blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
sequencelengths
1
1
author_id
stringlengths
1
132
258340149c613722be8d1cfed6c2f43bf4840d6b
69eb034a1d086d1b2ce1f1083df2b2fd74b9f5cc
/train_model_rmre.py
7396f5c35cbd7cd3cf08f2c365cdd892b4978ffc
[]
no_license
webdxq/genarate_blessing
2c0f6afc55f4c507750911802a80fe299a4690d6
a08a09071edf687dcb512713daea1daf00450383
refs/heads/master
2020-03-29T01:38:33.419803
2018-09-19T06:10:26
2018-09-19T06:10:26
145,077,459
0
0
null
null
null
null
UTF-8
Python
false
false
14,938
py
#!/usr/bin/python3 #-*- coding: UTF-8 -*- import collections import numpy as np import tensorflow as tf import os import sys import chardet import re import json import time from datetime import datetime reload(sys) sys.setdefaultencoding('utf8') # os.environ['CUDA_VISIBLE_DEVICES']='1' #-------------------------------数据预处理---------------------------# # poetry_file ='../data/poetry.txt' minlen = 4 maxlen = 15 blessing_file ='/home/pingan_ai/dxq/project/gen_blessing/dataset/data/line_lyrics.txt' blessings = [] all_words = [] cantoneses = open('/home/pingan_ai/dxq/project/cantonese.txt','r').readline().split(' ') # print(cantoneses) cantonese = [re.compile(i.decode('utf-8')) for i in cantoneses] LEARNING_RATE_BASE = 0.02 MODEL_SAVE_PATH = '/media/pingan_ai/dxq/gen_blessing/new_model/' N_GPU = 2 MODEL_NAME = "blessing.ckpt" EPOCHS = 100 LEARNING_RATE_DECAY = 0.99 filename = blessing_file.split('/')[-1].split('.')[0] # print(blessing_file) can_count = 0 MOVING_AVERAGE_DECAY = 0.99 def HasReapeatWord(string): flag = False for i,char in enumerate(string): # print i s = i m = i+1 e = i+2 # print string[s],string[m],string[e] if flag: return True elif e >= (len(string)-1): return False else: if string[s] == string[m] and string[m] == string[e]: # print string[s],string[m],string[e] flag = True else: continue def IsCantonese(line): for i, patten in enumerate(cantonese): if patten.search(line)!= None: # print(line) # can_count = can_count+1 return True return False with open(blessing_file, "r") as f: for i,line in enumerate(f): if i == 0: continue # try: # print(line) line = line.decode('UTF-8') line = line.strip(u'\n') line = line.replace(u' ',u'') if u'_' in line or u'(' in line or u'(' in line or u'《' in line or u'[' in line: continue if len(line) < minlen or len(line) > maxlen: continue if IsCantonese(line): can_count = can_count+1 continue if HasReapeatWord(line): continue all_words += [word for word in line] line = u'[' + unicode(chr(len(line)+61)) +line + u']' blessings.append(line) # except Exception as e: # print('no') if i%100000== 0: print(u'处理到%d'%i) blessings = sorted(blessings,key=lambda line: len(line)) print(u'歌词总行数: %s'% len(blessings)) print(can_count) counter = collections.Counter(all_words) count_pairs = sorted(counter.items(), key=lambda x: -x[1]) print('*******************') words, _ = zip(*count_pairs) print(len(words)) for i in range(65,66+maxlen-minlen): words = words[:len(words)] + (unicode(chr(i)),) words = words[:len(words)] + (u'[',) words = words[:len(words)] + (u']',) words = words[:len(words)] + (u' ',) print(u'词表总数: %s'% len(words)) word_num_map = dict(zip(words, range(len(words)))) print(word_num_map[u'[']) print(word_num_map[u']']) print(word_num_map[u' ']) print(word_num_map[u'A']) print(word_num_map[u'L']) to_num = lambda word: word_num_map.get(word, len(words)-1) blessings_vector = [ list(map(to_num,blessing)) for blessing in blessings] to_words = lambda num: words[num] print(blessings_vector[-4:-1]) print(blessings_vector[1]) for i in blessings[-4:-1]: print(i) print(blessings[1]) with open(filename+'2id_re.json','w') as outfile: json.dump(word_num_map,outfile,ensure_ascii=False) # outfile.write('\n') with open(filename+'2word_re.json','w') as outfile2: # word2id = dict((value, key) for key,value in word_num_map.iteritems()) json.dump(words,outfile2,ensure_ascii=False) # outfile2.write('\n') batch_size = 256 n_chunk = len(blessings_vector) // batch_size # sys.exit() class DataSet(object): def __init__(self,data_size): self._data_size = data_size self._epochs_completed = 0 self._index_in_epoch = 0 self._data_index = np.arange(data_size) def next_batch(self,batch_size): start = self._index_in_epoch if start + batch_size > self._data_size: np.random.shuffle(self._data_index) self._epochs_completed = self._epochs_completed + 1 self._index_in_epoch = batch_size full_batch_features ,full_batch_labels = self.data_batch(0,batch_size) return full_batch_features ,full_batch_labels else: self._index_in_epoch += batch_size end = self._index_in_epoch full_batch_features ,full_batch_labels = self.data_batch(start,end) if self._index_in_epoch == self._data_size: self._index_in_epoch = 0 self._epochs_completed = self._epochs_completed + 1 np.random.shuffle(self._data_index) return full_batch_features,full_batch_labels def data_batch(self,start,end): batches = [] for i in range(start,end): batches.append(blessings_vector[self._data_index[i]]) length = max(map(len,batches)) # print(word_num_map[' ']) xdata = np.full((end - start,length), word_num_map[']'], np.int32) for row in range(end - start): xdata[row,:len(batches[row])] = batches[row] ydata = np.copy(xdata) ydata[:,:-1] = xdata[:,1:] return xdata,ydata #---------------------------------------RNN--------------------------------------# # 定义RNN def neural_network(input_data,model='lstm', rnn_size=128, num_layers=2): if model == 'rnn': cell_fun = tf.nn.rnn_cell.BasicRNNCell elif model == 'gru': cell_fun = tf.nn.rnn_cell.GRUCell elif model == 'lstm': cell_fun = tf.nn.rnn_cell.BasicLSTMCell cell = cell_fun(rnn_size, state_is_tuple=True) cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True) initial_state = cell.zero_state(batch_size, tf.float32) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)]) softmax_b = tf.get_variable("softmax_b", [len(words)]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [len(words), rnn_size]) inputs = tf.nn.embedding_lookup(embedding, input_data) outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope='rnnlm') output = tf.reshape(outputs,[-1, rnn_size]) logits = tf.matmul(output, softmax_w) + softmax_b probs = tf.nn.softmax(logits) return logits, last_state, probs, cell, initial_state def load_model(sess, saver,ckpt_path): latest_ckpt = tf.train.latest_checkpoint(ckpt_path) if latest_ckpt: print ('resume from', latest_ckpt) saver.restore(sess, latest_ckpt) return int(latest_ckpt[latest_ckpt.rindex('-') + 1:]) else: print ('building model from scratch') sess.run(tf.global_variables_initializer()) return -1 def to_word(weights): sample = np.argmax(weights) return words[sample] def train_to_word(x): # print(u'x的长度',len(x)) x_words = map(to_words, x) # print(str(x_words).decode("unicode-escape")) outstr = ''.join(x_words) token = outstr[1] outstr = outstr[2:-1] print(u'[ '+ token +u' '+ outstr+u' ]') def AlignSentence(sentence): sentence = sentence[:-2] sentence_re = '' for i in range(len(sentence)): if not (sentence[i] >= u'\u4e00' and sentence[i]<=u'\u9fa5'): sentence_re += sentence[i]+u' ' else: sentence_re += sentence[i] # return u'[ '+sentence[i] + u' ]' print sentence_re + u' ]' def get_loss(input_data, targets, reuse_variables=None): # 沿用5.5节中定义的函数来计算神经网络的前向传播结果。 with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables): logits, last_state, probs, _, _ = neural_network(input_data) loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [targets], [tf.ones_like(targets, dtype=tf.float32)], len(words) ) cost = tf.reduce_mean(loss) return cost # 计算每一个变量梯度的平均值。 def average_gradients(tower_grads): average_grads = [] # 枚举所有的变量和变量在不同GPU上计算得出的梯度。 for grad_and_vars in zip(*tower_grads): # 计算所有GPU上的梯度平均值。 grads = [] for g, _ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) # 将变量和它的平均梯度对应起来。 average_grads.append(grad_and_var) # 返回所有变量的平均梯度,这个将被用于变量的更新。 return average_grads # def main(argv=None): def main(argv=None): # 将简单的运算放在CPU上,只有神经网络的训练过程放在GPU上。 TRAINING_STEPS = EPOCHS*n_chunk/N_GPU with tf.Graph().as_default(), tf.device('/cpu:0'): input_data = tf.placeholder(tf.int32, [batch_size, None]) output_targets = tf.placeholder(tf.int32, [batch_size, None]) trainds = DataSet(len(blessings_vector)) targets = tf.reshape(output_targets, [-1]) global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) learning_rate = tf.train.exponential_decay( LEARNING_RATE_BASE, global_step, 60000 / batch_size, LEARNING_RATE_DECAY) optimizer = tf.train.AdamOptimizer(learning_rate) tower_grads = [] reuse_variables = False # 将神经网络的优化过程跑在不同的GPU上。 for i in range(N_GPU): # 将优化过程指定在一个GPU上。 with tf.device('/gpu:%d' % i): with tf.name_scope('GPU_%d' % i) as scope: cur_loss = get_loss(input_data,targets,reuse_variables) # 在第一次声明变量之后,将控制变量重用的参数设置为True。这样可以 # 让不同的GPU更新同一组参数。 reuse_variables = True grads = optimizer.compute_gradients(cur_loss) tower_grads.append(grads) # 计算变量的平均梯度。 grads = average_gradients(tower_grads) for grad, var in grads: if grad is not None: tf.summary.histogram('gradients_on_average/%s' % var.op.name, grad) # 使用平均梯度更新参数。 apply_gradient_op = optimizer.apply_gradients(grads, global_step=global_step) for var in tf.trainable_variables(): tf.summary.histogram(var.op.name, var) # 计算变量的滑动平均值。 variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_to_average = (tf.trainable_variables() +tf.moving_average_variables()) variables_averages_op = variable_averages.apply(variables_to_average) # 每一轮迭代需要更新变量的取值并更新变量的滑动平均值。 train_op = tf.group(apply_gradient_op, variables_averages_op) saver = tf.train.Saver() summary_op = tf.summary.merge_all() init = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto( allow_soft_placement=True, log_device_placement=True)) as sess: # 初始化所有变量并启动队列。 init.run() summary_writer = tf.summary.FileWriter(MODEL_SAVE_PATH, sess.graph) for step in range(TRAINING_STEPS): # 执行神经网络训练操作,并记录训练操作的运行时间。 start_time = time.time() x,y = trainds.next_batch(batch_size) _, loss_value = sess.run([train_op, cur_loss],feed_dict={input_data: x, output_targets: y}) duration = time.time() - start_time # 每隔一段时间数据当前的训练进度,并统计训练速度。 if step != 0 and step % 10 == 0: # 计算使用过的训练数据个数。因为在每一次运行训练操作时,每一个GPU # 都会使用一个batch的训练数据,所以总共用到的训练数据个数为 # batch大小 × GPU个数。 num_examples_per_step = batch_size * N_GPU # num_examples_per_step为本次迭代使用到的训练数据个数, # duration为运行当前训练过程使用的时间,于是平均每秒可以处理的训 # 练数据个数为num_examples_per_step / duration。 examples_per_sec = num_examples_per_step / duration # duration为运行当前训练过程使用的时间,因为在每一个训练过程中, # 每一个GPU都会使用一个batch的训练数据,所以在单个batch上的训 # 练所需要时间为duration / GPU个数。 sec_per_batch = duration / N_GPU # 输出训练信息。 format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) # 通过TensorBoard可视化训练过程。 summary = sess.run(summary_op) summary_writer.add_summary(summary, step) # 每隔一段时间保存当前的模型。 if step == n_chunk: checkpoint_path = os.path.join(MODEL_SAVE_PATH, MODEL_NAME) saver.save(sess, checkpoint_path, global_step=step) main() # if __name__ == '__main__': # tf.app.run()
8562913d19df6e29366246a74cfb3818c2b42ba8
55c250525bd7198ac905b1f2f86d16a44f73e03a
/Python/pygame/pygameweb/pygameweb/config.py
93d8fc8e758f4623cd6c55d2070b53f047f96a2d
[ "BSD-2-Clause" ]
permissive
NateWeiler/Resources
213d18ba86f7cc9d845741b8571b9e2c2c6be916
bd4a8a82a3e83a381c97d19e5df42cbababfc66c
refs/heads/master
2023-09-03T17:50:31.937137
2023-08-28T23:50:57
2023-08-28T23:50:57
267,368,545
2
1
null
2022-09-08T15:20:18
2020-05-27T16:18:17
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:3ead591f9a215ef79ce67657f0809e549584a72ef37757eb3272ca4fbba1ab78 size 2948
fefc253d22ba5bb0ef9b94bef1230f18761a0a2b
afa456bb3792e433d84684260cdce1dbc6302cde
/authors/apps/tests/test_validation.py
d124f479a99ca4cf8c7e3e77f3b359a31f4e9213
[ "BSD-3-Clause" ]
permissive
andela/ah-backend-poseidon
23ac16e9fcdce49f78df04126f9f486b8c39ebd4
d2b561e83ed1e9a585853f4a4e2e37805e86c35c
refs/heads/develop
2022-12-09T07:38:04.843476
2019-07-19T13:44:13
2019-07-19T13:44:13
158,799,017
1
4
BSD-3-Clause
2022-12-08T01:19:16
2018-11-23T07:55:00
Python
UTF-8
Python
false
false
3,979
py
from .base import BaseTestCase from rest_framework import status from authors.apps.authentication.models import User from . import (new_user, data2, invalid_email, invalid_password, short_password, dup_username, user_login) class AccountTests(BaseTestCase): """handles user registration tests""" def test_new_user_registration(self): """check if new user can be registered""" response = self.register_user(new_user) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertIn("token", response.data) def test_user_login(self): """new user can be logged in\ and token returned on successful login""" self.verify_user(new_user) response = self.login_user(user_login) #raise Exception(response.data) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertIn("token", response.data) def test_wrong_token_header_prefix(self): """invalid prefix header provided""" self.client.credentials(HTTP_AUTHORIZATION='hgfds ' + 'poiuytfd') response = self.client.get("/api/user/", format="json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_for_invalid_token(self): """validates token""" self.client.credentials(HTTP_AUTHORIZATION='Token ' + 'yyuug') response = self.client.get("/api/user/", format="json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_no_token_in_header(self): """no token in header""" self.add_credentials(response='') response = self.client.get("/api/user/", format="json") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) def test_create_super_user(self): """checks for registration of a super user in the User model""" user = User.objects.create_superuser( username='ayebare', password='sampletestcase') self.assertIn(str(user), str(user.username)) def test_create_non_user(self): """check for registration of a client user in the User model""" user = User.objects.create_user( email='[email protected]', username='ayebare', password='sampletestcase') self.assertIn(str(user), str(user.email)) def test_get_user_details(self): """get user details""" self.user_access() response = self.client.get('/api/user/', format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) def test_update_user_details(self): """assert update route for user details is accessed""" self.user_access() response = self.client.put('/api/user/', format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) def test_invalid_email_message(self): """test invalid email provided.""" response = self.register_user(invalid_email) self.assertIn(response.data["errors"]["email"][0], 'Please enter a valid email in the format [email protected]') def test_invalid_password(self): """asserts invalid password provided.""" response = self.register_user(invalid_password) self.assertIn(response.data["errors"]["password"][0], 'Password should be alphanuemric (a-z,A_Z,0-9).') def test_short_password(self): """test short password provided.""" response = self.register_user(short_password) self.assertIn(response.data["errors"]["password"][0], 'Password should not be less than 8 characters.') def test_duplicate_username(self): "user with same username provided exists""" self.register_user(new_user) response = self.register_user(dup_username) self.assertIn(response.data["errors"]["username"][0], 'user with this username already exists.')
