blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
c57c61d86c5572b1948a7a0502578e0809ad170e
e36472948f74fd5ed35fc64801a59db4efa27070
/part_1/04_6_test.py
174139579a5653b3edaa5a336c79a87ac1f5214f
[]
no_license
anton1k/python_crash_course
051aad7c5a043830d8cc9e5fd314f568bf0f4a53
80f302074e5fef48fb40e72f7d79ab4b8658b38a
refs/heads/master
2020-07-18T23:28:00.871466
2019-09-04T14:06:12
2019-09-04T14:06:12
206,333,934
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
square = list(range(1, 21, 2)) print(square) for i in square: print(i)
3351932d3d3a75e35b6b1fcbd967fa8b054bd65b
13a32b92b1ba8ffb07e810dcc8ccdf1b8b1671ab
/home--tommy--mypy/mypy/lib/python2.7/site-packages/theano/sandbox/cuda/tests/test_tensor_op.py
cb9162354ac7fa9120cf4dd3b05d616e784e0f36
[ "Unlicense" ]
permissive
tommybutler/mlearnpy2
8ec52bcd03208c9771d8d02ede8eaa91a95bda30
9e5d377d0242ac5eb1e82a357e6701095a8ca1ff
refs/heads/master
2022-10-24T23:30:18.705329
2022-10-17T15:41:37
2022-10-17T15:41:37
118,529,175
0
2
Unlicense
2022-10-15T23:32:18
2018-01-22T23:27:10
Python
UTF-8
Python
false
false
5,283
py
""" This file test tensor op that should also operate on CudaNdaray. """ from __future__ import absolute_import, print_function, division from nose.plugins.skip import SkipTest from nose_parameterized import parameterized import numpy import theano from theano import tensor import theano.tensor as T import theano.tests.unittest_tools as utt # Skip test if cuda_ndarray is not available. import theano.sandbox.cuda as cuda from theano.tensor.nnet.tests import test_conv3d2d if cuda.cuda_available is False: raise SkipTest('Optional package cuda disabled') if theano.config.mode == 'FAST_COMPILE': mode_with_gpu = theano.compile.mode.get_mode('FAST_RUN').including('gpu') mode_without_gpu = theano.compile.mode.get_mode('FAST_RUN').excluding('gpu') else: mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') mode_without_gpu = theano.compile.mode.get_default_mode().excluding('gpu') def test_shape_i(): x = cuda.ftensor3() v = cuda.CudaNdarray(numpy.zeros((3, 4, 5), dtype='float32')) f = theano.function([x], x.shape[1]) topo = f.maker.fgraph.toposort() assert f(v) == 4 if theano.config.mode != 'FAST_COMPILE': assert len(topo) == 1 assert isinstance(topo[0].op, T.opt.Shape_i) def test_shape(): x = cuda.ftensor3() v = cuda.CudaNdarray(numpy.zeros((3, 4, 5), dtype='float32')) f = theano.function([x], x.shape) topo = f.maker.fgraph.toposort() assert numpy.all(f(v) == (3, 4, 5)) if theano.config.mode != 'FAST_COMPILE': assert len(topo) == 4 assert isinstance(topo[0].op, T.opt.Shape_i) assert isinstance(topo[1].op, T.opt.Shape_i) assert isinstance(topo[2].op, T.opt.Shape_i) assert isinstance(topo[3].op, T.opt.MakeVector) def test_softmax_optimizations(): from theano.tensor.nnet.nnet import softmax, crossentropy_categorical_1hot x = tensor.fmatrix('x') one_of_n = tensor.lvector('one_of_n') op = crossentropy_categorical_1hot op(x, one_of_n) fgraph = theano.gof.FunctionGraph( [x, one_of_n], [op(softmax(x), one_of_n)]) assert fgraph.outputs[0].owner.op == op mode_with_gpu.optimizer.optimize(fgraph) assert str(fgraph.outputs[0].owner.op) == 'OutputGuard' assert fgraph.outputs[0].owner.inputs[0].owner.op == cuda.host_from_gpu assert fgraph.outputs[0].owner.inputs[0].owner.inputs[0].owner.op == cuda.nnet.gpu_crossentropy_softmax_argmax_1hot_with_bias def test_may_share_memory_cuda(): from theano.misc.may_share_memory import may_share_memory a = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) b = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) na = numpy.zeros((3, 4)) nb = numpy.zeros((3, 4)) va = a.view() vb = b.view() ra = a.reshape((4, 3)) rb = b.reshape((4, 3)) # can't test the transpose as ta._strides = is not implemented # manual transpose of a # ta = a.reshape((4,3)) # ta._strides = (ta._strides[1],ta._strides[0])#not implemented # elem_size=elem_size = numpy.zeros(0,dtype=a.dtype).dtype.itemsize # ta.gpudata += ta.size*elem_size for a_, b_, rep in [(a, a, True), (b, b, True), (a, b, False), (a, na, False), (b, nb, False), (na, b, False), (nb, a, False), (a, va, True), (b, vb, True), (va, b, False), (a, vb, False), (a, ra, True), (b, rb, True), (ra, b, False), (a, rb, False), ]: assert may_share_memory(a_, b_) == rep assert may_share_memory(b_, a_) == rep # test that it raise error when needed. for a_, b_, rep in [(a, (0,), False), (a, 1, False), (a, None, False)]: assert may_share_memory(a_, b_, False) == rep assert may_share_memory(b_, a_, False) == rep try: may_share_memory(a_, b_) raise Exception("An error was expected") except TypeError: pass try: may_share_memory(b_, a_) raise Exception("An error was expected") except TypeError: pass def test_deepcopy(): a = cuda.fmatrix() a_v = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) # We force the c code to check that we generate c code mode = theano.Mode("c", mode_with_gpu.optimizer) f = theano.function([a], a, mode=mode) theano.printing.debugprint(f) out = f(a_v) assert out is not a_v assert numpy.allclose(numpy.asarray(a_v), numpy.asarray(out)) # We force the python linker as the default code should work for this op mode = theano.Mode("py", mode_with_gpu.optimizer) f = theano.function([a], a, mode=mode) theano.printing.debugprint(f) out = f(a_v) assert out is not a_v assert numpy.allclose(numpy.asarray(a_v), numpy.asarray(out)) def test_get_diagonal_subtensor_view(): test_conv3d2d.test_get_diagonal_subtensor_view(wrap=cuda.CudaNdarray) @parameterized.expand(('valid', 'full'), utt.custom_name_func) def test_conv3d(border_mode): test_conv3d2d.check_conv3d(border_mode=border_mode, mode=mode_with_gpu, shared=cuda.shared_constructor)
1f54af48b0de5de3deb1326d6dfc2e3b9b08012e
7246faf9a222269ce2612613f58dc5ff19091f10
/baekjoon/3000~5999/4949_균형잡힌세상.py
69e300ec26003ff839d8917a542427b2e7f68cc4
[]
no_license
gusdn3477/Algorithm_Study
87a2eb72a8488d9263a86db70dadc7944434d41d
3fefe1dcb40122157845ffc542f41cb097711cc8
refs/heads/main
2023-08-30T12:18:21.412945
2021-09-28T13:00:11
2021-09-28T13:00:11
308,364,230
0
1
null
null
null
null
UTF-8
Python
false
false
598
py
a = input() while a != '.': poc = [] for i in range(len(a)): if a[i] == '(' or a[i] == '[': poc.append(a[i]) if a[i] == ')': if not poc or poc[-1] != '(': poc.append(a[i]) break if poc[-1] == '(': poc.pop() if a[i] == ']': if not poc or poc[-1] != '[': poc.append(a[i]) break if poc[-1] == '[': poc.pop() if not poc: print("yes") else: print("no") poc.clear() a = input()
170a083c957c7be6132d27953ebb3e394bf8b3e5
130a98632d2ab4c171503b79e455b7aa27a1dda4
/models/research/object_detection/inputs_test.py
10dd078873c538661d0f57fd9154cb10f2b0c150
[ "Apache-2.0", "MIT" ]
permissive
aboerzel/German_License_Plate_Recognition
d7fc0314295f5cf0c9d7ae9c93a795e3ef1c5787
6fc53292b1d3ce3c0340ce724c2c11c77e663d27
refs/heads/master
2023-01-30T18:08:37.339542
2023-01-07T07:41:36
2023-01-07T07:41:36
245,586,430
34
12
MIT
2023-01-07T07:41:37
2020-03-07T07:16:51
Python
UTF-8
Python
false
false
75,857
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.tflearn.inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import unittest from absl import logging from absl.testing import parameterized import numpy as np import six import tensorflow.compat.v1 as tf from object_detection import inputs from object_detection.core import preprocessor from object_detection.core import standard_fields as fields from object_detection.utils import config_util from object_detection.utils import test_case from object_detection.utils import test_utils from object_detection.utils import tf_version if six.PY2: import mock # pylint: disable=g-import-not-at-top else: from unittest import mock # pylint: disable=g-import-not-at-top, g-importing-member FLAGS = tf.flags.FLAGS def _get_configs_for_model(model_name): """Returns configurations for model.""" fname = os.path.join(tf.resource_loader.get_data_files_path(), 'samples/configs/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/pet_label_map.pbtxt') data_path = os.path.join(tf.resource_loader.get_data_files_path(), 'test_data/pets_examples.record') configs = config_util.get_configs_from_pipeline_file(fname) override_dict = { 'train_input_path': data_path, 'eval_input_path': data_path, 'label_map_path': label_map_path } return config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def _get_configs_for_model_sequence_example(model_name, frame_index=-1): """Returns configurations for model.""" fname = os.path.join(tf.resource_loader.get_data_files_path(), 'test_data/' + model_name + '.config') label_map_path = os.path.join(tf.resource_loader.get_data_files_path(), 'data/snapshot_serengeti_label_map.pbtxt') data_path = os.path.join( tf.resource_loader.get_data_files_path(), 'test_data/snapshot_serengeti_sequence_examples.record') configs = config_util.get_configs_from_pipeline_file(fname) override_dict = { 'train_input_path': data_path, 'eval_input_path': data_path, 'label_map_path': label_map_path, 'frame_index': frame_index } return config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def _make_initializable_iterator(dataset): """Creates an iterator, and initializes tables. Args: dataset: A `tf.data.Dataset` object. Returns: A `tf.data.Iterator`. """ iterator = tf.data.make_initializable_iterator(dataset) tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) return iterator @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only tests under TF2.X.') class InputFnTest(test_case.TestCase, parameterized.TestCase): def test_faster_rcnn_resnet50_train_input(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_faster_rcnn_resnet50_train_input_with_additional_channels(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] configs['train_input_config'].num_additional_channels = 2 configs['train_config'].retain_original_images = True model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([1, None, None, 5], features[fields.InputDataFields.image].shape.as_list()) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [1, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_context_rcnn_resnet50_train_input_with_sequence_example( self, train_batch_size=8): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap') model_config = configs['model'] train_config = configs['train_config'] train_config.batch_size = train_batch_size train_input_fn = inputs.create_train_input_fn( train_config, configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([train_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([train_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [train_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [train_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_context_rcnn_resnet50_eval_input_with_sequence_example( self, eval_batch_size=8): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap') model_config = configs['model'] eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 640, 640, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_context_rcnn_resnet50_eval_input_with_sequence_example_image_id_list( self, eval_batch_size=8): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap') model_config = configs['model'] eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_config = configs['eval_input_configs'][0] eval_input_config.load_context_image_ids = True eval_input_fn = inputs.create_eval_input_fn( eval_config, eval_input_config, model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 640, 640, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_context_rcnn_resnet50_train_input_with_sequence_example_frame_index( self, train_batch_size=8): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model_sequence_example( 'context_rcnn_camera_trap', frame_index=2) model_config = configs['model'] train_config = configs['train_config'] train_config.batch_size = train_batch_size train_input_fn = inputs.create_train_input_fn( train_config, configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([train_batch_size, 640, 640, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([train_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [train_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [train_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [train_batch_size, 100, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_confidences].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_confidences].dtype) def test_ssd_inceptionV2_train_input(self): """Tests the training input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 batch_size = configs['train_config'].batch_size train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = _make_initializable_iterator(train_input_fn()).get_next() self.assertAllEqual([batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [batch_size], labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.num_groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) @parameterized.parameters( {'eval_batch_size': 1}, {'eval_batch_size': 8} ) def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[ fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual( tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_eval_input_with_additional_channels( self, eval_batch_size=1): """Tests the eval input function for SSDInceptionV2 with additional channel. Args: eval_batch_size: Batch size for eval set. """ configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 configs['eval_input_configs'][0].num_additional_channels = 1 eval_config = configs['eval_config'] eval_config.batch_size = eval_batch_size eval_config.retain_original_image_additional_channels = True eval_input_fn = inputs.create_eval_input_fn( eval_config, configs['eval_input_configs'][0], model_config) features, labels = _make_initializable_iterator(eval_input_fn()).get_next() self.assertAllEqual([eval_batch_size, 300, 300, 4], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [eval_batch_size, 300, 300, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([eval_batch_size, 300, 300, 1], features[ fields.InputDataFields.image_additional_channels].shape.as_list()) self.assertEqual( tf.uint8, features[fields.InputDataFields.image_additional_channels].dtype) self.assertAllEqual([eval_batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [eval_batch_size, 100, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [eval_batch_size, 100, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual(tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [eval_batch_size, 100], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_predict_input(self): """Tests the predict input function.""" configs = _get_configs_for_model('ssd_inception_v2_pets') predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] self.assertEqual([1, 300, 300, 3], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_predict_input_with_additional_channels(self): """Tests the predict input function with additional channels.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_input_configs'][0].num_additional_channels = 2 predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model'], predict_input_config=configs['eval_input_configs'][0]) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] # RGB + 2 additional channels = 5 channels. self.assertEqual([1, 300, 300, 5], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_error_with_bad_train_config(self): """Tests that a TypeError is raised with improper train config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['eval_config'], # Expecting `TrainConfig`. train_input_config=configs['train_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_input_config(self): """Tests that a TypeError is raised with improper train input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_model_config(self): """Tests that a TypeError is raised with improper train model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['train_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_eval_config(self): """Tests that a TypeError is raised with improper eval config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['train_config'], # Expecting `EvalConfig`. eval_input_config=configs['eval_input_configs'][0], model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_input_config(self): """Tests that a TypeError is raised with improper eval input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_model_config(self): """Tests that a TypeError is raised with improper eval model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['eval_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): eval_input_fn() def test_output_equal_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) test_string = b'hello world' feed_dict = {string_placeholder: test_string} with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) self.assertEqual(test_string, out_string) def test_output_is_integer_in_replace_empty_string_with_random_number(self): string_placeholder = tf.placeholder(tf.string, shape=[]) replaced_string = inputs._replace_empty_string_with_random_number( string_placeholder) empty_string = '' feed_dict = {string_placeholder: empty_string} with self.test_session() as sess: out_string = sess.run(replaced_string, feed_dict=feed_dict) is_integer = True try: # Test whether out_string is a string which represents an integer, the # casting below will throw an error if out_string is not castable to int. int(out_string) except ValueError: is_integer = False self.assertTrue(is_integer) def test_force_no_resize(self): """Tests the functionality of force_no_reisze option.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['eval_config'].force_no_resize = True eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_configs'][0], model_config=configs['model'] ) train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['model'] ) features_train, _ = _make_initializable_iterator( train_input_fn()).get_next() features_eval, _ = _make_initializable_iterator( eval_input_fn()).get_next() images_train, images_eval = features_train['image'], features_eval['image'] self.assertEqual([1, None, None, 3], images_eval.shape.as_list()) self.assertEqual([24, 300, 300, 3], images_train.shape.as_list()) class DataAugmentationFnTest(test_case.TestCase): def test_apply_image_and_box_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields. groundtruth_boxes]) image, groundtruth_boxes = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) def test_apply_image_and_box_augmentation_with_scores(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1.0], np.float32)), fields.InputDataFields.groundtruth_weights: tf.constant(np.array([0.8], np.float32)), } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], augmented_tensor_dict[fields.InputDataFields.groundtruth_weights]) (image, groundtruth_boxes, groundtruth_classes, groundtruth_weights) = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(groundtruth_boxes, [[10, 10, 20, 20]]) self.assertAllClose(groundtruth_classes.shape, [1.0]) self.assertAllClose(groundtruth_weights, [0.8]) def test_include_masks_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }) ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.zeros([2, 10, 10], np.uint8)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields. groundtruth_instance_masks]) image, masks = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllEqual(masks.shape, [2, 20, 20]) def test_include_keypoints_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_keypoints: tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) return (augmented_tensor_dict[fields.InputDataFields.image], augmented_tensor_dict[fields.InputDataFields.groundtruth_boxes], augmented_tensor_dict[fields.InputDataFields. groundtruth_keypoints]) image, boxes, keypoints = self.execute_cpu(graph_fn, []) self.assertAllEqual(image.shape, [20, 20, 3]) self.assertAllClose(boxes, [[10, 10, 20, 20]]) self.assertAllClose(keypoints, [[[10, 20], [10, 10]]]) def _fake_model_preprocessor_fn(image): return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) def _fake_image_resizer_fn(image, mask): return (image, mask, tf.shape(image)) def _fake_resize50_preprocess_fn(image): image = image[0] image, shape = preprocessor.resize_to_range( image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True) return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0) class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase): def test_combine_additional_channels_if_present(self): image = np.random.rand(4, 4, 3).astype(np.float32) additional_channels = np.random.rand(4, 4, 2).astype(np.float32) def graph_fn(image, additional_channels): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.image_additional_channels: additional_channels, fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=1) out_tensors = input_transformation_fn(tensor_dict=tensor_dict) return out_tensors[fields.InputDataFields.image] out_image = self.execute_cpu(graph_fn, [image, additional_channels]) self.assertAllEqual(out_image.dtype, tf.float32) self.assertAllEqual(out_image.shape, [4, 4, 5]) self.assertAllClose(out_image, np.concatenate((image, additional_channels), axis=2)) def test_use_multiclass_scores_when_present(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3). astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return transformed_inputs[fields.InputDataFields.groundtruth_classes] groundtruth_classes = self.execute_cpu(graph_fn, []) self.assertAllClose( np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32), groundtruth_classes) @unittest.skipIf(tf_version.is_tf2(), ('Skipping due to different behaviour ' 'in TF 2.X')) def test_use_multiclass_scores_when_not_present(self): def graph_fn(): zero_num_elements = tf.random.uniform([], minval=0, maxval=1, dtype=tf.int32) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.multiclass_scores: tf.zeros(zero_num_elements), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)) } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3, use_multiclass_scores=True) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return transformed_inputs[fields.InputDataFields.groundtruth_classes] groundtruth_classes = self.execute_cpu(graph_fn, []) self.assertAllClose( np.array([[0, 1, 0], [0, 0, 1]], np.float32), groundtruth_classes) @parameterized.parameters( {'labeled_classes': [1, 2]}, {'labeled_classes': []}, {'labeled_classes': [1, -1, 2]} # -1 denotes an unrecognized class ) def test_use_labeled_classes(self, labeled_classes): def compute_fn(image, groundtruth_boxes, groundtruth_classes, groundtruth_labeled_classes): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, fields.InputDataFields.groundtruth_classes: groundtruth_classes, fields.InputDataFields.groundtruth_labeled_classes: groundtruth_labeled_classes } input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=3) return input_transformation_fn(tensor_dict=tensor_dict) image = np.random.rand(4, 4, 3).astype(np.float32) groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32) groundtruth_classes = np.array([1, 2], np.int32) groundtruth_labeled_classes = np.array(labeled_classes, np.int32) transformed_inputs = self.execute_cpu(compute_fn, [ image, groundtruth_boxes, groundtruth_classes, groundtruth_labeled_classes ]) if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]: transformed_labeled_classes = [1, 1, 0] elif not labeled_classes: transformed_labeled_classes = [1, 1, 1] else: logging.exception('Unexpected labeled_classes %r', labeled_classes) self.assertAllEqual( np.array(transformed_labeled_classes, np.float32), transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes]) def test_returns_correct_class_label_encodings(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences]) (groundtruth_classes, groundtruth_confidences) = self.execute_cpu(graph_fn, []) self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) def test_returns_correct_labels_with_unrecognized_class(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant( np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_area: tf.constant(np.array([.5, .4, .3])), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, -1, 1], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant( np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]], np.float32)), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([[True, True], [False, False], [True, True]]), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(3, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_is_crowd: tf.constant([False, True, False]), fields.InputDataFields.groundtruth_difficult: tf.constant(np.array([0, 0, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_area], transformed_inputs[fields.InputDataFields. groundtruth_confidences], transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_visibilities], transformed_inputs[fields.InputDataFields. groundtruth_instance_masks], transformed_inputs[fields.InputDataFields.groundtruth_is_crowd], transformed_inputs[fields.InputDataFields.groundtruth_difficult]) (groundtruth_classes, num_groundtruth_boxes, groundtruth_area, groundtruth_confidences, groundtruth_boxes, groundtruth_keypoints, groundtruth_keypoint_visibilities, groundtruth_instance_masks, groundtruth_is_crowd, groundtruth_difficult) = self.execute_cpu(graph_fn, []) self.assertAllClose(groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllEqual(num_groundtruth_boxes, 2) self.assertAllClose(groundtruth_area, [.5, .3]) self.assertAllEqual(groundtruth_confidences, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose(groundtruth_boxes, [[0, 0, 1, 1], [.5, .5, 1, 1]]) self.assertAllClose(groundtruth_keypoints, [[[.1, .1]], [[.5, .5]]]) self.assertAllEqual(groundtruth_keypoint_visibilities, [[True, True], [True, True]]) self.assertAllEqual(groundtruth_instance_masks.shape, [2, 4, 4]) self.assertAllEqual(groundtruth_is_crowd, [False, False]) self.assertAllEqual(groundtruth_difficult, [0, 1]) def test_returns_correct_merged_boxes(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, merge_multiple_boxes=True) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences], transformed_inputs[fields.InputDataFields.num_groundtruth_boxes]) (groundtruth_boxes, groundtruth_classes, groundtruth_confidences, num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_boxes, [[.5, .5, 1., 1.]]) self.assertAllClose( groundtruth_classes, [[1, 0, 1]]) self.assertAllClose( groundtruth_confidences, [[1, 0, 1]]) self.assertAllClose( num_groundtruth_boxes, 1) def test_returns_correct_groundtruth_confidences_when_input_present(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.groundtruth_confidences: tf.constant(np.array([1.0, -1.0], np.float32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_classes], transformed_inputs[fields.InputDataFields. groundtruth_confidences]) groundtruth_classes, groundtruth_confidences = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_classes, [[0, 0, 1], [1, 0, 0]]) self.assertAllClose( groundtruth_confidences, [[0, 0, 1], [-1, 0, 0]]) def test_returns_resized_masks(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)), fields.InputDataFields.original_image_spatial_shape: tf.constant(np.array([4, 4], np.int32)) } def fake_image_resizer_fn(image, masks=None): resized_image = tf.image.resize_images(image, [8, 8]) results = [resized_image] if masks is not None: resized_masks = tf.transpose( tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), [2, 0, 1]) results.append(resized_masks) results.append(tf.shape(resized_image)) return results num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=fake_image_resizer_fn, num_classes=num_classes, retain_original_image=True) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.original_image], transformed_inputs[fields.InputDataFields. original_image_spatial_shape], transformed_inputs[fields.InputDataFields. groundtruth_instance_masks]) (original_image, original_image_shape, groundtruth_instance_masks) = self.execute_cpu(graph_fn, []) self.assertEqual(original_image.dtype, np.uint8) self.assertAllEqual(original_image_shape, [4, 4]) self.assertAllEqual(original_image.shape, [8, 8, 3]) self.assertAllEqual(groundtruth_instance_masks.shape, [2, 8, 8]) def test_applies_model_preprocess_fn_to_image_tensor(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_model_preprocessor_fn(image): return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.image], transformed_inputs[fields.InputDataFields.true_image_shape]) image, true_image_shape = self.execute_cpu(graph_fn, [np_image]) self.assertAllClose(image, np_image / 255.) self.assertAllClose(true_image_shape, [4, 4, 3]) def test_applies_data_augmentation_fn_to_tensor_dict(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def add_one_data_augmentation_fn(tensor_dict): return {key: value + 1 for key, value in tensor_dict.items()} num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_one_data_augmentation_fn) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.image], transformed_inputs[fields.InputDataFields.groundtruth_classes]) image, groundtruth_classes = self.execute_cpu(graph_fn, [np_image]) self.assertAllEqual(image, np_image + 1) self.assertAllEqual( groundtruth_classes, [[0, 0, 0, 1], [0, 1, 0, 0]]) def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): np_image = np.random.randint(256, size=(4, 4, 3)) def graph_fn(image): tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=mul_two_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_five_to_image_data_augmentation_fn) transformed_inputs = input_transformation_fn(tensor_dict) return transformed_inputs[fields.InputDataFields.image] image = self.execute_cpu(graph_fn, [np_image]) self.assertAllEqual(image, (np_image + 5) * 2) def test_resize_with_padding(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]), } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes,) transformed_inputs = input_transformation_fn(tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_boxes], transformed_inputs[fields.InputDataFields.groundtruth_keypoints]) groundtruth_boxes, groundtruth_keypoints = self.execute_cpu(graph_fn, []) self.assertAllClose( groundtruth_boxes, [[.5, .25, 1., .5], [.0, .0, .5, .25]]) self.assertAllClose( groundtruth_keypoints, [[[.1, .1]], [[.3, .2]]]) def test_groundtruth_keypoint_weights(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6], [0.7, 0.8]]]), fields.InputDataFields.groundtruth_keypoint_visibilities: tf.constant([[True, False], [True, True]]), } num_classes = 3 keypoint_type_weight = [1.0, 2.0] input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, keypoint_type_weight=keypoint_type_weight) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_weights]) groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( graph_fn, []) self.assertAllClose( groundtruth_keypoints, [[[0.1, 0.1], [0.3, 0.2]], [[0.5, 0.3], [0.7, 0.4]]]) self.assertAllClose( groundtruth_keypoint_weights, [[1.0, 0.0], [1.0, 2.0]]) def test_groundtruth_keypoint_weights_default(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_keypoints: tf.constant([[[0.1, 0.2], [0.3, 0.4]], [[0.5, 0.6], [0.7, 0.8]]]), } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) return (transformed_inputs[fields.InputDataFields.groundtruth_keypoints], transformed_inputs[fields.InputDataFields. groundtruth_keypoint_weights]) groundtruth_keypoints, groundtruth_keypoint_weights = self.execute_cpu( graph_fn, []) self.assertAllClose( groundtruth_keypoints, [[[0.1, 0.1], [0.3, 0.2]], [[0.5, 0.3], [0.7, 0.4]]]) self.assertAllClose( groundtruth_keypoint_weights, [[1.0, 1.0], [1.0, 1.0]]) def test_groundtruth_dense_pose(self): def graph_fn(): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(100, 50, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([1, 2], np.int32)), fields.InputDataFields.groundtruth_dp_num_points: tf.constant([0, 2], dtype=tf.int32), fields.InputDataFields.groundtruth_dp_part_ids: tf.constant([[0, 0], [4, 23]], dtype=tf.int32), fields.InputDataFields.groundtruth_dp_surface_coords: tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]], [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]], dtype=tf.float32), } num_classes = 1 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_resize50_preprocess_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) transformed_inputs = input_transformation_fn(tensor_dict=tensor_dict) transformed_dp_num_points = transformed_inputs[ fields.InputDataFields.groundtruth_dp_num_points] transformed_dp_part_ids = transformed_inputs[ fields.InputDataFields.groundtruth_dp_part_ids] transformed_dp_surface_coords = transformed_inputs[ fields.InputDataFields.groundtruth_dp_surface_coords] return (transformed_dp_num_points, transformed_dp_part_ids, transformed_dp_surface_coords) dp_num_points, dp_part_ids, dp_surface_coords = self.execute_cpu( graph_fn, []) self.assertAllEqual(dp_num_points, [0, 2]) self.assertAllEqual(dp_part_ids, [[0, 0], [4, 23]]) self.assertAllClose( dp_surface_coords, [[[0., 0., 0., 0.,], [0., 0., 0., 0.,]], [[0.1, 0.1, 0.3, 0.4,], [0.6, 0.4, 0.6, 0.7,]]]) class PadInputDataToStaticShapesFnTest(test_case.TestCase): def test_pad_images_boxes_and_classes(self): input_tensor_dict = { fields.InputDataFields.image: tf.random.uniform([3, 3, 3]), fields.InputDataFields.groundtruth_boxes: tf.random.uniform([2, 4]), fields.InputDataFields.groundtruth_classes: tf.random.uniform([2, 3], minval=0, maxval=2, dtype=tf.int32), fields.InputDataFields.true_image_shape: tf.constant([3, 3, 3]), fields.InputDataFields.original_image_spatial_shape: tf.constant([3, 3]) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.true_image_shape] .shape.as_list(), [3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape] .shape.as_list(), [2]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_boxes] .shape.as_list(), [3, 4]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_classes] .shape.as_list(), [3, 3]) def test_clip_boxes_and_classes(self): def graph_fn(): input_tensor_dict = { fields.InputDataFields.groundtruth_boxes: tf.random.uniform([5, 4]), fields.InputDataFields.groundtruth_classes: tf.random.uniform([2, 3], maxval=10, dtype=tf.int32), fields.InputDataFields.num_groundtruth_boxes: tf.constant(5) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) return (padded_tensor_dict[fields.InputDataFields.groundtruth_boxes], padded_tensor_dict[fields.InputDataFields.groundtruth_classes], padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]) (groundtruth_boxes, groundtruth_classes, num_groundtruth_boxes) = self.execute_cpu(graph_fn, []) self.assertAllEqual(groundtruth_boxes.shape, [3, 4]) self.assertAllEqual(groundtruth_classes.shape, [3, 3]) self.assertEqual(num_groundtruth_boxes, 3) def test_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 3, 5), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(4, 3, 2), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 5]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_images_and_additional_channels_errors(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(10, 10, 3), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(10, 10, 2), fields.InputDataFields.original_image: test_utils.image_with_dynamic_shape(10, 10, 3), } with self.assertRaises(ValueError): _ = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) def test_gray_images(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 4, 1), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 1]) def test_gray_images_and_additional_channels(self): input_tensor_dict = { fields.InputDataFields.image: test_utils.image_with_dynamic_shape(4, 4, 3), fields.InputDataFields.image_additional_channels: test_utils.image_with_dynamic_shape(4, 4, 2), } # pad_input_data_to_static_shape assumes that image is already concatenated # with additional channels. padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image].shape.as_list(), [5, 6, 3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.image_additional_channels] .shape.as_list(), [5, 6, 2]) def test_keypoints(self): keypoints = test_utils.keypoints_with_dynamic_shape(10, 16, 4) visibilities = tf.cast(tf.random.uniform(tf.shape(keypoints)[:-1], minval=0, maxval=2, dtype=tf.int32), tf.bool) input_tensor_dict = { fields.InputDataFields.groundtruth_keypoints: test_utils.keypoints_with_dynamic_shape(10, 16, 4), fields.InputDataFields.groundtruth_keypoint_visibilities: visibilities } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints] .shape.as_list(), [3, 16, 4]) self.assertAllEqual( padded_tensor_dict[ fields.InputDataFields.groundtruth_keypoint_visibilities] .shape.as_list(), [3, 16]) def test_dense_pose(self): input_tensor_dict = { fields.InputDataFields.groundtruth_dp_num_points: tf.constant([0, 2], dtype=tf.int32), fields.InputDataFields.groundtruth_dp_part_ids: tf.constant([[0, 0], [4, 23]], dtype=tf.int32), fields.InputDataFields.groundtruth_dp_surface_coords: tf.constant([[[0., 0., 0., 0.,], [0., 0., 0., 0.,]], [[0.1, 0.2, 0.3, 0.4,], [0.6, 0.8, 0.6, 0.7,]]], dtype=tf.float32), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=1, spatial_image_shape=[128, 128], max_dp_points=200) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_dp_num_points] .shape.as_list(), [3]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_dp_part_ids] .shape.as_list(), [3, 200]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_dp_surface_coords] .shape.as_list(), [3, 200, 4]) def test_pad_input_data_to_static_shapes_for_trackid(self): input_tensor_dict = { fields.InputDataFields.groundtruth_track_ids: tf.constant([0, 1], dtype=tf.int32), } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=1, spatial_image_shape=[128, 128]) self.assertAllEqual( padded_tensor_dict[fields.InputDataFields.groundtruth_track_ids] .shape.as_list(), [3]) def test_context_features(self): context_memory_size = 8 context_feature_length = 10 max_num_context_features = 20 def graph_fn(): input_tensor_dict = { fields.InputDataFields.context_features: tf.ones([context_memory_size, context_feature_length]), fields.InputDataFields.context_feature_length: tf.constant(context_feature_length) } padded_tensor_dict = inputs.pad_input_data_to_static_shapes( tensor_dict=input_tensor_dict, max_num_boxes=3, num_classes=3, spatial_image_shape=[5, 6], max_num_context_features=max_num_context_features, context_feature_length=context_feature_length) self.assertAllEqual( padded_tensor_dict[ fields.InputDataFields.context_features].shape.as_list(), [max_num_context_features, context_feature_length]) return padded_tensor_dict[fields.InputDataFields.valid_context_size] valid_context_size = self.execute_cpu(graph_fn, []) self.assertEqual(valid_context_size, context_memory_size) class NegativeSizeTest(test_case.TestCase): """Test for inputs and related funcitons.""" def test_negative_size_error(self): """Test that error is raised for negative size boxes.""" def graph_fn(): tensors = { fields.InputDataFields.image: tf.zeros((128, 128, 3)), fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32), fields.InputDataFields.groundtruth_boxes: tf.constant([[0.5, 0.5, 0.4, 0.5]], tf.float32) } tensors = inputs.transform_input_data( tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, num_classes=10) return tensors[fields.InputDataFields.groundtruth_boxes] with self.assertRaises(tf.errors.InvalidArgumentError): self.execute_cpu(graph_fn, []) def test_negative_size_no_assert(self): """Test that negative size boxes are filtered out without assert. This test simulates the behaviour when we run on TPU and Assert ops are not supported. """ tensors = { fields.InputDataFields.image: tf.zeros((128, 128, 3)), fields.InputDataFields.groundtruth_classes: tf.constant([1, 1], tf.int32), fields.InputDataFields.groundtruth_boxes: tf.constant([[0.5, 0.5, 0.4, 0.5], [0.5, 0.5, 0.6, 0.6]], tf.float32) } with mock.patch.object(tf, 'Assert') as tf_assert: tf_assert.return_value = tf.no_op() tensors = inputs.transform_input_data( tensors, _fake_model_preprocessor_fn, _fake_image_resizer_fn, num_classes=10) self.assertAllClose(tensors[fields.InputDataFields.groundtruth_boxes], [[0.5, 0.5, 0.6, 0.6]]) if __name__ == '__main__': tf.test.main()
83547d23b166d298dba8225456e446df30293c67
c90962d0f3233205d4dc99391f6aab3402fa7ed8
/parPDE/__init__.py
4557dcb4c8a5af05fe9207a2e5b7ce6f3b66bbdf
[ "BSD-2-Clause" ]
permissive
chrisjbillington/parpde
f97a1303c404ec83f22df15c6fb4e80485176150
4f882cbbb9ad6c57814e4422e9ba063fa27886a0
refs/heads/master
2022-11-10T16:18:31.489069
2019-01-22T21:01:25
2019-01-22T21:01:25
275,920,389
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
from .parPDE import * try: from __version__ import __version__ except ImportError: __version__ = None
0d8f76b499ac816e3bd0061d7450637456aaa4d7
1681332a25e5130517c403bb7a860ca30506d5ea
/res/dlworkshop/conv_test.py
abb17bf25cec4bb3835f22de94b69b03e0211a02
[ "MIT", "CC-BY-4.0" ]
permissive
dgyrt/dgyrt.github.io
240550826aa031323db1f64b00b36db1ac3d65df
fac6c1a9d10d8e87bad6e80aa96027b84975ee1d
refs/heads/master
2020-05-21T12:23:00.437395
2017-01-31T14:05:39
2017-01-31T14:05:39
43,422,967
0
0
null
null
null
null
UTF-8
Python
false
false
7,173
py
