Add our new username and password to the request req = HTTPBasicAuth(username or "", password or "")(resp.request) req.register_hook("response", warn_on_401) # On successful request, save the credentials that were used to # keyring. (Note that if the user responded "no" above, this member # is not set and nothing will be saved.) if _credentials_to_save: req.register_hook("response", save_credentials) # Send our new request new_resp = resp.connection.send(req, **kwargs) new_resp.history.append(resp) return new_resp def warn_on_401(self, resp, **kwargs): # type: (Response, **Any) -> None """Response callback to warn about incorrect credentials.""" if resp.status_code == 401: logger.warning( '401 Error, Credentials not correct for %s', resp.request.url, ) def save_credentials(self, resp, **kwargs): # type: (Response, **Any) -> None """Response callback to save credentials on success.""" assert keyring is not None, "should never reach here without keyring" if not keyring: return creds = _credentials_to_save _credentials_to_save = None if creds and resp.status_code < 400: try: logger.info('Saving credentials to keyring') keyring.set_password(*creds) except Exception: logger.exception('Failed to save credentials')
f59f062c20bb92420bb4ec172e9e3f763356ef80
a140fe192fd643ce556fa34bf2f84ddbdb97f091
/.history/quiz04_20200628163202.py
43cf11c468754194ccbd6ea39f998db2cd2226d8
[]
no_license
sangha0719/py-practice
826f13cb422ef43992a69f822b9f04c2cb6d4815
6d71ce64bf91cc3bccee81378577d84ba9d9c121
refs/heads/master
2023-03-13T04:40:55.883279
2021-02-25T12:02:04
2021-02-25T12:02:04
342,230,484
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
# 당신의 학교에서는 파이썬 코딩 대회를 주최합니다. # 참석률을 높이기 위해 댓글 이벤트를 진행하기로 하였습니다. # 댓글 작성자들 중에 추첨을 통해 1명은 치킨, 3명은 커피 쿠폰을 받게 됩니다. # 추첨 프로그램을 작성하시오. # 조건 1: 편의상 댓글은 20명이 작성하였고 아이디는 1~20 이라고 가정 # 조건 2: 댓글 내용과 상관 없이 무작위로 추첨하되 중복 불가 # 조건 3: random 모듈의 shuffle과 sample을 활용 # (출력 예제) # -- 당첨자 발표 - - # 치킨 당첨자: 1 # 커피 당첨자: [2, 3, 4] # -- 축하합니다. -- # (활용 예제) from random import * # lst = [1, 2, 3, 4, 5] # print(lst) # shuffle(lst) # print(lst) # print(sample(lst, 1)) winner = random(20) + 1 print(winner)
4453fb58e33a80b6a1510a8e4e5c633e06b4cdc2
e36985669a2b068dfb3e43b7f5870dc114bb158b
/python_code/dataExtraction.py
7722d25b7d06ff6e71446c9ef08cf4b970e527d8
[]
no_license
assassint2017/Data-extraction-UI
b3f0f43dc48e12c0da158bdb4a7c2c9dd5d92ab5
d7e1b97100ad97b334f03b0fbf09c2a506339b1c
refs/heads/master
2020-04-11T06:18:50.417214
2018-12-21T12:38:47
2018-12-21T12:38:47
161,577,841
2
0
null
null
null
null
UTF-8
Python
false
false
2,732
py
""" 数据提取代码 """ import datetime import pandas as pd from numpy import nan #-------------------------需要设置的部分------------------------------- # 设定csv文件路径 路径中不要出现中文 # csvDir = 'C:\\Users\\14595\\Desktop\\2018HB example .csv.gz' # 设定提取csv文件路径 路径中不要出现中文 # extDir = 'C:\\Users\\14595\\Desktop\\ext.csv' # 各哨点数量汇总文件路径 路径中不要出现中文 # summaryDir = 'C:\\Users\\14595\\Desktop\\summary.csv' # 设定时间区间 # start = pd.Timestamp(datetime.date(year=2018, month=1, day=1)) # end = pd.Timestamp(datetime.date(year=2018, month=5, day=30)) # 设定选定的地区 # locs = [42010200, 42050300, 42050600] #--------------------------------------------------------------------- def dataExtraction(csvDir, extDir, summaryDir, start, end, locs): # 读取csv文件 csv = pd.read_csv(csvDir, compression='gzip', encoding='gbk') # 时间日期格式化处理 csv['诊断时间'] = pd.to_datetime(csv['诊断时间'], format='%Y/%m/%d') # 根据条件进行筛选 if start is None and end is None: # 如果只选择了地区编码 csv = csv[csv['报告单位地区编码'].isin(locs)] elif locs is None: # 如果只选择了诊断时间 csv = csv[(csv['诊断时间'] >= start) & (csv['诊断时间'] <= end)] else: # 如果两种条件都选择了 csv = csv[(csv['诊断时间'] >= start) & (csv['诊断时间'] <= end) & (csv['报告单位地区编码'].isin(locs))] # 保存提取数据到csv文件 csv.to_csv(extDir, index=0, encoding='gbk') def removeSpace(item): """ 去除在输入过程中误键入的空格 """ return item.strip() csv['录卡用户所属单位'].apply(removeSpace) temp = pd.value_counts(csv['录卡用户所属单位']) codes = [] for hospital in list(temp.index): index = csv[csv['录卡用户所属单位'] == hospital].index.tolist()[0] codes.append(csv['报告单位地区编码'][index]) summary = pd.DataFrame() summary['报告单位地区编码'] = codes summary['报告单位'] = list(temp.index) summary['病例数'] = temp.values summary.sort_values(by=['报告单位地区编码'], inplace=True) summary.reset_index(drop=True, inplace=True) nanlist = [] for i in range(1, len(summary['报告单位地区编码'])): if summary.loc[i, '报告单位地区编码'] == summary.loc[i - 1, '报告单位地区编码']: nanlist.append(i) for i in nanlist: summary.loc[i, '报告单位地区编码'] = nan summary.to_csv(summaryDir, index=False, encoding='gbk')
99bb440e3d91a657af83b6b5699a5675b2c46f7c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03136/s297842517.py
a2a6230496234027046d6691748a5f445af9dd64
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
163
py
n = int(input()) a = list(map(int, input().split())) b = [0]*n b = sorted(a) c = 0 for i in range(n-1): c += b[i] if c>b[n-1]: print("Yes") else: print("No")
d5c4cac739d6c9ad1a641938dda9973c912c84c5
e944d288093c9234c3a6a2a76ffe4e3c9b236cf1
/annotation_utils/coco/structs/__init__.py
66e257d06be64002c0bce0580e1d58fd6c768ce7
[ "MIT" ]
permissive
darwinharianto/annotation_utils
598b043345790580e99f34f159b9612b9b1bcd52
1cbdadaa28ff945e705dd7b806dda395e32ab23c
refs/heads/master
2022-04-27T01:20:10.738778
2020-04-27T09:23:57
2020-04-27T09:23:57
255,525,300
0
0
MIT
2020-04-27T09:23:59
2020-04-14T06:10:57
Python
UTF-8
Python
false
false
245
py
from .objects import COCO_Info, COCO_License, COCO_Image, \ COCO_Annotation, COCO_Category from .handlers import COCO_License_Handler, COCO_Image_Handler, \ COCO_Annotation_Handler, COCO_Category_Handler from .dataset import COCO_Dataset
a1f02577c0adfa04d1396283c0f946dca6808285
77ee1f677ab2ececb821a11be128b76bcf0e8d6f
/electrum_mona/gui/qt/lightning_dialog.py
1d709aed9935b2c01bce4e473c6c8bdd4f25e9d9
[ "MIT" ]
permissive
zcore-dev/electrum-mona
c74e6142a0f34721be70dba68d524ae9ce03179c
2beb0c9c7794e8b03d1725bae41ee8b792c57275
refs/heads/master
2020-08-22T15:32:55.604727
2019-10-21T22:56:29
2019-10-21T22:56:29
216,427,159
0
0
MIT
2019-10-20T21:03:48
2019-10-20T21:03:48
null
UTF-8
Python
false
false
3,658
py
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from PyQt5.QtGui import QStandardItemModel, QStandardItem from PyQt5.QtCore import Qt from PyQt5.QtWidgets import (QDialog, QWidget, QLabel, QVBoxLayout, QCheckBox, QGridLayout, QPushButton, QLineEdit, QTabWidget) from electrum_mona.i18n import _ from .util import HelpLabel, MyTreeView, Buttons class LightningDialog(QDialog): def __init__(self, gui_object): QDialog.__init__(self) self.gui_object = gui_object self.config = gui_object.config self.network = gui_object.daemon.network self.setWindowTitle(_('Lightning Network')) self.setMinimumSize(600, 20) vbox = QVBoxLayout(self) self.num_peers = QLabel('') vbox.addWidget(self.num_peers) self.num_nodes = QLabel('') vbox.addWidget(self.num_nodes) self.num_channels = QLabel('') vbox.addWidget(self.num_channels) self.status = QLabel('') vbox.addWidget(self.status) vbox.addStretch(1) b = QPushButton(_('Close')) b.clicked.connect(self.close) vbox.addLayout(Buttons(b)) self.network.register_callback(self.on_channel_db, ['channel_db']) self.network.register_callback(self.set_num_peers, ['gossip_peers']) self.network.register_callback(self.set_unknown_channels, ['unknown_channels']) self.network.channel_db.update_counts() # trigger callback self.set_num_peers('', self.network.lngossip.num_peers()) self.set_unknown_channels('', len(self.network.lngossip.unknown_ids)) def on_channel_db(self, event, num_nodes, num_channels, num_policies): self.num_nodes.setText(_(f'{num_nodes} nodes')) self.num_channels.setText(_(f'{num_channels} channels')) def set_num_peers(self, event, num_peers): self.num_peers.setText(_(f'Connected to {num_peers} peers')) def set_unknown_channels(self, event, unknown): self.status.setText(_(f'Requesting {unknown} channels...') if unknown else '') def is_hidden(self): return self.isMinimized() or self.isHidden() def show_or_hide(self): if self.is_hidden(): self.bring_to_top() else: self.hide() def bring_to_top(self): self.show() self.raise_() def closeEvent(self, event): self.gui_object.lightning_dialog = None event.accept()
79c9ac4f57d7c75785c6e238248c49297bcd93e6
a40d5c5cd0fcc2410e3200f40f6a79f7201b0193
/kubernetes/client/models/v1beta1_custom_resource_column_definition.py
f844f995b1a28c3f912663019e6dab34922ac0e7
[ "Apache-2.0" ]
permissive
Unacademy/kubernetes-client
662cdc2b9fe6df43301e32427e48b1b2715773ca
b7f9c740a82b4585478d052c8032495cdeb3b331
refs/heads/master
2023-06-24T05:57:27.226613
2022-12-14T16:29:58
2022-12-14T16:29:58
181,669,794
0
0
Apache-2.0
2023-06-20T13:05:37
2019-04-16T10:43:37
Python
UTF-8
Python
false
false
8,689
py
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.14.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1beta1CustomResourceColumnDefinition(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'json_path': 'str', 'description': 'str', 'format': 'str', 'name': 'str', 'priority': 'int', 'type': 'str' } attribute_map = { 'json_path': 'JSONPath', 'description': 'description', 'format': 'format', 'name': 'name', 'priority': 'priority', 'type': 'type' } def __init__(self, json_path=None, description=None, format=None, name=None, priority=None, type=None): """ V1beta1CustomResourceColumnDefinition - a model defined in Swagger """ self._json_path = None self._description = None self._format = None self._name = None self._priority = None self._type = None self.discriminator = None self.json_path = json_path if description is not None: self.description = description if format is not None: self.format = format self.name = name if priority is not None: self.priority = priority self.type = type @property def json_path(self): """ Gets the json_path of this V1beta1CustomResourceColumnDefinition. JSONPath is a simple JSON path, i.e. with array notation. :return: The json_path of this V1beta1CustomResourceColumnDefinition. :rtype: str """ return self._json_path @json_path.setter def json_path(self, json_path): """ Sets the json_path of this V1beta1CustomResourceColumnDefinition. JSONPath is a simple JSON path, i.e. with array notation. :param json_path: The json_path of this V1beta1CustomResourceColumnDefinition. :type: str """ if json_path is None: raise ValueError("Invalid value for `json_path`, must not be `None`") self._json_path = json_path @property def description(self): """ Gets the description of this V1beta1CustomResourceColumnDefinition. description is a human readable description of this column. :return: The description of this V1beta1CustomResourceColumnDefinition. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this V1beta1CustomResourceColumnDefinition. description is a human readable description of this column. :param description: The description of this V1beta1CustomResourceColumnDefinition. :type: str """ self._description = description @property def format(self): """ Gets the format of this V1beta1CustomResourceColumnDefinition. format is an optional OpenAPI type definition for this column. The 'name' format is applied to the primary identifier column to assist in clients identifying column is the resource name. See https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types for more. :return: The format of this V1beta1CustomResourceColumnDefinition. :rtype: str """ return self._format @format.setter def format(self, format): """ Sets the format of this V1beta1CustomResourceColumnDefinition. format is an optional OpenAPI type definition for this column. The 'name' format is applied to the primary identifier column to assist in clients identifying column is the resource name. See https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types for more. :param format: The format of this V1beta1CustomResourceColumnDefinition. :type: str """ self._format = format @property def name(self): """ Gets the name of this V1beta1CustomResourceColumnDefinition. name is a human readable name for the column. :return: The name of this V1beta1CustomResourceColumnDefinition. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this V1beta1CustomResourceColumnDefinition. name is a human readable name for the column. :param name: The name of this V1beta1CustomResourceColumnDefinition. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name @property def priority(self): """ Gets the priority of this V1beta1CustomResourceColumnDefinition. priority is an integer defining the relative importance of this column compared to others. Lower numbers are considered higher priority. Columns that may be omitted in limited space scenarios should be given a higher priority. :return: The priority of this V1beta1CustomResourceColumnDefinition. :rtype: int """ return self._priority @priority.setter def priority(self, priority): """ Sets the priority of this V1beta1CustomResourceColumnDefinition. priority is an integer defining the relative importance of this column compared to others. Lower numbers are considered higher priority. Columns that may be omitted in limited space scenarios should be given a higher priority. :param priority: The priority of this V1beta1CustomResourceColumnDefinition. :type: int """ self._priority = priority @property def type(self): """ Gets the type of this V1beta1CustomResourceColumnDefinition. type is an OpenAPI type definition for this column. See https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types for more. :return: The type of this V1beta1CustomResourceColumnDefinition. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this V1beta1CustomResourceColumnDefinition. type is an OpenAPI type definition for this column. See https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types for more. :param type: The type of this V1beta1CustomResourceColumnDefinition. :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") self._type = type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1beta1CustomResourceColumnDefinition): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
fc9b0c269aecdb44c4736fe6b9da03555f7de8e3
31622dd16963b459ac6eec71fcf54e4d243ac773
/edu_sharing_client/models/license.py
073b8ab7d8a99b38a95e9902e2a8e4a23e2cd02e
[]
no_license
torsten-simon/oeh-search-etl
95e6e92698a97c98ef9d5b02076edcf993736d6f
eacdadcd8af169cb54629db0d2d46a5616f854a6
refs/heads/master
2023-04-16T05:08:41.194239
2020-11-16T09:51:59
2020-11-16T09:51:59
318,169,232
0
0
null
2023-04-03T23:04:46
2020-12-03T11:20:44
null
UTF-8
Python
false
false
3,484
py
# coding: utf-8 """ edu-sharing Repository REST API The public restful API of the edu-sharing repository. # noqa: E501 OpenAPI spec version: 1.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class License(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'icon': 'str', 'url': 'str' } attribute_map = { 'icon': 'icon', 'url': 'url' } def __init__(self, icon=None, url=None): # noqa: E501 """License - a model defined in Swagger""" # noqa: E501 self._icon = None self._url = None self.discriminator = None if icon is not None: self.icon = icon if url is not None: self.url = url @property def icon(self): """Gets the icon of this License. # noqa: E501 :return: The icon of this License. # noqa: E501 :rtype: str """ return self._icon @icon.setter def icon(self, icon): """Sets the icon of this License. :param icon: The icon of this License. # noqa: E501 :type: str """ self._icon = icon @property def url(self): """Gets the url of this License. # noqa: E501 :return: The url of this License. # noqa: E501 :rtype: str """ return self._url @url.setter def url(self, url): """Sets the url of this License. :param url: The url of this License. # noqa: E501 :type: str """ self._url = url def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(License, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, License): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
91b20ea47434b099c8ae47c90abfab4af64dad34
89cd8b77ad5171c336cc60b2133fe6468a6cb53f
/Module01_CZ/day1_basics/04-代码/day1/20_重要演示__________变量的定义.py
f4f737892f50ed4f9b166828e1067e18cd29954f
[ "MIT" ]
permissive
fenglihanxiao/Python
75178f6b6b0c53345e1ed54226ea645216572d6c
872baf3a3a5ee42740161152605ca2b1ddf4cd30
refs/heads/master
2021-05-23T18:49:20.656433
2020-04-29T01:06:21
2020-04-29T01:06:21
253,199,073
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
""" 使用变量保存个人信息: 姓名:张传智 性别:男 年龄:21 电话:18800008888 """
0289b4bcf761b49c33907f4f98a3ded9f257d4fa
429a8441bb9730dcf0e33fedcb5f3672a731b3e7
/xero_python/accounting/models/tax_rate.py
3105e7e85477aa221bd8d79e66b609249374e58e
[ "MIT" ]
permissive
gregsteelxinja/xero-python
1a26ec3b05ea156dd6848f2ec313c72e9f39b0e2
d0473ba91099de3464b3dffa377df5a11ad95afc
refs/heads/master
2022-12-16T10:54:11.424971
2020-09-01T01:00:23
2020-09-01T01:00:23
291,526,551
0
0
null
2020-08-30T18:16:48
2020-08-30T18:16:48
null
UTF-8
Python
false
false
14,802
py
# coding: utf-8 """ Accounting API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 2.2.14 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 from xero_python.models import BaseModel class TaxRate(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { "name": "str", "tax_type": "str", "tax_components": "list[TaxComponent]", "status": "str", "report_tax_type": "str", "can_apply_to_assets": "bool", "can_apply_to_equity": "bool", "can_apply_to_expenses": "bool", "can_apply_to_liabilities": "bool", "can_apply_to_revenue": "bool", "display_tax_rate": "float", "effective_rate": "float", } attribute_map = { "name": "Name", "tax_type": "TaxType", "tax_components": "TaxComponents", "status": "Status", "report_tax_type": "ReportTaxType", "can_apply_to_assets": "CanApplyToAssets", "can_apply_to_equity": "CanApplyToEquity", "can_apply_to_expenses": "CanApplyToExpenses", "can_apply_to_liabilities": "CanApplyToLiabilities", "can_apply_to_revenue": "CanApplyToRevenue", "display_tax_rate": "DisplayTaxRate", "effective_rate": "EffectiveRate", } def __init__( self, name=None, tax_type=None, tax_components=None, status=None, report_tax_type=None, can_apply_to_assets=None, can_apply_to_equity=None, can_apply_to_expenses=None, can_apply_to_liabilities=None, can_apply_to_revenue=None, display_tax_rate=None, effective_rate=None, ): # noqa: E501 """TaxRate - a model defined in OpenAPI""" # noqa: E501 self._name = None self._tax_type = None self._tax_components = None self._status = None self._report_tax_type = None self._can_apply_to_assets = None self._can_apply_to_equity = None self._can_apply_to_expenses = None self._can_apply_to_liabilities = None self._can_apply_to_revenue = None self._display_tax_rate = None self._effective_rate = None self.discriminator = None if name is not None: self.name = name if tax_type is not None: self.tax_type = tax_type if tax_components is not None: self.tax_components = tax_components if status is not None: self.status = status if report_tax_type is not None: self.report_tax_type = report_tax_type if can_apply_to_assets is not None: self.can_apply_to_assets = can_apply_to_assets if can_apply_to_equity is not None: self.can_apply_to_equity = can_apply_to_equity if can_apply_to_expenses is not None: self.can_apply_to_expenses = can_apply_to_expenses if can_apply_to_liabilities is not None: self.can_apply_to_liabilities = can_apply_to_liabilities if can_apply_to_revenue is not None: self.can_apply_to_revenue = can_apply_to_revenue if display_tax_rate is not None: self.display_tax_rate = display_tax_rate if effective_rate is not None: self.effective_rate = effective_rate @property def name(self): """Gets the name of this TaxRate. # noqa: E501 Name of tax rate # noqa: E501 :return: The name of this TaxRate. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this TaxRate. Name of tax rate # noqa: E501 :param name: The name of this TaxRate. # noqa: E501 :type: str """ self._name = name @property def tax_type(self): """Gets the tax_type of this TaxRate. # noqa: E501 The tax type # noqa: E501 :return: The tax_type of this TaxRate. # noqa: E501 :rtype: str """ return self._tax_type @tax_type.setter def tax_type(self, tax_type): """Sets the tax_type of this TaxRate. The tax type # noqa: E501 :param tax_type: The tax_type of this TaxRate. # noqa: E501 :type: str """ self._tax_type = tax_type @property def tax_components(self): """Gets the tax_components of this TaxRate. # noqa: E501 See TaxComponents # noqa: E501 :return: The tax_components of this TaxRate. # noqa: E501 :rtype: list[TaxComponent] """ return self._tax_components @tax_components.setter def tax_components(self, tax_components): """Sets the tax_components of this TaxRate. See TaxComponents # noqa: E501 :param tax_components: The tax_components of this TaxRate. # noqa: E501 :type: list[TaxComponent] """ self._tax_components = tax_components @property def status(self): """Gets the status of this TaxRate. # noqa: E501 See Status Codes # noqa: E501 :return: The status of this TaxRate. # noqa: E501 :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this TaxRate. See Status Codes # noqa: E501 :param status: The status of this TaxRate. # noqa: E501 :type: str """ allowed_values = [ "ACTIVE", "DELETED", "ARCHIVED", "PENDING", "None", ] # noqa: E501 if status not in allowed_values: raise ValueError( "Invalid value for `status` ({0}), must be one of {1}".format( # noqa: E501 status, allowed_values ) ) self._status = status @property def report_tax_type(self): """Gets the report_tax_type of this TaxRate. # noqa: E501 See ReportTaxTypes # noqa: E501 :return: The report_tax_type of this TaxRate. # noqa: E501 :rtype: str """ return self._report_tax_type @report_tax_type.setter def report_tax_type(self, report_tax_type): """Sets the report_tax_type of this TaxRate. See ReportTaxTypes # noqa: E501 :param report_tax_type: The report_tax_type of this TaxRate. # noqa: E501 :type: str """ allowed_values = [ "AVALARA", "BASEXCLUDED", "CAPITALSALESOUTPUT", "CAPITALEXPENSESINPUT", "ECOUTPUT", "ECOUTPUTSERVICES", "ECINPUT", "ECACQUISITIONS", "EXEMPTEXPENSES", "EXEMPTINPUT", "EXEMPTOUTPUT", "GSTONIMPORTS", "INPUT", "INPUTTAXED", "MOSSSALES", "NONE", "NONEOUTPUT", "OUTPUT", "PURCHASESINPUT", "SALESOUTPUT", "EXEMPTCAPITAL", "EXEMPTEXPORT", "CAPITALEXINPUT", "GSTONCAPIMPORTS", "GSTONCAPITALIMPORTS", "REVERSECHARGES", "PAYMENTS", "INVOICE", "CASH", "ACCRUAL", "FLATRATECASH", "FLATRATEACCRUAL", "ACCRUALS", "TXCA", "SRCAS", "DSOUTPUT", "BLINPUT2", "EPINPUT", "IMINPUT2", "MEINPUT", "IGDSINPUT2", "ESN33OUTPUT", "OPINPUT", "OSOUTPUT", "TXN33INPUT", "TXESSINPUT", "TXREINPUT", "TXPETINPUT", "NRINPUT", "ES33OUTPUT", "ZERORATEDINPUT", "ZERORATEDOUTPUT", "DRCHARGESUPPLY", "DRCHARGE", "CAPINPUT", "CAPIMPORTS", "IMINPUT", "INPUT2", "CIUINPUT", "SRINPUT", "OUTPUT2", "SROUTPUT", "CAPOUTPUT", "SROUTPUT2", "CIUOUTPUT", "ZROUTPUT", "ZREXPORT", "ACC28PLUS", "ACCUPTO28", "OTHEROUTPUT", "SHOUTPUT", "ZRINPUT", "BADDEBT", "OTHERINPUT", "None", ] # noqa: E501 if report_tax_type not in allowed_values: raise ValueError( "Invalid value for `report_tax_type` ({0}), must be one of {1}".format( # noqa: E501 report_tax_type, allowed_values ) ) self._report_tax_type = report_tax_type @property def can_apply_to_assets(self): """Gets the can_apply_to_assets of this TaxRate. # noqa: E501 Boolean to describe if tax rate can be used for asset accounts i.e. true,false # noqa: E501 :return: The can_apply_to_assets of this TaxRate. # noqa: E501 :rtype: bool """ return self._can_apply_to_assets @can_apply_to_assets.setter def can_apply_to_assets(self, can_apply_to_assets): """Sets the can_apply_to_assets of this TaxRate. Boolean to describe if tax rate can be used for asset accounts i.e. true,false # noqa: E501 :param can_apply_to_assets: The can_apply_to_assets of this TaxRate. # noqa: E501 :type: bool """ self._can_apply_to_assets = can_apply_to_assets @property def can_apply_to_equity(self): """Gets the can_apply_to_equity of this TaxRate. # noqa: E501 Boolean to describe if tax rate can be used for equity accounts i.e true,false # noqa: E501 :return: The can_apply_to_equity of this TaxRate. # noqa: E501 :rtype: bool """ return self._can_apply_to_equity @can_apply_to_equity.setter def can_apply_to_equity(self, can_apply_to_equity): """Sets the can_apply_to_equity of this TaxRate. Boolean to describe if tax rate can be used for equity accounts i.e true,false # noqa: E501 :param can_apply_to_equity: The can_apply_to_equity of this TaxRate. # noqa: E501 :type: bool """ self._can_apply_to_equity = can_apply_to_equity @property def can_apply_to_expenses(self): """Gets the can_apply_to_expenses of this TaxRate. # noqa: E501 Boolean to describe if tax rate can be used for expense accounts i.e. true,false # noqa: E501 :return: The can_apply_to_expenses of this TaxRate. # noqa: E501 :rtype: bool """ return self._can_apply_to_expenses @can_apply_to_expenses.setter def can_apply_to_expenses(self, can_apply_to_expenses): """Sets the can_apply_to_expenses of this TaxRate. Boolean to describe if tax rate can be used for expense accounts i.e. true,false # noqa: E501 :param can_apply_to_expenses: The can_apply_to_expenses of this TaxRate. # noqa: E501 :type: bool """ self._can_apply_to_expenses = can_apply_to_expenses @property def can_apply_to_liabilities(self): """Gets the can_apply_to_liabilities of this TaxRate. # noqa: E501 Boolean to describe if tax rate can be used for liability accounts i.e. true,false # noqa: E501 :return: The can_apply_to_liabilities of this TaxRate. # noqa: E501 :rtype: bool """ return self._can_apply_to_liabilities @can_apply_to_liabilities.setter def can_apply_to_liabilities(self, can_apply_to_liabilities): """Sets the can_apply_to_liabilities of this TaxRate. Boolean to describe if tax rate can be used for liability accounts i.e. true,false # noqa: E501 :param can_apply_to_liabilities: The can_apply_to_liabilities of this TaxRate. # noqa: E501 :type: bool """ self._can_apply_to_liabilities = can_apply_to_liabilities @property def can_apply_to_revenue(self): """Gets the can_apply_to_revenue of this TaxRate. # noqa: E501 Boolean to describe if tax rate can be used for revenue accounts i.e. true,false # noqa: E501 :return: The can_apply_to_revenue of this TaxRate. # noqa: E501 :rtype: bool """ return self._can_apply_to_revenue @can_apply_to_revenue.setter def can_apply_to_revenue(self, can_apply_to_revenue): """Sets the can_apply_to_revenue of this TaxRate. Boolean to describe if tax rate can be used for revenue accounts i.e. true,false # noqa: E501 :param can_apply_to_revenue: The can_apply_to_revenue of this TaxRate. # noqa: E501 :type: bool """ self._can_apply_to_revenue = can_apply_to_revenue @property def display_tax_rate(self): """Gets the display_tax_rate of this TaxRate. # noqa: E501 Tax Rate (decimal to 4dp) e.g 12.5000 # noqa: E501 :return: The display_tax_rate of this TaxRate. # noqa: E501 :rtype: float """ return self._display_tax_rate @display_tax_rate.setter def display_tax_rate(self, display_tax_rate): """Sets the display_tax_rate of this TaxRate. Tax Rate (decimal to 4dp) e.g 12.5000 # noqa: E501 :param display_tax_rate: The display_tax_rate of this TaxRate. # noqa: E501 :type: float """ self._display_tax_rate = display_tax_rate @property def effective_rate(self): """Gets the effective_rate of this TaxRate. # noqa: E501 Effective Tax Rate (decimal to 4dp) e.g 12.5000 # noqa: E501 :return: The effective_rate of this TaxRate. # noqa: E501 :rtype: float """ return self._effective_rate @effective_rate.setter def effective_rate(self, effective_rate): """Sets the effective_rate of this TaxRate. Effective Tax Rate (decimal to 4dp) e.g 12.5000 # noqa: E501 :param effective_rate: The effective_rate of this TaxRate. # noqa: E501 :type: float """ self._effective_rate = effective_rate
d2edaeec8fdcd119849df0305b0cb817b3235ebe
8d9318a33afc2c3b5ca8ac99fce0d8544478c94a
/Books/Casandra DB/opscenter-5.1.0/lib/py/orbited/proxy.py
4c0e80c1f97cce4bb513bffb9be5583f06edd599
[]
no_license
tushar239/git-large-repo
e30aa7b1894454bf00546312a3fb595f6dad0ed6
9ee51112596e5fc3a7ab2ea97a86ec6adc677162
refs/heads/master
2021-01-12T13:48:43.280111
2016-11-01T22:14:51
2016-11-01T22:14:51
69,609,373
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:ba1b92cda51cc0fbe137994a7b857befa45aa64d45009e4fb34ed1df78d0f3fc size 5501
8f55ee77bb2e6f0f501c6aae41fe353d5946e7ed
48f092fd8191b0218df8605dc7125e526764e59e
/NestedLoops/venv/Scripts/pip-script.py
1f860a6a2d99a98a14ef6f35a31d2812b31131f3
[]
no_license
LalityaSawant/Python-Projects
2edb430c094fe3d6b4e706cc61f885aa07e24dff
b142708256e26867f09b3063f5f3fffa305ec496
refs/heads/master
2020-05-01T03:00:26.012301
2019-03-23T22:09:33
2019-03-23T22:09:33
177,235,109
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
#!C:\Users\lsawant\Documents\Learning\Python\PycharmProjects\NestedLoops\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
10cefb112ffc8a72f2ddcd285ff5b6f871ecf497
41523dd4871e8ed1043d2b3ddf73417fcbdde209
/day16/map函数.py
7a19700236dcf557aafb01afb59951babcaa5d8d
[]
no_license
WayneChen1994/Python1805
2aa1c611f8902b8373b8c9a4e06354c25f8826d6
a168cd3b7749afc326ec4326db413378fd3677d5
refs/heads/master
2020-03-30T23:19:00.773288
2018-11-02T10:47:40
2018-11-02T10:47:40
151,697,105
0
0
null
null
null
null
UTF-8
Python
false
false
943
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # author:Wayne ''' map函数的功能: 将传入的函数依次作用于序列中的每一个对象, 然后将其作用的结果作为一个迭代器返回 ''' ''' 需求:将列表中的["1", "2", "3", "4", "5"] 转为[1, 2, 3, 4, 5],写成一个函数。 ''' def func(alist): return [int(x) for x in alist] list1 = ["1", "2", "3", "4", "5"] print(list1) print(func(list1)) res = map(int, list1) print(list(res)) ''' map(func,lsd) 参数一:要作用函数,【此函数有且只有一个参数】 参数二:要作用的序列 ''' ''' 使用map函数,求n的序列[1, 4, 9, ..., n^2], 一行代码实现上述的要求,n从控制台输入。 ''' def func2(n): return list(map(lambda x:x**2, range(1, n+1))) num = int(input("请输入n的值:")) print(func2(num)) print(list(map(lambda n:n*n, range(1, int(input("请输入一个整数:"))+1))))
7b21a9e794befbf4b2268bb9e211d4e4aff762d6
53d03e48ca88e05fb134be8a2d3dda9b6079216e
/fabfile.py
ca82fcc42642e2e6fffd7cd3c79a84a7357a5b66
[]
no_license
myungseokang/djangogirls
3b9e18acb7b7747ca04c32dbebb070fc15b88966
dd7f82131de66e0732553af2b1e3c170a6f44b5f
refs/heads/master
2021-06-18T09:59:14.143057
2017-07-03T00:16:00
2017-07-03T00:16:00
null
0
0
null
null
null
null
UTF-8
Python
true
false
6,054
py
from fabric.contrib.files import append, exists, sed, put from fabric.api import env, local, run, sudo import random import os import json PROJECT_DIR = os.path.dirname(os.path.abspath(__file__)) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # deploy.json파일을 불러와 envs변수에 저장합니다. with open(os.path.join(PROJECT_DIR, "deploy.json")) as f: envs = json.loads(f.read()) REPO_URL = envs['REPO_URL'] PROJECT_NAME = envs['PROJECT_NAME'] REMOTE_HOST = envs['REMOTE_HOST'] REMOTE_USER = envs['REMOTE_USER'] STATIC_ROOT_NAME = envs['STATIC_ROOT'] STATIC_URL_NAME = envs['STATIC_URL'] MEDIA_ROOT = envs['MEDIA_ROOT'] env.user = REMOTE_USER username = env.user env.hosts = [ REMOTE_HOST, ] project_folder = '/home/{}/{}'.format(env.user, PROJECT_NAME) apt_requirements = [ 'ufw', 'curl', 'git', 'python3-dev', 'python3-pip', 'build-essential', 'python3-setuptools', 'apache2', 'libapache2-mod-wsgi-py3', 'libssl-dev', 'libxml2-dev', 'libjpeg8-dev', 'zlib1g-dev', ] def new_server(): setup() deploy() def setup(): _register_ssh_key() _get_latest_apt() _install_apt_requirements(apt_requirements) _make_virtualenv() def deploy(): _get_latest_source() _update_settings() _update_virtualenv() _update_static_files() _update_database() _make_virtualhost() _grant_apache2() _grant_sqlite3() _restart_apache2() def create_superuser(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) run('cd %s && %s/bin/python3 manage.py createsuperuser' % ( project_folder, virtualenv_folder )) def _register_ssh_key(): local("ssh-keyscan -H {} >> {}".format(REMOTE_HOST, os.path.expanduser('~/.ssh/known_hosts'))) def _get_latest_apt(): update_or_not = input('Would U install Apache2/Python3 ?\n' '[y/n, default: y]: ') if update_or_not != 'n': sudo('sudo apt-get update && sudo apt-get -y upgrade') def _install_apt_requirements(apt_requirements): reqs = '' for req in apt_requirements: reqs += (' ' + req) sudo('sudo apt-get -y install {}'.format(reqs)) def _make_virtualenv(): if not exists('~/.virtualenvs'): script = '''"# python virtualenv settings export WORKON_HOME=~/.virtualenvs export VIRTUALENVWRAPPER_PYTHON="$(command \which python3)" # location of python3 source /usr/local/bin/virtualenvwrapper.sh"''' run('mkdir ~/.virtualenvs') sudo('sudo pip3 install virtualenv virtualenvwrapper') run('echo {} >> ~/.bashrc'.format(script)) def _get_latest_source(): if exists(project_folder + '/.git'): run('cd %s && git fetch' % (project_folder,)) else: run('git clone %s %s' % (REPO_URL, project_folder)) current_commit = local("git log -n 1 --format=%H", capture=True) run('cd %s && git reset --hard %s' % (project_folder, current_commit)) def _update_settings(): settings_path = project_folder + '/{}/settings.py'.format(PROJECT_NAME) sed(settings_path, "DEBUG = True", "DEBUG = False") sed(settings_path, 'ALLOWED_HOSTS = .+$', 'ALLOWED_HOSTS = ["%s"]' % (REMOTE_HOST,) ) secret_key_file = project_folder + '/{}/secret_key.py'.format(PROJECT_NAME) if not exists(secret_key_file): chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)' key = ''.join(random.SystemRandom().choice(chars) for _ in range(50)) append(secret_key_file, "SECRET_KEY = '%s'" % (key,)) append(settings_path, '\nfrom .secret_key import SECRET_KEY') def _update_virtualenv(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) if not exists(virtualenv_folder + '/bin/pip'): run('cd /home/%s/.virtualenvs && virtualenv %s' % (env.user, PROJECT_NAME)) run('%s/bin/pip install "django<2"' % ( virtualenv_folder )) def _update_static_files(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) run('cd %s && %s/bin/python3 manage.py collectstatic --noinput' % ( project_folder, virtualenv_folder )) def _update_database(): virtualenv_folder = project_folder + '/../.virtualenvs/{}'.format(PROJECT_NAME) run('cd %s && %s/bin/python3 manage.py migrate --noinput' % ( project_folder, virtualenv_folder )) def _make_virtualhost(): script = """'<VirtualHost *:80> ServerName {servername} Alias /{static_url} /home/{username}/{project_name}/{static_root} Alias /{media_url} /home/{username}/{project_name}/{media_url} <Directory /home/{username}/{project_name}/{media_url}> Require all granted </Directory> <Directory /home/{username}/{project_name}/{static_root}> Require all granted </Directory> <Directory /home/{username}/{project_name}/{project_name}> <Files wsgi.py> Require all granted </Files> </Directory> WSGIDaemonProcess {project_name} python-home=/home/{username}/.virtualenvs/{project_name} python-path=/home/{username}/{project_name} WSGIProcessGroup {project_name} WSGIScriptAlias / /home/{username}/{project_name}/{project_name}/wsgi.py ErrorLog ${{APACHE_LOG_DIR}}/error.log CustomLog ${{APACHE_LOG_DIR}}/access.log combined </VirtualHost>'""".format( static_root=STATIC_ROOT_NAME, username=env.user, project_name=PROJECT_NAME, static_url=STATIC_URL_NAME, servername=REMOTE_HOST, media_url=MEDIA_ROOT ) sudo('echo {} > /etc/apache2/sites-available/{}.conf'.format(script, PROJECT_NAME)) sudo('a2ensite {}.conf'.format(PROJECT_NAME)) def _grant_apache2(): sudo('sudo chown -R :www-data ~/{}'.format(PROJECT_NAME)) def _grant_sqlite3(): sudo('sudo chmod 775 ~/{}/db.sqlite3'.format(PROJECT_NAME)) def _restart_apache2(): sudo('sudo service apache2 restart')
38acb8c211006d953999bf2dfc3090c9f9313ea5
ee27325f6a3e6a2d1f5e004aa60f5974ad864ae9
/contrib/python/plotly/py3/plotly/validators/contourcarpet/__init__.py
09c50961c6d1e808ad2e54b12da590314f6b6cc2
[ "Apache-2.0", "MIT" ]
permissive
alvinahmadov/catboost
f32d2b16be9db7439e429c88feb5676de842fc89
a6e0caa4779b31199f535cf43b09879d7c653abe
refs/heads/master
2023-06-12T19:29:52.028508
2023-05-11T18:33:03
2023-05-11T18:33:03
202,584,937
0
0
Apache-2.0
2019-08-15T17:35:23
2019-08-15T17:35:23
null
UTF-8
Python
false
false
4,621
py