d31cbc5e81c667f85f43dbf60c55f2703673fc8c
5e66a11717a4760646c0e02bf9ffff2f82f66d18
/chemistry/qchem_make_opt_input_from_opt.py
ca09c35ad793d6cf3c29ac90a3ae9a121f288104
[]
no_license
berquist/personal_scripts
4517678fa57e524e9765dc71f05594e34bdd9c72
d6c40ba6e5a607d26ffabf809cfdfdf3ce29bfb3
refs/heads/master
2023-07-21T08:44:36.401893
2023-07-07T19:55:55
2023-07-07T19:55:55
37,238,106
7
4
null
null
null
null
UTF-8
Python
false
false
7,017
py
#!/usr/bin/env python """qchem_make_opt_input_from_opt.py: Make an input file for a Q-Chem geometry optimization based on the last possible geometry from a Q-Chem geometry optimization; this effectively 'restarts' the geometry with a new filename. The script assumes the output file being read from is called '*opt(\d*).out', where 'opt' might be followed by a number. The script will write an input file called '*opt(\d*)+1.in', with the previous number incremented by one. """ import os.path import re from collections import OrderedDict import cclib from cclib.parser.utils import PeriodicTable def make_file_iterator(filename): """Return an iterator over the contents of the given file name.""" # pylint: disable=C0103 with open(filename) as f: contents = f.read() return iter(contents.splitlines()) def getargs(): """Get command-line arguments.""" import argparse # pylint: disable=C0103 parser = argparse.ArgumentParser() parser.add_argument("outputfilename", nargs="+") parser.add_argument("--fragment", action="store_true") args = parser.parse_args() return args def parse_user_input(outputfilename): """Parse the $rem section in the repeated 'User input:' section of the output. The reason we do it this way rather than with shell tools is to handle any $section more easily and in a case-insensitive manner. """ user_input = dict() outputfile = make_file_iterator(outputfilename) line = "" while "User input:" not in line: line = next(outputfile) line = next(outputfile) assert "----" in line line = next(outputfile) while "--------------------------------------------------------------" not in line: if line.strip() == "": pass elif line[0] == "$" and line.strip().lower() != "$end": section_header = line[1:].lower() user_input[section_header] = [] elif line.strip().lower() == "$end": user_input[section_header] = "\n".join(user_input[section_header]) else: user_input[section_header].append(line) line = next(outputfile) return user_input def parse_fragments_from_molecule(molecule): """Given a $molecule section (without the $ lines), identify the charges and multiplicities of each fragment and the zero-based indices for the starting atom of each fragment. """ charges = [] multiplicities = [] start_indices = [] it = iter(molecule.splitlines()) line = next(it) # sys_charge, sys_multiplicity = line.split() counter = 0 # Gather the charges, spin multiplicities, and starting positions # of each fragment. for line in it: if "--" in line: line = next(it) charge, multiplicity = line.split() charges.append(charge) multiplicities.append(multiplicity) start_indices.append(counter) else: counter += 1 assert len(charges) == len(multiplicities) == len(start_indices) return charges, multiplicities, start_indices def form_molecule_section_from_fragments( elements, geometry, charges, multiplicities, start_indices ): """Form the Q-Chem $molecule section containing the charge, multiplicity, and atomic symbols and coordinates for multiple fragments. Returns a list that will need to be joined with newlines. """ assert len(charges) == len(multiplicities) == (len(start_indices) + 1) s = "{:3s} {:15.10f} {:15.10f} {:15.10f}" # The first elements of the charge and multiplicity lists are for # the supersystem (whole molecule). molecule_section = ["{} {}".format(charges[0], multiplicities[0])] from itertools import count for (charge, multiplicity, idx_iter) in zip(charges[1:], multiplicities[1:], count(0)): molecule_section.append("--") molecule_section.append("{} {}".format(charge, multiplicity)) idx_start = start_indices[idx_iter] try: idx_end = start_indices[idx_iter + 1] except IndexError: idx_end = len(elements) for element, coords in zip(elements[idx_start:idx_end], geometry[idx_start:idx_end]): molecule_section.append(s.format(element, *coords)) return molecule_section def form_molecule_section(elements, geometry, charge, multiplicity): """Form the Q-Chem $molecule section containing the charge, multiplicity, and atomic symbols and coordinates. Returns a list that will need to be joined with newlines. """ s = "{:3s} {:15.10f} {:15.10f} {:15.10f}" molecule_section = ["{} {}".format(charge, multiplicity)] for ( element, coords, ) in zip(elements, geometry): molecule_section.append(s.format(element, *coords)) return molecule_section if __name__ == "__main__": args = getargs() pt = PeriodicTable() for outputfilename in args.outputfilename: job = cclib.io.ccopen(outputfilename) assert isinstance(job, cclib.parser.qchemparser.QChem) try: data = job.parse() # this is to deal with the Q-Chem parser not handling # incomplete SCF cycles properly except StopIteration: print("no output made: StopIteration in {}".format(outputfilename)) continue # Determine the name of the file we're writing. assert outputfilename.endswith(".out") numstr = re.search(r"opt(\d*)", outputfilename).groups()[0] if numstr == "": optnum = 2 else: optnum = int(numstr) + 1 inputfilename = re.sub(r"opt\d*", "opt{}".format(optnum), outputfilename) inputfilename = inputfilename.replace(".out", ".in") inputfilename = os.path.basename(inputfilename) user_input = parse_user_input(outputfilename) # Form the atomic symbols and coordinates for each atom in # $molecule. element_list = [pt.element[Z] for Z in data.atomnos] last_geometry = data.atomcoords[-1] if args.fragment: charges, multiplicities, start_indices = parse_fragments_from_molecule( user_input["molecule"] ) charges.insert(0, data.charge) multiplicities.insert(0, data.mult) molecule_section = form_molecule_section_from_fragments( element_list, last_geometry, charges, multiplicities, start_indices ) else: molecule_section = form_molecule_section( element_list, last_geometry, data.charge, data.mult ) user_input["molecule"] = "\n".join(molecule_section) with open(inputfilename, "w") as fh: for section_header in user_input: fh.write("${}\n".format(section_header)) fh.write(user_input[section_header]) fh.write("\n$end\n\n") print(inputfilename)
73a435e8064d91919dec34b8cd6bebc8580cccd6
47b4d76e9c87e6c45bab38e348ae12a60a60f94c
/Mutation_Modules/ASP_ABU.py
daf6d4fc6047cc403fb95ef273d03a28cd399101
[]
no_license
PietroAronica/Parasol.py
9bc17fd8e177e432bbc5ce4e7ee2d721341b2707
238abcdc2caee7bbfea6cfcdda1ca705766db204
refs/heads/master
2021-01-10T23:57:40.225140
2020-10-14T02:21:15
2020-10-14T02:21:15
70,791,648
0
0
null
null
null
null
UTF-8
Python
false
false
18,941
py
# ASP to ABU Mutation import Frcmod_creator import PDBHandler import Leapy from parmed.tools.actions import * from parmed.amber.readparm import * def parmed_command(vxi='VXI', lipid='No'): bc = {} with open('Param_files/AminoAcid/ASP.param', 'r') as b: data = b.readlines()[1:] for line in data: key, value = line.split() bc[key] = float(value) b.close() fc = {} with open('Param_files/AminoAcid/ABU.param', 'r') as b: data = b.readlines()[1:] for line in data: key, value = line.split() fc[key] = float(value) b.close() for i in range(11): a = i*10 i = float(i) parm = AmberParm('Solv_{}_{}.prmtop'.format(a, 100-a)) changeLJPair(parm, ':{}@HB2'.format(vxi), ':{}@OD1'.format(vxi), '0', '0').execute() changeLJPair(parm, ':{}@HB'.format(vxi), ':{}@HG1'.format(vxi), '0', '0').execute() change(parm, 'charge', ':{}@N'.format(vxi), bc['N']+((fc['N']-bc['N'])/10)*i).execute() change(parm, 'charge', ':{}@H'.format(vxi), bc['H']+((fc['H']-bc['H'])/10)*i).execute() change(parm, 'charge', ':{}@CA'.format(vxi), bc['CA']+((fc['CA']-bc['CA'])/10)*i).execute() change(parm, 'charge', ':{}@HA'.format(vxi), bc['HA']+((fc['HA']-bc['HA'])/10)*i).execute() change(parm, 'charge', ':{}@CB'.format(vxi), bc['CB']+((fc['CB']-bc['CB'])/10)*i).execute() change(parm, 'charge', ':{}@HB'.format(vxi), bc['HB2']-(bc['HB2']/10)*i).execute() change(parm, 'charge', ':{}@HB2'.format(vxi), fc['HB2']/10*i).execute() change(parm, 'charge', ':{}@HB3'.format(vxi), bc['HB3']+((fc['HB3']-bc['HB3'])/10)*i).execute() change(parm, 'charge', ':{}@CG'.format(vxi), fc['CG']/10*i).execute() change(parm, 'charge', ':{}@HG1'.format(vxi), fc['HG1']/10*i).execute() change(parm, 'charge', ':{}@HG2'.format(vxi), fc['HG2']/10*i).execute() change(parm, 'charge', ':{}@HG3'.format(vxi), fc['HG3']/10*i).execute() change(parm, 'charge', ':{}@CG1'.format(vxi), (bc['CG']-(bc['CG']/10)*i)*(10-i)/10).execute() change(parm, 'charge', ':{}@OD1'.format(vxi), (bc['OD1']-(bc['OD1']/10)*i)*(10-i)/10).execute() change(parm, 'charge', ':{}@OD2'.format(vxi), (bc['OD2']-(bc['OD2']/10)*i)*(10-i)/10).execute() change(parm, 'charge', ':{}@C'.format(vxi), bc['C']+((fc['C']-bc['C'])/10)*i).execute() change(parm, 'charge', ':{}@O'.format(vxi), bc['O']+((fc['O']-bc['O'])/10)*i).execute() #print printDetails(parm, ':VXI') d = netCharge(parm).execute() change(parm, 'charge', ':PC', '{:.3f}'.format(-d)).execute() setOverwrite(parm).execute() parmout(parm, 'Solv_{}_{}.prmtop'.format(a, 100-a)).execute() def makevxi(struct, out, aa, vxi='VXI'): struct.residue_dict[aa].set_resname(vxi) CB = struct.residue_dict[aa].atom_dict['CB'] HB2 = struct.residue_dict[aa].atom_dict['HB2'] CG = struct.residue_dict[aa].atom_dict['CG'] pdb = open(out, 'w') try: pdb.write(struct.other_dict['Cryst1'].formatted()) except KeyError: pass for res in struct.residue_list: for atom in res.atom_list: if atom.get_name() == 'HB2' and res.get_resname() == vxi: pdb.write(atom.change_name('HB')) pdb.write(atom.superimposed1('HB2', CG)) elif atom.get_name() == 'HB3' and res.get_resname() == vxi: pdb.write(atom.formatted()) pdb.write(atom.halfway_between('CG', CB, HB2)) pdb.write(atom.superimposed1('HG1', HB2)) pdb.write(atom.superimposed2('HG2', HB2)) pdb.write(atom.superimposed3('HG3', HB2)) elif atom.get_name() == 'CG' and res.get_resname() == vxi: pdb.write(atom.change_name('CG1')) else: pdb.write(atom.formatted()) try: pdb.write(struct.other_dict[atom.get_number()].ter()) except: pass for oth in struct.other_dict: try: if oth.startswith('Conect'): pdb.write(struct.other_dict[oth].formatted()) except: pass pdb.write('END\n') def variablemake(sym='^'): var1 = sym + '1' var2 = sym + '2' var3 = sym + '3' var4 = sym + '4' var5 = sym + '5' var6 = sym + '6' var7 = sym + '7' var8 = sym + '8' var9 = sym + '9' var10 = sym + '0' var11 = sym + 'a' var12 = sym + 'b' var13 = sym + 'c' var14 = sym + 'd' var15 = sym + 'e' return var1, var2, var3, var4, var5, var6, var7, var8, var9, var10, var11, var12, var13, var14, var15 def lib_make(ff, outputfile, vxi='VXI', var=variablemake()): metcar = var[0] methyd = var[1] hydhyd1 = var[2] carcar = var[3] caroxy = var[4] hydhyd2 = var[5] ctrl = open('lyp.in', 'w') ctrl.write("source %s\n"%ff) ctrl.write("%s=loadpdb Param_files/LibPDB/ASP-ABU.pdb\n"%vxi) ctrl.write('set %s.1.1 element "N"\n'%vxi) ctrl.write('set %s.1.2 element "H"\n'%vxi) ctrl.write('set %s.1.3 element "C"\n'%vxi) ctrl.write('set %s.1.4 element "H"\n'%vxi) ctrl.write('set %s.1.5 element "C"\n'%vxi) ctrl.write('set %s.1.6 element "H"\n'%vxi) ctrl.write('set %s.1.7 element "H"\n'%vxi) ctrl.write('set %s.1.8 element "H"\n'%vxi) ctrl.write('set %s.1.9 element "C"\n'%vxi) ctrl.write('set %s.1.10 element "H"\n'%vxi) ctrl.write('set %s.1.11 element "H"\n'%vxi) ctrl.write('set %s.1.12 element "H"\n'%vxi) ctrl.write('set %s.1.13 element "C"\n'%vxi) ctrl.write('set %s.1.14 element "O"\n'%vxi) ctrl.write('set %s.1.15 element "O"\n'%vxi) ctrl.write('set %s.1.16 element "C"\n'%vxi) ctrl.write('set %s.1.17 element "O"\n'%vxi) ctrl.write('set %s.1.1 name "N"\n'%vxi) ctrl.write('set %s.1.2 name "H"\n'%vxi) ctrl.write('set %s.1.3 name "CA"\n'%vxi) ctrl.write('set %s.1.4 name "HA"\n'%vxi) ctrl.write('set %s.1.5 name "CB"\n'%vxi) ctrl.write('set %s.1.6 name "HB"\n'%vxi) ctrl.write('set %s.1.7 name "HB2"\n'%vxi) ctrl.write('set %s.1.8 name "HB3"\n'%vxi) ctrl.write('set %s.1.9 name "CG"\n'%vxi) ctrl.write('set %s.1.10 name "HG1"\n'%vxi) ctrl.write('set %s.1.11 name "HG2"\n'%vxi) ctrl.write('set %s.1.12 name "HG3"\n'%vxi) ctrl.write('set %s.1.13 name "CG1"\n'%vxi) ctrl.write('set %s.1.14 name "OD1"\n'%vxi) ctrl.write('set %s.1.15 name "OD2"\n'%vxi) ctrl.write('set %s.1.16 name "C"\n'%vxi) ctrl.write('set %s.1.17 name "O"\n'%vxi) ctrl.write('set %s.1.1 type "N"\n'%vxi) ctrl.write('set %s.1.2 type "H"\n'%vxi) ctrl.write('set %s.1.3 type "CT"\n'%vxi) ctrl.write('set %s.1.4 type "H1"\n'%vxi) ctrl.write('set %s.1.5 type "CT"\n'%vxi) ctrl.write('set %s.1.6 type "%s"\n'%(vxi, hydhyd1)) ctrl.write('set %s.1.7 type "%s"\n'%(vxi, hydhyd2)) ctrl.write('set %s.1.8 type "HC"\n'%vxi) ctrl.write('set %s.1.9 type "%s"\n'%(vxi, metcar)) ctrl.write('set %s.1.10 type "%s"\n'%(vxi, methyd)) ctrl.write('set %s.1.11 type "%s"\n'%(vxi, methyd)) ctrl.write('set %s.1.12 type "%s"\n'%(vxi, methyd)) ctrl.write('set %s.1.13 type "%s"\n'%(vxi, carcar)) ctrl.write('set %s.1.14 type "%s"\n'%(vxi, caroxy)) ctrl.write('set %s.1.15 type "%s"\n'%(vxi, caroxy)) ctrl.write('set %s.1.16 type "C"\n'%vxi) ctrl.write('set %s.1.17 type "O"\n'%vxi) ctrl.write('bond %s.1.1 %s.1.2\n'%(vxi, vxi)) ctrl.write('bond %s.1.1 %s.1.3\n'%(vxi, vxi)) ctrl.write('bond %s.1.3 %s.1.4\n'%(vxi, vxi)) ctrl.write('bond %s.1.3 %s.1.5\n'%(vxi, vxi)) ctrl.write('bond %s.1.3 %s.1.16\n'%(vxi, vxi)) ctrl.write('bond %s.1.5 %s.1.6\n'%(vxi, vxi)) ctrl.write('bond %s.1.5 %s.1.7\n'%(vxi, vxi)) ctrl.write('bond %s.1.5 %s.1.8\n'%(vxi, vxi)) ctrl.write('bond %s.1.5 %s.1.9\n'%(vxi, vxi)) ctrl.write('bond %s.1.5 %s.1.13\n'%(vxi, vxi)) ctrl.write('bond %s.1.9 %s.1.10\n'%(vxi, vxi)) ctrl.write('bond %s.1.9 %s.1.11\n'%(vxi, vxi)) ctrl.write('bond %s.1.9 %s.1.12\n'%(vxi, vxi)) ctrl.write('bond %s.1.13 %s.1.14\n'%(vxi, vxi)) ctrl.write('bond %s.1.13 %s.1.15\n'%(vxi, vxi)) ctrl.write('bond %s.1.16 %s.1.17\n'%(vxi, vxi)) ctrl.write('set %s.1 connect0 %s.1.N\n'%(vxi, vxi)) ctrl.write('set %s.1 connect1 %s.1.C\n'%(vxi, vxi)) ctrl.write('set %s name "%s"\n'%(vxi, vxi)) ctrl.write('set %s.1 name "%s"\n'%(vxi, vxi)) ctrl.write('set %s head %s.1.N\n'%(vxi, vxi)) ctrl.write('set %s tail %s.1.C\n'%(vxi, vxi)) ctrl.write('saveoff %s %s.lib\n'%(vxi, vxi)) ctrl.write("quit\n") ctrl.close() Leapy.run('lyp.in', outputfile) def all_make(): for i in range(0,110,10): Frcmod_creator.make ('{}_{}.frcmod'.format(i, 100-i)) def cal(x, y, i): num = x+((y-x)/10)*i return num def lac(y, x, i): num = x+((y-x)/10)*i return num def stock_add_to_all(var=variablemake()): metcar = var[0] methyd = var[1] hydhyd1 = var[2] carcar = var[3] caroxy = var[4] hydhyd2 = var[5] Frcmod_creator.make_hyb() Frcmod_creator.TYPE_insert(carcar, 'C', 'sp2') Frcmod_creator.TYPE_insert(caroxy, 'O', 'sp2') Frcmod_creator.TYPE_insert(hydhyd2, 'H', 'sp3') Frcmod_creator.TYPE_insert(metcar, 'C', 'sp3') Frcmod_creator.TYPE_insert(methyd, 'H', 'sp3') Frcmod_creator.TYPE_insert(hydhyd1, 'H', 'sp3') p = {} with open('Param_files/Stock/Stock.param', 'r') as b: data = b.readlines()[1:] for line in data: p[line.split()[0]] = [] for point in line.split()[1:]: p[line.split()[0]].append(float(point)) b.close() for i in range(11): a = i*10 Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), carcar, cal(p['C'][0], p['0_C'][0], i), cal(p['C'][1], p['0_C'][1], i)) Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), caroxy, cal(p['O2'][0], p['0_O'][0], i), cal(p['O2'][1], p['0_O'][1], i)) Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), hydhyd2, cal(p['0_H'][0], p['HC'][0], i), cal(p['0_H'][1], p['HC'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format('CT', carcar), cal(p['CT_C'][0], p['CT_mH'][0], i), cal(p['CT_C'][1], p['CT_mH'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format('CT', hydhyd2), cal(p['HC_sC2'][0], p['CT_HC'][0], i), cal(p['HC_sC2'][1], p['CT_HC'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format(carcar, caroxy), cal(p['C_O2'][0], p['O2_mH'][0], i), cal(p['C_O2'][1], p['O2_mH'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', carcar, caroxy), cal(p['C_C_O2'][0], p['Dritt'][0], i), cal(p['C_C_O2'][1], p['Dritt'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(caroxy, carcar, caroxy), cal(p['O2_C_O2'][0], p['Close'][0], i), cal(p['O2_C_O2'][1], p['Close'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', 'CT', carcar), cal(p['CT_CT_C'][0], p['C_C_H'][0], i), cal(p['CT_CT_C'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(hydhyd2, 'CT', carcar), cal(p['Close'][0], p['Close'][0], i), cal(p['Close'][1], p['Close'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', 'CT', hydhyd2), cal(p['C_C_H'][0], p['C_C_H'][0], i), cal(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('HC', 'CT', carcar), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('HC', 'CT', hydhyd2), lac(p['H_C_H'][0], p['H_C_H'][0], i), lac(p['H_C_H'][1], p['H_C_H'][1], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format('CT', 'CT', carcar, caroxy), cal(p['Ring_Dihe_2'][0], p['Ring_Dihe_2'][0], i), cal(p['Ring_Dihe_2'][1], p['Ring_Dihe_2'][1], i), cal(p['Ring_Dihe_2'][2], p['Ring_Dihe_2'][2], i), cal(p['Ring_Dihe_2'][3], p['Ring_Dihe_2'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format('HC', 'CT', carcar, caroxy), lac(p['Ring_Dihe_2'][0], p['Ring_Dihe_2'][0], i), lac(p['Ring_Dihe_2'][1], p['Ring_Dihe_2'][1], i), lac(p['Ring_Dihe_2'][2], p['Ring_Dihe_2'][2], i), lac(p['Ring_Dihe_2'][3], p['Ring_Dihe_2'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(hydhyd2, 'CT', carcar, caroxy), cal(p['0_Dihe'][0], p['0_Dihe'][0], i), cal(p['0_Dihe'][1], p['0_Dihe'][1], i), cal(p['0_Dihe'][2], p['0_Dihe'][2], i), cal(p['0_Dihe'][3], p['0_Dihe'][3], i)) Frcmod_creator.IMPROPER_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format('X ', caroxy, carcar, caroxy), cal(p['Car_imp'][0], p['Imp_0'][0], i), cal(p['Car_imp'][1], p['Imp_0'][1], i), cal(p['Car_imp'][2], p['Imp_0'][2], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), carcar, cal(p['C'][2], p['0_C'][2], i), cal(p['C'][3], p['0_C'][3], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), caroxy, cal(p['O2'][2], p['0_O'][2], i), cal(p['O2'][3], p['0_O'][3], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), hydhyd2, cal(p['0_H'][2], p['HC'][2], i), cal(p['0_H'][3], p['HC'][3], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(hydhyd1, 'CT', carcar), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(metcar, 'CT', carcar), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(hydhyd1, 'CT', hydhyd2), lac(p['H_C_H'][0], p['H_C_H'][0], i), lac(p['H_C_H'][1], p['H_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(hydhyd2, 'CT', metcar), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(hydhyd1, 'CT', carcar, caroxy), lac(p['Ring_Dihe_2'][0], p['Ring_Dihe_2'][0], i), lac(p['Ring_Dihe_2'][1], p['Ring_Dihe_2'][1], i), lac(p['Ring_Dihe_2'][2], p['Ring_Dihe_2'][2], i), lac(p['Ring_Dihe_2'][3], p['Ring_Dihe_2'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(metcar, 'CT', carcar, caroxy), lac(p['0_Dihe'][0], p['0_Dihe'][0], i), lac(p['0_Dihe'][1], p['0_Dihe'][1], i), lac(p['0_Dihe'][2], p['0_Dihe'][2], i), lac(p['0_Dihe'][3], p['0_Dihe'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(methyd, metcar, 'CT', carcar), lac(p['0_Dihe'][0], p['0_Dihe'][0], i), lac(p['0_Dihe'][1], p['0_Dihe'][1], i), lac(p['0_Dihe'][2], p['0_Dihe'][2], i), lac(p['0_Dihe'][3], p['0_Dihe'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(hydhyd2, 'CT', metcar, methyd), lac(p['H_C_C_H'][0], p['0_1'][0], i), lac(p['H_C_C_H'][1], p['0_1'][1], i), lac(p['H_C_C_H'][2], p['0_1'][2], i), lac(p['H_C_C_H'][3], p['0_1'][3], i)) Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), metcar, lac(p['CT'][0], p['0_C'][0], i), lac(p['CT'][1], p['0_C'][1], i)) Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), methyd, lac(p['HC'][0], p['0_H'][0], i), lac(p['HC'][1], p['0_H'][1], i)) Frcmod_creator.MASS_insert('{}_{}.frcmod'.format(a, 100-a), hydhyd1, lac(p['0_H'][0], p['HC'][0], i), lac(p['0_H'][1], p['HC'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format('CT', metcar), lac(p['CT_CT'][0], p['CT_mH'][0], i), lac(p['CT_CT'][1], p['CT_mH'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format('CT', hydhyd1), lac(p['HC_sC'][0], p['CT_HC'][0], i), lac(p['HC_sC'][1], p['CT_HC'][1], i)) Frcmod_creator.BOND_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}'.format(metcar, methyd), lac(p['CT_HC'][0], p['HC_mH'][0], i), lac(p['CT_HC'][1], p['HC_mH'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(hydhyd1, 'CT', metcar), lac(p['Close'][0], p['Close'][0], i), lac(p['Close'][1], p['Close'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', metcar, methyd), lac(p['C_C_H'][0], p['Dritt'][0], i), lac(p['C_C_H'][1], p['Dritt'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format(methyd, metcar, methyd), lac(p['H_C_H'][0], p['Close'][0], i), lac(p['H_C_H'][1], p['Close'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', 'CT', metcar), lac(p['C_C_C'][0], p['C_C_C'][0], i), lac(p['C_C_C'][1], p['C_C_C'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('HC', 'CT', metcar), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('CT', 'CT', hydhyd1), lac(p['C_C_H'][0], p['C_C_H'][0], i), lac(p['C_C_H'][1], p['C_C_H'][1], i)) Frcmod_creator.ANGLE_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}'.format('HC', 'CT', hydhyd1), lac(p['H_C_H'][0], p['H_C_H'][0], i), lac(p['H_C_H'][1], p['H_C_H'][1], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format('CT', 'CT', metcar, methyd), lac(p['C_C_C_H'][0], p['0_1'][0], i), lac(p['C_C_C_H'][1], p['0_1'][1], i), lac(p['C_C_C_H'][2], p['0_1'][2], i), lac(p['C_C_C_H'][3], p['0_1'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format('HC', 'CT', metcar, methyd), lac(p['H_C_C_H'][0], p['0_1'][0], i), lac(p['H_C_C_H'][1], p['0_1'][1], i), lac(p['H_C_C_H'][2], p['0_1'][2], i), lac(p['H_C_C_H'][3], p['0_1'][3], i)) Frcmod_creator.DIHEDRAL_insert('{}_{}.frcmod'.format(a, 100-a), '{}-{}-{}-{}'.format(hydhyd1, 'CT', metcar, methyd), lac(p['0_Dihe'][0], p['0_Dihe'][0], i), lac(p['0_Dihe'][1], p['0_Dihe'][1], i), lac(p['0_Dihe'][2], p['0_Dihe'][2], i), lac(p['0_Dihe'][3], p['0_Dihe'][3], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), metcar, lac(p['CT'][2], p['0_C'][2], i), lac(p['CT'][3], p['0_C'][3], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), methyd, lac(p['HC'][2], p['0_H'][2], i), lac(p['HC'][3], p['0_H'][3], i)) Frcmod_creator.NONBON_insert('{}_{}.frcmod'.format(a, 100-a), hydhyd1, lac(p['0_H'][2], p['HC'][2], i), lac(p['0_H'][3], p['HC'][3], i))
baf6d43bb76cf966f9aafce6ee12d8dd8e818f72
a74cabbe1b11fc8ef575ea86f2543cd95db78ec9
/python_program/q783_Minimum_Distance_Between_BST_Nodes.py
4e4fe499e62126c9b084fde6bd89e951b18accbf
[]
no_license
tszandy/leetcode
87e3ccf291b2879637d2d8238935a455b401a78a
f1f4361541dcffbb291285663c8820d7ffb37d2f
refs/heads/master
2023-04-06T15:34:04.847875
2023-03-26T12:22:42
2023-03-26T12:22:42
204,069,234
0
0
null
null
null
null
UTF-8
Python
false
false
1,628
py
from typing import List from collections import Counter,defaultdict from math import * from functools import reduce,lru_cache,total_ordering import numpy as np from heapq import * from bisect import bisect_left,bisect_right from itertools import count import queue # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def minDiffInBST(self, root: Optional[TreeNode]) -> int: return self.min_difference(root) def min_difference(self,node): if node == None: return float("inf") node_left_min = float("inf") if node.left!=None: node_left_min = node.val-self.max_left(node.left) node_right_min = float("inf") if node.right!=None: node_right_min = self.max_right(node.right)-node.val left_min = self.min_difference(node.left) right_min = self.min_difference(node.right) return min(node_left_min,node_right_min,left_min,right_min) def max_left(self,node): if node.right == None: return node.val else: return self.max_left(node.right) def max_right(self,node): if node.left == None: return node.val else: return self.max_right(node.left) sol = Solution() # input [4,2,6,1,3] [1,0,48,null,null,12,49] [1,0] [2,0,5] [2,0,6] [5,0,13] # output output = sol.minDiffInBST(root) # answer answer = "" print(output, answer, answer == output)
2c4815d72b5155adfdf7058fe4a14ff7f245285f
6497bc5638453877744c900f7accef0203f36e89
/leedcode1_twosum.py
e4bfcfdfe9201a15782286e8a9d575f229c34ec0
[]
no_license
budaLi/leetcode-python-
82e9affb3317f63a82d89d7e82650de3c804a5ac
4221172b46d286ab6bf4c74f4d015ee9ef3bda8d
refs/heads/master
2022-01-30T00:55:26.209864
2022-01-05T01:01:47
2022-01-05T01:01:47
148,323,318
46
23
null
null
null
null
UTF-8
Python
false
false
868
py
#-*-coding:utf8-*- #author : Lenovo #date: 2018/7/23 class Solution(object): def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ d = {}# d is a dictionary to map the value of nums and the index in nums size = 0 for size in range(len(nums)): if not nums[size] in d: d[nums[size]] = size #if nums[size] doesn't exist in d ,create it if target - nums[size] in d: #if nums[size] and target - nums[size] are both in d # if d[target-nums[size]] < size + 1: # one situation should be minded nums[size] == target - nums[size] ans = [d[target - nums[size]] , size ]# for example [0,1,2] 0 and [0,1,2,0],0 return ans ex=Solution() e=ex.twoSum([1,2,5,7,8],16) print(e)
a736d5a5660159fb0615d48680b0d70ffdac597c
a2080cbcf9694ad03690769cfc64d85a57f1d9d5
/src/graphql/language/printer.py
842f251878846b17bd2c7f9e94bba434648fd747
[ "MIT" ]
permissive
wuyuanyi135/graphql-core
84196a47aec0f9508db3f8aadb8951b9fc9b9fe0
169ae7bced0f515603e97f1def925f3d062e5009
refs/heads/main
2023-04-13T11:38:10.815573
2021-05-02T05:17:29
2021-05-02T05:21:58
363,327,364
1
0
MIT
2021-05-01T05:05:29
2021-05-01T05:05:28
null
UTF-8
Python
false
false
13,157
py
from functools import wraps from json import dumps from typing import Any, Callable, Collection, Optional from ..language.ast import Node, OperationType from .visitor import visit, Visitor from .block_string import print_block_string __all__ = ["print_ast"] Strings = Collection[str] class PrintedNode: """A union type for all nodes that have been processed by the printer.""" alias: str arguments: Strings block: bool default_value: str definitions: Strings description: str directives: str fields: Strings interfaces: Strings locations: Strings name: str operation: OperationType operation_types: Strings repeatable: bool selection_set: str selections: Strings type: str type_condition: str types: Strings value: str values: Strings variable: str variable_definitions: Strings def print_ast(ast: Node) -> str: """Convert an AST into a string. The conversion is done using a set of reasonable formatting rules. """ return visit(ast, PrintAstVisitor()) def add_description(method: Callable[..., str]) -> Callable: """Decorator adding the description to the output of a static visitor method.""" @wraps(method) def wrapped(node: PrintedNode, *args: Any) -> str: return join((node.description, method(node, *args)), "\n") return wrapped class PrintAstVisitor(Visitor): @staticmethod def leave_name(node: PrintedNode, *_args: Any) -> str: return node.value @staticmethod def leave_variable(node: PrintedNode, *_args: Any) -> str: return f"${node.name}" # Document @staticmethod def leave_document(node: PrintedNode, *_args: Any) -> str: return join(node.definitions, "\n\n") + "\n" @staticmethod def leave_operation_definition(node: PrintedNode, *_args: Any) -> str: name, op, selection_set = node.name, node.operation, node.selection_set var_defs = wrap("(", join(node.variable_definitions, ", "), ")") directives = join(node.directives, " ") # Anonymous queries with no directives or variable definitions can use the # query short form. return ( join((op.value, join((name, var_defs)), directives, selection_set), " ") if (name or directives or var_defs or op != OperationType.QUERY) else selection_set ) @staticmethod def leave_variable_definition(node: PrintedNode, *_args: Any) -> str: return ( f"{node.variable}: {node.type}" f"{wrap(' = ', node.default_value)}" f"{wrap(' ', join(node.directives, ' '))}" ) @staticmethod def leave_selection_set(node: PrintedNode, *_args: Any) -> str: return block(node.selections) @staticmethod def leave_field(node: PrintedNode, *_args: Any) -> str: return join( ( wrap("", node.alias, ": ") + node.name + wrap("(", join(node.arguments, ", "), ")"), join(node.directives, " "), node.selection_set, ), " ", ) @staticmethod def leave_argument(node: PrintedNode, *_args: Any) -> str: return f"{node.name}: {node.value}" # Fragments @staticmethod def leave_fragment_spread(node: PrintedNode, *_args: Any) -> str: return f"...