"""" convnet test """ import os; import gzip; import cPickle as pickle; import numpy as np; import theano; import theano.tensor as T; from theano.tensor.nnet import conv; from theano.tensor.signal import downsample; n_epochs=100; batch_size=100; def relu(x): return x*(x>1e-13); class ConvLayer(object): def __init__(self, filter_size, num_filters, num_channels, fm_size, batch_size, **kwargs): self.filter_size=filter_size; self.num_filters=num_filters; self.num_channels=num_channels; self.fm_size=fm_size; self.batch_size=batch_size; super(ConvLayer, self).__init__(**kwargs); self.initialize(); self.params=[self.filters, self.bias]; def initialize(self): filter_shape=(self.num_filters, self.num_channels)+(self.filter_size); self.filters=theano.shared(np.asarray(np.random.uniform(low=-0.0001, high=0.0001, size=filter_shape), dtype="float32"), borrow=True); self.bias=theano.shared(np.asarray(np.zeros((self.num_filters, )), dtype="float32"), borrow=True); def apply_lin(self, X): Y=conv.conv2d(input=X, filters=self.filters, image_shape=(self.batch_size, self.num_channels)+(self.fm_size), filter_shape=(self.num_filters, self.num_channels)+(self.filter_size)); Y+=self.bias.dimshuffle('x', 0, 'x', 'x'); return Y; class ReLUConvLayer(ConvLayer): def __init__(self, **kwargs): super(ReLUConvLayer, self).__init__(**kwargs); def apply(self, X): return relu(self.apply_lin(X)); class MaxPooling(object): def __init__(self, pool_size): self.pool_size=pool_size; def apply(self, X): return downsample.max_pool_2d(X, self.pool_size); class Layer(object): def __init__(self, in_dim, out_dim, W=None, b=None, **kwargs): self.in_dim=in_dim; self.out_dim=out_dim; self.W=W; self.b=b; self.initialize(); super(Layer, self).__init__(**kwargs); self.params=[self.W, self.b]; def initialize(self): if self.W == None: self.W=theano.shared(np.asarray(np.random.uniform(low=-0.0001, high=0.0001, size=(self.in_dim, self.out_dim)), dtype="float32"), borrow=True); if self.b == None: self.b=theano.shared(np.asarray(np.zeros((self.out_dim, )), dtype="float32"), borrow=True); def apply_lin(self, X): return T.dot(X, self.W)+self.b; class ReLULayer(Layer): def __init__(self, **kwargs): super(ReLULayer, self).__init__(**kwargs); def apply(self, X): return relu(self.apply_lin(X)); class TanhLayer(Layer): def __init__(self, **kwargs): super(TanhLayer, self).__init__(**kwargs); def apply(self, X): return T.tanh(self.apply_lin(X)); class SoftmaxLayer(Layer): def __init__(self, **kwargs): super(SoftmaxLayer, self).__init__(**kwargs); def apply(self, X): return T.nnet.softmax(self.apply_lin(X)); def predict(self, X_out): return T.argmax(X_out, axis=1); def error(self, X_out, Y): return T.mean(T.neq(self.predict(X_out), Y)); # load dataset def shared_dataset(data_xy): data_x, data_y=data_xy; shared_x=theano.shared(np.asarray(data_x, dtype="float32"), borrow=True); shared_y=theano.shared(np.asarray(data_y, dtype="float32"), borrow=True); return shared_x, T.cast(shared_y, "int32"); def load_mnist(dataset): f=gzip.open(dataset, 'rb'); train_set, valid_set, test_set=pickle.load(f); f.close(); train_set_x, train_set_y=shared_dataset(train_set); valid_set_x, valid_set_y=shared_dataset(valid_set); test_set_x, test_set_y=shared_dataset(test_set); return [(train_set_x, train_set_y), (valid_set_x, valid_set_y), (test_set_x, test_set_y)]; dataset=load_mnist("mnist.pkl.gz"); train_set_x, train_set_y=dataset[0]; valid_set_x, valid_set_y=dataset[1]; test_set_x, test_set_y=dataset[2]; n_train_batches=train_set_x.get_value(borrow=True).shape[0]/batch_size; n_valid_batches=valid_set_x.get_value(borrow=True).shape[0]/batch_size; n_test_batches=test_set_x.get_value(borrow=True).shape[0]/batch_size; print n_train_batches print n_valid_batches print n_test_batches print "dataset loaded" # build mode X=T.matrix("data"); y=T.ivector("label"); idx=T.lscalar(); images=X.reshape((batch_size, 1, 28, 28)); ### configure some layers ### build some convlayers layer_0=ReLUConvLayer(filter_size=(7,7), num_filters=10, num_channels=1, fm_size=(28, 28), batch_size=batch_size); pool_0=MaxPooling((2,2)); layer_1=ReLUConvLayer(filter_size=(4,4), num_filters=10, num_channels=10, fm_size=(11,11), batch_size=batch_size); pool_1=MaxPooling((2,2)); layer_2=ReLULayer(in_dim=160, out_dim=100); layer_3=SoftmaxLayer(in_dim=100, out_dim=10); ### compile some model out=pool_1.apply(layer_1.apply(pool_0.apply(layer_0.apply(images)))) out=out.flatten(ndim=2); out=layer_3.apply(layer_2.apply(out)); cost=T.nnet.categorical_crossentropy(out, y).mean(); params=layer_0.params+layer_1.params+layer_2.params+layer_3.params; #### calculate the updates of each params gparams=T.grad(cost, params); from collections import OrderedDict; updates=OrderedDict(); for param, gparam in zip(params, gparams): updates[param]=param-0.01*gparam; train=theano.function(inputs=[idx], outputs=cost, updates=updates, givens={X: train_set_x[idx*batch_size: (idx+1)*batch_size], y: train_set_y[idx*batch_size: (idx+1)*batch_size]}); test=theano.function(inputs=[idx], outputs=layer_3.error(out, y), givens={X: test_set_x[idx*batch_size: (idx+1)*batch_size], y: test_set_y[idx*batch_size: (idx+1)*batch_size]}); print "the model is built :)" # train the model test_record=np.zeros((n_epochs, 1)); epoch=0; while (epoch<n_epochs): epoch+=1; for minibatch_index in xrange(n_train_batches): mlp_train_cost=train(minibatch_index); iteration=(epoch-1)*n_train_batches+minibatch_index; if (iteration+1)%n_train_batches==0: print "MLP model"; test_cost=[test(i) for i in xrange(n_test_batches)]; test_record[epoch-1]=np.mean(test_cost); print " epoch %i, test error %f %%" % (epoch, test_record[epoch-1]*100.);
36297de68d4dda62481025cf1bbce659d0ce664f
3b89c0a97ac6b58b6923a213bc8471e11ad4fe69
/python/CodingExercises/CheckSecondStringFormedFirstString.py
82a8ded99bb4b608b37b268d47ca9e6f94271932
[]
no_license
ksayee/programming_assignments
b187adca502ecf7ff7b51dc849d5d79ceb90d4a6
13bc1c44e1eef17fc36724f20b060c3339c280ea
refs/heads/master
2021-06-30T07:19:34.192277
2021-06-23T05:11:32
2021-06-23T05:11:32
50,700,556
1
3
null
null
null
null
UTF-8
Python
false
false
1,218
py
''' Check whether second string can be formed from characters of first string Given two strings str1 and str2, check if str2 can be formed from str1 Example : Input : str1 = geekforgeeks, str2 = geeks Output : Yes Here, string2 can be formed from string1. Input : str1 = geekforgeeks, str2 = and Output : No Here string2 cannot be formed from string1. Input : str1 = geekforgeeks, str2 = geeeek Output : Yes Here string2 can be formed from string1 as string1 contains 'e' comes 4 times in string2 which is present in string1. ''' import collections def CheckSecondStringFormedFirstString(str1,str2): dict1=collections.Counter(str1) dict2=collections.Counter(str2) for key,val in dict2.items(): if key in dict1.keys() and dict1[key]>0: dict1[key]=dict1.get(key)-1 else: return False return True def main(): str1='geekforgeeks' str2='geeks' print(CheckSecondStringFormedFirstString(str1,str2)) str1 = 'geekforgeeks' str2 = 'and' print(CheckSecondStringFormedFirstString(str1, str2)) str1 = 'geekforgeeks' str2 = 'geeeek' print(CheckSecondStringFormedFirstString(str1, str2)) if __name__=='__main__': main()
9796214d25e80f9655fb1910bc028c1969ce3aca
1d8535658ed07fc88558c7d9bf3a01b709f189b1
/src/reversion/migrations/0001_initial.py
986fd81ac986f7c87b8babac57ae6a6c0bfa701a
[ "BSD-2-Clause" ]
permissive
druids/django-reversion
ebedc4debe3ffc611f9e2bf72a04f388274502a0
d80a24b6a195c8a68bfc3100ba533419226fa18d
refs/heads/master
2020-12-25T08:50:58.658410
2018-06-10T20:19:42
2018-06-10T20:19:42
40,229,843
0
3
NOASSERTION
2020-04-09T13:16:57
2015-08-05T06:56:01
Python
UTF-8
Python
false
false
2,506
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contenttypes', '0001_initial'), ] operations = [ migrations.CreateModel( name='Revision', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('manager_slug', models.CharField(default='default', max_length=200, db_index=True)), ('date_created', models.DateTimeField(auto_now_add=True, help_text='The date and time this revision was created.', verbose_name='date created', db_index=True)), ('comment', models.TextField(help_text='A text comment on this revision.', verbose_name='comment', blank=True)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.SET_NULL, blank=True, to=settings.AUTH_USER_MODEL, help_text='The user who created this revision.', null=True, verbose_name='user')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Version', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('object_id', models.TextField(help_text='Primary key of the model under version control.')), ('object_id_int', models.IntegerField(help_text="An indexed, integer version of the stored model's primary key, used for faster lookups.", null=True, db_index=True, blank=True)), ('format', models.CharField(help_text='The serialization format used by this model.', max_length=255)), ('serialized_data', models.TextField(help_text='The serialized form of this version of the model.')), ('object_repr', models.TextField(help_text='A string representation of the object.')), ('content_type', models.ForeignKey(help_text='Content type of the model under version control.', to='contenttypes.ContentType')), ('revision', models.ForeignKey(help_text='The revision that contains this version.', to='reversion.Revision')), ], options={ }, bases=(models.Model,), ), ]
290c90e1ec3e9aea7039b80484a81718c05d1dfb
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_shelled.py
92293753951a72a46ead1e9e801bf3e2ad1a351b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
from xai.brain.wordbase.nouns._shell import _SHELL #calss header class _SHELLED(_SHELL, ): def __init__(self,): _SHELL.__init__(self) self.name = "SHELLED" self.specie = 'nouns' self.basic = "shell" self.jsondata = {}
ca58b1ce2b21900200329d5dbd2507235c210435
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03853/s066137758.py
acb2ac42342d566e74d51b19e21c6c91f5ab7f87
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
288
py
num = input().split() hei = int(num[0]) wei = int(num[1]) photo = [] for i in range(hei): temp = input() temp = list(temp) photo.append(temp) photo.append(temp) for i in range(hei*2): for j in range(wei): print(photo[i][j],end="") print("\n",end="")
a0a3e8f4dab8d2d3cc6497f8b4e8c5507e50f494
9497432cd07d17be15853544197853d1ae7ae472
/encryption files/hashing/sha384hash.py
1880fd67f6fa014e3adfcf43b48c4f4a11238ba8
[]
no_license
SeresAdrian/Crypto-Project
e99be9c2bf9155e1a54be4419d5626633fd2b333
4c2fd709f667bdfa71bc5fadd9b47a1c79f59c6a
refs/heads/master
2022-07-25T13:54:46.704949
2020-05-18T19:40:42
2020-05-18T19:40:42
265,021,044
1
0
null
null
null
null
UTF-8
Python
false
false
194
py
#!/usr/bin/python import hashlib string=input("Please enter tha plaintext : ") result = hashlib.sha384(string.encode()) print("The hexadecimal equivalent of hash is : ", result.hexdigest())
721a102e40b391250ee3101e851acdd76b192386
34f29e764609930da0b3d3d7db18dc63ab1b4a97
/util/tasks/trainInvV2_2.py
d118d52a2810437ab0796e678089eb538f9bbefd
[]
no_license
samhu1989/RAtlasNet
c77fe2a65fcbfb34bfdf78a5e1c7abdcea989341
0b2859a620dd15f66c4af1355eb79356ee335507
refs/heads/master
2020-04-15T01:01:33.874790
2019-05-30T15:00:13
2019-05-30T15:00:13
164,260,625
0
0
null
null
null
null
UTF-8
Python
false
false
12,503
py
# import os; from .task import Task; from ..ply import *; from ..Lutils import *; from ..utils import *; from ..datasets import *; import torch; from torch.autograd import Variable; from torch.utils.data import DataLoader; import torch.nn as nn import math; import json; sys.path.append("./ext/"); import dist_chamfer as ext; distChamfer = ext.chamferDist(); def eval_ae(net,pts): with torch.no_grad(): points = Variable(pts); points = points.transpose(2,1).contiguous(); points = points.cuda(); out = net(points); dist1, dist2 = distChamfer(points.transpose(2,1).contiguous(),out['y']); cd = (torch.mean(dist1)) + (torch.mean(dist2)) inv_err = torch.mean(torch.sum((out['inv_x'] - out['grid_x'])**2,dim=2)); return cd.data.cpu().numpy(),inv_err.data.cpu().numpy(); def train_ae(net,optim,cd_meter,inv_meter,pts,opt): optim.zero_grad(); points = Variable(pts,requires_grad=True); points = points.transpose(2,1).contiguous(); points = points.cuda(); out = net(points); dist1, dist2 = distChamfer(points.transpose(2,1).contiguous(),out['y']); cd = (torch.mean(dist1)) + (torch.mean(dist2)) inv_err = torch.mean(torch.sum((out['inv_x'] - out['grid_x'])**2,dim=2)); cd_meter.update(cd.data.cpu().numpy()); inv_meter.update(inv_err.data.cpu().numpy()) inv_gt = out['invmap'](points); dist1, dist2 = distChamfer(inv_gt,out['grid_x']); inv_cd = (torch.mean(dist1)) + (torch.mean(dist2)) loss = inv_cd + opt['w']*inv_err + cd; loss.backward(); optim.step(); return loss,cd,inv_err; def eval_svr(net,pts,img): with torch.no_grad(): img = Variable(img); img = img.cuda(); points = Variable(pts); points = points.cuda(); out = net(img); dist1, dist2 = distChamfer(points,out['y']); cd = (torch.mean(dist1)) + (torch.mean(dist2)); inv_err = torch.mean(torch.sum((out['inv_x'] - out['grid_x'])**2,dim=2)); return cd.data.cpu().numpy(),inv_err.data.cpu().numpy(); def train_svr(net,optim,cd_meter,inv_meter,pts,img,opt): optim.zero_grad(); img = Variable(img,requires_grad=True); img = img.cuda(); points = Variable(pts); points = points.cuda(); out = net(img); dist1, dist2 = distChamfer(points,out['y']); cd = (torch.mean(dist1)) + (torch.mean(dist2)); inv_err = torch.mean(torch.sum((out['inv_x'] - out['grid_x'])**2,dim=2)); cd_meter.update(cd.data.cpu().numpy()); inv_meter.update(inv_err.data.cpu().numpy()); loss = cd + opt['w']*inv_err; loss.backward(); optim.step(); return loss,cd,inv_err; def write_log(logfile,val_cd,val_inv,dataset_test,train_cd=None,train_inv=None,epoch=None): log_dict = {}; log_dict['val_cd'] = val_cd.avg; log_dict['val_inv'] = val_inv.avg; for item in dataset_test.cat: print(item,dataset_test.perCatValueMeter[item].avg) log_dict.update({item:dataset_test.perCatValueMeter[item].avg}) if train_cd is not None: log_dict['train_cd'] = train_cd.avg; if train_inv is not None: log_dict['train_inv'] = train_inv.avg; if epoch is not None: log_dict['epoch'] = epoch; logfile.write('json_stats: '+json.dumps(log_dict)+'\n'); return; bestnum = 3; best_cd = np.zeros(bestnum); best_all = np.zeros(bestnum); def save_model(logtxt,dirname,net,opt,vcd,vall): global best_cd; global best_all; cdname = dirname+os.sep+opt['mode']+'gn'+str(opt['grid_num'])+'_cd'; allname = dirname+os.sep+opt['mode']+'gn'+str(opt['grid_num'])+'_all'; name = dirname+os.sep+opt['mode']+'gn'+str(opt['grid_num'])+'_current'; sdict = net.state_dict(); torch.save(sdict,name+'.pth'); if vcd < best_cd[-1]: best_cd[-1] = vcd; best_cd = np.sort(best_cd); bidx = np.searchsorted(best_cd,vcd); for idx in range(bestnum-2,bidx-1,-1): if os.path.exists(cdname+'_%d'%idx+'.pth'): if os.path.exists(cdname+'_%d'%(idx+1)+'.pth'): os.remove(cdname+'_%d'%(idx+1)+'.pth'); print('rename '+cdname+'_%d'%(idx)+'.pth'+' '+cdname+'_%d'%(idx+1)+'.pth'); os.rename(cdname+'_%d'%(idx)+'.pth',cdname+'_%d'%(idx+1)+'.pth'); print('saving model at '+cdname+'_%d'%(bidx)+'.pth'); torch.save(sdict,cdname+'_%d'%(bidx)+'.pth'); logtxt.write('saving model at '+cdname+'_%d'%(bidx)+'.pth\n'); logtxt.write('best_cd:'+np.array2string(best_cd,precision=6,separator=',')+'\n'); if vall < best_all[-1]: best_all[-1] = vall; best_all = np.sort(best_all); bidx = np.searchsorted(best_all,vall); for idx in range(bestnum-2,bidx-1,-1): if os.path.exists(allname+'_%d'%idx+'.pth'): if os.path.exists(allname+'_%d'%(idx+1)+'.pth'): os.remove(allname+'_%d'%(idx+1)+'.pth'); print('rename '+allname+'_%d'%(idx)+'.pth'+' '+allname+'_%d'%(idx+1)+'.pth'); os.rename(allname+'_%d'%(idx)+'.pth',allname+'_%d'%(idx+1)+'.pth'); print('saving model at '+allname+'_%d'%(bidx)+'.pth\n'); torch.save(sdict,allname+'_%d'%(bidx)+'.pth\n'); logtxt.write('saving model at '+allname+'_%d'%(bidx)+'.pth\n'); logtxt.write('best_all:'+np.array2string(best_all,precision=6,separator=',')+'\n'); def view_color(y,c=None): if c is None: c = colorcoord(y); return pd.concat([pd.DataFrame(y),pd.DataFrame(c)],axis=1,ignore_index=True); def view_ae(dirname,net,pts,index,cat,opt): points = Variable(pts, volatile=True); points = points.transpose(2,1).contiguous(); points = points.cuda(); grid = None; fidx = None; if opt.grid_dim == 3: grid,Li,Lw,fidx = sphere_grid(points.size()[0],opt.pts_num,'cot'); elif opt.grid_dim == 2: grid,Li,Lw,fidx = patch_grid(points.size()[0],opt.pts_num,opt.grid_num); grid = Variable(grid,volatile=True); grid = grid.cuda(); y,inv_err = net(points,grid); y_inv = net.inv_y; ply_path = dirname+os.sep+'ply'; if not os.path.exists(ply_path): os.mkdir(ply_path); T=np.dtype([("n",np.uint8),("i0",np.int32),('i1',np.int32),('i2',np.int32)]); face = np.zeros(shape=[fidx.shape[0]],dtype=T); for i in range(fidx.shape[0]): face[i] = (3,fidx[i,0],fidx[i,1],fidx[i,2]); y = y.cpu().data.numpy(); inv_y = net.inv_y.cpu().data.numpy(); grid = grid.transpose(2,1).contiguous().cpu().data.numpy(); c = colorcoord(grid[0,...]) write_ply(ply_path+os.sep+'%02d_%s_grid.ply'%(index,cat[0]),points = view_color(grid[0,...],c),faces=pd.DataFrame(face),color=True); for i in range(y.shape[0]): write_ply(ply_path+os.sep+'%02d_%02d_%s.ply'%(index,i,cat[0]),points = view_color(y[i,...],c),faces=pd.DataFrame(face),color=True); write_ply(ply_path+os.sep+'%02d_%02d_%s_inv.ply'%(index,i,cat[0]),points = view_color(inv_y[i,...],c),faces=pd.DataFrame(face),color=True); def view_svr(dirname,net,img,index,cat,opt): img = Variable(img,volatile=True); img = img.cuda(); grid = None; fidx = None; if opt.grid_dim == 3: grid,Li,Lw,fidx = sphere_grid(points.size()[0],opt.pts_num,'cot'); elif opt.grid_dim == 2: grid,Li,Lw,fidx = patch_grid(points.size()[0],opt.pts_num,opt.grid_num); grid = Variable(grid,volatile=True); grid = grid.cuda(); y,inv_err = net(img,grid); ply_path = dirname+os.sep+'ply'; if not os.path.exists(ply_path): os.mkdir(ply_path); T=np.dtype([("n",np.uint8),("i0",np.int32),('i1',np.int32),('i2',np.int32)]); face = np.zeros(shape=[fidx.shape[0]],dtype=T); for i in range(fidx.shape[0]): face[i] = (3,fidx[i,0],fidx[i,1],fidx[i,2]); y = y.cpu().data.numpy(); inv_y = net.inv_y.cpu().data.numpy(); grid = grid.transpose(2,1).contiguous().cpu().data.numpy(); c = colorcoord(grid[0,...]) write_ply(ply_path+os.sep+'%02d_%s_grid.ply'%(index,cat[0]),points = view_color(grid[0,...],c),faces=pd.DataFrame(face),color=True); for i in range(y.shape[0]): write_ply(ply_path+os.sep+'%02d_%02d_%s.ply'%(index,i,cat[0]),points = view_color(y[i,...],c),faces=pd.DataFrame(face),color=True); write_ply(ply_path+os.sep+'%02d_%02d_%s_inv.ply'%(index,i,cat[0]),points = view_color(inv_y[i,...],c),faces=pd.DataFrame(face),color=True); class RealTask(Task): def __init__(self): super(RealTask,self).__init__(); self.tskname = os.path.basename(__file__).split('.')[0]; def run(self,*args,**kwargs): self.start(); self.step(); return; def start(self): if self.cnt > 0: return; self.SVR = (self.opt['mode']=='SVR'); self.train_data = ShapeNet(SVR=self.SVR,normal = False,class_choice = None,train=True); self.train_load = DataLoader(self.train_data,batch_size=self.opt['batchSize'],shuffle=True, num_workers=int(self.opt['workers'])); self.valid_data = ShapeNet(SVR=self.SVR,normal = False,class_choice = None,train=False); self.valid_load = DataLoader(self.valid_data,batch_size=self.opt['batchSize'],shuffle=False, num_workers=int(self.opt['workers'])); self.load_pretrain(); # self.train_cd = AverageValueMeter(); self.train_inv = AverageValueMeter(); self.valid_cd = AverageValueMeter(); self.valid_inv = AverageValueMeter(); self.optim = optim.Adam(self.net.parameters(),lr=self.opt['lr'],weight_decay=self.opt['weight_decay']); for group in self.optim.param_groups: group.setdefault('initial_lr', group['lr']); self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optim,40,eta_min=0,last_epoch=self.opt['last_epoch']); # self.train_loss_acc0 = 1e-9; self.train_loss_accs = 0; self.eval(); write_log(self.logtxt,self.valid_cd,self.valid_inv,self.valid_data,None,None,self.cnt); best_all.fill(self.opt['w']*self.valid_inv.avg+self.valid_cd.avg); best_cd.fill(self.valid_cd.avg) def eval(self): self.valid_cd.reset(); self.valid_inv.reset(); for item in self.valid_data.cat: self.valid_data.perCatValueMeter[item].reset(); self.net.eval(); for i, data in enumerate(self.valid_load, 0): img, points, cat, _, _ = data; if self.SVR: cd,inv = eval_svr(self.net,points,img); else: cd,inv = eval_ae(self.net,points); self.valid_cd.update(cd); self.valid_inv.update(inv); self.valid_data.perCatValueMeter[cat[0]].update(cd); print('[%d: %d/%d] val loss:%f ' %(self.cnt,i,len(self.valid_data)/self.opt['batchSize'],cd)); def train(self): self.lr_scheduler.step(); self.net.train() for i, data in enumerate(self.train_load, 0): img, points, cat, _ , _= data; if self.SVR: loss,cd,inv_err = train_svr(self.net,self.optim,self.train_cd,self.train_inv,points,img,self.opt); else: loss,cd,inv_err = train_ae(self.net,self.optim,self.train_cd,self.train_inv,points,self.opt); self.train_loss_accs = self.train_loss_accs * 0.99 + loss.data.cpu().numpy(); self.train_loss_acc0 = self.train_loss_acc0 * 0.99 + 1; print('[%d: %d/%d] train loss:%f,%f,%f/%f' %(self.cnt+self.opt['last_epoch'],i,len(self.train_data)//self.opt['batchSize'],cd.data.cpu().numpy(),inv_err.data.cpu().numpy(),loss.data.cpu().numpy(),self.train_loss_accs/self.train_loss_acc0)); def load_pretrain(self): if self.opt['model']!='': partial_restore(self.net,self.opt['model']); print("Previous weights loaded"); def step(self): if self.cnt == 0: return; self.train(); self.eval(); write_log(self.logtxt,self.valid_cd,self.valid_inv,self.valid_data,self.train_cd,self.train_inv,self.cnt+self.opt['last_epoch']); save_model(self.logtxt,self.tskdir,self.net,self.opt,self.valid_cd.avg,self.valid_cd.avg+self.opt['w']*self.valid_inv.avg); def createOptim(self): self.optim = optim.Adam(self.net.parameters(),lr = self.opt['lr'],weight_decay=self.opt['weight_decay']);
fc10885cc1c93b0fef9785b5f6bc9a544e6d5749
b943f725f8c6b20c277eb7b77e67689173bc0d1a
/simplemooc/core/urls.py
06bf7fc6d8d6aa47edc54cbee4a80a33837c89a1
[]
no_license
Akijunior/Eleanning
c4da62971735b5a6c18f0ee04758ac6db770c2a4
4b0e4c397b76a7839722b00f23ef3eb4f309d229
refs/heads/master
2020-08-19T05:14:57.581513
2019-10-21T15:33:36
2019-10-21T15:33:36
215,882,153
0
0
null
null
null
null
UTF-8
Python
false
false
119
py
from django.urls import path from simplemooc.core.views import home urlpatterns = [ path('', home, name='home'), ]
9b8ffd02c0680421820d9d17d7078ba7ee1365ba
ce8bb40bf2b688f19ab8bcc20cfd58994413bc0f
/ajax/ajax_mysite/app01/views.py
b372bd95be6a215aa5b89bd42d3acb0b23b5da03
[]
no_license
Fover21/project1
457f452d7f6e7ecbfc81a18512377ebc5457f3f6
84d596caf5701d7d76eee8c50f61bcb6150c57f2
refs/heads/master
2020-03-24T20:01:51.506348
2018-12-26T06:07:45
2018-12-26T06:07:45
142,955,917
2
0
null
null
null
null
UTF-8
Python
false
false
1,389
py
from django.shortcuts import render, HttpResponse, reverse, redirect # Create your views here. from django.views.decorators.csrf import csrf_exempt, csrf_protect @csrf_exempt # 排除 def login(request): return render(request, 'login.html') def index(request): i1, i2, i3 = '', '', '' if request.method == 'POST': i1 = int(request.POST.get('i1')) i2 = int(request.POST.get('i2')) i3 = i1 + i2 return render(request, 'index.html', { 'i1': i1, 'i2': i2, 'i3': i3, }) # from django.views.decorators.csrf import ensure_csrf_cookie 全局的第二中配置方法 # @csrf_exempt def calc(request): # csrfmiddlewaretoken = request.POST.get('csrfmiddlewaretoken') # print(csrfmiddlewaretoken) i1 = int(request.POST.get('i1')) i2 = int(request.POST.get('i2')) i3 = i1 + i2 print(request.POST) return HttpResponse(i3) # 上传 def upload(request): if request.method == "POST": print("FILES", request.FILES) file_obj = request.FILES.get("file") with open(file_obj.name, "wb") as f: for i in file_obj.chunks(): f.write(i) return HttpResponse("success!") # test def tt(request): if request.method == "POST": ret = reverse('uu') print(ret) return redirect(ret) return render(request, 'index.html')
525faba85baf47e70bd840eb6b17b29331739083
0c41031269497790425702d4ad882423dc443a6a
/pandas14/pandas14_9.py
ad0ca612be2e850e77d6d818f876fb6c53ce6255
[]
no_license
diegoami/datacamp-courses-PY
4c546e69241ca429adefdd459db92d617cfa0e9f
bab3082929fa6f1cf2fc2f2efb46d16374715b4b
refs/heads/master
2023-07-20T06:42:29.776349
2018-10-28T22:57:21
2018-10-28T22:57:21
92,448,198
0
0
null
null
null
null
UTF-8
Python
false
false
1,599
py
import pandas as pd # Load DataFrame from file_path: editions medals = pd.read_csv('../data/medals_2.csv') # Construct the pivot_table: medal_counts medal_counts = medals.pivot_table(index='Edition',values='Athlete',columns='NOC',aggfunc='count') # Load DataFrame from file_path: editions editions = pd.read_csv('../data/editions.csv') # Set Index of editions: totals totals = editions.set_index('Edition') # Reassign totals['Grand Total']: totals totals = totals['Grand Total'] # Divide medal_counts by totals: fractions fractions = medal_counts.divide( totals, axis = 'rows' ) # Apply the expanding mean: mean_fractions mean_fractions = fractions.expanding().mean() # Compute the percentage change: fractions_change fractions_change = mean_fractions.pct_change().multiply(100) # Reset the index of fractions_change: fractions_change fractions_change = fractions_change.reset_index() ioc_codes = pd.read_csv('../data/country_codes.csv') # Extract the relevant columns: ioc_codes ioc_codes = ioc_codes[['Country', 'NOC']] # Left join editions and ioc_codes: hosts hosts = pd.merge(editions,ioc_codes, how='left') # Extract relevant columns and set index: hosts hosts = hosts[['Edition','NOC']].set_index( 'Edition') # Reshape fractions_change: reshaped reshaped = pd.melt(fractions_change,id_vars='Edition', value_name='Change') # Print reshaped.shape and fractions_change.shape print(reshaped.shape, fractions_change.shape) # Extract rows from reshaped where 'NOC' == 'CHN': chn chn = reshaped.loc[reshaped['NOC'] == 'CHN'] # Print last 5 rows of chn with .tail() print(chn.tail())
15d215b500c6d26dbd37bfda3a9d73e8979c26aa
01af3f8a79453482febefe64d356a616abc08c1e
/backend/config/settings/production/third_party.py
c58e3e64fb67c81f95dfd14e878c6d18778211f4
[]
no_license
by-Exist/django-skeleton
0ea3dbc815cb8da8417ef0f64e304715b8e5b5dd
4848dd1074533b368015cdde943719114d001bcc
refs/heads/master
2023-06-12T12:52:09.216952
2021-07-12T08:48:09
2021-07-12T08:48:09
372,245,930
0
0
null
null
null
null
UTF-8
Python
false
false
1,638
py
from .django import * # Django Storage # ============================================================================= STATICFILES_STORAGE = "config.storages.StaticStorage" DEFAULT_FILE_STORAGE = "config.storages.MediaStorage" AWS_S3_REGION_NAME = "ewr1" # TODO: region, endpoint url도 environment로 관리해야 하지 않을까? AWS_S3_ENDPOINT_URL = f"https://{AWS_S3_REGION_NAME}.vultrobjects.com/" AWS_ACCESS_KEY_ID = env.str("DJANGO_STORAGE_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = env.str("DJANGO_STORAGE_SECRET_ACCESS_KEY") # Django REST Framework # ============================================================================= # https://www.django-rest-framework.org/api-guide/settings/ REST_FRAMEWORK[ "DEFAULT_VERSIONING_CLASS" ] = "rest_framework.versioning.URLPathVersioning" # DRF Spectacular # ============================================================================= # https://drf-spectacular.readthedocs.io/en/latest/settings.html SPECTACULAR_SETTINGS["TITLE"] = "Backend Production API" SPECTACULAR_SETTINGS["DESCRIPTION"] = "Backend Production api description..." SPECTACULAR_SETTINGS["VERSION"] = "0.0.1" # https://swagger.io/docs/open-source-tools/swagger-ui/usage/configuration/ SPECTACULAR_SETTINGS["SWAGGER_UI_SETTINGS"]["supportedSubmitMethods"] = [] # Django Cachalot # ============================================================================= # https://django-cachalot.readthedocs.io/en/latest/quickstart.html#settings INSTALLED_APPS += ["cachalot"] CACHES["cachalot"] = env.cache("DJANGO_CACHALOT_CACHE_URL") CACHALOT_CACHE = "cachalot" CACHALOT_UNCACHABLE_TABLES = ["django_migrations"]
bf8a6a3bbd710bdaa7611c6890907a61a0e9cce7
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_010/ch136_2020_04_01_12_09_01_220465.py
566b2a82eb758b3344edaf9b17037a14dee59e8d
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
import random dinheiro=10 dicas=True jogo=True chutes=True dado1=random.randint (1,6) dado2=random.randint (1,6) dado3=random.randint (1,6) soma=dado1+dado2+dado3 while dicas: print ("Fase de dicas") print ("Você tem {} dinheiros.".format (dinheiro)) if dinheiro==0: dicas=False chutes=False print ("Você perdeu o jogo!") else: pergunta=str(input("Você quer uma dica?")) if pergunta=="sim": dinheiro=dinheiro-1 dica1=int(input("Digite o primeiro número: ")) dica2=int(input("Digite o segundo número: ")) dica3=int(input("Digite o terceiro número: ")) if dica1==soma or dica2==soma or dica3==soma: print ("Está entre os três") else: print ("Não está entre os três") elif pergunta=="não": dicas=False while chutes: print ("Fase de chutes") print ("Você tem {} dinheiros.".format (dinheiro)) if dinheiro==0: print ("Você perdeu o jogo!") chutes=False else: chute=int(input("Chute um número: ")) if chute==soma: dinheiro=dinheiro + 5*dinheiro print ("Você acertou!") chutes=False print ("Você ganhou o jogo com {} dinheiros.".format (dinheiro)) else: print ("Você errou!") dinheiro=dinheiro-1 if dinheiro==0: print ("Você perdeu!") chutes=False
ca2e11ed3a29496a59aceae5171f893f340a43d0
c0caed81b5b3e1498cbca4c1627513c456908e38
/src/python/bindings/app/pyrosetta_toolkit/pyrosetta_toolkit.py
b9934a7edda6e3f28079e9c1f622ad02ca1c8a1e
[ "LicenseRef-scancode-other-permissive" ]
permissive
malaifa/source
5b34ac0a4e7777265b291fc824da8837ecc3ee84
fc0af245885de0fb82e0a1144422796a6674aeae
refs/heads/master
2021-01-19T22:10:22.942155
2017-04-19T14:13:07
2017-04-19T14:13:07
88,761,668
0
2
null
null
null
null
UTF-8
Python
false
false
11,387
py
#!/usr/bin/env python # (c) Copyright Rosetta Commons Member Institutions. # (c) This file is part of the Rosetta software suite and is made available under license. # (c) The Rosetta software is developed by the contributing members of the Rosetta Commons. # (c) For more information, see http://www.rosettacommons.org. Questions about this can be # (c) addressed to University of Washington UW TechTransfer, email: [email protected]. ## @file /GUIs/pyrosetta_toolkit/pyrosetta_toolkit.py ## @brief Main window for the toolkit. ## @author Jared Adolf-Bryfogle ([email protected]) #Rosetta Imports from rosetta import * import functools #Python Imports from os import listdir from os import getcwd from shutil import copy from os import remove from os import environ from os import path from os import system import glob import signal import sys #Append Python Path #p = os.path.split(os.path.abspath(__file__))[0] #p2 = p.split("/"); p2.pop() #sys.path.append("/".join(p2)); #Allows all Window_Modules to use Modules and the use of python GUIs from main GUI directory #Tk Imports from Tkinter import * from Tkinter import Frame as FrameTk import tkFileDialog import tkMessageBox import tkSimpleDialog import tkFont #Toolkit Imports from app.pyrosetta_toolkit.modules import tools from app.pyrosetta_toolkit.window_main.menu import * from app.pyrosetta_toolkit.window_main import global_variables from app.pyrosetta_toolkit.window_main.frames.InputFrame import InputFrame from app.pyrosetta_toolkit.window_main.frames.OutputFrame import OutputFrame from app.pyrosetta_toolkit.window_main.frames.QuickProtocolsFrame import QuickProtocolsFrame from app.pyrosetta_toolkit.window_main.frames.SimpleAnalysisFrame import SimpleAnalysisFrame from app.pyrosetta_toolkit.window_main.IO.GUIInput import GUIInput from app.pyrosetta_toolkit.window_main.IO.GUIOutput import GUIOutput from app.pyrosetta_toolkit.window_modules.pymol_integration.PyMOL import AdvancedPyMOL from app.pyrosetta_toolkit.window_modules.scorefunction.ScoreFxnControl import ScoreFxnControl from app.pyrosetta_toolkit.modules.Region import Region class main_window: def __init__(self): """ Initializes the main window. Sets common global variables. """ self._tk_ = Tk() self.pose = Pose() self.native_pose = Pose() self.current_directory = global_variables.current_directory = getcwd() self.toolkit_home = self.location()[0] self.DesignDic = dict() ### Init ### self._initialize_GUI() self._initialize_Frames() ### TextBox ### self.textbox_frame = Frame(self._tk_, bd=3, relief=GROOVE) outfont = tkFont.Font(family="Helvetica", size=11) self.output_textbox= Text(self.textbox_frame,wrap="word", height=8,width=113,font = outfont) self.output_scrollbar = Scrollbar(self.textbox_frame) self.output_textbox.configure(yscrollcommand = self.output_scrollbar.set) self.output_scrollbar.configure(command = self.output_textbox.yview) #self.old_stdout = sys.stdout #self.output_class.terminal_output.trace_variable('w', self.output_tracer) #self.output_class.terminal_output.set(0) self.input_class.options_manager.print_current_options() print "\nRegion Selection Tips: No regions added = Full structure selected. \nAdding Regions: For N-terminus omit start; For C-terminus omit end; For whole Chain omit start + end" print "For additional protocol options, please use the Option System Manager.\n" print "Please see RosettaCommons for full documentation and references for all protocols and tools utilized in the GUI\n" def quit(self): self._tk_.destroy() def _initialize_GUI(self): """ Creates object for the GUI """ #self.options_class = OptionSystemManager(global_variables.current_directory)Relocated to input_class self.input_class = GUIInput(self) self.output_class = GUIOutput(self) ####Sequence##### self.residue_string = StringVar() self.input_class.region_sequence.trace_variable('w', self.clear_num_string_on_new_input) self.sequence_output = Entry(self._tk_, textvariable = self.input_class.region_sequence) #self.sequence_output.bind('<FocusIn>', self.print_numbering) self.sequence_output.bind('<ButtonRelease-1>', self.print_numbering) self.sequence_output.bind('<KeyRelease>', self.print_numbering) self.seq_scroll = Scrollbar(self._tk_, orient=HORIZONTAL, command=self.__scrollHandler) self.num_label = Label(self._tk_, textvariable = self.residue_string, justify=CENTER) ####Sequence##### self.score_class = ScoreFxnControl(); #Main Score Function Object. Holds Score. Controls switching scorefunctions, etc. self.pymol_class = AdvancedPyMOL(self.pose); #PyMOL Object for advanced visualization. def clear_num_string_on_new_input(self, name, index, mode): self.residue_string.set("") self.input_class.set_residue_of_interest("", "", "") def print_numbering(self, event): if not self.pose.total_residue():return #print self.sequence_output.index(INSERT) rosetta_num=0 pdb_num="" if self.pose.total_residue()==len(self.input_class.region_sequence.get()): rosetta_num = 1+self.sequence_output.index(INSERT) try: pdb_num = self.pose.pdb_info().pose2pdb(rosetta_num) except PyRosettaException: #Catches the the LAST index return #print self.num_string else: region = self.input_frame.return_region_from_entry() rosetta_num = region.get_rosetta_start(self.pose)+self.sequence_output.index(INSERT) try: pdb_num = self.pose.pdb_info().pose2pdb(rosetta_num) except PyRosettaException: return pdbSP = pdb_num.split() self.input_class.set_residue_of_interest(pdbSP[0], pdbSP[1], repr(rosetta_num)) self.input_class.residue_string.set(pdb_num+' - '+repr(rosetta_num)) self.residue_string.set(pdb_num+' - '+repr(rosetta_num)) self.input_class.residue_rosetta_resnum.set(repr(rosetta_num)) if self.pymol_class.auto_send_residue_colors.get(): self.pymol_class.color_residue(int(rosetta_num)) #self.fullcontrol_class.shoInfo(pdbSP[0], pdbSP[1]) def __scrollHandler(self, *L): """ Handles scrolling of entry. CODE: http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/entry-scrolling.html """ try: op, howMany = L[0], L[1] except IndexError: return if op =='scroll': units = L[2] self.sequence_output.xview_scroll(howMany, units) elif op=='moveto': self.sequence_output.xview_moveto(howMany) def _initialize_Frames(self): """ Creates the Frame Objects that will go in the main window """ self.input_frame = InputFrame(self._tk_, self, self.input_class, bd=1, relief=SUNKEN) self.output_frame = OutputFrame(self._tk_, self, self.output_class, bd=1, relief = SUNKEN) self.protocol_frame = QuickProtocolsFrame(self._tk_, self, self.output_class, bd=1, relief=SUNKEN) self.simple_analysis_frame = SimpleAnalysisFrame(self._tk_, self, bd=2, relief=SUNKEN) self.menu_class = Menus(self._tk_, self) def show_gui(self): """ Shows each piece of the main GUI. Does not do anything with the Window Modules, just each individual main component of the main window. These Inhereit from the Frame class. See one of these for an example. Window Modules should be initialized through the Menus class in /window_main/menu.py """ #6x4 Grid Pain in the ass. At some point, everything will move to Qt - Either in Python or C++ #Grid: self.menu_class.setTk(); self.menu_class.shoTk() self.input_frame.grid(row=1, column=0, rowspan=7, padx=15, pady=15); self.output_frame.grid(row=0, column=1, rowspan=2, pady=3); self.protocol_frame.grid(row=3, column=1, rowspan=4, padx=5) self.simple_analysis_frame.grid(row=0, column=0, padx=5, pady=5) ### Text Output ### self.num_label.grid(column=0, row=8, columnspan=2, pady=2, padx=2) self.seq_scroll.grid(column=0, row=9, columnspan=3, sticky=W+E) self.sequence_output.grid(column=0, row=10, columnspan=3, sticky=W+E) self.sequence_output['xscrollcommand']=self.seq_scroll.set self.output_textbox.grid(column=0, row = 11, rowspan=2, columnspan=3,sticky=W+E) self.output_scrollbar.grid(column=3, row=11, rowspan=2, sticky=E+N+S) self.textbox_frame.grid(column=0, row=11, rowspan=2, columnspan=3, sticky=W+E, pady=3, padx=6) #self.Photo.grid(row = 0, column = 2, rowspan=4) """ #Pack: self.menu_class.setTk(); self.menu_class.shoTk() self.input_class.pack(side=LEFT, padx=3, pady=3) self.output_class.pack(padx=3, pady=3) self.simple_analysis_frame.pack(padx=3, pady=3) self.protocol_frame.pack(padx=3, pady=3) #self.output_textbox.pack(side=BOTTOM, padx=3, pady=3) #self.output_frame.pack(side=BOTTOM, padx=3, pady=3) """ def run(self, run_event_loop=True): self._tk_.title("PyRosetta Toolkit") self.show_gui() self._tk_.grid_columnconfigure(ALL, weight=1) #self._tk_.grid_rowconfigure(ALL, weight=1) if run_event_loop: self._tk_.mainloop() def redirect_stdout_to_textbox(self): print "Redirect stdout to textbox" sys.stdout = self; #Set stdout to be redirected to textbox using the write function override. def redirect_stdout_to_default(self): print "Redirect stdout to default" sys.stdout = self.old_stdout def write(self, text): self.output_textbox.insert(END, text) self.output_textbox.yview(END) def output_tracer(self, name, index, mode): """ Controls where stdout goes. Textbox or Terminal. Does not override Tracer for now. """ varvalue = self.output_class.terminal_output.get() if (varvalue): self.redirect_stdout_to_default() else: self.redirect_stdout_to_textbox() def location(self): """ Allows the script to be self-aware of it's path. So that it can be imported/ran from anywhere. """ p = os.path.abspath(__file__) pathSP = os.path.split(p) return pathSP class MainTracer(rosetta.basic.PyTracer): def __init__(self, textbox): rosetta.basic.PyTracer.__init__(self) self.textbox = textbox def output_callback(self, s): pass #s = " "+s #self.textbox.insert(END, s) #print s if __name__ == '__main__': rosetta.init() main_window_class = main_window() #main_window_class.TR = MainTracer(main_window_class.output_textbox) #rosetta.basic.Tracer.set_ios_hook(main_window_class.TR, rosetta.basic.Tracer.get_all_channels_string(), False) #rosetta.init(extra_options="-mute all") main_window_class.run()
69024abc125c1c0fbb26411947e1976dc81fb6e6
1f41b828fb652795482cdeaac1a877e2f19c252a
/maya_menus/_MAINMENU_PMC_Rigging/05.Put Object-(RP[N])/03.Put Controller/18.sidePin.py
e9ed02aaea8fe1c13e224651d6f47fb6657f251a
[]
no_license
jonntd/mayadev-1
e315efe582ea433dcf18d7f1e900920f5590b293
f76aeecb592df766d05a4e10fa2c2496f0310ca4
refs/heads/master
2021-05-02T07:16:17.941007
2018-02-05T03:55:12
2018-02-05T03:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from sgMaya import sgModel, sgCmds sels = cmds.ls( sl=1 ) if not sels: sels = [None] for sel in sels: sgCmds.putControllerToGeo( sel, sgModel.Controller.sidePinPoints )
22b95182bd9050b6d8dbb6cfd970e83489eff911
477c8309420eb102b8073ce067d8df0afc5a79b1
/Applications/ParaView/Testing/Python/DisconnectAndSaveAnimation.py
f9f080edafa9f6c87116a65800627d5c41831290
[ "LicenseRef-scancode-paraview-1.2" ]
permissive
aashish24/paraview-climate-3.11.1
e0058124e9492b7adfcb70fa2a8c96419297fbe6
c8ea429f56c10059dfa4450238b8f5bac3208d3a
refs/heads/uvcdat-master
2021-07-03T11:16:20.129505
2013-05-10T13:14:30
2013-05-10T13:14:30
4,238,077
1
0
NOASSERTION
2020-10-12T21:28:23
2012-05-06T02:32:44
C++
UTF-8