import sys from typing import TYPE_CHECKING if sys.version_info < (3, 7) or TYPE_CHECKING: from ._zsrc import ZsrcValidator from ._zmin import ZminValidator from ._zmid import ZmidValidator from ._zmax import ZmaxValidator from ._zauto import ZautoValidator from ._z import ZValidator from ._yaxis import YaxisValidator from ._xaxis import XaxisValidator from ._visible import VisibleValidator from ._uirevision import UirevisionValidator from ._uid import UidValidator from ._transpose import TransposeValidator from ._textsrc import TextsrcValidator from ._text import TextValidator from ._stream import StreamValidator from ._showscale import ShowscaleValidator from ._showlegend import ShowlegendValidator from ._reversescale import ReversescaleValidator from ._opacity import OpacityValidator from ._ncontours import NcontoursValidator from ._name import NameValidator from ._metasrc import MetasrcValidator from ._meta import MetaValidator from ._line import LineValidator from ._legendwidth import LegendwidthValidator from ._legendrank import LegendrankValidator from ._legendgrouptitle import LegendgrouptitleValidator from ._legendgroup import LegendgroupValidator from ._idssrc import IdssrcValidator from ._ids import IdsValidator from ._hovertextsrc import HovertextsrcValidator from ._hovertext import HovertextValidator from ._fillcolor import FillcolorValidator from ._db import DbValidator from ._da import DaValidator from ._customdatasrc import CustomdatasrcValidator from ._customdata import CustomdataValidator from ._contours import ContoursValidator from ._colorscale import ColorscaleValidator from ._colorbar import ColorbarValidator from ._coloraxis import ColoraxisValidator from ._carpet import CarpetValidator from ._btype import BtypeValidator from ._bsrc import BsrcValidator from ._b0 import B0Validator from ._b import BValidator from ._autocontour import AutocontourValidator from ._autocolorscale import AutocolorscaleValidator from ._atype import AtypeValidator from ._asrc import AsrcValidator from ._a0 import A0Validator from ._a import AValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], [ "._zsrc.ZsrcValidator", "._zmin.ZminValidator", "._zmid.ZmidValidator", "._zmax.ZmaxValidator", "._zauto.ZautoValidator", "._z.ZValidator", "._yaxis.YaxisValidator", "._xaxis.XaxisValidator", "._visible.VisibleValidator", "._uirevision.UirevisionValidator", "._uid.UidValidator", "._transpose.TransposeValidator", "._textsrc.TextsrcValidator", "._text.TextValidator", "._stream.StreamValidator", "._showscale.ShowscaleValidator", "._showlegend.ShowlegendValidator", "._reversescale.ReversescaleValidator", "._opacity.OpacityValidator", "._ncontours.NcontoursValidator", "._name.NameValidator", "._metasrc.MetasrcValidator", "._meta.MetaValidator", "._line.LineValidator", "._legendwidth.LegendwidthValidator", "._legendrank.LegendrankValidator", "._legendgrouptitle.LegendgrouptitleValidator", "._legendgroup.LegendgroupValidator", "._idssrc.IdssrcValidator", "._ids.IdsValidator", "._hovertextsrc.HovertextsrcValidator", "._hovertext.HovertextValidator", "._fillcolor.FillcolorValidator", "._db.DbValidator", "._da.DaValidator", "._customdatasrc.CustomdatasrcValidator", "._customdata.CustomdataValidator", "._contours.ContoursValidator", "._colorscale.ColorscaleValidator", "._colorbar.ColorbarValidator", "._coloraxis.ColoraxisValidator", "._carpet.CarpetValidator", "._btype.BtypeValidator", "._bsrc.BsrcValidator", "._b0.B0Validator", "._b.BValidator", "._autocontour.AutocontourValidator", "._autocolorscale.AutocolorscaleValidator", "._atype.AtypeValidator", "._asrc.AsrcValidator", "._a0.A0Validator", "._a.AValidator", ], )
c484b176ad74bbf3c3d2c6945058b3f6fa039104
1978a9455159b7c2f3286e0ad602652bc5277ffa
/exercises/05_basic_scripts/task_5_2b.py
942e752a8c38f07e0e2a188e036ef30e8781ecff
[]
no_license
fortredux/py_net_eng
338fd7a80debbeda55b5915dbfba4f5577279ef0
61cf0b2a355d519c58bc9f2b59d7e5d224922890
refs/heads/master
2020-12-03T17:32:53.598813
2020-04-08T20:55:45
2020-04-08T20:55:45
231,409,656
0
0
null
null
null
null
UTF-8
Python
false
false
1,047
py
# -*- coding: utf-8 -*- ''' Задание 5.2b Преобразовать скрипт из задания 5.2a таким образом, чтобы сеть/маска не запрашивались у пользователя, а передавались как аргумент скрипту. Ограничение: Все задания надо выполнять используя только пройденные темы. ''' from sys import argv ip = str(argv[1]) mask = int(argv[2]) host_net_lst = ip.split('.') host_net_lst[3] = '0' mask_32 = int('1' * mask) mask_32 = '{:<032}'.format(mask_32) template = ''' Network: {0:<8} {1:<8} {2:<8} {3:<8} {0:08b} {1:08b} {2:08b} {3:08b} Mask: /{4:} {5:<8} {6:<8} {7:<8} {8:<8} {9:8} {10:8} {11:8} {12:8} ''' print(template.format(int(host_net_lst[0]), int(host_net_lst[1]), int(host_net_lst[2]), int(host_net_lst[3]), mask, int(mask_32[0:8], 2), int(mask_32[8:16], 2), int(mask_32[16:24], 2), int(mask_32[24:32], 2), mask_32[0:8], mask_32[8:16], mask_32[16:24], mask_32[24:32]))
fe91480c51ec9d9e11d8cbf4c07c3dbad667f8a4
f2f21c643d1f5459253989e7cdba85c064cca8ce
/adding_bootstarp/adding_bootstarp/wsgi.py
b02fcd063eb36aa3dc1d03dc3104e13e690ebccf
[]
no_license
NiteshTyagi/django_tutorial
342decea7532f1efb200b9f45e4123c581aad43f
3353f0d2907a00f43e1faee2b97abd9af66ca08f
refs/heads/master
2022-03-05T19:46:50.642154
2022-03-01T04:53:14
2022-03-01T04:53:14
205,629,609
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" WSGI config for adding_bootstarp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'adding_bootstarp.settings') application = get_wsgi_application()
079662848033b228ee09c8bb812f1c80e52e4cb0
1f68b6f9f55afaa7cb32df262f4fe0864472da05
/leetcode(多线程,DP,贪心,SQL)/二刷DP与贪心LeetCode/回溯/51. N皇后/solution.py
761c902fdb433e6e6f0765ec8b75578496b26cb9
[]
no_license
faker-hong/testOne
7c4496362cb5495c25c640076102fe0704f8552f
768edc4a5526c8972fec66c6a71a38c0b24a1451
refs/heads/master
2022-12-04T14:47:53.614685
2020-10-30T03:17:50
2020-10-30T03:17:50
196,514,862
1
0
null
2022-11-22T02:43:32
2019-07-12T05:35:09
Python
UTF-8
Python
false
false
1,100
py
class Solution(object): def solveNQueens(self, n): """ :type n: int :rtype: List[List[str]] """ # 判断放置的皇后位置与之前的是否冲突 def is_valid(row, col, track): # 因为每一次的row不同,所以不用判断是否在同一行 if col in track: # 是否在同一列 return False # 判断是否在两条对角线上 for k in range(row): if row + col == k + track[k] or row - col == k - track[k]: return False return True def backtrack(row, track): if row == n: res.append(track) return for col in range(n): if is_valid(row, col, track): # 位置合法,进入下一行 backtrack(row + 1, track + [col]) res = [] backtrack(0, []) return [['.'*i + 'Q' + '.'*(n-i-1) for i in l] for l in res] if __name__ == '__main__': s = Solution() res = s.solveNQueens(4) print(res)
c280ee3b854a4f6043932dbcd3aa1b31846f9e2c
47988c4d1e2c07cd2465da204890f481d59dbd4b
/src/tests/ftest/util/command_utils_base.py
e25429c501973d0d6e453644fdfcba2b0cf4b268
[ "BSD-2-Clause", "BSD-2-Clause-Patent" ]
permissive
dsikich/daos
974000a2e9a37c2edc994007f864ab69afe347e3
13385f8eb3209dfe9f63772a68a3bb8cadaf2e23
refs/heads/master
2022-07-07T05:46:07.074084
2022-06-29T13:01:52
2022-06-29T13:01:52
242,208,796
0
0
NOASSERTION
2021-12-07T21:17:27
2020-02-21T18:50:31
C
UTF-8
Python
false
false
26,663
py
#!/usr/bin/python """ (C) Copyright 2020-2022 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ from logging import getLogger import os import yaml from exception_utils import CommandFailure class BasicParameter(): """A class for parameters whose values are read from a yaml file.""" def __init__(self, value, default=None, yaml_key=None): """Create a BasicParameter object. Normal use includes assigning this object to an attribute name that matches the test yaml file key used to assign its value. If the variable name will conflict with another class attribute, e.g. self.log, then the `yaml_key` argument can be used to define the test yaml file key independently of the attribute name. Args: value (object): initial value for the parameter default (object, optional): default value. Defaults to None. yaml_key (str, optional): the yaml key name to use when finding the value to assign from the test yaml file. Default is None which will use the object's variable name as the yaml key. """ self._value = value if value is not None else default self._default = default self._yaml_key = yaml_key self.log = getLogger(__name__) # Flag used to indicate if a parameter value has or has not been updated self.updated = True def __str__(self): """Convert this BasicParameter into a string. Returns: str: the string version of the parameter's value """ return str(self.value) if self.value is not None else "" @property def value(self): """Get the value of this setting. Returns: object: value currently assigned to the setting """ return self._value @value.setter def value(self, item): """Set the value of this setting. Args: item (object): value to assign for the setting """ if item != self._value: self._value = item self.updated = True def get_yaml_value(self, name, test, path): """Get the value for the parameter from the test case's yaml file. Args: name (str): name of the value in the yaml file test (Test): avocado Test object to use to read the yaml file path (str): yaml path where the name is to be found """ if self._yaml_key is not None: # Use the yaml key name instead of the variable name name = self._yaml_key if hasattr(test, "config") and test.config is not None: self.value = test.config.get(name, path, self._default) else: self.value = test.params.get(name, path, self._default) def update(self, value, name=None, append=False): """Update the value of the parameter. Args: value (object): value to assign name (str, optional): name of the parameter which, if provided, is used to display the update. Defaults to None. append (bool, optional): append/extend/update the current list/dict with the provided value. Defaults to False - override the current value. """ if append and isinstance(self.value, list): if isinstance(value, list): # Add the new list of value to the existing list self.value.extend(value) else: # Add the new value to the existing list self.value.append(value) self.updated = True elif append and isinstance(self.value, dict): # Update the dictionary with the new key/value pairs self.value.update(value) self.updated = True else: # Override the current value with the new value self.value = value if name is not None: self.log.debug("Updated param %s => %s", name, self.value) def update_default(self, value): """Update the BasicParameter default value. Args: value (object): new default value """ self._default = value class FormattedParameter(BasicParameter): # pylint: disable=too-few-public-methods """A class for test parameters whose values are read from a yaml file.""" def __init__(self, str_format, default=None, yaml_key=None): """Create a FormattedParameter object. Normal use includes assigning this object to an attribute name that matches the test yaml file key used to assign its value. If the variable name will conflict with another class attribute, e.g. self.log, then the `yaml_key` argument can be used to define the test yaml file key independently of the attribute name. Args: str_format (str): format string used to convert the value into an command line argument string default (object): default value for the param yaml_key (str, optional): alternative yaml key name to use when assigning the value from a yaml file. Default is None which will use the object's variable name as the yaml key. """ super().__init__(default, default) self._str_format = str_format self._yaml_key = yaml_key def __str__(self): """Return a FormattedParameter object as a string. Returns: str: if defined, the parameter, otherwise an empty string """ parameter = "" if isinstance(self._default, bool) and self.value: parameter = self._str_format elif not isinstance(self._default, bool) and self.value is not None: if isinstance(self.value, dict): parameter = " ".join([ self._str_format.format( "{} \"{}\"".format(key, self.value[key])) for key in self.value]) elif isinstance(self.value, (list, tuple)): parameter = " ".join( [self._str_format.format(value) for value in self.value]) else: parameter = self._str_format.format(self.value) return parameter def get_yaml_value(self, name, test, path): """Get the value for the parameter from the test case's yaml file. Args: name (str): name of the value in the yaml file - not used test (Test): avocado Test object to use to read the yaml file path (str): yaml path where the name is to be found """ if self._yaml_key is not None: # Use the yaml key name instead of the variable name name = self._yaml_key return super().get_yaml_value(name, test, path) class LogParameter(FormattedParameter): """A class for a test log file parameter which is read from a yaml file.""" def __init__(self, directory, str_format, default=None): """Create a LogParameter object. Args: directory (str): fixed location for the log file name specified by the yaml file str_format (str): format string used to convert the value into an command line argument string default (object): default value for the param """ super().__init__(str_format, default) self._directory = directory self._add_directory() def _add_directory(self): """Add the directory to the log file name assignment. The initial value is restricted to just the log file name as the location (directory) of the file is fixed. This method updates the initial log file value (just the log file name) to include the directory and name for the log file. """ if isinstance(self.value, str): name = os.path.basename(self.value) self.value = os.path.join(self._directory, name) elif self.value is not None: self.log.info( "Warning: '%s' not added to '%s' due to incompatible type: %s", self._directory, self.value, type(self.value)) def get_yaml_value(self, name, test, path): """Get the value for the parameter from the test case's yaml file. Args: name (str): name of the value in the yaml file test (Test): avocado Test object to use to read the yaml file path (str): yaml path where the name is to be found """ super().get_yaml_value(name, test, path) self._add_directory() self.log.debug(" Added the directory: %s => %s", name, self.value) def update(self, value, name=None, append=False): """Update the value of the parameter. Args: value (object): value to assign name (str, optional): name of the parameter which, if provided, is used to display the update. Defaults to None. append (bool, optional): append/extend/update the current list/dict with the provided value. Defaults to False - override the current value. """ super().update(value, name, append) self._add_directory() self.log.debug(" Added the directory: %s => %s", name, self.value) class ObjectWithParameters(): """A class for an object with parameters.""" def __init__(self, namespace): """Create a ObjectWithParameters object. Args: namespace (str): yaml namespace (path to parameters) """ self.namespace = namespace self.log = getLogger(__name__) def get_attribute_names(self, attr_type=None): """Get a sorted list of the names of the attr_type attributes. Args: attr_type(object, optional): A single object type or tuple of object types used to filter class attributes by their type. Defaults to None. Returns: list: a list of class attribute names used to define parameters """ return [ name for name in sorted(self.__dict__.keys()) if attr_type is None or isinstance(getattr(self, name), attr_type)] def get_param_names(self): """Get a sorted list of the names of the BasicParameter attributes. Note: Override this method to change the order or inclusion of a command parameter in the get_params() method. Returns: list: a list of class attribute names used to define parameters """ return self.get_attribute_names(BasicParameter) def get_params(self, test): """Get values for all of the command params from the yaml file. Sets each BasicParameter object's value to the yaml key that matches the assigned name of the BasicParameter object in this class. For example, the self.block_size.value will be set to the value in the yaml file with the key 'block_size'. If no key matches are found in the yaml file the BasicParameter object will be set to its default value. Args: test (Test): avocado Test object """ for name in self.get_param_names(): getattr(self, name).get_yaml_value(name, test, self.namespace) def update_params(self, **params): """Update each of provided parameter name and value pairs.""" for name, value in params.items(): try: getattr(self, name).update(value, name) except AttributeError as error: raise CommandFailure("Unknown parameter: {}".format(name)) from error class CommandWithParameters(ObjectWithParameters): """A class for command with parameters.""" def __init__(self, namespace, command, path=""): """Create a CommandWithParameters object. Uses Avocado's utils.process module to run a command str provided. Args: namespace (str): yaml namespace (path to parameters) command (str): string of the command to be executed. path (str, optional): path to location of command binary file. Defaults to "". """ super().__init__(namespace) self._command = command self._path = path self._pre_command = None @property def command(self): """Get the command without its parameters.""" return self._command @property def command_path(self): """Get the path used for the command.""" return self._path def __str__(self): """Return the command with all of its defined parameters as a string. Returns: str: the command with all the defined parameters """ # Join all the parameters that have been assigned a value with the # command to create the command string params = [] for name in self.get_str_param_names(): value = str(getattr(self, name)) if value != "": params.append(value) # Append the path to the command and prepend it with any other # specified commands command_list = [] if self._pre_command is None else [self._pre_command] command_list.append(os.path.join(self._path, self._command)) # Return the command and its parameters return " ".join(command_list + params) def get_str_param_names(self): """Get a sorted list of the names of the command attributes. Returns: list: a list of class attribute names used to define parameters for the command. """ return self.get_param_names() class YamlParameters(ObjectWithParameters): """A class of parameters used to create a yaml file.""" def __init__(self, namespace, filename=None, title=None, other_params=None): """Create a YamlParameters object. Args: namespace (str): yaml namespace (path to parameters) filename (str): the yaml file to generate with the parameters title (str, optional): namespace under which to place the parameters when creating the yaml file. Defaults to None. other_params (YamlParameters, optional): yaml parameters to include with these yaml parameters. Defaults to None. """ super().__init__(namespace) self.filename = filename self.title = title self.other_params = other_params def get_params(self, test): """Get values for the yaml parameters from the test yaml file. Args: test (Test): avocado Test object """ # Get the values for the yaml parameters defined by this class super().get_params(test) # Get the values for the yaml parameters defined by the other class if self.other_params is not None: self.other_params.get_params(test) def get_yaml_data(self): """Convert the parameters into a dictionary to use to write a yaml file. Returns: dict: a dictionary of parameter name keys and values """ if (self.other_params is not None and hasattr(self.other_params, "get_yaml_data")): yaml_data = self.other_params.get_yaml_data() else: yaml_data = {} for name in self.get_param_names(): value = getattr(self, name).value if value is not None: yaml_data[name] = value return yaml_data if self.title is None else {self.title: yaml_data} def is_yaml_data_updated(self): """Determine if any of the yaml file parameters have been updated. Returns: bool: whether or not a yaml file parameter has been updated """ yaml_data_updated = False if (self.other_params is not None and hasattr(self.other_params, "is_yaml_data_updated")): yaml_data_updated = self.other_params.is_yaml_data_updated() if not yaml_data_updated: for name in self.get_param_names(): if getattr(self, name).updated: yaml_data_updated = True break return yaml_data_updated def reset_yaml_data_updated(self): """Reset each yaml file parameter updated state to False.""" if (self.other_params is not None and hasattr(self.other_params, "reset_yaml_data_updated")): self.other_params.reset_yaml_data_updated() for name in self.get_param_names(): getattr(self, name).updated = False def create_yaml(self, filename=None): """Create a yaml file from the parameter values. A yaml file will only be created if at least one of its parameter values have be updated (BasicParameter.updated = True). Args: filename (str, optional): the yaml file to generate with the parameters. Defaults to None, which uses self.filename. Raises: CommandFailure: if there is an error creating the yaml file Returns: bool: whether or not an updated yaml file was created """ create_yaml = self.is_yaml_data_updated() if create_yaml: # Write a new yaml file if any of the parameters have been updated if filename is None: filename = self.filename yaml_data = self.get_yaml_data() self.log.info("Writing yaml configuration file %s", filename) try: with open(filename, 'w') as write_file: yaml.dump(yaml_data, write_file, default_flow_style=False) except Exception as error: raise CommandFailure( "Error writing the yaml file {}: {}".format( filename, error)) from error self.reset_yaml_data_updated() return create_yaml def set_value(self, name, value): """Set the value for a specified attribute name. Args: name (str): name of the attribute for which to set the value value (object): the value to set Returns: bool: if the attribute name was found and the value was set """ status = False setting = getattr(self, name, None) if setting is not None and hasattr(setting, "update"): setting.update(value, name) status = True elif setting is not None: setattr(self, name, value) self.log.debug("Updated param %s => %s", name, value) status = True elif self.other_params is not None: status = self.other_params.set_value(name, value) return status def get_value(self, name): """Get the value of the specified attribute name. Args: name (str): name of the attribute from which to get the value Returns: object: the object's value referenced by the attribute name """ setting = getattr(self, name, None) if setting is not None and hasattr(setting, "value"): value = setting.value elif setting is not None: value = setting elif self.other_params is not None: value = self.other_params.get_value(name) else: value = None return value class TransportCredentials(YamlParameters): """Transport credentials listing certificates for secure communication.""" def __init__(self, namespace, title, log_dir): """Initialize a TransportConfig object. Args: namespace (str): yaml namespace (path to parameters) title (str, optional): namespace under which to place the parameters when creating the yaml file. Defaults to None. """ super().__init__(namespace, None, title) default_insecure = str(os.environ.get("DAOS_INSECURE_MODE", True)) default_insecure = default_insecure.lower() == "true" self.ca_cert = LogParameter(log_dir, None, "daosCA.crt") self.allow_insecure = BasicParameter(None, default_insecure) def get_yaml_data(self): """Convert the parameters into a dictionary to use to write a yaml file. Returns: dict: a dictionary of parameter name keys and values """ yaml_data = super().get_yaml_data() # Convert the boolean value into a string if self.title is not None: yaml_data[self.title]["allow_insecure"] = self.allow_insecure.value else: yaml_data["allow_insecure"] = self.allow_insecure.value return yaml_data def get_certificate_data(self, name_list): """Get certificate data by name_list. Args: name_list (list): list of certificate attribute names. Returns: data (dict): a dictionary of parameter directory name keys and value. """ data = {} if not self.allow_insecure.value: for name in name_list: value = getattr(self, name).value if isinstance(value, str): dir_name, file_name = os.path.split(value) if dir_name not in data: data[dir_name] = [file_name] else: data[dir_name].append(file_name) return data class CommonConfig(YamlParameters): """Defines common daos_agent and daos_server configuration file parameters. Includes: - the daos system name (name) - a list of access point nodes (access_points) - the default port number (port) - the transport credentials """ def __init__(self, name, transport): """Initialize a CommonConfig object. Args: name (str): default value for the name configuration parameter transport (TransportCredentials): transport credentials """ super().__init__( "/run/common_config/*", None, None, transport) # Common configuration parameters # - name: <str>, e.g. "daos_server" # Name associated with the DAOS system. # # - access_points: <list>, e.g. ["hostname1:10001"] # Hosts can be specified with or without port, default port below # assumed if not specified. Defaults to the hostname of this node # at port 10000 for local testing # # - port: <int>, e.g. 10001 # Default port number with with to bind the daos_server. This # will also be used when connecting to access points if the list # only contains host names. # self.name = BasicParameter(None, name) self.access_points = BasicParameter(None, ["localhost"]) self.port = BasicParameter(None, 10001) class EnvironmentVariables(dict): """Dictionary of environment variable keys and values.""" def copy(self): """Return a copy of this object. Returns: EnvironmentVariables: a copy of this object """ return EnvironmentVariables(self) def get_list(self): """Get a list of environment variable assignments. Returns: list: a list of environment variable assignment (key=value) strings """ return [ key if value is None else "{}={}".format(key, value) for key, value in list(self.items()) ] def get_export_str(self, separator=";"): """Get the command to export all of the environment variables. Args: separator (str, optional): export command separator. Defaults to ";". Returns: str: a string of export commands for each environment variable """ export_list = ["export {}".format(export) for export in self.get_list()] export_str = separator.join(export_list) if export_str: export_str = "".join([export_str, separator]) return export_str class PositionalParameter(BasicParameter): """Parameter that defines position. Used to support positional parameters for dmg and daos. """ def __init__(self, position, default=None): """Create a PositionalParameter object. Args: position (int): argument position/order default (object, optional): default value for the param. Defaults to None. """ super().__init__(default, default) self._position = position @property def position(self): """Position property that defines the position of the parameter.""" return self._position def __lt__(self, other): return self.position < other.position def __gt__(self, other): return self.position > other.position def __eq__(self, other): return self.position == other.position def __hash__(self): """Returns self.position as the hash of the class. This is used in CommandWithPositionalParameters.get_attribute_names() where we use this object as the key for a dictionary. """ return self.position class CommandWithPositionalParameters(CommandWithParameters): """Command that uses positional parameters. Used to support positional parameters for dmg and daos. """ def get_attribute_names(self, attr_type=None): """Get a sorted list of the names of the attr_type attributes. The list has the ordered positional parameters first, then non-positional parameters. Args: attr_type(object, optional): A single object type or tuple of object types used to filter class attributes by their type. Defaults to None. Returns: list: a list of class attribute names used to define parameters """ positional = {} non_positional = [] for name in sorted(list(self.__dict__)): attr = getattr(self, name) if isinstance(attr, attr_type): if hasattr(attr, "position"): positional[attr] = name else: non_positional.append(name) return [positional[key] for key in sorted(positional)] + non_positional
952fd72ad5a8100025aa2e461084375532616b8e
677562bf6835be104204f32a6c9998d9a901f9fc
/from_scratch/detect_metadata/times.py
fefebd85201b58cd0821fa91c8c528a5f775d688
[]
no_license
santokalayil/neural_network
3cb2f843430e9f35e017edcde83ba13212d0f5cf
f453856214d027f55afc5c861784dc693a9bf2c6
refs/heads/main
2023-06-12T01:53:43.588403
2021-07-02T08:30:20
2021-07-02T08:30:20
382,281,787
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
# import platform # to detect the operating system import os import time def get_last_modified_time(path_to_file): return os.path.getmtime(path_to_file) # time.ctime(os.path.getmtime(path_to_file)) def get_created_time(path_to_file): return os.path.getctime(path_to_file) # time.ctime(os.path.getctime(path_to_file))
3b937e27177d4b2213f47baa81c00973e7037be0
bc4910ecec94749697dbce5e7cf5093275411125
/src/generator/Cheetah/ErrorCatchers.py
500f2490d613628fe69f683fafa883f5d586e55d
[ "MIT" ]
permissive
se210/tracy
7e73a6f0d64f355842b9a11035c3720b4d40fde5
232a42ce1aefcffa1f8544c89d60a16ebd897033
refs/heads/master
2021-01-09T20:55:03.241111
2013-12-15T23:34:36
2013-12-15T23:34:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,838
py
#!/usr/bin/env python # $Id: ErrorCatchers.py,v 1.1 2006-09-06 09:50:08 skyostil Exp $ """ErrorCatcher class for Cheetah Templates Meta-Data ================================================================================ Author: Tavis Rudd <[email protected]> Version: $Revision: 1.1 $ Start Date: 2001/08/01 Last Revision Date: $Date: 2006-09-06 09:50:08 $ """ __author__ = "Tavis Rudd <[email protected]>" __revision__ = "$Revision: 1.1 $"[11:-2] import time from Cheetah.NameMapper import NotFound class Error(Exception): pass class ErrorCatcher: _exceptionsToCatch = (NotFound,) def __init__(self, templateObj): pass def exceptions(self): return self._exceptionsToCatch def warn(self, exc_val, code, rawCode, lineCol): return rawCode ## make an alias Echo = ErrorCatcher class BigEcho(ErrorCatcher): def warn(self, exc_val, code, rawCode, lineCol): return "="*15 + "&lt;" + rawCode + " could not be found&gt;" + "="*15 class KeyError(ErrorCatcher): def warn(self, exc_val, code, rawCode, lineCol): raise KeyError("no '%s' in this Template Object's Search List" % rawCode) class ListErrors(ErrorCatcher): """Accumulate a list of errors.""" _timeFormat = "%c" def __init__(self, templateObj): ErrorCatcher.__init__(self, templateObj) self._errors = [] def warn(self, exc_val, code, rawCode, lineCol): dict = locals().copy() del dict['self'] dict['time'] = time.strftime(self._timeFormat, time.localtime(time.time())) self._errors.append(dict) return rawCode def listErrors(self): """Return the list of errors.""" return self._errors
5d85ec597bf50561c780343e1b57a17fe70cdec9
581c2beee0cf5656971987a19064524e3de7bc68
/distributions/lomax.py
6afe6b8af24109d2284426642b481f36d5ef196f
[ "MIT" ]
permissive
bballamudi/survival
ac6925b30ba3ca9ed574ba056d36830f9129114f
c86186b08e7896096b9d59a5013335f56283a7c4
refs/heads/master
2020-03-21T14:16:29.578172
2018-06-09T21:09:08
2018-06-09T21:09:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,123
py
import numpy as np from scipy.stats import lomax from distributions.basemodel import * class Lomax(Base): ''' We can instantiate a Lomax distribution (https://en.wikipedia.org/wiki/Lomax_distribution) with this class. ''' def __init__(self, k = None, lmb = None, ti = None, xi = None): ''' Instantiate a Lomax distribution. args: k: The shape parameter of the Lomax distribution. lmb: The scale parameter of the lomax distribution. ti: The uncensored samples for fitting the distribution. xi: The censored samples for fitting the distribution. ''' if ti is not None: self.train_org = ti self.train_inorg = xi self.newtonRh() else: self.train = [] self.test = [] self.train_org = [] self.train_inorg = [] self.k = k self.lmb = lmb self.params = [self.k, self.lmb] def determine_params(self, k, lmb, params): ''' Determines the parameters. Defined in basemodel.py ''' return super(Lomax, self).determine_params(k, lmb, params) def pdf(self,t,k=None,lmb=None,params=None): ''' The probability distribution function (PDF) of the Lomax distribution. args: t: The value at which the PDF is to be calculated. k: The shape parameter of the Lomax distribution. lmb: The scale parameter of the lomax distribution. ''' [k,lmb] = self.determine_params(k,lmb,params) return lmb*k/(1+lmb*t)**(k+1) def cdf(self,t,k=None,lmb=None,params=None): ''' The cumulative density functino of the Lomax distribution. Probability that the distribution is lower than a certain value. args: t: The value at which CDF is to be calculated. k: The shape parameter of the Lomax. lmb: The sclae parameter of the Lomax. params: A 2d array with the shape and scale parameters. ''' [k,lmb] = self.determine_params(k,lmb,params) return 1-(1+lmb*t)**-k def survival(self,t,k=None,lmb=None, params = None): ''' The survival function for the Lomax distribution. ''' [k,lmb] = self.determine_params(k,lmb,params) return (1+lmb*t)**-k def logpdf(self,t,k,lmb): ''' The logarithm of the PDF function. Handy for calculating log likelihood. args: t: The value at which function is to be calculated. l: The shape parameter. lmb: The scale parameter. ''' return np.log(k) + np.log(lmb) - (k+1)*np.log(1+lmb*t) def logsurvival(self,t,k,lmb): ''' The logarithm of the survival function. Handy for calculating log likelihood. args: t: The value at which function is to be calculated. l: The shape parameter. lmb: The scale parameter. ''' return -k*np.log(1+lmb*t) def loglik(self,t,x,k=0.5,lmb=0.3): ''' The logarithm of the likelihood function. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' return sum(self.logpdf(t,k,lmb)) +sum(self.logsurvival(x,k,lmb)) def grad(self,t,x,k=0.5,lmb=0.3): ''' The gradient of the log-likelihood function. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' n = len(t) m = len(x) delk = n/k - sum(np.log(1+lmb*t)) - sum(np.log(1+lmb*x)) dellmb = n/lmb -(k+1) * sum(t/(1+lmb*t)) -k*sum(x/(1+lmb*x)) return np.array([delk,dellmb]) def numerical_grad(self,t,x,k=None,lmb=None): ''' Calculates the gradient of the log-likelihood function numerically. args: t: The survival data. x: The censored data. k: The shape parameter. lmb: The scale parameter. ''' if k is None or lmb is None: k = self.k lmb = self.lmb eps = 1e-5 delk = (self.loglik(t,x,k+eps,lmb) - self.loglik(t,x,k-eps,lmb))/2/eps dellmb = (self.loglik(t,x,k,lmb+eps) - self.loglik(t,x,k,lmb-eps))/2/eps return np.array([delk, dellmb]) def hessian(self,t,x,k=0.5,lmb=0.3): ''' The hessian of the Loglikelihood function for Lomax. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' n=len(t) delksq = -n/k**2 dellmbsq = -n/lmb**2 + (k+1)*sum((t/(1+lmb*t))**2) + k*sum((x/(1+lmb*x))**2) delklmb = -sum(t/(1+lmb*t)) - sum(x/(1+lmb*x)) hess = np.zeros([2,2]) hess[0,0] = delksq hess[1,1] = dellmbsq hess[0,1] = hess[1,0] = delklmb return hess def numerical_hessian(self,t,x,k=0.5,lmb=0.3): ''' Calculates the hessian of the log-likelihood function numerically. args: t: The survival data. x: The censored data. k: The shape parameter. lmb: The scale parameter. ''' eps = 1e-4 delksq = (self.loglik(t,x,k+2*eps,lmb) + self.loglik(t,x,k-2*eps,lmb) - 2*self.loglik(t,x,k,lmb))/4/eps/eps dellmbsq = (self.loglik(t,x,k,lmb+2*eps) + self.loglik(t,x,k,lmb-2*eps) - 2*self.loglik(t,x,k,lmb))/4/eps/eps dellmbk = (self.loglik(t,x,k+eps,lmb+eps) + self.loglik(t,x,k-eps,lmb-eps) - self.loglik(t,x,k+eps,lmb-eps) - self.loglik(t,x,k-eps,lmb+eps))/4/eps/eps hess = np.zeros([2,2]) hess[0,0] = delksq hess[1,1] = dellmbsq hess[0,1] = hess[1,0] = dellmbk return hess def gradient_descent(self, numIter=2001, params = np.array([.5,.3]), verbose=False): ''' Performs gradient descent to get the best fitting parameters for this Lomax given the censored and un-censored data. args: numIter: The maximum number of iterations for the iterative method. params: The initial guess for the shape and scale parameters respectively. verbose: Set to true for debugging. Shows progress as it fits data. ''' for i in range(numIter): lik = self.loglik(self.train_org,self.train_inorg,params[0],params[1]) directn = self.grad(self.train_org,self.train_inorg,params[0],params[1]) params2 = params for alp1 in [1e-8,1e-7,1e-5,1e-3,1e-2,.1]: params1 = params + alp1 * directn if(min(params1) > 0): lik1 = self.loglik(self.train_org,self.train_inorg,params1[0],params1[1]) if(lik1 > lik and np.isfinite(lik1)): lik = lik1 params2 = params1 params = params2 if i%100 == 0 and verbose: print("Iteration " + str(i) + " ,objective function: " + str(lik) + " \nparams = " + str(params) + " \nGradient = " + str(directn)) print("\n########\n") return params ''' def newtonRh(self, numIter=101, params = np.array([.1,.1]), verbose=False): """ Fits the parameters of a Lomax distribution to data (censored and uncensored). Uses the Newton Raphson method for explanation, see: https://www.youtube.com/watch?v=acsSIyDugP0 args: numIter: The maximum number of iterations for the iterative method. params: The initial guess for the shape and scale parameters respectively. verbose: Set to true for debugging. Shows progress as it fits data. """ for i in range(numIter): directn = self.grad(self.train_org,self.train_inorg,params[0],params[1]) if sum(abs(directn)) < 1e-5: if verbose: print("\nIt took: " + str(i) + " Iterations.\n Gradients - " + str(directn)) self.params = params [self.k, self.lmb] = params return params lik = self.loglik(self.train_org,self.train_inorg,params[0],params[1]) step = np.linalg.solve(self.hessian(self.train_org,self.train_inorg,params[0],params[1]),directn) params = params - step if min(params) < 0: print("Drastic measures") params = params + step # undo the effect of taking the step. params2 = params for alp1 in [1e-8,1e-7,1e-5,1e-3,1e-2,.1,.5,1.0]: params1 = params - alp1 * step if(max(params1) > 0): lik1 = self.loglik(self.train_org,self.train_inorg,params1[0],params1[1]) if(lik1 > lik and np.isfinite(lik1)): lik = lik1 params2 = params1 scale = alp1 params = params2 if i % 10 == 0 and verbose: print("Iteration " + str(i) + " ,objective function: " + str(lik) + " \nparams = " + str(params) + " \nGradient = " + str(directn) + "\n##\n\n") [self.k, self.lmb] = params self.params = params return params ''' def optimal_wait_threshold(self, intervention_cost, k=None, lmb=None): ''' Gets the optimal time one should wait for a Lomax recovery before intervention. args: intervention_cost: The cost of intervening. k: The shape parameter of this Lomax distribution. lmb: The scale parameter of this Lomax distribution. ''' if k is None or lmb is None: k = self.k lmb = self.lmb return (intervention_cost*k - 1/lmb) def expectedDT(self,tau,k,lmb,intervention_cost): ''' The expected downtime incurred when the waiting threshold is set to an arbitrary value. args: tau: The value we should set for the intervention threshold. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. intervention_cost: The cost of intervening. ''' return 1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k + (tau + intervention_cost)*1/(1+lmb*tau)**k @staticmethod def expectedDT_s(tau,k,lmb,intervention_cost): ''' The expected downtime incurred when the waiting threshold is set to an arbitrary value (static version). args: tau: The value we should set for the intervention threshold. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. intervention_cost: The cost of intervening. ''' return 1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k + (tau + intervention_cost)*1/(1+lmb*tau)**k def expectedT(self,tau,k=None,lmb=None,params=None): ''' The expected value of the Lomax conditional on it being less than tau. args: tau: Censor the Lomax here. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. params: A 2-d array with shape and scale parameters. ''' [k,lmb] = self.determine_params(k,lmb,params) return (1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k)/(1-1/(1+lmb*tau)**k) def samples(self, k=None, lmb=None, size=1000, params=None): ''' Generates samples for the Lomax distribution. args: k: Shape of Lomax. lmb: Scale of Lomax. size: The number of simulations to be generated. params: A 2-d array with shape and scale parameters. ''' [k, lmb] = self.determine_params(k, lmb, params) return lomax.rvs(c=k, scale=(1 / lmb), size=size) @staticmethod def samples_s(k, lmb, size = 1000): return lomax.rvs(c=k, scale=(1 / lmb), size=size) def kappafn_k(self,t,x,lmb=0.1): n = len(t) return n/(sum(np.log(1+lmb*t)) + sum(np.log(1+lmb*x))) def kappafn_lmb(self,t,x,lmb=0.1): n = len(t) return (n/lmb - sum(t/(1+lmb*t)))/(sum(t/(1+lmb*t)) + sum(x/(1+lmb*x))) def bisection_fn(self,lmb=0.1): return self.kappafn_k(self.train_org,self.train_inorg,lmb) - self.kappafn_lmb(self.train_org,self.train_inorg,lmb) def bisection(self,a=1e-6,b=2000): n=1 while n < 10000: c=(a+b)/2 if self.bisection_fn(c) == 0 or (b-a)/2 < 1e-6: return c n=n+1 if (self.bisection_fn(c) > 0) == (self.bisection_fn(a) > 0): a=c else: b=c