{node.name}{wrap(' ', join(node.directives, ' '))}" @staticmethod def leave_inline_fragment(node: PrintedNode, *_args: Any) -> str: return join( ( "...", wrap("on ", node.type_condition), join(node.directives, " "), node.selection_set, ), " ", ) @staticmethod def leave_fragment_definition(node: PrintedNode, *_args: Any) -> str: # Note: fragment variable definitions are experimental and may be changed or # removed in the future. return ( f"fragment {node.name}" f"{wrap('(', join(node.variable_definitions, ', '), ')')}" f" on {node.type_condition}" f" {wrap('', join(node.directives, ' '), ' ')}" f"{node.selection_set}" ) # Value @staticmethod def leave_int_value(node: PrintedNode, *_args: Any) -> str: return node.value @staticmethod def leave_float_value(node: PrintedNode, *_args: Any) -> str: return node.value @staticmethod def leave_string_value(node: PrintedNode, key: str, *_args: Any) -> str: if node.block: return print_block_string(node.value, "" if key == "description" else " ") return dumps(node.value) @staticmethod def leave_boolean_value(node: PrintedNode, *_args: Any) -> str: return "true" if node.value else "false" @staticmethod def leave_null_value(_node: PrintedNode, *_args: Any) -> str: return "null" @staticmethod def leave_enum_value(node: PrintedNode, *_args: Any) -> str: return node.value @staticmethod def leave_list_value(node: PrintedNode, *_args: Any) -> str: return f"[{join(node.values, ', ')}]" @staticmethod def leave_object_value(node: PrintedNode, *_args: Any) -> str: return f"{{{join(node.fields, ', ')}}}" @staticmethod def leave_object_field(node: PrintedNode, *_args: Any) -> str: return f"{node.name}: {node.value}" # Directive @staticmethod def leave_directive(node: PrintedNode, *_args: Any) -> str: return f"@{node.name}{wrap('(', join(node.arguments, ', '), ')')}" # Type @staticmethod def leave_named_type(node: PrintedNode, *_args: Any) -> str: return node.name @staticmethod def leave_list_type(node: PrintedNode, *_args: Any) -> str: return f"[{node.type}]" @staticmethod def leave_non_null_type(node: PrintedNode, *_args: Any) -> str: return f"{node.type}!" # Type System Definitions @staticmethod @add_description def leave_schema_definition(node: PrintedNode, *_args: Any) -> str: return join( ("schema", join(node.directives, " "), block(node.operation_types)), " " ) @staticmethod def leave_operation_type_definition(node: PrintedNode, *_args: Any) -> str: return f"{node.operation.value}: {node.type}" @staticmethod @add_description def leave_scalar_type_definition(node: PrintedNode, *_args: Any) -> str: return join(("scalar", node.name, join(node.directives, " ")), " ") @staticmethod @add_description def leave_object_type_definition(node: PrintedNode, *_args: Any) -> str: return join( ( "type", node.name, wrap("implements ", join(node.interfaces, " & ")), join(node.directives, " "), block(node.fields), ), " ", ) @staticmethod @add_description def leave_field_definition(node: PrintedNode, *_args: Any) -> str: args = node.arguments args = ( wrap("(\n", indent(join(args, "\n")), "\n)") if has_multiline_items(args) else wrap("(", join(args, ", "), ")") ) directives = wrap(" ", join(node.directives, " ")) return f"{node.name}{args}: {node.type}{directives}" @staticmethod @add_description def leave_input_value_definition(node: PrintedNode, *_args: Any) -> str: return join( ( f"{node.name}: {node.type}", wrap("= ", node.default_value), join(node.directives, " "), ), " ", ) @staticmethod @add_description def leave_interface_type_definition(node: PrintedNode, *_args: Any) -> str: return join( ( "interface", node.name, wrap("implements ", join(node.interfaces, " & ")), join(node.directives, " "), block(node.fields), ), " ", ) @staticmethod @add_description def leave_union_type_definition(node: PrintedNode, *_args: Any) -> str: return join( ( "union", node.name, join(node.directives, " "), "= " + join(node.types, " | ") if node.types else "", ), " ", ) @staticmethod @add_description def leave_enum_type_definition(node: PrintedNode, *_args: Any) -> str: return join( ("enum", node.name, join(node.directives, " "), block(node.values)), " " ) @staticmethod @add_description def leave_enum_value_definition(node: PrintedNode, *_args: Any) -> str: return join((node.name, join(node.directives, " ")), " ") @staticmethod @add_description def leave_input_object_type_definition(node: PrintedNode, *_args: Any) -> str: return join( ("input", node.name, join(node.directives, " "), block(node.fields)), " " ) @staticmethod @add_description def leave_directive_definition(node: PrintedNode, *_args: Any) -> str: args = node.arguments args = ( wrap("(\n", indent(join(args, "\n")), "\n)") if has_multiline_items(args) else wrap("(", join(args, ", "), ")") ) repeatable = " repeatable" if node.repeatable else "" locations = join(node.locations, " | ") return f"directive @{node.name}{args}{repeatable} on {locations}" @staticmethod def leave_schema_extension(node: PrintedNode, *_args: Any) -> str: return join( ("extend schema", join(node.directives, " "), block(node.operation_types)), " ", ) @staticmethod def leave_scalar_type_extension(node: PrintedNode, *_args: Any) -> str: return join(("extend scalar", node.name, join(node.directives, " ")), " ") @staticmethod def leave_object_type_extension(node: PrintedNode, *_args: Any) -> str: return join( ( "extend type", node.name, wrap("implements ", join(node.interfaces, " & ")), join(node.directives, " "), block(node.fields), ), " ", ) @staticmethod def leave_interface_type_extension(node: PrintedNode, *_args: Any) -> str: return join( ( "extend interface", node.name, wrap("implements ", join(node.interfaces, " & ")), join(node.directives, " "), block(node.fields), ), " ", ) @staticmethod def leave_union_type_extension(node: PrintedNode, *_args: Any) -> str: return join( ( "extend union", node.name, join(node.directives, " "), "= " + join(node.types, " | ") if node.types else "", ), " ", ) @staticmethod def leave_enum_type_extension(node: PrintedNode, *_args: Any) -> str: return join( ("extend enum", node.name, join(node.directives, " "), block(node.values)), " ", ) @staticmethod def leave_input_object_type_extension(node: PrintedNode, *_args: Any) -> str: return join( ("extend input", node.name, join(node.directives, " "), block(node.fields)), " ", ) def join(strings: Optional[Strings], separator: str = "") -> str: """Join strings in a given collection. Return an empty string if it is None or empty, otherwise join all items together separated by separator if provided. """ return separator.join(s for s in strings if s) if strings else "" def block(strings: Optional[Strings]) -> str: """Return strings inside a block. Given a collection of strings, return a string with each item on its own line, wrapped in an indented "{ }" block. """ return wrap("{\n", indent(join(strings, "\n")), "\n}") def wrap(start: str, string: Optional[str], end: str = "") -> str: """Wrap string inside other strings at start and end. If the string is not None or empty, then wrap with start and end, otherwise return an empty string. """ return f"{start}{string}{end}" if string else "" def indent(string: str) -> str: """Indent string with two spaces. If the string is not None or empty, add two spaces at the beginning of every line inside the string. """ return wrap(" ", string.replace("\n", "\n ")) def is_multiline(string: str) -> bool: """Check whether a string consists of multiple lines.""" return "\n" in string def has_multiline_items(strings: Optional[Strings]) -> bool: """Check whether one of the items in the list has multiple lines.""" return any(is_multiline(item) for item in strings) if strings else False
d76e46afa9347a3212afc1f391dab391766e7696
a36501f44a09ca03dd1167e1d7965f782e159097
/app/extensions/mongobeat/models.py
27451e0eefe1a01350156a088481e408b9a33cd9
[ "Apache-2.0" ]
permissive
ssfdust/full-stack-flask-smorest
9429a2cdcaa3ff3538875cc74cff802765678d4b
4f866b2264e224389c99bbbdb4521f4b0799b2a3
refs/heads/master
2023-08-05T08:48:03.474042
2023-05-07T01:08:20
2023-05-07T01:08:20
205,528,296
39
10
Apache-2.0
2023-08-31T00:18:42
2019-08-31T10:12:25
Python
UTF-8
Python
false
false
7,149
py
# Copyright 2019 RedLotus <[email protected]> # Author: RedLotus <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2018 Regents of the University of Michigan # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at http://www.apache.org/licenses/LICENSE-2.0 """ app.extensions.mongobeat ~~~~~~~~~~~~~~~~~~~~~~~~~ MongoBeat的ORM模块 """ import datetime from ast import literal_eval import celery.schedules from celery import current_app from mongoengine import ( BooleanField, DateTimeField, DictField, DynamicDocument, DynamicField, EmbeddedDocument, EmbeddedDocumentField, IntField, ListField, StringField, ) def get_periodic_task_collection(): """获取表名""" if ( hasattr(current_app.conf, "CELERY_MONGODB_SCHEDULER_COLLECTION") and current_app.conf.CELERY_MONGODB_SCHEDULER_COLLECTION ): return current_app.conf.CELERY_MONGODB_SCHEDULER_COLLECTION # pragma: no cover return "schedules" #: Authorized values for PeriodicTask.Interval.period PERIODS = ("days", "hours", "minutes", "seconds", "microseconds") class PeriodicTask(DynamicDocument): """ 周期任务的ORM :attr name: 定时名称 :attr task: 任务名称 :attr interval: 定时 :attr crontab: crontab :attr args: 参数 :attr kwargs: 键值参数 :attr queue: 队列 :attr no_changes: nochanges :attr exchange: AMPQ的交换器 :attr routing_key: AMPQ路由 :attr soft_time_limit: 软时间限制 :attr expires: 过期时间 :attr start_after: 在某时间后运行 :attr enabled: 启用 :attr last_run_at: 最后运行时间 :attr total_run_count: 总计运行次数 :attr max_run_count: 最大运行次数 :attr date_changed: 改变日期 :attr description: 描述 :attr run_immediately: 立刻运行 """ meta = {"collection": get_periodic_task_collection(), "allow_inheritance": True} class Interval(EmbeddedDocument): """ :attr every 每(周期) :attr period 周期区间 """ meta = {"allow_inheritance": True} every = IntField(min_value=0, default=0, required=True, verbose_name="周期") period = StringField(choices=PERIODS, verbose_name="每") @property def schedule(self): return celery.schedules.schedule( datetime.timedelta(**{self.period: self.every}) ) @property def period_singular(self): return self.period[:-1] def __str__(self): if self.every == 1: return "every {0.period_singular}".format(self) return "every {0.every} {0.period}".format(self) class Crontab(EmbeddedDocument): """ :attr minute 分钟 :attr hour 小时 :attr day_of_week 周 :attr day_of_month 日 :attr mouth_of_year 月 """ meta = {"allow_inheritance": True} minute = StringField(default="*", required=True, verbose_name="分钟") hour = StringField(default="*", required=True, verbose_name="小时") day_of_week = StringField(default="*", required=True, verbose_name="周") day_of_month = StringField(default="*", required=True, verbose_name="日") month_of_year = StringField(default="*", required=True, verbose_name="月") @property def schedule(self): return celery.schedules.crontab( minute=self.minute, hour=self.hour, day_of_week=self.day_of_week, day_of_month=self.day_of_month, month_of_year=self.month_of_year, ) def __str__(self): def rfield(f): return f and str(f).replace(" ", "") or "*" return "{0} {1} {2} {3} {4} (分/时/周/日/月)".format( rfield(self.minute), rfield(self.hour), rfield(self.day_of_week), rfield(self.day_of_month), rfield(self.month_of_year), ) name = StringField(unique=True, verbose_name="定时名称") task = StringField(required=True, verbose_name="任务名称") args = ListField(DynamicField(), verbose_name="参数") kwargs = DictField(verbose_name="键值参数") queue = StringField(verbose_name="队列") exchange = StringField(verbose_name="AMPQ的交换器") routing_key = StringField(verbose_name="AMPQ路由") soft_time_limit = IntField(verbose_name="软时间限制") expires = DateTimeField(verbose_name="过期时间") start_after = DateTimeField(verbose_name="在某时间后运行") enabled = BooleanField(default=False, verbose_name="启用") last_run_at = DateTimeField(verbose_name="最后运行时间") total_run_count = IntField(min_value=0, default=0, verbose_name="总计运行次数") max_run_count = IntField(min_value=0, default=0, verbose_name="最大运行次数") date_changed = DateTimeField(verbose_name="改变日期") description = StringField(verbose_name="描述") run_immediately = BooleanField(verbose_name="立刻运行") type = StringField( required=True, verbose_name="类型", choices=["crontab", "interval"] ) interval = EmbeddedDocumentField(Interval, verbose_name="定时") crontab = EmbeddedDocumentField(Crontab, verbose_name="周期") # objects = managers.PeriodicTaskManager() no_changes = False def clean(self): """透过MongoEngine验证interval和crontab不是同时存在""" if self.type == "crontab": self.interval = None else: self.crontab = None if isinstance(self.args, str): self.args = literal_eval(self.args) if isinstance(self.kwargs, str): self.kwargs = literal_eval(self.kwargs) @property def schedule(self): if self.interval: return self.interval.schedule elif self.crontab: return self.crontab.schedule else: raise Exception("must define interval or crontab schedule") def __str__(self): fmt = "{0.name}: {{no schedule}}" if self.interval: fmt = "{0.name}: {0.interval}" elif self.crontab: fmt = "{0.name}: {0.crontab}" else: raise Exception("must define interval or crontab schedule") return fmt.format(self)
f3287e42a48321132242a2d84b76e9deee52f5db
7834e7a48399b156401ea62c0c6d2de80ad421f5
/pysparkling/fileio/codec/codec.py
c057cfaa4b9cab5df56f5d5f9ac4badb66914438
[ "MIT" ]
permissive
vojnovski/pysparkling
b9758942aba0d068f6c51797c8fb491cf59c3401
21b36464371f121dc7963dac09d300e7235f587e
refs/heads/master
2020-04-08T18:33:55.707209
2016-07-27T15:12:59
2016-07-27T15:12:59
62,555,929
0
0
null
2016-07-04T11:06:18
2016-07-04T11:06:18
null
UTF-8
Python
false
false
222
py
import logging log = logging.getLogger(__name__) class Codec(object): def __init__(self): pass def compress(self, stream): return stream def decompress(self, stream): return stream
354cd069b9195ce2cabedf5b537fbef6f1713e6b
8c7b03f24517e86f6159e4d74c8528bfbcbf31af
/test/python_api/lldbutil/frame/TestFrameUtils.py
04d398bc5fa1b95d457aa1aaae5bd15ded01ab94
[ "NCSA" ]
permissive
markpeek/lldb
f849567fbd7791be10aacd41be44ee15f1a4fdc4
58c8d5af715a3da6cbb7e0efc6905e9d07410038
refs/heads/master
2021-01-15T17:01:57.014568
2011-12-24T01:08:58
2011-12-24T01:08:58
3,042,888
1
2
null
null
null
null
UTF-8
Python
false
false
2,103
py
""" Test utility functions for the frame object. """ import os import unittest2 import lldb from lldbtest import * class FrameUtilsTestCase(TestBase): mydir = os.path.join("python_api", "lldbutil", "frame") def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to break inside main(). self.line = line_number('main.c', "// Find the line number here.") @python_api_test def test_frame_utils(self): """Test utility functions for the frame object.""" self.buildDefault() self.frame_utils() def frame_utils(self): exe = os.path.join(os.getcwd(), "a.out") target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) breakpoint = target.BreakpointCreateByLocation("main.c", self.line) self.assertTrue(breakpoint, VALID_BREAKPOINT) # Now launch the process, and do not stop at entry point. process = target.LaunchSimple(None, None, os.getcwd()) if not process: self.fail("SBTarget.LaunchProcess() failed") self.assertTrue(process.GetState() == lldb.eStateStopped, PROCESS_STOPPED) import lldbutil thread = lldbutil.get_stopped_thread(process, lldb.eStopReasonBreakpoint) frame0 = thread.GetFrameAtIndex(0) frame1 = thread.GetFrameAtIndex(1) parent = lldbutil.get_parent_frame(frame0) self.assertTrue(parent and parent.GetFrameID() == frame1.GetFrameID()) frame0_args = lldbutil.get_args_as_string(frame0) parent_args = lldbutil.get_args_as_string(parent) self.assertTrue(frame0_args and parent_args and "(int)val=1" in frame0_args) if self.TraceOn(): lldbutil.print_stacktrace(thread) print "Current frame: %s" % frame0_args print "Parent frame: %s" % parent_args if __name__ == '__main__': import atexit lldb.SBDebugger.Initialize() atexit.register(lambda: lldb.SBDebugger.Terminate()) unittest2.main()
44ca2e8649630c0f338c6636d11ae3d772d89710
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03418/s842655187.py
e812523bc9e5891268bd0c4350311e175da8ddc3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
N,K=map(int,input().split()) a=0 for i in range(K+1,N+1): t=N//i n=N-t*i a+=t*(i-K) if K: a+=max(0,n-K+1) else: a+=n print(a)
1c3d4834bbc46156f17c4081635c11a08d327dd1
710e96b1435bc43cc260512df75af5dd3b2afd13
/code/1044.py
6b217c61734025d6ab42ff1303588769ee0ced7d
[ "MIT" ]
permissive
minssoj/Learning_Algorithm_Up
94ca8166c9a5d87917cf033ad8415871684241c4
45ec4e2eb4c07c9ec907a74dbd31370e1645c50b
refs/heads/main
2023-01-08T20:52:32.983756
2020-11-05T17:49:45
2020-11-05T17:49:45
301,926,859
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
# [기초-산술연산] 정수 1개 입력받아 1 더해 출력하기(설명) # [email protected] ''' 문제링크 : https://www.codeup.kr/problem.php?id=1044 ''' n = int(input()) print(n + 1)
0afbaee6a3d11e935314a77c986fca4852eeb54e
d326cd8d4ca98e89b32e6a6bf6ecb26310cebdc1
/rosalind/bioinformatics/stronghold/tran/main.py
131ebf08d6ecc2fe6278e7b4127c11468845a825
[]
no_license
dswisher/rosalind
d6af5195cdbe03adb5a19ed60fcbf8c05beac784
4519740350e47202f7a45ce70e434f7ee15c6afc
refs/heads/master
2021-08-09T02:58:17.131164