Python
false
false
3,862
py
#/usr/bin/env python import QtTesting import QtTestingImage object1 = 'pqClientMainWindow/menubar/menuSources' QtTesting.playCommand(object1, 'activate', 'SphereSource') object2 = 'pqClientMainWindow/proxyTabDock/proxyTabWidget/qt_tabwidget_stackedwidget/objectInspector/Accept' QtTesting.playCommand(object2, 'activate', '') object3 = 'pqClientMainWindow/centralwidget/MultiViewManager/SplitterFrame/MultiViewSplitter/0/MultiViewFrameMenu/SplitVerticalButton' QtTesting.playCommand(object3, 'activate', '') QtTesting.playCommand(object1, 'activate', 'SphereSource') object4 = 'pqClientMainWindow/proxyTabDock/proxyTabWidget/qt_tabwidget_stackedwidget/objectInspector/ScrollArea/qt_scrollarea_viewport/PanelArea/Editor/Center_0' QtTesting.playCommand(object4, 'set_string', '1') QtTesting.playCommand(object2, 'activate', '') object5 = 'pqClientMainWindow/pipelineBrowserDock/pipelineBrowser' QtTesting.playCommand(object5, 'currentChanged', '/0/0|0') object6 = 'pqClientMainWindow/proxyTabDock/proxyTabWidget/qt_tabwidget_tabbar' QtTesting.playCommand(object6, 'set_tab', '1') object7 = 'pqClientMainWindow/proxyTabDock/proxyTabWidget/qt_tabwidget_stackedwidget/1QScrollArea0/qt_scrollarea_viewport/1pqDisplayProxyEditorWidget0/Form/ViewGroup/ViewData' QtTesting.playCommand(object7, 'set_boolean', 'true') object8 = 'pqClientMainWindow/menubar' QtTesting.playCommand(object8, 'activate', 'menu_View') object8 = 'pqClientMainWindow/menubar/menu_View' QtTesting.playCommand(object8, 'activate', 'Animation View') object9 = 'pqClientMainWindow/animationViewDock/animationView/pqAnimationWidget/CreateDeleteWidget/PropertyCombo' QtTesting.playCommand(object9, 'set_string', 'Start Theta') object10 = "pqClientMainWindow/animationViewDock/animationView/1pqAnimationWidget0/1QHeaderView0" QtTesting.playCommand(object10, "mousePress", "1,1,0,0,0,2") QtTesting.playCommand(object10, "mouseRelease", "1,1,0,0,0,2") object11 = 'pqClientMainWindow/VCRToolbar/1QToolButton3' QtTesting.playCommand(object11, 'activate', '') QtTesting.playCommand(object11, 'activate', '') object12 = 'pqClientMainWindow/menubar/menu_File' QtTesting.playCommand(object12, 'activate', '') QtTesting.playCommand(object12, 'activate', 'actionFileSaveAnimation') object13 = 'pqAnimationSettingsDialog/checkBoxDisconnect' QtTesting.playCommand(object13, 'set_boolean', 'true') object14 = 'pqAnimationSettingsDialog/width' QtTesting.playCommand(object14, 'set_string', '300') object14 = 'pqAnimationSettingsDialog/height' QtTesting.playCommand(object14, 'set_string', '300') object15 = 'pqAnimationSettingsDialog/okButton' QtTesting.playCommand(object15, 'activate', '') object16 = 'pqClientMainWindow/FileSaveAnimationDialog' # Remove old files. QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0000.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0001.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0002.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0003.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0004.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0005.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0006.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0007.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0008.png') QtTesting.playCommand(object16, 'remove', '$PARAVIEW_TEST_ROOT/disconnectSave.0009.png') QtTesting.playCommand(object16, 'filesSelected', '$PARAVIEW_TEST_ROOT/disconnectSave.png') import time print "Wait for 60 secs" time.sleep(60); QtTestingImage.compareImage('$PARAVIEW_TEST_ROOT/disconnectSave.0005.png', 'DisconnectAndSaveAnimation.png');
be33d28852484275819ace98b621bc01decf9381
985a874c832d7632e287f2185b18aaf2e1b42018
/dtcwt_gainlayer/layers/nonlinear.py
f3f2b274c311342e0a0b16400783156a896a9a06
[ "MIT" ]
permissive
fbcotter/dtcwt_gainlayer
e2ea03ccfe8ad4f903b59846c1c902391c66b227
32ec3e21066edc2a0d5edefaf70f43d031d1b4ac
refs/heads/master
2023-03-28T13:08:37.919222
2019-08-20T09:05:46
2019-08-20T09:05:46
157,608,716
6
1
null
null
null
null
UTF-8
Python
false
false
5,276
py
import torch import torch.nn as nn import torch.nn.functional as func from dtcwt_gainlayer.layers.shrink import SparsifyWaveCoeffs_std, mag, SoftShrink class PassThrough(nn.Module): def forward(self, x): return x class WaveNonLinearity(nn.Module): """ Performs a wavelet-based nonlinearity. Args: C (int): Number of input channels. Some of the nonlinearities have batch norm, so need to know this. lp (str): Nonlinearity to use for the lowpass coefficients bp (list(str)): Nonlinearity to use for the bandpass coefficients. lp_q (float): Quantile value for sparsity threshold for lowpass. 1 keeps all coefficients and 0 keeps none. Only valid if lp is 'softshrink_std' or 'hardshrink_std'. See :class:`SparsifyWaveCoeffs_std`. bp_q (float): Quantile value for sparsity threshold for bandpass coefficients. Only valid if bp is 'softshrink_std' or 'hardshrink_std'. The options for the lowpass are: - none - relu (as you'd expect) - relu2 - applies batch norm + relu - softshrink - applies soft shrinkage with a learnable threshold - hardshrink_std - applies hard shrinkage. The 'std' implies that it tracks the standard deviation of the activations, and sets a threshold attempting to reach a desired sparsity level. This assumes that the lowpass coefficients follow a laplacian distribution. See :class:`dtcwt_gainlayer.layers.shrink.SparsifyWaveCoeffs_std`. - softshrink_std - same as hardshrink std except uses soft shrinkage. The options for the bandpass are: - none - relu (applied indepently to the real and imaginary components) - relu2 - applies batch norm + relu to the magnitude of the bandpass coefficients - softshrink - applies shoft shrinkage to the magnitude of the bp coefficietns with a learnable threshold - hardshrink_std - applies hard shrinkage by tracking the standard deviation. Assumes the bp distributions follow an exponential distribution. See :class:`dtcwt_gainlayer.layers.shrink.SparsifyWaveCoeffs_std`. - softshrink_std - same as hardshrink_std but with soft shrinkage. """ def __init__(self, C, lp=None, bp=(None,), lp_q=0.8, bp_q=0.8): super().__init__() if lp is None or lp == 'none': self.lp = PassThrough() elif lp == 'relu': self.lp = nn.ReLU() elif lp == 'relu2': self.lp = BNReLUWaveCoeffs(C, bp=False) elif lp == 'softshrink': self.lp = SoftShrink(C, complex=False) elif lp == 'hardshrink_std': self.lp = SparsifyWaveCoeffs_std(C, lp_q, bp=False, soft=False) elif lp == 'softshrink_std': self.lp = SparsifyWaveCoeffs_std(C, lp_q, bp=False, soft=True) else: raise ValueError("Unkown nonlinearity {}".format(lp)) fs = [] for b in bp: if b is None or b == 'none': f = PassThrough() elif b == 'relu': f = nn.ReLU() elif b == 'relu2': f = BNReLUWaveCoeffs(C, bp=True) elif b == 'softshrink': f = SoftShrink(C, complex=True) elif b == 'hardshrink_std': f = SparsifyWaveCoeffs_std(C, bp_q, bp=True, soft=False) elif b == 'softshrink_std': f = SparsifyWaveCoeffs_std(C, bp_q, bp=True, soft=True) else: raise ValueError("Unkown nonlinearity {}".format(lp)) fs.append(f) self.bp = nn.ModuleList(fs) def forward(self, x): """ Applies the selected lowpass and bandpass nonlinearities to the input x. Args: x (tuple): tuple of (lowpass, bandpasses) Returns: y (tuple): tuple of (lowpass, bandpasses) """ yl, yh = x yl = self.lp(yl) yh = [bp(y) if y.shape != torch.Size([0]) else y for bp, y in zip(self.bp, yh)] return (yl, yh) class BNReLUWaveCoeffs(nn.Module): """ Applies batch normalization followed by a relu Args: C (int): number of channels bp (bool): If true, applies bn+relu to the magnitude of the bandpass coefficients. If false, is applying bn+relu to the lowpass coeffs. """ def __init__(self, C, bp=True): super().__init__() self.bp = bp if bp: self.BN = nn.BatchNorm2d(6*C) else: self.BN = nn.BatchNorm2d(C) self.ReLU = nn.ReLU() def forward(self, x): """ Applies nonlinearity to the input x """ if self.bp: s = x.shape # Move the orientation dimension to the channel x = x.view(s[0], s[1]*s[2], s[3], s[4], s[5]) θ = torch.atan2(x.data[..., 1], x.data[..., 0]) r = mag(x, complex=True) r_new = self.ReLU(self.BN(r)) y = torch.stack((r_new * torch.cos(θ), r_new * torch.sin(θ)), dim=-1) # Reshape to a 6D tensor again y = y.view(s[0], s[1], s[2], s[3], s[4], s[5]) else: y = self.ReLU(self.BN(x)) return y
34a5496edaf78c200fe0a67006564fb6d0ff9b2b
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli-core/azure/cli/core/tests/test_aaz_paging.py
2ec14f790d3d6bce17f38400edfd9df57904a7dc
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
3,855
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from azure.cli.core.aaz import AAZUndefined from azure.cli.core.aaz._paging import AAZPaged, AAZPageIterator from azure.cli.core.mock import DummyCli class TestAAZPaging(unittest.TestCase): def test_aaz_paging_sample(self): data_by_pages = [(['a', 'b', 'c'], 1), (['d', 'e'], 2), (['f'], 3), (['g', 'h'], AAZUndefined)] result = { "value": AAZUndefined, "next_link": AAZUndefined, } def executor(next_link): if next_link is None: next_link = 0 value, next_link = data_by_pages[next_link] result["value"] = value result['next_link'] = next_link def extract_result(): return result['value'], result['next_link'] paged = AAZPaged(executor=executor, extract_result=extract_result, cli_ctx=DummyCli()) self.assertTrue(list(paged) == ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) def test_aaz_paging_with_limit_and_token(self): data_by_pages = [ (["a", "b", "c"], 1), (["d", "e"], 2), (["f"], 3), (["g", "h"], AAZUndefined) ] result = { "value": AAZUndefined, "next_link": AAZUndefined } def executor(next_link): if next_link is None: next_link = 0 value, next_link = data_by_pages[next_link] result["value"] = value result["next_link"] = next_link def extract_result(): return result["value"], result["next_link"] next_token = '{"next_link": 1, "offset": 1}' paged = AAZPaged( executor=executor, extract_result=extract_result, cli_ctx=DummyCli(), token=next_token, limit=4 ) self.assertTrue(list(paged) == ["e", "f", "g", "h"]) def test_aaz_paging_iterator(self): data_by_pages = [ (["a", "b", "c"], 1), (["d", "e"], 2), (["f"], 3), (["g", "h"], AAZUndefined) ] result = { "value": AAZUndefined, "next_link": AAZUndefined } def executor(next_link): if next_link is None: next_link = 0 value, next_link = data_by_pages[next_link] result["value"] = value result["next_link"] = next_link def extract_result(): return result["value"], result["next_link"] page_iterator = AAZPageIterator( executor=executor, extract_result=extract_result, cli_ctx=DummyCli(), next_link=1, offset=1, limit=4 ) # | a b c | d e | f | g h | # * self.assertTrue(page_iterator._next_link == 1) self.assertTrue(page_iterator._start == 1) # offset self.assertTrue(page_iterator._total == 5) # | a b c | d e | f | g h | # * next(page_iterator) self.assertTrue(page_iterator._next_link == 2) self.assertTrue(page_iterator._total == 3) # | a b c | d e | f | g h | # * next(page_iterator) self.assertTrue(page_iterator._next_link == 3) self.assertTrue(page_iterator._total == 2) # | a b c | d e | f | g h | # * next(page_iterator) self.assertTrue(page_iterator._next_link == AAZUndefined) self.assertTrue(page_iterator._total == 0)
2a43d736e2b0bed80741d6dc401155c5fb685570
374aac5655cbdead72683a5e8b6e02126a024768
/tests/test_sqlalchemy.py
b05d87ce415b1c3218592d47c7af99354879f0b8
[ "MIT" ]
permissive
naveenkumar-grofers/nplusone
0f51179a5a4aa717ea2b537bfa1a8e07af568ebb
2bcf727a73c05afa01a020993997a6a60778b872
refs/heads/master
2021-01-24T21:54:08.390445
2015-11-15T16:52:42
2015-11-15T16:52:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,041
py
# -*- coding: utf-8 -*- import pytest import sqlalchemy as sa from sqlalchemy.ext.declarative import declarative_base from nplusone.core import signals import nplusone.ext.sqlalchemy # noqa from tests import utils from tests.utils import calls # noqa pytest.yield_fixture(calls) Base = declarative_base() models = utils.make_models(Base) @pytest.fixture() def session(): engine = sa.create_engine('sqlite:///:memory:') Session = sa.orm.sessionmaker(bind=engine) Base.metadata.create_all(bind=engine) return Session() @pytest.fixture() def objects(session): hobby = models.Hobby() address = models.Address() user = models.User(addresses=[address], hobbies=[hobby]) session.add(user) session.commit() session.close() class TestManyToOne: def test_many_to_one(self, session, objects, calls): user = session.query(models.User).first() user.addresses assert len(calls) == 1 call = calls[0] assert call.objects == (models.User, 'addresses') assert 'user.addresses' in ''.join(call.frame[4]) def test_many_to_one_ignore(self, session, objects, calls): user = session.query(models.User).first() with signals.ignore(signals.lazy_load): user.addresses assert len(calls) == 0 def test_many_to_one_subquery(self, session, objects, calls): user = session.query( models.User ).options( sa.orm.subqueryload('addresses') ).first() user.addresses assert len(calls) == 0 def test_many_to_one_joined(self, session, objects, calls): user = session.query(models.User).options(sa.orm.joinedload('addresses')).first() user.addresses assert len(calls) == 0 def test_many_to_one_reverse(self, session, objects, calls): address = session.query(models.Address).first() address.user assert len(calls) == 1 call = calls[0] assert call.objects == (models.Address, 'user') assert 'address.user' in ''.join(call.frame[4]) def test_many_to_one_reverse_subquery(self, session, objects, calls): address = session.query( models.Address ).options( sa.orm.subqueryload('user') ).first() address.user assert len(calls) == 0 def test_many_to_one_reverse_joined(self, session, objects, calls): address = session.query(models.Address).options(sa.orm.joinedload('user')).first() address.user assert len(calls) == 0 class TestManyToMany: def test_many_to_many(self, session, objects, calls): user = session.query(models.User).first() user.hobbies assert len(calls) == 1 call = calls[0] assert call.objects == (models.User, 'hobbies') assert 'user.hobbies' in ''.join(call.frame[4]) def test_many_to_many_subquery(self, session, objects, calls): user = session.query(models.User).options(sa.orm.subqueryload('hobbies')).first() user.hobbies assert len(calls) == 0 def test_many_to_many_joined(self, session, objects, calls): user = session.query(models.User).options(sa.orm.joinedload('hobbies')).first() user.hobbies assert len(calls) == 0 def test_many_to_many_reverse(self, session, objects, calls): hobby = session.query(models.Hobby).first() hobby.users assert len(calls) == 1 call = calls[0] assert call.objects == (models.Hobby, 'users') assert 'hobby.users' in ''.join(call.frame[4]) def test_many_to_many_reverse_subquery(self, session, objects, calls): hobby = session.query(models.Hobby).options(sa.orm.subqueryload('users')).first() hobby.users assert len(calls) == 0 def test_many_to_many_reverse_joined(self, session, objects, calls): hobby = session.query(models.Hobby).options(sa.orm.joinedload('users')).first() hobby.users assert len(calls) == 0
f41d0214026ead1d8003886b6a76d15d7f9fd2d8
29c3595a4e1f8de9382650610aee5a13e2a135f6
/venv/Lib/site-packages/django/db/utils.py
28afa6cd076757b79702b2aab41a1cc2382588ba
[ "MIT" ]
permissive
zoelesv/Smathchat
1515fa56fbb0ad47e1859f6bf931b772446ea261
5cee0a8c4180a3108538b4e4ce945a18726595a6
refs/heads/main
2023-08-04T14:47:21.185149
2023-08-02T15:53:20
2023-08-02T15:53:20
364,627,392
9
1
MIT
2023-08-02T15:53:21
2021-05-05T15:42:47
Python
UTF-8
Python
false
false
10,398
py
import pkgutil from importlib import import_module from pathlib import Path from asgiref.local import Local from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.functional import cached_property from django.utils.module_loading import import_string DEFAULT_DB_ALIAS = 'default' DJANGO_VERSION_PICKLE_KEY = '_django_version' class Error(Exception): pass class InterfaceError(Error): pass class DatabaseError(Error): pass class DataError(DatabaseError): pass class OperationalError(DatabaseError): pass class IntegrityError(DatabaseError): pass class InternalError(DatabaseError): pass class ProgrammingError(DatabaseError): pass class NotSupportedError(DatabaseError): pass class DatabaseErrorWrapper: """ Context manager and decorator that reraises backend-specific database exceptions using Django's common wrappers. """ def __init__(self, wrapper): """ wrapper is a database wrapper. It must have a Database attribute defining PEP-249 exceptions. """ self.wrapper = wrapper def __enter__(self): pass def __exit__(self, exc_type, exc_value, traceback): if exc_type is None: return for dj_exc_type in ( DataError, OperationalError, IntegrityError, InternalError, ProgrammingError, NotSupportedError, DatabaseError, InterfaceError, Error, ): db_exc_type = getattr(self.wrapper.Database, dj_exc_type.__name__) if issubclass(exc_type, db_exc_type): dj_exc_value = dj_exc_type(*exc_value.args) # Only set the 'errors_occurred' flag for errors that may make # the connection unusable. if dj_exc_type not in (DataError, IntegrityError): self.wrapper.errors_occurred = True raise dj_exc_value.with_traceback(traceback) from exc_value def __call__(self, func): # Note that we are intentionally not using @wraps here for performance # reasons. Refs #21109. def inner(*args, **kwargs): with self: return func(*args, **kwargs) return inner def load_backend(backend_name): """ Return a database backend's "base" module given a fully qualified database backend name, or raise an error if it doesn't exist. """ # This backend was renamed in Django 1.9. if backend_name == 'django.db.backends.postgresql_psycopg2': backend_name = 'django.db.backends.postgresql' try: return import_module('%s.base' % backend_name) except ImportError as e_user: # The database backend wasn't found. Display a helpful error message # listing all built-in database backends. backend_dir = str(Path(__file__).parent / 'backends') builtin_backends = [ name for _, name, ispkg in pkgutil.iter_modules([backend_dir]) if ispkg and name not in {'base', 'dummy', 'postgresql_psycopg2'} ] if backend_name not in ['django.db.backends.%s' % b for b in builtin_backends]: backend_reprs = map(repr, sorted(builtin_backends)) raise ImproperlyConfigured( "%r isn't an available database backend.\n" "Try using 'django.db.backends.XXX', where XXX is one of:\n" " %s" % (backend_name, ", ".join(backend_reprs)) ) from e_user else: # If there's some other error, this must be an error in Django raise class ConnectionDoesNotExist(Exception): pass class ConnectionHandler: def __init__(self, databases=None): """ databases is an optional dictionary of database definitions (structured like settings.DATABASES). """ self._databases = databases # Connections needs to still be an actual thread local, as it's truly # thread-critical. Database backends should use @async_unsafe to protect # their code from async contexts, but this will give those contexts # separate connections in case it's needed as well. There's no cleanup # after async contexts, though, so we don't allow that if we can help it. self._connections = Local(thread_critical=True) @cached_property def databases(self): if self._databases is None: self._databases = settings.DATABASES if self._databases == {}: self._databases = { DEFAULT_DB_ALIAS: { 'ENGINE': 'django.db.backends.dummy', }, } if DEFAULT_DB_ALIAS not in self._databases: raise ImproperlyConfigured("You must define a '%s' database." % DEFAULT_DB_ALIAS) if self._databases[DEFAULT_DB_ALIAS] == {}: self._databases[DEFAULT_DB_ALIAS]['ENGINE'] = 'django.db.backends.dummy' return self._databases def ensure_defaults(self, alias): """ Put the defaults into the settings dictionary for a given connection where no settings is provided. """ try: conn = self.databases[alias] except KeyError: raise ConnectionDoesNotExist("The connection %s doesn't exist" % alias) conn.setdefault('ATOMIC_REQUESTS', False) conn.setdefault('AUTOCOMMIT', True) conn.setdefault('ENGINE', 'django.db.backends.dummy') if conn['ENGINE'] == 'django.db.backends.' or not conn['ENGINE']: conn['ENGINE'] = 'django.db.backends.dummy' conn.setdefault('CONN_MAX_AGE', 0) conn.setdefault('OPTIONS', {}) conn.setdefault('TIME_ZONE', None) for setting in ['NAME', 'USER', 'PASSWORD', 'HOST', 'PORT']: conn.setdefault(setting, '') def prepare_test_settings(self, alias): """ Make sure the test settings are available in the 'TEST' sub-dictionary. """ try: conn = self.databases[alias] except KeyError: raise ConnectionDoesNotExist("The connection %s doesn't exist" % alias) test_settings = conn.setdefault('TEST', {}) default_test_settings = [ ('CHARSET', None), ('COLLATION', None), ('MIGRATE', True), ('MIRROR', None), ('NAME', None), ] for key, value in default_test_settings: test_settings.setdefault(key, value) def __getitem__(self, alias): if hasattr(self._connections, alias): return getattr(self._connections, alias) self.ensure_defaults(alias) self.prepare_test_settings(alias) db = self.databases[alias] backend = load_backend(db['ENGINE']) conn = backend.DatabaseWrapper(db, alias) setattr(self._connections, alias, conn) return conn def __setitem__(self, key, value): setattr(self._connections, key, value) def __delitem__(self, key): delattr(self._connections, key) def __iter__(self): return iter(self.databases) def all(self): return [self[alias] for alias in self] def close_all(self): for alias in self: try: connection = getattr(self._connections, alias) except AttributeError: continue connection.close() class ConnectionRouter: def __init__(self, routers=None): """ If routers is not specified, default to settings.DATABASE_ROUTERS. """ self._routers = routers @cached_property def routers(self): if self._routers is None: self._routers = settings.DATABASE_ROUTERS routers = [] for r in self._routers: if isinstance(r, str): router = import_string(r)() else: router = r routers.append(router) return routers def _router_func(action): def _route_db(self, model, **hints): chosen_db = None for router in self.routers: try: method = getattr(router, action) except AttributeError: # If the router doesn't have a method, skip to the next one. pass else: chosen_db = method(model, **hints) if chosen_db: return chosen_db instance = hints.get('instance') if instance is not None and instance._state.db: return instance._state.db return DEFAULT_DB_ALIAS return _route_db db_for_read = _router_func('db_for_read') db_for_write = _router_func('db_for_write') def allow_relation(self, obj1, obj2, **hints): for router in self.routers: try: method = router.allow_relation except AttributeError: # If the router doesn't have a method, skip to the next one. pass else: allow = method(obj1, obj2, **hints) if allow is not None: return allow return obj1._state.db == obj2._state.db def allow_migrate(self, db, app_label, **hints): for router in self.routers: try: method = router.allow_migrate except AttributeError: # If the router doesn't have a method, skip to the next one. continue allow = method(db, app_label, **hints) if allow is not None: return allow return True def allow_migrate_model(self, db, model): return self.allow_migrate( db, model._meta.app_label, model_name=model._meta.model_name, model=model, ) def get_migratable_models(self, app_config, db, include_auto_created=False): """Return app models allowed to be migrated on provided db.""" models = app_config.get_models(include_auto_created=include_auto_created) return [model for model in models if self.allow_migrate_model(db, model)]
8a3441b439ae0c781ace3ba8281fe64a57450d67
b550eda62179ffd8e49a59df7f8a30163140204f
/backend/openshift-old/services/user/service/model/user.py
72451f8834453939723096891846cc39a7ccf1a3
[ "Apache-2.0" ]
permissive
bgoesswe/openeo-repeatability
6222fb235b70fda9da998b63fec92c0e5ac07169
087b9965e710d16cd6f29cb25e2cb94e443c2b30
refs/heads/master
2022-12-11T03:43:35.365574
2018-08-07T20:02:02
2018-08-07T20:02:02
139,158,921
0
1
null
2022-12-08T02:15:15
2018-06-29T14:27:34
Python
UTF-8
Python
false
false
2,121
py
''' Model of User ''' import jwt import datetime from flask import current_app from service import DB, BCRYPT class User(DB.Model): __tablename__ = "users" id = DB.Column(DB.Integer, primary_key=True, autoincrement=True) # Umbennen in uid username = DB.Column(DB.String(128), unique=True, nullable=False) email = DB.Column(DB.String(128), unique=True, nullable=False) password = DB.Column(DB.String(255), nullable=False) admin = DB.Column(DB.Boolean, default=False, nullable=False) active = DB.Column(DB.Boolean, default=True, nullable=False) created_at = DB.Column(DB.DateTime, nullable=False) def __init__(self, username, email, password, created_at=datetime.datetime.utcnow(), admin=False): self.username = username self.email = email self.password = self.generate_hash(password) self.admin = admin self.created_at = created_at def get_dict(self): ''' Returns the users data ''' return { "id": self.id, "username": self.username, "email": self.email, "admin": self.admin, "created_at": self.created_at } @staticmethod def generate_hash(password): ''' Generates the password hash ''' return BCRYPT.generate_password_hash(password, current_app.config.get('BCRYPT_LOG_ROUNDS')).decode() @staticmethod def encode_auth_token(user_id): ''' Generates the auth token ''' payload = { 'exp': datetime.datetime.utcnow() + datetime.timedelta( days=current_app.config.get('TOKEN_EXPIRATION_DAYS'), seconds=current_app.config.get('TOKEN_EXPIRATION_SECONDS') ), 'iat': datetime.datetime.utcnow(), 'sub': user_id } return jwt.encode(payload, current_app.config.get('SECRET_BCRYPT'), algorithm='HS256') @staticmethod def decode_auth_token(auth_token): ''' Decodes the auth token ''' payload = jwt.decode(auth_token, current_app.config.get('SECRET_BCRYPT')) return payload['sub']
2db80125614126b1bda5dac81b52721288060e5e
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/D/dasfaha/get_imdb_movie_rating.py
4f8bab114f20f4b7fedaa3cbfb02a591f9fa6362
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,532
py
import lxml.html import scraperwiki #Ge the data html = scraperwiki.scrape("http://www.imdb.com/title/tt2103264/") #The request to IMDB returns plain text so the line below processes this text and turns it into a format that can be queried root = lxml.html.fromstring(html) #The rating of a movie is within a div with class: "titlePageSprite star-box-giga-star" like this: # #<div class="titlePageSprite star-box-giga-star"> # 7.7 #</div> # #Use CSS selector to get the div html element that has class="titlePageSprite" el = root.cssselect("div.titlePageSprite") #el is a list as there could be several div elements with the same class. In our case we know there is only one div with that class print "Number of elements in el: {0}".format(len(el)) #Create a python 'dictionary' to store the two fields of the data we just scraped: 'movie title' and 'rating' data = { 'movie title': 'Emperor', #exercise: is it possible to scrape the movie name from the page? :p 'rating' : el[0].text } print "Movie rating: {0}".format(data['rating']) #The fields in 'data' can be accessed by their names #Save into a databaase. Completely pointless in this case but useful if the data changes... scraperwiki.sqlite.save(unique_keys=['movie title'], data=data) import lxml.html import scraperwiki #Ge the data html = scraperwiki.scrape("http://www.imdb.com/title/tt2103264/") #The request to IMDB returns plain text so the line below processes this text and turns it into a format that can be queried root = lxml.html.fromstring(html) #The rating of a movie is within a div with class: "titlePageSprite star-box-giga-star" like this: # #<div class="titlePageSprite star-box-giga-star"> # 7.7 #</div> # #Use CSS selector to get the div html element that has class="titlePageSprite" el = root.cssselect("div.titlePageSprite") #el is a list as there could be several div elements with the same class. In our case we know there is only one div with that class print "Number of elements in el: {0}".format(len(el)) #Create a python 'dictionary' to store the two fields of the data we just scraped: 'movie title' and 'rating' data = { 'movie title': 'Emperor', #exercise: is it possible to scrape the movie name from the page? :p 'rating' : el[0].text } print "Movie rating: {0}".format(data['rating']) #The fields in 'data' can be accessed by their names #Save into a databaase. Completely pointless in this case but useful if the data changes... scraperwiki.sqlite.save(unique_keys=['movie title'], data=data)
c4be35002664253e83bad83bee500cc207fa909c
e4700f3ff598b997bf0ea35bcdb76b00c530c994
/tmp.py
d616e22344314282bffb61071d044da898ac2eef
[]
no_license
nikkibisarya/therapysummarization
64d056683454289561a45b6e5e1d88f5e3f78dae
203b5a06577456d68d3022aa94d9476e0d352e18
refs/heads/master
2020-03-16T23:23:11.698069
2019-11-05T18:08:54
2019-11-05T18:08:54
133,075,146
1
0
null
null
null
null
UTF-8
Python
false
false
407
py
import numpy as np import matplotlib.pyplot as plt loss = [1.0761, 0.8476, 0.7516, 0.6956, 0.6562, 0.6243, 0.5985, 0.5765, 0.5586, 0.5427, 0.5315, 0.5169, 0.5089, 0.4994, 0.4923, 0.4866, 0.4806, 0.4763, 0.4708, 0.4707] plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.plot(np.arange(len(loss)), loss) plt.savefig('MISCloss.png')
feb967e768de780f768c67ee8e6bc478974aa13b
7e90a1f8280618b97729d0b49b80c6814d0466e2
/workspace_pc/catkin_ws/build_isolated/hector_slam/catkin_generated/stamps/hector_slam/_setup_util.py.stamp
c51cc0942a19064fe6e7239c5adffd9ad95290b7
[]
no_license
IreneYIN7/Map-Tracer
91909f4649a8b65afed56ae3803f0c0602dd89ff
cbbe9acf067757116ec74c3aebdd672fd3df62ed
refs/heads/master
2022-04-02T09:53:15.650365
2019-12-19T07:31:31
2019-12-19T07:31:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,976
stamp
#!/usr/bin/python2 # -*- coding: utf-8 -*- # Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. '''This file generates shell code for the setup.SHELL scripts to set environment variables''' from __future__ import print_function import argparse import copy import errno import os import platform import sys CATKIN_MARKER_FILE = '.catkin' system = platform.system() IS_DARWIN = (system == 'Darwin') IS_WINDOWS = (system == 'Windows') # subfolder of workspace prepended to CMAKE_PREFIX_PATH ENV_VAR_SUBFOLDERS = { 'CMAKE_PREFIX_PATH': '', 'LD_LIBRARY_PATH' if not IS_DARWIN else 'DYLD_LIBRARY_PATH': ['lib', os.path.join('lib', 'x86_64-linux-gnu')], 'PATH': 'bin', 'PKG_CONFIG_PATH': [os.path.join('lib', 'pkgconfig'), os.path.join('lib', 'x86_64-linux-gnu', 'pkgconfig')], 'PYTHONPATH': 'lib/python2.7/dist-packages', } def rollback_env_variables(environ, env_var_subfolders): ''' Generate shell code to reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH. This does not cover modifications performed by environment hooks. ''' lines = [] unmodified_environ = copy.copy(environ) for key in sorted(env_var_subfolders.keys()): subfolders = env_var_subfolders[key] if not isinstance(subfolders, list): subfolders = [subfolders] value = _rollback_env_variable(unmodified_environ, key, subfolders) if value is not None: environ[key] = value lines.append(assignment(key, value)) if lines: lines.insert(0, comment('reset environment variables by unrolling modifications based on all workspaces in CMAKE_PREFIX_PATH')) return lines def _rollback_env_variable(environ, name, subfolders): ''' For each catkin workspace in CMAKE_PREFIX_PATH remove the first entry from env[NAME] matching workspace + subfolder. :param subfolders: list of str '' or subfoldername that may start with '/' :returns: the updated value of the environment variable. ''' value = environ[name] if name in environ else '' env_paths = [path for path in value.split(os.pathsep) if path] value_modified = False for subfolder in subfolders: if subfolder: if subfolder.startswith(os.path.sep) or (os.path.altsep and subfolder.startswith(os.path.altsep)): subfolder = subfolder[1:] if subfolder.endswith(os.path.sep) or (os.path.altsep and subfolder.endswith(os.path.altsep)): subfolder = subfolder[:-1] for ws_path in _get_workspaces(environ, include_fuerte=True, include_non_existing=True): path_to_find = os.path.join(ws_path, subfolder) if subfolder else ws_path path_to_remove = None for env_path in env_paths: env_path_clean = env_path[:-1] if env_path and env_path[-1] in [os.path.sep, os.path.altsep] else env_path if env_path_clean == path_to_find: path_to_remove = env_path break if path_to_remove: env_paths.remove(path_to_remove) value_modified = True new_value = os.pathsep.join(env_paths) return new_value if value_modified else None def _get_workspaces(environ, include_fuerte=False, include_non_existing=False): ''' Based on CMAKE_PREFIX_PATH return all catkin workspaces. :param include_fuerte: The flag if paths starting with '/opt/ros/fuerte' should be considered workspaces, ``bool`` ''' # get all cmake prefix paths env_name = 'CMAKE_PREFIX_PATH' value = environ[env_name] if env_name in environ else '' paths = [path for path in value.split(os.pathsep) if path] # remove non-workspace paths workspaces = [path for path in paths if os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE)) or (include_fuerte and path.startswith('/opt/ros/fuerte')) or (include_non_existing and not os.path.exists(path))] return workspaces def prepend_env_variables(environ, env_var_subfolders, workspaces): ''' Generate shell code to prepend environment variables for the all workspaces. ''' lines = [] lines.append(comment('prepend folders of workspaces to environment variables')) paths = [path for path in workspaces.split(os.pathsep) if path] prefix = _prefix_env_variable(environ, 'CMAKE_PREFIX_PATH', paths, '') lines.append(prepend(environ, 'CMAKE_PREFIX_PATH', prefix)) for key in sorted([key for key in env_var_subfolders.keys() if key != 'CMAKE_PREFIX_PATH']): subfolder = env_var_subfolders[key] prefix = _prefix_env_variable(environ, key, paths, subfolder) lines.append(prepend(environ, key, prefix)) return lines def _prefix_env_variable(environ, name, paths, subfolders): ''' Return the prefix to prepend to the environment variable NAME, adding any path in NEW_PATHS_STR without creating duplicate or empty items. ''' value = environ[name] if name in environ else '' environ_paths = [path for path in value.split(os.pathsep) if path] checked_paths = [] for path in paths: if not isinstance(subfolders, list): subfolders = [subfolders] for subfolder in subfolders: path_tmp = path if subfolder: path_tmp = os.path.join(path_tmp, subfolder) # skip nonexistent paths if not os.path.exists(path_tmp): continue # exclude any path already in env and any path we already added if path_tmp not in environ_paths and path_tmp not in checked_paths: checked_paths.append(path_tmp) prefix_str = os.pathsep.join(checked_paths) if prefix_str != '' and environ_paths: prefix_str += os.pathsep return prefix_str def assignment(key, value): if not IS_WINDOWS: return 'export %s="%s"' % (key, value) else: return 'set %s=%s' % (key, value) def comment(msg): if not IS_WINDOWS: return '# %s' % msg else: return 'REM %s' % msg def prepend(environ, key, prefix): if key not in environ or not environ[key]: return assignment(key, prefix) if not IS_WINDOWS: return 'export %s="%s$%s"' % (key, prefix, key) else: return 'set %s=%s%%%s%%' % (key, prefix, key) def find_env_hooks(environ, cmake_prefix_path): ''' Generate shell code with found environment hooks for the all workspaces. ''' lines = [] lines.append(comment('found environment hooks in workspaces')) generic_env_hooks = [] generic_env_hooks_workspace = [] specific_env_hooks = [] specific_env_hooks_workspace = [] generic_env_hooks_by_filename = {} specific_env_hooks_by_filename = {} generic_env_hook_ext = 'bat' if IS_WINDOWS else 'sh' specific_env_hook_ext = environ['CATKIN_SHELL'] if not IS_WINDOWS and 'CATKIN_SHELL' in environ and environ['CATKIN_SHELL'] else None # remove non-workspace paths workspaces = [path for path in cmake_prefix_path.split(os.pathsep) if path and os.path.isfile(os.path.join(path, CATKIN_MARKER_FILE))] for workspace in reversed(workspaces): env_hook_dir = os.path.join(workspace, 'etc', 'catkin', 'profile.d') if os.path.isdir(env_hook_dir): for filename in sorted(os.listdir(env_hook_dir)): if filename.endswith('.%s' % generic_env_hook_ext): # remove previous env hook with same name if present if filename in generic_env_hooks_by_filename: i = generic_env_hooks.index(generic_env_hooks_by_filename[filename]) generic_env_hooks.pop(i) generic_env_hooks_workspace.pop(i) # append env hook generic_env_hooks.append(os.path.join(env_hook_dir, filename)) generic_env_hooks_workspace.append(workspace) generic_env_hooks_by_filename[filename] = generic_env_hooks[-1] elif specific_env_hook_ext is not None and filename.endswith('.%s' % specific_env_hook_ext): # remove previous env hook with same name if present if filename in specific_env_hooks_by_filename: i = specific_env_hooks.index(specific_env_hooks_by_filename[filename]) specific_env_hooks.pop(i) specific_env_hooks_workspace.pop(i) # append env hook specific_env_hooks.append(os.path.join(env_hook_dir, filename)) specific_env_hooks_workspace.append(workspace) specific_env_hooks_by_filename[filename] = specific_env_hooks[-1] env_hooks = generic_env_hooks + specific_env_hooks env_hooks_workspace = generic_env_hooks_workspace + specific_env_hooks_workspace count = len(env_hooks) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_COUNT', count)) for i in range(count): lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d' % i, env_hooks[i])) lines.append(assignment('_CATKIN_ENVIRONMENT_HOOKS_%d_WORKSPACE' % i, env_hooks_workspace[i])) return lines def _parse_arguments(args=None): parser = argparse.ArgumentParser(description='Generates code blocks for the setup.SHELL script.') parser.add_argument('--extend', action='store_true', help='Skip unsetting previous environment variables to extend context') parser.add_argument('--local', action='store_true', help='Only consider this prefix path and ignore other prefix path in the environment') return parser.parse_known_args(args=args)[0] if __name__ == '__main__': try: try: args = _parse_arguments() except Exception as e: print(e, file=sys.stderr) sys.exit(1) if not args.local: # environment at generation time CMAKE_PREFIX_PATH = '/home/gse5/catkin_ws/devel_isolated/hector_map_server;/home/gse5/catkin_ws/devel_isolated/hector_geotiff_plugins;/home/gse5/catkin_ws/devel_isolated/hector_geotiff;/home/gse5/catkin_ws/devel_isolated/hector_nav_msgs;/home/gse5/catkin_ws/devel_isolated/hector_marker_drawing;/home/gse5/catkin_ws/devel_isolated/hector_mapping;/home/gse5/catkin_ws/devel_isolated/hector_compressed_map_transport;/home/gse5/catkin_ws/devel_isolated/hector_map_tools;/home/gse5/catkin_ws/devel_isolated/hector_imu_tools;/home/gse5/catkin_ws/devel_isolated/hector_imu_attitude_to_tf;/home/gse5/catkin_ws/devel_isolated/rplidar_ros;/home/gse5/catkin_ws/devel_isolated/cartographer_rviz;/home/gse5/catkin_ws/devel_isolated/cartographer_ros;/home/gse5/catkin_ws/devel_isolated/cartographer_ros_msgs;/home/gse5/catkin_ws/devel_isolated/beginner_tutorials;/home/gse5/catkin_ws/install_isolated;/opt/ros/melodic;/home/gse5/catkin_ws/devel_isolated/cartographer;/home/gse5/catkin_ws/devel_isolated/ceres-solver'.split(';') else: # don't consider any other prefix path than this one CMAKE_PREFIX_PATH = [] # prepend current workspace if not already part of CPP base_path = os.path.dirname(__file__) # CMAKE_PREFIX_PATH uses forward slash on all platforms, but __file__ is platform dependent # base_path on Windows contains backward slashes, need to be converted to forward slashes before comparison if os.path.sep != '/': base_path = base_path.replace(os.path.sep, '/') if base_path not in CMAKE_PREFIX_PATH: CMAKE_PREFIX_PATH.insert(0, base_path) CMAKE_PREFIX_PATH = os.pathsep.join(CMAKE_PREFIX_PATH) environ = dict(os.environ) lines = [] if not args.extend: lines += rollback_env_variables(environ, ENV_VAR_SUBFOLDERS) lines += prepend_env_variables(environ, ENV_VAR_SUBFOLDERS, CMAKE_PREFIX_PATH) lines += find_env_hooks(environ, CMAKE_PREFIX_PATH) print('\n'.join(lines)) # need to explicitly flush the output sys.stdout.flush() except IOError as e: # and catch potential "broken pipe" if stdout is not writable # which can happen when piping the output to a file but the disk is full if e.errno == errno.EPIPE: print(e, file=sys.stderr) sys.exit(2) raise sys.exit(0)
a0afd01311fc3c8b2e58fd920285130338e86b2d
62c11667bc780b8fb80b69a069c5e4135a40ac8a
/src/newsletter/migrations/0001_initial.py
77ec77167df437d057a369a632f89115ed37d047
[]
no_license
garabek/Django_BootcampSite
39b8bc976730c0776d733536f020a043d2f89370
8752cd7f2c469e2e4c9cf639e357c51cd05b5c4d
refs/heads/master
2021-07-01T12:09:57.557274
2017-09-21T23:07:01
2017-09-21T23:07:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
710
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='SignUp', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('email', models.EmailField(max_length=254)), ('full_name', models.CharField(max_length=100, null=True, blank=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], ), ]
2bf07793bfef24a2bed035690bb6849533f776bc