5207bdfd9ec7ed6f7459b591d7345960cb085457
6a5ce7d885db1baa5a9d43b26f0ae623a5ef0f01
/azure-mgmt-web/azure/mgmt/web/models/domain_registration_input.py
864529f0239c7032c4baa763d7558207f03f1109
[ "Apache-2.0" ]
permissive
JammyBrand82/azure-sdk-for-python
333af194ff9143ec77f49203a5a71f15c399f278
c65e189cd41bd3464556b17bfcdee1303867996c
refs/heads/master
2021-01-17T18:31:10.661151
2016-03-17T21:03:08
2016-03-17T21:03:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,993
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class DomainRegistrationInput(Resource): """ Domain registration input for validation Api :param str id: Resource Id :param str name: Resource Name :param str location: Resource Location :param str type: Resource type :param dict tags: Resource tags :param str domain_registration_input_name: Name of the domain :param Contact contact_admin: Admin contact information :param Contact contact_billing: Billing contact information :param Contact contact_registrant: Registrant contact information :param Contact contact_tech: Technical contact information :param str registration_status: Domain registration status. Possible values include: 'Active', 'Awaiting', 'Cancelled', 'Confiscated', 'Disabled', 'Excluded', 'Expired', 'Failed', 'Held', 'Locked', 'Parked', 'Pending', 'Reserved', 'Reverted', 'Suspended', 'Transferred', 'Unknown', 'Unlocked', 'Unparked', 'Updated', 'JsonConverterFailed' :param str provisioning_state: Domain provisioning state. Possible values include: 'Succeeded', 'Failed', 'Canceled', 'InProgress', 'Deleting' :param list name_servers: Name servers :param bool privacy: If true then domain privacy is enabled for this domain :param datetime created_time: Domain creation timestamp :param datetime expiration_time: Domain expiration timestamp :param datetime last_renewed_time: Timestamp when the domain was renewed last time :param bool auto_renew: If true then domain will renewed automatically :param bool ready_for_dns_record_management: If true then Azure can assign this domain to Web Apps. This value will be true if domain registration status is active and it is hosted on name servers Azure has programmatic access to :param list managed_host_names: All hostnames derived from the domain and assigned to Azure resources :param DomainPurchaseConsent consent: Legal agreement consent """ _validation = { 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'domain_registration_input_name': {'key': 'properties.name', 'type': 'str'}, 'contact_admin': {'key': 'properties.contactAdmin', 'type': 'Contact'}, 'contact_billing': {'key': 'properties.contactBilling', 'type': 'Contact'}, 'contact_registrant': {'key': 'properties.contactRegistrant', 'type': 'Contact'}, 'contact_tech': {'key': 'properties.contactTech', 'type': 'Contact'}, 'registration_status': {'key': 'properties.registrationStatus', 'type': 'DomainStatus'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'ProvisioningState'}, 'name_servers': {'key': 'properties.nameServers', 'type': '[str]'}, 'privacy': {'key': 'properties.privacy', 'type': 'bool'}, 'created_time': {'key': 'properties.createdTime', 'type': 'iso-8601'}, 'expiration_time': {'key': 'properties.expirationTime', 'type': 'iso-8601'}, 'last_renewed_time': {'key': 'properties.lastRenewedTime', 'type': 'iso-8601'}, 'auto_renew': {'key': 'properties.autoRenew', 'type': 'bool'}, 'ready_for_dns_record_management': {'key': 'properties.readyForDnsRecordManagement', 'type': 'bool'}, 'managed_host_names': {'key': 'properties.managedHostNames', 'type': '[HostName]'}, 'consent': {'key': 'properties.consent', 'type': 'DomainPurchaseConsent'}, } def __init__(self, location, id=None, name=None, type=None, tags=None, domain_registration_input_name=None, contact_admin=None, contact_billing=None, contact_registrant=None, contact_tech=None, registration_status=None, provisioning_state=None, name_servers=None, privacy=None, created_time=None, expiration_time=None, last_renewed_time=None, auto_renew=None, ready_for_dns_record_management=None, managed_host_names=None, consent=None, **kwargs): super(DomainRegistrationInput, self).__init__(id=id, name=name, location=location, type=type, tags=tags, **kwargs) self.domain_registration_input_name = domain_registration_input_name self.contact_admin = contact_admin self.contact_billing = contact_billing self.contact_registrant = contact_registrant self.contact_tech = contact_tech self.registration_status = registration_status self.provisioning_state = provisioning_state self.name_servers = name_servers self.privacy = privacy self.created_time = created_time self.expiration_time = expiration_time self.last_renewed_time = last_renewed_time self.auto_renew = auto_renew self.ready_for_dns_record_management = ready_for_dns_record_management self.managed_host_names = managed_host_names self.consent = consent
cf44ce6aefffd95765ff8071f01abc34af978a80
41a0220bf117124bf281a50396582c0df1e0675f
/Pyrado/tests/environment_wrappers/test_action_delay.py
c04f64bbf23a9b2a2f2bfdc9db1d3b524b130d61
[ "BSD-3-Clause" ]
permissive
jacarvalho/SimuRLacra
c071dfc22d4f2c54a198405e8974d03333c9961d
a6c982862e2ab39a9f65d1c09aa59d9a8b7ac6c5
refs/heads/master
2022-11-24T20:08:52.376545
2020-08-03T09:01:35
2020-08-03T09:01:35
276,885,755
0
0
BSD-3-Clause
2020-07-03T11:39:21
2020-07-03T11:39:21
null
UTF-8
Python
false
false
2,392
py
import numpy as np import pytest from pyrado.spaces.box import BoxSpace from pyrado.environment_wrappers.action_delay import ActDelayWrapper from tests.environment_wrappers.mock_env import MockEnv @pytest.mark.wrappers def test_no_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=0) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([4, 1])) assert mockenv.last_act == [4, 1] wenv.step(np.array([7, 5])) assert mockenv.last_act == [7, 5] @pytest.mark.wrappers def test_act_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=2) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 1] wenv.step(np.array([2, 3])) assert mockenv.last_act == [2, 4] @pytest.mark.wrappers def test_reset(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([4, 4])) assert mockenv.last_act == [0, 4] # The next action would be [4, 4], but now we reset again wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [1, 2] @pytest.mark.wrappers def test_domain_param(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 1] # change the delay and reset wenv.domain_param = {'act_delay': 2} wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [0, 0] wenv.step(np.array([8, 9])) assert mockenv.last_act == [1, 2]
6673858896690ec1a546222c0f8b383b73cf8ac8
847273de4b1d814fab8b19dc651c651c2d342ede
/.history/Sudoku_II_007_20180621235112.py
41f8ce78220a122f130868148e83683e6dcb7b73
[]
no_license
Los4U/sudoku_in_python
0ba55850afcffeac4170321651620f3c89448b45
7d470604962a43da3fc3e5edce6f718076197d32
refs/heads/master
2020-03-22T08:10:13.939424
2018-07-04T17:21:13
2018-07-04T17:21:13
139,749,483
0
1
null
null
null
null
UTF-8
Python
false
false
5,084
py
from random import randint import copy sudoku1 = [ [5, 9, 8, 6, 1, 2, 3, 4, 7], [2, 1, 7, 9, 3, 4, 8, 6, 5], [6, 4, 3, 5, 8, 7, 1, 2, 9], [1, 6, 5, 4, 9, 8, 2, 7, 3], [3, 2, 9, 7, 6, 5, 4, 1, 8], [7, 8, 4, 3, 2, 1, 5, 9, 6], [8, 3, 1, 2, 7, 6, 9, 5, 4], [4, 7, 2, 8, 5, 9, 6, 3, 1], [9, 5, 6, 1, 4, 3, 7, " ", " "] ] sudoku2 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] sudoku3 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] def printSudoku(): i = 0 while i < 10: if i == 0: print(" 1 2 3 4 5 6 7 8 9") print(" -------------------------") elif i == 3 or i == 6 or i == 9: print(" -------------------------") line = "|" if i < 9: print(' {2} {1} {0[0]} {0[1]} {0[2]} {1} {0[3]} {0[4]} {0[5]} {1} {0[6]} {0[7]} {0[8]} {1}'.format(sudoku[i], line, i+1)) i = i + 1 print(" ") print(" %@@@@@@@ @@@ @@@ (@@@@@@@@@ ,@@@@2@@@@@ @@@, /@@@/ @@@, @@@ ") print(" @@@* @@@ @@@ (@@( /@@@# .@@@% (@@@ @@@, @@@% @@@, @@@. ") print(" @@@& @@@ @@@ (@@( @@@* @@@% #@@% @@@,.@@@. @@@, @@@. ") print(" ,@@@@@@* @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@%@@% @@@, @@@. ") print(" /@@@@@# @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@,@@@( @@@, @@@. ") print(" *@@@. @@@ .@@& (@@( @@@. @@@% &@@( @@@, &@@@. @@@* .@@@. ") print(" &, &@@@ #@@@. ,@@@, (@@( ,&@@@* ,@@@& .@@@@ @@@, (@@@/ #@@@* @@@# ") print(",@@@@@@@@( (@@@@@@@@% (@@@@@@@@@( #@@@@@@@@@, @@@, ,@@@% ,@@@@@@@@@. \n ") print("To start game input:") print(" r - to load random puzzle:") print(" 1 - to load chart nr 1:") print(" 2 - to load chart nr 2:") # print(" 3 - to load chart nr 3:") choice = input("Input here: ") print("\n\n\n\n") s = 0 if choice == "R" or choice == "r": listaSudoku = [sudoku1, sudoku2, sudoku3] sudoku_number = randint(0, 2) print("Plansza nr:", sudoku_number) s = sudoku_number sudoku = copy.deepcopy(listaSudoku[sudoku_number]) elif int(choice) == 1: s = 1 sudoku = copy.deepcopy(sudoku1) elif int(choice) == 2: s = 2 sudoku = copy.deepcopy(sudoku2) elif int(choice) == 3: s = 3 sudoku = copy.deepcopy(sudoku3) while True: # prints Sudoku until is solved # print("Your sudoku to solve:") printSudoku() print("\nInput 3 numbers in format a b c, np. 4 5 8") print(" a - row number") print(" b - column number ") print(" c - value") # vprint(" r - reset chart to start\n ") x = input("Input a b c: ") print("") numbers = " 0123456789" # conditions of entering the numbers ! if (len(x) != 5) or (str(x[0]) not in numbers) or (str(x[2]) not in numbers) or ( str(x[4]) not in numbers) or (str(x[1]) != " ") or (str(x[3]) != " "): if x == "r": # reset if s == 1: sudoku = copy.deepcopy(sudoku1) elif s == 2: sudoku = copy.deepcopy(sudoku2) elif s == 3: sudoku = copy.deepcopy(sudoku3) elif x == "h": # show: print(sudoku) print(sudoku1) else: print("Error - wrong number format \n ") continue else: sudoku[int(x[0])-1][int(x[2])-1] = int(x[4]) column1 = 0 column2 = 0 try: # check if sudoku is solved i = 0 list = [] while i < 9: # check are all column == 45 column = 0 for item in sudoku: column = column + item[i] list.append(column) i += 1 is45 = 0 # check if sudoku is solved for listElement in list: if listElement == 45: is45 = is45 + 1 # i = 0 for item in sudoku: if sum(item) == 45 and is45 == 9: i = i + 1 if i == 9: printSudoku() print(" @@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print(" @@@@@@@@@@ YOU WIN @@@@@@@@@@") print(" @@@@@@@@@@@@@@@@@@@@@@@@@@@@@") break except TypeError: print()
8f4065d632706b252e9aaa5aef0f380f65fed859
57c38487a6a689318c960fa7d6b0185f372241bc
/presalytics_ooxml_automation/models/theme_effect_map.py
d5e94240d7206cc938862efbf1be434f6ab396ab
[ "MIT" ]
permissive
presalytics/ooxml-automation-python-client
2c88bae455b7e567ebdb6a4ea106bbdcd192ac47
fa6100eef1743e43b4d25b3faac79d39fe32c9d7
refs/heads/master
2020-06-05T23:42:32.964361
2019-12-27T22:51:40
2019-12-27T22:51:40
192,575,331
0
0
null
null
null
null
UTF-8
Python
false
false
4,626
py
# coding: utf-8 """ OOXML Automation This API helps users convert Excel and Powerpoint documents into rich, live dashboards and stories. # noqa: E501 The version of the OpenAPI document: 0.1.0-no-tags Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from presalytics_ooxml_automation.configuration import Configuration class ThemeEffectMap(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'theme_id': 'str', 'intensity_id': 'int', 'id': 'str' } attribute_map = { 'theme_id': 'themeId', 'intensity_id': 'intensityId', 'id': 'id' } def __init__(self, theme_id=None, intensity_id=None, id=None, local_vars_configuration=None): # noqa: E501 """ThemeEffectMap - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._theme_id = None self._intensity_id = None self._id = None self.discriminator = None self.theme_id = theme_id if intensity_id is not None: self.intensity_id = intensity_id if id is not None: self.id = id @property def theme_id(self): """Gets the theme_id of this ThemeEffectMap. # noqa: E501 :return: The theme_id of this ThemeEffectMap. # noqa: E501 :rtype: str """ return self._theme_id @theme_id.setter def theme_id(self, theme_id): """Sets the theme_id of this ThemeEffectMap. :param theme_id: The theme_id of this ThemeEffectMap. # noqa: E501 :type: str """ self._theme_id = theme_id @property def intensity_id(self): """Gets the intensity_id of this ThemeEffectMap. # noqa: E501 :return: The intensity_id of this ThemeEffectMap. # noqa: E501 :rtype: int """ return self._intensity_id @intensity_id.setter def intensity_id(self, intensity_id): """Sets the intensity_id of this ThemeEffectMap. :param intensity_id: The intensity_id of this ThemeEffectMap. # noqa: E501 :type: int """ self._intensity_id = intensity_id @property def id(self): """Gets the id of this ThemeEffectMap. # noqa: E501 :return: The id of this ThemeEffectMap. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ThemeEffectMap. :param id: The id of this ThemeEffectMap. # noqa: E501 :type: str """ self._id = id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ThemeEffectMap): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ThemeEffectMap): return True return self.to_dict() != other.to_dict()
43d3b7fcd74fe33c44b8d93e53d04867f5334898
04803c70bb97012b7d500a177ac0240fb2ddbe38
/1heptane/pdep/network4244_1.py
5145107f893228a8e18edf49ec3b8ccbfc48d9cc
[]
no_license
shenghuiqin/chpd
735e0415f6688d88579fc935459c1b0f53596d1d
396ba54629036e3f2be0b3fabe09b78c90d56939
refs/heads/master
2023-03-01T23:29:02.118150
2019-10-05T04:02:23
2019-10-05T04:02:23
192,084,217
0
0
null
2019-06-18T18:33:13
2019-06-15T13:52:28
HTML
UTF-8
Python
false
false
84,283
py
species( label = 'C=C([CH]C)C[CH]C(24171)', structure = SMILES('[CH2]C(=CC)C[CH]C'), E0 = (230.563,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,357.285,2038.33],'cm^-1')), HinderedRotor(inertia=(0.0814701,'amu*angstrom^2'), symmetry=1, barrier=(7.37999,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0814702,'amu*angstrom^2'), symmetry=1, barrier=(7.37999,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0013206,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0814701,'amu*angstrom^2'), symmetry=1, barrier=(7.37998,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.526491,'amu*angstrom^2'), symmetry=1, barrier=(47.6916,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.840817,0.0668233,-3.93337e-05,1.17465e-08,-1.46239e-12,27845.5,29.2386], Tmin=(100,'K'), Tmax=(1751.26,'K')), NASAPolynomial(coeffs=[12.8576,0.0393763,-1.58248e-05,2.79727e-09,-1.84852e-13,23636.5,-35.4691], Tmin=(1751.26,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(230.563,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJC) + radical(Allyl_P)"""), ) species( label = 'C3H6(72)', structure = SMILES('C=CC'), E0 = (5.9763,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.497558,'amu*angstrom^2'), symmetry=1, barrier=(11.4398,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (42.0797,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2218.31,'J/mol'), sigma=(4.982,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=1.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.31912,0.00817959,3.34736e-05,-4.36194e-08,1.58213e-11,749.325,9.54025], Tmin=(100,'K'), Tmax=(983.754,'K')), NASAPolynomial(coeffs=[5.36755,0.0170743,-6.35108e-06,1.1662e-09,-8.2762e-14,-487.138,-4.54468], Tmin=(983.754,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(5.9763,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(203.705,'J/(mol*K)'), label="""C3H6""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = 'CH3CHCCH2(18175)', structure = SMILES('C=C=CC'), E0 = (145.615,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,540,610,2055,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.759584,'amu*angstrom^2'), symmetry=1, barrier=(17.4643,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2996.71,'J/mol'), sigma=(5.18551,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=468.08 K, Pc=48.77 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.74635,0.0218189,8.22353e-06,-2.14768e-08,8.55624e-12,17563.6,12.7381], Tmin=(100,'K'), Tmax=(1025.6,'K')), NASAPolynomial(coeffs=[6.82078,0.0192338,-7.45622e-06,1.36536e-09,-9.53195e-14,16028,-10.4333], Tmin=(1025.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(145.615,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(228.648,'J/(mol*K)'), label="""CH3CHCCH2""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C1([CH]C)CC1C(24224)', structure = SMILES('[CH2]C1([CH]C)CC1C'), E0 = (316.349,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.968205,0.0489647,2.86241e-05,-6.7546e-08,2.77792e-11,38172.7,27.7912], Tmin=(100,'K'), Tmax=(1002.45,'K')), NASAPolynomial(coeffs=[15.0332,0.0350469,-1.37018e-05,2.60034e-09,-1.88281e-13,33232.3,-50.6754], Tmin=(1002.45,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(316.349,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsCs) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclopropane) + radical(Cs_S) + radical(Neopentyl)"""), ) species( label = 'H(3)', structure = SMILES('[H]'), E0 = (211.792,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (1.00794,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1205.6,'J/mol'), sigma=(2.05,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,9.24385e-15,-1.3678e-17,6.66185e-21,-1.00107e-24,25472.7,-0.459566], Tmin=(100,'K'), Tmax=(3459.6,'K')), NASAPolynomial(coeffs=[2.5,9.20456e-12,-3.58608e-15,6.15199e-19,-3.92042e-23,25472.7,-0.459566], Tmin=(3459.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(211.792,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""H""", comment="""Thermo library: BurkeH2O2"""), ) species( label = '[CH2]C(C=CC)=CC(24268)', structure = SMILES('[CH2]C(C=CC)=CC'), E0 = (135.779,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3100,440,815,1455,1000,2995,3010,3025,975,987.5,1000,1300,1337.5,1375,400,450,500,1630,1655,1680,180],'cm^-1')), HinderedRotor(inertia=(0.729417,'amu*angstrom^2'), symmetry=1, barrier=(16.7707,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729494,'amu*angstrom^2'), symmetry=1, barrier=(16.7725,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729468,'amu*angstrom^2'), symmetry=1, barrier=(16.7719,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729518,'amu*angstrom^2'), symmetry=1, barrier=(16.7731,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.465196,0.0665121,-2.88623e-05,-8.26848e-09,7.50332e-12,16467.4,25.1769], Tmin=(100,'K'), Tmax=(1031.76,'K')), NASAPolynomial(coeffs=[14.9174,0.0329066,-1.26059e-05,2.29195e-09,-1.59489e-13,12291.6,-50.7825], Tmin=(1031.76,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(135.779,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + radical(Allyl_P)"""), ) species( label = 'C=CCC(=C)[CH]C(24175)', structure = SMILES('[CH2]C(=CC)CC=C'), E0 = (165.168,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2995,3025,975,1000,1300,1375,400,500,1630,1680,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,978.543],'cm^-1')), HinderedRotor(inertia=(0.075462,'amu*angstrom^2'), symmetry=1, barrier=(1.73502,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.754747,'amu*angstrom^2'), symmetry=1, barrier=(17.3531,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.754909,'amu*angstrom^2'), symmetry=1, barrier=(17.3568,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.75496,'amu*angstrom^2'), symmetry=1, barrier=(17.358,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.681576,0.0618448,-2.07951e-05,-1.24754e-08,7.90273e-12,19994.1,27.5811], Tmin=(100,'K'), Tmax=(1063.47,'K')), NASAPolynomial(coeffs=[13.5977,0.0351299,-1.39558e-05,2.57106e-09,-1.79378e-13,16010.5,-41.3398], Tmin=(1063.47,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(165.168,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P)"""), ) species( label = 'C=[C][CH]C(18176)', structure = SMILES('[CH2][C]=CC'), E0 = (361.056,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.352622,'amu*angstrom^2'), symmetry=1, barrier=(8.10748,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.828631,'amu*angstrom^2'), symmetry=1, barrier=(19.0519,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.42015,0.030446,-1.69076e-05,4.64684e-09,-5.12013e-13,43485.7,14.8304], Tmin=(100,'K'), Tmax=(2065.83,'K')), NASAPolynomial(coeffs=[10.7464,0.014324,-5.20136e-06,8.69079e-10,-5.48385e-14,40045.6,-31.3799], Tmin=(2065.83,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(361.056,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(274.378,'J/(mol*K)'), comment="""Thermo library: DFT_QCI_thermo + radical(Cds_S) + radical(Allyl_P)"""), ) species( label = 'C3H6(T)(143)', structure = SMILES('[CH2][CH]C'), E0 = (284.865,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000],'cm^-1')), HinderedRotor(inertia=(0.238389,'amu*angstrom^2'), symmetry=1, barrier=(5.48103,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00909639,'amu*angstrom^2'), symmetry=1, barrier=(22.1005,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (42.0797,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.93778,0.0190991,4.26842e-06,-1.44873e-08,5.74941e-12,34303.2,12.9695], Tmin=(100,'K'), Tmax=(1046.81,'K')), NASAPolynomial(coeffs=[5.93909,0.0171892,-6.69152e-06,1.21546e-09,-8.39795e-14,33151.2,-4.14888], Tmin=(1046.81,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(284.865,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(199.547,'J/(mol*K)'), label="""C3H6(T)""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C([CH]CC)=CC(24235)', structure = SMILES('[CH2]C([CH]CC)=CC'), E0 = (177.229,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.550561,0.0647337,-2.2494e-05,-1.02113e-08,6.70686e-12,21449.3,26.446], Tmin=(100,'K'), Tmax=(1097.32,'K')), NASAPolynomial(coeffs=[13.2783,0.0390642,-1.57369e-05,2.89635e-09,-2.00968e-13,17408.2,-41.8261], Tmin=(1097.32,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(177.229,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_S) + radical(Allyl_P)"""), ) species( label = '[CH2]CCC([CH2])=CC(24269)', structure = SMILES('[CH2]CCC([CH2])=CC'), E0 = (241.363,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,350,440,435,1725,1972.66,4000],'cm^-1')), HinderedRotor(inertia=(0.159683,'amu*angstrom^2'), symmetry=1, barrier=(9.37025,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.49658,'amu*angstrom^2'), symmetry=1, barrier=(29.1363,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.159684,'amu*angstrom^2'), symmetry=1, barrier=(9.37009,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.496523,'amu*angstrom^2'), symmetry=1, barrier=(29.1365,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.496531,'amu*angstrom^2'), symmetry=1, barrier=(29.1364,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.187715,0.0727305,-4.74989e-05,1.57475e-08,-2.11977e-12,29175.8,30.6649], Tmin=(100,'K'), Tmax=(1716.14,'K')), NASAPolynomial(coeffs=[17.3493,0.03273,-1.25364e-05,2.16563e-09,-1.41227e-13,23285.4,-61.3985], Tmin=(1716.14,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(241.363,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(RCCJ)"""), ) species( label = 'C[CH][CH]C(C)=CC(24270)', structure = SMILES('C[CH]C=C(C)[CH]C'), E0 = (167.977,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.82433,0.0581713,-7.43779e-06,-2.31978e-08,1.06492e-11,20327.2,24.7437], Tmin=(100,'K'), Tmax=(1080.15,'K')), NASAPolynomial(coeffs=[12.103,0.0405352,-1.6457e-05,3.05113e-09,-2.1296e-13,16483,-37.0552], Tmin=(1080.15,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(167.977,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_S) + radical(Allyl_S)"""), ) species( label = 'C[C]=C(C)C[CH]C(24271)', structure = SMILES('C[C]=C(C)C[CH]C'), E0 = (316.905,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,3025,407.5,1350,352.5,2750,2762.5,2775,2787.5,2800,2812.5,2825,2837.5,2850,1350,1380,1410,1440,1470,1500,700,750,800,1000,1050,1100,1350,1375,1400,900,1000,1100,1685,370,350,440,435,1725,226.947,2510.41],'cm^-1')), HinderedRotor(inertia=(0.00327337,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202056,'amu*angstrom^2'), symmetry=1, barrier=(7.38475,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202063,'amu*angstrom^2'), symmetry=1, barrier=(7.38462,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202085,'amu*angstrom^2'), symmetry=1, barrier=(7.38462,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202084,'amu*angstrom^2'), symmetry=1, barrier=(7.38457,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.02572,0.0541081,3.51348e-05,-1.85085e-07,1.69623e-10,38174.7,25.4701], Tmin=(100,'K'), Tmax=(419.643,'K')), NASAPolynomial(coeffs=[3.82194,0.0538254,-2.40443e-05,4.55016e-09,-3.16869e-13,37875.6,16.5975], Tmin=(419.643,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(316.905,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = '[CH2]C(=[C]C)CCC(24272)', structure = SMILES('[CH2]C(=[C]C)CCC'), E0 = (273.958,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3100,440,815,1455,1000,350,440,435,1725,248.252,248.351],'cm^-1')), HinderedRotor(inertia=(0.00273459,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00273508,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.132651,'amu*angstrom^2'), symmetry=1, barrier=(5.80247,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.295917,'amu*angstrom^2'), symmetry=1, barrier=(12.9452,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.483631,'amu*angstrom^2'), symmetry=1, barrier=(21.1565,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.524652,0.0721738,-4.79101e-05,1.65335e-08,-2.37732e-12,33077.7,28.115], Tmin=(100,'K'), Tmax=(1567.7,'K')), NASAPolynomial(coeffs=[13.7461,0.0384395,-1.56328e-05,2.80758e-09,-1.88477e-13,28932.3,-41.6152], Tmin=(1567.7,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(273.958,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Cds_S)"""), ) species( label = 'C=C[C](C)C[CH]C(19167)', structure = SMILES('C=C[C](C)C[CH]C'), E0 = (230.593,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,360,370,350,2750,2850,1437.5,1250,1305,750,350,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.892072,0.0600801,-2.42405e-05,-2.45853e-10,1.86411e-12,27852.5,28.7245], Tmin=(100,'K'), Tmax=(1266.31,'K')), NASAPolynomial(coeffs=[10.3481,0.0418611,-1.64597e-05,2.92328e-09,-1.95921e-13,24523.5,-22.8164], Tmin=(1266.31,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(230.593,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_T) + radical(RCCJC)"""), ) species( label = '[CH2][CH]CC(C)=CC(24273)', structure = SMILES('[CH2][CH]CC(C)=CC'), E0 = (284.31,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,237.749,2078.8],'cm^-1')), HinderedRotor(inertia=(0.00298216,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156111,'amu*angstrom^2'), symmetry=1, barrier=(6.26303,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00298224,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156122,'amu*angstrom^2'), symmetry=1, barrier=(6.26291,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.15611,'amu*angstrom^2'), symmetry=1, barrier=(6.26313,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.30307,0.064992,-4.06959e-05,1.49569e-08,-2.66661e-12,34286.8,29.0938], Tmin=(100,'K'), Tmax=(1129.12,'K')), NASAPolynomial(coeffs=[5.15778,0.0513364,-2.25549e-05,4.246e-09,-2.95091e-13,33416.3,10.029], Tmin=(1129.12,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(284.31,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = '[CH2][C](C=C)CCC(3296)', structure = SMILES('[CH2]C=C([CH2])CCC'), E0 = (187.616,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.381084,0.0671752,-2.21408e-05,-1.56763e-08,9.82109e-12,22706,28.4379], Tmin=(100,'K'), Tmax=(1040.54,'K')), NASAPolynomial(coeffs=[14.9511,0.0364389,-1.42653e-05,2.62039e-09,-1.83185e-13,18305.7,-49.0072], Tmin=(1040.54,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(187.616,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'C[CH]C[C]1CC1C(24274)', structure = SMILES('C[CH]C[C]1CC1C'), E0 = (308.738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.11982,0.0560976,-1.86944e-05,-2.77089e-09,2.09126e-12,37242,29.5612], Tmin=(100,'K'), Tmax=(1354.62,'K')), NASAPolynomial(coeffs=[9.83964,0.0424915,-1.70734e-05,3.04844e-09,-2.03921e-13,33765.6,-19.2655], Tmin=(1354.62,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(308.738,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclopropane) + radical(RCCJC) + radical(Tertalkyl)"""), ) species( label = '[CH2][C]1CC(C)C1C(24275)', structure = SMILES('[CH2][C]1CC(C)C1C'), E0 = (305.913,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.33424,0.0452312,2.59334e-05,-5.66379e-08,2.26382e-11,36900.5,26.8575], Tmin=(100,'K'), Tmax=(999.267,'K')), NASAPolynomial(coeffs=[10.3263,0.0410187,-1.54512e-05,2.8007e-09,-1.95369e-13,33516.7,-24.4571], Tmin=(999.267,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(305.913,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(444.824,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclobutane) + radical(Tertalkyl) + radical(Isobutyl)"""), ) species( label = 'CC=CC(C)=CC(24276)', structure = SMILES('CC=CC(C)=CC'), E0 = (-15.7206,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.366519,0.0700565,-4.05138e-05,8.23894e-09,5.44902e-13,-1751.78,25.2579], Tmin=(100,'K'), Tmax=(1181.85,'K')), NASAPolynomial(coeffs=[13.897,0.0369024,-1.44776e-05,2.6018e-09,-1.76919e-13,-5832.77,-46.0144], Tmin=(1181.85,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-15.7206,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H)"""), ) species( label = 'C=CCC(C)=CC(24277)', structure = SMILES('C=CCC(C)=CC'), E0 = (13.6692,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.601563,0.0651294,-3.13621e-05,2.39412e-09,1.73181e-12,1774.23,27.598], Tmin=(100,'K'), Tmax=(1226.09,'K')), NASAPolynomial(coeffs=[12.8372,0.0387397,-1.56269e-05,2.8372e-09,-1.93405e-13,-2242.99,-38.0726], Tmin=(1226.09,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(13.6692,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsHH)"""), ) species( label = 'CH2(S)(23)', structure = SMILES('[CH2]'), E0 = (419.862,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1369.36,2789.41,2993.36],'cm^-1')), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[4.19195,-0.00230793,8.0509e-06,-6.60123e-09,1.95638e-12,50484.3,-0.754589], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.28556,0.00460255,-1.97412e-06,4.09548e-10,-3.34695e-14,50922.4,8.67684], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(419.862,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2(S)""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = '[CH2]C(=C)C[CH]C(24278)', structure = SMILES('[CH2]C(=C)C[CH]C'), E0 = (266.588,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,1948.01],'cm^-1')), HinderedRotor(inertia=(0.0680026,'amu*angstrom^2'), symmetry=1, barrier=(27.1181,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(5.20297,'amu*angstrom^2'), symmetry=1, barrier=(119.627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.278491,'amu*angstrom^2'), symmetry=1, barrier=(6.40305,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.010536,'amu*angstrom^2'), symmetry=1, barrier=(119.627,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (82.1436,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.07974,0.0556446,-3.26018e-05,9.62163e-09,-1.15636e-12,32175.6,25.9137], Tmin=(100,'K'), Tmax=(1886.95,'K')), NASAPolynomial(coeffs=[14.3542,0.0275054,-1.02333e-05,1.71884e-09,-1.09339e-13,27165.9,-46.5569], Tmin=(1886.95,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(266.588,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(365.837,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJC) + radical(Allyl_P)"""), ) species( label = '[CH2]C(C)C(=C)[CH]C(24172)', structure = SMILES('[CH2]C(=CC)C([CH2])C'), E0 = (237.411,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,3010,987.5,1337.5,450,1655,1380,1390,370,380,2900,435,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,4000],'cm^-1')), HinderedRotor(inertia=(0.0358237,'amu*angstrom^2'), symmetry=1, barrier=(17.0825,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(3.92092,'amu*angstrom^2'), symmetry=1, barrier=(90.1497,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.742218,'amu*angstrom^2'), symmetry=1, barrier=(17.065,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.172372,'amu*angstrom^2'), symmetry=1, barrier=(3.96316,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(3.93149,'amu*angstrom^2'), symmetry=1, barrier=(90.3926,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(3479.64,'J/mol'), sigma=(6.29859,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=543.51 K, Pc=31.6 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.441935,0.0682285,-3.06307e-05,-5.44961e-09,6.38237e-12,28690.7,29.4733], Tmin=(100,'K'), Tmax=(1022.38,'K')), NASAPolynomial(coeffs=[13.4828,0.0369601,-1.37359e-05,2.43177e-09,-1.6594e-13,24991.8,-38.7786], Tmin=(1022.38,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(237.411,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + longDistanceInteraction_noncyclic(CdCs-ST) + group(Cds-CdsCsH) + radical(Isobutyl) + radical(Allyl_P)"""), ) species( label = 'C[CH]CC[C]=CC(19228)', structure = SMILES('C[CH]CC[C]=CC'), E0 = (332.18,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3025,407.5,1350,352.5,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.26714,0.0653856,-4.37282e-05,1.92202e-08,-4.37429e-12,40046,29.4112], Tmin=(100,'K'), Tmax=(906.265,'K')), NASAPolynomial(coeffs=[4.00506,0.0533011,-2.37267e-05,4.50669e-09,-3.1546e-13,39549.7,16.4718], Tmin=(906.265,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(332.18,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(RCCJC)"""), ) species( label = 'CC=C1CC(C)C1(24256)', structure = SMILES('CC=C1CC(C)C1'), E0 = (31.5064,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[10.4891,-0.0122365,0.000145495,-1.38082e-07,3.18834e-11,3441.47,-17.0613], Tmin=(100,'K'), Tmax=(1694.81,'K')), NASAPolynomial(coeffs=[70.7806,0.0429634,-7.81564e-05,1.86507e-08,-1.3786e-12,-45359.2,-423.421], Tmin=(1694.81,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(31.5064,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(448.981,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + ring(methylenecyclobutane)"""), ) species( label = 'CHCH3(T)(95)', structure = SMILES('[CH]C'), E0 = (343.893,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2800,2850,1350,1500,750,1050,1375,1000,592.414,4000],'cm^-1')), HinderedRotor(inertia=(0.00438699,'amu*angstrom^2'), symmetry=1, barrier=(26.7685,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (28.0532,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.82363,-0.000909515,3.2138e-05,-3.7348e-08,1.3309e-11,41371.4,7.10948], Tmin=(100,'K'), Tmax=(960.812,'K')), NASAPolynomial(coeffs=[4.30487,0.00943069,-3.27559e-06,5.95121e-10,-4.27307e-14,40709.1,1.84202], Tmin=(960.812,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(343.893,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(128.874,'J/(mol*K)'), label="""CHCH3(T)""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C([CH2])=CC(24219)', structure = SMILES('[CH2]C([CH2])=CC'), E0 = (234.041,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.0177712,'amu*angstrom^2'), symmetry=1, barrier=(20.2255,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.87837,'amu*angstrom^2'), symmetry=1, barrier=(20.1954,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(4.61389,'amu*angstrom^2'), symmetry=1, barrier=(106.082,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (68.117,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.80244,0.0390483,-7.97741e-07,-2.45997e-08,1.16044e-11,28236,18.1778], Tmin=(100,'K'), Tmax=(1004.18,'K')), NASAPolynomial(coeffs=[10.9852,0.023482,-8.93213e-06,1.6381e-09,-1.15442e-13,25332.4,-31.4366], Tmin=(1004.18,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(234.041,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(295.164,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'CH2(19)', structure = SMILES('[CH2]'), E0 = (381.563,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1032.72,2936.3,3459],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.8328,0.000224446,4.68033e-06,-6.04743e-09,2.59009e-12,45920.8,1.40666], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[3.16229,0.00281798,-7.56235e-07,5.05446e-11,5.65236e-15,46099.1,4.77656], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(381.563,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = 'C[CH]C[C]=CC(24192)', structure = SMILES('C[CH]C[C]=CC'), E0 = (355.96,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,3010,987.5,1337.5,450,1655,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3025,407.5,1350,352.5,272.37,2221.18],'cm^-1')), HinderedRotor(inertia=(0.00227236,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148422,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148424,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148422,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (82.1436,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.25446,0.047533,-2.24803e-05,4.72442e-09,-3.81653e-13,42864.6,23.5426], Tmin=(100,'K'), Tmax=(2781.8,'K')), NASAPolynomial(coeffs=[19.681,0.022476,-8.96952e-06,1.48664e-09,-9.0685e-14,33168.8,-78.3599], Tmin=(2781.8,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(355.96,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(365.837,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(RCCJC)"""), ) species( label = 'C=CC(=C)C[CH]C(19164)', structure = SMILES('C=CC(=C)C[CH]C'), E0 = (204.351,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3000,3050,3100,1330,1430,900,1050,1000,1050,1600,1700,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,325.967,325.97,325.971],'cm^-1')), HinderedRotor(inertia=(0.0234883,'amu*angstrom^2'), symmetry=1, barrier=(1.77106,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0234892,'amu*angstrom^2'), symmetry=1, barrier=(1.77113,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.194384,'amu*angstrom^2'), symmetry=1, barrier=(14.6567,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.19437,'amu*angstrom^2'), symmetry=1, barrier=(14.6566,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.607111,0.0653555,-3.42158e-05,2.15645e-09,2.88851e-12,24707.8,28.6688], Tmin=(100,'K'), Tmax=(1085.78,'K')), NASAPolynomial(coeffs=[13.0148,0.0349811,-1.34394e-05,2.40786e-09,-1.64502e-13,21109.4,-36.3749], Tmin=(1085.78,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(204.351,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH) + radical(RCCJC)"""), ) species( label = '[CH2]CC(=C)C[CH]C(24279)', structure = SMILES('[CH2]CC(=C)C[CH]C'), E0 = (297.69,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3000,3100,440,815,1455,1000,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.924397,0.0658228,-3.85648e-05,1.14822e-08,-1.42991e-12,35915.3,31.5477], Tmin=(100,'K'), Tmax=(1740.2,'K')), NASAPolynomial(coeffs=[12.3144,0.039642,-1.59979e-05,2.8369e-09,-1.87928e-13,31951,-29.7127], Tmin=(1740.2,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(297.69,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = 'C=C([CH][CH]C)CC(24280)', structure = SMILES('[CH2]C(=C[CH]C)CC'), E0 = (178.364,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.6455,0.0607146,-7.39766e-06,-2.83229e-08,1.36484e-11,21584.3,26.7698], Tmin=(100,'K'), Tmax=(1035.37,'K')), NASAPolynomial(coeffs=[13.8717,0.037755,-1.48994e-05,2.75541e-09,-1.93573e-13,17337.3,-44.7818], Tmin=(1035.37,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(178.364,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_S)"""), ) species( label = '[CH]=C(CC)C[CH]C(24281)', structure = SMILES('[CH]=C(CC)C[CH]C'), E0 = (339.54,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3025,407.5,1350,352.5,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3120,650,792.5,1650,350,440,435,1725,287.341,1535.51],'cm^-1')), HinderedRotor(inertia=(0.0020416,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00203636,'amu*angstrom^2'), symmetry=1, barrier=(0.119657,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.153541,'amu*angstrom^2'), symmetry=1, barrier=(9.05865,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.154017,'amu*angstrom^2'), symmetry=1, barrier=(9.06246,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.155556,'amu*angstrom^2'), symmetry=1, barrier=(9.07373,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.883161,0.0678438,-4.23764e-05,1.39494e-08,-1.95975e-12,40949.3,30.3095], Tmin=(100,'K'), Tmax=(1550.14,'K')), NASAPolynomial(coeffs=[11.0007,0.0417364,-1.71136e-05,3.08472e-09,-2.07548e-13,37812.6,-22.9371], Tmin=(1550.14,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(339.54,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(Cds_P) + radical(RCCJC)"""), ) species( label = '[CH]=C([CH]C)CCC(24282)', structure = SMILES('[CH]C(=CC)CCC'), E0 = (255.302,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,200,800,1066.67,1333.33,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.197486,0.0737448,-4.23702e-05,1.19747e-08,-1.37166e-12,30850.9,29.6804], Tmin=(100,'K'), Tmax=(1964.11,'K')), NASAPolynomial(coeffs=[18.3382,0.0368005,-1.41557e-05,2.39799e-09,-1.52706e-13,23724.9,-70.0837], Tmin=(1964.11,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(255.302,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(AllylJ2_triplet)"""), ) species( label = '[CH2][CH]CC(=C)CC(24283)', structure = SMILES('[CH2][CH]CC(=C)CC'), E0 = (297.69,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3000,3100,440,815,1455,1000,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.924397,0.0658228,-3.85648e-05,1.14822e-08,-1.42991e-12,35915.3,31.5477], Tmin=(100,'K'), Tmax=(1740.2,'K')), NASAPolynomial(coeffs=[12.3144,0.039642,-1.59979e-05,2.8369e-09,-1.87928e-13,31951,-29.7127], Tmin=(1740.2,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(297.69,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = 'C[CH][C]1CC(C)C1(24284)', structure = SMILES('C[CH][C]1CC(C)C1'), E0 = (304.414,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.43715,0.0453823,1.58051e-05,-3.8158e-08,1.38124e-11,36713.9,28.245], Tmin=(100,'K'), Tmax=(1112.49,'K')), NASAPolynomial(coeffs=[8.60969,0.045401,-1.90173e-05,3.56204e-09,-2.4894e-13,33521,-14.3007], Tmin=(1112.49,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(304.414,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(444.824,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclobutane) + radical(Cs_S) + radical(Tertalkyl)"""), ) species( label = 'C=C(C=CC)CC(24285)', structure = SMILES('C=C(C=CC)CC'), E0 = (-2.34046,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.471798,0.065208,-1.89932e-05,-1.92017e-08,1.1352e-11,-143.675,25.9787], Tmin=(100,'K'), Tmax=(1018.92,'K')), NASAPolynomial(coeffs=[14.8445,0.0350786,-1.33469e-05,2.43062e-09,-1.69787e-13,-4437.52,-50.3286], Tmin=(1018.92,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-2.34046,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH)"""), ) species( label = 'C=CCC(=C)CC(24286)', structure = SMILES('C=CCC(=C)CC'), E0 = (27.0493,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.690396,0.0605209,-1.08892e-05,-2.34066e-08,1.17276e-11,3382.97,28.3746], Tmin=(100,'K'), Tmax=(1044.52,'K')), NASAPolynomial(coeffs=[13.4765,0.0373792,-1.47395e-05,2.7195e-09,-1.90466e-13,-696.74,-40.6109], Tmin=(1044.52,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(27.0493,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=CC(=C)CCC(3302)', structure = SMILES('C=CC(=C)CCC'), E0 = (9.90489,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.429571,0.064938,-1.42316e-05,-2.68111e-08,1.46756e-11,1331.8,26.5681], Tmin=(100,'K'), Tmax=(999.682,'K')), NASAPolynomial(coeffs=[15.8208,0.033571,-1.2507e-05,2.27564e-09,-1.59971e-13,-3255.39,-55.2328], Tmin=(999.682,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(9.90489,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=[C]C(C)C[CH]C(19169)', structure = SMILES('C=[C]C(C)C[CH]C'), E0 = (336.454,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,3025,407.5,1350,352.5,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,1380,1390,370,380,2900,435,2750,2850,1437.5,1250,1305,750,350,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.0597,0.0647849,-3.73125e-05,1.09539e-08,-1.35798e-12,40570.8,30.3163], Tmin=(100,'K'), Tmax=(1715.74,'K')), NASAPolynomial(coeffs=[11.094,0.0413914,-1.68606e-05,3.00709e-09,-2.00057e-13,37127.5,-23.5102], Tmin=(1715.74,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(336.454,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = 'C=C1CC(C)C1C(24267)', structure = SMILES('C=C1CC(C)C1C'), E0 = (35.7798,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[9.99122,-0.0100132,0.000144281,-1.38728e-07,3.23306e-11,3980.95,-16.4526], Tmin=(100,'K'), Tmax=(1679.8,'K')), NASAPolynomial(coeffs=[69.3651,0.0437352,-7.79586e-05,1.86251e-08,-1.37959e-12,-43496.9,-415.639], Tmin=(1679.8,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(35.7798,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(448.981,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + ring(methylenecyclobutane)"""), ) species( label = 'C=[C]C[CH]C(2608)', structure = SMILES('C=[C]C[CH]C'), E0 = (391.986,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,2950,3100,1380,975,1025,1650,1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3025,407.5,1350,352.5,328.839,1764.65],'cm^-1')), HinderedRotor(inertia=(0.070318,'amu*angstrom^2'), symmetry=1, barrier=(5.38273,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0701107,'amu*angstrom^2'), symmetry=1, barrier=(5.38037,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0702146,'amu*angstrom^2'), symmetry=1, barrier=(5.38499,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (68.117,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.41566,0.0369675,-1.69643e-05,3.43217e-09,-2.57685e-13,47199.8,21.2179], Tmin=(100,'K'), Tmax=(2427.98,'K')), NASAPolynomial(coeffs=[16.5625,0.0166401,-6.24654e-06,9.9465e-10,-5.87348e-14,39452.1,-61.39], Tmin=(2427.98,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(391.986,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(295.164,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = 'N2', structure = SMILES('N#N'), E0 = (-8.69489,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (28.0135,'amu'), collisionModel = TransportData(shapeIndex=1, epsilon=(810.913,'J/mol'), sigma=(3.621,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(1.76,'angstroms^3'), rotrelaxcollnum=4.0, comment="""PrimaryTransportLibrary"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.61263,-0.00100893,2.49898e-06,-1.43376e-09,2.58636e-13,-1051.1,2.6527], Tmin=(100,'K'), Tmax=(1817.04,'K')), NASAPolynomial(coeffs=[2.9759,0.00164141,-7.19722e-07,1.25378e-10,-7.91526e-15,-1025.84,5.53757], Tmin=(1817.04,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-8.69489,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), label="""N2""", comment="""Thermo library: BurkeH2O2"""), ) species( label = 'Ne', structure = SMILES('[Ne]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (20.1797,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1235.53,'J/mol'), sigma=(3.758e-10,'m'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with fixed Lennard Jones Parameters. This is the fallback method! Try improving transport databases!"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""Ne""", comment="""Thermo library: primaryThermoLibrary"""), ) transitionState( label = 'TS1', E0 = (230.563,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS2', E0 = (316.349,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS3', E0 = (368.728,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS4', E0 = (379.471,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS5', E0 = (379.499,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS6', E0 = (462.507,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS7', E0 = (355.665,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS8', E0 = (393.242,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS9', E0 = (433.138,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS10', E0 = (478.826,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS11', E0 = (318.267,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS12', E0 = (380.38,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS13', E0 = (338.493,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS14', E0 = (308.594,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS15', E0 = (645.922,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS16', E0 = (461.779,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS17', E0 = (355.664,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS18', E0 = (293.963,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS19', E0 = (255.536,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS20', E0 = (686.45,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS21', E0 = (397.346,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS22', E0 = (502.218,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS23', E0 = (238.847,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS24', E0 = (577.934,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS25', E0 = (737.523,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS26', E0 = (416.143,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS27', E0 = (411.495,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS28', E0 = (439.763,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS29', E0 = (484.725,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS30', E0 = (299.61,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS31', E0 = (344.133,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS32', E0 = (355.664,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS33', E0 = (293.963,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS34', E0 = (238.931,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS35', E0 = (238.931,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS36', E0 = (430.928,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS37', E0 = (238.847,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS38', E0 = (735.879,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) reaction( label = 'reaction1', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C3H6(72)', 'CH3CHCCH2(18175)'], transitionState = 'TS1', kinetics = Arrhenius(A=(5e+12,'s^-1'), n=0, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Exact match found for rate rule [RJJ] Euclidian distance = 0 family: 1,4_Linear_birad_scission"""), ) reaction( label = 'reaction2', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2]C1([CH]C)CC1C(24224)'], transitionState = 'TS2', kinetics = Arrhenius(A=(3.36329e+10,'s^-1'), n=0.535608, Ea=(85.7861,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [R4_S_D;doublebond_intra;radadd_intra_csHNd] + [R4_S_D;doublebond_intra_HNd;radadd_intra_cs] for rate rule [R4_S_D;doublebond_intra_HNd;radadd_intra_csHNd] Euclidian distance = 1.0 family: Intra_R_Add_Exocyclic Ea raised from 83.4 to 85.8 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction3', reactants = ['H(3)', '[CH2]C(C=CC)=CC(24268)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS3', kinetics = Arrhenius(A=(0.0272924,'m^3/(mol*s)'), n=2.81111, Ea=(21.1569,'kJ/mol'), T0=(1,'K'), Tmin=(303.03,'K'), Tmax=(2000,'K'), comment="""From training reaction 26 used for Cds-CdH_Cds-CsH;HJ Exact match found for rate rule [Cds-CdH_Cds-CsH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction4', reactants = ['H(3)', 'C=CCC(=C)[CH]C(24175)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS4', kinetics = Arrhenius(A=(3.36e+08,'cm^3/(mol*s)'), n=1.56, Ea=(2.5104,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 9 used for Cds-HH_Cds-CsH;HJ Exact match found for rate rule [Cds-HH_Cds-CsH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction5', reactants = ['C3H6(72)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS5', kinetics = Arrhenius(A=(0.00620445,'m^3/(mol*s)'), n=2.46568, Ea=(12.4666,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Cds-HH_Cds-Cs\H3/H;CJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction6', reactants = ['C3H6(T)(143)', 'CH3CHCCH2(18175)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS6', kinetics = Arrhenius(A=(0.00086947,'m^3/(mol*s)'), n=2.67356, Ea=(32.0272,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Ca_Cds-HH;CJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction7', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2]C([CH]CC)=CC(24235)'], transitionState = 'TS7', kinetics = Arrhenius(A=(1.682e+10,'s^-1'), n=0.35, Ea=(125.102,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 160 used for R2H_S;C_rad_out_H/NonDeC;Cs_H_out_H/Cd Exact match found for rate rule [R2H_S;C_rad_out_H/NonDeC;Cs_H_out_H/Cd] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction8', reactants = ['[CH2]CCC([CH2])=CC(24269)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS8', kinetics = Arrhenius(A=(718000,'s^-1'), n=2.05, Ea=(151.879,'kJ/mol'), T0=(1,'K'), Tmin=(500,'K'), Tmax=(2000,'K'), comment="""From training reaction 147 used for R2H_S;C_rad_out_2H;Cs_H_out_H/NonDeC Exact match found for rate rule [R2H_S;C_rad_out_2H;Cs_H_out_H/NonDeC] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction9', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH][CH]C(C)=CC(24270)'], transitionState = 'TS9', kinetics = Arrhenius(A=(1.09894e+08,'s^-1'), n=1.58167, Ea=(202.575,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3H_SS_2Cd;C_rad_out_2H;XH_out] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction10', reactants = ['C[C]=C(C)C[CH]C(24271)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS10', kinetics = Arrhenius(A=(7.74e+09,'s^-1'), n=1.08, Ea=(161.921,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 198 used for R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H Exact match found for rate rule [R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction11', reactants = ['[CH2]C(=[C]C)CCC(24272)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS11', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_single;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_Cs;Cs_H_out_H/NonDeC] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction12', reactants = ['C=C[C](C)C[CH]C(19167)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS12', kinetics = Arrhenius(A=(800000,'s^-1'), n=1.81, Ea=(149.787,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 101 used for R4H_SDS;C_rad_out_2H;Cs_H_out_2H Exact match found for rate rule [R4H_SDS;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction13', reactants = ['[CH2][CH]CC(C)=CC(24273)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS13', kinetics = Arrhenius(A=(91273.5,'s^-1'), n=1.79, Ea=(54.1828,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5Hall;C_rad_out_2H;Cs_H_out_2H] for rate rule [R5HJ_1;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction14', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2][C](C=C)CCC(3296)'], transitionState = 'TS14', kinetics = Arrhenius(A=(634768,'s^-1'), n=1.77, Ea=(78.0316,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5H_SSMS;C_rad_out_single;Cs_H_out_2H] for rate rule [R5H_SSMS;C_rad_out_H/NonDeC;Cs_H_out_2H] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction15', reactants = ['C3H6(T)(143)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS15', kinetics = Arrhenius(A=(7.46075e+06,'m^3/(mol*s)'), n=0.027223, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Y_rad;Y_rad] Euclidian distance = 0 family: R_Recombination Ea raised from -14.4 to 0 kJ/mol."""), ) reaction( label = 'reaction16', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH]C[C]1CC1C(24274)'], transitionState = 'TS16', kinetics = Arrhenius(A=(3.473e+12,'s^-1'), n=0.247, Ea=(231.216,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R3_D;doublebond_intra_secNd;radadd_intra_cs] for rate rule [R3_D;doublebond_intra_secNd_HNd;radadd_intra_cs2H] Euclidian distance = 1.41421356237 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction17', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2][C]1CC(C)C1C(24275)'], transitionState = 'TS17', kinetics = Arrhenius(A=(5.25757e+07,'s^-1'), n=1.165, Ea=(125.102,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_Cs_HH_D;doublebond_intra;radadd_intra_csHCs] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction18', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['CC=CC(C)=CC(24276)'], transitionState = 'TS18', kinetics = Arrhenius(A=(1.4874e+09,'s^-1'), n=1.045, Ea=(63.4002,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3radExo;Y_rad;XH_Rrad_NDe] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction19', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CCC(C)=CC(24277)'], transitionState = 'TS19', kinetics = Arrhenius(A=(6.37831e+09,'s^-1'), n=0.137, Ea=(24.9733,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5;Y_rad;XH_Rrad] for rate rule [R5radEndo;Y_rad;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction20', reactants = ['CH2(S)(23)', '[CH2]C(=C)C[CH]C(24278)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS20', kinetics = Arrhenius(A=(7.94e+13,'cm^3/(mol*s)','*|/',0.25), n=-0.324, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 4 used for carbene;Cd_pri Exact match found for rate rule [carbene;Cd_pri] Euclidian distance = 0 Multiplied by reaction path degeneracy 4.0 family: 1,2_Insertion_carbene Ea raised from -3.9 to 0 kJ/mol."""), ) reaction( label = 'reaction21', reactants = ['[CH2]C(C)C(=C)[CH]C(24172)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS21', kinetics = Arrhenius(A=(6.55606e+10,'s^-1'), n=0.64, Ea=(159.935,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [cCs(-HC)CJ;CsJ;C] for rate rule [cCs(-HC)CJ;CsJ-HH;C] Euclidian distance = 1.0 family: 1,2_shiftC"""), ) reaction( label = 'reaction22', reactants = ['C[CH]CC[C]=CC(19228)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS22', kinetics = Arrhenius(A=(1.74842e+09,'s^-1'), n=1.084, Ea=(170.038,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [cCsCJ;CdsJ;C] + [cCs(-HH)CJ;CJ;C] for rate rule [cCs(-HH)CJ;CdsJ;C] Euclidian distance = 1.0 family: 1,2_shiftC"""), ) reaction( label = 'reaction23', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['CC=C1CC(C)C1(24256)'], transitionState = 'TS23', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), Tmin=(600,'K'), Tmax=(2000,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_single;Cpri_rad_out_2H] for rate rule [R4_SSS;C_rad_out_H/NonDeC;Cpri_rad_out_2H] Euclidian distance = 2.0 family: Birad_recombination"""), ) reaction( label = 'reaction24', reactants = ['CHCH3(T)(95)', '[CH2]C([CH2])=CC(24219)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS24', kinetics = Arrhenius(A=(2.13464e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [C_rad/H2/Cd;Birad] Euclidian distance = 3.0 Multiplied by reaction path degeneracy 2.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction25', reactants = ['CH2(19)', 'C[CH]C[C]=CC(24192)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS25', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/NonDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction26', reactants = ['H(3)', 'C=CC(=C)C[CH]C(19164)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS26', kinetics = Arrhenius(A=(2.31e+08,'cm^3/(mol*s)'), n=1.64, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 2544 used for Cds-HH_Cds-CdH;HJ Exact match found for rate rule [Cds-HH_Cds-CdH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond Ea raised from -2.0 to 0 kJ/mol."""), ) reaction( label = 'reaction27', reactants = ['[CH2]CC(=C)C[CH]C(24279)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS27', kinetics = Arrhenius(A=(1.72e+06,'s^-1'), n=1.99, Ea=(113.805,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 84 used for R2H_S;C_rad_out_2H;Cs_H_out_H/Cd Exact match found for rate rule [R2H_S;C_rad_out_2H;Cs_H_out_H/Cd] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction28', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C([CH][CH]C)CC(24280)'], transitionState = 'TS28', kinetics = Arrhenius(A=(1.23617e+10,'s^-1'), n=1.04667, Ea=(209.2,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3H_SS_2Cd;C_rad_out_H/NonDeC;XH_out] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction29', reactants = ['[CH]=C(CC)C[CH]C(24281)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS29', kinetics = Arrhenius(A=(1.846e+10,'s^-1'), n=0.74, Ea=(145.185,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 194 used for R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC Exact match found for rate rule [R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction30', reactants = ['[CH]=C([CH]C)CCC(24282)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS30', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction31', reactants = ['[CH2][CH]CC(=C)CC(24283)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS31', kinetics = Arrhenius(A=(262000,'s^-1'), n=1.62, Ea=(46.4424,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5Hall;C_rad_out_2H;Cs_H_out_H/NonDeC] for rate rule [R5HJ_1;C_rad_out_2H;Cs_H_out_H/NonDeC] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction32', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH][C]1CC(C)C1(24284)'], transitionState = 'TS32', kinetics = Arrhenius(A=(5.25757e+07,'s^-1'), n=1.165, Ea=(125.102,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_Cs_HH_D;doublebond_intra;radadd_intra_csHCs] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction33', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C(C=CC)CC(24285)'], transitionState = 'TS33', kinetics = Arrhenius(A=(1.4874e+09,'s^-1'), n=1.045, Ea=(63.4002,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 1 used for R3radExo;Y_rad_NDe;XH_Rrad_NDe Exact match found for rate rule [R3radExo;Y_rad_NDe;XH_Rrad_NDe] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction34', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CCC(=C)CC(24286)'], transitionState = 'TS34', kinetics = Arrhenius(A=(9.63e+09,'s^-1'), n=0.137, Ea=(8.368,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Estimated using template [R5;Y_rad_NDe;XH_Rrad] for rate rule [R5radEndo;Y_rad_NDe;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction35', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CC(=C)CCC(3302)'], transitionState = 'TS35', kinetics = Arrhenius(A=(9.63e+09,'s^-1'), n=0.137, Ea=(8.368,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Estimated using template [R5;Y_rad_NDe;XH_Rrad] for rate rule [R5radEndo;Y_rad_NDe;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction36', reactants = ['C=[C]C(C)C[CH]C(19169)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS36', kinetics = Arrhenius(A=(8.66e+11,'s^-1'), n=0.438, Ea=(94.4747,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 5 used for cCs(-HC)CJ;CdsJ;C Exact match found for rate rule [cCs(-HC)CJ;CdsJ;C] Euclidian distance = 0 family: 1,2_shiftC"""), ) reaction( label = 'reaction37', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C1CC(C)C1C(24267)'], transitionState = 'TS37', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_single;Cpri_rad_out_single] for rate rule [R4_SSS;C_rad_out_H/NonDeC;Cpri_rad_out_H/NonDeC] Euclidian distance = 2.82842712475 family: Birad_recombination"""), ) reaction( label = 'reaction38', reactants = ['CHCH3(T)(95)', 'C=[C]C[CH]C(2608)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS38', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/NonDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) network( label = '4244', isomers = [ 'C=C([CH]C)C[CH]C(24171)', ], reactants = [ ('C3H6(72)', 'CH3CHCCH2(18175)'), ], bathGas = { 'N2': 0.5, 'Ne': 0.5, }, ) pressureDependence( label = '4244', Tmin = (300,'K'), Tmax = (2000,'K'), Tcount = 8, Tlist = ([302.47,323.145,369.86,455.987,609.649,885.262,1353.64,1896.74],'K'), Pmin = (0.01,'bar'), Pmax = (100,'bar'), Pcount = 5, Plist = ([0.0125282,0.0667467,1,14.982,79.8202],'bar'), maximumGrainSize = (0.5,'kcal/mol'), minimumGrainCount = 250, method = 'modified strong collision', interpolationModel = ('Chebyshev', 6, 4), activeKRotor = True, activeJRotor = True, rmgmode = True, )
f7de7c2ef755e5893d687912c0b74ed7148a8d02
6b453d913b1ae6697da738ddae9df013e8128d91
/app/members/urls.py
1a117fa9f25eacf78656a78f5d5d3ef9928e11ec
[]
no_license
moorekwon/instagram
9703ecb1aed460ddec685c0bd06fe0fac3807548
aaeca79f0d2765a24dd780bb12848c2c7b76a009
refs/heads/master
2022-12-12T18:13:37.536048
2020-02-03T08:33:16
2020-02-03T08:33:16
229,711,643
0
0
null
2022-12-08T03:32:50
2019-12-23T08:39:38
Jupyter Notebook
UTF-8
Python
false
false
267
py
from django.urls import path from . import views app_name = 'members' urlpatterns = [ path('login/', views.login_view, name='login'), path('logout/', views.logout_view, name='logout-view'), path('naver-login/', views.naver_login, name='naver-login') ]
4b26d2288fe6cceaed839816ed06bdce9f6e52d8
f0ae65bddedea44b1e66f3d235a901e62afae3f2
/macgyyver_stuff/parse_input.py
9de1a35ebd5d51857f29e74f682675a2370a7704
[]
no_license
Brandon-Valley/my_movie_tools
d0a2ba91cda054c1b68709f1a9082028842e83a1
371742bfeaa0cfa2985ce06a6865f6ae09445029
refs/heads/master
2023-01-10T00:06:48.696103
2022-12-28T14:09:20
2022-12-28T14:09:20
221,057,903
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
import pyperclip INPUT_PATH = 'input.txt' def read_text_file(file_path): with open(file_path, 'r', encoding='utf-8') as text_file: # can throw FileNotFoundError result = tuple(l.rstrip() for l in text_file.readlines()) return result raw_in = read_text_file(INPUT_PATH) print(raw_in) in_str = '' for line in raw_in: in_str += line print(in_str) s_raw_in = in_str.split('"') print(s_raw_in) e_l = [] for elm_num, elm in enumerate(s_raw_in): if elm_num % 2 != 0: e_l.append(elm) print(e_l) pyperclip.copy(str(e_l)) spam = pyperclip.paste()
dfd28d04bd20cdbae0bd324f5eaf1c036da10434
480e33f95eec2e471c563d4c0661784c92396368
/RecoMuon/MuonIdentification/python/me0MuonConverter_cfi.py
83b6632c7cca09219c2dcc76760b07daa2dbaeab
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
98
py
import FWCore.ParameterSet.Config as cms me0MuonConverting = cms.EDProducer("ME0MuonConverter")
724778ba9809a4764fe8fb9db59911050b386395
8329282a8fda056d705c1af6dbcd0de1ed7ca25e
/.history/textutiles/textutiles/views_20210522223732.py
629f8ff15d006894a027b5cc2f0bacbc0ca08e6f
[]
no_license
ritikalohia/Django-beginners-
c069b16867407ef883bb00c6faf4f601921c118a
829e28ab25201853de5c71a10ceff30496afea52
refs/heads/main
2023-05-04T03:34:29.082656
2021-05-22T17:38:21
2021-05-22T17:38:21
369,869,599
0
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
#created from django.http import HttpResponse from django.shortcuts import render def index(request): #params = {'name' : 'Ritika', 'place' : 'Mars'} return render(request, 'index.html') #return HttpResponse("Home") def contact(request): return render(request, 'contact.html') def about(request): return render(request, 'about_us.html') def analyze(request): #get the text in head djtext = request.GET.post('text', 'default' ) #check checkbox values removepunc = request.GET.get('removepunc', 'off') fullcaps = request.GET.get('fullcaps', 'off') newlineremover = request.GET.get('newlineremover', 'off') spaceremover = request.GET.get('spaceremover', 'off'), charcount = request.GET.get('charcount', 'off') if removepunc == "on": #analyzed = djtext punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_''' analyzed = "" for char in djtext: if char not in punctuations: analyzed = analyzed + char params ={'purpose':'removed punctuations', 'analyzed_text': analyzed} #analyze the text return render(request, 'analyze.html', params) elif(fullcaps == "on"): analyzed ="" for char in djtext: analyzed = analyzed + char.upper() params ={'purpose':'changed to UPPERCASE', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(newlineremover== "on"): analyzed ="" for char in djtext: if char != '\n' and char !="\r": analyzed = analyzed + char params ={'purpose':'Removed new lines', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(spaceremover== "on"): analyzed ="" for index, char in enumerate(djtext): if not djtext[index] == " " and djtext[index+1]==" ": analyzed = analyzed + char params ={'purpose':'extra space removed', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(charcount== "on"): a=0 for char in djtext: a = a + 1 params ={'purpose':'extra space removed', 'analyzed_text': a} #analyze the text #return render(request, 'analyze.html', params) else: return HttpResponse("Error") # def capfirst(request): # return HttpResponse("capitalize first")