2017-11-12T01:26:26
2017-11-12T01:26:26
100,122,283
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
import sys from rosalind.common import util from rosalind.bioinformatics.common import fasta def compute_ratio(seq1, seq2): transitions = set(['AG', 'GA', 'CT', 'TC']) transversions = set(['AC', 'CA', 'GT', 'TG', 'AT', 'TA', 'CG', 'GC']) numTransitions = 0 numTransversions = 0 for i in xrange(len(seq1)): x = seq1[i] + seq2[i] if x in transitions: numTransitions += 1 elif x in transversions: numTransversions += 1 return float(numTransitions) / numTransversions def main(fname): seqs, _ = fasta.read(util.find_file(fname)) if len(seqs[0]) != len(seqs[1]): print "Sequences have different lengths!" sys.exit(1) print compute_ratio(seqs[0], seqs[1]) if __name__ == '__main__': if len(sys.argv) != 2: print ("You must specify the name of the data file to load!") sys.exit(1) main(sys.argv[1])
2150af8db3f4f64b86685075d6ed96e3845861c3
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_chauffeur.py
97f43e805d5aba06eb05a5fd2bd9c150fd38b7be
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
#calss header class _CHAUFFEUR(): def __init__(self,): self.name = "CHAUFFEUR" self.definitions = [u'someone whose job is to drive a car for a rich or important person: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'nouns' def run(self, obj1 = [], obj2 = []): return self.jsondata
7b1dfacee784f7b05375188302ab051e0b005603
ad28a59209239be285d1127a87bc08893fb62cb9
/python/aad/test_concept_drift_classifier.py
76ebbe63d04d5f1a6934a18ec97cdc667445b71c
[ "MIT" ]
permissive
Karl-Wu/ad_examples
9e6f894c2414640b23ccdeb39db9e9b8352ef077
6fb0a2a72db51d82645e377945327eb9e1ecf8b8
refs/heads/master
2020-03-26T19:33:45.128414
2018-08-17T21:42:15
2018-08-17T21:42:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,961
py
from aad.data_stream import * from common.gen_samples import read_anomaly_dataset from aad.anomaly_dataset_support import * from aad.classifier_trees import RandomForestAadWrapper """ Check data drift with a Random Forest classifier. NOTE: The classifier is trained only once in this example with the first window of data. The drift is tested for the rest of the windows *without* updating the model. To run: pythonw -m aad.test_concept_drift_classifier --debug --plot --log_file=temp/test_concept_drift_classifier.log --dataset=weather """ def test_kl_data_drift_classifier(): logger = logging.getLogger(__name__) args = get_command_args(debug=False) configure_logger(args) dataset_config = dataset_configs[args.dataset] stream_window = dataset_config[2] alpha = 0.05 n_trees = 100 X_full, y_full = read_anomaly_dataset(args.dataset) logger.debug("dataset: %s (%d, %d), stream_window: %d, alpha: %0.3f" % (args.dataset, X_full.shape[0], X_full.shape[1], stream_window, alpha)) stream = DataStream(X_full, y_full, IdServer(initial=0)) # get first window of data training_set = stream.read_next_from_stream(stream_window) x, y, ids = training_set.x, training_set.y, training_set.ids logger.debug("First window loaded (%s): %d" % (args.dataset, x.shape[0])) # train classifier with the window of data rf = RFClassifier.fit(x, y, n_estimators=n_trees) logger.debug("Random Forest classifier created with %d trees" % rf.clf.n_estimators) # prepare wrapper over the classifier which will compute KL-divergences # NOTE: rf.clf is the scikit-learn Random Forest classifier instance model = RandomForestAadWrapper(x=x, y=y, clf=rf.clf) logger.debug("Wrapper model created with %d nodes" % len(model.w)) # compute KL replacement threshold *without* p ref_kls, kl_q_alpha = model.get_KL_divergence_distribution(x, p=None, alpha=alpha) # now initialize reference p p = model.get_node_sample_distributions(x) window = 0 while not stream.empty(): window += 1 # get next window of data and check KL-divergence training_set = stream.read_next_from_stream(n=stream_window) x, y = training_set.x, training_set.y logger.debug("window %d loaded: %d" % (window, x.shape[0])) # compare KL-divergence of current data dist against reference dist p comp_kls, _ = model.get_KL_divergence_distribution(x, p=p) # find which trees exceed alpha-level threshold trees_exceeding_kl_q_alpha = model.get_trees_to_replace(comp_kls, kl_q_alpha) n_threshold = int(2 * alpha * n_trees) logger.debug("[%d] #trees_exceeding_kl_q_alpha: %d, threshold number of trees: %d\n%s" % (window, len(trees_exceeding_kl_q_alpha), n_threshold, str(list(trees_exceeding_kl_q_alpha)))) if __name__ == "__main__": test_kl_data_drift_classifier()
ff22a34e9a956fa4c76ccb221f9d964d39375203
6cd3de9d6aa0c52602010aa857966d5dc4d57442
/mlprodict/onnxrt/ops_cpu/op_lp_normalization.py
b8f5b8b7274ac89c8fb4bd972bdfda60a72b2e4c
[ "MIT" ]
permissive
xadupre/mlprodict
2307ca96eafeeafff08d5322184399bb5dc1c37e
f82c8a26a60104948c67849b1c4af95ca812c153
refs/heads/master
2022-12-10T18:50:36.953032
2020-09-03T08:53:58
2020-09-03T08:53:58
292,824,744
1
0
NOASSERTION
2020-09-04T10:56:45
2020-09-04T10:56:44
null
UTF-8
Python
false
false
837
py
# -*- encoding: utf-8 -*- # pylint: disable=E0203,E1101,C0111 """ @file @brief Runtime operator. """ import numpy from ._op import OpRunUnaryNum class LpNormalization(OpRunUnaryNum): atts = {'axis': -1, 'p': 2} def __init__(self, onnx_node, desc=None, **options): OpRunUnaryNum.__init__(self, onnx_node, desc=desc, expected_attributes=LpNormalization.atts, **options) def _run(self, x): # pylint: disable=W0221 norm = numpy.power(numpy.power(x, self.p).sum( axis=self.axis), 1. / self.p) norm = numpy.expand_dims(norm, self.axis) if self.inplaces.get(0, False): return self._run_inplace(x, norm) return (x / norm, ) def _run_inplace(self, x, norm): x /= norm return (x, )
64ced12d14e6ef07689ff4230e0e91e5529ae4b7
44849991f507933ebc7ed4e8e37819a529be539e
/steps/step09.py
f4696c0a213f1cce610937e96f56827da22d84d5
[ "MIT" ]
permissive
NukeA/deep-learning-from-scratch-3
4ff60e8ac5b157a05079fc3b8a2ea69acec9ece5
e48a7b8788827a16cc9f81adc135a3a14989bea5
refs/heads/master
2022-11-02T00:58:56.621011
2020-06-16T04:36:23
2020-06-16T04:36:23
273,873,741
1
0
MIT
2020-06-21T09:34:25
2020-06-21T09:34:24
null
UTF-8
Python
false
false
1,780
py
import numpy as np class Variable: def __init__(self, data): if data is not None: if not isinstance(data, np.ndarray): raise TypeError('{} is not supported'.format(type(data))) self.data = data self.grad = None self.creator = None def set_creator(self, func): self.creator = func def backward(self): if self.grad is None: self.grad = np.ones_like(self.data) funcs = [self.creator] while funcs: f = funcs.pop() x, y = f.input, f.output x.grad = f.backward(y.grad) if x.creator is not None: funcs.append(x.creator) def as_array(x): if np.isscalar(x): return np.array(x) return x class Function: def __call__(self, input): x = input.data y = self.forward(x) output = Variable(as_array(y)) output.set_creator(self) self.input = input self.output = output return output def forward(self, x): raise NotImplementedError() def backward(self, gy): raise NotImplementedError() class Square(Function): def forward(self, x): y = x ** 2 return y def backward(self, gy): x = self.input.data gx = 2 * x * gy return gx class Exp(Function): def forward(self, x): y = np.exp(x) return y def backward(self, gy): x = self.input.data gx = np.exp(x) * gy return gx def square(x): return Square()(x) def exp(x): return Exp()(x) x = Variable(np.array(0.5)) y = square(exp(square(x))) y.backward() print(x.grad) x = Variable(np.array(1.0)) # OK x = Variable(None) # OK x = Variable(1.0) # NG
b62ee27024d05328ebb4cf87044e452d5be84b1a
34088b8e82bc64a10678a08c03db2732d52f0c1a
/Pinbot/app/dash/migrations/0018_auto__add_field_resumedailyreportdata_resume_down_proportion.py
ba80829f546552507a844e0a3e81dcce76bb676a
[]
no_license
winghou/myFirstProfile
757d82f5391f3672e48db4aa5774e26a48a5ecc7
8fc5d16de7b6449cba058f4d2459bbb0c8438f77
refs/heads/master
2020-05-31T13:42:28.554703
2016-03-23T11:30:13
2016-03-23T11:30:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,426
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'ResumeDailyReportData.resume_down_proportion' db.add_column(u'dash_resumedailyreportdata', 'resume_down_proportion', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'ResumeDailyReportData.resume_down_proportion' db.delete_column(u'dash_resumedailyreportdata', 'resume_down_proportion') models = { u'dash.coredailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'CoreDailyReportData'}, 'active_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lively_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lively_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'register_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'repeat_visit_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}) }, u'dash.feeddailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'FeedDailyReportData'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lively_feed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lively_feed_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lively_feed_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_feed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}) }, u'dash.partnerdailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'PartnerDailyReportData'}, 'accept_task_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'accept_task_user_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'accusation_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'accusation_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'all_extra_reward_coin_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'all_reward_coin_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'do_task_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'do_task_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'entered_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'entered_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'interviewed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'interviewed_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'resume_download_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_download_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_viewed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_viewed_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'task_accedpted_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'task_accedpted_count_contrast': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'task_accedpted_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'task_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'task_viewed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'today_commend_and_check_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'today_commend_and_download_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'today_extra_reward_coin_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'today_reward_coin_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'upload_resume_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'upload_resume_total_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'dash.pinbotdailyreport': { 'Meta': {'object_name': 'PinbotDailyReport'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'login_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'pay_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'pv': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'register_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {}), 'total_pay_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'uv': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'dash.resumedailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'ResumeDailyReportData'}, 'company_card_send_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'entered_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'interviewed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'resume_commends_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_down_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_down_proportion': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_fav_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resume_view_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'dash.userdailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'UserDailyReportData'}, 'all_total_active_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lively_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_experience_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_manual_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_register_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_self_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'repeat_visit_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'total_experience_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_manual_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_register_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'total_self_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'dash.weixindailyreportdata': { 'Meta': {'ordering': "['-report_date']", 'object_name': 'WeixinDailyReportData'}, 'feed_notify_send_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'feed_notify_view_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lively_member_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lively_user_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_bind_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_feed_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_feed_favours_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'new_reg_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'report_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'total_bind_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}) } } complete_apps = ['dash']
10eaeac02a5dcc162ac6889c1a4182414870249d
4f49c1de4683bd00f5b831a0c7fd2b431b627be5
/object_properties_panel.py
36028619ed216e14b535d3acd7be96cd2d144287
[]
no_license
PyrokinesisStudio/BlenderArchitectureAppTemplate
6ce1c4896b7eee423c24558f10bc32bf3a2bdaac
6b18bdca380d658288cd605c2e794473f57a04b0
refs/heads/master
2020-03-18T17:13:01.424253
2017-12-22T07:42:59
2017-12-22T07:42:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
47,162
py