1239393937f155fd5090c41f462262098fa6c6c1
/dev/docs/source/conf.py
20af5dc2d5e88af3e123d49e2e27b9d9573e3297
[ "BSD-2-Clause-Views", "BSD-3-Clause" ]
permissive
hyunjinb/XlsxWriter
af4fe17c11b81c05ba8ec6adf27d0f6d1d632399
b4c4b499ffb3db8e0fa1b306880bcbcb3675fd4d
refs/heads/master
2021-01-23T13:42:00.785444
2017-09-05T23:17:06
2017-09-05T23:17:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,926
py
# -*- coding: utf-8 -*- # # XlsxWriter documentation build configuration file, created by # sphinx-quickstart on Mon Jan 28 00:12:14 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.intersphinx'] # Add any paths that contain templates here, relative to this directory. # templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'XlsxWriter' copyright = u'2013-2017, John McNamara' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.9.9' # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/2/': None} # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'default' sys.path.append(os.path.abspath('_themes')) html_theme_path = ['_themes'] html_theme = 'bootstrap' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { # # 'nosidebar': True, # 'sidebarbgcolor': '#F2F2F2', # 'relbarbgcolor': '#9CB640', # 'linkcolor': '#9CB640', # 'sidebarlinkcolor': '#9CB640', # 'footerbgcolor': '#FFFFFF', # 'footertextcolor': '#9CB640', # 'headtextcolor': '#9CB640', # 'codebgcolor': '#FFFFFF', # } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "XlsxWriter Documentation" # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = '_images/logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'XlsxWriterdoc' # Remove permalinks. html_add_permalinks = "" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). 'pointsize': '11pt', # Additional stuff for the LaTeX preamble. 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'XlsxWriter.tex', u'Creating Excel files with Python and XlsxWriter', u'John McNamara', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = '_images/logo.png' # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'xlsxwriter', u'XlsxWriter Documentation', [u'John McNamara'], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'XlsxWriter', u'XlsxWriter Documentation', u'John McNamara', 'XlsxWriter', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'XlsxWriter' epub_author = u'John McNamara' epub_publisher = u'John McNamara' epub_copyright = u'2013-2017, John McNamara' # The language of the text. It defaults to the language option # or en if the language is not set. # epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. # epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. # epub_identifier = '' # A unique identification for the text. # epub_uid = '' # A tuple containing the cover image and cover page html template filenames. # epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_post_files = [] # A list of files that should not be packed into the epub file. # epub_exclude_files = [] # The depth of the table of contents in toc.ncx. # epub_tocdepth = 3 # Allow duplicate toc entries. # epub_tocdup = True
88c0d4f7001e4d7f2d2a994d979b9b99a1ed7d08
9adc810b07f7172a7d0341f0b38088b4f5829cf4
/experiments/ashvin/icml2020/hand/buffers/pen1.py
c92cde36156496ccf82fa584986ffbc35a17a452
[ "MIT" ]
permissive
Asap7772/railrl_evalsawyer
7ee9358b5277b9ddf2468f0c6d28beb92a5a0879
baba8ce634d32a48c7dfe4dc03b123e18e96e0a3
refs/heads/main
2023-05-29T10:00:50.126508
2021-06-18T03:08:12
2021-06-18T03:08:12
375,810,557
1
0
null
null
null
null
UTF-8
Python
false
false
4,576
py
""" AWR + SAC from demo experiment """ from rlkit.demos.source.dict_to_mdp_path_loader import DictToMDPPathLoader from rlkit.launchers.experiments.awac.awac_rl import experiment, process_args import rlkit.misc.hyperparameter as hyp from rlkit.launchers.arglauncher import run_variants from rlkit.torch.sac.policies import GaussianPolicy, BinnedGMMPolicy from rlkit.torch.networks import Clamp if __name__ == "__main__": variant = dict( num_epochs=1001, num_eval_steps_per_epoch=1000, num_trains_per_train_loop=1000, num_expl_steps_per_train_loop=1000, min_num_steps_before_training=1000, max_path_length=1000, batch_size=1024, replay_buffer_size=int(1E6), layer_size=256, policy_class=GaussianPolicy, policy_kwargs=dict( hidden_sizes=[256, 256, 256, 256], max_log_std=0, min_log_std=-6, std_architecture="values", ), buffer_policy_class=BinnedGMMPolicy, buffer_policy_kwargs=dict( hidden_sizes=[256, 256, 256, 256], max_log_std=0, min_log_std=-6, std_architecture="values", num_gaussians=11, ), algorithm="SAC", version="normal", collection_mode='batch', trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, beta=1, use_automatic_entropy_tuning=False, alpha=0, compute_bc=False, bc_num_pretrain_steps=0, q_num_pretrain1_steps=0, q_num_pretrain2_steps=25000, policy_weight_decay=1e-4, q_weight_decay=0, bc_loss_type="mse", rl_weight=1.0, use_awr_update=True, use_reparam_update=False, reparam_weight=0.0, awr_weight=0.0, bc_weight=1.0, post_bc_pretrain_hyperparams=dict( bc_weight=0.0, compute_bc=False, ), reward_transform_kwargs=None, # r' = r + 1 terminal_transform_kwargs=None, # t = 0 ), launcher_config=dict( num_exps_per_instance=1, region='us-west-2', ), path_loader_class=DictToMDPPathLoader, path_loader_kwargs=dict( obs_key="state_observation", demo_paths=[ # dict( # path="demos/icml2020/hand/pen2_sparse.npy", # obs_dict=True, # is_demo=True, # ), # dict( # path="demos/icml2020/hand/pen_bc5.npy", # obs_dict=False, # is_demo=False, # train_split=0.9, # ), ], ), add_env_demos=True, add_env_offpolicy_data=True, # logger_variant=dict( # tensorboard=True, # ), load_demos=True, pretrain_policy=True, pretrain_rl=True, # save_pretrained_algorithm=True, # snapshot_mode="all", use_validation_buffer=True, ) search_space = { 'env': ["pen-sparse-v0", "door-sparse-v0", ], 'trainer_kwargs.bc_loss_type': ["mle"], 'trainer_kwargs.awr_loss_type': ["mle"], 'seedid': range(3), 'trainer_kwargs.beta': [0.5, ], 'trainer_kwargs.reparam_weight': [0.0, ], 'trainer_kwargs.awr_weight': [1.0], 'trainer_kwargs.bc_weight': [1.0, ], 'policy_kwargs.std_architecture': ["values", ], # 'trainer_kwargs.compute_bc': [True, ], 'trainer_kwargs.awr_use_mle_for_vf': [True, ], 'trainer_kwargs.awr_sample_actions': [False, ], 'trainer_kwargs.awr_min_q': [True, ], 'trainer_kwargs.q_weight_decay': [0], 'trainer_kwargs.reward_transform_kwargs': [None, ], 'trainer_kwargs.terminal_transform_kwargs': [dict(m=0, b=0), ], 'qf_kwargs.output_activation': [Clamp(max=0)], 'trainer_kwargs.train_bc_on_rl_buffer':[True], # 'policy_kwargs.num_gaussians': [11, ], } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): variants.append(variant) run_variants(experiment, variants, process_args)
70c3c06f681b066ac0388b0d3c1198b4074e9724
7f24023d365e013ec0924844c1a872edfb0c75b4
/tests/trac/trac-0186/check.py
08b3119a43dd3dd72dd22febf93509b88bca7eca
[ "Python-2.0", "MIT", "Apache-2.0" ]
permissive
pabigot/pyxb
cd42c024607572c6363682d389e9296caf3f2857
5ee5ba54c9f702dc9c9efc2731ee547ecd4dae4a
refs/heads/next
2023-05-11T03:23:19.599756
2023-04-29T20:38:15
2023-04-29T20:45:13
20,547,850
130
63
Apache-2.0
2021-08-19T16:52:18
2014-06-06T01:49:03
Python
UTF-8
Python
false
false
493
py
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import pyxb.utils.domutils import resources import unittest class ExternalTrac0186 (unittest.TestCase): def testXBIngress (self): instance = resources.XBIngress(match='all', action1='none', digits1='', action2='none', digits2='') def testXBMatch (self): instance = resources.XBMatch('all') if '__main__' == __name__: unittest.main()
969d035c63ace1f7b4c413e93f06400bb2d2bf34
119437adb7830659307c18b79a9cc3f6bfc6fe40
/transformers_learning/english_sequence_labeling/torch_model_train.py
234011630b2febd960451887847252ee4bdd95c0
[]
no_license
percent4/PyTorch_Learning
478bec35422cdc66bf41b4258e29fbcb6d24f60c
24184d49032c9c9a68142aff89dabe33adc17b52
refs/heads/master
2023-03-31T03:01:19.372830
2023-03-17T17:02:39
2023-03-17T17:02:39
171,400,828
16
7
null
2023-09-02T08:53:26
2019-02-19T03:47:41
Jupyter Notebook
UTF-8
Python
false
false
5,513
py
# -*- coding: utf-8 -*- # @Time : 2021/1/31 15:01 # @Author : Jclian91 # @File : torch_model_train.py # @Place : Yangpu, Shanghai import json import torch import numpy as np from torch.utils.data import Dataset, DataLoader from transformers import BertForTokenClassification, BertTokenizer, BertConfig from util import event_type, train_file_path, test_file_path from util import MAX_LEN, BERT_MODEL_DIR, TRAIN_BATCH_SIZE, VALID_BATCH_SIZE, EPOCHS, LEARNING_RATE from load_data import read_data # tokenizer and label_2_id_dict with open("{}_label2id.json".format(event_type), "r", encoding="utf-8") as f: tag2idx = json.loads(f.read()) idx2tag = {v: k for k, v in tag2idx.items()} class CustomDataset(Dataset): def __init__(self, tokenizer, sentences, labels, max_len): self.len = len(sentences) self.sentences = sentences self.labels = labels self.tokenizer = tokenizer self.max_len = max_len def __getitem__(self, index): sentence = str(self.sentences[index]) inputs = self.tokenizer.encode_plus( sentence, None, add_special_tokens=True, max_length=self.max_len, truncation=True, padding="max_length", # pad_to_max_length=True, return_token_type_ids=True ) ids = inputs['input_ids'] mask = inputs['attention_mask'] label = self.labels[index] label.extend([0] * MAX_LEN) label = label[:MAX_LEN] return { 'ids': torch.tensor(ids, dtype=torch.long), 'mask': torch.tensor(mask, dtype=torch.long), 'tags': torch.tensor(label, dtype=torch.long) } def __len__(self): return self.len # Creating the customized model class BERTClass(torch.nn.Module): def __init__(self): super(BERTClass, self).__init__() config = BertConfig.from_pretrained("./bert-base-uncased", num_labels=len(list(tag2idx.keys()))) self.l1 = BertForTokenClassification.from_pretrained('./bert-base-uncased', config=config) # self.l2 = torch.nn.Dropout(0.3) # self.l3 = torch.nn.Linear(768, 200) def forward(self, ids, mask, labels): output_1 = self.l1(ids, mask, labels=labels) # output_2 = self.l2(output_1[0]) # output = self.l3(output_2) return output_1 def flat_accuracy(preds, labels): flat_preds = np.argmax(preds, axis=2).flatten() flat_labels = labels.flatten() return np.sum(flat_preds == flat_labels)/len(flat_labels) def valid(model, testing_loader): model.eval() eval_loss = 0; eval_accuracy = 0 nb_eval_steps, nb_eval_examples = 0, 0 with torch.no_grad(): for _, data in enumerate(testing_loader): ids = data['ids'].to(dev, dtype=torch.long) mask = data['mask'].to(dev, dtype=torch.long) targets = data['tags'].to(dev, dtype=torch.long) output = model(ids, mask, labels=targets) loss, logits = output[:2] logits = logits.detach().cpu().numpy() label_ids = targets.to('cpu').numpy() accuracy = flat_accuracy(logits, label_ids) eval_loss += loss.mean().item() eval_accuracy += accuracy nb_eval_examples += ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss/nb_eval_steps print("Validation loss: {}".format(eval_loss)) print("Validation Accuracy: {}".format(eval_accuracy/nb_eval_steps)) if __name__ == '__main__': # Preparing for CPU or GPU usage dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tokenizer = BertTokenizer.from_pretrained('./{}'.format(BERT_MODEL_DIR)) # Creating the Dataset and DataLoader for the neural network train_sentences, train_labels = read_data(train_file_path) train_labels = [[tag2idx.get(l) for l in lab] for lab in train_labels] test_sentences, test_labels = read_data(test_file_path) test_labels = [[tag2idx.get(l) for l in lab] for lab in test_labels] print("TRAIN Dataset: {}".format(len(train_sentences))) print("TEST Dataset: {}".format(len(test_sentences))) training_set = CustomDataset(tokenizer, train_sentences, train_labels, MAX_LEN) testing_set = CustomDataset(tokenizer, test_sentences, test_labels, MAX_LEN) train_params = {'batch_size': TRAIN_BATCH_SIZE, 'shuffle': True, 'num_workers': 0} test_params = {'batch_size': VALID_BATCH_SIZE, 'shuffle': True, 'num_workers': 0} training_loader = DataLoader(training_set, **train_params) testing_loader = DataLoader(testing_set, **test_params) # train the model model = BERTClass() model.to(dev) optimizer = torch.optim.Adam(params=model.parameters(), lr=LEARNING_RATE) for epoch in range(EPOCHS): model.train() for _, data in enumerate(training_loader): ids = data['ids'].to(dev, dtype=torch.long) mask = data['mask'].to(dev, dtype=torch.long) targets = data['tags'].to(dev, dtype=torch.long) loss = model(ids, mask, labels=targets)[0] # optimizer.zero_grad() if _ % 50 == 0: print(f'Epoch: {epoch}, Batch: {_}, Loss: {loss.item()}') optimizer.zero_grad() loss.backward() optimizer.step() # model evaluate valid(model, testing_loader) torch.save(model.state_dict(), '{}_ner.pth'.format(event_type))
d8c137dda1852fc28941eac7e6a8c8a76905993e
9bde6cafb4273d721229448d115853ff2f5994a6
/myblog/blog/models.py
29739ca1865621b4e4224bca3f600e41f915a179
[]
no_license
davejonesbkk/myblog
11eb30b4d75270b3e99f172f27f05ce31e318f93
4a5cbeb47154004ef239b16e63155997b1c9afe6
refs/heads/master
2021-01-17T17:43:28.465235
2016-05-31T02:02:07
2016-05-31T02:02:07
59,930,156
0
0
null
null
null
null
UTF-8
Python
false
false
706
py
from django.db import models from django_markdown.models import MarkdownField from django.core.urlresolvers import reverse class EntryQuerySet(models.QuerySet): def published(self): return self.filter(publish=True) class Entry(models.Model): title = models.CharField(max_length=200) body = models.TextField() slug = models.SlugField(max_length=200, unique=True) publish = models.BooleanField(default=True) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) objects = EntryQuerySet.as_manager() def __str__(self): return self.title class Meta: verbose_name = 'Blog Entry' verbose_name_plural = 'Blog Entries' ordering = ["-created"]
447a75ff7f1e949a3c268918e94f8ab08d58da0f
68cd659b44f57adf266dd37789bd1da31f61670d
/2020-01/python/18188_다오의데이트.py
7c55c44e597a14f68e338a66b4a4458c5ab95c41
[]
no_license
01090841589/solved_problem
c0c6f5a46e4d48860dccb3b0288aa5b56868fbca
bbea2f31e5fe36cad100bc514eacd83545fb25b1
refs/heads/master
2023-07-02T23:55:51.631478
2021-08-04T13:57:00
2021-08-04T13:57:00
197,157,830
2
0
null
null
null
null
UTF-8
Python
false
false
1,117
py
import sys sys.stdin = open("다오의데이트.txt") DIR = [[-1, 0], [0, 1], [1, 0], [0, -1]] def go_dao(y, x, k, route): global result, rts if result: return if k >= A: return flag = 1 for i in range(4): if can[k][i]: Y = y+DIR[i][0] X = x+DIR[i][1] if 0 <= Y < H and 0 <= X < W: if MAP[Y][X] != '@': if MAP[Y][X] == 'Z': rts = route+arr[i] result = 1 return flag = 0 go_dao(Y, X, k+1, route+arr[i]) H, W = map(int, input().split()) MAP = [list(input()) for _ in range(H)] for h in range(H): for w in range(W): if MAP[h][w] == 'D': y = h x = w result = 0 rts = '' A = int(input()) arr = ['W', 'D', 'S', 'A'] can = [[0, 0, 0, 0] for _ in range(A)] for i in range(A): B, C = map(str, input().split()) can[i][arr.index(B)] = 1 can[i][arr.index(C)] = 1 go_dao(y, x, 0, '') if result: print("YES") print(rts) else: print("NO")
b1918d70a960ef445232d6b1b21ffd44d9848c48
71c7683331a9037fda7254b3a7b1ffddd6a4c4c8
/Phys/Urania/examples/KsPiZeroMM_angularPDF.py
a83417211276319e5a15c72d57e48769a1b46477
[]
no_license
pseyfert-cern-gitlab-backup/Urania
edc58ba4271089e55900f8bb4a5909e9e9c12d35
1b1c353ed5f1b45b3605990f60f49881b9785efd
refs/heads/master
2021-05-18T13:33:22.732970
2017-12-15T14:42:04
2017-12-15T14:42:04
251,259,622
0
1
null
null
null
null
UTF-8
Python
false
false
2,684
py
from Urania.Helicity import * from Urania.SympyBasic import * from os import * DiLeptonSpins = [0,1,2] ## DMS: I doube we'll need 2, probably we'll only ## have Pwave (J=1) from the photon, plus maybe some S-wave (J=0) ### transAmp=1 : Changes to transversity amplitude basis A = doKsPizeroMuMu(DiLeptonSpins ) ## This is now in Urania.Helicity ### massage a bit the expression to make it more suitable for fitting pdf_split = DecomposeAmplitudes(A,TransAmplitudes.values()) phys = 0 for key in pdf_split: phys += StrongPhases(key)*pdf_split[key] ### change the free variables to cosines x = USymbol("helcosthetaK","c\\theta_{K}",real = True) y = USymbol("helcosthetaL", "c\\theta_{l}", real = True) z = USymbol("helphi" , "\\phi", real = True) CThL = Cos(ThetaL) CThK = Cos(ThetaK) def changeFreeVars(function): ### Phi now as in DTT !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! function = function.subs( Sin(2*ThetaK), 2*Sin(ThetaK)*Cos(ThetaK)) function = function.subs( Sin(2*ThetaL), 2*Sin(ThetaL)*Cos(ThetaL)) function = function.subs( Cos(2*ThetaK), 2*Cos(ThetaK)**2 - 1) function = function.subs( Cos(2*ThetaL), 2*Cos(ThetaL)**2 - 1) function = function.subs( Sin(ThetaK), Sqrt(1-Cos(ThetaK)**2)) function = function.subs( Sin(ThetaL), Sqrt(1-Cos(ThetaL)**2)) function = function.subs([(CThK,x),(CThL,y), (Phi, -z)]) return function func = changeFreeVars(phys) ### Print out to a latex document from Urania.LatexFunctions import * flatex = file("Kspizeromm_PDF.tex","w") begintex(flatex) begin_multline(flatex) i = 0 for key in pdf_split.keys(): if i > 20: i = 0 multline_break(flatex) if pdf_split[key]: flatex.write(Ulatex(key) + "\t" + Ulatex(pdf_split[key]) + "\\\\" + "\n") i += 1 end_multline(flatex) flatex.write("\\end{document}\n") flatex.close() system("pdflatex " + "Kspizeromm_PDF") print "angular function saved in Kspizeromm_PDF.pdf" print "Now making RooFit class as well" ##BREAK ##### Generate and compile a fitting class corresponding to "A" ### Trial 1, w/o analytical integrals from Urania.RooInterfaces import * potential_list = [x,y,z]+TransAmpModuli.values() + TransAmpPhases.values() final_list = [] for thing in potential_list: if thing in func.atoms(): final_list.append(thing) op = RooClassGenerator(func, final_list ,"RooKspizeroMM") ### Define intermediate variables to be calculated once op.makePdf(integrable = 1) op.doIntegral(1,(y,-1,1))#,(y,-1,1),(z,-Pi,Pi)) ##op.doIntegral(2,(x,-1,1),(y,-1,1)) ##op.doIntegral(3,(x,-1,1),(z,-Pi,Pi)) ##op.doIntegral(4,(y,-1,1),(z,-Pi,Pi)) op.overwrite() op.invoke()
d2e18daba5039bfa0fe53bdc30e97c234ded7ec8
bbfa9cdfd5f09c833ab9190cd4ad5a46e7a515e7
/effective-python/2020-05/item_61.py
863a8f8f00e61d939277ee2b82426ba026599225
[]
no_license
alexchonglian/readings
775204e013a2301f08fee96c5e8b116842faebcb
03cb6cb266d8d2376db411e9b12e9b6cd1f2b33b
refs/heads/master
2022-12-02T13:56:56.878477
2021-06-18T05:53:14
2021-06-18T05:53:14
218,573,810
0
0
null
null
null
null
UTF-8
Python
false
false
11,393
py
import random random.seed(1234) import logging from pprint import pprint from sys import stdout as STDOUT # Write all output to a temporary directory import atexit import gc import io import os import tempfile TEST_DIR = tempfile.TemporaryDirectory() atexit.register(TEST_DIR.cleanup) # Make sure Windows processes exit cleanly OLD_CWD = os.getcwd() atexit.register(lambda: os.chdir(OLD_CWD)) os.chdir(TEST_DIR.name) def close_open_files(): everything = gc.get_objects() for obj in everything: if isinstance(obj, io.IOBase): obj.close() atexit.register(close_open_files) def example(i): print(f'\n==== Example {i} ====') example(1) class EOFError(Exception): pass class ConnectionBase: def __init__(self, connection): self.connection = connection self.file = connection.makefile('rb') def send(self, command): line = command + '\n' data = line.encode() self.connection.send(data) def receive(self): line = self.file.readline() if not line: raise EOFError('Connection closed') return line[:-1].decode() example(2) import random WARMER = 'Warmer' COLDER = 'Colder' UNSURE = 'Unsure' CORRECT = 'Correct' class UnknownCommandError(Exception): pass example(3) example(4) example(5) example(6) class Session(ConnectionBase): def __init__(self, *args): super().__init__(*args) self._clear_state(None, None) def _clear_state(self, lower, upper): self.lower = lower self.upper = upper self.secret = None self.guesses = [] def loop(self): while command := self.receive(): parts = command.split(' ') if parts[0] == 'PARAMS': self.set_params(parts) elif parts[0] == 'NUMBER': self.send_number() elif parts[0] == 'REPORT': self.receive_report(parts) else: raise UnknownCommandError(command) def set_params(self, parts): assert len(parts) == 3 lower = int(parts[1]) upper = int(parts[2]) self._clear_state(lower, upper) def next_guess(self): if self.secret is not None: return self.secret while True: guess = random.randint(self.lower, self.upper) if guess not in self.guesses: return guess def send_number(self): guess = self.next_guess() self.guesses.append(guess) self.send(format(guess)) def receive_report(self, parts): assert len(parts) == 2 decision = parts[1] last = self.guesses[-1] if decision == CORRECT: self.secret = last print(f'Server: {last} is {decision}') example(7) example(8) example(9) example(10) import contextlib import math class Client(ConnectionBase): def __init__(self, *args): super().__init__(*args) self._clear_state() def _clear_state(self): self.secret = None self.last_distance = None @contextlib.contextmanager def session(self, lower, upper, secret): print(f'Guess a number between {lower} and {upper}!' f' Shhhhh, it\'s {secret}.') self.secret = secret self.send(f'PARAMS {lower} {upper}') try: yield finally: self._clear_state() self.send('PARAMS 0 -1') def request_numbers(self, count): for _ in range(count): self.send('NUMBER') data = self.receive() yield int(data) if self.last_distance == 0: return def report_outcome(self, number): new_distance = math.fabs(number - self.secret) decision = UNSURE if new_distance == 0: decision = CORRECT elif self.last_distance is None: pass elif new_distance < self.last_distance: decision = WARMER elif new_distance > self.last_distance: decision = COLDER self.last_distance = new_distance self.send(f'REPORT {decision}') return decision example(11) import socket from threading import Thread def handle_connection(connection): with connection: session = Session(connection) try: session.loop() except EOFError: pass def run_server(address): with socket.socket() as listener: # Allow the port to be reused listener.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listener.bind(address) listener.listen() while True: connection, _ = listener.accept() thread = Thread(target=handle_connection, args=(connection,), daemon=True) thread.start() example(12) def run_client(address): with socket.create_connection(address) as connection: client = Client(connection) with client.session(1, 5, 3): results = [(x, client.report_outcome(x)) for x in client.request_numbers(5)] with client.session(10, 15, 12): for number in client.request_numbers(5): outcome = client.report_outcome(number) results.append((number, outcome)) return results example(13) def main(): address = ('127.0.0.1', 1234) server_thread = Thread( target=run_server, args=(address,), daemon=True) server_thread.start() results = run_client(address) for number, outcome in results: print(f'Client: {number} is {outcome}') main() example(14) class AsyncConnectionBase: def __init__(self, reader, writer): # Changed self.reader = reader # Changed self.writer = writer # Changed async def send(self, command): line = command + '\n' data = line.encode() self.writer.write(data) # Changed await self.writer.drain() # Changed async def receive(self): line = await self.reader.readline() # Changed if not line: raise EOFError('Connection closed') return line[:-1].decode() example(15) example(16) example(17) example(18) example(19) class AsyncSession(AsyncConnectionBase): # Changed def __init__(self, *args): super().__init__(*args) self._clear_values(None, None) def _clear_values(self, lower, upper): self.lower = lower self.upper = upper self.secret = None self.guesses = [] async def loop(self): # Changed while command := await self.receive(): # Changed parts = command.split(' ') if parts[0] == 'PARAMS': self.set_params(parts) elif parts[0] == 'NUMBER': await self.send_number() # Changed elif parts[0] == 'REPORT': self.receive_report(parts) else: raise UnknownCommandError(command) def set_params(self, parts): assert len(parts) == 3 lower = int(parts[1]) upper = int(parts[2]) self._clear_values(lower, upper) def next_guess(self): if self.secret is not None: return self.secret while True: guess = random.randint(self.lower, self.upper) if guess not in self.guesses: return guess async def send_number(self): # Changed guess = self.next_guess() self.guesses.append(guess) await self.send(format(guess)) # Changed def receive_report(self, parts): assert len(parts) == 2 decision = parts[1] last = self.guesses[-1] if decision == CORRECT: self.secret = last print(f'Server: {last} is {decision}') example(20) example(21) example(22) example(23) class AsyncClient(AsyncConnectionBase): # Changed def __init__(self, *args): super().__init__(*args) self._clear_state() def _clear_state(self): self.secret = None self.last_distance = None @contextlib.asynccontextmanager # Changed async def session(self, lower, upper, secret): # Changed print(f'Guess a number between {lower} and {upper}!' f' Shhhhh, it\'s {secret}.') self.secret = secret await self.send(f'PARAMS {lower} {upper}') # Changed try: yield finally: self._clear_state() await self.send('PARAMS 0 -1') # Changed async def request_numbers(self, count): # Changed for _ in range(count): await self.send('NUMBER') # Changed data = await self.receive() # Changed yield int(data) if self.last_distance == 0: return async def report_outcome(self, number): # Changed new_distance = math.fabs(number - self.secret) decision = UNSURE if new_distance == 0: decision = CORRECT elif self.last_distance is None: pass elif new_distance < self.last_distance: decision = WARMER elif new_distance > self.last_distance: decision = COLDER self.last_distance = new_distance await self.send(f'REPORT {decision}') # Changed # Make it so the output printing is in # the same order as the threaded version. await asyncio.sleep(0.01) return decision example(24) import asyncio async def handle_async_connection(reader, writer): session = AsyncSession(reader, writer) try: await session.loop() except EOFError: pass async def run_async_server(address): server = await asyncio.start_server( handle_async_connection, *address) async with server: await server.serve_forever() example(25) async def run_async_client(address): # Wait for the server to listen before trying to connect await asyncio.sleep(0.1) streams = await asyncio.open_connection(*address) # New client = AsyncClient(*streams) # New async with client.session(1, 5, 3): results = [(x, await client.report_outcome(x)) async for x in client.request_numbers(5)] async with client.session(10, 15, 12): async for number in client.request_numbers(5): outcome = await client.report_outcome(number) results.append((number, outcome)) _, writer = streams # New writer.close() # New await writer.wait_closed() # New return results example(26) async def main_async(): address = ('127.0.0.1', 4321) server = run_async_server(address) asyncio.create_task(server) results = await run_async_client(address) for number, outcome in results: print(f'Client: {number} is {outcome}') logging.getLogger().setLevel(logging.ERROR) asyncio.run(main_async()) logging.getLogger().setLevel(logging.DEBUG)
e8492bd500e419e50fa3815209d4889eb2e4e971
c761f3fbce728e61cbcf5179f1d3f27e1e5625cd
/register_key.py
1328baddc2fe4d7e5f91b2052b07daa49e53649f
[]
no_license
philopon/usermon
16033d41436efe2cf4971bcd3b25f99cf82de318
7f97db09a65466e2133d4304f9fe5ba212299598
refs/heads/master
2021-01-18T16:51:56.457593
2017-04-21T13:06:12
2017-04-21T13:06:12
86,775,704
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
#!/usr/bin/env python3 def main(): import sys import os import pwd import pamela pw = pwd.getpwuid(os.getuid()) ssh_dir = os.path.join(pw.pw_dir, '.ssh') auth_keys = os.path.join(ssh_dir, 'authorized_keys') os.makedirs(ssh_dir, mode=0o700, exist_ok=True) with open(auth_keys, 'a') as f: for key in sys.stdin: print(key.strip(), file=f) os.chmod(auth_keys, 0o600) if __name__ == '__main__': main()
3e35560a675840b2ed59a45d39e280ce612af5c6
4e5b20fdcca20f458322f0a8cd11bbdacb6fb3e5
/suning/api/union/UnionInfomationGetRequest.py
5a52d242f32e5e4c7c3d65d8e1872c3832f9291a
[]
no_license
shijingyu/sunningAPI
241f33b0660dc84635ce39688fed499f5c57a5da
4a3b2ef7f9bdc4707d1eaff185bc7eb636fe90d5
refs/heads/master
2020-04-24T22:15:11.584028
2019-02-24T06:41:20
2019-02-24T06:41:20
172,305,179
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
# -*- coding: utf-8 -*- ''' Created on 2016-1-27 @author: suning ''' from suning.api.abstract import AbstractApi class UnionInfomationGetRequest(AbstractApi): ''' ''' def __init__(self): AbstractApi.__init__(self) self.goodsCode = None self.setParamRule({ 'goodsCode':{'allow_empty':False} }) def getApiBizName(self): return 'getUnionInfomation' def getApiMethod(self): return 'suning.netalliance.unioninfomation.get'
da850d8841ddddfdccfc6bde153467956b91789c
78e60a7d8a67ed76244004e8a3ed573fbf396e41
/samples/get_zip_codes.py
a89c105f5ec1a635d350ba870418f9f735a0bb60
[ "MIT" ]
permissive
Crivez/apiclient-python
837a9f7cc0453ccd3121311adc7920b5fe6b3e33
860fc054f546152a101e29b1af388c381075ac47
refs/heads/master
2023-06-08T13:24:09.249704
2021-06-17T12:16:35
2021-06-17T12:16:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
from voximplant.apiclient import VoximplantAPI, VoximplantException if __name__ == "__main__": voxapi = VoximplantAPI("credentials.json") # Search for zip codes in Germany. COUNTRY_CODE = "DE" COUNT = 1 try: res = voxapi.get_zip_codes(COUNTRY_CODE, count=COUNT) print(res) except VoximplantException as e: print("Error: {}".format(e.message))
0ae55acd20bb59d6c3f499e32e0f526820a351d7
822d3cd484b54f0531fc205520c765a8321c0613
/pyFile/8.面向对象/2.类的属性/9.类方法和静态方法.py
a0ccbf84964d8f9059c7feb1ae5efeedb1a3e65a
[]
no_license
mghxy123/learnPython
31d1cc18deeed5a89864ca0333fe488e0dbf08b4
00740e87d55a4dffd78773deaff8689485df31e8
refs/heads/master
2021-07-21T14:31:02.421788
2020-06-27T11:28:01
2020-06-27T11:28:01
187,751,182
0
0
null
2020-06-07T05:14:05
2019-05-21T02:58:35
Python
UTF-8
Python
false
false
1,232
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # File : 9.类方法和静态方法.py # Author: HuXianyong # Mail: [email protected] # Date : 2019/5/16 0016 #类中普通函数的方法 # class Person: # def normal_method(): #可以吗? 这样是可以的没有语法上面的问题,执行也没问题,只是大家都默认不这么写 # print('normal') # # # 如何调用? # Person.normal_method() #可以吗? 这个是可以的,应为只是直接调用函数 # # Person().normal_method() #可以吗? 这个不可以,应为这个是实例化,实例化之后类里面的方法需要接受一个类的实例化对象,然而这里并没有传入,self,因此会报错 # print(Person.__dict__) # # 静态方法 # class Person: # @staticmethod # def class_method(): # print('this is staticMethod') # Person.class_method() # Person().class_method() #静态方法 class Person: @classmethod def class_method(cls): #cls 是什么? print('this is class method') print('class = {0.__name__}({0})'.format(cls)) cls.HEIGHT = 170 @staticmethod def static_method(): print('this is staticMethod') Person.class_method() print(Person.__dict__)
f29fc6830528398b792fd60578b01a78f12aa4e7
41ede4fd3bfba1bff0166bca7aee80dcf21434c6
/ayhanyalcinsoy/Desktop/lxde/base/libfm/actions.py
ad79cdbb6f0b2d887aa5244a18b52080cbb19379
[]
no_license
pisilinux/playground
a7db4b42559a21cc72fd4c8649e0231ab6a3eb3c
e4e12fff8a847ba210befc8db7e2af8556c3adf7
refs/heads/master
2022-08-12T23:03:27.609506
2022-08-11T18:28:19
2022-08-11T18:28:19
8,429,459
16
22
null
2022-08-11T18:28:20
2013-02-26T09:37:11
Python
UTF-8
Python
false
false
811
py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Licensed under the GNU General Public License, version 3. # See the file http://www.gnu.org/licenses/gpl.txt from pisi.actionsapi import autotools from pisi.actionsapi import pisitools from pisi.actionsapi import get WorkDir = "libfm-%s" % (get.srcVERSION()) def setup(): autotools.configure("--disable-static \ --sysconfdir=/etc \ --enable-debug \ --enable-udisks \ --enable-demo") pisitools.dosed("libtool", " -shared ", " -Wl,-O1,--as-needed -shared ") def build(): autotools.make() def install(): pisitools.dosed("data/libfm.conf", "xarchiver", "file-roller") autotools.install() pisitools.dodoc("AUTHORS", "COPYING", "TODO")
d7336abe08b51fb335e57cf3d53ee20b79886453
a6e4a6f0a73d24a6ba957277899adbd9b84bd594
/sdk/python/pulumi_azure_native/insights/v20160301/_inputs.py
5910733c44e6efa9bc7563418d54942acbf6f519
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
MisinformedDNA/pulumi-azure-native
9cbd75306e9c8f92abc25be3f73c113cb93865e9
de974fd984f7e98649951dbe80b4fc0603d03356
refs/heads/master
2023-03-24T22:02:03.842935
2021-03-08T21:16:19
2021-03-08T21:16:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
38,307
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from ._enums import * __all__ = [ 'LocationThresholdRuleConditionArgs', 'ManagementEventAggregationConditionArgs', 'ManagementEventRuleConditionArgs', 'RetentionPolicyArgs', 'RuleEmailActionArgs', 'RuleManagementEventClaimsDataSourceArgs', 'RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs', 'RuleWebhookActionArgs', 'ThresholdRuleConditionArgs', ] @pulumi.input_type class LocationThresholdRuleConditionArgs: def __init__(__self__, *, failed_location_count: pulumi.Input[int], odata_type: pulumi.Input[str], data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None, window_size: Optional[pulumi.Input[str]] = None): """ A rule condition based on a certain number of locations failing. :param pulumi.Input[int] failed_location_count: the number of locations that must fail to activate the alert. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.LocationThresholdRuleCondition'. :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ pulumi.set(__self__, "failed_location_count", failed_location_count) pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.LocationThresholdRuleCondition') if data_source is not None: pulumi.set(__self__, "data_source", data_source) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter(name="failedLocationCount") def failed_location_count(self) -> pulumi.Input[int]: """ the number of locations that must fail to activate the alert. """ return pulumi.get(self, "failed_location_count") @failed_location_count.setter def failed_location_count(self, value: pulumi.Input[int]): pulumi.set(self, "failed_location_count", value) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.LocationThresholdRuleCondition'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value) @pulumi.input_type class ManagementEventAggregationConditionArgs: def __init__(__self__, *, operator: Optional[pulumi.Input['ConditionOperator']] = None, threshold: Optional[pulumi.Input[float]] = None, window_size: Optional[pulumi.Input[str]] = None): """ How the data that is collected should be combined over time. :param pulumi.Input['ConditionOperator'] operator: the condition operator. :param pulumi.Input[float] threshold: The threshold value that activates the alert. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ if operator is not None: pulumi.set(__self__, "operator", operator) if threshold is not None: pulumi.set(__self__, "threshold", threshold) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter def operator(self) -> Optional[pulumi.Input['ConditionOperator']]: """ the condition operator. """ return pulumi.get(self, "operator") @operator.setter def operator(self, value: Optional[pulumi.Input['ConditionOperator']]): pulumi.set(self, "operator", value) @property @pulumi.getter def threshold(self) -> Optional[pulumi.Input[float]]: """ The threshold value that activates the alert. """ return pulumi.get(self, "threshold") @threshold.setter def threshold(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "threshold", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value) @pulumi.input_type class ManagementEventRuleConditionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], aggregation: Optional[pulumi.Input['ManagementEventAggregationConditionArgs']] = None, data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None): """ A management event rule condition. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.ManagementEventRuleCondition'. :param pulumi.Input['ManagementEventAggregationConditionArgs'] aggregation: How the data that is collected should be combined over time and when the alert is activated. Note that for management event alerts aggregation is optional – if it is not provided then any event will cause the alert to activate. :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.ManagementEventRuleCondition') if aggregation is not None: pulumi.set(__self__, "aggregation", aggregation) if data_source is not None: pulumi.set(__self__, "data_source", data_source) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.ManagementEventRuleCondition'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def aggregation(self) -> Optional[pulumi.Input['ManagementEventAggregationConditionArgs']]: """ How the data that is collected should be combined over time and when the alert is activated. Note that for management event alerts aggregation is optional – if it is not provided then any event will cause the alert to activate. """ return pulumi.get(self, "aggregation") @aggregation.setter def aggregation(self, value: Optional[pulumi.Input['ManagementEventAggregationConditionArgs']]): pulumi.set(self, "aggregation", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @pulumi.input_type class RetentionPolicyArgs: def __init__(__self__, *, days: pulumi.Input[int], enabled: pulumi.Input[bool]): """ Specifies the retention policy for the log. :param pulumi.Input[int] days: the number of days for the retention in days. A value of 0 will retain the events indefinitely. :param pulumi.Input[bool] enabled: a value indicating whether the retention policy is enabled. """ pulumi.set(__self__, "days", days) pulumi.set(__self__, "enabled", enabled) @property @pulumi.getter def days(self) -> pulumi.Input[int]: """ the number of days for the retention in days. A value of 0 will retain the events indefinitely. """ return pulumi.get(self, "days") @days.setter def days(self, value: pulumi.Input[int]): pulumi.set(self, "days", value) @property @pulumi.getter def enabled(self) -> pulumi.Input[bool]: """ a value indicating whether the retention policy is enabled. """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: pulumi.Input[bool]): pulumi.set(self, "enabled", value) @pulumi.input_type class RuleEmailActionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], custom_emails: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, send_to_service_owners: Optional[pulumi.Input[bool]] = None): """ Specifies the action to send email when the rule condition is evaluated. The discriminator is always RuleEmailAction in this case. :param pulumi.Input[str] odata_type: specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleEmailAction'. :param pulumi.Input[Sequence[pulumi.Input[str]]] custom_emails: the list of administrator's custom email addresses to notify of the activation of the alert. :param pulumi.Input[bool] send_to_service_owners: Whether the administrators (service and co-administrators) of the service should be notified when the alert is activated. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleEmailAction') if custom_emails is not None: pulumi.set(__self__, "custom_emails", custom_emails) if send_to_service_owners is not None: pulumi.set(__self__, "send_to_service_owners", send_to_service_owners) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleEmailAction'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="customEmails") def custom_emails(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ the list of administrator's custom email addresses to notify of the activation of the alert. """ return pulumi.get(self, "custom_emails") @custom_emails.setter def custom_emails(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "custom_emails", value) @property @pulumi.getter(name="sendToServiceOwners") def send_to_service_owners(self) -> Optional[pulumi.Input[bool]]: """ Whether the administrators (service and co-administrators) of the service should be notified when the alert is activated. """ return pulumi.get(self, "send_to_service_owners") @send_to_service_owners.setter def send_to_service_owners(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "send_to_service_owners", value) @pulumi.input_type class RuleManagementEventClaimsDataSourceArgs: def __init__(__self__, *, email_address: Optional[pulumi.Input[str]] = None): """ The claims for a rule management event data source. :param pulumi.Input[str] email_address: the email address. """ if email_address is not None: pulumi.set(__self__, "email_address", email_address) @property @pulumi.getter(name="emailAddress") def email_address(self) -> Optional[pulumi.Input[str]]: """ the email address. """ return pulumi.get(self, "email_address") @email_address.setter def email_address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "email_address", value) @pulumi.input_type class RuleManagementEventDataSourceArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], claims: Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']] = None, event_name: Optional[pulumi.Input[str]] = None, event_source: Optional[pulumi.Input[str]] = None, legacy_resource_id: Optional[pulumi.Input[str]] = None, level: Optional[pulumi.Input[str]] = None, metric_namespace: Optional[pulumi.Input[str]] = None, operation_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_location: Optional[pulumi.Input[str]] = None, resource_provider_name: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None, sub_status: Optional[pulumi.Input[str]] = None): """ A rule management event data source. The discriminator fields is always RuleManagementEventDataSource in this case. :param pulumi.Input[str] odata_type: specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleManagementEventDataSource'. :param pulumi.Input['RuleManagementEventClaimsDataSourceArgs'] claims: the claims. :param pulumi.Input[str] event_name: the event name. :param pulumi.Input[str] event_source: the event source. :param pulumi.Input[str] legacy_resource_id: the legacy resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. :param pulumi.Input[str] level: the level. :param pulumi.Input[str] metric_namespace: the namespace of the metric. :param pulumi.Input[str] operation_name: The name of the operation that should be checked for. If no name is provided, any operation will match. :param pulumi.Input[str] resource_group_name: the resource group name. :param pulumi.Input[str] resource_location: the location of the resource. :param pulumi.Input[str] resource_provider_name: the resource provider name. :param pulumi.Input[str] resource_uri: the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. :param pulumi.Input[str] status: The status of the operation that should be checked for. If no status is provided, any status will match. :param pulumi.Input[str] sub_status: the substatus. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleManagementEventDataSource') if claims is not None: pulumi.set(__self__, "claims", claims) if event_name is not None: pulumi.set(__self__, "event_name", event_name) if event_source is not None: pulumi.set(__self__, "event_source", event_source) if legacy_resource_id is not None: pulumi.set(__self__, "legacy_resource_id", legacy_resource_id) if level is not None: pulumi.set(__self__, "level", level) if metric_namespace is not None: pulumi.set(__self__, "metric_namespace", metric_namespace) if operation_name is not None: pulumi.set(__self__, "operation_name", operation_name) if resource_group_name is not None: pulumi.set(__self__, "resource_group_name", resource_group_name) if resource_location is not None: pulumi.set(__self__, "resource_location", resource_location) if resource_provider_name is not None: pulumi.set(__self__, "resource_provider_name", resource_provider_name) if resource_uri is not None: pulumi.set(__self__, "resource_uri", resource_uri) if status is not None: pulumi.set(__self__, "status", status) if sub_status is not None: pulumi.set(__self__, "sub_status", sub_status) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleManagementEventDataSource'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def claims(self) -> Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']]: """ the claims. """ return pulumi.get(self, "claims") @claims.setter def claims(self, value: Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']]): pulumi.set(self, "claims", value) @property @pulumi.getter(name="eventName") def event_name(self) -> Optional[pulumi.Input[str]]: """ the event name. """ return pulumi.get(self, "event_name") @event_name.setter def event_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "event_name", value) @property @pulumi.getter(name="eventSource") def event_source(self) -> Optional[pulumi.Input[str]]: """ the event source. """ return pulumi.get(self, "event_source") @event_source.setter def event_source(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "event_source", value) @property @pulumi.getter(name="legacyResourceId") def legacy_resource_id(self) -> Optional[pulumi.Input[str]]: """ the legacy resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "legacy_resource_id") @legacy_resource_id.setter def legacy_resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "legacy_resource_id", value) @property @pulumi.getter def level(self) -> Optional[pulumi.Input[str]]: """ the level. """ return pulumi.get(self, "level") @level.setter def level(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "level", value) @property @pulumi.getter(name="metricNamespace") def metric_namespace(self) -> Optional[pulumi.Input[str]]: """ the namespace of the metric. """ return pulumi.get(self, "metric_namespace") @metric_namespace.setter def metric_namespace(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "metric_namespace", value) @property @pulumi.getter(name="operationName") def operation_name(self) -> Optional[pulumi.Input[str]]: """ The name of the operation that should be checked for. If no name is provided, any operation will match. """ return pulumi.get(self, "operation_name") @operation_name.setter def operation_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operation_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> Optional[pulumi.Input[str]]: """ the resource group name. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="resourceLocation") def resource_location(self) -> Optional[pulumi.Input[str]]: """ the location of the resource. """ return pulumi.get(self, "resource_location") @resource_location.setter def resource_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_location", value) @property @pulumi.getter(name="resourceProviderName") def resource_provider_name(self) -> Optional[pulumi.Input[str]]: """ the resource provider name. """ return pulumi.get(self, "resource_provider_name") @resource_provider_name.setter def resource_provider_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_provider_name", value) @property @pulumi.getter(name="resourceUri") def resource_uri(self) -> Optional[pulumi.Input[str]]: """ the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "resource_uri") @resource_uri.setter def resource_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_uri", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[str]]: """ The status of the operation that should be checked for. If no status is provided, any status will match. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "status", value) @property @pulumi.getter(name="subStatus") def sub_status(self) -> Optional[pulumi.Input[str]]: """ the substatus. """ return pulumi.get(self, "sub_status") @sub_status.setter def sub_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "sub_status", value) @pulumi.input_type class RuleMetricDataSourceArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], legacy_resource_id: Optional[pulumi.Input[str]] = None, metric_name: Optional[pulumi.Input[str]] = None, metric_namespace: Optional[pulumi.Input[str]] = None, resource_location: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None): """ A rule metric data source. The discriminator value is always RuleMetricDataSource in this case. :param pulumi.Input[str] odata_type: specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleMetricDataSource'. :param pulumi.Input[str] legacy_resource_id: the legacy resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. :param pulumi.Input[str] metric_name: the name of the metric that defines what the rule monitors. :param pulumi.Input[str] metric_namespace: the namespace of the metric. :param pulumi.Input[str] resource_location: the location of the resource. :param pulumi.Input[str] resource_uri: the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleMetricDataSource') if legacy_resource_id is not None: pulumi.set(__self__, "legacy_resource_id", legacy_resource_id) if metric_name is not None: pulumi.set(__self__, "metric_name", metric_name) if metric_namespace is not None: pulumi.set(__self__, "metric_namespace", metric_namespace) if resource_location is not None: pulumi.set(__self__, "resource_location", resource_location) if resource_uri is not None: pulumi.set(__self__, "resource_uri", resource_uri) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleMetricDataSource'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="legacyResourceId") def legacy_resource_id(self) -> Optional[pulumi.Input[str]]: """ the legacy resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "legacy_resource_id") @legacy_resource_id.setter def legacy_resource_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "legacy_resource_id", value) @property @pulumi.getter(name="metricName") def metric_name(self) -> Optional[pulumi.Input[str]]: """ the name of the metric that defines what the rule monitors. """ return pulumi.get(self, "metric_name") @metric_name.setter def metric_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "metric_name", value) @property @pulumi.getter(name="metricNamespace") def metric_namespace(self) -> Optional[pulumi.Input[str]]: """ the namespace of the metric. """ return pulumi.get(self, "metric_namespace") @metric_namespace.setter def metric_namespace(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "metric_namespace", value) @property @pulumi.getter(name="resourceLocation") def resource_location(self) -> Optional[pulumi.Input[str]]: """ the location of the resource. """ return pulumi.get(self, "resource_location") @resource_location.setter def resource_location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_location", value) @property @pulumi.getter(name="resourceUri") def resource_uri(self) -> Optional[pulumi.Input[str]]: """ the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "resource_uri") @resource_uri.setter def resource_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_uri", value) @pulumi.input_type class RuleWebhookActionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, service_uri: Optional[pulumi.Input[str]] = None): """ Specifies the action to post to service when the rule condition is evaluated. The discriminator is always RuleWebhookAction in this case. :param pulumi.Input[str] odata_type: specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleWebhookAction'. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. :param pulumi.Input[str] service_uri: the service uri to Post the notification when the alert activates or resolves. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleWebhookAction') if properties is not None: pulumi.set(__self__, "properties", properties) if service_uri is not None: pulumi.set(__self__, "service_uri", service_uri) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. Expected value is 'Microsoft.Azure.Management.Insights.Models.RuleWebhookAction'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "properties", value) @property @pulumi.getter(name="serviceUri") def service_uri(self) -> Optional[pulumi.Input[str]]: """ the service uri to Post the notification when the alert activates or resolves. """ return pulumi.get(self, "service_uri") @service_uri.setter def service_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_uri", value) @pulumi.input_type class ThresholdRuleConditionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], operator: pulumi.Input['ConditionOperator'], threshold: pulumi.Input[float], data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None, time_aggregation: Optional[pulumi.Input['TimeAggregationOperator']] = None, window_size: Optional[pulumi.Input[str]] = None): """ A rule condition based on a metric crossing a threshold. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.ThresholdRuleCondition'. :param pulumi.Input['ConditionOperator'] operator: the operator used to compare the data and the threshold. :param pulumi.Input[float] threshold: the threshold value that activates the alert. :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. :param pulumi.Input['TimeAggregationOperator'] time_aggregation: the time aggregation operator. How the data that are collected should be combined over time. The default value is the PrimaryAggregationType of the Metric. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.ThresholdRuleCondition') pulumi.set(__self__, "operator", operator) pulumi.set(__self__, "threshold", threshold) if data_source is not None: pulumi.set(__self__, "data_source", data_source) if time_aggregation is not None: pulumi.set(__self__, "time_aggregation", time_aggregation) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). Expected value is 'Microsoft.Azure.Management.Insights.Models.ThresholdRuleCondition'. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def operator(self) -> pulumi.Input['ConditionOperator']: """ the operator used to compare the data and the threshold. """ return pulumi.get(self, "operator") @operator.setter def operator(self, value: pulumi.Input['ConditionOperator']): pulumi.set(self, "operator", value) @property @pulumi.getter def threshold(self) -> pulumi.Input[float]: """ the threshold value that activates the alert. """ return pulumi.get(self, "threshold") @threshold.setter def threshold(self, value: pulumi.Input[float]): pulumi.set(self, "threshold", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @property @pulumi.getter(name="timeAggregation") def time_aggregation(self) -> Optional[pulumi.Input['TimeAggregationOperator']]: """ the time aggregation operator. How the data that are collected should be combined over time. The default value is the PrimaryAggregationType of the Metric. """ return pulumi.get(self, "time_aggregation") @time_aggregation.setter def time_aggregation(self, value: Optional[pulumi.Input['TimeAggregationOperator']]): pulumi.set(self, "time_aggregation", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value)
32965056a1b7a8f68e29a888ddf16692219f8202
6f2675eee55b7ebc5adf9c2176ced8cb59fc64d4
/dataInterKingdee/interDebug.py
f5873ce9a0c97db0f8dd05bed388d20b019fdced
[]
no_license
wildmanwang/proDataInter
8c2b65fa96ad45b21165d997b1769a28e12fc42a
f5a1f1fb195c66bf586bd999465c7e3b16453369
refs/heads/master
2023-06-07T11:57:16.763251
2023-06-03T08:54:56
2023-06-03T08:54:56
157,559,747
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
# -*- coding:utf-8 -*- """ """ __author__ = "Cliff.wang" import os from interConfig import Settings #from interProcess import InterProcess from interControl import InterControl if __name__ == "__main__": try: path = os.path.abspath(os.path.dirname(__file__)) sett = Settings(path, "config") inter = InterControl(sett) inter.interInit() if 1 == 2: # 传输基础资料、业务数据 inter.interBusiData() elif 1 == 2: # 获取部门ID和用户ID pass except Exception as e: print(str(e))
a44db705bdc58cdcecdcd4b8200bf85a3d08fc83
b15d2787a1eeb56dfa700480364337216d2b1eb9
/samples/cli/accelbyte_py_sdk_cli/group/_get_group_join_request_public_v2.py
32ba9735f4911a02f803f73dab69c4e7a260ec52
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
2,611
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template_file: python-cli-command.j2 # AGS Group Service (2.18.1) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import import json import yaml from typing import Optional import click from .._utils import login_as as login_as_internal from .._utils import to_dict from accelbyte_py_sdk.api.group import ( get_group_join_request_public_v2 as get_group_join_request_public_v2_internal, ) from accelbyte_py_sdk.api.group.models import ModelsGetMemberRequestsListResponseV1 from accelbyte_py_sdk.api.group.models import ResponseErrorResponse @click.command() @click.argument("group_id", type=str) @click.option("--limit", "limit", type=int) @click.option("--offset", "offset", type=int) @click.option("--namespace", type=str) @click.option("--login_as", type=click.Choice(["client", "user"], case_sensitive=False)) @click.option("--login_with_auth", type=str) @click.option("--doc", type=bool) def get_group_join_request_public_v2( group_id: str, limit: Optional[int] = None, offset: Optional[int] = None, namespace: Optional[str] = None, login_as: Optional[str] = None, login_with_auth: Optional[str] = None, doc: Optional[bool] = None, ): if doc: click.echo(get_group_join_request_public_v2_internal.__doc__) return x_additional_headers = None if login_with_auth: x_additional_headers = {"Authorization": login_with_auth} else: login_as_internal(login_as) result, error = get_group_join_request_public_v2_internal( group_id=group_id, limit=limit, offset=offset, namespace=namespace, x_additional_headers=x_additional_headers, ) if error: raise Exception(f"getGroupJoinRequestPublicV2 failed: {str(error)}") click.echo(yaml.safe_dump(to_dict(result), sort_keys=False)) get_group_join_request_public_v2.operation_id = "getGroupJoinRequestPublicV2" get_group_join_request_public_v2.is_deprecated = False
c2d9305312002748edb2d0e5470f541784c71352
3fc00c49c6b5a5d3edb4f5a97a86ecc8f59a3035
/shared_models/test/test_api.py
ae9465bb6b3b41416d097c202b1034470650a378
[]
no_license
yc-hu/dm_apps
9e640ef08da8ecefcd7008ee2d4f8f268ec9062e
483f855b19876fd60c0017a270df74e076aa0d8b
refs/heads/master
2023-04-07T13:13:55.999058
2021-04-12T10:19:21
2021-04-12T10:19:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,264
py
from django.test import tag from django.urls import reverse from rest_framework import status from shared_models.test import SharedModelsFactoryFloor as FactoryFloor from shared_models.test.common_tests import CommonTest class TestUserAPIListView(CommonTest): def setUp(self): super().setUp() self.user = self.get_and_login_user() self.test_url = reverse("user-list", args=None) @tag("api", 'user') def test_url(self): self.assert_correct_url("user-list", test_url_args=None, expected_url_path=f"/api/shared/users/") @tag("api", 'user') def test_get(self): # PERMISSIONS # authenticated users response = self.client.get(self.test_url) self.assertEqual(response.status_code, status.HTTP_200_OK) # unauthenticated users self.client.logout() response = self.client.get(self.test_url) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) # TODO: build up this test! # # RESPONSE DATA # valid_user = None # self.get_and_login_user(user=None) # response = self.client.get(self.test_url) # self.assertEqual(len(response.data), 1) # self.assertEqual(response.data[0]["id"], self.instance.id) # # or, for lists with pagination... # self.assertEqual(len(data["results"]), 1) # self.assertEqual(data["results"][0]["id"], self.instance.id) # # # check query params # object = FactoryFloor.UserFactory() # data = self.client.get(self.test_url+f"?={object.id}").data # keys.extend([ # "", # ]) # self.assert_dict_has_keys(data, keys) @tag("api", 'user') def test_unallowed_methods_only(self): restricted_statuses = [status.HTTP_405_METHOD_NOT_ALLOWED, status.HTTP_403_FORBIDDEN] self.assertIn(self.client.put(self.test_url, data=None).status_code, restricted_statuses) self.assertIn(self.client.delete(self.test_url, data=None).status_code, restricted_statuses) self.assertIn(self.client.post(self.test_url, data=None).status_code, restricted_statuses) self.assertIn(self.client.patch(self.test_url, data=None).status_code, restricted_statuses)
270875ed2be025781a975375972379cf8f211f80
dfad28a2e1a0199c0117e551fd1e31804804d5b9
/app/auth/views.py
d2df7a97666207276aa6648ef9f85af4a25d98bc
[ "MIT" ]
permissive
wilbrone/Pitches
c33d60b142b43de9ccf60a86cf59acbc262c6711
b20d234fd930a6551f26d9cf863c6d1631b62bc2
refs/heads/master
2022-12-09T08:02:08.631177
2019-11-25T23:47:13
2019-11-25T23:47:13
223,405,696
0
0
MIT
2022-12-08T06:55:48
2019-11-22T13:09:30
Python
UTF-8
Python
false
false
1,583
py
from flask import render_template,redirect,url_for, flash,request from flask_login import login_user,logout_user,login_required from . import auth from ..models import User from .forms import LoginForm,RegistrationForm from .. import db from ..email import mail_message @auth.route('/login',methods=['GET','POST']) def login(): login_form = LoginForm() if login_form.validate_on_submit(): user = User.query.filter_by(email = login_form.email.data).first() if user is not None and user.verify_password(login_form.password.data): login_user(user,login_form.remember.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or Password') title = "One Minute Perfect Pitch login" return render_template('auth/login.html',login_form = login_form,title=title) @auth.route('/register',methods = ["GET","POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email = form.email.data, username = form.username.data,full_name= form.full_name.data,password = form.password.data) # saving the data db.session.add(user) db.session.commit() mail_message("Welcome to One Minute Perfect Pitch","email/welcome_user",user.email,user=user) return redirect(url_for('auth.login')) title = "New Account" return render_template('auth/register.html',registration_form = form) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
9f04557904bdeeb5a5b0b9e265605429682ff434
a867b1c9da10a93136550c767c45e0d8c98f5675
/G_11_RemoveKthNode.py
408aa2a8a0bdec884c65ff5c410cb79045ed72b6
[]
no_license
Omkar02/FAANG
f747aacc938bf747129b8ff35b6648fb265d95b6
ee9b245aa83ea58aa67954ab96442561dbe68d06
refs/heads/master
2023-03-25T19:45:08.153403
2021-03-28T07:13:08
2021-03-28T07:13:08
280,783,785
1
0
null
null
null
null
UTF-8
Python
false
false
941
py
import __main__ as main from Helper.TimerLogger import CodeTimeLogging fileName = main.__file__ fileName = fileName.split('\\')[-1] CodeTimeLogging(Flag='F', filename=fileName, Tag='Linked-List', Difficult='Medium') from Datastruct.masterLinkedList import l arr = [1, 2, 3, 4, 5, 6] # arr = [1, 2] for i in arr: l.insertStart(i) # l.traverseList() def removeKNodeFromEnd(head, k): print(f'Removed {k} node: ',end = '') first = head second = head count = 1 while count <= k and second is not None: second = second.nextNode count += 1 if second is None: head.data = first.nextNode.data head.nextNode = first.nextNode.nextNode l.traverseList() return while second.nextNode is not None: second = second.nextNode first = first.nextNode first.nextNode = first.nextNode.nextNode l.traverseList() removeKNodeFromEnd(l.getHead(), 3)
c119687b11afe9b22fca389be33ff9b8a804cf22
9322c270beaf1019328bf14c836d167145d45946
/raoteh/sampler/tests/test_graph_transform.py
af315325cddb45fdc81619cf995488fd53736710
[]
no_license
argriffing/raoteh
13d198665a7a3968aad8d41ddad12c08d36d57b4
cdc9cce8fdad0a79dbd90dfcdec6feece8fc931f
refs/heads/master
2021-01-22T19:41:25.828133
2014-03-10T22:25:48
2014-03-10T22:25:48
10,087,018
1
0
null
null
null
null
UTF-8
Python
false
false
17,511
py
"""Test graph algorithms relevant to Rao-Teh sampling. """ from __future__ import division, print_function, absolute_import import itertools from collections import defaultdict import networkx as nx from numpy.testing import (run_module_suite, TestCase, assert_equal, assert_allclose, assert_, assert_raises) from raoteh.sampler._graph_transform import ( get_edge_bisected_graph, get_node_to_state, remove_redundant_nodes, get_redundant_degree_two_nodes, get_chunk_tree, add_trajectories, ) # This is an official itertools recipe. def powerset(iterable): "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)" s = list(iterable) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s)+1)) class TestGraphTransform(TestCase): def test_get_edge_bisected_graph(self): # Create an example from the networkx documentation. G = nx.Graph() G.add_weighted_edges_from([ (1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)]) # Create a new graph by bisecting the edges of the old graph. H = get_edge_bisected_graph(G) # The edge-bisected graph has twice as many edges. assert_equal(len(G.edges()) * 2, len(H.edges())) assert_equal(G.size()*2, H.size()) # The sum of edge weights is unchanged. assert_allclose(G.size(weight='weight'), H.size(weight='weight')) # The node set of the edge-bisected graph includes that of the original. assert_(set(G) <= set(H)) # The added nodes are each greater than each original node. assert_(max(G) < min(set(H) - set(G))) def test_get_chunk_tree(self): # Define the original tree and its event nodes. # This is taken from a doodle in my notebook, # and it is not particularly cleverly chosen. tree_edges = ( (0, 1), (1, 2), (3, 4), (4, 2), (2, 5), (5, 6), (6, 7), (7, 8), (8, 9), (7, 10), (10, 11), (11, 12), (12, 13), (13, 14), (13, 15), (15, 16), (16, 17), ) event_nodes = {1, 4, 5, 6, 8, 10, 11, 12, 15, 16} # Create a tree by specifying the edges. T = nx.Graph() T.add_edges_from(tree_edges) # Run tests, using all possible roots and also a default root. potential_roots = list(T) + [None] for root in potential_roots: # Construct the chunk tree and its associated node maps. results = get_chunk_tree(T, event_nodes) chunk_tree, non_event_map, event_map = results # The nodes pointed to by the non_event_map # should be nodes in the chunk_tree. assert_(set(non_event_map.values()) <= set(T)) # The output tree should have 11 nodes and 10 edges. assert_equal(len(chunk_tree), 11) assert_equal(len(chunk_tree.edges()), 10) # The 8 non-event nodes should map to 7 unique chunk nodes. assert_equal(len(non_event_map), 8) assert_equal(len(set(non_event_map.values())), 7) # The non-event nodes 13 and 14 should map to the same chunk. assert_equal(non_event_map[13], non_event_map[14]) def test_remove_redundant_nodes_short_path(self): # Define a short path with one redundant # and one non-redundant internal node. T = nx.Graph() T.add_edge(0, 1, state=0, weight=1) T.add_edge(1, 2, state=0, weight=1) T.add_edge(2, 3, state=1, weight=1) # Try removing a redundant node. redundant_nodes = {1} T_out = remove_redundant_nodes(T, redundant_nodes) assert_equal(set(T_out), set(T) - redundant_nodes) assert_equal(T_out[0][2]['weight'], 2) # Fail at removing a non-redundant node. redundant_nodes = {2} assert_raises( Exception, remove_redundant_nodes, T, redundant_nodes) def test_remove_redundant_nodes_long_path(self): # Define a path with multiple consecutive redundant internal nodes. T = nx.Graph() T.add_edge(0, 1, state=0, weight=1.1) T.add_edge(1, 2, state=0, weight=1.2) T.add_edge(2, 3, state=1, weight=1.3) T.add_edge(3, 4, state=1, weight=1.4) T.add_edge(4, 5, state=1, weight=1.5) T.add_edge(5, 6, state=1, weight=1.6) T.add_edge(6, 7, state=1, weight=1.7) # Get the original weighted size. # This is the sum of weights of all edges. original_size = T.size(weight='weight') # Check the set of redundant nodes. all_redundant_nodes = {1, 3, 4, 5, 6} obs_nodes = get_redundant_degree_two_nodes(T) assert_equal(all_redundant_nodes, obs_nodes) # Try removing all valid combinations of redundant nodes. for redundant_node_tuple in powerset(all_redundant_nodes): redundant_nodes = set(redundant_node_tuple) T_out = remove_redundant_nodes(T, redundant_nodes) assert_equal(set(T_out), set(T) - redundant_nodes) assert_allclose(T_out.size(weight='weight'), original_size) def test_remove_redundant_nodes_small_tree(self): # Define a short path with one redundant # and one non-redundant internal node. T = nx.Graph() T.add_edge(0, 1, state=0, weight=1) T.add_edge(0, 2, state=0, weight=1) T.add_edge(0, 3, state=0, weight=1) # None of the nodes are considered redundant in the current # implementation, because each node is of degree 1 or 3. for redundant_nodes in ({0}, {1}, {2}, {3}): assert_raises( Exception, remove_redundant_nodes, T, redundant_nodes) def test_remove_redundant_nodes_medium_tree(self): # Define a tree. T = nx.Graph() T.add_edge(0, 10, state=0, weight=1.1) T.add_edge(0, 20, state=0, weight=1.2) T.add_edge(0, 30, state=0, weight=1.3) T.add_edge(20, 21, state=0, weight=1.4) T.add_edge(30, 31, state=0, weight=1.5) T.add_edge(31, 32, state=0, weight=1.6) # Get the original weighted size. # This is the sum of weights of all edges. original_size = T.size(weight='weight') # Try removing all valid combinations of redundant nodes. for redundant_node_tuple in powerset((20, 30, 31)): redundant_nodes = set(redundant_node_tuple) T_out = remove_redundant_nodes(T, redundant_nodes) assert_equal(set(T_out), set(T) - redundant_nodes) assert_allclose(T_out.size(weight='weight'), original_size) class TestAddTrajectories(TestCase): def test_compatible_trees(self): T_base = nx.Graph() T_base.add_edge(0, 1, weight=0.1) T_base.add_edge(0, 2, weight=0.1) T_base.add_edge(0, 3, weight=0.1) T_traj = nx.Graph() T_traj.add_edge(0, 1, state=0, weight=0.1) T_traj.add_edge(0, 20, state=0, weight=0.05) T_traj.add_edge(20, 2, state=0, weight=0.05) T_traj.add_edge(0, 3, state=0, weight=0.1) root = 0 T_merged, dummy_nodes = add_trajectories(T_base, root, [T_traj]) # There should not be any dummy nodes. assert_equal(dummy_nodes, set()) # The merged tree should have four edges. assert_equal(T_base.size(), 3) assert_equal(T_merged.size(), 4) # The total weight of the merged tree # should be the same as the total weight of the base tree. assert_allclose( T_merged.size(weight='weight'), T_base.size(weight='weight')) def test_incompatible_trees(self): T_base = nx.Graph() T_base.add_edge(0, 1, weight=0.1) T_base.add_edge(0, 2, weight=0.1) T_base.add_edge(0, 3, weight=0.1) root = 0 # Define a trajectory that is bad because it adds a high degree node. traj = nx.Graph() traj.add_edge(0, 4, state=0, weight=0.1) traj.add_edge(4, 20, state=0, weight=0.05) traj.add_edge(20, 2, state=0, weight=0.05) traj.add_edge(4, 3, state=0, weight=0.1) assert_raises(ValueError, add_trajectories, T_base, root, [traj]) # Define a trajectory that is bad because it adds a leaf node. traj = nx.Graph() traj.add_edge(0, 1, state=0, weight=0.1) traj.add_edge(0, 20, state=0, weight=0.05) traj.add_edge(20, 2, state=0, weight=0.05) traj.add_edge(0, 3, state=0, weight=0.05) traj.add_edge(3, 4, state=0, weight=0.05) assert_raises(ValueError, add_trajectories, T_base, root, [traj]) # Define a trajectory that is bad # because it flips around the nodes in a way that is incompatible # with the original tree topology. traj = nx.Graph() traj.add_edge(1, 0, state=0, weight=0.1) traj.add_edge(1, 2, state=0, weight=0.1) traj.add_edge(1, 3, state=0, weight=0.1) assert_raises(ValueError, add_trajectories, T_base, root, [traj]) def test_complicated_incompatible_trees(self): T_base = nx.Graph() T_base.add_edge(0, 1, weight=0.1) T_base.add_edge(0, 2, weight=0.1) T_base.add_edge(0, 3, weight=0.1) T_base.add_edge(3, 4, weight=0.1) T_base.add_edge(3, 5, weight=0.1) root = 0 # Define a trajectory that is bad # because the topology is different in a way that cannot be detected # by checking the degrees of the nodes. traj = nx.Graph() traj.add_edge(3, 1, state=0, weight=0.1) traj.add_edge(3, 2, state=0, weight=0.1) traj.add_edge(3, 0, state=0, weight=0.1) traj.add_edge(0, 4, state=0, weight=0.1) traj.add_edge(0, 5, state=0, weight=0.1) assert_raises(ValueError, add_trajectories, T_base, root, [traj]) def test_edge_to_event_times(self): # The merged tree will look like the following, # where 'x' is a node in the original tree, # and 'a' is a node introduced by trajectory merging, # and 'o' is an event node. # # x # /|\ # / | \ # | | | # o o x # | | | # x | | (0, 0) # x | # x # /| (0, 0) # / a # / | (0, 10) # | a # x | (5, 10) # a # | (5, 0) # o # | (5, 0) # a # | (0, 0) # x # T = nx.Graph() T.add_edge(0, 1, weight=0.1) T.add_edge(0, 2, weight=0.1) T.add_edge(0, 3, weight=0.1) T.add_edge(3, 4, weight=0.1) T.add_edge(3, 5, weight=0.1) T.add_edge(4, 6, weight=0.1) root = 0 # Define a trajectory with an extra segment along one edge. traj_a = nx.Graph() traj_a.add_edge(0, 1, weight=0.1, state=0) traj_a.add_edge(0, 2, weight=0.1, state=0) traj_a.add_edge(0, 3, weight=0.1, state=0) traj_a.add_edge(3, 4, weight=0.1, state=0) traj_a.add_edge(3, 5, weight=0.1, state=0) traj_a.add_edge(4, 10, weight=0.025, state=0) traj_a.add_edge(10, 11, weight=0.05, state=5) traj_a.add_edge(11, 6, weight=0.025, state=0) # Define a trajectory with an interleaving segment. traj_b = nx.Graph() traj_b.add_edge(0, 1, weight=0.1, state=0) traj_b.add_edge(0, 2, weight=0.1, state=0) traj_b.add_edge(0, 3, weight=0.1, state=0) traj_b.add_edge(3, 4, weight=0.1, state=0) traj_b.add_edge(3, 5, weight=0.1, state=0) traj_b.add_edge(4, 20, weight=0.02, state=0) traj_b.add_edge(20, 21, weight=0.02, state=10) traj_b.add_edge(21, 6, weight=0.06, state=0) # Define a few event times along directed edges, # where the edge direction radiates away from the root. edge_to_event_times = { (0, 1) : {0.06}, (0, 2) : {0.02}, (4, 6) : {0.045}, } # Construct the merged tree. T_merged, event_nodes = add_trajectories( T, root, [traj_a, traj_b], edge_to_event_times=edge_to_event_times) # After this point are some tests. # Check the total number of nodes in the merged tree. assert_equal(len(T_merged.edges()), 13) # Check the multiset of edge state pairs in the merged tree. state_pair_to_count = defaultdict(int) for edge in nx.bfs_edges(T_merged, root): na, nb = edge states = T_merged[na][nb]['states'] state_pair = tuple(states) assert_equal(len(state_pair), 2) state_pair_to_count[state_pair] += 1 assert_equal(state_pair_to_count[(0, 10)], 1) assert_equal(state_pair_to_count[(5, 10)], 1) assert_equal(state_pair_to_count[(5, 0)], 2) expected_state_pairs = set([(0, 0), (0, 10), (5, 10), (5, 0)]) assert_equal(set(state_pair_to_count), expected_state_pairs) # Check that the number of event nodes is correct. assert_equal(len(edge_to_event_times), len(event_nodes)) # The merged tree must contain all of the nodes of the original tree. missing_nodes = set(T) - set(T_merged) assert_equal(missing_nodes, set()) # The base tree, the two trajectories, and the merged tree # should all have the same weighted size. weighted_size = T.size(weight='weight') assert_allclose(traj_a.size(weight='weight'), weighted_size) assert_allclose(traj_b.size(weight='weight'), weighted_size) assert_allclose(T_merged.size(weight='weight'), weighted_size) # Each event node must be adjacent to exactly two edges # in the merged tree, and both of these edges # must be annotated with the same sequence of state values. for node in event_nodes: assert_equal(T_merged.degree(node), 2) na, nb = T_merged[node] na_states = T_merged[node][na]['states'] nb_states = T_merged[node][nb]['states'] assert_equal(na_states, nb_states) # Print the edges of the merged tree. """ print() print('--- add_trajectories test output ---') print(event_nodes) for edge in nx.bfs_edges(T_merged, root): na, nb = edge weight = T_merged[na][nb]['weight'] states = T_merged[na][nb]['states'] print(na, nb, weight, states) print() """ """ 0 8 0.02 [0, 0] 0 3 0.1 [0, 0] 0 7 0.06 [0, 0] 8 2 0.08 [0, 0] 3 4 0.1 [0, 0] 3 5 0.1 [0, 0] 7 1 0.04 [0, 0] 4 9 0.02 [0, 0] 9 10 0.005 [0, 10] 10 11 0.015 [5, 10] 11 12 0.005 [5, 0] 12 13 0.03 [5, 0] 13 6 0.025 [0, 0] """ class TestGetNodeToState(TestCase): def test_get_node_to_state_simple_tree_identical_states(self): T = nx.Graph() T.add_edge(0, 1, state=42) T.add_edge(1, 2, state=42) all_query_nodes = {0, 1, 2} for query_nodes in powerset(all_query_nodes): nnodes = len(query_nodes) node_to_state = get_node_to_state(T, query_nodes) assert_equal(set(node_to_state), set(query_nodes)) assert_equal(set(node_to_state.values()), set([42]*nnodes)) def test_get_node_to_state_simple_tree_different_states(self): T = nx.Graph() T.add_edge(0, 1, state=42) T.add_edge(1, 2, state=42) T.add_edge(2, 3, state=99) # Some of the nodes have defined states. query_nodes = {0, 1, 3} node_to_state = get_node_to_state(T, query_nodes) assert_equal(node_to_state, {0:42, 1:42, 3:99}) # But node 2 does not have a defined state # because it represents a state transition. query_nodes = {0, 1, 2, 3} assert_raises(ValueError, get_node_to_state, T, query_nodes) def test_complicated_tree(self): T = nx.Graph() T.add_edge(0, 1, state=2) T.add_edge(0, 2, state=2) T.add_edge(0, 3, state=2) T.add_edge(3, 4, state=10) T.add_edge(4, 5, state=10) T.add_edge(4, 6, state=10) # Most of the nodes have defined states. query_nodes = {0, 1, 2, 4, 5, 6} expected_node_to_state = {0:2, 1:2, 2:2, 4:10, 5:10, 6:10} node_to_state = get_node_to_state(T, query_nodes) assert_equal(node_to_state, expected_node_to_state) # One of the nodes is a transition without a defined state. query_nodes = {0, 1, 2, 3, 4, 5, 6} assert_raises(ValueError, get_node_to_state, T, query_nodes) if __name__ == '__main__': run_module_suite()
7b5a81f5531be906c6c75c6ea6ee45ae41407e10
188950fb7b1fce4840b41e1e9454f0133a8d75ce
/src/Server/Controller/guess_controller.py
a2518f5c1fdefce113aeaec0371319b7b16a82fa
[]
no_license
cloew/WordGuessAngular
3f5c6a1e0e14f6e905ec78a618b606ff3cb3e798
0d889cd3bb9cafe35a6e7e2ccba97914a26825b9
refs/heads/master
2021-01-01T05:53:26.776161
2014-09-01T14:55:39
2014-09-01T14:55:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
from Server.game_wrapper import GameWrapper from kao_flask.controllers.json_controller import JSONController class GuessController(JSONController): """ Controller to allow a player to guess the word for the current Round """ def performWithJSON(self, gameId): game = GameWrapper(id=gameId) results = game.guess(self.json['guesses']) return game.toJSON()
45bd5115c7a3405823961182633a568318a1d2ef
7234e6c72eb3f09c4a66dbe91f00fdf7742f010f
/algo/arrays/binarysearch/shiftedBinarySearch.py
fc901758206f1662bac912102f0b1b7740f4186f
[]
no_license
srinathalla/python
718ac603473e7bed060ba66aa3d39a90cf7ef69d
b6c546070b1738350303df3939888d1b0e90e89b
refs/heads/master
2021-06-13T06:11:42.653311
2021-02-19T06:01:41
2021-02-19T06:01:41
150,374,828
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
# # T.C : O(logn) S.C : O(1) # # def shiftedBinarySearch(array, target): l = 0 r = len(array)-1 while l < r: m = (l + r)//2 if array[m] == target: return m elif array[m] < array[r]: if array[m] < target and target <= array[r]: l = m + 1 else: r = m - 1 elif array[m] > array[r]: if array[l] <= target and target < array[m]: r = m - 1 else: l = m + 1 return l if array[l] == target else -1 print(shiftedBinarySearch([5, 23, 111, 1], 111)) print(shiftedBinarySearch([45, 61, 71, 72, 73, 0, 1, 21, 33, 45], 33))
cd83a748401283dfbf2bddb5137bb34063e8eb43
1825283527f5a479204708feeaf55f4ab6d1290b
/leetcode/python/50/50.powx-n.py
c24eb3b7c7bcc033fb5286680caebed06bbe3c0f
[]
no_license
frankieliu/problems
b82c61d3328ffcc1da2cbc95712563355f5d44b5
911c6622448a4be041834bcab25051dd0f9209b2
refs/heads/master
2023-01-06T14:41:58.044871
2019-11-24T03:47:22
2019-11-24T03:47:22
115,065,956
1
0
null
2023-01-04T07:25:52
2017-12-22T02:06:57
HTML
UTF-8
Python
false
false
802
py
# # @lc app=leetcode id=50 lang=python3 # # [50] Pow(x, n) # # https://leetcode.com/problems/powx-n/description/ # # algorithms # Medium (27.38%) # Total Accepted: 281K # Total Submissions: 1M # Testcase Example: '2.00000\n10' # # Implement pow(x, n), which calculates x raised to the power n (x^n). # # Example 1: # # # Input: 2.00000, 10 # Output: 1024.00000 # # # Example 2: # # # Input: 2.10000, 3 # Output: 9.26100 # # # Example 3: # # # Input: 2.00000, -2 # Output: 0.25000 # Explanation: 2^-2 = 1/2^2 = 1/4 = 0.25 # # # Note: # # # -100.0 < x < 100.0 # n is a 32-bit signed integer, within the range [−2^31, 2^31 − 1] # # # class Solution: def myPow(self, x, n): """ :type x: float :type n: int :rtype: float """
2c72fc48e73c2fcf5db27a84c63d3341b2696983
ed7fde0483a4836bfc9ef3ab887cf1220559bfc7
/masters_scripts/EC17_get_allele_dist_1.py
80bb3023acd365ccf7683c6816f51994e190d9c1
[]
no_license
cizydorczyk/python_scripts
326b3142a3c6ce850237e8b13e229854699c6359
b914dcff60727bbfaa2b32e1a634ca9ca354eeeb
refs/heads/master
2023-05-11T14:29:44.548144
2023-05-05T19:39:28
2023-05-05T19:39:28
116,588,201
0
0
null
null
null
null
UTF-8
Python
false
false
1,850
py
from sys import argv import numpy as np import itertools script, inputallelicdepth, outputfile = argv print "Working on file: " + inputallelicdepth.split('/')[-1] with open(inputallelicdepth, 'r') as infile1: lines = infile1.read().splitlines() del lines[0] proportions_breakdown = {1:[], 2:[], 3:[], 4:[]} proportions = [] for i in lines: line = i.strip().split('\t') ad = [float(j) for j in line[-1].split(',')] adsum = sum(ad) numbases = len(ad[0:-1]) if adsum != 0.0: for k in ad[0:-1]: proportions_breakdown[numbases].append(round((k/adsum),2)) proportions.append(round((k/adsum),2)) elif adsum == 0.0: # proportions[numbases].append(0.00) continue # Count total proportions: proportions_dict = {} for i in np.arange(0,1.01, 0.01): proportions_dict[str(i)] = proportions.count(i) # Count proportions with 2, 3, and 4 bases separately: proportions_2_dict = {} proportions_3_dict = {} proportions_4_dict = {} for i in np.arange(0,1.01, 0.01): proportions_2_dict[str(i)] = proportions_breakdown[2].count(i) for i in np.arange(0,1.01, 0.01): proportions_3_dict[str(i)] = proportions_breakdown[3].count(i) for i in np.arange(0,1.01, 0.01): proportions_4_dict[str(i)] = proportions_breakdown[4].count(i) with open(outputfile, 'w') as outfile1: outfile1.write('proportion\ttotal_count\tcount_2\tcount_3\tcount_4\n') for keyt, key2, key3, key4 in itertools.izip(sorted(proportions_dict.keys()), sorted(proportions_2_dict.keys()), sorted(proportions_3_dict.keys()), sorted(proportions_4_dict.keys())): outfile1.write(str(keyt) + '\t' + str(proportions_dict[keyt]) + '\t' + str(proportions_2_dict[key2]) + '\t' + str(proportions_3_dict[key3]) + '\t' + str(proportions_4_dict[key4]) + '\n') # for key, value in sorted(proportions_dict.iteritems()): # outfile1.write(str(key) + '\t' + str(value) + '\n')