20aa6256635712125cec7cde82d9edd48783816b
58a686c0a752db0f9084659a7f93d5b4f35a065c
/web_idea/apps.py
3ad06d0a73b08e922fed17edcaef47f32b83f3ed
[ "MIT" ]
permissive
Dimas4/Web-IDEA-Python-Django
5322ae013eb9b6803c175886f152654ed9469402
9cf17150d422979470e3d865a381309a83d8e875
refs/heads/master
2020-04-10T04:45:33.843338
2018-12-07T11:58:34
2018-12-07T11:58:34
160,808,256
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
from django.apps import AppConfig class WebIdeaConfig(AppConfig): name = 'web_idea'
c6a0f515e4061baa17af3a79b41c463f25758ff0
92429015d9a1f1cea9b9bf2c9f1a8a7a07586af5
/option.py
6e7b7892e37aa810a008bdf082451b08034a0125
[]
no_license
arthur-qiu/adv_vis
46a953ce6c3d562137c8e566bc9b523e25bc5bbd
ba46c00cf38ca5186d7db84844892036ed714eaf
refs/heads/master
2021-01-03T23:00:45.065108
2020-04-05T03:47:01
2020-04-05T03:47:01
240,272,320
0
0
null
null
null
null
UTF-8
Python
false
false
4,099
py
import argparse import os class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(description='Trains a CIFAR Classifier', formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'], help='Choose between CIFAR-10, CIFAR-100.') self.parser.add_argument('--model', '-m', type=str, default='wrn', choices=['wrn'], help='Choose architecture.') # Optimization options self.parser.add_argument('--epochs', '-e', type=int, default=50, help='Number of epochs to train.') self.parser.add_argument('--start_epoch', type=int, default=1, help='The start epoch to train. Design for restart.') self.parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The initial learning rate.') self.parser.add_argument('--batch_size', '-b', type=int, default=128, help='Batch size.') self.parser.add_argument('--test_bs', type=int, default=128) self.parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') self.parser.add_argument('--decay', '-d', type=float, default=0.0005, help='Weight decay (L2 penalty).') self.parser.add_argument('--epoch_step', default='[40,42,44,46,48]', type=str, help='json list with epochs to drop lr on') self.parser.add_argument('--lr_decay_ratio', default=0.2, type=float) # Checkpoints self.parser.add_argument('--save', '-s', type=str, default='./logs/cifar10_adv', help='Folder to save checkpoints.') self.parser.add_argument('--load', '-l', type=str, default='', help='Checkpoint path to resume / test.') self.parser.add_argument('--test', '-t', action='store_true', help='Test only flag.') self.parser.add_argument('--dataroot', default='.', type=str) # Acceleration self.parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.') self.parser.add_argument('--prefetch', type=int, default=1, help='Pre-fetching threads.') # Adversarial setting self.parser.add_argument('--epsilon', type=float, default=8 / 255, help='perturbation') self.parser.add_argument('--num_steps', type=int, default=7, help='perturb number of steps') self.parser.add_argument('--step_size', type=float, default=2 / 255, help='perturb step size') self.parser.add_argument('--test_num_steps', type=int, default=20, help='test perturb number of steps') self.parser.add_argument('--test_step_size', type=float, default=2 / 255, help='test perturb step size') # Others self.parser.add_argument('--random_seed', type=int, default=1) def parse(self, save=True): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk # Make save directory if not os.path.exists(self.opt.save): os.makedirs(self.opt.save) if not os.path.isdir(self.opt.save): raise Exception('%s is not a dir' % self.opt.save) if save and not self.opt.test: file_name = os.path.join(self.opt.save, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
[ "Arthur" ]
Arthur
5e6eab96a36af8362b1089b13514cebebf213f95
11812a0cc7b818292e601ecdd4aa4c4e03d131c5
/100days_of_python/day32/main.py
2d1a1c5e6332bb4dae8a588642e9e2d964c7be13
[]
no_license
SunshineFaxixi/Python_Learning
f1e55adcfa898489cc9146ccfb220f0b48a31a22
ab3ca44d013311b6de02124091acc4c36a83c4d9
refs/heads/master
2021-08-16T05:47:29.963118
2021-01-04T13:48:30
2021-01-04T13:48:30
238,857,341
1
0
null
2020-03-03T13:53:08
2020-02-07T06:21:46
HTML
UTF-8
Python
false
false
1,364
py
##################### Extra Hard Starting Project ###################### import pandas from datetime import datetime import os import random import smtplib MY_EMAIL = "[email protected]" MY_PASSWORD = "TXHTVGKIOLEHXVCI" today = datetime.now() today_tuple = (today.month, today.day) all_birth_info = pandas.read_csv("birthdays.csv") birthday_dict = {(data_row["month"], data_row["day"]): data_row for (index, data_row) in all_birth_info.iterrows()} # 2. Check if today matches a birthday in the birthdays.csv if today_tuple in birthday_dict: # 3. If step 2 is true, pick a random letter from letter templates and replace the [NAME] with the person's actual name from birthdays.csv birthday_person = birthday_dict[today_tuple] file_path = f"letter_templates/letter_{random.randint(1, 3)}.txt" with open(file_path) as data: content = data.read() content = content.replace("[NAME]", birthday_person["name"]) # print(content) # 4. Send the letter generated in step 3 to that person's email address. with smtplib.SMTP("smtp.163.com") as connection: connection.starttls() connection.login(user=MY_EMAIL, password=MY_PASSWORD) connection.sendmail( from_addr=MY_EMAIL, to_addrs=birthday_person["email"], msg=f"Subject: Happy Birthday!\n\n{content}" )
53e8ea169d0cfd5c2042f9ade08153f4669354fc
65b4522c04c2be071c2d42095956fe950fe1cebe
/inversions/inversion10/iter2/run5/analysis/pred_disp/create_predicted_disp_database.py
608cb3ba2bafea964917232a2b235b12007f7f0a
[]
no_license
geodesy/viscojapan
ac0cd93f7a2134cd2651623b94879dcc21c0c46a
03e70265b56eb5994e73bcb6066f0be338e42f27
refs/heads/master
2021-03-03T18:19:07.779601
2015-07-16T03:50:49
2015-07-16T03:50:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
import sqlite3 import numpy as np import viscojapan as vj pred = vj.inv.DispPred( file_G0 = '../../../green_function/G0_He50km_VisM6.3E18_Rake83.h5', result_file = '../../outs/nrough_05_naslip_11.h5', fault_file = '../../../fault_model/fault_bott80km.h5', files_Gs = ['../../../green_function/G1_He50km_VisM1.0E19_Rake83.h5', '../../../green_function/G2_He60km_VisM6.3E18_Rake83.h5', '../../../green_function/G3_He50km_VisM6.3E18_Rake90.h5' ], nlin_par_names = ['log10(visM)','log10(He)','rake'], file_incr_slip0 = '../../slip0/v1/slip0.h5', ) writer = vj.inv.PredDispToDatabaseWriter( pred_disp = pred ) writer.create_database() writer.insert_all()
e254aa45d97a2f3ff329c8b06be41ad5a4e0aec5
3acb90a1e97a0e851c6e4b1b57dda78ec5e3e3b4
/problems/deep_copy_graph.py
0b0caab3f09a04fb8519c76e677dd80b5c5b183b
[]
no_license
jhyang12345/algorithm-problems
fea3c6498cff790fc4932404b5bbab08a6d4a627
704355013de9965ec596d2e0115fd2ca9828d0cb
refs/heads/master
2023-05-15T10:26:52.685471
2021-06-01T14:57:38
2021-06-01T14:57:38
269,333,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
# Given a node in a connected directional graph, create a copy of it. # # Here's an example and some starter code. class Node: def __init__(self, value, adj=None): self.value = value self.adj = adj # Variable to help print graph self._print_visited = set() if self.adj is None: self.adj = [] # Able to print graph def __repr__(self): if self in self._print_visited: return '' else: self._print_visited.add(self) final_str = '' for n in self.adj: final_str += f'{n}\n' self._print_visited.remove(self) return final_str + f'({self.value}, ({[n.value for n in self.adj]}))' def deep_copy_graph(graph_node, visited=None): dummy_node = Node(0) queue = [graph_node, dummy_node] graph = {} visited = [graph_node, dummy_node] dummy_map = {} while queue: cur = queue.pop(0) dummy = queue.pop(0) dummy_map[cur] = dummy dummy.value = cur.value visited.append(cur) for node in cur.adj: if node not in visited: queue.append(node) new_dummy = Node(0) queue.append(new_dummy) dummy.adj.append(new_dummy) else: dummy.adj.append(dummy_map[node]) return dummy_node n5 = Node(5) n4 = Node(4) n3 = Node(3, [n4]) n2 = Node(2) n1 = Node(1, [n5]) n5.adj = [n3] n4.adj = [n3, n2] n2.adj = [n4] graph_copy = deep_copy_graph(n1) print(graph_copy) # (2, ([4])) # (4, ([3, 2])) # (3, ([4])) # (5, ([3])) # (1, ([5]))
55bb3d82b80185533da7d4c85f2c8e6589933ab4
cd4eb25911d3e3b092aa97aaa7b8fbba6c3a0704
/lang/python/asyncio/chain.py
aa8d41fb55cb2b5319e1e90b9a6e8a96e55ad630
[ "MIT" ]
permissive
liuyang1/test
29bb142982d2ef0d79b71e8fe5f5e0d51ec5258e
9a154e0161a1a33baad53f7223ee72e702532001
refs/heads/master
2023-08-05T08:56:50.526414
2023-07-21T05:49:53
2023-07-21T11:16:09
26,949,326
9
1
null
null
null
null
UTF-8
Python
false
false
399
py
import asyncio @asyncio.coroutine def compute(x, y): print("Compute %s + %s ..." % (x, y)) # yield from asyncio.sleep(1.0) return x + y @asyncio.coroutine def print_sum(x, y): result = yield from compute(x, y) print("%s + %s = %s" % (x, y, result)) loop = asyncio.get_event_loop() loop.run_until_complete(print_sum(1, 2)) loop.run_until_complete(print_sum(3, 2)) loop.close()
6000dedcf91921ea9a5a6cba05ff8fe17f2ae918
221d1ad342677d2fac8aa3f8d5c60e059a6316c9
/pm4py/objects/log/util/dataframe_utils.py
e8318a1daaeaa367f7ae496fe27ab3a705aca2da
[]
no_license
niklasadams/explainable_concept_drift_pm
06ff651fbdebece4adf96f94bfb4d1026da14c48
6bf84d727ab0bae76716a04ad28c7de73250c89d
refs/heads/main
2023-08-26T18:21:49.955080
2021-10-29T18:53:48
2021-10-29T18:53:48
314,514,571
4
0
null
null
null
null
UTF-8
Python
false
false
7,643
py
from pm4py.util import constants from pm4py.objects.log.log import EventStream from pm4py.objects.conversion.log import converter as log_converter import pandas as pd from pm4py.util.vers_checker import check_pandas_ge_024 from enum import Enum from pm4py.util import exec_utils from pm4py.util import points_subset from pm4py.util import xes_constants LEGACY_PARQUET_TP_REPLACER = "AAA" LEGACY_PARQUET_CASECONCEPTNAME = "caseAAAconceptAAAname" class Parameters(Enum): PARTITION_COLUMN = "partition_column" CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY MANDATORY_ATTRIBUTES = "mandatory_attributes" MAX_NO_CASES = "max_no_cases" MIN_DIFFERENT_OCC_STR_ATTR = 5 MAX_DIFFERENT_OCC_STR_ATTR = 50 def insert_partitioning(df, num_partitions, parameters=None): """ Insert the partitioning in the specified dataframe Parameters ------------- df Dataframe num_partitions Number of partitions parameters Parameters of the algorithm Returns ------------- df Partitioned dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) partition_column = exec_utils.get_param_value(Parameters.PARTITION_COLUMN, parameters, "@@partitioning") df[partition_column] = df[case_id_key].rank(method='dense', ascending=False).astype(int) % num_partitions return df def legacy_parquet_support(df, parameters=None): """ For legacy support, Parquet files columns could not contain a ":" that has been arbitrarily replaced by a replacer string. This string substitutes the replacer to the : Parameters --------------- dataframe Dataframe parameters Parameters of the algorithm """ if parameters is None: parameters = {} df.columns = [x.replace(LEGACY_PARQUET_TP_REPLACER, ":") for x in df.columns] return df def table_to_stream(table, parameters=None): """ Converts a Pyarrow table to an event stream Parameters ------------ table Pyarrow table parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} dict0 = table.to_pydict() keys = list(dict0.keys()) # for legacy format support if LEGACY_PARQUET_CASECONCEPTNAME in keys: for key in keys: dict0[key.replace(LEGACY_PARQUET_TP_REPLACER, ":")] = dict0.pop(key) stream = EventStream([dict(zip(dict0, i)) for i in zip(*dict0.values())]) return stream def table_to_log(table, parameters=None): """ Converts a Pyarrow table to an event log Parameters ------------ table Pyarrow table parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} stream = table_to_stream(table, parameters=parameters) return log_converter.apply(stream, parameters=parameters) def convert_timestamp_columns_in_df(df, timest_format=None, timest_columns=None): """ Convert all dataframe columns in a dataframe Parameters ----------- df Dataframe timest_format (If provided) Format of the timestamp columns in the CSV file timest_columns Columns of the CSV that shall be converted into timestamp Returns ------------ df Dataframe with timestamp columns converted """ needs_conversion = check_pandas_ge_024() for col in df.columns: if timest_columns is None or col in timest_columns: if df[col].dtype == 'object': try: if timest_format is None: if needs_conversion: df[col] = pd.to_datetime(df[col], utc=True) else: df[col] = pd.to_datetime(df[col]) else: if needs_conversion: df[col] = pd.to_datetime(df[col], utc=True, format=timest_format) else: df[col] = pd.to_datetime(df[col]) except ValueError: # print("exception converting column: "+str(col)) pass return df def sample_dataframe(df, parameters=None): """ Sample a dataframe on a given number of cases Parameters -------------- df Dataframe parameters Parameters of the algorithm, including: - Parameters.CASE_ID_KEY - Parameters.CASE_ID_TO_RETAIN Returns ------------- sampled_df Sampled dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) max_no_cases = exec_utils.get_param_value(Parameters.MAX_NO_CASES, parameters, 100) case_ids = list(df[case_id_key].unique()) case_id_to_retain = points_subset.pick_chosen_points_list(min(max_no_cases, len(case_ids)), case_ids) return df[df[case_id_key].isin(case_id_to_retain)] def automatic_feature_selection_df(df, parameters=None): """ Performs an automatic feature selection on dataframes, keeping the features useful for ML purposes Parameters --------------- df Dataframe parameters Parameters of the algorithm Returns --------------- featured_df Dataframe with only the features that have been selected """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) mandatory_attributes = exec_utils.get_param_value(Parameters.MANDATORY_ATTRIBUTES, parameters, set(df.columns).intersection( {constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_NAME_KEY, xes_constants.DEFAULT_TIMESTAMP_KEY})) min_different_occ_str_attr = exec_utils.get_param_value(Parameters.MIN_DIFFERENT_OCC_STR_ATTR, parameters, 5) max_different_occ_str_attr = exec_utils.get_param_value(Parameters.MAX_DIFFERENT_OCC_STR_ATTR, parameters, 50) cols_dtypes = {x: str(df[x].dtype) for x in df.columns} other_attributes_to_retain = set() no_all_cases = df[case_id_key].nunique() for x, y in cols_dtypes.items(): attr_df = df.dropna(subset=[x]) this_cases = attr_df[case_id_key].nunique() # in any case, keep attributes that appears at least once per case if this_cases == no_all_cases: if "float" in y or "int" in y: # (as in the classic log version) retain always float/int attributes other_attributes_to_retain.add(x) elif "object" in y: # (as in the classic log version) keep string attributes if they have enough variability, but not too much # (that would be hard to explain) unique_val_count = df[x].nunique() if min_different_occ_str_attr <= unique_val_count <= max_different_occ_str_attr: other_attributes_to_retain.add(x) else: # not consider the attribute after this feature selection if it has other types (for example, date) pass attributes_to_retain = mandatory_attributes.union(other_attributes_to_retain) return df[attributes_to_retain]
40c34bd9c99fb2039166995b23dec6a86c82f436
b02c88bcad352811d22cadacd2aa573c426a2ca3
/scrapers/settings.py
06a6ae3c2620e357e3388b52d97f309471c0bf4b
[ "Apache-2.0" ]
permissive
frankier/ties445
9e24c3e415b4a07584c41e0e4a3f241b133463b8
4ceee5390d81aedc0fb3904803797584dd5084b8
refs/heads/master
2020-12-31T07:18:42.938988
2016-05-17T18:45:14
2016-05-17T18:45:14
56,767,440
0
0
null
null
null
null
UTF-8
Python
false
false
3,085
py
# -*- coding: utf-8 -*- # Scrapy settings for scrapers project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'scrapers' SPIDER_MODULES = ['scrapers.spiders'] NEWSPIDER_MODULE = 'scrapers.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'scrapers (+http://www.yourdomain.com)' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS=32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY=3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN=16 #CONCURRENT_REQUESTS_PER_IP=16 # Disable cookies (enabled by default) #COOKIES_ENABLED=False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED=False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'scrapers.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'scrapy.downloadermiddlewares.decompression.DecompressionMiddleware': 1, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 1, } # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'scrapers.pipelines.SomePipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html # NOTE: AutoThrottle will honour the standard settings for concurrency and delay #AUTOTHROTTLE_ENABLED=True # The initial download delay #AUTOTHROTTLE_START_DELAY=5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY=60 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG=False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED=True #HTTPCACHE_EXPIRATION_SECS=0 #HTTPCACHE_DIR='httpcache' #HTTPCACHE_IGNORE_HTTP_CODES=[] #HTTPCACHE_STORAGE='scrapy.extensions.httpcache.FilesystemCacheStorage'
8dc513728068e9e929518340bb44a7718efc33eb
3122ac39f1ce0a882b48293a77195476299c2a3b
/clients/python/generated/swaggyjenkins/models/extension_class_container_impl1links.py
71b82d350f0fa80dde4f8cb80c78f8b7b2e3c3c7
[ "MIT" ]
permissive
miao1007/swaggy-jenkins
4e6fe28470eda2428cbc584dcd365a21caa606ef
af79438c120dd47702b50d51c42548b4db7fd109
refs/heads/master
2020-08-30T16:50:27.474383
2019-04-10T13:47:17
2019-04-10T13:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,766
py
# coding: utf-8 """ Swaggy Jenkins Jenkins API clients generated from Swagger / Open API specification # noqa: E501 OpenAPI spec version: 1.1.1 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ExtensionClassContainerImpl1links(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { '_self': 'Link', '_class': 'str' } attribute_map = { '_self': 'self', '_class': '_class' } def __init__(self, _self=None, _class=None): # noqa: E501 """ExtensionClassContainerImpl1links - a model defined in OpenAPI""" # noqa: E501 self.__self = None self.__class = None self.discriminator = None if _self is not None: self._self = _self if _class is not None: self._class = _class @property def _self(self): """Gets the _self of this ExtensionClassContainerImpl1links. # noqa: E501 :return: The _self of this ExtensionClassContainerImpl1links. # noqa: E501 :rtype: Link """ return self.__self @_self.setter def _self(self, _self): """Sets the _self of this ExtensionClassContainerImpl1links. :param _self: The _self of this ExtensionClassContainerImpl1links. # noqa: E501 :type: Link """ self.__self = _self @property def _class(self): """Gets the _class of this ExtensionClassContainerImpl1links. # noqa: E501 :return: The _class of this ExtensionClassContainerImpl1links. # noqa: E501 :rtype: str """ return self.__class @_class.setter def _class(self, _class): """Sets the _class of this ExtensionClassContainerImpl1links. :param _class: The _class of this ExtensionClassContainerImpl1links. # noqa: E501 :type: str """ self.__class = _class def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExtensionClassContainerImpl1links): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
e3e0ff71c09f66324bba160b6a4edccc40d93fff
ddc5aa77203bf76cd789c173dffbc382ed8ef004
/test/app_test/master.py
f1fe1995de473cf239f7fc143c31029ce2d5bca1
[]
no_license
phroiland/FinBiotic
0b8183ce9f97c3fc4b1f7e20decc3472bffe8800
a30ef2e979b230e5424fd25ef7dd1fb49bbd5245
refs/heads/master
2023-08-18T15:26:15.948262
2023-08-15T15:13:23
2023-08-15T15:13:23
93,895,989
2
2
null
2023-03-01T20:08:37
2017-06-09T20:52:02
Python
UTF-8
Python
false
false
4,105
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon May 29 13:30:38 2017 @author: jonfroiland """ import sys import argparse import oandapyV20 import oandapyV20.endpoints.positions as openPos # Data, Price, and Strategy Imports import settings import common.config import common.args from stream.streamingData import StreamingData from stream.view import mid_string, heartbeat_to_string, instrument_string from account.balance import Balance from strategy.breakout import Breakout from strategy.spreads import Spreads from strategy.strategy import Strategy from pivots.pivotImports import PivotImports # from view import bid_string, ask_string, price_to_string from datetime import datetime import pandas as pd pd.set_option('display.large_repr', 'truncate') pd.set_option('display.max_columns', 0) def main(): print "------ System online -------", datetime.now() parser = argparse.ArgumentParser() common.config.add_argument(parser) parser.add_argument('--instrument', "-i", type=common.args.instrument, required=True, action="append", help="Instrument to get prices for") parser.add_argument('--snapshot', action="store_true", default=True, help="Request an initial snapshot") parser.add_argument('--no-snapshot', dest="snapshot", action="store_false", help="Do not request an initial snapshot") parser.add_argument('--show-heartbeats', "-s", action='store_true', default=False, help="display heartbeats") args = parser.parse_args() # print sys.argv[2] account_id = args.config.active_account api = args.config.create_streaming_context() account_api = args.config.create_context() response = api.pricing.stream(account_id, snapshot=args.snapshot, instruments=",".join(args.instrument)) dfD = PivotImports(sys.argv[2]).daily() # dfW = p.weekly() balance = Balance(account_api, account_id).balance() df = pd.DataFrame([]) for msg_type, msg in response.parts(): if msg_type == "pricing.Heartbeat" and args.show_heartbeats: print heartbeat_to_string(msg) if msg_type == "pricing.Price": sd = StreamingData(datetime.now(), instrument_string(msg), mid_string(msg), account_api, account_id, 's', '5min', balance) df = df.append(sd.df()) sd.resample(df) print "df:", df.shape[0], "minuteData:", sd.minuteData().shape[0] # print sd.minuteData(),'\n' if sd.minuteData().shape[0] < 20: continue else: client = oandapyV20.API(settings.ACCESS_TOKEN) r = openPos.OpenPositions(accountID=account_id) client.request(r) openTrades = [] for i in r.response['positions']: trades = i['instrument'] openTrades.append(trades) print 'Open Trades', openTrades if instrument_string(msg) in openTrades: continue else: try: b = Breakout(sd.minuteData()) breakout = b.breakout() # print 'Breakout Units:',breakout s = Spreads(dfD, mid_string(msg)) pivot, rl1, rl2, rl3, sl1, sl2, sl3 = s.spreads() rate1, rate2 = s.spreads_out() strat = Strategy(account_api, account_id, instrument_string(msg), dfD, mid_string(msg), breakout, pivot, rl1, rl2, rl3, sl1, sl2, sl3, rate1, rate2) strat.res_check() strat.sup_check() except Exception as e: print e if __name__ == "__main__": main()
8d06548df5f6398354e80696bdcd4de55ab84d3a
f44e4485385296f4d1de2032c64c76de37ec5007
/pyatv/mrp/protobuf/DeviceInfoMessage_pb2.py
f18237f3e98c6570af7c0facc2de477cda9de067
[ "MIT" ]
permissive
kdschlosser/pyatv
370d0a35e39623b8e8e6a087c675ec47aa50fb16
fa32dab9ad3c4adffdc944ed78427f6c724074f5
refs/heads/master
2022-06-20T06:58:13.608441
2020-05-11T04:57:55
2020-05-11T06:22:23
264,143,600
1
0
MIT
2020-05-15T08:48:06
2020-05-15T08:48:05
null
UTF-8
Python
false
true
17,207
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pyatv/mrp/protobuf/DeviceInfoMessage.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pyatv.mrp.protobuf import ProtocolMessage_pb2 as pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2 from pyatv.mrp.protobuf import Common_pb2 as pyatv_dot_mrp_dot_protobuf_dot_Common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pyatv/mrp/protobuf/DeviceInfoMessage.proto', package='', syntax='proto2', serialized_options=None, serialized_pb=b'\n*pyatv/mrp/protobuf/DeviceInfoMessage.proto\x1a(pyatv/mrp/protobuf/ProtocolMessage.proto\x1a\x1fpyatv/mrp/protobuf/Common.proto\"\x98\x07\n\x11\x44\x65viceInfoMessage\x12\x18\n\x10uniqueIdentifier\x18\x01 \x02(\t\x12\x0c\n\x04name\x18\x02 \x02(\t\x12\x1a\n\x12localizedModelName\x18\x03 \x01(\t\x12\x1a\n\x12systemBuildVersion\x18\x04 \x02(\t\x12#\n\x1b\x61pplicationBundleIdentifier\x18\x05 \x02(\t\x12 \n\x18\x61pplicationBundleVersion\x18\x06 \x01(\t\x12\x17\n\x0fprotocolVersion\x18\x07 \x02(\x05\x12 \n\x18lastSupportedMessageType\x18\x08 \x01(\r\x12\x1d\n\x15supportsSystemPairing\x18\t \x01(\x08\x12\x15\n\rallowsPairing\x18\n \x01(\x08\x12\x11\n\tconnected\x18\x0b \x01(\x08\x12\x1e\n\x16systemMediaApplication\x18\x0c \x01(\t\x12\x13\n\x0bsupportsACL\x18\r \x01(\x08\x12\x1b\n\x13supportsSharedQueue\x18\x0e \x01(\x08\x12\x1e\n\x16supportsExtendedMotion\x18\x0f \x01(\x08\x12\x18\n\x10\x62luetoothAddress\x18\x10 \x01(\x0c\x12\x1a\n\x12sharedQueueVersion\x18\x11 \x01(\r\x12\x11\n\tdeviceUID\x18\x13 \x01(\t\x12\x1d\n\x15managedConfigDeviceID\x18\x14 \x01(\t\x12&\n\x0b\x64\x65viceClass\x18\x15 \x01(\x0e\x32\x11.DeviceClass.Enum\x12\x1a\n\x12logicalDeviceCount\x18\x16 \x01(\r\x12\x1a\n\x12tightlySyncedGroup\x18\x17 \x01(\x08\x12\x1a\n\x12isProxyGroupPlayer\x18\x18 \x01(\x08\x12\x14\n\x0ctightSyncUID\x18\x19 \x01(\t\x12\x10\n\x08groupUID\x18\x1a \x01(\t\x12\x11\n\tgroupName\x18\x1b \x01(\t\x12*\n\x0egroupedDevices\x18\x1c \x03(\x0b\x32\x12.DeviceInfoMessage\x12\x15\n\risGroupLeader\x18\x1d \x01(\x08\x12\x17\n\x0fisAirplayActive\x18\x1e \x01(\x08\x12 \n\x18systemPodcastApplication\x18\x1f \x01(\t\x12\x1c\n\x14\x65nderDefaultGroupUID\x18 \x01(\t\x12\x18\n\x10\x61irplayReceivers\x18! \x03(\t\x12\x11\n\tlinkAgent\x18\" \x01(\t:?\n\x11\x64\x65viceInfoMessage\x12\x10.ProtocolMessage\x18\x14 \x01(\x0b\x32\x12.DeviceInfoMessage' , dependencies=[pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.DESCRIPTOR,pyatv_dot_mrp_dot_protobuf_dot_Common__pb2.DESCRIPTOR,]) DEVICEINFOMESSAGE_FIELD_NUMBER = 20 deviceInfoMessage = _descriptor.FieldDescriptor( name='deviceInfoMessage', full_name='deviceInfoMessage', index=0, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR) _DEVICEINFOMESSAGE = _descriptor.Descriptor( name='DeviceInfoMessage', full_name='DeviceInfoMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uniqueIdentifier', full_name='DeviceInfoMessage.uniqueIdentifier', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='DeviceInfoMessage.name', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='localizedModelName', full_name='DeviceInfoMessage.localizedModelName', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemBuildVersion', full_name='DeviceInfoMessage.systemBuildVersion', index=3, number=4, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='applicationBundleIdentifier', full_name='DeviceInfoMessage.applicationBundleIdentifier', index=4, number=5, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='applicationBundleVersion', full_name='DeviceInfoMessage.applicationBundleVersion', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='protocolVersion', full_name='DeviceInfoMessage.protocolVersion', index=6, number=7, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lastSupportedMessageType', full_name='DeviceInfoMessage.lastSupportedMessageType', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsSystemPairing', full_name='DeviceInfoMessage.supportsSystemPairing', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allowsPairing', full_name='DeviceInfoMessage.allowsPairing', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='connected', full_name='DeviceInfoMessage.connected', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemMediaApplication', full_name='DeviceInfoMessage.systemMediaApplication', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsACL', full_name='DeviceInfoMessage.supportsACL', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsSharedQueue', full_name='DeviceInfoMessage.supportsSharedQueue', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsExtendedMotion', full_name='DeviceInfoMessage.supportsExtendedMotion', index=14, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bluetoothAddress', full_name='DeviceInfoMessage.bluetoothAddress', index=15, number=16, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sharedQueueVersion', full_name='DeviceInfoMessage.sharedQueueVersion', index=16, number=17, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deviceUID', full_name='DeviceInfoMessage.deviceUID', index=17, number=19, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='managedConfigDeviceID', full_name='DeviceInfoMessage.managedConfigDeviceID', index=18, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deviceClass', full_name='DeviceInfoMessage.deviceClass', index=19, number=21, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='logicalDeviceCount', full_name='DeviceInfoMessage.logicalDeviceCount', index=20, number=22, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tightlySyncedGroup', full_name='DeviceInfoMessage.tightlySyncedGroup', index=21, number=23, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isProxyGroupPlayer', full_name='DeviceInfoMessage.isProxyGroupPlayer', index=22, number=24, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tightSyncUID', full_name='DeviceInfoMessage.tightSyncUID', index=23, number=25, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupUID', full_name='DeviceInfoMessage.groupUID', index=24, number=26, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupName', full_name='DeviceInfoMessage.groupName', index=25, number=27, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupedDevices', full_name='DeviceInfoMessage.groupedDevices', index=26, number=28, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isGroupLeader', full_name='DeviceInfoMessage.isGroupLeader', index=27, number=29, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isAirplayActive', full_name='DeviceInfoMessage.isAirplayActive', index=28, number=30, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemPodcastApplication', full_name='DeviceInfoMessage.systemPodcastApplication', index=29, number=31, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enderDefaultGroupUID', full_name='DeviceInfoMessage.enderDefaultGroupUID', index=30, number=32, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='airplayReceivers', full_name='DeviceInfoMessage.airplayReceivers', index=31, number=33, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='linkAgent', full_name='DeviceInfoMessage.linkAgent', index=32, number=34, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=122, serialized_end=1042, ) _DEVICEINFOMESSAGE.fields_by_name['deviceClass'].enum_type = pyatv_dot_mrp_dot_protobuf_dot_Common__pb2._DEVICECLASS_ENUM _DEVICEINFOMESSAGE.fields_by_name['groupedDevices'].message_type = _DEVICEINFOMESSAGE DESCRIPTOR.message_types_by_name['DeviceInfoMessage'] = _DEVICEINFOMESSAGE DESCRIPTOR.extensions_by_name['deviceInfoMessage'] = deviceInfoMessage _sym_db.RegisterFileDescriptor(DESCRIPTOR) DeviceInfoMessage = _reflection.GeneratedProtocolMessageType('DeviceInfoMessage', (_message.Message,), { 'DESCRIPTOR' : _DEVICEINFOMESSAGE, '__module__' : 'pyatv.mrp.protobuf.DeviceInfoMessage_pb2' # @@protoc_insertion_point(class_scope:DeviceInfoMessage) }) _sym_db.RegisterMessage(DeviceInfoMessage) deviceInfoMessage.message_type = _DEVICEINFOMESSAGE pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.ProtocolMessage.RegisterExtension(deviceInfoMessage) # @@protoc_insertion_point(module_scope)
4449a9ba1f7077329a5da7221fd2c951aa9a4573
ebcea394905df8222c257c8c6c469627a6e48095
/PyQt5/object_detection/inputs_test.py
cc79131e3a02e54893093a7c803e84b4cb10687c
[]
no_license
valiok98/Python-Qt5-Tensorflow
2773cfc2a0e569ed53cf3d90066885f17abe8c6a
e03ccc2884b687a36fbe47f5ff320837be3e217a
refs/heads/master
2021-09-17T20:41:01.908602
2018-03-31T12:42:25
2018-03-31T12:42:25
103,644,683
1
0
null
null
null
null
UTF-8
Python
false
false
24,083
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.tflearn.inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import numpy as np import tensorflow as tf import sys sys.path.append("..") import inputs from core import preprocessor from core import standard_fields as fields from utils import config_util FLAGS = tf.flags.FLAGS def _get_configs_for_model(model_name): """Returns configurations for model.""" # TODO: Make sure these tests work fine outside google3. fname = os.path.join( FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/samples/configs/' + model_name + '.config')) label_map_path = os.path.join(FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/data/pet_label_map.pbtxt')) data_path = os.path.join(FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/test_data/pets_examples.record')) configs = config_util.get_configs_from_pipeline_file(fname) return config_util.merge_external_params_with_configs( configs, train_input_path=data_path, eval_input_path=data_path, label_map_path=label_map_path) class InputsTest(tf.test.TestCase): def test_faster_rcnn_resnet50_train_input(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') configs['train_config'].unpad_groundtruth_tensors = True model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = train_input_fn() self.assertAllEqual([None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [None, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [None], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_faster_rcnn_resnet50_eval_input(self): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( configs['eval_config'], configs['eval_input_config'], model_config) features, labels = eval_input_fn() self.assertAllEqual([1, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, None, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_train_input(self): """Tests the training input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 batch_size = configs['train_config'].batch_size train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = train_input_fn() self.assertAllEqual([batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [batch_size], labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.num_groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 50, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 50, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [batch_size, 50], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_ssd_inceptionV2_eval_input(self): """Tests the eval input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( configs['eval_config'], configs['eval_input_config'], model_config) features, labels = eval_input_fn() self.assertAllEqual([1, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, None, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_predict_input(self): """Tests the predict input function.""" configs = _get_configs_for_model('ssd_inception_v2_pets') predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model']) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] self.assertEqual([1, 300, 300, 3], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_error_with_bad_train_config(self): """Tests that a TypeError is raised with improper train config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['eval_config'], # Expecting `TrainConfig`. train_input_config=configs['train_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_input_config(self): """Tests that a TypeError is raised with improper train input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_model_config(self): """Tests that a TypeError is raised with improper train model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['train_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_eval_config(self): """Tests that a TypeError is raised with improper eval config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['train_config'], # Expecting `EvalConfig`. eval_input_config=configs['eval_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_input_config(self): """Tests that a TypeError is raised with improper eval input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_model_config(self): """Tests that a TypeError is raised with improper eval model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_config'], model_config=configs['eval_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): eval_input_fn() class DataAugmentationFnTest(tf.test.TestCase): def test_apply_image_and_box_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) def test_include_masks_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }) ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.zeros([2, 10, 10], np.uint8)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3]) self.assertAllEqual(augmented_tensor_dict_out[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20]) def test_include_keypoints_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_keypoints: tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints], [[[10, 20], [10, 10]]] ) def _fake_model_preprocessor_fn(image): return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) def _fake_image_resizer_fn(image, mask): return (image, mask, tf.shape(image)) class DataTransformationFnTest(tf.test.TestCase): def test_returns_correct_class_label_encodings(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[0, 0, 1], [1, 0, 0]]) def test_returns_correct_merged_boxes(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, merge_multiple_boxes=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_boxes], [[.5, .5, 1., 1.]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[1, 0, 1]]) def test_returns_resized_masks(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_image_resizer_fn(image, masks): resized_image = tf.image.resize_images(image, [8, 8]) resized_masks = tf.transpose( tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), [2, 0, 1]) return resized_image, resized_masks, tf.shape(resized_image) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8]) def test_applies_model_preprocess_fn_to_image_tensor(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_model_preprocessor_fn(image): return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose(transformed_inputs[fields.InputDataFields.image], np_image / 255.) self.assertAllClose(transformed_inputs[fields.InputDataFields. true_image_shape], [4, 4, 3]) def test_applies_data_augmentation_fn_to_tensor_dict(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def add_one_data_augmentation_fn(tensor_dict): return {key: value + 1 for key, value in tensor_dict.items()} num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_one_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], np_image + 1) self.assertAllEqual( augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], [[0, 0, 0, 1], [0, 1, 0, 0]]) def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=mul_two_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_five_to_image_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], (np_image + 5) * 2) if __name__ == '__main__': tf.test.main()