import bpy import math from bpy.app.translations import pgettext_iface as iface_ #for decimate modifier from . import unit, utils enum_object_tabs = [('INFO'," ","Show the Main Information"), ('DISPLAY',"","Show Options for how the Object is Displayed"), ('MATERIAL',"","Show the materials assign to the object"), ('CONSTRAINTS',"","Show the constraints assigned to the object"), ('MODIFIERS',"","Show the modifiers assigned to the object"), ('MESHDATA',"","Show the Mesh Data Information"), ('CURVEDATA',"","Show the Curve Data Information"), ('TEXTDATA',"","Show the Text Data Information"), ('EMPTYDATA',"","Show the Empty Data Information"), ('LIGHTDATA',"","Show the Light Data Information"), ('CAMERADATA',"","Show the Camera Data Information"), ('DRIVERS',"","Show the Drivers assigned to the Object")] def draw_modifier(mod,layout,obj): def draw_show_expanded(mod,layout): if mod.show_expanded: layout.prop(mod,'show_expanded',text="",emboss=False) else: layout.prop(mod,'show_expanded',text="",emboss=False) def draw_apply_close(layout,mod_name): layout.operator('object.modifier_apply',text="",icon='EDIT',emboss=False).modifier = mod.name layout.operator('object.modifier_remove',text="",icon='PANEL_CLOSE',emboss=False).modifier = mod.name def draw_array_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_ARRAY') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() box.prop(mod, "fit_type") if mod.fit_type == 'FIXED_COUNT': box.prop(mod, "count") elif mod.fit_type == 'FIT_LENGTH': box.prop(mod, "fit_length") elif mod.fit_type == 'FIT_CURVE': box.prop(mod, "curve") box.separator() split = box.split() col = split.column() col.prop(mod, "use_constant_offset") sub = col.column() sub.active = mod.use_constant_offset sub.prop(mod, "constant_offset_displace", text="") col.separator() col.prop(mod, "use_merge_vertices", text="Merge") sub = col.column() sub.active = mod.use_merge_vertices sub.prop(mod, "use_merge_vertices_cap", text="First Last") sub.prop(mod, "merge_threshold", text="Distance") col = split.column() col.prop(mod, "use_relative_offset") sub = col.column() sub.active = mod.use_relative_offset sub.prop(mod, "relative_offset_displace", text="") col.separator() col.prop(mod, "use_object_offset") sub = col.column() sub.active = mod.use_object_offset sub.prop(mod, "offset_object", text="") box.separator() box.prop(mod, "start_cap") box.prop(mod, "end_cap") def draw_bevel_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_BEVEL') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.prop(mod, "width") col.prop(mod, "segments") col.prop(mod, "profile") col = split.column() col.prop(mod, "use_only_vertices") col.prop(mod, "use_clamp_overlap") box.label(text="Limit Method:") box.row().prop(mod, "limit_method", expand=True) if mod.limit_method == 'ANGLE': box.prop(mod, "angle_limit") elif mod.limit_method == 'VGROUP': box.label(text="Vertex Group:") box.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") box.label(text="Width Method:") box.row().prop(mod, "offset_type", expand=True) def draw_boolean_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_BOOLEAN') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.label(text="Operation:") col.prop(mod, "operation", text="") col = split.column() col.label(text="Object:") col.prop(mod, "object", text="") def draw_curve_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_CURVE') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.label(text="Object:") col.prop(mod, "object", text="") col = split.column() col.label(text="Vertex Group:") col.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") box.label(text="Deformation Axis:") box.row().prop(mod, "deform_axis", expand=True) def draw_decimate_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_DECIM') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() decimate_type = mod.decimate_type row = box.row() row.prop(mod, "decimate_type", expand=True) if decimate_type == 'COLLAPSE': box.prop(mod, "ratio") split = box.split() row = split.row(align=True) row.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") row.prop(mod, "invert_vertex_group", text="", icon='ARROW_LEFTRIGHT') split.prop(mod, "use_collapse_triangulate") elif decimate_type == 'UNSUBDIV': box.prop(mod, "iterations") else: # decimate_type == 'DISSOLVE': box.prop(mod, "angle_limit") box.prop(mod, "use_dissolve_boundaries") box.label("Delimit:") row = box.row() row.prop(mod, "delimit") box.label(text=iface_("Face Count: %d") % mod.face_count, translate=False) def draw_edge_split_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_EDGESPLIT') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.prop(mod, "use_edge_angle", text="Edge Angle") sub = col.column() sub.active = mod.use_edge_angle sub.prop(mod, "split_angle") split.prop(mod, "use_edge_sharp", text="Sharp Edges") def draw_hook_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='HOOK') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.label(text="Object:") col.prop(mod, "object", text="") if mod.object and mod.object.type == 'ARMATURE': col.label(text="Bone:") col.prop_search(mod, "subtarget", mod.object.data, "bones", text="") col = split.column() col.label(text="Vertex Group:") col.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") layout.separator() split = box.split() # col = split.column() # col.prop(mod, "falloff") # col.prop(mod, "force", slider=True) col = split.column() col.operator("object.hook_reset", text="Reset") col.operator("object.hook_recenter", text="Recenter") if obj.mode == 'EDIT': layout.separator() row = layout.row() row.operator("object.hook_select", text="Select") row.operator("object.hook_assign", text="Assign") def draw_mask_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_MASK') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.label(text="Mode:") col.prop(mod, "mode", text="") col = split.column() if mod.mode == 'ARMATURE': col.label(text="Armature:") col.prop(mod, "armature", text="") elif mod.mode == 'VERTEX_GROUP': col.label(text="Vertex Group:") row = col.row(align=True) row.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") sub = row.row(align=True) sub.active = bool(mod.vertex_group) sub.prop(mod, "invert_vertex_group", text="", icon='ARROW_LEFTRIGHT') def draw_mirror_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_MIRROR') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split(percentage=0.25) col = split.column() col.label(text="Axis:") col.prop(mod, "use_x") col.prop(mod, "use_y") col.prop(mod, "use_z") col = split.column() col.label(text="Options:") col.prop(mod, "use_mirror_merge", text="Merge") col.prop(mod, "use_clip", text="Clipping") col.prop(mod, "use_mirror_vertex_groups", text="Vertex Groups") col = split.column() col.label(text="Textures:") col.prop(mod, "use_mirror_u", text="U") col.prop(mod, "use_mirror_v", text="V") col = box.column() if mod.use_mirror_merge is True: col.prop(mod, "merge_threshold") col.label(text="Mirror Object:") col.prop(mod, "mirror_object", text="") def draw_solidify_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_SOLIDIFY') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() split = box.split() col = split.column() col.prop(mod, "thickness") col.prop(mod, "thickness_clamp") col.separator() row = col.row(align=True) row.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") sub = row.row(align=True) sub.active = bool(mod.vertex_group) sub.prop(mod, "invert_vertex_group", text="", icon='ARROW_LEFTRIGHT') sub = col.row() sub.active = bool(mod.vertex_group) sub.prop(mod, "thickness_vertex_group", text="Factor") col.label(text="Crease:") col.prop(mod, "edge_crease_inner", text="Inner") col.prop(mod, "edge_crease_outer", text="Outer") col.prop(mod, "edge_crease_rim", text="Rim") col = split.column() col.prop(mod, "offset") col.prop(mod, "use_flip_normals") col.prop(mod, "use_even_offset") col.prop(mod, "use_quality_normals") col.prop(mod, "use_rim") col.separator() col.label(text="Material Index Offset:") sub = col.column() row = sub.split(align=True, percentage=0.4) row.prop(mod, "material_offset", text="") row = row.row(align=True) row.active = mod.use_rim row.prop(mod, "material_offset_rim", text="Rim") def draw_subsurf_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_SUBSURF') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() box.row().prop(mod, "subdivision_type", expand=True) split = box.split() col = split.column() col.label(text="Subdivisions:") col.prop(mod, "levels", text="View") col.prop(mod, "render_levels", text="Render") col = split.column() col.label(text="Options:") col.prop(mod, "use_subsurf_uv") col.prop(mod, "show_only_control_edges") def draw_skin_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_SKIN') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() box.operator("object.skin_armature_create", text="Create Armature") box.separator() col = box.column(align=True) col.prop(mod, "branch_smoothing") col.prop(mod, "use_smooth_shade") split = box.split() col = split.column() col.label(text="Selected Vertices:") sub = col.column(align=True) sub.operator("object.skin_loose_mark_clear", text="Mark Loose").action = 'MARK' sub.operator("object.skin_loose_mark_clear", text="Clear Loose").action = 'CLEAR' sub = col.column() sub.operator("object.skin_root_mark", text="Mark Root") sub.operator("object.skin_radii_equalize", text="Equalize Radii") col = split.column() col.label(text="Symmetry Axes:") col.prop(mod, "use_x_symmetry") col.prop(mod, "use_y_symmetry") col.prop(mod, "use_z_symmetry") def draw_triangulate_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_TRIANGULATE') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() row = box.row() col = row.column() col.label(text="Quad Method:") col.prop(mod, "quad_method", text="") col = row.column() col.label(text="Ngon Method:") col.prop(mod, "ngon_method", text="") def draw_simple_deform_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_SIMPLEDEFORM') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() box.row().prop(mod, "deform_method", expand=True) split = box.split() col = split.column() col.label(text="Vertex Group:") col.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") split = box.split() col = split.column() col.label(text="Origin:") col.prop(mod, "origin", text="") if mod.deform_method in {'TAPER', 'STRETCH', 'TWIST'}: col.label(text="Lock:") col.prop(mod, "lock_x") col.prop(mod, "lock_y") col = split.column() col.label(text="Deform:") if mod.deform_method in {'TAPER', 'STRETCH'}: col.prop(mod, "factor") else: col.prop(mod, "angle") col.prop(mod, "limits", slider=True) def draw_wireframe_modifier(layout): col = layout.column(align=True) box = col.box() row = box.row() draw_show_expanded(mod,row) row.prop(mod,'name',text="",icon='MOD_WIREFRAME') draw_apply_close(row,mod.name) if mod.show_expanded: box = col.box() has_vgroup = bool(mod.vertex_group) split = box.split() col = split.column() col.prop(mod, "thickness", text="Thickness") row = col.row(align=True) row.prop_search(mod, "vertex_group", obj, "vertex_groups", text="") sub = row.row(align=True) sub.active = has_vgroup sub.prop(mod, "invert_vertex_group", text="", icon='ARROW_LEFTRIGHT') row = col.row(align=True) row.active = has_vgroup row.prop(mod, "thickness_vertex_group", text="Factor") col.prop(mod, "use_crease", text="Crease Edges") col.prop(mod, "crease_weight", text="Crease Weight") col = split.column() col.prop(mod, "offset") col.prop(mod, "use_even_offset", text="Even Thickness") col.prop(mod, "use_relative_offset", text="Relative Thickness") col.prop(mod, "use_boundary", text="Boundary") col.prop(mod, "use_replace", text="Replace Original") col.prop(mod, "material_offset", text="Material Offset") if mod.type == 'ARRAY': draw_array_modifier(layout) elif mod.type == 'BEVEL': draw_bevel_modifier(layout) elif mod.type == 'BOOLEAN': draw_boolean_modifier(layout) elif mod.type == 'CURVE': draw_curve_modifier(layout) elif mod.type == 'DECIMATE': draw_decimate_modifier(layout) elif mod.type == 'EDGE_SPLIT': draw_edge_split_modifier(layout) elif mod.type == 'HOOK': draw_hook_modifier(layout) elif mod.type == 'MASK': draw_mask_modifier(layout) elif mod.type == 'MIRROR': draw_mirror_modifier(layout) elif mod.type == 'SOLIDIFY': draw_solidify_modifier(layout) elif mod.type == 'SUBSURF': draw_subsurf_modifier(layout) elif mod.type == 'SKIN': draw_skin_modifier(layout) elif mod.type == 'SIMPLE_DEFORM': draw_simple_deform_modifier(layout) elif mod.type == 'TRIANGULATE': draw_triangulate_modifier(layout) elif mod.type == 'WIREFRAME': draw_wireframe_modifier(layout) else: row = layout.row() row.label(mod.name + " view ") def draw_constraint(con,layout,obj): def draw_show_expanded(con,layout): if con.show_expanded: layout.prop(con,'show_expanded',text="",emboss=False) else: layout.prop(con,'show_expanded',text="",emboss=False) def space_template(layout, con, target=True, owner=True): if target or owner: split = layout.split(percentage=0.2) split.label(text="Space:") row = split.row() if target: row.prop(con, "target_space", text="") if target and owner: row.label(icon='ARROW_LEFTRIGHT') if owner: row.prop(con, "owner_space", text="") def target_template(layout, con, subtargets=True): layout.prop(con, "target") # XXX limiting settings for only 'curves' or some type of object if con.target and subtargets: if con.target.type == 'ARMATURE': layout.prop_search(con, "subtarget", con.target.data, "bones", text="Bone") if hasattr(con, "head_tail"): row = layout.row() row.label(text="Head/Tail:") row.prop(con, "head_tail", text="") elif con.target.type in {'MESH', 'LATTICE'}: layout.prop_search(con, "subtarget", con.target, "vertex_groups", text="Vertex Group") def draw_copy_location_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: target_template(box, con) split = box.split() col = split.column() col.prop(con, "use_x", text="X") sub = col.column() sub.active = con.use_x sub.prop(con, "invert_x", text="Invert") col = split.column() col.prop(con, "use_y", text="Y") sub = col.column() sub.active = con.use_y sub.prop(con, "invert_y", text="Invert") col = split.column() col.prop(con, "use_z", text="Z") sub = col.column() sub.active = con.use_z sub.prop(con, "invert_z", text="Invert") box.prop(con, "use_offset") space_template(box, con) if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_copy_rotation_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: target_template(box, con) split = box.split() col = split.column() col.prop(con, "use_x", text="X") sub = col.column() sub.active = con.use_x sub.prop(con, "invert_x", text="Invert") col = split.column() col.prop(con, "use_y", text="Y") sub = col.column() sub.active = con.use_y sub.prop(con, "invert_y", text="Invert") col = split.column() col.prop(con, "use_z", text="Z") sub = col.column() sub.active = con.use_z sub.prop(con, "invert_z", text="Invert") box.prop(con, "use_offset") space_template(box, con) if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_copy_scale_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: target_template(box, con) row = box.row(align=True) row.prop(con, "use_x", text="X") row.prop(con, "use_y", text="Y") row.prop(con, "use_z", text="Z") box.prop(con, "use_offset") space_template(box, con) if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_copy_transforms_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: target_template(box, con) space_template(box, con) if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_limit_distance_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: target_template(box, con) col = box.column(align=True) col.prop(con, "distance") col.operator("constraint.limitdistance_reset") row = box.row() row.label(text="Clamp Region:") row.prop(con, "limit_mode", text="") row = box.row() row.prop(con, "use_transform_limit") row.label() space_template(box, con) if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_limit_location_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: split = box.split() col = split.column() col.prop(con, "use_min_x") sub = col.column() sub.active = con.use_min_x sub.prop(con, "min_x", text="") col.prop(con, "use_max_x") sub = col.column() sub.active = con.use_max_x sub.prop(con, "max_x", text="") col = split.column() col.prop(con, "use_min_y") sub = col.column() sub.active = con.use_min_y sub.prop(con, "min_y", text="") col.prop(con, "use_max_y") sub = col.column() sub.active = con.use_max_y sub.prop(con, "max_y", text="") col = split.column() col.prop(con, "use_min_z") sub = col.column() sub.active = con.use_min_z sub.prop(con, "min_z", text="") col.prop(con, "use_max_z") sub = col.column() sub.active = con.use_max_z sub.prop(con, "max_z", text="") row = box.row() row.prop(con, "use_transform_limit") row.label() row = box.row() row.label(text="Convert:") row.prop(con, "owner_space", text="") if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_limit_rotation_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: split = box.split() col = split.column(align=True) col.prop(con, "use_limit_x") sub = col.column(align=True) sub.active = con.use_limit_x sub.prop(con, "min_x", text="Min") sub.prop(con, "max_x", text="Max") col = split.column(align=True) col.prop(con, "use_limit_y") sub = col.column(align=True) sub.active = con.use_limit_y sub.prop(con, "min_y", text="Min") sub.prop(con, "max_y", text="Max") col = split.column(align=True) col.prop(con, "use_limit_z") sub = col.column(align=True) sub.active = con.use_limit_z sub.prop(con, "min_z", text="Min") sub.prop(con, "max_z", text="Max") box.prop(con, "use_transform_limit") row = box.row() row.label(text="Convert:") row.prop(con, "owner_space", text="") if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") def draw_limit_scale_constraint(layout): col = layout.column(align=True) box = col.template_constraint(con) if con.show_expanded: split = box.split() col = split.column() col.prop(con, "use_min_x") sub = col.column() sub.active = con.use_min_x sub.prop(con, "min_x", text="") col.prop(con, "use_max_x") sub = col.column() sub.active = con.use_max_x sub.prop(con, "max_x", text="") col = split.column() col.prop(con, "use_min_y") sub = col.column() sub.active = con.use_min_y sub.prop(con, "min_y", text="") col.prop(con, "use_max_y") sub = col.column() sub.active = con.use_max_y sub.prop(con, "max_y", text="") col = split.column() col.prop(con, "use_min_z") sub = col.column() sub.active = con.use_min_z sub.prop(con, "min_z", text="") col.prop(con, "use_max_z") sub = col.column() sub.active = con.use_max_z sub.prop(con, "max_z", text="") row = box.row() row.prop(con, "use_transform_limit") row.label() row = box.row() row.label(text="Convert:") row.prop(con, "owner_space", text="") if con.type not in {'RIGID_BODY_JOINT', 'NULL'}: box.prop(con, "influence") if con.type == 'COPY_LOCATION': draw_copy_location_constraint(layout) elif con.type == 'COPY_ROTATION': draw_copy_rotation_constraint(layout) elif con.type == 'COPY_SCALE': draw_copy_scale_constraint(layout) elif con.type == 'COPY_TRANSFORMS': draw_copy_transforms_constraint(layout) elif con.type == 'LIMIT_DISTANCE': draw_limit_distance_constraint(layout) elif con.type == 'LIMIT_LOCATION': draw_limit_location_constraint(layout) elif con.type == 'LIMIT_ROTATION': draw_limit_rotation_constraint(layout) elif con.type == 'LIMIT_SCALE': draw_limit_scale_constraint(layout) else: row = layout.row() row.label(con.name + " view ") def draw_object_properties(layout,obj,context): props = get_scene_props(bpy.context.scene) col = layout.column(align=True) box = col.box() col = box.column(align=True) row = col.row(align=True) draw_object_tabs(row,obj) box = col.box() col = box.column() if props.tabs == 'INFO': draw_object_info(col,obj) if props.tabs == 'DISPLAY': # box = col.box() row = col.row() row.prop(obj,'draw_type',expand=True) box.prop(obj,'hide_select') box.prop(obj,'hide') box.prop(obj,'hide_render') box.prop(obj,'show_x_ray',icon='GHOST_ENABLED',text='Show X-Ray') box.prop(obj.cycles_visibility,'camera',icon='CAMERA_DATA',text='Show in Viewport Render') if props.tabs == 'MATERIAL': draw_object_materials(col,obj,context) if props.tabs == 'CONSTRAINTS': # row = col.row() col.operator_menu_enum("object.constraint_add", "type", text="Add Constraint",icon='CONSTRAINT_DATA') # row.operator_menu_enum("fd_object.add_constraint", "type", icon='CONSTRAINT_DATA') # row.operator("fd_object.collapse_all_constraints",text="",icon='FULLSCREEN_EXIT') for con in obj.constraints: draw_constraint(con,col,obj) if props.tabs == 'MODIFIERS': # row = col.row() col.operator_menu_enum("object.modifier_add", "type",icon='MODIFIER') # row.operator("fd_object.collapse_all_modifiers",text="",icon='FULLSCREEN_EXIT') for mod in obj.modifiers: draw_modifier(mod,col,obj) if props.tabs == 'MESHDATA': pass if props.tabs == 'CURVEDATA': pass if props.tabs == 'TEXTDATA': pass if props.tabs == 'EMPTYDATA': pass if props.tabs == 'LIGHTDATA': pass if props.tabs == 'CAMERADATA': pass if props.tabs == 'DRIVERS': draw_object_drivers(col,obj) def draw_object_tabs(layout,obj): props = get_scene_props(bpy.context.scene) layout.prop_enum(props, "tabs", 'INFO', icon="BLANK1" if props.tabs == 'INFO' else "INFO", text="Info" if props.tabs == 'INFO' else "") if obj.type == 'MESH': layout.prop_enum(props, "tabs", 'DISPLAY', icon="BLANK1" if props.tabs == 'DISPLAY' else "RESTRICT_VIEW_OFF", text="Display" if props.tabs == 'DISPLAY' else "") layout.prop_enum(props, "tabs", 'MATERIAL', icon="BLANK1" if props.tabs == 'MATERIAL' else "MATERIAL", text="Material" if props.tabs == 'MATERIAL' else "") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon="BLANK1" if props.tabs == 'CONSTRAINTS' else "CONSTRAINT", text="Constraints" if props.tabs == 'CONSTRAINTS' else "") layout.prop_enum(props, "tabs", 'MODIFIERS', icon="BLANK1" if props.tabs == 'MODIFIERS' else "MODIFIER", text="Modifiers" if props.tabs == 'MODIFIERS' else "") layout.prop_enum(props, "tabs", 'MESHDATA', icon="BLANK1" if props.tabs == 'MESHDATA' else "MESH_DATA", text="Data" if props.tabs == 'MESHDATA' else "") if obj.type == 'CURVE': layout.prop_enum(props, "tabs", 'DISPLAY', icon='RESTRICT_VIEW_OFF', text="") layout.prop_enum(props, "tabs", 'MATERIAL', icon='MATERIAL', text="") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'MODIFIERS', icon='MODIFIER', text="") layout.prop_enum(props, "tabs", 'CURVEDATA', icon='CURVE_DATA', text="") if obj.type == 'FONT': layout.prop_enum(props, "tabs", 'DISPLAY', icon='RESTRICT_VIEW_OFF', text="") layout.prop_enum(props, "tabs", 'MATERIAL', icon='MATERIAL', text="") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'MODIFIERS', icon='MODIFIER', text="") layout.prop_enum(props, "tabs", 'TEXTDATA', icon='FONT_DATA', text="") if obj.type == 'EMPTY': layout.prop_enum(props, "tabs", 'DISPLAY', icon='RESTRICT_VIEW_OFF', text="") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'EMPTYDATA', icon='EMPTY_DATA', text="") if obj.type == 'LAMP': layout.prop_enum(props, "tabs", 'DISPLAY', icon='RESTRICT_VIEW_OFF', text="") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'LIGHTDATA', icon='LAMP_SPOT', text="") if obj.type == 'CAMERA': layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'CAMERADATA', icon='OUTLINER_DATA_CAMERA', text="") if obj.type == 'ARMATURE': layout.prop_enum(props, "tabs", 'DISPLAY', icon='RESTRICT_VIEW_OFF', text="") layout.prop_enum(props, "tabs", 'CONSTRAINTS', icon='CONSTRAINT', text="") layout.prop_enum(props, "tabs", 'DRIVERS', icon="BLANK1" if props.tabs == 'DRIVERS' else "AUTO", text="Drivers" if props.tabs == 'DRIVERS' else "") def draw_object_info(layout,obj): # box = layout.box() row = layout.row() row.prop(obj,'name') if obj.type in {'MESH','CURVE','LATTICE','TEXT'}: pass # row.operator('fd_object.toggle_edit_mode',text="",icon='EDITMODE_HLT').object_name = obj.name has_hook_modifier = False for mod in obj.modifiers: if mod.type == 'HOOK': has_hook_modifier = True has_shape_keys = False if obj.type == 'MESH': if obj.data.shape_keys: if len(obj.data.shape_keys.key_blocks) > 0: has_shape_keys = True if has_hook_modifier or has_shape_keys: row = layout.row() col = row.column(align=True) col.label("Dimension") col.label("X: " + str(obj.dimensions.x)) col.label("Y: " + str(obj.dimensions.y)) col.label("Z: " + str(obj.dimensions.z)) col = row.column(align=True) col.label("Location") col.label("X: " + str(obj.location.x)) col.label("Y: " + str(obj.location.y)) col.label("Z: " + str(obj.location.z)) col = row.column(align=True) col.label("Rotation") col.label("X: " + str(round(math.degrees(obj.rotation_euler.x),4))) col.label("Y: " + str(round(math.degrees(obj.rotation_euler.y),4))) col.label("Z: " + str(round(math.degrees(obj.rotation_euler.z),4))) if has_hook_modifier: layout.operator("fd_object.apply_hook_modifiers",icon='HOOK').object_name = obj.name if has_shape_keys: layout.operator("fd_object.apply_shape_keys",icon='SHAPEKEY_DATA').object_name = obj.name else: if obj.type not in {'EMPTY','CAMERA','LAMP'}: layout.label('Dimensions:') col = layout.column(align=True) #X row = col.row(align=True) row.prop(obj,"lock_scale",index=0,text="") if obj.lock_scale[0]: row.label("X: " + str(obj.dimensions.x)) else: row.prop(obj,"dimensions",index=0,text="X") #Y row = col.row(align=True) row.prop(obj,"lock_scale",index=1,text="") if obj.lock_scale[1]: row.label("Y: " + str(obj.dimensions.y)) else: row.prop(obj,"dimensions",index=1,text="Y") #Z row = col.row(align=True) row.prop(obj,"lock_scale",index=2,text="") if obj.lock_scale[2]: row.label("Z: " + str(obj.dimensions.z)) else: row.prop(obj,"dimensions",index=2,text="Z") col1 = layout.row() if obj: col2 = col1.split() col = col2.column(align=True) col.label('Location:') #X row = col.row(align=True) row.prop(obj,"lock_location",index=0,text="") if obj.lock_location[0]: row.label("X: " + str(obj.location.x)) else: row.prop(obj,"location",index=0,text="X") #Y row = col.row(align=True) row.prop(obj,"lock_location",index=1,text="") if obj.lock_location[1]: row.label("Y: " + str(obj.location.y)) else: row.prop(obj,"location",index=1,text="Y") #Z row = col.row(align=True) row.prop(obj,"lock_location",index=2,text="") if obj.lock_location[2]: row.label("Z: " + str(obj.location.z)) else: row.prop(obj,"location",index=2,text="Z") col2 = col1.split() col = col2.column(align=True) col.label('Rotation:') #X row = col.row(align=True) row.prop(obj,"lock_rotation",index=0,text="") if obj.lock_rotation[0]: row.label("X: " + str(round(math.degrees(obj.rotation_euler.x),4))) else: row.prop(obj,"rotation_euler",index=0,text="X") #Y row = col.row(align=True) row.prop(obj,"lock_rotation",index=1,text="") if obj.lock_rotation[1]: row.label("Y: " + str(round(math.degrees(obj.rotation_euler.y),4))) else: row.prop(obj,"rotation_euler",index=1,text="Y") #Z row = col.row(align=True) row.prop(obj,"lock_rotation",index=2,text="") if obj.lock_rotation[2]: row.label("Y: " + str(round(math.degrees(obj.rotation_euler.z),4))) else: row.prop(obj,"rotation_euler",index=2,text="Z") # row = box.row() # row.prop(obj.mv,'comment') def draw_object_materials(layout,obj,context): mat = None ob = context.object slot = None space = context.space_data if ob: mat = ob.active_material if ob: is_sortable = len(ob.material_slots) > 1 rows = 1 if (is_sortable): rows = 4 row = layout.row() row.template_list("MATERIAL_UL_matslots", "", ob, "material_slots", ob, "active_material_index", rows=rows) col = row.column(align=True) col.operator("object.material_slot_add", icon='ZOOMIN', text="") col.operator("object.material_slot_remove", icon='ZOOMOUT', text="") col.menu("MATERIAL_MT_specials", icon='DOWNARROW_HLT', text="") if is_sortable: col.separator() col.operator("object.material_slot_move", icon='TRIA_UP', text="").direction = 'UP' col.operator("object.material_slot_move", icon='TRIA_DOWN', text="").direction = 'DOWN' if ob.mode == 'EDIT': row = layout.row(align=True) row.operator("object.material_slot_assign", text="Assign") row.operator("object.material_slot_select", text="Select") row.operator("object.material_slot_deselect", text="Deselect") # split = layout.split(percentage=0.65) if ob: layout.template_ID(ob, "active_material", new="material.new") row = layout.row() if slot: row.prop(slot, "link", text="") else: row.label() elif mat: layout.template_preview(mat) # split.template_ID(space, "pin_id") # split.separator() if mat: layout.template_preview(mat) if obj.type in {'MESH','CURVE'}: pass if obj.mode == 'EDIT': row = layout.row(align=True) row.operator("object.material_slot_assign", text="Assign") row.operator("object.material_slot_select", text="Select") row.operator("object.material_slot_deselect", text="Deselect") layout.operator('fd_general.open_new_window',text="Open Material Editor",icon='NODETREE').space_type = 'NODE_EDITOR' def draw_object_drivers(layout,obj): if obj: if not obj.animation_data: layout.label("There are no drivers assigned to the object",icon='ERROR') else: if len(obj.animation_data.drivers) == 0: layout.label("There are no drivers assigned to the object",icon='ERROR') for DR in obj.animation_data.drivers: box = layout.box() row = box.row() DriverName = DR.data_path if DriverName in {"location","rotation_euler","dimensions" ,"lock_scale",'lock_location','lock_rotation'}: if DR.array_index == 0: DriverName = DriverName + " X" if DR.array_index == 1: DriverName = DriverName + " Y" if DR.array_index == 2: DriverName = DriverName + " Z" value = eval('bpy.data.objects["' + obj.name + '"].' + DR.data_path) if type(value).__name__ == 'str': row.label(DriverName + " = " + str(value),icon='AUTO') elif type(value).__name__ == 'float': row.label(DriverName + " = " + str(unit.meter_to_active_unit(value)),icon='AUTO') elif type(value).__name__ == 'int': row.label(DriverName + " = " + str(value),icon='AUTO') elif type(value).__name__ == 'bool': row.label(DriverName + " = " + str(value),icon='AUTO') elif type(value).__name__ == 'bpy_prop_array': row.label(DriverName + " = " + str(value[DR.array_index]),icon='AUTO') elif type(value).__name__ == 'Vector': row.label(DriverName + " = " + str(unit.meter_to_active_unit(value[DR.array_index])),icon='AUTO') elif type(value).__name__ == 'Euler': row.label(DriverName + " = " + str(unit.meter_to_active_unit(value[DR.array_index])),icon='AUTO') else: row.label(DriverName + " = " + str(type(value)),icon='AUTO') # props = row.operator("fd_driver.add_variable_to_object",text="",icon='ZOOMIN') # props.object_name = obj.name # props.data_path = DR.data_path # props.array_index = DR.array_index # obj_bp = utils.get_assembly_bp(obj) # if obj_bp: # props = row.operator('fd_driver.get_vars_from_object',text="",icon='DRIVER') # props.object_name = obj.name # props.var_object_name = obj_bp.name # props.data_path = DR.data_path # props.array_index = DR.array_index utils.draw_driver_expression(box,DR) # draw_add_variable_operators(box,obj.name,DR.data_path,DR.array_index) utils.draw_driver_variables(box,DR,obj.name) class PANEL_object_properties(bpy.types.Panel): bl_space_type = "VIEW_3D" bl_region_type = "UI" bl_label = " " bl_options = {'DEFAULT_CLOSED'} @classmethod def poll(cls, context): if context.object: return True else: return False def draw_header(self, context): layout = self.layout obj = context.object layout.label(text="Object: " + obj.name,icon='OBJECT_DATA') def draw(self, context): layout = self.layout obj = context.object if obj: draw_object_properties(layout,obj,context) class OPS_open_new_window(bpy.types.Operator): bl_idname = "fd_general.open_new_window" bl_label = "Open New Window" space_type = bpy.props.StringProperty(name="Space Type") @classmethod def poll(cls, context): return True def execute(self, context): bpy.ops.screen.userpref_show('INVOKE_DEFAULT') for window in context.window_manager.windows: if len(window.screen.areas) == 1 and window.screen.areas[0].type == 'USER_PREFERENCES': window.screen.areas[0].type = self.space_type return {'FINISHED'} def get_scene_props(scene): return scene.obj_panel class scene_props(bpy.types.PropertyGroup): tabs = bpy.props.EnumProperty(name="type", items=enum_object_tabs, description="Select the Object Type.", default='INFO') def register(): bpy.utils.register_class(PANEL_object_properties) bpy.utils.register_class(scene_props) bpy.utils.register_class(OPS_open_new_window) bpy.types.Scene.obj_panel = bpy.props.PointerProperty(type = scene_props) def unregister(): pass