88267b9d5edb8a48d3ceb3ce7f9c307f1a46e175
55965f592cb7e915cd68bd371ee1a6ad2a6e0247
/libmngmtsys.py
79288d746d1e8cdb428259f150297c49244931cb
[]
no_license
Upasna4/Training
2b5b57fc3e5229304860f153db93d912a44472bf
33c6eeb565c422e40ea88d50af787f58b9f0da6d
refs/heads/master
2020-08-05T03:50:36.280910
2019-10-02T16:36:09
2019-10-02T16:36:09
212,383,151
0
0
null
null
null
null
UTF-8
Python
false
false
4,733
py
memberData = {} bookData = {} borrowData = {} m_id = 101 b_id = 201 print("Library Management System\n" "1.Add Member\n" "2.Add Book\n" "3.Book Borrowing\n" "4.Book Returning\n" "5.Member Status\n" "6.Book Status\n" "7.Exit") while True: choice = int(input("Enter Choice: ")) if choice == 1: print("Add Member Program") loop1=True while(loop1): name = input("Member Name: ") memberData.update({m_id: name}) #updates value of key and val print("Member Added. Member id is: ", m_id) m_id += 1 #incrementing value of m_id while (True): choice = input("Add more member (Y/N): ").lower().strip() if choice == 'y': break elif choice == 'n': loop1 = False break else: print("invalid choice") loop1=False continue elif choice == 2: print("Add Book Program") while True: name = input("Book Name: ") qty = int(input("enter quantity")) bookData.update({b_id: [name, qty]}) #dict ko update krna print("Book Added. Book id is: ", b_id) b_id += 1 choice = input("Add more member (Y/N): ").lower().strip() if choice == 'y': continue elif choice == 'n': break elif choice == 3: print("Book Borrowing Program") while True: m_id = int(input("Member id: ")) if m_id in memberData: #checks if member id in present in memberData dict b_name = input("Book Name: ") for b_id, b_name_qty in bookData.items(): #when we want both key and value if b_name_qty[0] == b_name: #indexing is done coz we have a list here..at [0] we have name in list if b_name_qty[1] > 0: #here we compare quantity as it is on 1st index..we see whether it is >0 or not borrowData.update({m_id: b_id}) #update dict bookData[b_id][1] -= 1 #decrement quantity of books break else: print("Book out of stock") else: print("Book not present") choice = input("Add more member (Y/N): ").lower().strip() if choice == 'y': continue elif choice == 'n': break elif choice == 4: print("Book Returning Program") m_id = int(input("Member Id: ")) name = input("Book Name: ") for b_id, b_name in borrowData.items(): if b_name == name: bookData[b_id][1] += 1 borrowData.pop(m_id) #person is returning book so book will pop from borrowData dict borrowData.update({m_id: b_id}) #dict is updated break else: print("Book not present") choice = input("Add more member (Y/N): ").lower().strip() if choice == 'y': continue elif choice == 'n': break elif choice == 5: print("Member Status Program") m_id = int(input("Member Id: ")) if m_id in memberData: #to check mem status we check m_id is in memberData and borrowData or not if m_id in borrowData: #if b_id is in borrowData then borrowData m se b_id nikalo b_id = borrowData[m_id] #bid nikal ra h dict m se print("Member Name: ", memberData[m_id]) #the value of this key is name print("Allow Book Name: ", bookData[b_id][0]) #the val of this is bookname elif choice == 6: print("Book Status Program") b_id = int(input("Book Id: ")) for m_id, m_name in memberData.items(): #valuefetch if b_id in borrowData: b_id = borrowData[m_id] print("Member name:",memberData[m_id]) print("Book name:",bookData[b_id][0]) print("Book issue to user:", memberData[m_id]) elif choice == 7: break else: print("invalid choice")
03e79839472824d49009eb882c9be785ea788325
1c6283303ceb883add8de4ee07c5ffcfc2e93fab
/Jinja2/lib/python3.7/site-packages/uhd_restpy/testplatform/sessions/ixnetwork/globals/globals.py
d957b41f406b4b6a75b7525b1800f265fe66875b
[]
no_license
pdobrinskiy/devcore
0f5b3dfc2f3bf1e44abd716f008a01c443e14f18
580c7df6f5db8c118990cf01bc2b986285b9718b
refs/heads/main
2023-07-29T20:28:49.035475
2021-09-14T10:02:16
2021-09-14T10:02:16
405,919,390
0
0
null
null
null
null
UTF-8
Python
false
false
11,362
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from uhd_restpy.base import Base from uhd_restpy.files import Files from typing import List, Any, Union class Globals(Base): """This object holds the configurable global values of IxNetwork for interfaces and the protocol stack. The Globals class encapsulates a required globals resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'globals' _SDM_ATT_MAP = { 'ApplicationName': 'applicationName', 'BuildNumber': 'buildNumber', 'ConfigFileName': 'configFileName', 'ConfigSummary': 'configSummary', 'IsConfigDifferent': 'isConfigDifferent', 'PersistencePath': 'persistencePath', 'ProductVersion': 'productVersion', 'RpfPort': 'rpfPort', 'Username': 'username', } _SDM_ENUM_MAP = { } def __init__(self, parent, list_op=False): super(Globals, self).__init__(parent, list_op) @property def AppErrors(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.apperrors.apperrors.AppErrors): An instance of the AppErrors class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.apperrors.apperrors import AppErrors if self._properties.get('AppErrors', None) is not None: return self._properties.get('AppErrors') else: return AppErrors(self) @property def Diagnostics(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.diagnostics.diagnostics.Diagnostics): An instance of the Diagnostics class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.diagnostics.diagnostics import Diagnostics if self._properties.get('Diagnostics', None) is not None: return self._properties.get('Diagnostics') else: return Diagnostics(self)._select() @property def Interfaces(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.interfaces.interfaces.Interfaces): An instance of the Interfaces class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.interfaces.interfaces import Interfaces if self._properties.get('Interfaces', None) is not None: return self._properties.get('Interfaces') else: return Interfaces(self)._select() @property def Licensing(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.licensing.licensing.Licensing): An instance of the Licensing class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.licensing.licensing import Licensing if self._properties.get('Licensing', None) is not None: return self._properties.get('Licensing') else: return Licensing(self)._select() @property def PortTestOptions(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.porttestoptions.porttestoptions.PortTestOptions): An instance of the PortTestOptions class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.porttestoptions.porttestoptions import PortTestOptions if self._properties.get('PortTestOptions', None) is not None: return self._properties.get('PortTestOptions') else: return PortTestOptions(self)._select() @property def Preferences(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.preferences.preferences.Preferences): An instance of the Preferences class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.preferences.preferences import Preferences if self._properties.get('Preferences', None) is not None: return self._properties.get('Preferences') else: return Preferences(self)._select() @property def ProgressDialog(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.progressdialog.progressdialog.ProgressDialog): An instance of the ProgressDialog class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.progressdialog.progressdialog import ProgressDialog if self._properties.get('ProgressDialog', None) is not None: return self._properties.get('ProgressDialog') else: return ProgressDialog(self)._select() @property def ProtocolStack(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.protocolstack.protocolstack.ProtocolStack): An instance of the ProtocolStack class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.protocolstack.protocolstack import ProtocolStack if self._properties.get('ProtocolStack', None) is not None: return self._properties.get('ProtocolStack') else: return ProtocolStack(self)._select() @property def Testworkflow(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.testworkflow.testworkflow.Testworkflow): An instance of the Testworkflow class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.testworkflow.testworkflow import Testworkflow if self._properties.get('Testworkflow', None) is not None: return self._properties.get('Testworkflow') else: return Testworkflow(self)._select() @property def Topology(self): """ Returns ------- - obj(uhd_restpy.testplatform.sessions.ixnetwork.globals.topology.topology_678a8dc80c9b4b2b5c741072eab4305d.Topology): An instance of the Topology class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from uhd_restpy.testplatform.sessions.ixnetwork.globals.topology.topology_678a8dc80c9b4b2b5c741072eab4305d import Topology if self._properties.get('Topology', None) is not None: return self._properties.get('Topology') else: return Topology(self)._select() @property def ApplicationName(self): # type: () -> str """ Returns ------- - str: """ return self._get_attribute(self._SDM_ATT_MAP['ApplicationName']) @property def BuildNumber(self): # type: () -> str """ Returns ------- - str: The IxNetwork software build number. """ return self._get_attribute(self._SDM_ATT_MAP['BuildNumber']) @property def ConfigFileName(self): # type: () -> str """ Returns ------- - str: The name of the configuration file. """ return self._get_attribute(self._SDM_ATT_MAP['ConfigFileName']) @property def ConfigSummary(self): """ Returns ------- - list(dict(arg1:str,arg2:str,arg3:list[dict(arg1:str,arg2:str)])): A high level summary description of the currently loaded configuration """ return self._get_attribute(self._SDM_ATT_MAP['ConfigSummary']) @property def IsConfigDifferent(self): # type: () -> bool """ Returns ------- - bool: (Read only) If true, then the current IxNetwork configuration is different than the configuration that was previously loaded. """ return self._get_attribute(self._SDM_ATT_MAP['IsConfigDifferent']) @property def PersistencePath(self): # type: () -> str """ Returns ------- - str: This attribute returns a directory of the IxNetwork API server machine, where users can drop their files from the client scripts using IxNetwork APIs. To Put files in this directory, users do not require to run IxNetwork API server in administrative mode """ return self._get_attribute(self._SDM_ATT_MAP['PersistencePath']) @property def ProductVersion(self): # type: () -> str """ Returns ------- - str: """ return self._get_attribute(self._SDM_ATT_MAP['ProductVersion']) @property def RpfPort(self): # type: () -> int """ Returns ------- - number: """ return self._get_attribute(self._SDM_ATT_MAP['RpfPort']) @property def Username(self): # type: () -> str """ Returns ------- - str: The name of the user. """ return self._get_attribute(self._SDM_ATT_MAP['Username'])
6cdaa4435e0e15d1f90e91b2cdd9468848c117bf
9a258d81d612b855e244e4a03594ebe312ff3268
/webapp/tests/test_urls.py
8a82dcab33b5fefed07c162dd7d7b024a90d642f
[ "MIT" ]
permissive
erischon/p10_digitalocean
19fb39f7442e0eec669fbd1ef5b2d49464c37493
a850dfb97470da57117fa1dfc62c4614a602fe40
refs/heads/master
2023-04-27T16:52:04.158502
2021-05-15T22:44:34
2021-05-15T22:44:34
360,518,773
0
1
null
null
null
null
UTF-8
Python
false
false
427
py
from django.test import SimpleTestCase from django.urls import reverse, resolve from webapp.views import home_page, mentions class WebappTestUrls(SimpleTestCase): def test_home_url_is_resolved(self): url = reverse('home') self.assertEqual(resolve(url).func, home_page) def test_mentions_url_is_resolved(self): url = reverse('mentions') self.assertEqual(resolve(url).func, mentions)
e4fbb87cc08aaac02be49eda20357561270994c1
61863d68d64c9319cd49d280b20d2c2a40957363
/r2lab.inria.fr/users/views.py
b878f3e298472f439face96a6b9b5c151f7c9383
[]
no_license
sfehlandt/r2lab
fd781637d258a7fc40043f4f8cddef9ec672b563
b4f8ddd84327c426b20fe8f772a4e5e47e0cce31
refs/heads/master
2021-01-22T18:46:29.143500
2017-03-08T17:38:29
2017-03-08T17:38:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
from .plcapi_users import UsersProxy
793fabc710ab61e60bc4ad701ef6d70a64ebffcc
5d0f91e3a4c75375a2ba9b12cf3cbd4350c2ccdf
/geopdf/__init__.py
11df3297614cf7a212aab066ac7d3ed89a52d353
[ "MIT" ]
permissive
garnertb/geopdf
8fac6419e62db9d880d48bb4b202cfbf11729629
175073cb44a308513bdb6db32092dd806029afc0
refs/heads/master
2021-01-10T18:50:22.802931
2015-06-09T13:53:43
2015-06-09T13:53:43
29,563,939
1
4
null
null
null
null
UTF-8
Python
false
false
6,121
py
# -*- coding: utf-8 -*- """Adds GeoPDF functionality to ReportLab""" from reportlab.lib.colors import black from reportlab.pdfbase.pdfdoc import PDFArray, PDFDictionary, PDFName, PDFString from reportlab.pdfbase import pdfdoc from reportlab.pdfgen import canvas class GeoPDFBase(object, PDFDictionary): """ Base class for GeoPDF dicts. """ def __init__(self, dict=None): """dict should be namestring to value eg "a": 122 NOT pdfname to value NOT "/a":122""" if dict is None: self.dict = {} else: self.dict = dict.copy() self.set_defaults() def set_defaults(self): """ A hook for creating default values. """ return def is_valid(self): """ Test the validity of the dict. """ return True class Projection(GeoPDFBase): """ A Projection dict. """ def set_defaults(self): self.dict.setdefault('ProjectionType', PDFString('GEOGRAPHIC')) self.dict.setdefault('Type', PDFName('Projection')) class LGIDict(GeoPDFBase): """ The LGI dict. """ def set_defaults(self): self.dict.setdefault('Type', PDFString('LGIDict')) self.dict.setdefault('Version', PDFString('2.1')) self.dict.setdefault('Projection', Projection({'Datum': PDFString('WE')})) def is_valid(self): if not any(map(lambda key: key in self.dict, 'Registration CTM'.split())): return False for key, value in self.dict.items(): if hasattr(value, 'is_valid') and getattr(value, 'is_valid')() is False: return False return True class GeoCanvas(canvas.Canvas, object): LGIDict = PDFArray([]) def _startPage(self): # now get ready for the next one super(GeoCanvas, self)._startPage() self.LGIDict = PDFArray([]) def showPage(self): """Close the current page and possibly start on a new page.""" # ensure a space at the end of the stream - Acrobat does # not mind, but Ghostscript dislikes 'Qendstream' even if # the length marker finishes after 'Q' pageWidth = self._pagesize[0] pageHeight = self._pagesize[1] cM = self._cropMarks code = self._code if cM: bw = max(0, getattr(cM, 'borderWidth', 36)) if bw: markLast = getattr(cM, 'markLast', 1) ml = min(bw, max(0, getattr(cM, 'markLength', 18))) mw = getattr(cM, 'markWidth', 0.5) mc = getattr(cM, 'markColor', black) mg = 2 * bw - ml cx0 = len(code) if ml and mc: self.saveState() self.setStrokeColor(mc) self.setLineWidth(mw) self.lines([ (bw, 0, bw, ml), (pageWidth + bw, 0, pageWidth + bw, ml), (bw, pageHeight + mg, bw, pageHeight + 2 * bw), (pageWidth + bw, pageHeight + mg, pageWidth + bw, pageHeight + 2 * bw), (0, bw, ml, bw), (pageWidth + mg, bw, pageWidth + 2 * bw, bw), (0, pageHeight + bw, ml, pageHeight + bw), (pageWidth + mg, pageHeight + bw, pageWidth + 2 * bw, pageHeight + bw) ]) self.restoreState() if markLast: # if the marks are to be drawn after the content # save the code we just drew for later use L = code[cx0:] del code[cx0:] cx0 = len(code) bleedW = max(0, getattr(cM, 'bleedWidth', 0)) self.saveState() self.translate(bw - bleedW, bw - bleedW) if bleedW: # scale everything self.scale(1 + (2.0 * bleedW) / pageWidth, 1 + (2.0 * bleedW) / pageHeight) # move our translation/expansion code to the beginning C = code[cx0:] del code[cx0:] code[0:0] = C self.restoreState() if markLast: code.extend(L) pageWidth = 2 * bw + pageWidth pageHeight = 2 * bw + pageHeight code.append(' ') page = pdfdoc.PDFPage() page.__NoDefault__ = """Parent MediaBox Resources Contents CropBox Rotate Thumb Annots B Dur Hid Trans AA PieceInfo LastModified SeparationInfo ArtBox TrimBox BleedBox ID PZ Trans LGIDict""".split() page.pagewidth = pageWidth page.pageheight = pageHeight if getattr(self, 'LGIDict', None): if len(self.LGIDict.sequence) == 1: page.LGIDict = self.LGIDict.sequence[0] else: page.LGIDict = self.LGIDict page.Rotate = self._pageRotation page.hasImages = self._currentPageHasImages page.setPageTransition(self._pageTransition) page.setCompression(self._pageCompression) if self._pageDuration is not None: page.Dur = self._pageDuration strm = self._psCommandsBeforePage + [self._preamble] + code + self._psCommandsAfterPage page.setStream(strm) self._setColorSpace(page) self._setExtGState(page) self._setXObjects(page) self._setShadingUsed(page) self._setAnnotations(page) self._doc.addPage(page) if self._onPage: self._onPage(self._pageNumber) self._startPage() def addGeo(self, **kwargs): """ Adds the LGIDict to the document. :param kwargs: Keyword arguments that are used to update the LGI Dictionary. """ lgi = LGIDict() lgi.dict.update(kwargs) if not lgi.is_valid(): return pdf_obj = lgi.format(self._doc) self.LGIDict.sequence.append(pdf_obj) return pdf_obj
aa49a4d64508c9fa62c1e3f29026d15008e407f4
23611933f0faba84fc82a1bc0a85d97cf45aba99
/google-cloud-sdk/lib/surface/app/versions/delete.py
fe4a27d6de672df18ddf9b85bc4ecc86e88036db
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
KaranToor/MA450
1f112d1caccebdc04702a77d5a6cee867c15f75c
c98b58aeb0994e011df960163541e9379ae7ea06
refs/heads/master
2021-06-21T06:17:42.585908
2020-12-24T00:36:28
2020-12-24T00:36:28
79,285,433
1
1
Apache-2.0
2020-12-24T00:38:09
2017-01-18T00:05:44
Python
UTF-8
Python
false
false
4,568
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Delete command.""" import copy from googlecloudsdk.api_lib.app import appengine_api_client from googlecloudsdk.api_lib.app import service_util from googlecloudsdk.api_lib.app import version_util from googlecloudsdk.calliope import base from googlecloudsdk.core import exceptions from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io from googlecloudsdk.core.resource import resource_printer from googlecloudsdk.core.util import text class VersionsDeleteError(exceptions.Error): """Errors occurring when deleting versions.""" pass class Delete(base.DeleteCommand): """Delete a specified version. You cannot delete a version of a service that is currently receiving traffic. """ detailed_help = { 'DESCRIPTION': '{description}', 'EXAMPLES': """\ To delete a specific version of a specific service, run: $ {command} --service myService v1 To delete a named version across all services, run: $ {command} v1 To delete multiple versions of a specific service, run: $ {command} --service myService v1 v2 To delete multiple named versions across all services, run: $ {command} v1 v2 """, } @staticmethod def Args(parser): parser.add_argument('versions', nargs='+', help=( 'The versions to delete (optionally filtered by the --service flag).')) parser.add_argument('--service', '-s', help=('If specified, only delete versions from the ' 'given service.')) def Run(self, args): client = appengine_api_client.GetApiClient() services = client.ListServices() all_versions = client.ListVersions(services) # Sort versions to make behavior deterministic enough for unit testing. versions = sorted(version_util.GetMatchingVersions(all_versions, args.versions, args.service)) services_to_delete = [] for service in sorted(services): if (len([v for v in all_versions if v.service == service.id]) == len([v for v in versions if v.service == service.id])): services_to_delete.append(service) for version in copy.copy(versions): if version.service == service.id: versions.remove(version) for version in versions: if version.traffic_split: # TODO(user): mention `migrate` once it's implemented. # TODO(b/32869800): collect info on all versions before raising. raise VersionsDeleteError( 'Version [{version}] is currently serving {allocation:.2f}% of ' 'traffic for service [{service}].\n\n' 'Please move all traffic away by deploying a new version with the' '`--promote` argument or running `gcloud app services ' 'set-traffic`.'.format( version=version.id, allocation=version.traffic_split * 100, service=version.service)) if services_to_delete: word = text.Pluralize(len(services_to_delete), 'service') log.warn('Requested deletion of all existing versions for the following ' '{0}:'.format(word)) resource_printer.Print(services_to_delete, 'list', out=log.status) console_io.PromptContinue(prompt_string=( '\nYou cannot delete all versions of a service. Would you like to ' 'delete the entire {0} instead?').format(word), cancel_on_no=True) service_util.DeleteServices(client, services_to_delete) if versions: fmt = 'list[title="Deleting the following versions:"]' resource_printer.Print(versions, fmt, out=log.status) console_io.PromptContinue(cancel_on_no=True) else: if not services_to_delete: log.warn('No matching versions found.') version_util.DeleteVersions(client, versions)
e1ea4c169eac6a692d0243c2fe8e607a7bc281e2
2c74bb301f1ed83b79254944183ac5a18a639fdf
/tests/components/github/test_diagnostics.py
80dfaec24459735e6cd3e4ebee2a1a78979dbbc2
[ "Apache-2.0" ]
permissive
Adminiuga/home-assistant
5bec93007ddac1a268cc359bf7e48530c5f73b38
dcf68d768e4f628d038f1fdd6e40bad713fbc222
refs/heads/dev
2023-02-22T22:03:31.013931
2022-11-09T00:27:20
2022-11-09T00:27:20
123,929,062
5
4
Apache-2.0
2023-02-22T06:14:31
2018-03-05T14:11:09
Python
UTF-8
Python
false
false
2,437
py
"""Test GitHub diagnostics.""" import json from aiogithubapi import GitHubException from aiohttp import ClientSession from homeassistant.components.github.const import CONF_REPOSITORIES, DOMAIN from homeassistant.core import HomeAssistant from .common import setup_github_integration from tests.common import MockConfigEntry, load_fixture from tests.components.diagnostics import get_diagnostics_for_config_entry from tests.test_util.aiohttp import AiohttpClientMocker async def test_entry_diagnostics( hass: HomeAssistant, hass_client: ClientSession, mock_config_entry: MockConfigEntry, aioclient_mock: AiohttpClientMocker, ) -> None: """Test config entry diagnostics.""" mock_config_entry.options = {CONF_REPOSITORIES: ["home-assistant/core"]} response_json = json.loads(load_fixture("graphql.json", DOMAIN)) response_json["data"]["repository"]["full_name"] = "home-assistant/core" aioclient_mock.post( "https://api.github.com/graphql", json=response_json, headers=json.loads(load_fixture("base_headers.json", DOMAIN)), ) aioclient_mock.get( "https://api.github.com/rate_limit", json={"resources": {"core": {"remaining": 100, "limit": 100}}}, headers={"Content-Type": "application/json"}, ) await setup_github_integration(hass, mock_config_entry, aioclient_mock) result = await get_diagnostics_for_config_entry( hass, hass_client, mock_config_entry, ) assert result["options"]["repositories"] == ["home-assistant/core"] assert result["rate_limit"] == { "resources": {"core": {"remaining": 100, "limit": 100}} } assert ( result["repositories"]["home-assistant/core"]["full_name"] == "home-assistant/core" ) async def test_entry_diagnostics_exception( hass: HomeAssistant, hass_client: ClientSession, init_integration: MockConfigEntry, aioclient_mock: AiohttpClientMocker, ) -> None: """Test config entry diagnostics with exception for ratelimit.""" aioclient_mock.get( "https://api.github.com/rate_limit", exc=GitHubException("error"), ) result = await get_diagnostics_for_config_entry( hass, hass_client, init_integration, ) assert ( result["rate_limit"]["error"] == "Unexpected exception for 'https://api.github.com/rate_limit' with - error" )
30cc1d1fc50d0f446d0341344fbc5cfd52d78242
9df89a1652d183d8fc654acd728f9a578d6d1912
/cli/psym/graphql/query/customers.py
cc9b41c460503454a4b358260df7649396259444
[ "BSD-3-Clause" ]
permissive
duranrojasm/symphony
b37d54a134e29093edacb80442e204fc71a37fbe
55b3d0c20b669374303bafb10e9c96c734647c9c
refs/heads/main
2023-08-24T02:00:33.433220
2021-10-28T20:35:23
2021-10-28T20:35:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
#!/usr/bin/env python3 # @generated AUTOGENERATED file. Do not Change! from dataclasses import dataclass, field as _field from ...config import custom_scalars, datetime from gql_client.runtime.variables import encode_variables from gql import gql, Client from gql.transport.exceptions import TransportQueryError from functools import partial from numbers import Number from typing import Any, AsyncGenerator, Dict, List, Generator, Optional from time import perf_counter from dataclasses_json import DataClassJsonMixin, config from ..fragment.customer import CustomerFragment, QUERY as CustomerFragmentQuery # fmt: off QUERY: List[str] = CustomerFragmentQuery + [""" query CustomersQuery { customers { edges { node { ...CustomerFragment } } } } """ ] class CustomersQuery: @dataclass(frozen=True) class CustomersQueryData(DataClassJsonMixin): @dataclass(frozen=True) class CustomerConnection(DataClassJsonMixin): @dataclass(frozen=True) class CustomerEdge(DataClassJsonMixin): @dataclass(frozen=True) class Customer(CustomerFragment): pass node: Optional[Customer] edges: List[CustomerEdge] customers: Optional[CustomerConnection] # fmt: off @classmethod def execute(cls, client: Client) -> Optional[CustomersQueryData.CustomerConnection]: variables: Dict[str, Any] = {} new_variables = encode_variables(variables, custom_scalars) response_text = client.execute( gql("".join(set(QUERY))), variable_values=new_variables ) res = cls.CustomersQueryData.from_dict(response_text) return res.customers # fmt: off @classmethod async def execute_async(cls, client: Client) -> Optional[CustomersQueryData.CustomerConnection]: variables: Dict[str, Any] = {} new_variables = encode_variables(variables, custom_scalars) response_text = await client.execute_async( gql("".join(set(QUERY))), variable_values=new_variables ) res = cls.CustomersQueryData.from_dict(response_text) return res.customers
faf45b629da2c9b6f878c086d6691fdf8be9c9f5
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/CodeJamData/15/31/5.py
0b76face2b61578a0a63ae7ae2bee12b06fe88cd
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
745
py
import os import sys from collections import defaultdict problem_id = 'A' sys.setrecursionlimit(10**9) input_path = '%s.in' % problem_id output_path = '%s.out' % problem_id def read_line(): line = '' while len(line) == 0: line = input_file.readline().strip() return line def write_line(line): print line return output_file.write(line + os.linesep) def solve(): r, c, w = map(int, read_line().split(' ')) nc = (c / w) * r + (w - 1) if c % w: nc += 1 return '%s' % nc input_file = open(input_path, "r") output_file = open(output_path, "w+") T = int(read_line()) for case_id in xrange(1, T + 1): write_line("Case #%d: %s" % (case_id, solve())) input_file.close() output_file.close()
7d0b9e321fad687717ba261f712748cb57d968a3
7848ded2f7b1cf5cc33380d739e0ceee5718ffec
/imrunicorn/activity_log/migrations/0006_auto_20210218_0756.py
73aa939743b218d1fe05de35fdd5684fce3b3c7e
[]
no_license
benspelledabc/djangosite
cbed1a7da3eb6ba6eee05897ec928b350831fc6b
fa8004b20f790f56fc69e9d158128a867be700f3
refs/heads/master
2023-04-17T19:24:48.908640
2021-05-02T19:05:38
2021-05-02T19:05:38
294,891,690
1
1
null
2021-05-02T19:05:38
2020-09-12T07:16:11
Python
UTF-8
Python
false
false
474
py
# Generated by Django 3.0.7 on 2021-02-18 12:56 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('activity_log', '0005_activity_sfw'), ] operations = [ migrations.AlterModelOptions( name='activityphotovalidation', options={'ordering': ('-activity_log', 'id'), 'verbose_name': 'Activity Photo Validation', 'verbose_name_plural': 'Activity Photo Validations'}, ), ]
8e56a302ab72b021d83ee70f0ad1e776d0ef9fc3
1956b7c652d8c2e22a9edc22032a1ee5a64b6b7b
/apps/partner/migrations/016_auto__change_data_type__commission_field.py
0a86af3822ac6019bf771eb379a3bc08602d411f
[]
no_license
quantmScubism/django_oscar
939bb5fd0d4caa17747e966a0a847939646808c1
e283abbe89a0ca0488fc6442de0a0eb5b53f0149
refs/heads/master
2020-04-16T02:30:18.269115
2017-06-24T14:41:28
2017-06-24T14:41:28
95,303,096
0
0
null
null
null
null
UTF-8
Python
false
false
17,247
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from oscar.core.compat import AUTH_USER_MODEL, AUTH_USER_MODEL_NAME class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Stockrecord.commission' db.alter_column('partner_stockrecord', 'commission', self.gf('django.db.models.fields.DecimalField')(default=0, null=True, max_digits=12, decimal_places=2, blank=True)) def backwards(self, orm): # Deleting field 'Stockrecord.commission' db.delete_column('partner_stockrecord', 'commission') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'catalogue.attributeentity': { 'Meta': {'object_name': 'AttributeEntity'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'blank': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'entities'", 'to': "orm['catalogue.AttributeEntityType']"}) }, 'catalogue.attributeentitytype': { 'Meta': {'object_name': 'AttributeEntityType'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255', 'blank': 'True'}) }, 'catalogue.attributeoption': { 'Meta': {'object_name': 'AttributeOption'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'options'", 'to': "orm['catalogue.AttributeOptionGroup']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'option': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'catalogue.attributeoptiongroup': { 'Meta': {'object_name': 'AttributeOptionGroup'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'catalogue.category': { 'Meta': {'ordering': "['full_name']", 'object_name': 'Category'}, 'depth': ('django.db.models.fields.PositiveIntegerField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'full_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'numchild': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}) }, 'catalogue.option': { 'Meta': {'object_name': 'Option'}, 'code': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'Required'", 'max_length': '128'}) }, 'catalogue.product': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'Product'}, 'attributes': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.ProductAttribute']", 'through': "orm['catalogue.ProductAttributeValue']", 'symmetrical': 'False'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Category']", 'through': "orm['catalogue.ProductCategory']", 'symmetrical': 'False'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_discountable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'variants'", 'null': 'True', 'to': "orm['catalogue.Product']"}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductClass']", 'null': 'True'}), 'product_options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'rating': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'recommended_products': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Product']", 'symmetrical': 'False', 'through': "orm['catalogue.ProductRecommendation']", 'blank': 'True'}), 'related_products': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'relations'", 'blank': 'True', 'to': "orm['catalogue.Product']"}), 'score': ('django.db.models.fields.FloatField', [], {'default': '0.0', 'db_index': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}), 'status': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '128', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'upc': ('django.db.models.fields.CharField', [], {'max_length': '64', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productattribute': { 'Meta': {'ordering': "['code']", 'object_name': 'ProductAttribute'}, 'code': ('django.db.models.fields.SlugField', [], {'max_length': '128'}), 'entity_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntityType']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'option_group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOptionGroup']", 'null': 'True', 'blank': 'True'}), 'product_class': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'attributes'", 'null': 'True', 'to': "orm['catalogue.ProductClass']"}), 'required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '20'}) }, 'catalogue.productattributevalue': { 'Meta': {'object_name': 'ProductAttributeValue'}, 'attribute': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.ProductAttribute']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attribute_values'", 'to': "orm['catalogue.Product']"}), 'value_boolean': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'value_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'value_entity': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeEntity']", 'null': 'True', 'blank': 'True'}), 'value_float': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'value_integer': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'value_option': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.AttributeOption']", 'null': 'True', 'blank': 'True'}), 'value_richtext': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'value_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, 'catalogue.productcategory': { 'Meta': {'ordering': "['-is_canonical']", 'object_name': 'ProductCategory'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Category']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_canonical': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) }, 'catalogue.productclass': { 'Meta': {'ordering': "['name']", 'object_name': 'ProductClass'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'options': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['catalogue.Option']", 'symmetrical': 'False', 'blank': 'True'}), 'requires_shipping': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'track_stock': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'catalogue.productrecommendation': { 'Meta': {'object_name': 'ProductRecommendation'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'primary': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'primary_recommendations'", 'to': "orm['catalogue.Product']"}), 'ranking': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '0'}), 'recommendation': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['catalogue.Product']"}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'partner.partner': { 'Meta': {'object_name': 'Partner'}, 'code': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'blank': 'True'}), 'users': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'partners'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['auth.User']"}) }, 'partner.stockalert': { 'Meta': {'ordering': "('-date_created',)", 'object_name': 'StockAlert'}, 'date_closed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Open'", 'max_length': '128'}), 'stockrecord': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'alerts'", 'to': "orm['partner.StockRecord']"}), 'threshold': ('django.db.models.fields.PositiveIntegerField', [], {}) }, 'partner.stockrecord': { 'Meta': {'unique_together': "(('partner', 'partner_sku'),)", 'object_name': 'StockRecord'}, 'cost_price': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'low_stock_threshold': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_allocated': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'num_in_stock': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'partner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['partner.Partner']"}), 'partner_sku': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'price_currency': ('django.db.models.fields.CharField', [], {'default': "'GBP'", 'max_length': '12'}), 'price_excl_tax': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'price_retail': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '12', 'decimal_places': '2', 'blank': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'stockrecords'", 'to': "orm['catalogue.Product']"}), 'selected_partner': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True', 'default': '0', 'max_length': '128'}), } } complete_apps = ['partner']
88163ffa4c39f9c08b7cefc81c2eb7c2b7c7bed4
f146cef3f2172275c8d7f526dab92951fa50eb2c
/COURSE/group project -week9/backup -backend day3/backend/app/users/views.py
d0da6f0f9c4c96335aafbf7f3314c9c3e1305e26
[]
no_license
mehranj73/Bootcamp
fed04d3858d6d0bc1cdad94e1f05bd4f7a47c0ec
bd575cd02329ad1ce21b05350380dfbf17cbdd89
refs/heads/master
2023-02-09T06:50:00.590751
2019-08-22T18:56:02
2019-08-22T18:56:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,413
py
from django.contrib.auth.models import User from rest_framework import filters from rest_framework.generics import RetrieveAPIView, ListCreateAPIView, ListAPIView, UpdateAPIView from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from app.permissions import IsOwnerOrReadOnly from .serializers import MyProfileSerializer, UserSerializer, UserProfileSerializer, MyUserSerializer from .models import UserProfile #GET my profile # URL 'me/' class GetMyProfile(RetrieveAPIView): # allow this action only to the user who owns the profile or to admin #permission_classes = (IsAuthenticated, IsOwnerOrReadOnly) permission_classes = (IsAuthenticated, IsOwnerOrReadOnly,) queryset = UserProfile.objects.all() serializer_class = MyProfileSerializer def get(self, request, *args, **kwargs): user = self.request.user me = user.user_profile serializer = self.get_serializer(me) return Response(serializer.data) #GET: to get all users # URL 'list/' class GenericGetUsersView(ListCreateAPIView): # queryset = User.objects.all() serializer_class = UserSerializer def get_queryset(self): return User.objects.all() #GET userprofile by user ID # URL <int:pk> class GetUserProfileById(RetrieveAPIView): queryset = UserProfile.objects.all() serializer_class = UserProfileSerializer lookup_url_kwarg = 'pk' #POST: update user profile - userprofile model part (in front end to be united in same page with "update user profile-user model part) #URL 'me/update/user-profile/' class UpdateUserProfileView(UpdateAPIView): serializer_class = MyProfileSerializer queryset = UserProfile.objects.all() permission_classes = [ IsAuthenticated, IsOwnerOrReadOnly, ] def update(self, request, *args, **kwargs): user = self.request.user serializer = MyProfileSerializer(instance=user.user_profile, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response( "User profile updated.", status=200) else: return Response( "Unable to perform request. Please try again later.", status=400) #POST: update user profile - user model part (in front end to be united in same page with "update user profile-userprofile model part) #URL 'me/update/user-profile/' class UpdateUserProfileViewMyUser(UpdateAPIView): serializer_class = MyProfileSerializer queryset = User.objects.all() permission_classes = [ IsAuthenticated, IsOwnerOrReadOnly, ] def update(self, request, *args, **kwargs): user = self.request.user serializer = MyUserSerializer(instance=user, data=request.data, partial=True) if serializer.is_valid(): serializer.save() return Response( "User profile updated.", status=200) else: return Response( "Unable to perform request. Please try again later.", status=400) #GET: to search by username or first name or last name class SearchUsers(ListAPIView): """ GET: Search users in Postman add in Params key: search, value: string """ serializer_class = UserSerializer queryset = User.objects.all() filter_backends = (filters.SearchFilter,) search_fields = ('username', 'first_name', 'last_name')
92df14d9f3a7a7b18fe39ebd9d18ab9b452e8f22
44032f82bcb767175cf86aeccee623eb6cfbd40e
/server/dvaapp/task_shared.py
8733e35fc2bb8ee34d3eb83854a172bd24e95358
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
veyselkoparal/DeepVideoAnalytics
3628d41f8e06547e177a7badd20b399bd7f9028a
013f7e1efcc11f9ed5762192a91589aa6b4df359
refs/heads/master
2020-03-16T04:22:46.603989
2018-05-07T06:55:47
2018-05-07T06:55:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,253
py