026745467476e61080f1b8483e76fc80ed91ca82
8f337d7a1477eb9878bd252f45fadd967ba5dbbe
/run_galfit_disk_only.py
62c3df5903da86c2f2a4574520757cfb091c1fa8
[]
no_license
bpRsh/b1_research_lib
bd4c293946329ea96d0fb37d8769aaa83d1ca15d
1de77f683b3ba18a1ab142b0fe86114c7a67791a
refs/heads/master
2021-01-15T19:04:32.177465
2020-11-23T19:55:34
2020-11-23T19:55:34
99,805,200
0
0
null
null
null
null
UTF-8
Python
false
false
7,674
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*-# # # Author : Bhishan Poudel; Physics Graduate Student, Ohio University # Date : 26-Oct-2016 13:10 # Last update : Dec 15, 2016 # Est time : 3 min for one galaxy one filter. # Main commands : rm -r imgblock.fits subcomps.fit ; galfit expdisk_devauc.sh # galfit -o3 galfit.01 && rm -r galfit.01 # ds9 -multiframe imgblock.fits subcomps.fits & # Imports from __future__ import division, unicode_literals, print_function import subprocess import os import time from string import ascii_uppercase import astropy.io from astropy.io import fits from astropy.io.fits import getdata from astropy.io.fits import getheader from astropy.io.fits import getval paramfile = r'expdisk_devauc.sh' def replace_galfit_param(name, value, object_num=1, fixed=True): """Replace input galfit parameter file with new configuration. Arguments: name : parameter name, e.g. A-P, 1-10, 'Z' value: new value for the parameter in string form. e.g. '20.0' object_num: For A-Z object_num is 1 For objects, object_num starts from 1. fixed: True means parameter will be fixed (0) during fitting. NOTE: Keep fixed = False while using this function to vary the parameter. """ name, value = str(name), str(value) with open(paramfile) as f: gf_file = f.readlines() # Location of param. # 3rd column is where one can hold the parameters fixed (0) or allow vary 1 loc = [i for i in range(len(gf_file)) if gf_file[i].strip().startswith(name + ')')][object_num - 1] param_str = gf_file[loc] comment = param_str.find('#') if name in ascii_uppercase: fmt = '{}) {} {}' param_str = fmt.format(name, value, param_str[comment:]) else: fmt = '{}) {} {} {}' param_str = fmt.format(name, value, '0' if fixed else '1', param_str[comment:]) gf_file[loc] = param_str with open(paramfile, 'w') as f: f.writelines(gf_file) def run_galfit(galaxy, outdir, count): """Run galfit on the input galaxy and create model and residual images. Runs galfit on the given input galaxies and creates model and residue images in the output directory galaxy : base name of input galaxy, e.g f606w or f814w outdir : output directory, e.g. galfit_outputs count : count number of galaxy, e.g. 0 for f606w_gal0.fits Needs : galfit_outputs/two_components/bulge/ galfit_outputs/two_components/disk/ galfit_outputs/two_components/residual/ Note: 1. This program will also read the values of mag and rad from the input fitsfile header, and updates the value in the galfit paramfile 'sim2.feedme'. 2. it will also create the mask file using ic command. """ # galaxy = f606w or f814w # path = '/Users/poudel/jedisim/simdatabase/colors' path = '/Users/poudel/jedisim/simdatabase/galaxies' ingal = path + '/' + galaxy + '_gal' + str(count) + '.fits' psf = galaxy + '_psf.fits' # psf in the script directory # get the value of magnitude, radius and mag0 of input galaxy try: mag = getval(ingal, 'MAG') except: mag = 20.0 try: rad = getval(ingal, 'RADIUS') except: rad = 10.0 mag0 = getval(ingal, 'MAG0') # create galfit paramfile according to the input galaxy # For A-Z object_num is 1 # fixed=True means it is fixed and not changed print("\n\n\n") print('+' * 80) print('+' * 80) print('+' * 80) print('{} {} {}'.format('Current Galaxy : ', ingal, '')) print('+' * 80) print('+' * 80) print('+' * 80) replace_galfit_param('A', ingal, object_num=1, fixed=False) replace_galfit_param('D', psf, object_num=1, fixed=False) replace_galfit_param('J', mag0, object_num=1, fixed=False) replace_galfit_param('3', mag, object_num=1, fixed=False) replace_galfit_param('4', rad, object_num=1, fixed=False) replace_galfit_param('3', mag, object_num=2, fixed=False) replace_galfit_param('4', rad, object_num=2, fixed=False) # create mask file according to the input galaxy cmd = "ic '1 0 %1 0 == ?' " + ingal + " > mask.fits" subprocess.call(cmd, shell=True) # For objects, object_num starts from 1 # 1 = expdisk, 2 = devauc # run galfit # rm -r imgblock.fits subcomps.fits galfit.01 # removes these files. # galfit sim.feedme # gives galfit.01, imgblock.fits,if succeed. # galfit -o3 galfit.01 # runs only when galfit.01 exists # we can delete galfit.01 immediately after it it used. cmd1 = 'rm -r imgblock.fits; galfit ' + paramfile cmd2 = 'rm -r subcomps.fits; galfit -o3 galfit.01; rm -r galfit.01' print("\n\n\n") print('*' * 80) print('Running: {}'.format(cmd1)) print('*' * 80) subprocess.call(cmd1, shell=True) # gives galfit.01 if succeed if os.path.exists('galfit.01'): print("\n\n\n") print('!' * 80) print('Running: {}'.format(cmd2)) print('!' * 80) subprocess.call(cmd2, shell=True) # get residual map from imgblock.fits # residual = outdir + '/residual/' + galaxy + '_res' + str(count) + '.fits' # get devauc and expdisk models from subcomps.fits # galaxy = f606w or f814w # devauc = bulge and expdisk+residual = disk # devauc = outdir + '/bulge/' + galaxy + '_bulge' + str(count) + '.fits' expdisk = outdir + galaxy + '_disk' +\ str(count) + '.fits' # extracting frames of imgblock.fits and subcomps.fits if they exists. if os.path.isfile('subcomps.fits') and os.path.isfile('imgblock.fits'): # for imgblock.fits : 0 is empty, 1 is input, 2 is model, 3 is residual # dat_res, hdr_res = fits.getdata(r'imgblock.fits', ext=3, header=True) # for subcomps.fits: 0 is input, 1 is expdisk, 2 is devauc etc. dat_exp, hdr_exp = fits.getdata(r'subcomps.fits', ext=1, header=True) # dat_dev, hdr_dev = fits.getdata(r'subcomps.fits', ext=2, header=True) # fits.writeto(expdisk, dat_exp, hdr_exp, clobber=False) # fits.writeto(residual, dat_res, hdr_res, clobber=True) # fits.writeto(devauc, dat_dev, hdr_dev, clobber=True) fits.writeto(expdisk, dat_exp, hdr_exp, clobber=True) # print('{} {} {}'.format('Output file: ', expdisk, '')) # print('{} {} {}'.format('Output file: ', residual, '')) # print('{} {} {}'.format('Output file: ', devauc, '')) print('{} {} {}'.format('Output file: ', expdisk, '')) def main(): """Main program.""" # output directory without '/' in the end # range is from 0 to 101 and both f606w and f814w galfit_outdir = 'disk_only_280_301/' # there are 302 galaxies for each filter # for count in list(range(101, 303)): for count in range(280, 301): run_galfit('f606w', galfit_outdir, count) run_galfit('f814w', galfit_outdir, count) if __name__ == '__main__': # beginning time program_begin_time = time.time() begin_ctime = time.ctime() # run main program main() # print the time taken program_end_time = time.time() end_ctime = time.ctime() seconds = program_end_time - program_begin_time m, s = divmod(seconds, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) print('\nBegin time: ', begin_ctime) print('End time: ', end_ctime, '\n') print("Time taken: {0:.0f} days, {1:.0f} hours, \ {2:.0f} minutes, {3:f} seconds.".format(d, h, m, s))
44f6551cecf87e0cc64db8a41ab7784033adc958
586e60b4bbf80e3da9c1051182a42cb81bb2ea1b
/scripts/generate-demo-users.py
787052a0fab94bece1059cc3565abb512a20e0bd
[ "Apache-2.0" ]
permissive
DD-DeCaF/caffeine-bootstrap
daa0cb844fd694b87430451baee664d816e366a7
ec65cd5f135f86c7bf2faeb96930637e910c380f
refs/heads/master
2021-07-09T15:18:56.476754
2020-08-18T11:16:37
2020-08-18T11:16:37
161,489,310
1
0
Apache-2.0
2020-08-18T11:16:38
2018-12-12T13:03:41
Shell
UTF-8
Python
false
false
409
py
from iam.models import User, db from iam.app import app, init_app init_app(app, db) app.app_context().push() print("Adding user: demo@demo") user = User(email="demo@demo") user.set_password("demo") db.session.add(user) for i in range(40): print(f"Adding user: demo{i}@demo (password demo)") user = User(email=f"demo{i}@demo") user.set_password("demo") db.session.add(user) db.session.commit()
a562ea5925bb853287c30692e331db3ad17821e2
8c42964a29af1d5a2f4541ab634b54e25a90b9f4
/Example2/configuration.py
5a64a7d9aada01e4a7e1e383119cbc7d566d617f
[]
no_license
lenzip/CMSDataAnalysisSchoolPisa2019ScalarToWW
a21dc572ae2e152410a867ae5013703c886e4bbf
8cff1dea08887b78a9efc26a142609ba1b7ba296
refs/heads/master
2020-04-14T21:13:03.028961
2019-01-23T16:22:23
2019-01-23T16:22:23
164,121,564
0
1
null
null
null
null
UTF-8
Python
false
false
803
py
# example of configuration file tag = 'Inclusive' # used by mkShape to define output directory for root files outputDir = 'rootFile' # file with list of variables variablesFile = 'variables.py' # file with list of cuts cutsFile = 'cuts.py' # file with list of samples samplesFile = 'samples.py' # file with list of samples plotFile = 'plot.py' # luminosity to normalize to (in 1/fb) lumi = 35.867 # used by mkPlot to define output directory for plots # different from "outputDir" to do things more tidy outputDirPlots = 'plotsInclusive' # used by mkDatacards to define output directory for datacards outputDirDatacard = 'datacardsInclusive' # structure file for datacard structureFile = 'structure.py' # nuisances file for mkDatacards and for mkShape nuisancesFile = 'nuisances.py'
4dcb1a63e7effceb8e87d2579849844a5dcaecbe
d9eb21a408a449918ed431f760b6a61292869de6
/Workshops/custom_list/test_custom_list.py
ba4bb2591f76ff8946987ea4c1a7891db8355939
[]
no_license
zhyordanova/Python-OOP
5c73ab851848c969beb50b774b67bc9e4c102610
aad42e108b676de119ac99bef632b76ac595d49a
refs/heads/main
2023-05-27T06:09:23.524422
2021-05-06T22:00:18
2021-05-06T22:00:18
349,583,825
3
1
null
null
null
null
UTF-8
Python
false
false
9,477
py
from unittest import TestCase from lists.custom_list import ArrayList class TestArrayList(TestCase): def setUp(self): self.al = ArrayList() def test_append__when_list_is_empty__expect_append_to_the_end(self): self.al.append(1) values = list(self.al) self.assertEqual([1], values) def test_append__expect_to_return_the_list(self): result = self.al.append(1) self.assertEqual(self.al, result) def test_append__when_list_not_empty__expect_append_to_the_end(self): self.al.append(1) self.al.append(2) self.al.append(3) values = list(self.al) self.assertEqual([1, 2, 3], values) def test_append__1024_values__expect_append_to_the_end(self): values = [x for x in range(1024)] [self.al.append(x) for x in values] list_value = list(self.al) self.assertEqual(values, list_value) def test_append__expect_to_increase_size(self): self.al.append(1) self.assertEqual(1, self.al.size()) def test_remove__when_index_is_valid__expect_remove_value_and_return_it(self): self.al.append(1) self.al.append(2) self.al.append(333) self.al.append(4) result = self.al.remove(2) self.assertEqual([1, 2, 4], list(self.al)) self.assertEqual(333, result) def test_remove__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) with self.assertRaises(IndexError): self.al.remove(self.al.size()) def test_get__when_index_is_valid__expect_to_return_it(self): self.al.append(1) self.al.append(2) self.al.append(333) self.al.append(4) result = self.al.get(2) self.assertEqual(333, result) def test_get__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) with self.assertRaises(IndexError): self.al.get(self.al.size()) def test_extend_whit_empty_iterable__expect_to_be_same(self): self.al.append(1) self.al.extend([]) self.assertEqual([1], list(self.al)) def test_extend_whit_list_iterable__expect_to_append_the_list(self): self.al.append(1) self.al.extend([2]) self.assertEqual([1, 2], list(self.al)) def test_extend_whit_generator__expect_to_append_the_list(self): self.al.append(1) self.al.extend((x for x in range(1))) self.assertEqual([1, 0], list(self.al)) def test_extend_when_empty__expect_to_append_to_list(self): self.al.append(1) self.al.extend([1]) self.assertEqual([1, 1], list(self.al)) def test_extend_whit_no_iterable__expect_to_raise(self): self.al.append(1) with self.assertRaises(ValueError): self.al.extend(2) def test_insert__when_index_is_valid__expect_to_place_value_at_index(self): self.al.append(1) self.al.append(2) self.al.append(4) self.al.append(5) self.al.append(6) self.al.append(7) self.al.append(8) self.al.append(9) self.al.insert(2, 333) self.assertEqual([1, 2, 333, 4, 5, 6, 7, 8, 9], list(self.al)) def test_insert__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) with self.assertRaises(IndexError): self.al.insert(self.al.size() + 1, 2) def test_pop__expect_to_remove_last_element_and_return_it(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) result = self.al.pop() self.assertEqual(4, result) self.assertEqual([1, 2, 3], list(self.al)) def test_pop__when_empty__expect_to_raise(self): with self.assertRaises(IndexError): self.al.pop() def test_clear__expect_to_be_empty(self): [self.al.append(x) for x in range(15)] self.al.clear() self.assertEqual([], list(self.al)) def test_index__when_item_is_present__expect_return_correct_index(self): [self.al.append(x) for x in range(15)] index = self.al.index(5) self.assertEqual(5, index) def test_index__when_item_is_not_present__expect_raise(self): [self.al.append(x) for x in range(15)] with self.assertRaises(ValueError): self.al.index(17) def test_count__when_item_is_present_one_time__expected_to_return_1(self): [self.al.append(x) for x in range(15)] expected_count = 1 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_present_multiple_times__expected_to_return_correct_count(self): [self.al.append(x) for x in range(15)] self.al.append(5) self.al.insert(3, 5) self.al.insert(7, 5) self.al.insert(1, 5) self.al.insert(9, 5) expected_count = 6 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_present_multiple_times_and_once_poped__expected_to_return_correct_count(self): [self.al.append(x) for x in range(15)] self.al.insert(3, 5) self.al.insert(7, 5) self.al.insert(1, 5) self.al.insert(9, 5) self.al.append(5) self.al.pop() expected_count = 5 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_not_present__expected_to_return_0(self): [self.al.append(x) for x in range(15)] expected_count = 0 actual_count = self.al.count(55) self.assertEqual(expected_count, actual_count) def test_reversed__expect_in_reversed_order(self): [self.al.append(x) for x in range(5)] expected = [x for x in range(4, -1, -1)] actual = self.al.reverse() self.assertEqual(expected, actual) def test_copy__expect_to_return_another_list_with_same_value(self): [self.al.append(x) for x in range(5)] copied_list = self.al.copy() expected_result = [x for x in range(5)] actual_result = list(copied_list) self.assertNotEqual(copied_list, self.al) self.assertEqual(expected_result, actual_result) def test_add_first__when_empty__expect_to_add(self): self.al.add_first(1) self.assertListEqual([1], list(self.al)) def test_add_first__when_non_empty__expect_to_add(self): [self.al.append(x) for x in range(5)] self.al.add_first(1) self.assertListEqual([1, 0, 1, 2, 3, 4], list(self.al)) def test_dictionize__when_empty__expect_dict(self): expected = {} actual = self.al.dictionize() self.assertEqual(expected, actual) def test_dictionize__when_even_elements_count_expect_coorct_result(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) expected = { 1: 2, 3: 4, } actual = self.al.dictionize() self.assertEqual(expected, actual) def test_dictionize__when_odd_elements_count_expect_coorct_result(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.append(5) expected = { 1: 2, 3: 4, 5: ' ', } actual = self.al.dictionize() self.assertEqual(expected, actual) def test_move_list_empty__expect_to_move_nothing(self): self.al.move(1) self.assertEqual([], list(self.al)) def test_move__when_moving_1_element__expect_to_move_1_element(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.move(1) self.assertEqual([2, 3, 4, 1], list(self.al)) def test_move__when_moving_3_elements__expect_to_move_3_elements(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.move(3) self.assertEqual([4, 1, 2, 3], list(self.al)) def test_move__when_moving_3_values_and_have_2_values__expect_to_move_3_value_from_the_start_to_the_end(self): self.al.append(1) self.al.append(2) self.al.move(3) self.assertEqual([2, 1], list(self.al)) def test_sum__when_values__expected_to_return_correct_sum(self): self.al.append(1) self.al.append('2') self.al.append(3) expected = 5 actual = self.al.sum() self.assertEqual(expected, actual) def test_sum__when_empty_expected_to_return_0(self): self.assertEqual(0, self.al.sum()) def test_overbound__expect_to_return_min_value(self): values = [x for x in range(15)] [self.al.append(x) for x in values] expected = max(values) actual = self.al.overbound() self.assertEqual(expected, actual) def test_underbound__expect_to_return_min_value(self): values = [x for x in range(15)] [self.al.append(x) for x in values] expected = min(values) actual = self.al.underbound() self.assertEqual(expected, actual)
30d076a33b413db6d98a89853257711172247372
60f067710243089ea5a09c676f8092232904ed40
/ltp/task_segmention.py
bfd04d9af9f685de08e23778fb8c48e4e00e5b95
[]
no_license
liyang-2401/ltp
cfc5386fe9cebc78f828431b1c04d8288d450678
5d26093f2e2bbec76a892dd25e206d9e7dacc13e
refs/heads/master
2023-01-22T14:43:16.871839
2020-12-04T08:00:23
2020-12-04T08:00:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,058
py
import types import numpy import torch import torch.utils.data import os from tqdm import tqdm from argparse import ArgumentParser from ltp.data import dataset as datasets from ltp import optimization from ltp.data.utils import collate from seqeval.metrics import f1_score from ltp.transformer_linear import TransformerLinear as Model import pytorch_lightning as pl from pytorch_lightning import Trainer from transformers import AutoTokenizer from ltp.utils import TaskInfo, common_train, map2device, convert2npy os.environ['TOKENIZERS_PARALLELISM'] = 'true' task_info = TaskInfo(task_name='seg', metric_name='f1') # CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python ltp/task_segmention.py --data_dir=data/seg --num_labels=2 --max_epochs=10 --batch_size=16 --gpus=1 --precision=16 --auto_lr_find=lr def build_dataset(model, data_dir): dataset = datasets.load_dataset( datasets.Conllu, data_dir=data_dir, cache_dir=data_dir ) dataset.remove_columns_(["id", "lemma", "upos", "xpos", "feats", "head", "deprel", "deps", "misc"]) tokenizer = AutoTokenizer.from_pretrained(model.hparams.transformer, use_fast=True) # {'B':1, 'I':0} def tokenize(examples): res = tokenizer( examples['form'], is_split_into_words=True, max_length=model.transformer.config.max_position_embeddings, truncation=True ) labels = [] for encoding in res.encodings: labels.append([]) last_word_idx = -1 for word_idx in encoding.words[1:-1]: labels[-1].append(int(word_idx != last_word_idx)) last_word_idx = word_idx res['labels'] = labels return res dataset = dataset.map( lambda examples: tokenize(examples), batched=True, cache_file_names={ k: d._get_cache_file_path(f"{task_info.task_name}-{k}-tokenized") for k, d in dataset.items() } ) dataset.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask', 'labels']) dataset.shuffle( indices_cache_file_names={ k: d._get_cache_file_path(f"{task_info.task_name}-{k}-shuffled-index-{model.hparams.seed}") for k, d in dataset.items() } ) return dataset, f1_score def validation_method(metric, loss_tag='val_loss', metric_tag=f'val_{task_info.metric_name}', log=True): label_mapper = ['I-W', 'B-W'] def step(self: pl.LightningModule, batch, batch_nb): loss, logits = self(**batch) mask = batch['attention_mask'][:, 2:] != 1 # acc labels = batch['labels'] preds = torch.argmax(logits, dim=-1) labels[mask] = -1 preds[mask] = -1 labels = [[label_mapper[word] for word in sent if word != -1] for sent in labels.detach().cpu().numpy()] preds = [[label_mapper[word] for word in sent if word != -1] for sent in preds.detach().cpu().numpy()] return {'loss': loss.item(), 'pred': preds, 'labels': labels} def epoch_end(self: pl.LightningModule, outputs): if isinstance(outputs, dict): outputs = [outputs] length = len(outputs) loss = sum([output['loss'] for output in outputs]) / length preds = sum([output['pred'] for output in outputs], []) labels = sum([output['labels'] for output in outputs], []) f1 = metric(preds, labels) if log: self.log_dict( dictionary={loss_tag: loss, metric_tag: f1}, on_step=False, on_epoch=True, prog_bar=True, logger=True ) else: return f1 return step, epoch_end def build_method(model): dataset, metric = build_dataset(model, model.hparams.data_dir) def train_dataloader(self): res = torch.utils.data.DataLoader( dataset[datasets.Split.TRAIN], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) return res def training_step(self, batch, batch_nb): loss, logits = self(**batch) self.log("loss", loss.item()) return loss def val_dataloader(self): return torch.utils.data.DataLoader( dataset[datasets.Split.VALIDATION], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) def test_dataloader(self): return torch.utils.data.DataLoader( dataset[datasets.Split.TEST], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) # AdamW + LR scheduler def configure_optimizers(self: Model): num_epoch_steps = (len(dataset[datasets.Split.TRAIN]) + self.hparams.batch_size - 1) // self.hparams.batch_size num_train_steps = num_epoch_steps * self.hparams.max_epochs optimizer, scheduler = optimization.create_optimizer( self, lr=self.hparams.lr, num_train_steps=num_train_steps, weight_decay=self.hparams.weight_decay, warmup_steps=self.hparams.warmup_steps, warmup_proportion=self.hparams.warmup_proportion, layerwise_lr_decay_power=self.hparams.layerwise_lr_decay_power, n_transformer_layers=self.transformer.config.num_hidden_layers, lr_scheduler=optimization.get_polynomial_decay_schedule_with_warmup, lr_scheduler_kwargs={ 'lr_end': self.hparams.lr_end, 'power': self.hparams.lr_decay_power } ) return [optimizer], [{'scheduler': scheduler, 'interval': 'step'}] model.configure_optimizers = types.MethodType(configure_optimizers, model) model.train_dataloader = types.MethodType(train_dataloader, model) model.training_step = types.MethodType(training_step, model) # model.training_epoch_end = types.MethodType(training_epoch_end, model) validation_step, validation_epoch_end = validation_method( metric, loss_tag='val_loss', metric_tag=f'val_{task_info.metric_name}' ) model.val_dataloader = types.MethodType(val_dataloader, model) model.validation_step = types.MethodType(validation_step, model) model.validation_epoch_end = types.MethodType(validation_epoch_end, model) test_step, test_epoch_end = validation_method( metric, loss_tag='test_loss', metric_tag=f'test_{task_info.metric_name}' ) model.test_dataloader = types.MethodType(test_dataloader, model) model.test_step = types.MethodType(test_step, model) model.test_epoch_end = types.MethodType(test_epoch_end, model) def add_task_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--seed', type=int, default=19980524) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--num_workers', type=int, default=4) parser.add_argument('--data_dir', type=str, required=True) parser.add_argument('--build_dataset', action='store_true') return parser def build_distill_dataset(args): model = Model.load_from_checkpoint( args.resume_from_checkpoint, hparams=args ) model.eval() model.freeze() dataset, metric = build_dataset(model, args.data_dir) train_dataloader = torch.utils.data.DataLoader( dataset[datasets.Split.TRAIN], batch_size=args.batch_size, collate_fn=collate, num_workers=args.num_workers ) output = os.path.join(args.data_dir, 'output.pt') if torch.cuda.is_available(): model.cuda() map2cpu = lambda x: map2device(x) map2cuda = lambda x: map2device(x, model.device) else: map2cpu = lambda x: x map2cuda = lambda x: x with torch.no_grad(): batchs = [] for batch in tqdm(train_dataloader): batch = map2cuda(batch) loss, logits = model(**batch) batch.update(logits=logits) batchs.append(map2cpu(batch)) numpy.savez(output, data=convert2npy(batchs)) print("Done") def main(): parser = ArgumentParser() # add task level args parser = add_task_specific_args(parser) # add model specific args parser = Model.add_model_specific_args(parser) parser = optimization.add_optimizer_specific_args(parser) parser = Trainer.add_argparse_args(parser) # set task specific args parser.set_defaults(num_labels=2) args = parser.parse_args() if args.build_dataset: build_distill_dataset(args) else: common_train( args, metric=f'val_{task_info.metric_name}', model_class=Model, build_method=build_method, task=task_info.task_name ) if __name__ == '__main__': main()
3c7c5139a5cd6dd8e33834de89b98fdd8bba4a33
52b5773617a1b972a905de4d692540d26ff74926
/.history/length_20200529113854.py
76b776e2932e64a11975284ff9a772f9332ca676
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
def removeDuplicates(nums): i = 0 while i <len(nums): print(nums[i]) if nums[i] == nums[i+1]: nums.remove(nums[i]) else: nums.add(nums[i]) # for i in range(length): # print('i--------->',i) # for j in range(i+1,length): # print('j----->',j) removeDuplicates([1,1,2])
8097d71b8ebae32d7fdc01e7873b5ee6d6ad0fb4
c01ab71f681efdeb9f4e7d52ed083745b6d42590
/old/6th sem/cpp/TRIKA/test_modules/testCases.py
96b35814c7b3c3e9a1a25b8848bf226225f18b05
[]
no_license
anant-pushkar/competetive_programming_codes
398a39c85a761c8d242f42f368933239a438ac06
127c67d7d4e2cef2d1f25189b6535606f4523af6
refs/heads/master
2021-01-20T11:57:07.528790
2014-11-14T08:29:21
2014-11-14T08:29:21
23,577,655
0
1
null
null
null
null
UTF-8
Python
false
false
475
py
import testTemplate '''number of test suites''' nSuites=1 def getTests(): tests = [] suite=testTemplate.testSuite("Sample 1") testcase = testTemplate.testInstance("4 4\n1 1\n100 55 10 2\n20 10 90 1\n60 20 22 4\n1 30 70 5" , "Y 23" , "") suite.add(testcase) tests.append(suite) suite=testTemplate.testSuite("Sample 2") testcase = testTemplate.testInstance("2 2\n1 1\n1 55 \n20 10 " , "N" , "") suite.add(testcase) tests.append(suite) return tests
30980eca76f9208b779a5f3c5e0e65affab9eb1c
5e4897b32cd19d145cefc4451ced910313cde0bb
/sphinxextra/phpdomain.py
4380ed3ab6981611f85ff56abfe6880149f92879
[]
no_license
Tinkerforge/doc
7e87edcf8d8b67d1edce749c4a3106f431a77585
19e49bad70fbe644aa9b4af4d64f99aa0cf71d7f
refs/heads/master
2023-08-20T22:10:37.363910
2023-08-17T13:33:28
2023-08-17T13:33:28
2,262,338
6
8
null
2023-07-24T13:46:27
2011-08-24T15:21:34
Python
UTF-8
Python
false
false
34,922
py
# -*- coding: utf-8 -*- """ sphinx.domains.php ~~~~~~~~~~~~~~~~~~ The PHP language domain. :copyright: Copyright 2007-2010 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from copy import deepcopy from docutils import nodes from sphinx import addnodes from sphinx.roles import XRefRole from sphinx.locale import l_, _ from sphinx.domains import Domain, ObjType from sphinx.directives import ObjectDescription from sphinx.util.nodes import make_refnode from sphinx.util.compat import Directive from sphinx.util.docfields import TypedField from sphinxextra.utils import fixup_index_entry # Olaf: add [\[\]]*, remove \b to allow java arrays, add \. to allow Class1.Class2 #_identifier_re = re.compile(r'\b(~?[a-zA-Z_][a-zA-Z0-9_]*)\b') _identifier_re = re.compile(r'\$?\b(~?[a-zA-Z_\$][a-zA-Z0-9_\.]*[\[\]]*)') _whitespace_re = re.compile(r'\s+(?u)') _string_re = re.compile(r"[LuU8]?('([^'\\]*(?:\\.[^'\\]*)*)'" r'|"([^"\\]*(?:\\.[^"\\]*)*)")', re.S) _visibility_re = re.compile(r'\b(public|private|protected)\b') _operator_re = re.compile(r'''(?x) \[\s*\] | \(\s*\) | [!<>=/*%+|&^-]=? | \+\+ | -- | (<<|>>)=? | ~ | && | \| | \|\| | ->\*? | \, ''') _id_shortwords = { 'char': 'c', 'signed char': 'c', 'unsigned char': 'C', 'int': 'i', 'signed int': 'i', 'unsigned int': 'U', 'long': 'l', 'signed long': 'l', 'unsigned long': 'L', 'bool': 'b', 'size_t': 's', 'std::string': 'ss', 'std::ostream': 'os', 'std::istream': 'is', 'std::iostream': 'ios', 'std::vector': 'v', 'std::map': 'm', 'operator[]': 'subscript-operator', 'operator()': 'call-operator', 'operator!': 'not-operator', 'operator<': 'lt-operator', 'operator<=': 'lte-operator', 'operator>': 'gt-operator', 'operator>=': 'gte-operator', 'operator=': 'assign-operator', 'operator/': 'div-operator', 'operator*': 'mul-operator', 'operator%': 'mod-operator', 'operator+': 'add-operator', 'operator-': 'sub-operator', 'operator|': 'or-operator', 'operator&': 'and-operator', 'operator^': 'xor-operator', 'operator&&': 'sand-operator', 'operator||': 'sor-operator', 'operator==': 'eq-operator', 'operator!=': 'neq-operator', 'operator<<': 'lshift-operator', 'operator>>': 'rshift-operator', 'operator-=': 'sub-assign-operator', 'operator+=': 'add-assign-operator', 'operator*-': 'mul-assign-operator', 'operator/=': 'div-assign-operator', 'operator%=': 'mod-assign-operator', 'operator&=': 'and-assign-operator', 'operator|=': 'or-assign-operator', 'operator<<=': 'lshift-assign-operator', 'operator>>=': 'rshift-assign-operator', 'operator^=': 'xor-assign-operator', 'operator,': 'comma-operator', 'operator->': 'pointer-operator', 'operator->*': 'pointer-by-pointer-operator', 'operator~': 'inv-operator', 'operator++': 'inc-operator', 'operator--': 'dec-operator', 'operator new': 'new-operator', 'operator new[]': 'new-array-operator', 'operator delete': 'delete-operator', 'operator delete[]': 'delete-array-operator' } class DefinitionError(Exception): def __init__(self, description): self.description = description def __unicode__(self): return self.description def __str__(self): return unicode(self.encode('utf-8')) class DefExpr(object): def __unicode__(self): raise NotImplementedError() def __eq__(self, other): if type(self) is not type(other): return False try: for key, value in self.__dict__.iteritems(): if value != getattr(other, value): return False except AttributeError: return False return True def __ne__(self, other): return not self.__eq__(other) def clone(self): """Close a definition expression node""" return deepcopy(self) def get_id(self): """Returns the id for the node""" return u'' def get_name(self): """Returns the name. Returns either `None` or a node with a name you might call :meth:`split_owner` on. """ return None def split_owner(self): """Nodes returned by :meth:`get_name` can split off their owning parent. This function returns the owner and the name as a tuple of two items. If a node does not support it, :exc:`NotImplementedError` is raised. """ raise NotImplementedError() def prefix(self, prefix): """Prefixes a name node (a node returned by :meth:`get_name`).""" raise NotImplementedError() def __str__(self): return unicode(self).encode('utf-8') def __repr__(self): return '<defexpr %s>' % self class PrimaryDefExpr(DefExpr): def get_name(self): return self def split_owner(self): return None, self def prefix(self, prefix): if isinstance(prefix, PathDefExpr): prefix = prefix.clone() prefix.path.append(self) return prefix return PathDefExpr([prefix, self]) class NameDefExpr(PrimaryDefExpr): def __init__(self, name): self.name = name def get_id(self): name = _id_shortwords.get(self.name) if name is not None: return name return self.name.replace(u' ', u'-') def __unicode__(self): return unicode(self.name) class PathDefExpr(PrimaryDefExpr): def __init__(self, parts): self.path = parts def get_id(self): rv = u'::'.join(x.get_id() for x in self.path) return _id_shortwords.get(rv, rv) def split_owner(self): if len(self.path) > 1: return PathDefExpr(self.path[:-1]), self.path[-1] return None, self def prefix(self, prefix): if isinstance(prefix, PathDefExpr): prefix = prefix.clone() prefix.path.extend(self.path) return prefix return PathDefExpr([prefix] + self.path) def __unicode__(self): return u'::'.join(map(unicode, self.path)) class TemplateDefExpr(PrimaryDefExpr): def __init__(self, typename, args): self.typename = typename self.args = args def split_owner(self): owner, typename = self.typename.split_owner() return owner, TemplateDefExpr(typename, self.args) def get_id(self): return u'%s:%s:' % (self.typename.get_id(), u'.'.join(x.get_id() for x in self.args)) def __unicode__(self): return u'%s<%s>' % (self.typename, u', '.join(map(unicode, self.args))) class WrappingDefExpr(DefExpr): def __init__(self, typename): self.typename = typename def get_name(self): return self.typename.get_name() class ModifierDefExpr(WrappingDefExpr): def __init__(self, typename, modifiers): WrappingDefExpr.__init__(self, typename) self.modifiers = modifiers def get_id(self): pieces = [_id_shortwords.get(unicode(x), unicode(x)) for x in self.modifiers] pieces.append(self.typename.get_id()) return u'-'.join(pieces) def __unicode__(self): return u' '.join(map(unicode, list(self.modifiers) + [self.typename])) class PtrDefExpr(WrappingDefExpr): def get_id(self): return self.typename.get_id() + u'P' def __unicode__(self): return u'%s*' % self.typename class RefDefExpr(WrappingDefExpr): def get_id(self): return self.typename.get_id() + u'R' def __unicode__(self): return u'%s&' % self.typename class ConstDefExpr(WrappingDefExpr): def __init__(self, typename, prefix=False): WrappingDefExpr.__init__(self, typename) self.prefix = prefix def get_id(self): return self.typename.get_id() + u'C' def __unicode__(self): return (self.prefix and u'const %s' or u'%s const') % self.typename class CastOpDefExpr(PrimaryDefExpr): def __init__(self, typename): self.typename = typename def get_id(self): return u'castto-%s-operator' % self.typename.get_id() def __unicode__(self): return u'operator %s' % self.typename class ArgumentDefExpr(DefExpr): def __init__(self, type, name, default=None): self.name = name self.type = type self.default = default def get_name(self): return self.name.get_name() def get_id(self): if self.type is None: return 'X' return self.type.get_id() def __unicode__(self): return (self.type is not None and u'%s %s' % (self.type, self.name) or unicode(self.name)) + (self.default is not None and u'=%s' % self.default or u'') class NamedDefExpr(DefExpr): def __init__(self, name, visibility, static): self.name = name self.visibility = visibility self.static = static def get_name(self): return self.name.get_name() def get_modifiers(self): rv = [] if self.visibility != 'public': rv.append(self.visibility) if self.static: rv.append(u'static') return rv class TypeObjDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, typename): NamedDefExpr.__init__(self, name, visibility, static) self.typename = typename def get_id(self): if self.typename is None: return self.name.get_id() return u'%s__%s' % (self.name.get_id(), self.typename.get_id()) def __unicode__(self): buf = self.get_modifiers() if self.typename is None: buf.append(unicode(self.name)) else: buf.extend(map(unicode, (self.typename, self.name))) return u' '.join(buf) class MemberObjDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, typename, value): NamedDefExpr.__init__(self, name, visibility, static) self.typename = typename self.value = value def get_id(self): return u'%s__%s' % (self.name.get_id(), self.typename.get_id()) def __unicode__(self): buf = self.get_modifiers() buf.append(u'%s %s' % (self.typename, self.name)) if self.value is not None: buf.append(u'= %s' % self.value) return u' '.join(buf) class FuncDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, explicit, rv, signature, const, pure_virtual): NamedDefExpr.__init__(self, name, visibility, static) self.rv = rv self.signature = signature self.explicit = explicit self.const = const self.pure_virtual = pure_virtual def get_id(self): return u'%s%s%s' % ( self.name.get_id(), self.signature and u'__' + u'.'.join(x.get_id() for x in self.signature) or u'', self.const and u'C' or u'' ) def __unicode__(self): buf = self.get_modifiers() if self.explicit: buf.append(u'explicit') if self.rv is not None: buf.append(unicode(self.rv)) buf.append(u'%s(%s)' % (self.name, u', '.join( map(unicode, self.signature)))) if self.const: buf.append(u'const') if self.pure_virtual: buf.append(u'= 0') return u' '.join(buf) class ClassDefExpr(NamedDefExpr): def __init__(self, name, visibility, static): NamedDefExpr.__init__(self, name, visibility, static) def get_id(self): return self.name.get_id() def __unicode__(self): buf = self.get_modifiers() buf.append(unicode(self.name)) return u' '.join(buf) class DefinitionParser(object): # mapping of valid type modifiers. if the set is None it means # the modifier can prefix all types, otherwise only the types # (actually more keywords) in the set. Also check # _guess_typename when changing this. _modifiers = { 'volatile': None, 'register': None, 'mutable': None, 'const': None, 'typename': None, 'unsigned': set(('char', 'int', 'long')), 'signed': set(('char', 'int', 'long')), 'short': set(('int', 'short')), 'long': set(('int', 'long', 'double')) } def __init__(self, definition): self.definition = definition.strip() self.pos = 0 self.end = len(self.definition) self.last_match = None self._previous_state = (0, None) def fail(self, msg): raise DefinitionError('Invalid definition: %s [error at %d]\n %s' % (msg, self.pos, self.definition)) def match(self, regex): match = regex.match(self.definition, self.pos) if match is not None: self._previous_state = (self.pos, self.last_match) self.pos = match.end() self.last_match = match return True return False def backout(self): self.pos, self.last_match = self._previous_state def skip_string(self, string): strlen = len(string) if self.definition[self.pos:self.pos + strlen] == string: self.pos += strlen return True return False def skip_word(self, word): return self.match(re.compile(r'\b%s\b' % re.escape(word))) def skip_ws(self): return self.match(_whitespace_re) @property def eof(self): return self.pos >= self.end @property def current_char(self): try: return self.definition[self.pos] except IndexError: return 'EOF' @property def matched_text(self): if self.last_match is not None: return self.last_match.group() def _parse_operator(self): self.skip_ws() # thank god, a regular operator definition if self.match(_operator_re): return NameDefExpr('operator' + _whitespace_re.sub('', self.matched_text)) # new/delete operator? for allocop in 'new', 'delete': if not self.skip_word(allocop): continue self.skip_ws() if self.skip_string('['): self.skip_ws() if not self.skip_string(']'): self.fail('expected "]" for ' + allocop) allocop += '[]' return NameDefExpr('operator ' + allocop) # oh well, looks like a cast operator definition. # In that case, eat another type. type = self._parse_type() return CastOpDefExpr(type) def _parse_name(self): if not self.match(_identifier_re): print self.definition, self.pos self.fail('expected name') identifier = self.matched_text # strictly speaking, operators are not regular identifiers # but because operator is a keyword, it might not be used # for variable names anyways, so we can safely parse the # operator here as identifier if identifier == 'operator': return self._parse_operator() return NameDefExpr(identifier) def _guess_typename(self, path): if not path: return [], 'int' # for the long type, we don't want the int in there if 'long' in path: path = [x for x in path if x != 'int'] # remove one long path.remove('long') return path, 'long' if path[-1] in ('int', 'char'): return path[:-1], path[-1] return path, 'int' def _attach_crefptr(self, expr, is_const=False): if is_const: expr = ConstDefExpr(expr, prefix=True) while 1: self.skip_ws() if self.skip_word('const'): expr = ConstDefExpr(expr) elif self.skip_string('*'): expr = PtrDefExpr(expr) elif self.skip_string('&'): expr = RefDefExpr(expr) else: return expr def _peek_const(self, path): try: path.remove('const') return True except ValueError: return False def _parse_builtin(self, modifier): path = [modifier] following = self._modifiers[modifier] while 1: self.skip_ws() if not self.match(_identifier_re): break identifier = self.matched_text if identifier in following: path.append(identifier) following = self._modifiers[modifier] assert following else: self.backout() break is_const = self._peek_const(path) modifiers, typename = self._guess_typename(path) # Olaf: don't use typename (this makes "short int" from "short" etc) if typename != 'long': typename = '' rv = ModifierDefExpr(NameDefExpr(typename), modifiers) return self._attach_crefptr(rv, is_const) def _parse_type_expr(self): typename = self._parse_name() self.skip_ws() if not self.skip_string('<'): return typename args = [] while 1: self.skip_ws() if self.skip_string('>'): break if args: if not self.skip_string(','): self.fail('"," or ">" in template expected') self.skip_ws() args.append(self._parse_type(True)) return TemplateDefExpr(typename, args) def _parse_type(self, in_template=False): self.skip_ws() result = [] modifiers = [] # if there is a leading :: or not, we don't care because we # treat them exactly the same. Buf *if* there is one, we # don't have to check for type modifiers if not self.skip_string('::'): self.skip_ws() while self.match(_identifier_re): modifier = self.matched_text if modifier in self._modifiers: following = self._modifiers[modifier] # if the set is not none, there is a limited set # of types that might follow. It is technically # impossible for a template to follow, so what # we do is go to a different function that just # eats types if following is not None: return self._parse_builtin(modifier) modifiers.append(modifier) else: self.backout() break while 1: self.skip_ws() if (in_template and self.current_char in ',>') or \ (result and not self.skip_string('::')) or \ self.eof: break result.append(self._parse_type_expr()) if not result: self.fail('expected type') if len(result) == 1: rv = result[0] else: rv = PathDefExpr(result) is_const = self._peek_const(modifiers) if modifiers: rv = ModifierDefExpr(rv, modifiers) return self._attach_crefptr(rv, is_const) def _parse_default_expr(self): self.skip_ws() if self.match(_string_re): return self.matched_text idx1 = self.definition.find(',', self.pos) idx2 = self.definition.find(')', self.pos) if idx1 < 0: idx = idx2 elif idx2 < 0: idx = idx1 else: idx = min(idx1, idx2) if idx < 0: self.fail('unexpected end in default expression') rv = self.definition[self.pos:idx] self.pos = idx return rv def _parse_signature(self): self.skip_ws() if not self.skip_string('('): self.fail('expected parentheses for function') args = [] while 1: self.skip_ws() if self.eof: self.fail('missing closing parentheses') if self.skip_string(')'): break if args: if not self.skip_string(','): self.fail('expected comma between arguments') self.skip_ws() argname = self._parse_type() argtype = default = None self.skip_ws() if self.skip_string('='): self.pos += 1 default = self._parse_default_expr() elif self.current_char not in ',)': argtype = argname argname = self._parse_name() self.skip_ws() if self.skip_string('='): default = self._parse_default_expr() args.append(ArgumentDefExpr(argtype, argname, default)) self.skip_ws() const = self.skip_word('const') if const: self.skip_ws() if self.skip_string('='): self.skip_ws() if not (self.skip_string('0') or \ self.skip_word('NULL') or \ self.skip_word('nullptr')): self.fail('pure virtual functions must be defined with ' 'either 0, NULL or nullptr, other macros are ' 'not allowed') pure_virtual = True else: pure_virtual = False return args, const, pure_virtual def _parse_visibility_static(self): visibility = '' if self.match(_visibility_re): visibility = self.matched_text static = self.skip_word('static') return visibility, static def parse_type(self): return self._parse_type() def parse_type_object(self): visibility, static = self._parse_visibility_static() typename = self._parse_type() self.skip_ws() if not self.eof: name = self._parse_type() else: name = typename typename = None return TypeObjDefExpr(name, visibility, static, typename) def parse_member_object(self): visibility, static = self._parse_visibility_static() typename = self._parse_type() name = self._parse_type() self.skip_ws() if self.skip_string('='): value = self.read_rest().strip() else: value = None return MemberObjDefExpr(name, visibility, static, typename, value) def parse_function(self): visibility, static = self._parse_visibility_static() if self.skip_word('explicit'): explicit = True self.skip_ws() else: explicit = False rv = self._parse_type() self.skip_ws() # some things just don't have return values if self.current_char == '(': name = rv rv = None else: name = self._parse_type() return FuncDefExpr(name, visibility, static, explicit, rv, *self._parse_signature()) def parse_class(self): visibility, static = self._parse_visibility_static() return ClassDefExpr(self._parse_type(), visibility, static) def read_rest(self): rv = self.definition[self.pos:] self.pos = self.end return rv def assert_end(self): self.skip_ws() if not self.eof: self.fail('expected end of definition, got %r' % self.definition[self.pos:]) class PHPObject(ObjectDescription): """Description of a PHP language object.""" def attach_name(self, node, name): owner, name = name.split_owner() varname = unicode(name) if owner is not None: owner = unicode(owner) + '::' node += addnodes.desc_addname(owner, owner) node += addnodes.desc_name(varname, varname) def attach_type(self, node, type): # XXX: link to c? text = unicode(type) pnode = addnodes.pending_xref( '', refdomain='php', reftype='type', reftarget=text, modname=None, classname=None) pnode['php:parent'] = self.env.temp_data.get('php:parent') pnode += nodes.Text(text) node += pnode def attach_modifiers(self, node, obj): if obj.visibility != 'public': node += addnodes.desc_annotation(obj.visibility, obj.visibility) node += nodes.Text(' ') if obj.static: node += addnodes.desc_annotation('static', 'static') node += nodes.Text(' ') def add_target_and_index(self, sigobj, sig, signode): theid = sigobj.get_id() name = unicode(sigobj.name) signode['names'].append(theid) signode['ids'].append(theid) signode['first'] = (not self.names) self.state.document.note_explicit_target(signode) self.env.domaindata['php']['objects'].setdefault(name, (self.env.docname, self.objtype, theid)) indextext = self.get_index_text(name) if indextext: self.indexnode['entries'].append(fixup_index_entry(('single', indextext, name, name, 'foobar'))) def before_content(self): lastname = self.names and self.names[-1] if lastname and not self.env.temp_data.get('php:parent'): assert isinstance(lastname, NamedDefExpr) self.env.temp_data['php:parent'] = lastname.name self.parentname_set = True else: self.parentname_set = False def after_content(self): if self.parentname_set: self.env.temp_data['php:parent'] = None def parse_definition(self, parser): raise NotImplementedError() def describe_signature(self, signode, arg): raise NotImplementedError() def handle_signature(self, sig, signode): parser = DefinitionParser(sig) try: rv = self.parse_definition(parser) parser.assert_end() except DefinitionError, e: self.env.warn(self.env.docname, e.description, self.lineno) raise ValueError self.describe_signature(signode, rv) parent = self.env.temp_data.get('php:parent') if parent is not None: rv = rv.clone() rv.name = rv.name.prefix(parent) return rv class PHPClassObject(PHPObject): def get_index_text(self, name): return _('%s (PHP class)') % name def parse_definition(self, parser): return parser.parse_class() def describe_signature(self, signode, cls): self.attach_modifiers(signode, cls) signode += addnodes.desc_annotation('class ', 'class ') self.attach_name(signode, cls.name) class PHPTypeObject(PHPObject): def get_index_text(self, name): if self.objtype == 'type': return _('%s (PHP type)') % name return '' def parse_definition(self, parser): return parser.parse_type_object() def describe_signature(self, signode, obj): self.attach_modifiers(signode, obj) signode += addnodes.desc_annotation('type ', 'type ') if obj.typename is not None: self.attach_type(signode, obj.typename) signode += nodes.Text(' ') self.attach_name(signode, obj.name) class PHPMemberObject(PHPObject): def get_index_text(self, name): if self.objtype == 'member': return _('%s (PHP member)') % name return '' def parse_definition(self, parser): return parser.parse_member_object() def describe_signature(self, signode, obj): self.attach_modifiers(signode, obj) self.attach_type(signode, obj.typename) signode += nodes.Text(' ') self.attach_name(signode, obj.name) if obj.value is not None: signode += nodes.Text(u' = ' + obj.value) class PHPFunctionObject(PHPObject): def attach_function(self, node, func): owner, name = func.name.split_owner() if owner is not None: owner = unicode(owner) + '::' node += addnodes.desc_addname(owner, owner) # cast operator is special. in this case the return value # is reversed. if isinstance(name, CastOpDefExpr): node += addnodes.desc_name('operator', 'operator') node += nodes.Text(u' ') self.attach_type(node, name.typename) else: funcname = unicode(name) node += addnodes.desc_name(funcname, funcname) paramlist = addnodes.desc_parameterlist() for arg in func.signature: param = addnodes.desc_parameter('', '', noemph=True) if arg.type is not None: self.attach_type(param, arg.type) param += nodes.Text(u' ') param += nodes.emphasis(unicode(arg.name), unicode(arg.name)) if arg.default is not None: def_ = u'=' + unicode(arg.default) param += nodes.emphasis(def_, def_) paramlist += param node += paramlist if func.const: node += addnodes.desc_addname(' const', ' const') if func.pure_virtual: node += addnodes.desc_addname(' = 0', ' = 0') def get_index_text(self, name): return _('%s (PHP function)') % name def parse_definition(self, parser): return parser.parse_function() def describe_signature(self, signode, func): self.attach_modifiers(signode, func) if func.explicit: signode += addnodes.desc_annotation('explicit', 'explicit') signode += nodes.Text(' ') # return value is None for things with a reverse return value # such as casting operator definitions or constructors # and destructors. if func.rv is not None: self.attach_type(signode, func.rv) signode += nodes.Text(u' ') self.attach_function(signode, func) class PHPCurrentNamespace(Directive): """This directive is just to tell Sphinx that we're documenting stuff in namespace foo. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = {} def run(self): env = self.state.document.settings.env if self.arguments[0].strip() in ('NULL', '0', 'nullptr'): env.temp_data['php:prefix'] = None else: parser = DefinitionParser(self.arguments[0]) try: prefix = parser.parse_type() parser.assert_end() except DefinitionError, e: self.env.warn(self.env.docname, e.description, self.lineno) else: env.temp_data['php:prefix'] = prefix return [] class PHPXRefRole(XRefRole): def process_link(self, env, refnode, has_explicit_title, title, target): refnode['php:parent'] = env.temp_data.get('php:parent') if not has_explicit_title: target = target.lstrip('~') # only has a meaning for the title # if the first character is a tilde, don't display the module/class # parts of the contents if title[:1] == '~': title = title[1:] dcolon = title.rfind('::') if dcolon != -1: title = title[dcolon + 2:] return title, target class PHPDomain(Domain): """PHP language domain.""" name = 'php' label = 'PHP' object_types = { 'class': ObjType(l_('class'), 'class'), 'function': ObjType(l_('function'), 'func'), 'member': ObjType(l_('member'), 'member'), 'type': ObjType(l_('type'), 'type') } directives = { 'class': PHPClassObject, 'function': PHPFunctionObject, 'member': PHPMemberObject, 'type': PHPTypeObject, 'namespace': PHPCurrentNamespace } roles = { 'class': PHPXRefRole(), 'func' : PHPXRefRole(fix_parens=True), 'member': PHPXRefRole(), 'type': PHPXRefRole() } initial_data = { 'objects': {}, # fullname -> docname, objtype } def clear_doc(self, docname): for fullname, (fn, _, _) in self.data['objects'].items(): if fn == docname: del self.data['objects'][fullname] def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): def _create_refnode(expr): name = unicode(expr) if name not in self.data['objects']: return None obj = self.data['objects'][name] if obj[1] not in self.objtypes_for_role(typ): return None return make_refnode(builder, fromdocname, obj[0], obj[2], contnode, name) parser = DefinitionParser(target) # XXX: warn? try: expr = parser.parse_type().get_name() parser.skip_ws() if not parser.eof or expr is None: return None except DefinitionError: return None parent = node['php:parent'] rv = _create_refnode(expr) if rv is not None or parent is None: return rv parent = parent.get_name() rv = _create_refnode(expr.prefix(parent)) if rv is not None: return rv parent, name = parent.split_owner() return _create_refnode(expr.prefix(parent)) def get_objects(self): for refname, (docname, type, theid) in self.data['objects'].iteritems(): yield (refname, refname, type, docname, refname, 1) def setup(app): app.add_domain(PHPDomain)
15fc22e8fd23bf75543afca8ce167e6017251fa0
fb1e852da0a026fb59c8cb24aeb40e62005501f1
/decoding/GAD/fairseq/dataclass/constants.py
93bc6d03cb81618c47a58009dc22f7953a106eb3
[ "LicenseRef-scancode-unknown-license-reference", "LGPL-2.1-or-later", "LicenseRef-scancode-free-unknown", "Apache-2.0", "MIT" ]
permissive
microsoft/unilm
134aa44867c5ed36222220d3f4fd9616d02db573
b60c741f746877293bb85eed6806736fc8fa0ffd
refs/heads/master
2023-08-31T04:09:05.779071
2023-08-29T14:07:57
2023-08-29T14:07:57
198,350,484
15,313
2,192
MIT
2023-08-19T11:33:20
2019-07-23T04:15:28
Python
UTF-8
Python
false
false
1,626
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, EnumMeta from typing import List class StrEnumMeta(EnumMeta): # this is workaround for submitit pickling leading to instance checks failing in hydra for StrEnum, see # https://github.com/facebookresearch/hydra/issues/1156 @classmethod def __instancecheck__(cls, other): return "enum" in str(type(other)) class StrEnum(Enum, metaclass=StrEnumMeta): def __str__(self): return self.value def __eq__(self, other: str): return self.value == other def __repr__(self): return self.value def __hash__(self): return hash(str(self)) def ChoiceEnum(choices: List[str]): """return the Enum class used to enforce list of choices""" return StrEnum("Choices", {k: k for k in choices}) LOG_FORMAT_CHOICES = ChoiceEnum(["json", "none", "simple", "tqdm"]) DDP_BACKEND_CHOICES = ChoiceEnum([ "c10d", # alias for pytorch_ddp "legacy_ddp", "no_c10d", # alias for legacy_ddp "pytorch_ddp", "slow_mo", ]) DATASET_IMPL_CHOICES = ChoiceEnum(["raw", "lazy", "cached", "mmap", "fasta"]) GENERATION_CONSTRAINTS_CHOICES = ChoiceEnum(["ordered", "unordered"]) GENERATION_DECODING_FORMAT_CHOICES = ChoiceEnum( ["unigram", "ensemble", "vote", "dp", "bs"] ) ZERO_SHARDING_CHOICES = ChoiceEnum(["none", "os"]) PIPELINE_CHECKPOINT_CHOICES = ChoiceEnum(["always", "never", "except_last"]) PRINT_ALIGNMENT_CHOICES = ChoiceEnum(["hard", "soft"])
226980fdf20772f3a2d26e3b993584790ded886b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/299/100769/submittedfiles/testes.py
b90b88a3a2fbbabb9a6af0cc8e965ec6c94201cb
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
4,871
py
from minha_bib import verificar_vitoria from minha_bib import sorteio from minha_bib import sorteio2 from minha_bib import maquinainteligente import time c=0 tabuleiro=[[1,2,3],[1,2,3],[1,2,3]] for i in range(0,3,1): for j in range(0,3,1): tabuleiro[i][j]=" " print('---------------------------------------') print('JOGO DA VELHA') print('Olá\nSeja Bem Vindo ao jogo da velha!') #JOGO ENTRE DUAS PESSOAS nome1=str(input('Qual seu nome(ou apelido)? ')) '''nome2=str(input('Qual o nome do segundo jogador? '))''' s1=str(input('Qual símbolo você deseja utilizar,'+nome1+'?[X/O]')) if s1=='X': s2='O' '''print('Ok, vamos começar,'+nome2+' ficará com "O"')''' else: s2='X' '''print('Ok, vamos começar,'+nome2+'ficará com "X"')''' print('Esse é o nosso tabuleiro \n',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) print('Você vai me informar a casa que quer jogar com números.\n E cada um desses números representa as seguintes casas:') print('00 | 01 | 02\n10 | 11 | 12\n20 | 21 | 22') print('E aí eu vou lá e substituo a casa pelo seu símbolo, por exemplo:\nO você me informa a seguinte jogada: 22') print('Eu vou lá e...') print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',s2) print('----------------------------------------------') #COMEÇO DO JOGO inicio=sorteio(0,1) if inicio==0: inicio=str('Usuário') else: inicio=str('Máquina') print('O vencedor do sorteio para incio foi '+inicio) if inicio=='Usuário': print('Então você começa') k=0 while k<10: k+=1 if k%2!=0: jogada=str(input('Qual a sua jogada '+nome1+'?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) while tabuleiro[i][j]!=" ": print('Jogada inválida') jogada=str(input('Qual a sua jogada?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) tabuleiro[i][j]=s1 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('PARABÉNS,VOCÊ VENCEU') break elif k%2==0: print('Minha vez') time.sleep(1) x=str(maquinainteligente(tabuleiro)) i=int(x[0]) j=int(x[1]) while tabuleiro[i][j]!=' ': i=int(sorteio2(0,2)) j=int(sorteio2(0,2)) tabuleiro[i][j] tabuleiro[i][j]=s2 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('Ahh, não foi dessa vez') break elif inicio=='Máquina': print('Então eu começo') for k in range(1,10,1): if k%2!=0: print('Minha vez') time.sleep(1) x=str(maquinainteligente(tabuleiro)) i=int(x[0]) j=int(x[1]) while tabuleiro[i][j]!=' ': i=int(sorteio2(0,2)) j=int(sorteio2(0,2)) tabuleiro[i][j] tabuleiro[i][j]=s2 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('Ahh, não foi dessa vez') break elif k%2==0: jogada=str(input('Qual a sua jogada '+nome1+'?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) while tabuleiro[i][j]!=" ": print('Jogada inválida') jogada=str(input('Qual a sua jogada?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) tabuleiro[i][j]=s1 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('PARABÉNS,VOCÊ VENCEU') break elif k==9 and verificar_vitoria(tabuleiro)==False: print('ihhhh, Deu velha')
891cf68c8f2e5a2d7b2c3c9baf3fd45f36ba1c93
3e3a835ee885eb9a71fd35ea58acd04361f72f47
/python基础/复习.py/石头剪刀布.py
df86dfa2ef1429a31cb3268c524f245a54ab4e82
[]
no_license
hanfang302/py-
dbb259f24e06fbe1a900df53ae6867acb8cb54ea
dd3be494ccef5100c0f06ed936f9a540d8ca0995
refs/heads/master
2020-03-16T01:59:57.002135
2018-05-07T12:02:21
2018-05-07T12:02:21
132,454,341
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
player = int(input('请出拳 石头(1),剪刀(2),布(3):')) computer = 2 if ((player == 1 and computer == 2) or (player == 2 and computer == 3) or (player == 3 and computer == 1)): print('电脑输了') elif player == computer: print('心有灵犀,再来一局') else: print('不行,我要和你决战到底')
5b86d1ba8124f7ae022306cd7979e8aa97754314
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/HdrqkdT4r9DeKPjCM_15.py
b8f9cf3d649052ff9b6b798b8d9e233d02626467
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
def is_polygonal(n): if n==1: return "0th of all" if n <= 3: return False list = [] for k in range(3, n): i=1 current=k+1 while current < n: i+=1 current += k*i if current == n: i = str(i) i += "th" if i[-2:-1]=="1" else {"1":"st","2":"nd","3":"rd"}.get(i[-1],"th") list.append("{ith} {k}-gonal number".format(ith=i,k=k)) return list
1b8532d3421a9dd5536b1e0debfc39c16e37a6c3
1bccf7d57c7aa8d48b84fff187de4b6ff2599cb6
/pandora_common/state_manager/scripts/state_manager/__init__.py
6d30fa3d4c6b665f9f74250df0145ce48aae504d
[]
no_license
skohlbr/pandora_ros_pkgs
733ed34edb5b6d46e59df4acb01288f28ef3b50f
eecaf082b47e52582c5f009eefbf46dd692aba4f
refs/heads/indigo-devel
2021-01-21T18:06:14.967943
2015-11-04T15:08:03
2015-11-04T15:08:03
53,413,573
0
1
null
2016-03-08T13:19:40
2016-03-08T13:19:40
null
UTF-8
Python
false
false
37
py
from state_client import StateClient
c3abe5035eada595291caa229e664159b4743cb2
e9ef3cd143478660d098668a10e67544a42b5878
/Lib/corpuscrawler/crawl_thk.py
f49f58ce0e90e3a983f847f9a2de5a9de94840a2
[ "Apache-2.0" ]
permissive
google/corpuscrawler
a5c790c19b26e6397b768ce26cf12bbcb641eb90
10adaecf4ed5a7d0557c8e692c186023746eb001
refs/heads/master
2023-08-26T04:15:59.036883
2022-04-20T08:18:11
2022-04-20T08:18:11
102,909,145
119
40
NOASSERTION
2022-04-20T08:18:12
2017-09-08T22:21:03
Python
UTF-8
Python
false
false
809
py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals from corpuscrawler.util import crawl_bibleis def crawl(crawler): out = crawler.get_output(language='thk') crawl_bibleis(crawler, out, bible='THKBTL')
dd8266083726914414d608f3cacd125395994324
7ef29543c9e8305f181084cede03d8cec50508f1
/docker_vnc_immutable/immutableworkstation3.py
61d3ee59bb7a0be59a34ef246f878368298cc05d
[ "MIT" ]
permissive
mikadosoftware/workstation
6168ba7f8f8357d73e7792a3c65c0daec37222e7
9c8b19bc5d6c596843da30f58f1dad6a60c7e989
refs/heads/master
2023-02-21T03:45:54.209770
2023-02-08T08:41:36
2023-02-08T08:41:36
138,070,951
477
29
MIT
2023-02-07T21:53:32
2018-06-20T18:28:07
Python
UTF-8
Python
false
false
13,917
py
#!/usr/bin/python3 #! -*- coding:utf-8 -*- """ ImmutableWorkstation ==================== This is a single entry point for the `immutableworkstation` project. The project is pretty simple - I want to have a consistent, immutable workstation on any host machine I am developing on - so I am using a docker instance on a host machine - the instance is my development "machine", and it can be rebuilt from consistent templates - this script helps control all that - its supposed to be easier to get started than a bunch of poorly documneted shell scripts. * the start and stopping of the dev instance. * the compilation of the docker image * vsarious config and templates used to build to docker image. This script does quite a lot, and needs to be installed on the host machine - do so using pip3 install docopt python3 setup.py install (I will launch it on PyPI soon) Once this is done, you should be able to run ./immutableworkstation.py usage ----- We expect to have a config .ini file. This is for ease of specifying things like volume mappings. By default the config file is at `~/immuntableworkstation/config.ini` [ ] Implement expect-style testing so we can automate testing. [x] put the home dir into git seperate to rest of pacakge (ie thats the indivudal part) [ ] put blog.mikadosoftware onto AWS and run this testing with docker on it. [ ] migrate rest of the articles there. [x] create a plain docker instance and just import devstation, see if it works (ie clean install) [ ] run the get github projects into one place [ ] podman system prune : clean up a lot of cruft in docker areas. [x] remove priviledged access with auser name remapping [ ] improve using https://github.com/mviereck/x11docker """ ##### imports ##### import logging, sys from docopt import docopt import subprocess import time import os from pprint import pprint as pp from mikado.core import config import shutil import json import lib_config import operator ##### Module setup ##### # TODO: split out logging into common module log = logging.getLogger(__name__) log.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) log.addHandler(handler) DRYRUN = False PDB = False OCI_CMD = 'sudo docker' OCI_CMD = 'podman' #: usage defintons DOCOPT_HELP = """immutableworkstation Usage: immutableworkstation.py showconfig [options] immutableworkstation.py createDockerfile --templatedir=<path> [options] immutableworkstation.py start tagname [options] immutableworkstation.py stop tagname [options] immutableworkstation.py login tagname [options] immutableworkstation.py buildAnyDocker <path_to_dockerfile> <context_dir> [options] immutableworkstation.py status immutableworkstation.py test immutableworkstation.py (-h | --help ) Options: -h --help Show this screen -d --dryrun dryrun --configfile=<configpath> path 2 config ini file --tagname=<tagname> Name to tag --instancename=<instancename> --username=<username> --volumearray=<volumearray> """ def parse_docopt(argsd): '''We want to split into args (<val>), options (--left) and commands (foo.py fire) ''' args = [] options = [] commands = [] active_commmands = [] # we assume only one command at a time? for k,i in argsd.items(): if k.startswith("--"): options.append({k:i}) elif k.startswith("<"): args.append({k:i}) else: commands.append({k:i}) # active_commands = [list(d.keys())[0] for d in commands if list(d.values())[0]] return args, options, commands, active_commands ############### Config def build_sshcmd(): """Create the command used to connect to running docker via ssh.""" return "ssh -X {username}@{localhost} -p {ssh_port}".format(**CONFD) def build_dockerrun(latest=True): """create the command used to start docker instance. tagname of image name of running instance """ _latest = LATEST if latest else NEXT instance_name = "run_{}_{}".format(CONFD["instance_name"], _latest) image_name = "{}:{}".format(CONFD["tagname"], _latest) vols = "" for hostpath, mountpath in CONFD["volumes"].items(): vols += "-v {}:{} ".format(hostpath, mountpath) return [ "{} container prune -f".format(OCI_CMD), """{OCI_CMD} run -d \ {vols} \ --name {instance_name} \ --device /dev/snd \ -p {ssh_port}:22 \ --privileged \ {tagname}:{_latest} """.format( OCI_CMD=OCI_CMD, vols=vols, instance_name=instance_name, ssh_port=CONFD["ssh_port"], _latest=_latest, tagname=CONFD["tagname"], ), ] def build_docker_build(latest=True): """Create command used to (re)build the container. We store the Dockerfile (as that name) in dir .next or .latest so that we can have various templates and assets and so on in the 'context' directory. """ tmpl = "{} build -t {{tagname}}:{{tagtag}} {{pathtodockerfile}} --squash".format(OCI_CMD) _latest = LATEST if latest else NEXT pathtodockerfile = os.path.join(CONFD["devstation_config_root"], "." + _latest) return tmpl.format( tagname=CONFD["tagname"], tagtag=_latest, pathtodockerfile=pathtodockerfile ) def build_docker_any_build(path_to_dockerfile, context_dir): """Create command used to (re)build the container. """ tmpl = "{} build -t {{tagname}}:{{tagtag}} -f {{path_to_dockerfile}} {{context_dir}} --squash".format(OCI_CMD) return tmpl.format( tagname='anybuild', tagtag='0.1', path_to_dockerfile=path_to_dockerfile, context_dir=context_dir ) def read_subprocess(cmd): """Run a command and return output """ result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) txt = result.stdout return txt def run_subprocess(cmd, shell=None): """Run the given command in a subprocess.""" if DRYRUN: telluser(cmd) else: log.info(cmd) subprocess.run(cmd, shell=True) def spawn_sibling_console(): """This script is best thought of as a launcher for other shells we shall be working in. We want to interact with the console, not this script much. I have played with fork'ing a child console, then passing `fd` 0,1,2 over to it. But the easiest way seems to be to assume this is a GUI workstation, and people are using a terminal program (like Konsole) - so we just spawn konsole and run -e """ sshcmd = '{} "{}" &'.format(CONFD["terminal_command"], build_sshcmd()) log.info(sshcmd) run_subprocess(sshcmd) def handle_start(args): """Perform cmsd needed to start the docker and login I really need to monitor the success of the underlying cmds, instead of brute force sleep. [ ] {milestone} stop using sleep, monitor the subprocess for return values. """ # do start up here cmds = build_dockerrun(args["latest"]) for cmd in cmds: # TODO get better solution than sleep run_subprocess(cmd, shell=True) time.sleep(8) # brute force give docker time to complete its stuff. time.sleep(10) # As above, but let docker catch up before login handle_login(args) ############### Config # This is a 'well-known' location CONFIGDIR = os.path.join(os.path.expanduser("~"), ".immutableworkstation") CONFIGLOCATION = os.path.join( os.path.expanduser("~"), ".immutableworkstation/config.ini" ) def handle_showconfig(args): print(args['--configfile']) #lib_config.show_config(confd=CONFD) def handle_login(args): spawn_sibling_console() def handle_createDockerfile(args): makeDocker(args['--templatedir']) def handle_buildDocker(args): """Trigger the processes to create new dockerfile and then build image. """ makeDocker(latest=args["latest"]) cmd = build_docker_build(latest=args["latest"]) run_subprocess(cmd) def parse_volumearray(args): ''' COnvert volumne array to usable instructions >>> parse_volumearray(args) ''' x = ['~/data=/var/data', '~/projects=/var/projects', '~/secrets=/var/secrets:ro', '~/Dropbox=/var/Dropbox'] return x def handle_buildAnyDocker(args): """Trigger the processes to create new dockerfile and then build image. """ #import pdb;pdb.set_trace() cmd = build_docker_any_build(args['<path_to_dockerfile>'], args['<context_dir>']) run_subprocess(cmd) def handle_status(args): """Show container status. """ cmd = "{} container ls".format(OCI_CMD) run_subprocess(cmd) cmd = "{} inspect run_devstation_next".format(OCI_CMD) txt = read_subprocess(cmd) jsond = json.loads(txt) ipaddress = jsond[0]['NetworkSettings']['IPAddress'] print('Use this ip address {}'.format(ipaddress)) def handle_stop(args): """Kill the specified instance. """ _latest = LATEST if args["latest"] else NEXT #: rewrite so this is not in two places instance_name = "run_{}_{}".format(CONFD["instance_name"], _latest) cmd = "{} container kill {}".format(OCI_CMD, instance_name) run_subprocess(cmd) def hasValidConfig(): """This is a placeholder for future development on checking curr env. """ has_config_file = os.path.isfile(CONFIGLOCATION) return all([has_config_file]) def gatherinfo(): questions = { "username": "What username should be the default (only) on your immutable workstation?" } answers = {} for label, question in questions.items(): answer = input(question) answers[label] = answer return answers def handle_quickstart(args): """We have a starter config on github. Pull that down and put in users homedir, then alter based on questions. I am spending too long yak shaving on this app, and so will just print instructions and look to automate it later. """ helpmsg = "" if hasValidConfig(): helpmsg += """You appear to have an existing config in {}. Please adjust it manually - view docs for help.""".format( CONFIGLOCATION ) if not hasValidConfig(): helpmsg += """ In the future this app will walk you through a series of questions, but for now please can you download and unzip into {} the starter config stored at {}. You should have a directory layout like:: .immutableworkstation | -config.ini | -.next/ -.latest/ You should copy these into *your* github repo, and then update the templates to your needs, as you find a new package to be added to your workstation, adjust the config needed. """.format( CONFIGDIR, STARTER_CONFIG_URL ) telluser(helpmsg) def handle_unknown(command, e, args): telluser(f"Unknown request. We got command: {command} and error: {e}. Full args were {args}") def makeDocker(templatesdir): """Take a .skeleton file, and replace defined markup with contents of txt files Based on 'dockerfile.skeleton', replace any instance of {{ python }} with the contents of file `templates\python.template` This is an *extremely* simple templating tool. It is *not* supposed to have the complexity even of Jinja2. Its supposed to be really dumb. Lucky I wrote it then :-). """ pathtodockerfile = os.path.join(templatesdir, "../Dockerfile") skeleton = "dockerfile.skeleton" outputs = "" with open(os.path.join(templatesdir, skeleton)) as fo: for line in fo: if line.find("{{") == 0: file = line.replace("{{", "").replace("}}", "").strip() filepath = os.path.join(templatesdir, file + ".template") txt = open(filepath).read() outputs += "\n### {}\n{}\n".format(line, txt) else: outputs += "{}".format(line) fo = open(pathtodockerfile, "w") fo.write(outputs) fo.close() telluser("Written new Dockerfile at {}".format(pathtodockerfile)) def telluser(msg): """ aggregate print stmts into one place.""" # handle my weird formatting print(msg) def build_current_confd(args, options, commands, active_commands): print("args", args, '----\n') print("options", options, '----\n') print("commands", commands, '----\n') print("active commands", active_commands, '----\n') volumes = parse_volumearray(options) import sys; sys.exit() def run(argsd): #: start with quickstart as it may be our only options #: [ ] make this safer with .get args, options, commands, active_commands = parse_docopt(argsd) build_current_confd(args, options, commands, active_commands) for active_command in active_commands: try: # in current module, prepend handle_ to the name of the active command and # look for that in current module, if it exists, call it current_module = sys.modules[__name__] fn = operator.attrgetter('handle_{}'.format(active_command))(current_module) fn.__call__(argsd) except Exception as e: handle_unknown(active_command, e, argsd) def runtests(): import doctest doctest.testmod() teststr = ''' [default] tagname = workstation instance_name = devstation localhost = 127.0.0.1 username = pbrian ssh_port = 2222 terminal_command = /usr/bin/konsole -e volume_array: ~/secrets=/var/secrets:ro ~/secrets2=/var/secrets2:ro ''' def main(): global DRYRUN args = docopt(DOCOPT_HELP) if args.get("--dryrun", False): DRYRUN = True run(args) if __name__ == "__main__": main()