import os, json, requests, copy, time, subprocess, logging, shutil, zipfile, uuid, calendar, shlex, sys, tempfile, uuid from models import Video, QueryRegion, QueryRegionIndexVector, DVAPQL, Region, Frame, Segment, IndexEntries, TEvent,\ Worker, TrainedModel from django.conf import settings from PIL import Image from . import serializers from dva.in_memory import redis_client from .fs import ensure, upload_file_to_remote, upload_video_to_remote, get_path_to_file, \ download_video_from_remote_to_local, upload_file_to_path def pid_exists(pid): try: os.kill(pid, 0) except OSError: return False else: return True def relaunch_failed_task(old, app): """ TODO: Relaunch failed tasks, requires a rethink in how we store number of attempts. Cleanup of objects created by previous task that that failed. :param old: :param app: :return: """ if old.errored: next_task = TEvent.objects.create(video=old.video, operation=old.operation, arguments=old.arguments, parent=old.parent, parent_process=old.parent_process, queue=old.queue) app.send_task(next_task.operation, args=[next_task.pk, ], queue=old.queue) else: raise ValueError("Task not errored") def launch_worker(queue_name, worker_name): p = subprocess.Popen(['./startq.py','{}'.format(queue_name)], close_fds=True) message = "launched {} with pid {} on {}".format(queue_name, p.pid, worker_name) return message def import_path(dv,path,export=False,framelist=False): if export: dv.create_directory(create_subdirs=False) output_filename = "{}/{}/{}.zip".format(settings.MEDIA_ROOT, dv.pk, dv.pk) else: dv.create_directory(create_subdirs=True) extension = path.split('?')[0].split('.')[-1] if framelist: output_filename = "{}/{}/framelist.{}".format(settings.MEDIA_ROOT, dv.pk, extension) else: output_filename = "{}/{}/video/{}.{}".format(settings.MEDIA_ROOT, dv.pk, dv.pk, extension) get_path_to_file(path,output_filename) def count_framelist(dv): frame_list = dv.get_frame_list() return len(frame_list['frames']) def load_dva_export_file(dv): video_id = dv.pk if settings.ENABLE_CLOUDFS: fname = "/{}/{}.zip".format(video_id, video_id) logging.info("Downloading {}".format(fname)) ensure(fname) zipf = zipfile.ZipFile("{}/{}/{}.zip".format(settings.MEDIA_ROOT, video_id, video_id), 'r') zipf.extractall("{}/{}/".format(settings.MEDIA_ROOT, video_id)) zipf.close() video_root_dir = "{}/{}/".format(settings.MEDIA_ROOT, video_id) old_key = None for k in os.listdir(video_root_dir): unzipped_dir = "{}{}".format(video_root_dir, k) if os.path.isdir(unzipped_dir): for subdir in os.listdir(unzipped_dir): shutil.move("{}/{}".format(unzipped_dir, subdir), "{}".format(video_root_dir)) shutil.rmtree(unzipped_dir) break with open("{}/{}/table_data.json".format(settings.MEDIA_ROOT, video_id)) as input_json: video_json = json.load(input_json) importer = serializers.VideoImporter(video=dv, json=video_json, root_dir=video_root_dir) importer.import_video() source_zip = "{}/{}.zip".format(video_root_dir, video_id) os.remove(source_zip) def export_video_to_file(video_obj,export,task_obj): if settings.ENABLE_CLOUDFS: download_video_from_remote_to_local(video_obj) video_id = video_obj.pk export_uuid = str(uuid.uuid4()) file_name = '{}.dva_export.zip'.format(export_uuid) try: os.mkdir("{}/{}".format(settings.MEDIA_ROOT, 'exports')) except: pass shutil.copytree('{}/{}'.format(settings.MEDIA_ROOT, video_id), "{}/exports/{}".format(settings.MEDIA_ROOT, export_uuid)) a = serializers.VideoExportSerializer(instance=video_obj) data = copy.deepcopy(a.data) data['labels'] = serializers.serialize_video_labels(video_obj) with file("{}/exports/{}/table_data.json".format(settings.MEDIA_ROOT, export_uuid), 'w') as output: json.dump(data, output) zipper = subprocess.Popen(['zip', file_name, '-r', '{}'.format(export_uuid)], cwd='{}/exports/'.format(settings.MEDIA_ROOT)) zipper.wait() shutil.rmtree("{}/exports/{}".format(settings.MEDIA_ROOT, export_uuid)) local_path = "{}/exports/{}".format(settings.MEDIA_ROOT, file_name) path = task_obj.arguments.get('path', None) if path: if not path.endswith('dva_export.zip'): if path.endswith('.zip'): path = path.replace('.zip', '.dva_export.zip') else: path = '{}.dva_export.zip'.format(path) upload_file_to_path(local_path, path) os.remove(local_path) export.url = path else: if settings.ENABLE_CLOUDFS: upload_file_to_remote("/exports/{}".format(file_name)) export.url = "{}/exports/{}".format(settings.MEDIA_URL,file_name).replace('//exports','/exports') def build_queryset(args,video_id=None,query_id=None,target=None,filters=None): if target is None: target = args['target'] if filters is None: kwargs = args.get('filters',{}) else: kwargs = filters if video_id: kwargs['video_id'] = video_id if target == 'frames': queryset = Frame.objects.all().filter(**kwargs) elif target == 'regions': queryset = Region.objects.all().filter(**kwargs) elif target == 'query': kwargs['pk'] = query_id queryset = DVAPQL.objects.all().filter(**kwargs) elif target == 'index_entries': queryset = IndexEntries.objects.all().filter(**kwargs) elif target == 'query_regions': queryset = QueryRegion.objects.all().filter(**kwargs) elif target == 'query_region_index_vectors': queryset = QueryRegionIndexVector.objects.all().filter(**kwargs) elif target == 'segments': queryset = Segment.objects.filter(**kwargs) else: raise ValueError("target {} not found".format(target)) return queryset,target def load_frame_list(dv,event_id,frame_index__gte=0,frame_index__lt=-1): """ Add ability load frames & regions specified in a JSON file and then automatically retrieve them in a distributed manner them through CPU workers. """ frame_list = dv.get_frame_list() temp_path = "{}.jpg".format(uuid.uuid1()).replace('-', '_') video_id = dv.pk frame_index_to_regions = {} frames = [] for i, f in enumerate(frame_list['frames']): if i == frame_index__lt: break elif i >= frame_index__gte: try: get_path_to_file(f['path'],temp_path) im = Image.open(temp_path) w, h = im.size im.close() except: logging.exception("Failed to get {}".format(f['path'])) pass else: df, drs = serializers.import_frame_json(f,i,event_id,video_id,w,h) frame_index_to_regions[i] = drs frames.append(df) shutil.move(temp_path,df.path()) fids = Frame.objects.bulk_create(frames,1000) regions = [] for f in fids: region_list = frame_index_to_regions[f.frame_index] for dr in region_list: dr.frame_id = f.id regions.append(dr) Region.objects.bulk_create(regions,1000) def download_and_get_query_path(start): local_path = "{}/queries/{}_{}.png".format(settings.MEDIA_ROOT, start.pk, start.parent_process.uuid) if not os.path.isfile(local_path): source_path = "/queries/{}.png".format(start.parent_process.uuid) image_data = redis_client.get(source_path) if image_data: with open(local_path, 'w') as fh: fh.write(str(image_data)) else: ensure(source_path,safe=True) shutil.copy("{}{}".format(settings.MEDIA_ROOT,source_path),local_path) return local_path def download_and_get_query_region_path(start,regions): query_local_path = download_and_get_query_path(start) imdata = Image.open(query_local_path) rpaths = [] for r in regions: region_path = "{}/queries/region_{}_{}.png".format(settings.MEDIA_ROOT, r.pk, start.parent_process.uuid) img2 = imdata.crop((r.x, r.y, r.x + r.w, r.y + r.h)) img2.save(region_path) rpaths.append(region_path) return rpaths def get_query_dimensions(start): query_local_path = download_and_get_query_path(start) imdata = Image.open(query_local_path) width, height = imdata.size return width, height def crop_and_get_region_path(df,images,temp_root): if not df.materialized: frame_path = df.frame_path() if frame_path not in images: images[frame_path] = Image.open(frame_path) img2 = images[frame_path].crop((df.x, df.y, df.x + df.w, df.y + df.h)) region_path = df.path(temp_root=temp_root) img2.save(region_path) else: return df.path() return region_path def ensure_files(queryset, target): dirnames = {} if target == 'frames': for k in queryset: ensure(k.path(media_root=''),dirnames) elif target == 'regions': for k in queryset: if k.materialized: ensure(k.path(media_root=''), dirnames) else: ensure(k.frame_path(media_root=''), dirnames) elif target == 'segments': for k in queryset: ensure(k.path(media_root=''),dirnames) elif target == 'indexes': for k in queryset: ensure(k.npy_path(media_root=''), dirnames) else: raise NotImplementedError def import_frame_regions_json(regions_json,video,event_id): """ Import regions from a JSON with frames identified by immutable identifiers such as filename/path :param regions_json: :param video: :param event_id: :return: """ video_id = video.pk filename_to_pk = {} frame_index_to_pk = {} if video.dataset: # For dataset frames are identified by subdir/filename filename_to_pk = { df.original_path(): (df.pk, df.frame_index) for df in Frame.objects.filter(video_id=video_id)} else: # For videos frames are identified by frame index frame_index_to_pk = { df.frame_index: (df.pk, df.segment_index) for df in Frame.objects.filter(video_id=video_id)} regions = [] not_found = 0 for k in regions_json: if k['target'] == 'filename': fname = k['filename'] if not fname.startswith('/'): fname = '/{}'.format(fname) if fname in filename_to_pk: pk,findx = filename_to_pk[fname] regions.append(serializers.import_region_json(k,frame_index=findx, frame_id=pk, video_id=video_id, event_id=event_id)) else: not_found += 1 elif k['target'] == 'index': findx = k['frame_index'] pk,sindx = frame_index_to_pk[findx] regions.append(serializers.import_region_json(k, frame_index=findx, frame_id=pk, video_id=video_id, event_id=event_id)) else: raise ValueError('invalid target: {}'.format(k['target'])) logging.info("{} filenames not found in the dataset".format(not_found)) Region.objects.bulk_create(regions,1000) def get_sync_paths(dirname,task_id): if dirname == 'indexes': f = [k.npy_path(media_root="") for k in IndexEntries.objects.filter(event_id=task_id) if k.features_file_name] elif dirname == 'frames': f = [k.path(media_root="") for k in Frame.objects.filter(event_id=task_id)] elif dirname == 'segments': f = [] for k in Segment.objects.filter(event_id=task_id): f.append(k.path(media_root="")) elif dirname == 'regions': e = TEvent.objects.get(pk=task_id) if e.operation == 'perform_transformation': # TODO: transformation events merely materialize, fix this fargs = copy.deepcopy(e.arguments['filters']) fargs['materialized'] = True fargs['video_id'] = e.video_id f = [k.path(media_root="") for k in Region.objects.filter(**fargs)] else: f = [k.path(media_root="") for k in Region.objects.filter(event_id=task_id) if k.materialized] else: raise NotImplementedError,"dirname : {} not configured".format(dirname) return f def upload(dirname,event_id,video_id): if dirname: fnames = get_sync_paths(dirname, event_id) logging.info("Syncing {} containing {} files".format(dirname, len(fnames))) for fp in fnames: upload_file_to_remote(fp) if fnames: # if files are uploaded, sleep three seconds to ensure that files are available before launching time.sleep(3) else: upload_video_to_remote(video_id)
f027e2fef6d80f6cee29c3c460427d5ff4690d31
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_073/ch18_2020_03_09_13_23_07_056737.py
5580c305acffebf7d622cc6890b83f53b3de7ef7
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
def verifica_idade(idade): if idade>=21: return 'liberado EUA e BRASILl' if idad>=1 and idade<18: return 'Não está liberado' else: return 'esta liberado BRASIL'
14652fb38016928ddefc74fa43e0a8c3e8ada405
63b0fed007d152fe5e96640b844081c07ca20a11
/ABC/ABC200~ABC299/ABC245/d2.py
39575b7b194f9b94d10060fb30a0af67e9572081
[]
no_license
Nikkuniku/AtcoderProgramming
8ff54541c8e65d0c93ce42f3a98aec061adf2f05
fbaf7b40084c52e35c803b6b03346f2a06fb5367
refs/heads/master
2023-08-21T10:20:43.520468
2023-08-12T09:53:07
2023-08-12T09:53:07
254,373,698
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
def polydiv(xs, ys): xn = len(xs) yn = len(ys) zs = xs.copy() qs = [] for _ in range(xn - yn + 1): temp = zs[0] // ys[0] for i in range(yn): zs[i] -= temp * ys[i] qs.append(temp) zs = zs[1:] if qs == []: qs = [0.] return qs n,m=map(int,input().split()) a=list(map(int,input().split())) c=list(map(int,input().split())) a=list(reversed(a)) c=list(reversed(c)) ans=[] p=polydiv(c,a) for i in range(len(p)): ans.append(int(p[i])) ans=list(reversed(ans)) print(*ans)
843d8fb2fb90c80110e6a1f94182e4440e561463
7a07d957316172fe78b341c6f5215df2ccdb24f6
/assignment/EasyAI_all_program.py
c6fbae635760a88672fcd1070d47c597c1a75d57
[]
no_license
chandraprakashh/Python_with_AI
87ff4655c44eef9d0459cf0f2ceedabde88b0f1f
6d76eeea94e0cb7402330a2beea1fc4a7ab73e29
refs/heads/master
2020-07-18T18:18:06.463302
2019-12-11T08:20:12
2019-12-11T08:20:12
206,291,055
0
0
null
null
null
null
UTF-8
Python
false
false
2,008
py
# -*- coding: utf-8 -*- """ Created on Sun Oct 13 22:50:57 2019 @author: user """ # Code => 1 from easyAI import TwoPlayersGame, Human_Player, AI_Player, Negamax class GameOfBones( TwoPlayersGame ): def __init__(self, players): self.players = players self.pile = 20 self.nplayer = 1 def possible_moves(self): return ['1','2','3'] def make_move(self,move): self.pile -= int(move) def win(self): return self.pile<=0 def is_over(self): return self.win() def show(self): print ("%d bones left in the pile" % self.pile) def scoring(self): return 100 if game.win() else 0 ai = Negamax(13) game = GameOfBones( [ Human_Player(), AI_Player(ai) ] ) history = game.play() # Code => 2 from easyAI import TwoPlayersGame, AI_Player, Negamax from easyAI.Player import Human_Player class GameController(TwoPlayersGame): def __init__(self, players): self.players = players self.nplayer = 1 self.board = [0] * 9 def possible_moves(self): return [a + 1 for a, b in enumerate(self.board) if b == 0] def make_move(self, move): self.board[int(move) - 1] = self.nplayer def loss_condition(self): possible_combinations = [[1,2,3], [4,5,6], [7,8,9], [1,4,7], [2,5,8], [3,6,9], [1,5,9], [3,5,7]] return any([all([(self.board[i-1] == self.nopponent) for i in combination]) for combination in possible_combinations]) def is_over(self): return (self.possible_moves() == []) or self.loss_condition() def show(self): print('\n'+'\n'.join([' '.join([['. ', 'O', 'X'][self.board[3*j + i]] for i in range(3)]) for j in range(3)])) def scoring(self): return -100 if self.loss_condition() else 0 if __name__ == "__main__": algorithm = Negamax(7) GameController([Human_Player(), AI_Player(algorithm)]).play()
7678c21d2e011e118d23455f36514f5d73e162d6
8454441f899c3beb9fcea26cffc2f4c3cf75ff6a
/common/code/snippets/py/flask-get-header.py
a040c637e90ee07be18f7cd6ed97246a58f26c1e
[ "MIT" ]
permissive
nevesnunes/env
4a837e8fcf4a6a597992103e0a0c3d0db93e1c78
f2cd7d884d46275a2fcb206eeeac5a8e176b12af
refs/heads/master
2023-08-22T15:49:35.897161
2023-08-15T13:51:08
2023-08-15T13:51:08
199,400,869
9
6
MIT
2023-06-22T10:59:51
2019-07-29T07:24:47
Python
UTF-8
Python
false
false
630
py
#!/usr/bin/env python3 from flask import Flask, request app = Flask(__name__) @app.route("/") def hello(): return "Hello!" @app.route("/<path:text>", methods=["GET", "POST"]) def echo(text): return f"You said (len = {len(text)}): {bytes(text, 'latin-1')}" @app.after_request def after(response): red_foo = b"\x1b\x5b\x33\x31\x6d\x66\x6f\x6f\x1b\x28\x42\x1b\x5b\x6d" response.headers["X-Foo"] = red_foo response.headers["X-Bar"] = "".join( [chr(x) if x not in (ord("\r"), ord("\n")) else "" for x in range(0, 255)] ) return response if __name__ == "__main__": app.run(port=18123)
2ddaa2d8860b7299c64a636af17c11fbc5ebfa46
c04acaa6ee9c6a7c365e217bc78039fa9c77833e
/cuzquena/urls.py
785b7ed1280475deaaa389f28b11b64b4deafb40
[]
no_license
danielhuamani/django-la-cuzquena
0386800d640b224d94b0fac2d83f999b60d7da85
a6f4aaf44775b27328d073a65f1d0f50eff51fad
refs/heads/master
2020-12-05T04:51:01.077860
2016-09-17T13:56:58
2016-09-17T13:56:58
67,900,351
0
0
null
null
null
null
UTF-8
Python
false
false
1,190
py
"""cconline URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.9/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls import url, include from django.conf.urls.static import static from django.contrib import admin from filebrowser.sites import site urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^summernote/', include('django_summernote.urls')), url(r'^admin/filebrowser/', include(site.urls)), url(r'', include('my_apps.web.urls', namespace='web')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
8349477f2dc38370be2a6048b4ca40ce366e75e2
f3a4b4c7c39d2ed2959b410367e8abc66493772e
/laplacianFlux/r2_1_0/__init__.py
c64bf8efa3593dcacfa71e4abd9edc4f9e87754b
[]
no_license
asimurzin/laplacianFlux
6800bc5aba29968f7784ce91a5a1503318fad246
83977d5ce967b87ed0203a143d19d88c9a5d7ed7
refs/heads/master
2020-03-29T20:22:44.143734
2012-07-01T19:36:36
2012-07-01T19:36:36
1,613,806
0
0
null
null
null
null
UTF-8
Python
false
false
5,376
py
#!/usr/bin/env python #-------------------------------------------------------------------------------------- ## pythonFlu - Python wrapping for OpenFOAM C++ API ## Copyright (C) 2010- Alexey Petrov ## Copyright (C) 2009-2010 Pebble Bed Modular Reactor (Pty) Limited (PBMR) ## ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. ## ## See http://sourceforge.net/projects/pythonflu ## ## Author : Alexey PETROV ## #---------------------------------------------------------------------------- from Foam import ref, man #---------------------------------------------------------------------------- def _createFields( runTime, mesh ): ref.ext_Info() << "Reading field T\n" << ref.nl T = man.volScalarField( man.IOobject( ref.word( "T" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.MUST_READ, ref.IOobject.AUTO_WRITE ), mesh ) ref.ext_Info() << "Reading transportProperties\n" << ref.nl transportProperties = man.IOdictionary( man.IOobject( ref.word( "transportProperties" ), ref.fileName( runTime.constant() ), mesh, ref.IOobject.MUST_READ, ref.IOobject.NO_WRITE ) ) ref.ext_Info() << "Reading diffusivity DT\n" << ref.nl DT = ref.dimensionedScalar( transportProperties.lookup( ref.word( "DT" ) ) ) return T, transportProperties, DT #-------------------------------------------------------------------------------------- def write( runTime, mesh, T ): if runTime.outputTime(): gradT = ref.fvc.grad(T) gradTx = ref.volScalarField( ref.IOobject( ref.word( "gradTx" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.X ) ) gradTy = ref.volScalarField( ref.IOobject( ref.word( "gradTy" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.Y ) ) gradTz = ref.volScalarField( ref.IOobject( ref.word( "gradTz" ), ref.fileName( runTime.timeName() ), mesh, ref.IOobject.NO_READ, ref.IOobject.AUTO_WRITE ), gradT.component( ref.vector.Z ) ) runTime.write() pass #-------------------------------------------------------------------------------------- def main_standalone( argc, argv ): args = ref.setRootCase( argc, argv ) runTime = man.createTime( args ) mesh = man.createMesh( runTime ) T, transportProperties, DT = _createFields( runTime, mesh ) simple = man.simpleControl( mesh ) ref.ext_Info() << "\nCalculating temperature distribution\n" << ref.nl while runTime.loop() : ref.ext_Info() << "Time = " << runTime.timeName() << ref.nl << ref.nl while simple.correctNonOrthogonal(): ref.solve( ref.fvm.ddt( T ) - ref.fvm.laplacian( DT, T ) ) pass write( runTime, mesh, T ) ref.ext_Info() << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << \ " ClockTime = " << runTime.elapsedClockTime() << " s" << ref.nl << ref.nl pass ref.ext_Info() << "End\n" << ref.nl import os return os.EX_OK #-------------------------------------------------------------------------------------- import sys, os from Foam import FOAM_VERSION if FOAM_VERSION( ">=", "020100" ): if __name__ == "__main__" : argv = sys.argv os._exit( main_standalone( len( argv ), argv ) ) pass else: from Foam.OpenFOAM import ext_Info ref.ext_Info()<< "\nTo use this solver, It is necessary to SWIG OpenFoam2.1.0 or higher \n " pass #--------------------------------------------------------------------------------------
178ebfab22130821e12bb8c9157a0436f54acf48
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/109/usersdata/172/63370/submittedfiles/av2_p3_civil.py
4c68528d682769ee8dc9310c3e74e069e24ca4aa
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
498
py
# -*- coding: utf-8 -*- import numpy as np def somal(l,i): soma=0 for j in range(0,l.shape[1],1): soma=soma+l[i,j] return (soma) def somac(l,j): soma=0 for i in range(0,l.shape[0],1): soma=soma+l[i,j] return (soma) n=int(input('Tamanho: ')) g=int(input('Pl: ')) h=int(input('Pc: ')) l=np.zeros((n,n)) for i in range(0,l.shape[0],1): for j in range(0,l.shape[1],1): l[i,j]= int(input(' peso: ')) fim=somal(l,g)+somac(l,h)-(2*(l[g,h])) print(fim)
5d745f9fd64c2b44a2dd7a0b7c45e43d247a4cc2
1c0509a06cec726735048f00f63d2529f5e43ce6
/code_supermarkets_france/analysis/analysis_qlmc_prices_2007_2012/stats_des/price_frequencies_by_chain.py
b951142551efcfccf3721c6c7e0bf28f2e1fe55d
[]
no_license
etiennecha/master_code
e99c62e93aa052a66d4cdd3f3e3aa25a3aec4880
48821f6c854a1c6aa05cf81b653b3b757212b6f8
refs/heads/master
2021-01-23T14:35:45.904595
2018-03-11T18:57:38
2018-03-11T18:57:38
16,312,906
2
0
null
null
null
null
UTF-8
Python
false
false
9,391
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import add_to_path from add_to_path import path_data from functions_generic_qlmc import * import numpy as np import pandas as pd import statsmodels.api as sm import statsmodels.formula.api as smf pd.set_option('float_format', '{:,.2f}'.format) path_built_csv = os.path.join(path_data, 'data_supermarkets', 'data_built', 'data_qlmc_2007_2012', 'data_csv') # ####################### # LOAD DATA # ####################### # LOAD DF QLMC df_qlmc = pd.read_csv(os.path.join(path_built_csv, 'df_qlmc.csv'), parse_dates = ['date'], dayfirst = True, infer_datetime_format = True, encoding = 'utf-8') # Fix Store_Chain for prelim stats des ls_sc_drop = ['CARREFOUR CITY', 'CARREFOUR CONTACT', 'CARREFOUR PLANET', 'GEANT DISCOUNT', 'HYPER CHAMPION', 'INTERMARCHE HYPER', 'LECLERC EXPRESS', 'MARCHE U', 'U EXPRESS'] df_qlmc = df_qlmc[~df_qlmc['store_chain'].isin(ls_sc_drop)] ls_sc_replace = [('CENTRE E. LECLERC', 'LECLERC'), ('CENTRE LECLERC', 'LECLERC'), ('E. LECLERC', 'LECLERC'), ('E.LECLERC', 'LECLERC'), ('SYSTEME U', 'SUPER U'), ('GEANT', 'GEANT CASINO'), ('CHAMPION', 'CARREFOUR MARKET'), ('INTERMARCHE SUPER', 'INTERMARCHE'), ('HYPER U', 'SUPER U')] for sc_old, sc_new in ls_sc_replace: df_qlmc.loc[df_qlmc['store_chain'] == sc_old, 'store_chain'] = sc_new # ############################################# # PRICE DISTRIBUTION PER CHAIN FOR TOP PRODUCTS # ############################################# PD = PriceDispersion() ls_prod_cols = ['section', 'family', 'product'] store_chain = 'CARREFOUR' # 'CENTRE E.LECLERC' nb_obs_min = 20 # Product must be observed at X stores at least pct_min = 0.33 ls_loop_scs = ['AUCHAN', 'CARREFOUR', 'CARREFOUR MARKET', 'GEANT CASINO', # no CASINO 'CORA', 'INTERMARCHE', 'LECLERC', 'SUPER U'] ls_dict_df_desc = [] ls_dict_df_chain_product_stats = [] ls_dict_df_chain_store_desc = [] for per in range(13): df_qlmc_per = df_qlmc[df_qlmc['period'] == per] dict_ls_se_desc = {'nb_stores_by_prod' : [], 'freq_prods' : [], 'nb_prods_by_store' : [], 'no_ref' : [], 'freq_stores' : []} dict_df_chain_product_stats = {} dict_df_chain_store_desc = {} print() print(u'-'*80) print('Stats on chain prices for period:', per) for store_chain in ls_loop_scs: print() print(u'-'*60) print(store_chain) # Build df with product most common prices df_sub = df_qlmc_per[df_qlmc_per['store_chain'] == store_chain] # Make sure no duplicates at store level ls_sub_dup_cols = ls_prod_cols + ['id_lsa'] df_sub_dup = df_sub[(df_sub.duplicated(ls_sub_dup_cols, take_last = True)) |\ (df_sub.duplicated(ls_sub_dup_cols, take_last = False))] df_sub = df_sub.drop_duplicates(ls_sub_dup_cols) # Build df with product most common prices df_sub_products = df_sub[ls_prod_cols + ['price']]\ .groupby(ls_prod_cols)\ .agg([len, 'mean', PD.kurtosis, PD.skew, PD.price_1, PD.price_1_fq, PD.price_2, PD.price_2_fq])['price'] df_sub_products.columns = [col.replace('PD.', '') for col in df_sub_products.columns] df_sub_products.rename(columns = {'len': 'nb_obs'}, inplace = True) df_sub_products['price_12_fq'] =\ df_sub_products[['price_1_fq', 'price_2_fq']].sum(axis = 1) # Pbm with kurtosis and skew: div by 0 (only one price) # fix (a priori highly degenerate hence not normal) df_sub_products.loc[df_sub_products['kurtosis'].abs() >= 1000, 'kurtosis'] = np.nan df_sub_products.loc[df_sub_products['skew'].abs() >= 1000, 'skew'] = np.nan df_sub_products.reset_index(drop = False, inplace = True) # Keep only products observed at enough stores df_enough_obs = df_sub_products[(df_sub_products['nb_obs'] >= nb_obs_min)] df_ref_price = df_sub_products[(df_sub_products['nb_obs'] >= nb_obs_min) &\ (df_sub_products['price_1_fq'] >= pct_min)] # Save chain product stats dict_df_chain_product_stats[store_chain] = df_enough_obs # Define ref prices and get stats from store viewpoint if len(df_enough_obs) >= 100: print() print(u'Overview at product level') print(df_enough_obs.describe().to_string()) df_enough_obs_desc = df_enough_obs.describe() dict_ls_se_desc['nb_stores_by_prod'].append(df_enough_obs_desc['nb_obs']) dict_ls_se_desc['freq_prods'].append(df_enough_obs_desc['price_1_fq']) print() print(u'Nb prod w/ >= {:d} obs: {:d}'.format(\ nb_obs_min, len(df_enough_obs))) print(u'Nb prod w/ >= {:d} obs and ref price (33%+): {:d} ({:.0f}%)'.format(\ nb_obs_min, len(df_ref_price), len(df_ref_price) / float(len(df_enough_obs)) * 100)) df_sub = pd.merge(df_sub, df_enough_obs, on = ls_prod_cols, how = 'left') # Build df stores accounting for match with ref prices df_sub['ref_price'] = 'diff' df_sub.loc[df_sub['price'] == df_sub['price_1'], 'ref_price'] = 'price_1' df_sub.loc[(df_sub['price'] != df_sub['price_1']) &\ (df_sub['price'] == df_sub['price_2']), 'ref_price'] = 'price_2' df_sub.loc[(df_sub['price_1_fq'] <= pct_min), 'ref_price'] = 'no_ref' df_ref = pd.pivot_table(data = df_sub[['store', 'ref_price']], index = 'store', columns = 'ref_price', aggfunc = len, fill_value = 0).astype(int) try: df_ref_pct = df_ref.apply(lambda x: x / x.sum(), axis = 1) df_ref_pct['nb_obs'] = df_ref.sum(axis = 1).astype(int) if 'no_ref' not in df_ref_pct.columns: df_ref_pct['no_ref'] = 0 # keep only stores with enough procucts df_ref_pct = df_ref_pct[df_ref_pct['nb_obs'] >= 100] print() print(u'Overview at store level:') print(df_ref_pct[['nb_obs', 'no_ref', 'diff', 'price_1', 'price_2']].describe()) df_ref_pct_desc = df_ref_pct.describe() dict_ls_se_desc['nb_prods_by_store'].append(df_ref_pct_desc['nb_obs']) dict_ls_se_desc['no_ref'].append(df_ref_pct_desc['no_ref']) dict_ls_se_desc['freq_stores'].append(df_ref_pct_desc['price_1']) # also save store stats for each chain df_ref_pct.sort('price_1', ascending = False, inplace = True) dict_df_chain_store_desc[store_chain] = df_ref_pct except: print() print(u'Not enough data to display store ref prices') for col in ['nb_prods_by_store', 'no_ref', 'freq_stores']: dict_ls_se_desc[col].append(None) else: for col in ['nb_stores_by_prod', 'freq_prods', 'nb_prods_by_store', 'no_ref', 'freq_stores']: dict_ls_se_desc[col].append(None) dict_df_desc = {k: pd.concat(v, axis = 1, keys = ls_loop_scs)\ for k, v in dict_ls_se_desc.items()} dict_ens_alt_replace = {'CENTRE E.LECLERC' : 'LECLERC', 'INTERMARCHE SUPER' : 'ITM SUP', 'INTERMARCHE HYPER' : 'ITM HYP', 'CARREFOUR MARKET' : 'CAR. MARKET', 'SIMPLY MARKET' : 'SIMPLY'} dict_df_desc = {k: v.rename(columns = dict_ens_alt_replace)\ for k,v in dict_df_desc.items()} ls_dict_df_desc.append(dict_df_desc) ls_dict_df_chain_product_stats.append(dict_df_chain_product_stats) ls_dict_df_chain_store_desc.append(dict_df_chain_store_desc) ls_loop_scs[2] = 'CAR. MARKET' # adhoc fix.. # Freq prods across period for one chain dict_su_chains = {} for var in ['freq_prods', 'freq_stores']: dict_su_chains[var] = {} for store_chain in ls_loop_scs: ls_se_temp = [] for per, dict_df_desc_per in enumerate(ls_dict_df_desc): ls_se_temp.append(dict_df_desc_per[var].get(store_chain)) df_chain_temp = pd.concat(ls_se_temp, axis = 1, keys = range(13)) dict_su_chains[var][store_chain] = df_chain_temp for var in ['freq_prods', 'freq_stores']: print() print(var) for k,v in dict_su_chains[var].items(): print() print(k) print(v.to_string())
6c6be5bb613ab1ba748008cf64ecb99a72b2ea86
814fd0bea5bc063a4e34ebdd0a5597c9ff67532b
/build/android/pylib/utils/mock_calls_test.py
1b474afd1ea1707910b1716170ec0f65c1c87e17
[ "BSD-3-Clause" ]
permissive
rzr/chromium-crosswalk
1b22208ff556d69c009ad292bc17dca3fe15c493
d391344809adf7b4f39764ac0e15c378169b805f
refs/heads/master
2021-01-21T09:11:07.316526
2015-02-16T11:52:21
2015-02-16T11:52:21
38,887,985
0
0
NOASSERTION
2019-08-07T21:59:20
2015-07-10T15:35:50
C++
UTF-8
Python
false
false
5,078
py
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Unit tests for the contents of mock_calls.py. """ import logging import os import sys import unittest from pylib import constants from pylib.utils import mock_calls sys.path.append(os.path.join( constants.DIR_SOURCE_ROOT, 'third_party', 'pymock')) import mock # pylint: disable=F0401 class _DummyAdb(object): def __str__(self): return '0123456789abcdef' def Push(self, host_path, device_path): logging.debug('(device %s) pushing %r to %r', self, host_path, device_path) def IsOnline(self): logging.debug('(device %s) checking device online', self) return True def Shell(self, cmd): logging.debug('(device %s) running command %r', self, cmd) return "nice output\n" def Reboot(self): logging.debug('(device %s) rebooted!', self) class TestCaseWithAssertCallsTest(mock_calls.TestCase): def setUp(self): self.adb = _DummyAdb() def ShellError(self): def action(cmd): raise ValueError('(device %s) command %r is not nice' % (self.adb, cmd)) return action def get_answer(self): logging.debug("called 'get_answer' of %r object", self) return 42 def echo(self, thing): logging.debug("called 'echo' of %r object", self) return thing def testCallTarget_succeds(self): self.assertEquals(self.adb.Shell, self.call_target(self.call.adb.Shell)) def testCallTarget_failsExternal(self): with self.assertRaises(ValueError): self.call_target(mock.call.sys.getcwd) def testCallTarget_failsUnknownAttribute(self): with self.assertRaises(AttributeError): self.call_target(self.call.adb.Run) def testCallTarget_failsIntermediateCalls(self): with self.assertRaises(AttributeError): self.call_target(self.call.adb.RunShell('cmd').append) def testPatchCall_method(self): self.assertEquals(42, self.get_answer()) with self.patch_call(self.call.get_answer, return_value=123): self.assertEquals(123, self.get_answer()) self.assertEquals(42, self.get_answer()) def testPatchCall_attribute_method(self): with self.patch_call(self.call.adb.Shell, return_value='hello'): self.assertEquals('hello', self.adb.Shell('echo hello')) def testPatchCall_global(self): with self.patch_call(mock.call.os.getcwd, return_value='/some/path'): self.assertEquals('/some/path', os.getcwd()) def testPatchCall_withSideEffect(self): with self.patch_call(self.call.adb.Shell, side_effect=ValueError): with self.assertRaises(ValueError): self.adb.Shell('echo hello') def testAssertCalls_succeeds_simple(self): self.assertEquals(42, self.get_answer()) with self.assertCall(self.call.get_answer(), 123): self.assertEquals(123, self.get_answer()) self.assertEquals(42, self.get_answer()) def testAssertCalls_succeeds_multiple(self): with self.assertCalls( (mock.call.os.getcwd(), '/some/path'), (self.call.echo('hello'), 'hello'), (self.call.get_answer(), 11), self.call.adb.Push('this_file', 'that_file'), (self.call.get_answer(), 12)): self.assertEquals(os.getcwd(), '/some/path') self.assertEquals('hello', self.echo('hello')) self.assertEquals(11, self.get_answer()) self.adb.Push('this_file', 'that_file') self.assertEquals(12, self.get_answer()) def testAsserCalls_succeeds_withAction(self): with self.assertCall( self.call.adb.Shell('echo hello'), self.ShellError()): with self.assertRaises(ValueError): self.adb.Shell('echo hello') def testAssertCalls_fails_tooManyCalls(self): with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.IsOnline() def testAssertCalls_fails_tooFewCalls(self): with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): pass def testAssertCalls_succeeds_extraCalls(self): # we are not watching Reboot, so the assertion succeeds with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.Reboot() def testAssertCalls_fails_extraCalls(self): self.watchCalls([self.call.adb.Reboot]) # this time we are also watching Reboot, so the assertion fails with self.assertRaises(AssertionError): with self.assertCalls(self.call.adb.IsOnline()): self.adb.IsOnline() self.adb.Reboot() def testAssertCalls_succeeds_NoCalls(self): self.watchMethodCalls(self.call.adb) # we are watching all adb methods with self.assertCalls(): pass def testAssertCalls_fails_NoCalls(self): self.watchMethodCalls(self.call.adb) with self.assertRaises(AssertionError): with self.assertCalls(): self.adb.IsOnline() if __name__ == '__main__': logging.getLogger().setLevel(logging.DEBUG) unittest.main(verbosity=2)
4a5f20033b2ce926b8c120facc7b1de246135d9c
c47e274f6af4d08bff65e360fb8a11b163dc34b2
/common/global_constants.py
7e184ce065f2d0ce801d87ae0ab50fb3d1e9079c
[ "BSD-3-Clause" ]
permissive
nozberkaryaindonesia/ReadableWebProxy
6b66994c574dc0a70767397403c04f97bf2d07f0
82d14d8dfb23ef135a16f88274c14c7acc1162a5
refs/heads/master
2022-05-21T20:06:03.707617
2017-09-24T09:54:23
2017-09-24T09:54:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,460
py
GLOBAL_BAD_URLS = [ '//mail.google.com', '/comments/feed/', '/embed?', '/osd.xml', '/page/page/', '/wp-json/', '/wp-login.php', '/xmlrpc.php', '?openidserver=1', 'a.wikia-beacon.com', 'accounts.google.com', 'add.my.yahoo.com', 'addtoany.com', 'b.scorecardresearch.com', 'delicious.com', 'digg.com', 'edit.yahoo.com', 'facebook.com', 'fbcdn-', 'feeds.wordpress.com', 'gprofiles.js', 'javascript:void', 'netvibes.com', 'newsgator.com', 'paypal.com', 'pixel.wp.com', 'public-api.wordpress.com', 'r-login.wordpress.com', 'reddit.com', 'stumbleupon.com', 'technorati.com', 'topwebfiction.com', 'twitter.com', 'twitter.com/intent/', 'wretch.cc', 'ws-na.amazon-adsystem.com', 'www.addtoany.com' 'www.pinterest.com/pin/', 'www.wattpad.com/login?', 'www.tumblr.com/reblog/', 'www.paypalobjects.com', # Tumblr can seriously go fuck itself with a rusty stake 'tumblr.com/widgets/', 'www.tumblr.com/login', '://tumblr.com', '&share=tumblr', '/wp-content/plugins/', '/wp-content/themes/', '/wp-json/oembed/', # At least one site (booksie) is serving the favicon with a mime-type # of "text/plain", which then confuses the absolute crap out of the # mime-type dispatcher. # Since I'm not re-serving favicons anyways, just do not fetch them ever. 'favicon.ico', # Try to not scrape inline images ';base64,', "www.fashionmodeldirectory.com", "www.watchingprivatepractice.com", "Ebonyimages.jupiterimages.com", # More garbage issues. '"https', '#comment-', '/oembed/1.0/', '&share=', 'replytocom=', '?feed=rss2&page_id', '?share=tumblr', '?share=facebook', 'chasingadreamtranslations.com/?fp=', # NFI where /this/ came from 'www.miforcampuspolice.com', 'tracking.feedpress.it', 'www.quantcast.com', 'mailto:', 'javascript:popupWindow(', 'en.blog.wordpress.com', 'counter.yadro.ru', '/js/js/', '/css/css/', '/images/images/', 'ref=dp_brlad_entry', 'https:/www.', 'tumblr.com/oembed/1.0?', ] GLOBAL_DECOMPOSE_BEFORE = [ {'name' : 'likes-master'}, # Bullshit sharing widgets {'id' : 'jp-post-flair'}, {'class' : 'post-share-buttons'}, #{'class' : 'commentlist'}, # Scrub out the comments so we don't try to fetch links from them #{'class' : 'comments'}, #{'id' : 'comments'}, ] GLOBAL_DECOMPOSE_AFTER = [] RSS_SKIP_FILTER = [ "www.baka-tsuki.org", "re-monster.wikia.com", 'inmydaydreams.com', 'www.fanfiction.net', 'www.booksie.com', 'www.booksiesilk.com', 'www.fictionpress.com', 'storiesonline.net', 'www.fictionmania.tv', 'www.bestories.net', 'www.tgstorytime.com', 'www.nifty.org', 'www.literotica.com', 'pokegirls.org', 'www.asstr.org', 'www.mcstories.com', 'www.novelupdates.com', '40pics.com', '#comment-', '?showComment=', ] RSS_TITLE_FILTER = [ "by: ", "comments on: ", "comment on: ", "comment on ", ] # Goooooo FUCK YOURSELF GLOBAL_INLINE_BULLSHIT = [ "This translation is property of Infinite Novel Translations.", "This translation is property of Infinite NovelTranslations.", "If you read this anywhere but at Infinite Novel Translations, you are reading a stolen translation.", "&lt;Blank&gt;", "&lt;space&gt;", "<Blank>", "<Blank>", "please read only translator’s websitewww.novitranslation.com", "please read only translator’s website www.novitranslation.com", "Please do not host elsewhere but MBC and Yumeabyss", 'Original and most updated translations are from volaretranslations.', 'Please support the translator for Wild Consort by reading on volarenovels!', 'Original and most updated translations are from volaretranslations.', 'Original and most updated translations are from volaretranslations.', "&lt;StarveCleric&gt;", '(trytranslations.com at your service!)', 'Please do not host elsewhere but volare and Yumeabyss', '[Follow the latest chapter at wuxiadream.com]', 'I slid my penis inside her. She squirmed a bit but YOU SICK FUCK STOP STEALING MY TRANSLATIONS', # siiiiigh 'I kissed her sweet anus once more before leaving', # siiiiiiiiiiiiigh '(Watermark: read this translation only at shinku. xiaoxiaonovels.com)', "<TLN: If you're reading this novel at any other site than Sousetsuka.com you might be reading an unedited, uncorrected version of the novel.>", 'Original and most updated translations are from volare. If read elsewhere, this chapter has been stolen. Please stop supporting theft.', '*******If you are reading this on a place other than rinkagetranslation.com, this chapter has been stolen and is neither the most recent or complete chapter.*******', '*******Read the chapters at rinkagetranslation.com. The chapters for this series will NOT be posted anywhere else other than on that site itself. If you are reading this from somewhere else then this is chapter has been stolen.*******', 'If you are reading this on a place other than rinkagetranslation.com, this chapter has been stolen and is neither the most recent or complete chapter.', "Read The Lazy Swordmaster first on Lightnovelbastion.com (If you're reading this elsewhere, it has been stolen)", "Read The Lazy Swordmaster on Lightnovelbastion.com", "Property of © Fantasy-Books.live; outside of it, it is stolen.", ]
a43033cd1083b62dfa20f3914123e00835219987
c5a004f26bf249f888be3849114dd35dbd24cb24
/python/evalrescallers/tests/ten_k_validation_data_test.py
c9f2b7b50349d5124180fb1dad48982f96e4202e
[ "MIT" ]
permissive
wangdi2014/tb-amr-benchmarking
f7cf331608cfe7b9cc8995906d991573323dc87a
276f4f7f30639dacc62b3e8e395b2d2ce8675089
refs/heads/master
2022-03-10T00:41:07.364006
2019-11-08T09:37:23
2019-11-08T09:37:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,515
py
import os import unittest from evalrescallers import ten_k_validation_data modules_dir = os.path.dirname(os.path.abspath(ten_k_validation_data.__file__)) data_dir = os.path.join(modules_dir, 'tests', 'data', 'ten_k_validation_data') class TestTenKValidationData(unittest.TestCase): def test_load_sample_to_res_file(self): '''test load_sample_to_res_file''' expected_drugs = {'Isoniazid', 'Rifampicin', 'Ethambutol', 'Pyrazinamide'} expected_data = { 'ena1': {'Isoniazid': 'n/a', 'Rifampicin': 'S', 'Ethambutol': 'R', 'Pyrazinamide': 'S'}, 'ena2': {'Isoniazid': 'S', 'Rifampicin': 'U', 'Ethambutol': 'S', 'Pyrazinamide': 'S'}, } infile = os.path.join(data_dir, 'load_sample_to_res_file.tsv') got_drugs, got_data = ten_k_validation_data.load_sample_to_res_file(infile) self.assertEqual(expected_drugs, got_drugs) self.assertEqual(expected_data, got_data) def test_load_sources_file(self): '''test load_sources_file''' infile = os.path.join(data_dir, 'load_sources_file.tsv') expect = { 'ena1': ('source1', 'country1'), 'ena2': ('source1', 'country1'), 'ena3': ('source1', 'country2'), 'ena4': ('source2', 'country1'), 'ena5': ('source2', 'country2'), } got = ten_k_validation_data.load_sources_file(infile) self.assertEqual(expect, got) def test_sources_file_to_country_counts(self): '''test sources_file_to_country_counts''' infile = os.path.join(data_dir, 'sources_file_to_country_counts.tsv') expect = { 'Country1': {'validate': 3, 'test': 0}, 'Country2': {'validate': 1, 'test': 0}, 'Germany': {'validate': 0, 'test': 1}, 'UK': {'validate': 1, 'test': 2}, } got = ten_k_validation_data.sources_file_to_country_counts(infile) self.assertEqual(expect, got) def test_load_all_data(self): '''test load_all_data''' expected_drugs = {'Quinolones', 'Isoniazid', 'Rifampicin', 'Ethambutol', 'Pyrazinamide', 'Amikacin', 'Capreomycin', 'Ciprofloxacin', 'Cycloserine', 'Ethionamide', 'Kanamycin', 'Linezolid', 'Moxifloxacin', 'Ofloxacin', 'PAS', 'Rifabutin', 'Streptomycin'} got_drugs, got_pheno_validation, got_pheno_test, got_predict = ten_k_validation_data.load_all_data() self.assertEqual(expected_drugs, got_drugs) _, expect_pheno = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.phenotype.tsv')) _, expect_predict = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.prediction.tsv')) _, expect_more_pheno = ten_k_validation_data.load_sample_to_res_file(os.path.join(ten_k_validation_data.data_dir, '10k_validation.extra_phenotypes.tsv')) expect_samples = set(expect_pheno.keys()).union(set(expect_more_pheno.keys())) got_samples = set(expect_pheno.keys()) self.assertEqual(expect_samples, got_samples) for pheno_dict in got_pheno_validation, got_pheno_test: for sample in pheno_dict: for d in expect_pheno, expect_more_pheno: if sample in d: for k, v in d[sample].items(): self.assertEqual(v, pheno_dict[sample][k]) self.assertEqual(expect_predict, got_predict)
0129e5f8bb4ef9510bef37bfe7c32a58b45a1089
6ec8e4271968cae715babe05029931d2c11df754
/run.py
3381b4ca954744143adb1172231fafc792c96a42
[ "MIT" ]
permissive
lllhhhqqq/SPIRAL-tensorflow
040efe8af0fd3bc4d5f5ce2ed5474e6d732763f5
05ddfdc20c73a61cde46594bd6b7b7a2e255a44b
refs/heads/master
2020-03-08T08:57:45.938448
2018-04-03T15:32:19
2018-04-03T15:32:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,371
py
# -*- coding: future_fstrings -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import tensorflow as tf from six.moves import shlex_quote import utils as ut def new_cmd(session, name, cmd, load_path, shell): if isinstance(cmd, (list, tuple)): cmd = " ".join(shlex_quote(str(v)) for v in cmd) return name, "tmux send-keys -t {}:{} {} Enter".format(session, name, shlex_quote(cmd)) def create_commands(session, args, shell='bash'): ut.train.prepare_dirs(args) actual_args = ut.io.get_cmd(as_list=True) actual_cmd = ' '.join(actual_args) # for launching the TF workers and for launching tensorboard base_cmd = [ 'CUDA_VISIBLE_DEVICES=', sys.executable, 'main.py', '--load_path', args.load_path, '--start_port', args.start_port, '--num_gpu', ut.misc.count_gpu(), ] + actual_args cmds_map = [new_cmd(session, "ps", base_cmd + ["--job_name", "ps"], args.load_path, shell)] if args.loss == 'l2': gpu_task_num = 1 elif args.loss == 'gan': gpu_task_num = 2 for i in range(args.num_workers): if i < gpu_task_num: # gpu workers cmd = base_cmd[1:] else: cmd = base_cmd[:] cmd += ["--job_name", "worker", "--task", str(i)] cmds_map += [new_cmd(session, "w-%d" % i, cmd, args.load_path, shell)] tmp_tb_dir = "/".join(sys.executable.split('/')[:-1]) tmp_tb_path = os.path.join(tmp_tb_dir, "tensorboard") if os.path.exists(tmp_tb_path): tb = tmp_tb_dir + "/tensorboard" else: tb = "tensorboard" tb_args = [tb, "--logdir", args.log_dir, "--port", "12345"] cmds_map += [new_cmd(session, "tb", tb_args, args.load_path, shell)] cmds_map += [new_cmd(session, "htop", ["htop"], args.load_path, shell)] windows = [v[0] for v in cmds_map] notes = [] cmds = [] notes += ["Use `tmux attach -t {}` to watch process output".format(session)] notes += ["Use `tmux kill-session -t {}` to kill the job".format(session)] notes += ["Point your browser to http://localhost:12345 to see Tensorboard"] cmds += [ # kill any process using tensorboard's port f"kill $( lsof -i:{args.tb_port} -t ) > /dev/null 2>&1", # kill any processes using ps / worker ports f"kill $( lsof -i:{args.start_port}-{args.num_workers + args.start_port} -t ) > /dev/null 2>&1", f"tmux kill-session -t {session}", f"tmux new-session -s {session} -n {windows[0]} -d {shell}", ] for w in windows[1:]: cmds += ["tmux new-window -t {} -n {} {}".format(session, w, shell)] cmds += ["sleep 1"] for window, cmd in cmds_map: cmds += [cmd] return cmds, notes def run(args): cmds, notes = create_commands("spiral", args) if args.dry_run: print("Dry-run mode due to -n flag, otherwise the following commands would be executed:") else: print("Executing the following commands:") print("\n".join(cmds)) print("") if not args.dry_run: os.environ["TMUX"] = "" os.system("\n".join(cmds)) print('\n'.join(notes)) if __name__ == "__main__": from config import get_args args = get_args() run(args)
7c602f029e3a124f40432e96b024c8300417ae5b
f4b5721c6b3f5623e306d0aa9a95ec53461c1f89
/backend/src/gloader/xml/dom/html/HTMLTableRowElement.py
e18280ba18ad8af52f593f29fbe8bf83d5cc6ac0
[ "Apache-1.1", "MIT" ]
permissive
citelab/gini5
b53e306eb5dabf98e9a7ded3802cf2c646f32914
d095076113c1e84c33f52ef46a3df1f8bc8ffa43
refs/heads/uml-rename
2022-12-10T15:58:49.578271
2021-12-09T23:58:01
2021-12-09T23:58:01
134,980,773
12
11
MIT
2022-12-08T05:20:58
2018-05-26T17:16:50
Python
UTF-8
Python
false
false
3,711
py
######################################################################## # # File Name: HTMLTableRowElement.py # # """ WWW: http://4suite.com/4DOM e-mail: [email protected] Copyright (c) 2000 Fourthought Inc, USA. All Rights Reserved. See http://4suite.com/COPYRIGHT for license and copyright information """ import string from xml.dom import implementation from xml.dom import IndexSizeErr from xml.dom.html.HTMLElement import HTMLElement class HTMLTableRowElement(HTMLElement): def __init__(self, ownerDocument, nodeName='TR'): HTMLElement.__init__(self, ownerDocument, nodeName) ### Attribute Methods ### def _get_align(self): return string.capitalize(self.getAttribute('ALIGN')) def _set_align(self,align): self.setAttribute('ALIGN', align) def _get_bgColor(self): return self.getAttribute('BGCOLOR') def _set_bgColor(self, color): self.setAttribute('BGCOLOR', color) def _get_cells(self): cells = [] for child in self.childNodes: if child.tagName in ['TD','TH']: cells.append(child) return implementation._4dom_createHTMLCollection(cells) def _get_ch(self): return self.getAttribute('CHAR') def _set_ch(self, ch): self.setAttribute('CHAR', ch) def _get_chOff(self): return self.getAttribute('CHAROFF') def _set_chOff(self, offset): self.setAttribute('CHAROFF', offset) def _get_rowIndex(self): #Get our index in the table section = self.parentNode if section == None: return -1 table = section.parentNode if table == None: return -1 rows = table._get_rows() return rows.index(self) def _get_sectionRowIndex(self): section = self.parentNode if section == None: return -1 rows = section._get_rows() return rows.index(self) def _get_vAlign(self): return string.capitalize(self.getAttribute('VALIGN')) def _set_vAlign(self, valign): self.setAttribute('VALIGN', valign) ### Methods ### def insertCell(self, index): cells = self._get_cells() if index < 0 or index > len(cells): raise IndexSizeErr() cell = self.ownerDocument.createElement('TD') length = cells.length if index == len(cells): ref = None elif index < len(cells): ref = cells[index] return self.insertBefore(cell, ref) def deleteCell(self,index): cells = self._get_cells() if index < 0 or index >= len(cells): raise IndexSizeErr() self.removeChild(cells[index]) ### Attribute Access Mappings ### _readComputedAttrs = HTMLElement._readComputedAttrs.copy() _readComputedAttrs.update ({ 'rowIndex' : _get_rowIndex, 'sectionRowIndex' : _get_sectionRowIndex, 'cells' : _get_cells, 'align' : _get_align, 'bgColor' : _get_bgColor, 'ch' : _get_ch, 'chOff' : _get_chOff, 'vAlign' : _get_vAlign, }) _writeComputedAttrs = HTMLElement._writeComputedAttrs.copy() _writeComputedAttrs.update ({ 'align' : _set_align, 'bgColor' : _set_bgColor, 'ch' : _set_ch, 'chOff' : _set_chOff, 'vAlign' : _set_vAlign, }) # Create the read-only list of attributes _readOnlyAttrs = filter(lambda k,m=_writeComputedAttrs: not m.has_key(k), HTMLElement._readOnlyAttrs + _readComputedAttrs.keys())
82cd114c38d8767bd5493b1054b0112eb2f33b82
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02772/s117684727.py
af179f388db806b32c0635d0c096c78b0d0171ea
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
N = int(input()) A = list(map(int, input().split())) even_numbers = [a for a in A if a % 2 == 0] is_approved = all([even_num % 3 == 0 or even_num % 5 == 0 for even_num in even_numbers]) if is_approved: print('APPROVED') else: print('DENIED')
26a00630aeba6a6ae67c356e67ad7108f664c08b
2aec9c5e8c72b731d3abf22f2a407fe09c1cde09
/ZQZ510/ZQZ510/pipelines.py
96d17ebedbe541b8ea71011896e82ef784f24a35
[]
no_license
jiangyg/ZWFproject
8b24cc34970ae0a9c2a2b0039dc527c83a5862b5
aa35bc59566d92721f23d2dd00b0febd268ac2dd
refs/heads/master
2020-09-26T17:01:00.229380
2019-11-15T13:16:21
2019-11-15T13:16:21
226,297,631
0
1
null
2019-12-06T09:55:37
2019-12-06T09:55:36
null
UTF-8
Python
false
false
542
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import json class Zqz510Pipeline(object): def open_spider(self, spider): self.file = open('./zqz_data.json', 'w+', encoding='utf-8') def process_item(self, item, spider): self.file.write(json.dumps(dict(item), ensure_ascii=False) + '\n') return item def close_spider(self, spider): self.file.close()
560d28d47aec3beddae995957b47f2a586147262
153995fa868b4697d8d6b25379a16f9756604151
/student/migrations/0003_auto_20180530_1427.py
23c1d56c1bf88a956e612254eb17747ba36e63f8
[]
no_license
Manju1313/django-school
816c13259654c4f57352add903cc13e3915f3724
1182de09e9b638a2a4f328024f6bc6807eff6029
refs/heads/master
2023-03-21T22:44:59.002131
2020-08-15T14:34:19
2020-08-15T14:34:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,414
py
# Generated by Django 2.0.4 on 2018-05-30 18:27 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0002_auto_20180530_1421'), ] operations = [ migrations.RemoveField( model_name='student', name='stu_phone_number', ), migrations.AddField( model_name='student', name='phone_number', field=models.CharField(blank=True, max_length=17, validators=[django.core.validators.RegexValidator(message="Phone number must be entered in the format: '+999999999'. Up to 15 digits allowed.", regex='^\\+?1?\\d{9,15}$')]), ), migrations.AlterField( model_name='guardian', name='phone_number', field=models.CharField(blank=True, max_length=17, validators=[django.core.validators.RegexValidator(message="Phone number must be entered in the format: '+999999999'. Up to 15 digits allowed.", regex='^\\+?1?\\d{9,15}$')]), ), migrations.AlterField( model_name='instructor', name='phone_number', field=models.CharField(blank=True, max_length=17, validators=[django.core.validators.RegexValidator(message="Phone number must be entered in the format: '+999999999'. Up to 15 digits allowed.", regex='^\\+?1?\\d{9,15}$')]), ), ]
3cb9f0d148c54cbbe893c3e1c798c3bb23c70ffc
a3cc7286d4a319cb76f3a44a593c4a18e5ddc104
/lib/surface/compute/instances/delete_access_config.py
479bf531ec0ef199dca5ae411f4dd8aff59f1cff
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
jordanistan/Google-Cloud-SDK
f2c6bb7abc2f33b9dfaec5de792aa1be91154099
42b9d7914c36a30d1e4b84ae2925df7edeca9962
refs/heads/master
2023-09-01T01:24:53.495537
2023-08-22T01:12:23
2023-08-22T01:12:23
127,072,491
0
1
NOASSERTION
2023-08-22T01:12:24
2018-03-28T02:31:19
Python
UTF-8
Python
false
false
3,102
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for deleting access configs from virtual machine instances.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import constants from googlecloudsdk.calliope import arg_parsers from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.compute.instances import flags class DeleteAccessConfig(base.SilentCommand): """Delete an access configuration from a virtual machine network interface.""" detailed_help = { 'DESCRIPTION': """\ *{command}* is used to delete access configurations from network interfaces of Google Compute Engine virtual machines. Access configurations allow you to assign a public, external IP to a virtual machine. """, 'EXAMPLES': """\ To remove the externally accessible IP from a virtual machine named ``example-instance'' in zone ``us-central1-a'', run: $ {command} example-instance --zone us-central1-a """, } @staticmethod def Args(parser): flags.INSTANCE_ARG.AddArgument(parser) parser.add_argument( '--access-config-name', default=constants.DEFAULT_ACCESS_CONFIG_NAME, help="""\ Specifies the name of the access configuration to delete. ``{0}'' is used as the default if this flag is not provided. """.format(constants.DEFAULT_ACCESS_CONFIG_NAME)) parser.add_argument( '--network-interface', default=constants.DEFAULT_NETWORK_INTERFACE, action=arg_parsers.StoreOnceAction, help="""\ Specifies the name of the network interface from which to delete the access configuration. If this is not provided, then ``nic0'' is used as the default. """) def Run(self, args): """Invokes request necessary for removing an access config.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client instance_ref = flags.INSTANCE_ARG.ResolveAsResource( args, holder.resources, scope_lister=flags.GetInstanceZoneScopeLister(client)) request = client.messages.ComputeInstancesDeleteAccessConfigRequest( accessConfig=args.access_config_name, instance=instance_ref.Name(), networkInterface=args.network_interface, project=instance_ref.project, zone=instance_ref.zone) return client.MakeRequests([(client.apitools_client.instances, 'DeleteAccessConfig', request)])
51076cbc05dfd34c93e5ff0d33ec683f7304252f
6cc795fef13e82a2e50f487740f5373b5a3f8549
/pyunlocbox/tests/__init__.py
7cae2d147d6d4ccbb8129886a11191b019a147e2
[ "BSD-3-Clause" ]
permissive
epfl-lts2/pyunlocbox
7a14e97f7e46981ed6748bb5073d473f45af676e
ec84282096fa9154d8bdcc52bacc3531c9720779
refs/heads/master
2023-08-29T22:13:29.345251
2022-10-18T11:18:53
2022-10-18T11:18:53
17,248,167
98
28
BSD-3-Clause
2023-08-18T02:01:44
2014-02-27T12:33:31
Python
UTF-8
Python
false
false
445
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Test suite for the pyunlocbox package, broken by modules. """ import unittest from . import test_functions from . import test_operators from . import test_solvers from . import test_acceleration from . import test_docstrings suite = unittest.TestSuite([ test_functions.suite, test_operators.suite, test_solvers.suite, test_acceleration.suite, test_docstrings.suite, ])
2f52dc55e8244d2992f25fe087aa779b5ee88b23
edfa045d12b8efb65de20261ff80a86160298e44
/contact/views.py
92ba8640b73aadf1add6ef04d0e028b1dae69786
[ "MIT" ]
permissive
yusif763/Unistore-pro
1d559a89bb71f3db8b5d1e89df64ed7113f00f2a
41ad0fa209c79a201d3f6a7aa68ec0ace707dcad
refs/heads/main
2023-04-24T02:50:30.085011
2021-04-29T11:00:11
2021-04-29T11:00:11
362,782,688
4
0
null
null
null
null
UTF-8
Python
false
false
1,954
py
from django.shortcuts import render,redirect from contact.models import * from contact.forms import ContactForm from django.views.generic import ( ListView, DetailView,CreateView ) from django.views.generic.edit import FormMixin from django.http import HttpResponseRedirect from django.urls import reverse_lazy # Create your views here. # def about_contact(request): # form = ContactForm() # # sub_form = SubscriberForm() # if request.method == 'POST': # form = ContactForm(data=request.POST) # if form.is_valid(): # form.save() # return redirect('/about-contact/') # context = { # # "sub_form":sub_form, # 'form': form # } # return render(request , 'about_contact.html' , context) class AboutContactView(CreateView): form_class = ContactForm # fields = '__all__' # model = Contact template_name = 'about_contact.html' success_url = reverse_lazy('common:index') def form_valid(self, form): result = super(ContactView, self).form_valid(form) messages.success(self.request, 'Sizin muracietiniz qebul edildi.') return result # def contact_page(request): # form = ContactForm() # # sub_form = SubscriberForm() # if request.method == 'POST': # form = ContactForm(data=request.POST) # if form.is_valid(): # form.save() # return redirect('/contact/') # context = { # # "sub_form":sub_form, # 'form': form # } # return render(request, "contact.html", context) class ContactView(CreateView): form_class = ContactForm # fields = '__all__' # model = Contact template_name = 'contact.html' success_url = reverse_lazy('common:index') def form_valid(self, form): result = super(ContactView, self).form_valid(form) messages.success(self.request, 'Sizin muracietiniz qebul edildi.') return result
8cbb0199476d4a0ff738d2012c7bde1daee5d0e7
496e05014492b4bbecf9f15c40ae416c21e27a46
/src/outpost/django/api/serializers.py
f3b19c6cac6763725dbcfae9ac299911d7d02ba2
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
medunigraz/outpost_deprecated
b1ff802054c04cf989b3b660e132fa6a1c2a078c
bc88eaa3bb504d394fdf13f1131e40db27759c89
refs/heads/master
2022-01-23T15:46:34.859095
2019-05-21T08:38:11
2019-05-21T08:38:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,266
py
import re from base64 import ( b64decode, urlsafe_b64encode, ) from pathlib import PurePosixPath from uuid import uuid4 import six from django.core.files.base import ContentFile from drf_haystack.serializers import HaystackSerializer from rest_framework.serializers import ( FileField, IntegerField, SerializerMethodField, ) from outpost.django.geo import search_indexes as geo from outpost.django.structure import search_indexes as structure class AutocompleteSerializer(HaystackSerializer): id = IntegerField(source='pk') ctype = SerializerMethodField() class Meta: index_classes = [ geo.RoomIndex, structure.OrganizationIndex, structure.PersonIndex, ] fields = [ 'presentation', 'id', 'ctype', 'level_id', 'room_id', 'autocomplete', ] ignore_fields = [ 'text', 'autocomplete', ] field_aliases = { 'q': 'autocomplete', } def get_ctype(self, obj): return obj.content_type() class Base64FileField(FileField): """ A Django REST framework field for handling file-uploads through raw post data. It uses base64 for encoding and decoding the contents of the file. Heavily based on https://stackoverflow.com/a/28036805 """ parser = re.compile(r'^data:(?P<mimetype>.*?);base64,') def to_internal_value(self, raw): # Check if this is a base64 string if isinstance(raw, six.string_types): header = self.parser.match(raw) # Check if the base64 string is in the "data:" format if header: try: decoded_file = b64decode(self.parser.sub('', raw)) except TypeError: self.fail('invalid_image') # Generate file name: p = PurePosixPath() uid = uuid4().bytes u = urlsafe_b64encode(uid).decode('ascii').rstrip('=') filename = p.joinpath(u).as_posix() raw = ContentFile(decoded_file, name=filename) return super(Base64FileField, self).to_internal_value(raw)
556cd12c5bcabb294fdef6cef5e233d27d08634b
b5ce6908490cfb8e6a1e1cbe4745d675122ddce0
/questions/search-insert-position/Solution.py
c0090acd08a2b839bf40909c0f07c328192ae1f5
[ "MIT" ]
permissive
franklingu/leetcode-solutions
8895910f13208e1d8e604100d84c2dd35684cde4
7ad7e5c1c040510b7b7bd225ed4297054464dbc6
refs/heads/master
2023-01-09T01:34:08.097518
2023-01-02T02:05:35
2023-01-02T02:05:35
43,345,677
155
66
MIT
2020-10-02T03:41:36
2015-09-29T04:54:38
Python
UTF-8
Python
false
false
523
py
''' Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order. You may assume no duplicates in the array. Example 1: Input: [1,3,5,6], 5 Output: 2 Example 2: Input: [1,3,5,6], 2 Output: 1 Example 3: Input: [1,3,5,6], 7 Output: 4 Example 4: Input: [1,3,5,6], 0 Output: 0 ''' import bisect class Solution: def searchInsert(self, nums: List[int], target: int) -> int: return bisect.bisect_left(nums, target)
1c8e3344ff726702de26bc95b86ffad4f8fa87df
cce5684e1bb9fea2df762c1afedb17b1795b7a5f
/pymcutil/selector/selectors/self_selector.py
03d75db75e9fd916c4c55f012ac4e9ca91173109
[ "MIT" ]
permissive
Arcensoth/pymcutil
85071e5c3bbd25a47a1133bfa464f67126c62bdd
0c8f1efa4d611e92170ec48bedb160b1d00d0022
refs/heads/master
2020-03-18T05:02:06.769457
2018-07-02T00:45:51
2018-07-02T00:45:51
91,645,414
3
1
null
2017-07-12T15:56:12
2017-05-18T03:37:33
Python
UTF-8
Python
false
false
322
py
from pymcutil.selector.abc.selector import Selector from pymcutil.symbols import selector_bases from pymcutil.symbols.selector_bases.selector_bases import SelectorBase class SelfSelector(Selector): @property def base(self) -> SelectorBase: return selector_bases.self self = SelfSelector SELF = self()
8065d5a222ea47f64ef74359900886af9e88af37
fa9c5bb26c72b053a41f34e858d7395ee29aea5d
/HttpTesting/main.py
ed8bc130a9da20ac6da12479814e772dab2e1447
[ "Apache-2.0" ]
permissive
HttpTesting/HttpTesting
3c01d7b00b13ddf5d52ac223693a5222d9a52a03
b5b68dd546cb7aea02931c46fe4e51a98f71566e
refs/heads/master
2021-06-20T15:34:35.583811
2019-12-25T05:58:34
2019-12-25T05:58:34
195,352,254
1
0
Apache-2.0
2021-03-25T22:50:17
2019-07-05T06:33:48
Python
UTF-8
Python
false
false
9,090
py
# ######################################################## # 将根目录加入sys.path中,解决命令行找不到包的问题 import sys import os curPath = os.path.abspath(os.path.dirname(__file__)) rootPath = os.path.split(curPath)[0] sys.path.insert(0, rootPath) # ######################################################## import unittest import shutil import time,json import logging from httptesting.globalVar import gl from httptesting.library import HTMLTESTRunnerCN from httptesting.library import scripts from httptesting.library.scripts import (get_yaml_field) from httptesting.library.emailstmp import EmailClass from httptesting.library.case_queue import case_exec_queue from httptesting import case from httptesting.library.falsework import create_falsework from httptesting.library.har import ConvertHarToYAML from httptesting import __version__ import argparse ######################################################################## cmd_path = '' # Command line mode. def run_min(): # Takes the current path of the command line cur_dir = os.getcwd() os.chdir(cur_dir) parse = argparse.ArgumentParser( description='httptesting parameters', prog='httptesting' ) parse.add_argument( "-v", "--version", action='version', version="%(prog)s {}".format(__version__), help='Framework version.' ) parse.add_argument( "-f", "--file", default='', help='The file path; File absolute or relative path.' ) parse.add_argument( "-d", "--dir", default='', help='The folder path; folder absolute or relative path.' ) parse.add_argument( "-sp", "--startproject", default='', help='Generate test case templates.' ) parse.add_argument( "-conf", "--config", default='', help='Basic setting of framework.' ) parse.add_argument( "-har", default='', help='Convert the har files to YAML. har file is *.har' ) parse.add_argument( "-c", "--convert", default='', help='Convert the har files to YAML. YAML file is *.yaml' ) args = parse.parse_args() case_file = args.file case_dir = args.dir start_project = args.startproject config = args.config har = args.har vert = args.convert # Conver YAML. if vert: yamlfile = os.path.join(cur_dir, str(vert).strip()) scripts.generate_case_tmpl(yamlfile) # Convert har files to YAML. # r'D:\httphar.har' if har: temp_dict = ConvertHarToYAML.convert_har_to_ht(har) ConvertHarToYAML.write_case_to_yaml('', temp_dict) # Setting global var. if config == 'set': try: os.system(gl.configFile) except (KeyboardInterrupt, SystemExit): print("已终止执行.") if start_project: create_falsework(os.path.join(os.getcwd(), start_project)) # Get the yaml file name and write to the queue. if case_file: case_exec_queue.put(case_file) # Began to call. Run_Test_Case.invoke() if case_dir: for root, dirs, files in os.walk(case_dir): for f in files: if 'yaml' in f: case_exec_queue.put(os.path.join(case_dir, f)) # Began to call. Run_Test_Case.invoke() ######################################################################### # Not in command mode --dir defaults to the testcase directory. # Example: # python3 main.py --dir=r"D:\test_project\project\cloud_fi_v2\testcase" ######################################################################### class Run_Test_Case(object): @classmethod def load_tests_list(cls, to): """ Specifies the order in which test cases are loaded :return: There is no. """ tests = [unittest.TestLoader().loadTestsFromModule(to)] return tests @classmethod def create_report_file(cls): # 测试报告文件名 report_dir = time.strftime('%Y%m%d_%H%M%S', time.localtime()) rdir = os.path.join(os.getcwd() ,'report') cls.file_name = 'report.html' portdir = os.path.join(rdir, report_dir) # 按日期创建测试报告文件夹 if not os.path.exists(portdir): # os.mkdir(portdir) os.makedirs(portdir) cls.filePath = os.path.join(portdir, cls.file_name) # 确定生成报告的路径 return cls.filePath @staticmethod def copy_custom_function(): # 自定义函数功能 func = os.path.join(os.getcwd(), 'extfunc.py') target = os.path.join(gl.loadcasePath, 'extfunc.py') if os.path.exists(func): shutil.copy(func, target) @staticmethod def copy_report(filePath, file_name): # 复制report下子文件夹到 templates/report/下 split_path = os.path.dirname(filePath).split("\\") low_path = split_path[split_path.__len__() - 1] web_path = os.path.join(gl.templatesReportPath, low_path) if not os.path.exists(web_path): shutil.copytree(os.path.dirname(filePath), web_path) else: shutil.copy(filePath, os.path.join(web_path, file_name)) return low_path @staticmethod def tmpl_msg(low_path, file_name): # 发送钉钉模版测试结果 result_str = """共{}个用例, 通过{}, 失败{}, 错误{}, 通过率{}""".format( gl.get_value('sum'), gl.get_value('passed'), gl.get_value('failed'), gl.get_value('error'), gl.get_value('passrate') ) # 测试结论 if '100' in str(gl.get_value('passrate')): msg_1 = '本次测试★通过★' else: msg_1 = '本次测试★不通过★' config = get_yaml_field(gl.configFile) # report外网发布地址ip+port report_url = config['REPORT_URL'] content = config['DING_TITLE'] # 发送钉钉消息 msg = """{}已完成:{},{}\n测试报告地址:{}/{}/{}""" msg = msg.format(content, result_str, msg_1, report_url, low_path, file_name) return msg @staticmethod def run(filePath): """ Execute the test and generate the test report file. :param filePath: Report file absolute path. :return: There is no. """ # custom function Run_Test_Case.copy_custom_function() # Load the unittest framework, which must be written here or DDT will be loaded first. from httptesting.case import load_case # Unittest test suite. suite = unittest.TestSuite() suite.addTests(Run_Test_Case.load_tests_list(load_case)) # Execute the test and generate the test report file. with open(filePath, 'wb') as fp: runner = HTMLTESTRunnerCN.HTMLTestRunner( stream=fp, title= '接口自动化测试报告', description= '详细测试用例结果', # Do not default to null. tester= "测试组", # tester name ,not default to jack. verbosity=2 ) # Run the test case. runner.run(suite) @staticmethod def invoke(): """ Start executing tests generate test reports. :return: There is no. """ # #########################Read configuration information############### config = get_yaml_field(gl.configFile) dd_enable = config['ENABLE_DDING'] dd_token = config['DD_TOKEN'] dd_url = config['DING_URL'] email_enable = config['EMAIL_ENABLE'] ######################################################################## # Test report file name. time_str = time.strftime('%Y%m%d_%H%M%S', time.localtime()) filePath = Run_Test_Case.create_report_file() # Start test the send pin message. if dd_enable: scripts.send_msg_dding( '{}:★开始API接口自动化测试★'.format(time_str), dd_token, dd_url ) # Execute the test and send the test report. Run_Test_Case.run(filePath) print(filePath) # Copy the folder under the report directory under /templates/report/ # low_path = Run_Test_Case.copy_report(filePath, Run_Test_Case.file_name) if dd_enable: # Template message. dir_list = filePath.split('\\') low_path = dir_list[len(dir_list) - 2] msg = Run_Test_Case.tmpl_msg(low_path, Run_Test_Case.file_name) print(msg) scripts.send_msg_dding(msg, dd_token, dd_url) if email_enable: # Send test report to EMAIL. email = EmailClass() email.send(filePath) if __name__ == "__main__": run_min()
84b921ebd67dca82253a50ee13baf4d2cb8fdb97
6646f6b92e9ff31f2f74b749ea12ace53cfc135c
/tests/unit/models/test_package_model.py
5d883c6352b89b74851372eb02d55c084db4b862
[]
no_license
EricMontague/SponsorMatch
0a6685edb44b2694824d3d3a4d15dfcb42fdb68e
864aa3cfe25d74c2b97b9f09f45eb9fa10dac892
refs/heads/master
2022-12-08T22:43:21.684165
2021-03-19T00:50:06
2021-03-19T00:50:06
241,396,411
0
0
null
2022-12-08T03:38:23
2020-02-18T15:27:42
Python
UTF-8
Python
false
false
2,398
py
"""This module contains tests for the package model.""" import unittest from tests.integration.testing_data import TestModelFactory from app import create_app from app.extensions import db class PackageModelTestCase(unittest.TestCase): """Class to test the Package Model.""" def setUp(self): """Create application instance and insert necessary information into the database before each test. """ self.app = create_app("testing", False) self.app_context = self.app.app_context() self.app_context.push() db.create_all() def tearDown(self): """Pop application context, remove the db session, and drop all tables in the database. """ db.session.remove() db.drop_all() self.app_context.pop() def test_package_sold_out(self): """Test to ensure that a package is correctly recognized as sold out. """ role = TestModelFactory.create_role("Event Organizer") user = TestModelFactory.create_user() user.role = role venue = TestModelFactory.create_venue() event = TestModelFactory.create_event("Test Event", "live") event.user = user event.venue = venue package = TestModelFactory.create_package(price=100, available_packages=10) package.event = event db.session.add_all([user, event, package]) db.session.commit() package.num_purchased = package.available_packages self.assertTrue(package.is_sold_out()) def test_package_num_sales(self): """Test to ensure that the number of packages purchased is recorded correctly in the database. """ role = TestModelFactory.create_role("Event Organizer") user = TestModelFactory.create_user() user.role = role venue = TestModelFactory.create_venue() event = TestModelFactory.create_event("Test Event", "live") event.user = user event.venue = venue package = TestModelFactory.create_package(price=100, available_packages=10) package.event = event db.session.add_all([user, event, package]) db.session.commit() self.assertEqual(package.num_for_sale(), 10) package.num_purchased += 1 self.assertEqual(package.num_for_sale(), 9) if __name__ == "__main__": unittest.main()
73a23e510d0db12d3463c18a0f24bc61535d211a
9d1b1d52f99b86bec0e74878c0535057115dc667
/pes/views.py
2c1c8ed73da304fb4070741309f11b3496348234
[]
no_license
antocuni/pesranking
1f9b2bb8f03ba15f5f5d36ff6e70e0de8edc5002
574ecf8b5e49979adf709239a4df78de83acd039
refs/heads/master
2022-11-22T03:21:40.837305
2011-12-01T19:31:03
2011-12-01T19:31:03
275,815,179
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
from django.http import HttpResponseRedirect from pes import models def updateranking(request): models.Match.updateranking() return HttpResponseRedirect(request.META['HTTP_REFERER'])
9dc4b494a28257793973cafba0d97492a5e21a0a
8dbb2a3e2286c97b1baa3ee54210189f8470eb4d
/kubernetes-stubs/client/models/v1beta1_volume_error.pyi
9f645d23474efed86f712f543da51fd09fa5d231
[]
no_license
foodpairing/kubernetes-stubs
e4b0f687254316e6f2954bacaa69ff898a88bde4
f510dc3d350ec998787f543a280dd619449b5445
refs/heads/master
2023-08-21T21:00:54.485923
2021-08-25T03:53:07
2021-08-25T04:45:17
414,555,568
0
0
null
2021-10-07T10:26:08
2021-10-07T10:26:08
null
UTF-8
Python
false
false
518
pyi
import datetime import typing import kubernetes.client class V1beta1VolumeError: message: typing.Optional[str] time: typing.Optional[datetime.datetime] def __init__( self, *, message: typing.Optional[str] = ..., time: typing.Optional[datetime.datetime] = ... ) -> None: ... def to_dict(self) -> V1beta1VolumeErrorDict: ... class V1beta1VolumeErrorDict(typing.TypedDict, total=False): message: typing.Optional[str] time: typing.Optional[datetime.datetime]
f8e6de07d5227dc1abec9911ddada669643f42bb
8b97e08d7d7cd904cafe5163eb81d6e2a81fbd90
/venv/bin/easy_install
74aede3b0a1b02eca86658618ec7a70e9aa649db
[]
no_license
Shaigift/Python-Practice-3
180f8005b31526a4f4c834be5ea46bea1a04ef62
e464740050513a455debeecc1af568f10707010a
refs/heads/master
2022-08-27T15:50:14.602975
2020-05-20T08:31:32
2020-05-20T08:31:32
265,501,050
0
0
null
null
null
null
UTF-8
Python
false
false
444
#!/Users/mphoshai/PycharmProjects/untitled/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
688f5a27c17943c555fe537f43e8a91de0397e93
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/scattercarpet/_uid.py
e693f7c7608fa0de61de5dbd33659c52dd174a3f
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
390
py
import _plotly_utils.basevalidators class UidValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="uid", parent_name="scattercarpet", **kwargs): super(UidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), **kwargs )
073c78c464eb8c22be7697340798bdfb19009e7c
8adec48dfaee1cdfd6c7f4d2fb3038aa1c17bda6
/WProf/build/masters/master.chromium.chromiumos/master_gatekeeper_cfg.py
68b8a28fa503e0db0192a1a7d126068772a3feef
[]
no_license
kusoof/wprof
ef507cfa92b3fd0f664d0eefef7fc7d6cd69481e
8511e9d4339d3d6fad5e14ad7fff73dfbd96beb8
refs/heads/master
2021-01-11T00:52:51.152225
2016-12-10T23:51:14
2016-12-10T23:51:14
70,486,057
0
1
null
null
null
null
UTF-8
Python
false
false
4,526
py
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from master import gatekeeper from master import master_utils # This is the list of the builder categories and the corresponding critical # steps. If one critical step fails, gatekeeper will close the tree # automatically. # Note: don't include 'update scripts' since we can't do much about it when # it's failing and the tree is still technically fine. chromium_categories_steps = { '': ['update'], 'tester': [ 'base_unittests', #'browser_tests', 'cacheinvalidation_unittests', 'content_unittests', 'courgette_unittests', 'crypto_unittests', 'dbus_unittests', 'googleurl_unittests', 'installer_util_unittests', #'interactive_ui_tests', 'ipc_tests', 'jingle_unittests', 'media_unittests', 'mini_installer_test', 'nacl_integration', 'net_unittests', 'printing_unittests', 'remoting_unittests', 'sbox_integration_tests', 'sbox_unittests', 'sbox_validation_tests', 'sizes', 'sql_unittests', 'start_crash_handler', 'sync_unittests', 'test_shell_tests', 'ui_unittests', 'unit_tests', 'views_unittests', #'webkit_tests', ], 'compile': ['check_deps', 'compile', 'archive_build'], 'closer': ['BuildTarget'], } exclusions = { } forgiving_steps = ['update_scripts', 'update', 'svnkill', 'taskkill', 'archive_build', 'start_crash_handler'] close_chromiumos_categories_steps = { 'closer': [ 'LKGMSync', 'BuildBoard', 'UnitTest', ], } warn_chromiumos_categories_steps = { 'watch': [ 'UploadPrebuilts', 'Archive', 'VMTest', ], } warn_aura_chromiumos_categories_steps = { 'aurawatch': [ 'Archive', 'BuildTarget', 'BuildBoard', 'UnitTest', ] } subject = ('buildbot %(result)s in %(projectName)s on %(builder)s, ' 'revision %(revision)s') warning_header = ('Please look at failure in "%(steps)s" on "%(builder)s" ' 'and help out if you can') def Update(config, active_master, alternate_master, c): # chrome likely/possible failures to the chrome sheriffs, closing the # chrome tree c['status'].append(gatekeeper.GateKeeper( fromaddr=active_master.from_address, categories_steps=chromium_categories_steps, exclusions=exclusions, relayhost=config.Master.smtp, subject=subject, extraRecipients=active_master.tree_closing_notification_recipients, lookup=master_utils.FilterDomain(), forgiving_steps=forgiving_steps, tree_status_url=active_master.tree_status_url, sheriffs=['sheriff'], use_getname=True)) # chromium os failures close the chromeOS tree c['status'].append(gatekeeper.GateKeeper( fromaddr=active_master.from_address, categories_steps=close_chromiumos_categories_steps, exclusions=exclusions, relayhost=config.Master.smtp, subject='Closer ' + subject, extraRecipients=alternate_master.tree_closing_notification_recipients, lookup=master_utils.FilterDomain(), forgiving_steps=forgiving_steps, tree_status_url=alternate_master.tree_status_url, sheriffs=['sheriff_cros_mtv', 'sheriff_cros_nonmtv'], use_getname=True)) # chromium os buried failures/flakiness to chrome OS folk c['status'].append(gatekeeper.GateKeeper( fromaddr=active_master.from_address, categories_steps=warn_chromiumos_categories_steps, exclusions=exclusions, relayhost=config.Master.smtp, subject='Warning ' + subject, status_header=warning_header, extraRecipients=[], lookup=master_utils.FilterDomain(), forgiving_steps=forgiving_steps, tree_status_url=None, sheriffs=['sheriff_cros_mtv', 'sheriff_cros_nonmtv'], use_getname=True)) # while the Aura folk are in panic fast mode, let them know to help on # failures that may be related to their special configs. c['status'].append(gatekeeper.GateKeeper( fromaddr=active_master.from_address, categories_steps=warn_aura_chromiumos_categories_steps, exclusions=exclusions, relayhost=config.Master.smtp, subject='Warning ' + subject, status_header=warning_header, extraRecipients=[], lookup=master_utils.FilterDomain(), forgiving_steps=forgiving_steps, tree_status_url=None, sheriffs=['sheriff_aura'], use_getname=True))
[ "kusoof@kookaburra.(none)" ]
kusoof@kookaburra.(none)
f0eefe22562432df713f9a164d1362e2892d2ea0
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03495/s527457667.py
af89959a94f603b8e66e9c604d4ff5d4f266dce7
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
n, k = map(int, input().split()) a = list(map(int, input().split())) ball = {} for i in a: if i in ball: ball[i] += 1 else: ball[i] = 1 ball = sorted(ball.items(), key=lambda x: -x[1]) ans = 0 if len(ball) > k: for i in range(k): ans += ball[i][1] ans = n - ans print(ans)
2a46cba90659a56d1af070ee76242a046edd72a9
ff12b271c7538f0621b88e567b315d5bb44166af
/ambari_monitor/hbase_monitor/hbase_monitor_v2/conn_db.py
d483eee20dceb6a566d0b5d5b49a331740dd2f1d
[]
no_license
witnesslq/big_data_operation
23ca6afd2f69fbe2b4f9debea4bd2f49f6d4a1c8
829422bfd3c52fbd99e0b54e3da7b9ac7ec4f3cd
refs/heads/main
2023-06-06T22:17:15.572951
2021-07-13T14:34:18
2021-07-13T14:34:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,630
py
#!/usr/bin/env python # -*-coding:utf-8 -*- # *************************************************************************** # 文件名称:conn_db.py # 功能描述:迁移Hive表 # 输 入 表: # 输 出 表: # 创 建 者:hyn # 创建日期:20200808 # 修改日志: # 修改日期: # *************************************************************************** # 程序调用格式:python conn_db.py # *************************************************************************** import os import sys from datetime import datetime import datetime as date_time import pymysql mysql_sh = "mysql -h 172.19.168.22 -P 3308 -u zhao -pzhao zhao -e ' " # 连接 def conn_db(): conn = pymysql.connect(host="192.168.195.233", port=20031, user="csapdmcfg", passwd="iEXIMt3w!TFL9vkO", db="csapdmcfg", charset="utf8") return conn # 查询数据 def select(sql): conn = conn_db() cursor = conn.cursor() cursor.execute(sql) result = cursor.fetchall() cursor.close() conn.close() # print result return result # 插入及更新数据 def insert(sql): conn = conn_db() cursor = conn.cursor() cursor.execute(sql) result = cursor.fetchall() conn.commit() cursor.close() conn.close() # print type(result) # print result return result # 批量插入及更新数据 def insert_batch(sql_list): conn = conn_db() cursor = conn.cursor() for sql in sql_list: cursor.execute(sql) conn.commit() cursor.close() conn.close() # result = cursor.fetchall() # print type(result) # print result return
9fbddab470ce95d6a31bb446fcd8a7ee812aa1d0
5399dd4580ea3f528753bc8b52a981743d62f8bb
/keras/keras26_LSTM_hamsu.py
10977c12c7ffbf0c14ef67ef7f6d8b6f2e3211d9
[]
no_license
iwillbeaprogramer/Study
3ac7c118ffe3981d78b4ad263cb62432eae13970
3bfe571da5bbfc545b994e5878e217f9306bde14
refs/heads/main
2023-05-07T16:31:05.564973
2021-05-27T14:50:00
2021-05-27T14:50:00
324,044,441
8
1
null
null
null
null
UTF-8
Python
false
false
1,598
py
# keras 23 _LSTM3_scale을 함수형으로 코딩 import numpy as np x = np.array([[1,2,3],[2,3,4],[3,4,5],[4,5,6],[5,6,7],[6,7,8],[7,8,9],[8,9,10],[9,10,11],[10,11,12],[20,30,40],[30,40,50],[40,50,60]]) y = np.array([4,5,6,7,8,9,10,11,12,13,50,60,70]) x_pred = np.array([50,60,70]).reshape(1,3,1) from tensorflow.keras.models import Sequential,Model from tensorflow.keras.layers import Dense,LSTM,Input from sklearn.metrics import r2_score x = x.reshape(13,3,1) inputs = Input(shape = (3,1)) lstm = LSTM(1024,activation='relu')(inputs) dense1 = Dense(512,activation='relu')(lstm) dense2 = Dense(256,activation='relu')(dense1) dense3 = Dense(128,activation='relu')(dense2) dense4 = Dense(64,activation='relu')(dense3) dense5 = Dense(32,activation='relu')(dense4) dense6 = Dense(8,activation='relu')(dense5) dense7 = Dense(4,activation='relu')(dense6) outputs = Dense(1)(dense7) model = Model(inputs,outputs) # model = Sequential() # model.add(LSTM(1024,input_shape=(3,1),activation='relu')) # model.add(Dense(512,activation='relu')) # model.add(Dense(256,activation='relu')) # model.add(Dense(128,activation='relu')) # model.add(Dense(64,activation='relu')) # model.add(Dense(32,activation='relu')) # model.add(Dense(16,activation='relu')) # model.add(Dense(8,activation='relu')) # model.add(Dense(4,activation='relu')) # model.add(Dense(1)) model.compile(loss='mse',optimizer='adam') model.fit(x,y,epochs=500,batch_size=1) loss = model.evaluate(x,y,batch_size=1) y_pred = model.predict(x_pred) print(y_pred) print('loss : ',loss) ''' [[81.13962]] [[80.14889]] loss : 0.05985087901353836 '''
1e4ec69660f5980e00461dbe5783a03c23174204
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/226/users/4131/codes/1758_1580.py
c80833ecede95654db5b447bb5eb5803ca08197f
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
423
py
from numpy import* v=array(eval(input("notas:")))*1.0 n=array(eval(input("alunos:"))) i=0 faltas=0 aprovados=0 reprovados=0 soma=0 while(i<size(v)): if(v[i]==-1.0): faltas+=1 if(v[i]>=6): aprovados+=1 soma+=v[i] if(v[i]<6.0 and v[i]!=-1.0): reprovados+=1 soma+=v[i] if(v[i]==max(v)): nome = n[i] i=i+1 print(faltas) print(aprovados) print(reprovados) print(round(soma/(aprovados+reprovados),2)) print(nome)
573e195a6ee0cf64d44548b0b3cf38f0233749b1
7c843f80a08db6725fd8d2e85099d9e6c13f6426
/lib/yllibInterface.py
ec7a24ba3216459a602d8f2be161df434745f8a3
[]
no_license
wanfade/scaffolding_Seg
e983c1d1cdd60efcd7d381728c277993a1cf4721
12ba8892eb44d3ce47fa2609973b0510904c4753
refs/heads/master
2023-03-16T05:57:28.808341
2017-11-25T13:53:11
2017-11-25T13:53:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
# -*- coding: utf-8 -*- import sys from os.path import abspath,join,dirname yllibPath = abspath(join(dirname(abspath(__file__)),'./yl')) if yllibPath not in sys.path: sys.path = [yllibPath] + sys.path import tool import ylimg as imglib import ylml as mllib import ylnp as nplib from tool import * from ylimg import * from ylml import * from ylnp import * if __name__ == '__main__': pass