a2a3823e6435408a754b473b37f7233309d5ef3f
4754d6b05b7eb255983f58474164d8690f4d8684
/figurines/tests/test_views.py
4ad1ab56cb491358a3a1c8c3bb9812ce62ef1085
[]
no_license
pythonmentor/benjamin-p13
4f629be3cd9b2e8af6934fb69dfca63d6a294346
ada744761d3a3c6ecde1aec5db20770960cb2146
refs/heads/master
2023-01-24T17:10:30.235330
2020-11-30T17:29:09
2020-11-30T17:29:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,155
py
from django.test import TestCase from django.urls import reverse from figurines.models import Category, DidYouSee, Figurine from users.models import User class FigurineTestViews(TestCase): def setUp(self): self.user_test = User.objects.create_user( username="UserTest", password="PaswordOfTheTest&120" ) category_figurine = Category.objects.create( name="super heroes" ) figurine = Figurine.objects.create( figurine_number="1", category=category_figurine, name="batman" ) figurine.user.add(self.user_test) return super().setUp() def test_figurine_add_figurine(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/add_figurine/", {"figurine_number": "31", "category": "World of Warcraft", "name": "Thrall"}, ) self.assertEqual(response.status_code, 302) self.assertTemplateUsed('figurines/collection.html') def test_figurine_collection_user(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.get('/figurines/collection/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/collection.html') def test_figurine_search_with_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") response = self.client.get('/figurines/search/?all=all') user_figurine = user.figurine_set.all() self.assertQuerysetEqual( response.context['figurines_list'], [repr(figurine) for figurine in user_figurine] ) self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_without_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") user_figurine = user.figurine_set.all().delete() response = self.client.get('/figurines/search/?all=all') self.assertFalse(response.context['figurines_list']) self.assertContains(response, 'Pas de résultat.') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_with_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") response = self.client.get('/figurines/search/?q=batman') user_figurine = user.figurine_set.filter(name__icontains='batman') self.assertQuerysetEqual( response.context['figurines_list'], [repr(figurine) for figurine in user_figurine] ) self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_without_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") user_figurine = user.figurine_set.filter(name__icontains='batman').delete() response = self.client.get('/figurines/search/?q=batman') self.assertFalse(response.context['figurines_list']) self.assertContains(response, 'Pas de résultat.') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_did_you_see(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.get("/figurines/did_you_see/") self.assertEqual(response.status_code, 200) self.assertTemplateUsed("figurines/did_you_see.html") def test_create_question(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/create_question", { "title": "Je recherche batman", "text": "Bonjour, je recherche Batman", "date": "03/07/2020", }, ) self.assertRedirects(response, '/figurines/did_you_see/') response = self.client.get('/figurines/did_you_see/') self.assertContains(response, 'Je recherche batman') self.assertTemplateUsed('figurines/did_you_see.html') def test_can_respond_to_question(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/create_question", { "title": "Je recherche batman2", "text": "Bonjour, je recherche Batman2", "date": "03/07/2020", }, ) post = DidYouSee.objects.get(title='Je recherche batman2') response_second_message = self.client.post( f"/figurines/create_question/{post.id}", { "title": "J'ai batman2", "text": "j'ai batman", "date": "20/07/2020", } ) response_detail = self.client.get(f'/figurines/post_detail/{post.id}/') self.assertContains(response_detail, "j'ai batman") self.assertTemplateUsed('figurines/post_detail.html') def test_post_detail(self): self.client.force_login(self.user_test) user = User.objects.get(username="UserTest") post = DidYouSee( author=user, title="Je recherche batman", text="Bonjour, j'ai trouvé Batman", ) post.save() post.parent = post post.save() response = self.client.get( f"/figurines/post_detail/{post.id}" ) self.assertContains(response, "Je recherche batman") self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/post_detail.html') """ def test_delete_figurine(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post('/figurines/collection/?q=logan') user = User.objects.get(username="UserTest") self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/collection.html') """ # def test_report_post(self): # self.client.login(username="UserTest", password="PaswordOfTheTest&120") # response = self.client.post( # "/figurines/post_detail/51/", # { # "title": "Je recherche batman", # "text": "Bonjour, j'ai trouvé Batman", # }, # ) # self.assertEqual(response.status_code, 200) # self.assertTemplateUsed('figurines/report_post.html')
6ad1ec33ed60cb67164cba8e6c216bf23b7eff14
09592939eaf88d46f7d2d760d9587cb9fc22707e
/entity/cards/LETLT_083/LETLT_083.py
c575c2ef97600aa10d16c30ba708043ebfac001e
[ "MIT" ]
permissive
fulln/lushi_script
5deb2fb99956988ee4884836443f74277b361939
f2c5250f6ce7e3ea2b8d3ba280d999ae8c7beb8b
refs/heads/main
2023-09-04T16:50:24.696142
2021-11-24T03:44:41
2021-11-24T03:44:41
431,565,901
0
0
MIT
2021-11-24T17:04:06
2021-11-24T17:04:05
null
UTF-8
Python
false
false
470
py
# -*- coding: utf-8 -*- from hearthstone.entities import Entity from entity.spell_entity import SpellEntity class LETLT_083(SpellEntity): """ 剧烈爆发 对本回合中已经行动过的敌人造成10点伤害。在下一场战斗开始时,重复此伤害。 """ def __init__(self, entity: Entity): super().__init__(entity) self.damage = 0 self.range = 0 def play(self, game, hero, target): pass
92d3f6d6dc1e477f6b89f1665b180bf5ab4360da
968913bda3879ef316100410cdb2b01333ac14a8
/004_Algorithm_Implementations_In_Python/data_structures/queue/queue_on_list.py
898ffac3a9c7c1fda92bb8b75af1826ee7ec17f0
[ "MIT" ]
permissive
sm2774us/2021_Interview_Prep
02b6a81ee52f3cb14d9e060839a01aadd84e231f
c6689411a4334d53c88581a296e57c314b50f46c
refs/heads/main
2023-03-02T05:30:17.156821
2021-01-26T04:31:02
2021-01-26T04:31:02
332,603,676
2
0
null
null
null
null
UTF-8
Python
false
false
1,213
py
"""Queue represented by a python list""" class Queue(): def __init__(self): self.entries = [] self.length = 0 self.front=0 def __str__(self): printed = '<' + str(self.entries)[1:-1] + '>' return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.entries.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.length = self.length - 1 dequeued = self.entries[self.front] #self.front-=1 #self.entries = self.entries[self.front:] self.entries = self.entries[1:] return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): self.put(self.get()) """Enqueues {@code item} @return item at front of self.entries""" def front(self): return self.entries[0] """Returns the length of this.entries""" def size(self): return self.length
09b392b45aef0ce2b082eaa210be15285a463e0c
45015c94a4376a4af66e4134f0552288cd15a2d8
/services/authentication_service.py
ee9f1e65813dcf31637b0a0974cb9c00e4c7b390
[]
no_license
Anubhav722/trello
971111af8cbc1f6c344ace200e2741e809e9a1fa
600b5410cde7fd2a51720fa4ca7cc2ecfbff322e
refs/heads/master
2023-07-13T18:24:51.937539
2021-08-21T13:22:17
2021-08-21T13:22:17
398,563,384
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
class AuthenticationService: def __init__(self, ttl): self.tokens = {} # Map<token_id, user_obj> def renew_token(self, token_id): pass def authenticate_request(self, token_id, timestamp): pass def register_user(self, ): pass
538b671955b4ac1fa9cf8fb82d290212541efada
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/djDJHv3nwWsRM9mtu_15.py
d8d00d9f36be6af88a931dc7bc4cd7cb6aa76d74
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
def validate_spelling(txt): return "".join(txt.split(". ")[:-1]).lower() == txt.split(". ")[-1][:-1].lower()
b3afdc5ed5a2cd8de578e1fd31eb490f17a5db95
2455062787d67535da8be051ac5e361a097cf66f
/Producers/BSUB/TrigProd_amumu_a5_dR5/trigger_amumu_producer_cfg_TrigProd_amumu_a5_dR5_499.py
14a070c95d6dc5d7822dce37415383786cbf8e82
[]
no_license
kmtos/BBA-RecoLevel
6e153c08d5ef579a42800f6c11995ee55eb54846
367adaa745fbdb43e875e5ce837c613d288738ab
refs/heads/master
2021-01-10T08:33:45.509687
2015-12-04T09:20:14
2015-12-04T09:20:14
43,355,189
0
0
null
null
null
null
UTF-8
Python
false
false
3,360
py
import FWCore.ParameterSet.Config as cms process = cms.Process("PAT") #process.load("BBA/Analyzer/bbaanalyzer_cfi") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load('Configuration.EventContent.EventContent_cff') process.load("Configuration.Geometry.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("PhysicsTools.PatAlgos.producersLayer1.patCandidates_cff") process.load("PhysicsTools.PatAlgos.selectionLayer1.selectedPatCandidates_cff") from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, 'MCRUN2_71_V1::All', '') process.load("Configuration.StandardSequences.MagneticField_cff") #################### # Message Logger #################### process.MessageLogger.cerr.FwkReport.reportEvery = cms.untracked.int32(100) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) ## switch to uncheduled mode process.options.allowUnscheduled = cms.untracked.bool(True) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(500) ) #################### # Input File List #################### # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('root://eoscms//eos/cms/store/user/ktos/RECO_Step3_amumu_a5/RECO_Step3_amumu_a5_499.root'), secondaryFileNames = cms.untracked.vstring() ) ############################################################ # Defining matching in DeltaR, sorting by best DeltaR ############################################################ process.mOniaTrigMatch = cms.EDProducer("PATTriggerMatcherDRLessByR", src = cms.InputTag( 'slimmedMuons' ), matched = cms.InputTag( 'patTrigger' ), # selections of trigger objects matchedCuts = cms.string( 'type( "TriggerMuon" ) && path( "HLT_Mu16_TkMu0_dEta18_Onia*")' ), # input does not yet have the 'saveTags' parameter in HLT maxDPtRel = cms.double( 0.5 ), # no effect here maxDeltaR = cms.double( 0.3 ), #### selection of matches maxDeltaEta = cms.double( 0.2 ), # no effect here resolveAmbiguities = cms.bool( True ),# definition of matcher output resolveByMatchQuality = cms.bool( True )# definition of matcher output ) # talk to output module process.out = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string("file:RECO_Step3_amumu_a5_TrigProd_499.root"), outputCommands = process.MINIAODSIMEventContent.outputCommands ) process.out.outputCommands += [ 'drop *_*_*_*', 'keep *_*slimmed*_*_*', 'keep *_pfTausEI_*_*', 'keep *_hpsPFTauProducer_*_*', 'keep *_hltTriggerSummaryAOD_*_*', 'keep *_TriggerResults_*_HLT', 'keep *_patTrigger*_*_*', 'keep *_prunedGenParticles_*_*', 'keep *_mOniaTrigMatch_*_*' ] ################################################################################ # Running the matching and setting the the trigger on ################################################################################ from PhysicsTools.PatAlgos.tools.trigTools import * switchOnTrigger( process ) # This is optional and can be omitted. switchOnTriggerMatching( process, triggerMatchers = [ 'mOniaTrigMatch' ]) process.outpath = cms.EndPath(process.out)
52cf3aac7e139b3a4d760b80cc223a9bd88e323d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03496/s023860422.py
3418e271fe6d39c5afd0834fa668eb6252fedf15
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
n = int(input()) a = list(map(int,input().split())) mi = a[0] mii = 1 ma = a[0] mai = 1 for i in range(n): if a[i] > ma: ma = a[i] mai = i+1 if a[i] < mi: mi = a[i] mii = i+1 if mi >= 0: print(n-1) for i in range(1,n): print(i,i+1) elif ma <= 0: print(n-1) for i in range(n,1,-1): print(i,i-1) elif abs(ma) >= abs(mi): print(n*2-1) for i in range(n): print(mai,i+1) for i in range(1,n): print(i,i+1) else: print(n*2-1) for i in range(n): print(mii,i+1) for i in range(n,1,-1): print(i,i-1)
f86f1440c1dfce4772c26f8bd9d40aeb6c368956
27a066c48096e30e3cf4a795edf6e8387f63728b
/mysite/django_vises/runtimes/misc.py
dbb4cc342ce1012cbf1a9397f2dea0e09cf202d4
[]
no_license
26huitailang/django-tutorial
2712317c3f7514743e90fb4135e5fe3fed5def90
28a0b04ee3b9ca7e2d6e84e522047c63b0d19c8f
refs/heads/master
2023-01-07T11:55:37.003245
2019-09-04T09:19:50
2019-09-04T09:19:50
113,199,279
1
0
null
2023-01-03T15:24:01
2017-12-05T15:27:52
Python
UTF-8
Python
false
false
2,885
py
#!/usr/bin/env python # coding=utf-8 # import glob import os import operator from django.utils.six import text_type # copy from rest_framework # Header encoding (see RFC5987) HTTP_HEADER_ENCODING = 'iso-8859-1' def get_request_client_ip_address(request): """获取 request 请求来源 ip address, 支持 nginx 使用 X-Real-IP/X-FORWARDED-FOR 传递来源 ip 地址 """ ip = request.META.get('X-Real-IP') or request.META.get('HTTP_X_FORWARDED_FOR') if ip: ip = ip.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip def get_authorization_header(request): """ Return request's 'Authorization:' header, as a bytestring. Hide some test client ickyness where the header can be unicode. """ auth = request.META.get('HTTP_AUTHORIZATION', b'') if isinstance(auth, text_type): # Work around django test client oddness auth = auth.encode(HTTP_HEADER_ENCODING) return auth def get_authorization_token_from_header(request): """ Return request's 'Authorization:' token """ keyword = 'Token' auth = get_authorization_header(request).split() if not auth or auth[0].lower() != keyword.lower().encode(): return None # if len(auth) == 1: # msg = _('Invalid token header. No credentials provided.') # raise exceptions.AuthenticationFailed(msg) # elif len(auth) > 2: # msg = _('Invalid token header. Token string should not contain spaces.') # raise exceptions.AuthenticationFailed(msg) # # try: # token = auth[1].decode() # except UnicodeError: # msg = _('Invalid token header. Token string should not contain invalid characters.') # raise exceptions.AuthenticationFailed(msg) if len(auth) != 2: return None try: token = auth[1].decode() except UnicodeError: return None return token def str_to_boolean(text): """将字符转为布尔值,if条件可以扩展""" if text.lower() in ['false']: return False elif text.lower() in ['true']: return True def sort_dict_list(dict_to_sort: dict = None, sort_key='', reverse=False) -> list: sorted_list = sorted(dict_to_sort, key=operator.itemgetter(sort_key), reverse=reverse) return sorted_list def get_local_suite_img_list(suite_path: str = None, format='jpg') -> list: """获取本地suite的图片列表""" if suite_path is None: return [] # 复杂的路径glob匹配不了 # img_file_list = glob.glob('{}/*.{}'.format(suite_path, format)) files_list = os.listdir(suite_path) img_file_list = list(filter(lambda x: x.endswith(format), files_list)) return img_file_list def get_local_suite_count(suite_path: str = None) -> int: """本地suite图片数量""" return len(get_local_suite_img_list(suite_path))
a4b2331bc60e49067ff8516c4b13766c7a4c9c5e
e60a342f322273d3db5f4ab66f0e1ffffe39de29
/parts/zodiac/pyramid/tests/test_config/pkgs/scannable/another.py
2022b704558f0f407eb359cc3d36dfdfe3a9041b
[]
no_license
Xoting/GAExotZodiac
6b1b1f5356a4a4732da4c122db0f60b3f08ff6c1
f60b2b77b47f6181752a98399f6724b1cb47ddaf
refs/heads/master
2021-01-15T21:45:20.494358
2014-01-13T15:29:22
2014-01-13T15:29:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
102
py
/home/alex/myenv/zodiac/eggs/pyramid-1.4-py2.7.egg/pyramid/tests/test_config/pkgs/scannable/another.py
109682c64aad2d044c9cc951d3a773c4106965bc
6d39e9031c9ab28c094edc042559dc649308528e
/backend/manage.py
d84a5dce9a344fbcab5dc3e5650245daac85af08
[]
no_license
crowdbotics-apps/test-31900
ead3f9341645ce981aa07dad2756548ffb84c5d7
d5b54e57dfc2839f1a9f7237deb4df7c3899e30d
refs/heads/master
2023-08-29T16:35:59.385571
2021-11-10T00:12:56
2021-11-10T00:12:56
426,427,828
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_31900.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
9c7d677d074b5d250abc200c103cff8fb806b269
df94f543424f47f87bd6d546cca23d1c5a7b024c
/easy/easy922.py
f8409367478a0930ddc49d9bb4bc49ab8b62ce17
[]
no_license
wangpeibao/leetcode-python
c13cb63304e91dcd55ffacee541d9197cafd01ff
392a272a799decdd77c2410a89787ea8e1aa76d3
refs/heads/master
2023-01-31T05:09:34.850459
2020-12-04T03:25:21
2020-12-04T03:25:21
257,457,585
0
0
null
null
null
null
UTF-8
Python
false
false
1,263
py
''' 922. 按奇偶排序数组 II 给定一个非负整数数组 A, A 中一半整数是奇数,一半整数是偶数。 对数组进行排序,以便当 A[i] 为奇数时,i 也是奇数;当 A[i] 为偶数时, i 也是偶数。 你可以返回任何满足上述条件的数组作为答案。 示例: 输入:[4,2,5,7] 输出:[4,5,2,7] 解释:[4,7,2,5],[2,5,4,7],[2,7,4,5] 也会被接受。 提示: 2 <= A.length <= 20000 A.length % 2 == 0 0 <= A[i] <= 1000 ''' from typing import List class Solution: def sortArrayByParityII(self, A: List[int]) -> List[int]: # 双指针 start = 0 length = len(A) while start < length: if (start % 2 == 0 and A[start] % 2 == 0) or (start % 2 == 1 and A[start] % 2 == 1): start += 1 continue # 处理找到下个不符合的 end = start + 1 while end < length: if (end % 2 == 0 and A[end] % 2 == 0) or (end % 2 == 1 and A[end] % 2 == 1): end += 2 else: A[start], A[end] = A[end], A[start] start = start + 2 return A so = Solution() print(so.sortArrayByParityII([4,2,5,7]) == [4,5,2,7])
cbc684ff9ae4dd85231ece8eaed2a8851b6264ba
deaf60a5ba012e68f8509c0df0d35a5228419b71
/找商网/zhao_shang_wang_changxin/zhao_shang_wang/spiders/spider_data.py
a34737cdfa962283d95ea12c2c4ffaafadfb4f46
[]
no_license
kokohui/con_spider
7162d8e58725d9334db5f1da34649cd1d1ef29ea
da1181b53e5cbca546d1bb749f9efc2f48e698f8
refs/heads/master
2022-03-03T19:37:33.721533
2019-08-22T10:05:32
2019-08-22T10:05:32
193,631,800
0
0
null
null
null
null
UTF-8
Python
false
false
9,365
py
# -*- coding: utf-8 -*- from ..items import ZhaoShangWangItem import scrapy from scrapy import Request from bs4 import BeautifulSoup import os import random import requests import pymysql import time import re import jieba.analyse conn = pymysql.connect(host='192.168.1.210', user='root', passwd='zhangxing888', db='ktcx_buschance', port=3306, charset='utf8') cur = conn.cursor() # 获取一个游标 class SpiderDataSpider(scrapy.Spider): name = 'spider_data' # start_urls = ['https://www.zhaosw.com/product/search/1541291/2'] def start_requests(self): sql_id = "SELECT url FROM bus_spider_data WHERE source = '找商网' and TYPE = 'gongying' AND is_del = '0' AND isuse = '0' ORDER BY create_date LIMIT 1 " cur.execute(sql_id) res_all_list = cur.fetchall() url = res_all_list[0][0] for num in range(1, 2): url_2 = 'https://www.zhaosw.com/product/search/{}/{}'.format(url, num) print(url_2) yield Request(url=url_2, callback=self.parse) def parse(self, response): detail_url = response.xpath('//*[@id="productForm"]/div[@class="m-product-list"]/a/@href')[0].extract() yield Request(url=detail_url, callback=self.parse_2) def parse_2(self, response): res_url = response.xpath('/html/body/header/div/div[4]/div/div/div/ul/li[2]/a/@href')[0].extract() yield Request(url=res_url, callback=self.parse_3) def parse_3(self, response): pro_url_list = response.xpath('//*[@id="productForm"]/div[3]/div/a/@href').extract() for pro_url in pro_url_list: yield Request(url=pro_url, callback=self.parse_detail) def parse_detail(self, response): item = ZhaoShangWangItem() mobile = '' result_count = 0 try: mobile = response.xpath('//p[@class="p3"]/span[@class="span2"]/text()')[0].extract().strip() com_name = str(response.xpath('//p[@class="p-title"]/a/text()').extract()[0]).strip() sql_count = "select count(0) from bus_user where company_name='{}'".format(com_name) cur.execute(sql_count) result = cur.fetchall() result_count = int(result[0][0]) except: print('没有手机号或公司重复') if mobile != '' and result_count == 0: print('................................................') # 数据库获取id sql_id = "SELECT one_level,two_level,three_level,keyword FROM bus_spider_data WHERE source = '找商网' and TYPE = 'gongying' AND is_del = '0' AND isuse = '0' ORDER BY create_date LIMIT 1 " cur.execute(sql_id) print('sql_id?????????????', sql_id) res_all_list = cur.fetchall() for res_all in res_all_list: one_level = res_all[0] item['one_level_id'] = str(one_level) print('id.........', item['one_level_id']) two_level = res_all[1] item['two_level_id'] = str(two_level) print('id.........', item['two_level_id']) three_level = res_all[2] item['three_level_id'] = str(three_level) print('id.........', item['three_level_id']) keywords = res_all[-1] item['keywords'] = str(keywords) # 保存商品图片 os_img_2_list = [] try: str_ran = str(random.randint(0, 999999)) os.makedirs('/home/imgServer/hc/{}'.format(str_ran)) # 将图片链接保存到硬盘 res_img = response.xpath('//*[@id="productImage"]/div[2]/ul/li/a/img/@src') for img_url in res_img: img_url = img_url.extract() img_url = 'https:' + img_url.strip() img_url = re.sub('\.\.\d+x\d+.jpg', '', img_url) print('img_url>>>>>>>>>>>>><<<<<<<<<<<<<<<<<::::::', img_url) code_img = requests.get(url=img_url).content img_name = str(random.randint(1, 999999)) with open('/home/imgServer/hc/{}/{}.jpg'.format(str_ran, img_name), 'wb') as f: f.write(code_img) os_img_2 = 'http://img.youkeduo.com.cn/hc/' + '{}/{}.jpg'.format(str_ran, img_name) os_img_2_list.append(os_img_2) os_img_2_str_1 = os_img_2_list[0] os_img_2_str = ','.join(os_img_2_list) item['list_img'] = os_img_2_str_1 item['imgs'] = os_img_2_str print('图片ok', os_img_2_list) except: print('图片错误.') # 创建时间 create_date = time.strftime('%Y.%m.%d %H:%M:%S ', time.localtime(time.time())) item['create_date'] = create_date # 价格 price = '' try: price = str(response.xpath('/html/body/main/div[4]/div[1]/div[2]/div[2]/div[1]/div/span/text()').extract()[0].strip()) if price.startswith('¥'): price = price[1:] if not price: price = '面议' print('price', price) except: print('price', price) item['price'] = price # 标题 title = '' try: title = str(response.xpath('/html/body/main/div[4]/div[1]/div[2]/div[1]/h4/text()').extract()[0]) print('title', title) except: print('title', title) item['title'] = title # way if price != '': way = '0' else: way = '1' item['way'] = way res_detail_html = response.text try: soup = BeautifulSoup(res_detail_html, 'lxml') html_1 = str(soup.find('div', class_="parameter-body")) html = str(soup.find('div', class_="introduction-body clearfix")) # print(html) strinfo = re.compile('<img.*?>') html_2 = strinfo.sub('', html) strinfo = re.compile('<br.*?>') html_3 = strinfo.sub('', html_2) strinfo = re.compile('慧聪网') html_4 = strinfo.sub('优客多', html_3) # 把下载图片添加到html div_list = ['<div id="img_detail">', '</div>'] for os_img_2_url in os_img_2_list: os_img_2_url = '<img alt="{}" src="{}">'.format(title, os_img_2_url) div_list.insert(1, os_img_2_url) div_str = '\n'.join(div_list) html_all = html_1 + html_4 + '\n' + div_str # print(html_all) except Exception as e: raise e item['detail'] = str(html_all) # units units = '' try: units = response.xpath('/html/body/main/div[4]/div[1]/div[2]/div[2]/div[1]/div/text()').extract()[-1] units = units.strip().replace('/', '').replace('\n', '') print('units', units) except: print('units', units) item['units'] = units # com_name com_name = '' try: com_name = str(response.xpath('//p[@class="p-title"]/a/text()').extract()[0]).strip() print('com_name', com_name) except: print('com_name', com_name) item['com_name'] = com_name # linkman linkman = '' try: linkman = re.findall('<span.*?>联系人:</span><span.*?>(.*?)</span>', response.text)[0] print('linkman', linkman) except: print('linkman', linkman) item['linkman'] = linkman # mobile mobile = '' try: mobile = response.xpath('//p[@class="p3"]/span[@class="span2"]/text()')[0].extract().strip() print('mobile', mobile) except: print('mobile', mobile) item['mobile'] = mobile # address address = '' try: address = re.findall('<span.*?>所在地区:</span><span.*?>(.*?)</span>', response.text)[0] print('address', address) except: print('address', address) item['address'] = address scopes = '-' try: scopes = response.xpath('//div[@class="p7-content"]/span[2]/a/text()').extract() scopes = str(scopes).strip('[').strip(']').replace("'", "").replace(",", " ") print('scopes', scopes) except: print('scopes', scopes) item['scopes'] = scopes summary = '' try: summary = response.xpath('//div[@class="p-contain"]/p[@class="p4"]/span[2]/text()')[0].extract() print('summary>>>>>>>>>>>>>>>', summary) except: print('summary', summary) item['summary'] = summary yield item
61ee902f9aec9bdeff25f6e72569396187f62aff
01afa0be1c3acbf562fd87bd8fec8b4101c1e461
/Mining-Massive-Dataset/week5/advanced_quiz3.py
8c96a6d7d682c7d9d8f2ec6fe73c3b09bf879b97
[]
no_license
listiani13/coursera
e4f1116cc619b62336c5bb4d2e714e7051ae775c
5c84cf7171a440261de639b53558e9767b1cd85e
refs/heads/master
2021-01-22T03:54:31.657656
2016-04-04T11:07:25
2016-04-04T11:07:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
from math import sqrt def euclidean(x, y): return sqrt((x[0] - y[0])**2 + (x[1] - y[1])**2) points = [(1, 6), (3, 7), (4, 3), (7, 7), (8, 2), (9, 5)] chosen = [(0, 0), (10, 10)] for _ in range(5): pos, mx = -1, -1 for i, p in enumerate(points): distance = min([euclidean(p, pc) for pc in chosen]) if distance > mx: mx, pos = distance, i print 'choose:', points[pos] chosen.append(points[pos]) del points[pos]
f32b08a5dadf9bf4dbc0b238e4cb160e93b689f5
3a01d6f6e9f7db7428ae5dc286d6bc267c4ca13e
/pylith/meshio/OutputMatElastic.py
75bd619e57bb719fa4f7cc5e470df1ff774171da
[ "MIT" ]
permissive
youngsolar/pylith
1ee9f03c2b01560706b44b4ccae99c3fb6b9fdf4
62c07b91fa7581641c7b2a0f658bde288fa003de
refs/heads/master
2020-12-26T04:04:21.884785
2014-10-06T21:42:42
2014-10-06T21:42:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,792
py
#!/usr/bin/env python # # ---------------------------------------------------------------------- # # Brad T. Aagaard, U.S. Geological Survey # Charles A. Williams, GNS Science # Matthew G. Knepley, University of Chicago # # This code was developed as part of the Computational Infrastructure # for Geodynamics (http://geodynamics.org). # # Copyright (c) 2010-2014 University of California, Davis # # See COPYING for license information. # # ---------------------------------------------------------------------- # ## @file pyre/meshio/OutputMatElastic.py ## ## @brief Python object for managing output of finite-element ## information for material state variables. ## ## Factory: output_manager from OutputManager import OutputManager # OutputMatElastic class class OutputMatElastic(OutputManager): """ Python object for managing output of finite-element information for material state variables. Factory: output_manager """ # INVENTORY ////////////////////////////////////////////////////////// class Inventory(OutputManager.Inventory): """ Python object for managing OutputMatElastic facilities and properties. """ ## @class Inventory ## Python object for managing OutputMatElastic facilities and properties. ## ## \b Properties ## @li \b cell_info_fields Names of cell info fields to output. ## @li \b cell_data_fields Names of cell data fields to output. ## ## \b Facilities ## @li None import pyre.inventory cellInfoFields = pyre.inventory.list("cell_info_fields", default=["mu", "lambda", "density"]) cellInfoFields.meta['tip'] = "Names of cell info fields to output." cellDataFields = pyre.inventory.list("cell_data_fields", default=["total_strain", "stress"]) cellDataFields.meta['tip'] = "Names of cell data fields to output." # PUBLIC METHODS ///////////////////////////////////////////////////// def __init__(self, name="outputmatelastic"): """ Constructor. """ OutputManager.__init__(self, name) return # PRIVATE METHODS //////////////////////////////////////////////////// def _configure(self): """ Set members based using inventory. """ OutputManager._configure(self) self.vertexInfoFields = [] self.vertexDataFields = [] self.cellInfoFields = self.inventory.cellInfoFields self.cellDataFields = self.inventory.cellDataFields return # FACTORIES //////////////////////////////////////////////////////////// def output_manager(): """ Factory associated with OutputManager. """ return OutputMatElastic() # End of file
5bd234d032a1cef724c7d19f94ecdca75497c3b5
803bab6f782099d995bcdb99d163486f4fff8c50
/test/test_pointnav_resnet_policy.py
f58a4a45e857196c0ab6b215a39c3fce54de9832
[ "MIT", "LicenseRef-scancode-unknown-license-reference", "CC-BY-NC-SA-3.0" ]
permissive
facebookresearch/habitat-lab
7088506509f64da6d682f5dc69427589f71a58a9
f5b29e62df0788d70ba3618fc738fa4e947428ba
refs/heads/main
2023-08-24T14:00:02.707343
2023-08-23T04:53:48
2023-08-23T04:53:48
169,164,391
792
298
MIT
2023-09-14T15:20:03
2019-02-04T23:12:51
Python
UTF-8
Python
false
false
4,432
py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os.path import shlex import subprocess import numpy as np import pytest import torch from gym import spaces from habitat import read_write from habitat_baselines.config.default import get_config from habitat_baselines.rl.ddppo.policy import PointNavResNetPolicy ACTION_SPACE = spaces.Discrete(4) OBSERVATION_SPACES = { "depth_model": spaces.Dict( { "depth": spaces.Box( low=0, high=1, shape=(256, 256, 1), dtype=np.float32, ), "pointgoal_with_gps_compass": spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2,), dtype=np.float32, ), } ), "rgb_model": spaces.Dict( { "rgb": spaces.Box( low=0, high=255, shape=(256, 256, 3), dtype=np.uint8, ), "pointgoal_with_gps_compass": spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2,), dtype=np.float32, ), } ), "blind_model": spaces.Dict( { "pointgoal_with_gps_compass": spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2,), dtype=np.float32, ), } ), } MODELS_DEST_DIR = "data/ddppo-models" MODELS_BASE_URL = "https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models" MODELS_TO_TEST = { "gibson-2plus-resnet50.pth": { "backbone": "resnet50", "observation_space": OBSERVATION_SPACES["depth_model"], "action_space": ACTION_SPACE, }, "gibson-2plus-mp3d-train-val-test-se-resneXt50-rgb.pth": { "backbone": "se_resneXt50", "observation_space": OBSERVATION_SPACES["rgb_model"], "action_space": ACTION_SPACE, }, "gibson-0plus-mp3d-train-val-test-blind.pth": { "backbone": None, "observation_space": OBSERVATION_SPACES["blind_model"], "action_space": ACTION_SPACE, }, } def _get_model_url(model_name): return f"{MODELS_BASE_URL}/{model_name}" def _get_model_path(model_name): return f"{MODELS_DEST_DIR}/{model_name}" @pytest.fixture(scope="module", autouse=True) def download_data(): for model_name in MODELS_TO_TEST: model_url = _get_model_url(model_name) model_path = _get_model_path(model_name) if not os.path.exists(model_path): print(f"Downloading {model_name}.") download_command = ( "wget --continue " + model_url + " -P " + MODELS_DEST_DIR ) subprocess.check_call(shlex.split(download_command)) assert os.path.exists( model_path ), "Download failed, no package found." @pytest.mark.parametrize( "pretrained_weights_path,backbone,observation_space,action_space", [ ( _get_model_path(model_name), params["backbone"], params["observation_space"], params["action_space"], ) for model_name, params in MODELS_TO_TEST.items() ], ) def test_pretrained_models( pretrained_weights_path, backbone, observation_space, action_space ): config = get_config( "test/config/habitat_baselines/ddppo_pointnav_test.yaml" ) with read_write(config): ddppo_config = config.habitat_baselines.rl.ddppo ddppo_config.pretrained = True ddppo_config.pretrained_weights = pretrained_weights_path if backbone is not None: ddppo_config.backbone = backbone policy = PointNavResNetPolicy.from_config( config=config, observation_space=observation_space, action_space=action_space, ) pretrained_state = torch.load(pretrained_weights_path, map_location="cpu") prefix = "actor_critic." policy.load_state_dict( { # type: ignore k[len(prefix) :]: v for k, v in pretrained_state["state_dict"].items() } )
9eebd51cd8523865c63b5ea9bc13a91b30809bd9
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_w_M_to_Wxyz_focus_Z_ok/wiColorJ/pyr_Tcrop255_pad20_jit15/Sob_k15_s001_EroM_Mae_s001/pyr_5s/L5/step10_a.py
e6c87465892d874e7e738fd489c714ca918ab17a
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
140,087
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_5side_L5 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_I_gt_W_ch_norm_v2 use_loss_obj = [mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_z").copy(), mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_y").copy(), mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_x").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_2__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_2__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_3__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_3__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_3__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_4__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_4__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_4__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_4__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_5__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_5__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_5__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_5__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_5__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_6__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_6__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_6__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_6__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_6__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_1side_6__2side_6__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])