5dd63b2b9df8c5af5403c212e5f8fa25f11a8055
49536aafb22a77a6caf249c7fadef46d63d24dfe
/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/generator_io.py
784781d7368490a10d5dbc9cd5842f4bed98eda3
[ "Apache-2.0" ]
permissive
wangzhi01/deeplearning-1
4e5ad93f0d9ecd302b74352f80fe1fa6ae70bf0d
46ab82253d956953b8aa98e97ceb6cd290e82288
refs/heads/master
2020-05-28T03:14:55.687567
2018-09-12T16:52:09
2018-09-12T16:52:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,499
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow generator of dict with numpy arrays.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import Container from types import FunctionType from types import GeneratorType from tensorflow.python.estimator.inputs.queues.feeding_functions import _enqueue_data as enqueue_data def generator_input_fn(x, target_key=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, pad_value=None): """Returns input function that returns dicts of numpy arrays yielded from a generator. It is assumed that every dict of numpy arrays yielded from the dictionary represents a single sample. The generator should consume a single epoch of the data. This returns a function outputting `features` and `target` based on the dict of numpy arrays. The dict `features` has the same keys as an element yielded from x. Example: ```python def generator(): for index in range(10): yield {'height': np.random.randint(32,36), 'age': np.random.randint(18, 80), 'label': np.ones(1)} with tf.Session() as session: input_fn = generator_io.generator_input_fn( generator, target_key="label", batch_size=2, shuffle=False, num_epochs=1) ``` Args: x: Generator Function, returns a `Generator` that will yield the data in `dict` of numpy arrays target_key: String or Container of Strings, the key or Container of keys of the numpy arrays in x dictionaries to use as target. batch_size: Integer, size of batches to return. num_epochs: Integer, number of epochs to iterate over data. If `None` will run forever. shuffle: Boolean, if True shuffles the queue. Avoid shuffle at prediction time. queue_capacity: Integer, size of queue to accumulate. num_threads: Integer, number of threads used for reading and enqueueing. pad_value: default value for dynamic padding of data samples, if provided. Returns: Function, that returns a feature `dict` with `Tensors` and an optional label `dict` with `Tensors`, or if target_key is `str` label is a `Tensor` Raises: TypeError: `x` is not `FunctionType`. TypeError: `x()` is not `GeneratorType`. TypeError: `next(x())` is not `dict`. TypeError: `target_key` is not `str` or `target_key` is not `Container` of `str`. KeyError: `target_key` not a key or `target_key[index]` not in next(`x()`). KeyError: `key` mismatch between dicts emitted from `x()` """ if not isinstance(x, FunctionType): raise TypeError( 'x must be generator function; got {}'.format(type(x).__name__)) generator = x() if not isinstance(generator, GeneratorType): raise TypeError( 'x() must be generator; got {}'.format(type(generator).__name__)) data = next(generator) if not isinstance(data, dict): raise TypeError('x() must yield dict; got {}'.format(type(data).__name__)) input_keys = sorted(next(x()).keys()) if target_key is not None: if isinstance(target_key, str): target_key = [target_key] elif isinstance(target_key, Container): for item in target_key: if not isinstance(item, str): raise TypeError('target_key must be str or Container of str; got {}'. format(type(item).__name__)) if item not in input_keys: raise KeyError( 'target_key not in yielded dict. Expected {} keys; got {}'.format( input_keys, item)) else: raise TypeError('target_key must be str or Container of str; got {}'. format(type(target_key).__name__)) def _generator_input_fn(): """generator input function.""" queue = enqueue_data( x, queue_capacity, shuffle=shuffle, num_threads=num_threads, enqueue_size=batch_size, num_epochs=num_epochs, pad_value=pad_value) features = (queue.dequeue_many(batch_size) if num_epochs is None else queue.dequeue_up_to(batch_size)) if not isinstance(features, list): features = [features] features = dict(zip(input_keys, features)) if target_key is not None: if len(target_key) > 1: target = {key: features.pop(key) for key in target_key} else: target = features.pop(target_key[0]) return features, target return features return _generator_input_fn
bbbb760b22d3a07d2b3d10445c267f72ed9fcfbd
e0b6f5bd451aa8af3273fbc948799637681342e1
/scripts/wm_representation/functions/IEM_conditions/IEM_condition.py
244e5b35232d3da6732fe524c6e5c3d6790c863a
[]
no_license
davidbestue/encoding
6b304f6e7429f94f97bd562c7544d1fdccf7bdc1
c27319aa3bb652b3bfc6b7340044c0fda057bc62
refs/heads/master
2022-05-05T23:41:42.419252
2022-04-27T08:34:52
2022-04-27T08:34:52
144,248,690
0
0
null
null
null
null
UTF-8
Python
false
false
7,024
py
# -*- coding: utf-8 -*- """ Created on Mon Jul 1 18:24:32 2019 @author: David Bestue """ ## Import functions prom the previous path import sys import os previous_path = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) sys.path.insert(1, previous_path) from model_functions import * from fake_data_generator import * from Weights_matrixs import * from Representation import * from process_encoding import * from process_wm import * from data_to_use import * from bootstrap_functions import * from joblib import Parallel, delayed import multiprocessing import time import random from sklearn.model_selection import KFold import multiprocessing multiprocessing.cpu_count() ### use the cores so we do not run out of memory numcores = multiprocessing.cpu_count() if numcores>20: numcores=numcores-10 if numcores<10: numcores=numcores-3 ##paths to save the files path_save_signal ='/home/david/Desktop/Reconstructions/IEM/IEM_target_far_delay.xlsx' #cross_b001_target_mix_octave_1_7_far.xlsx' path_save_shuffle = '/home/david/Desktop/Reconstructions/IEM/shuff_IEM_target_far_delay.xlsx' ## options (chek the filename too!) decoding_thing = 'Target' #'Distractor' #'Target' Distance_to_use = 'far' #'close' 'far' training_time= 'delay' #'stim_p' 'delay' 'respo' ## depending on the options, I will use one condition or the other if decoding_thing=='Distractor': cond_t = '2_7' elif decoding_thing=='Target': ##at some point we can go for the response, though it should be similar cond_t = '1_7' # depending on the options, the TRs used for the training will be different if training_time=='stim_p': tr_st=3 tr_end=4 elif training_time=='delay': tr_st=4 tr_end=6 elif training_time=='respo': if decoding_thing=='Target': tr_st=8 tr_end=9 elif decoding_thing=='Distractor': tr_st=11 tr_end=12 ## dictionary and list to save the files Reconstructions={} Reconstructions_shuff=[] ## elements for the loop Conditions=['1_0.2', '1_7', '2_0.2', '2_7'] # '1_0.2', '1_7', '2_0.2', '2_7' Subjects=['d001', 'n001', 'b001', 'r001', 's001', 'l001'] #'d001', 'n001', 'b001', 'r001', 's001', 'l001' brain_regions = ['visual', 'ips', 'pfc'] # 'visual', 'ips', 'pfc' ref_angle=180 num_shuffles = 10 #00 for Subject in Subjects: for Brain_region in brain_regions: #plt.figure() ### Data to use enc_fmri_paths, enc_beh_paths, wm_fmri_paths, wm_beh_paths, masks = data_to_use( Subject, 'together', Brain_region) ##### Process training data training_activity, training_behaviour = preprocess_wm_files(wm_fmri_paths, masks, wm_beh_paths, condition=cond_t, distance=Distance_to_use, sys_use='unix', nscans_wm=nscans_wm, TR=2.335) # #training activity if training_time=='stim_p': delay_TR_cond = training_activity[:, tr_st, :] if training_time=='delay': delay_TR_cond = np.mean(training_activity[:, tr_st:tr_end, :], axis=1) ## training_activity[:, 8, :] if training_time=='respo': delay_TR_cond = training_activity[:, tr_st, :] # if decoding_thing=='Distractor': training_thing = training_behaviour['Dist'] elif decoding_thing=='Target': training_thing = training_behaviour['T'] ##### Train your weigths WM, Inter = Weights_matrix_LM( delay_TR_cond, training_thing ) WM_t = WM.transpose() for idx_c, Condition in enumerate(Conditions): if Condition == cond_t: training_activity, training_behaviour = delay_TR_cond, training_thing enc_fmri_paths, enc_beh_paths, wm_fmri_paths, wm_beh_paths, masks = data_to_use( Subject, 'together', Brain_region) testing_activity, testing_behaviour = preprocess_wm_files(wm_fmri_paths, masks, wm_beh_paths, condition=Condition, distance=Distance_to_use, sys_use='unix', nscans_wm=nscans_wm, TR=2.335) # Reconstruction = IEM_cross_condition_kfold(testing_activity= testing_activity, testing_behaviour=testing_behaviour, decode_item= decoding_thing, WM=WM, WM_t=WM_t, Inter=Inter, tr_st=tr_st, tr_end=tr_end, n_slpits=10) Reconstructions[Subject + '_' + Brain_region + '_' + Condition]=Reconstruction shuff = IEM_cross_condition_kfold_shuff(testing_activity=testing_activity, testing_behaviour=testing_behaviour, decode_item=decoding_thing, WM=WM, WM_t=WM_t, Inter=Inter, condition=Condition, subject=Subject, region=Brain_region, iterations=num_shuffles, tr_st=tr_st, tr_end=tr_end, ref_angle=180, n_slpits=10) Reconstructions_shuff.append(shuff) ###Reconstructions_shuff.append(shuff) else: Reconstruction, shuff = all_process_condition_shuff( Subject=Subject, Brain_Region=Brain_region, WM=WM, WM_t=WM_t, distance=Distance_to_use, decode_item= decoding_thing, iterations=num_shuffles, Inter=Inter, Condition=Condition, method='together', heatmap=False) #100 Reconstructions[Subject + '_' + Brain_region + '_' + Condition]=Reconstruction Reconstructions_shuff.append(shuff) ### Save signal ### Get signal from the reconstructions (get the signal before; not done in the function in case you want to save the whole) ### If you want to save the whole recosntruction, uncomment the following lines ### Save Recosntructions # path_save_reconstructions = # # writer = pd.ExcelWriter(path_save_reconstructions) # for i in range(len(Reconstructions.keys())): # Reconstructions[Reconstructions.keys()[i]].to_excel(writer, sheet_name=Reconstructions.keys()[i]) #each dataframe in a excel sheet # writer.save() #save reconstructions (heatmaps) #Save just the signal (around the decoding thing) Decoding_df =[] for dataframes in Reconstructions.keys(): df = Reconstructions[dataframes] a = pd.DataFrame(df.iloc[ref_angle*2,:]) ##*2 because there are 720 a = a.reset_index() a.columns = ['times', 'decoding'] # column names a['decoding'] = [sum(df.iloc[:,i] * f2(ref_angle)) for i in range(len(a))] #"population vector method" scalar product a['times']=a['times'].astype(float) a['region'] = dataframes.split('_')[1] a['subject'] = dataframes.split('_')[0] a['condition'] = dataframes.split('_')[-2] + '_' + dataframes.split('_')[-1] Decoding_df.append(a) Df = pd.concat(Decoding_df) Df['label'] = 'signal' #ad the label of signal (you will concatenate this df with the one of the shuffleing) Df.to_excel( path_save_signal ) #save signal ### Save Shuffle (in shuffles you do not need to get the *2 thing becuase it is done inside the function) Df_shuffs = pd.concat(Reconstructions_shuff) Df_shuffs['label'] = 'shuffle' ## add the label of shuffle Df_shuffs.to_excel(path_save_shuffle) #save shuffle
ba41f7aef79a7bcb7d8f12a8308d4d45eacd1ce8
6f4e925bf4538d104f1e3e9754d4297c5504ab80
/python/recall/app/domain/__init__.py
55879d938b278a1a92324ce2cb752388ae90ff9d
[ "MIT" ]
permissive
kingreatwill/openself
7f02282da3e0b1f328c3627d83ba2b5ed4563dc8
8517d24e665b39371835ecd2ed0cd3509a5d9d62
refs/heads/master
2023-01-23T13:15:49.491402
2020-11-19T02:39:52
2020-11-19T02:39:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
import models class Domain: def __init__(self, model: models.db.Document): self.model = model # 列表; def list(self, size=10, index=1, **kwargs): size = int(size) index = int(index) return self.model.objects(**kwargs).skip((index - 1) * size).limit(size) # 明细; def get(self, id): return self.model.objects(**{self.model.key(): id}).first() def update(self, id, **kwargs): model = self.model.objects(**{self.model.key(): id}).first() if model: return model.update(**kwargs) return True
0894ab4443b0c20e40c07b66f35c003920e6f84e
39735aac6631d2992b47ad7645930266322a4774
/tensorflow_probability/python/distributions/distribution_test.py
d25be8d069320024879b7b4b5336383f16bf12b7
[ "Apache-2.0" ]
permissive
Abdelpakey/probability
b96dff53fab9d9405f39d224fa77ff13f871c5db
b43d491fade784ae216a026823d2d27d7317264f
refs/heads/master
2020-04-01T05:26:28.718050
2019-02-15T15:47:16
2019-02-15T15:47:16
152,903,143
0
0
null
2018-10-13T18:39:10
2018-10-13T18:39:31
null
UTF-8
Python
false
false
13,317
py
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_util tfd = tfp.distributions @test_util.run_all_in_graph_and_eager_modes class DistributionTest(tf.test.TestCase): def testParamShapesAndFromParams(self): classes = [ tfd.Normal, tfd.Bernoulli, tfd.Beta, tfd.Chi2, tfd.Exponential, tfd.Gamma, tfd.InverseGamma, tfd.Laplace, tfd.StudentT, tfd.Uniform, ] sample_shapes = [(), (10,), (10, 20, 30)] for cls in classes: for sample_shape in sample_shapes: param_shapes = cls.param_shapes(sample_shape) params = dict([(name, tf.random_normal(shape)) for name, shape in param_shapes.items()]) dist = cls(**params) self.assertAllEqual(sample_shape, self.evaluate( tf.shape(dist.sample()))) dist_copy = dist.copy() self.assertAllEqual(sample_shape, self.evaluate(tf.shape(dist_copy.sample()))) self.assertEqual(dist.parameters, dist_copy.parameters) def testCopyExtraArgs(self): # Note: we cannot easily test all distributions since each requires # different initialization arguments. We therefore spot test a few. normal = tfd.Normal(loc=1., scale=2., validate_args=True) self.assertEqual(normal.parameters, normal.copy().parameters) wishart = tfd.Wishart(df=2, scale=[[1., 2], [2, 5]], validate_args=True) self.assertEqual(wishart.parameters, wishart.copy().parameters) def testCopyOverride(self): normal = tfd.Normal(loc=1., scale=2., validate_args=True) unused_normal_copy = normal.copy(validate_args=False) base_params = normal.parameters.copy() copy_params = normal.copy(validate_args=False).parameters.copy() self.assertNotEqual( base_params.pop("validate_args"), copy_params.pop("validate_args")) self.assertEqual(base_params, copy_params) def testIsScalar(self): mu = 1. sigma = 2. normal = tfd.Normal(mu, sigma, validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event())) self.assertTrue(tensor_util.constant_value(normal.is_scalar_batch())) normal = tfd.Normal([mu], [sigma], validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event())) self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch())) mvn = tfd.MultivariateNormalDiag([mu], [sigma], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event())) self.assertTrue(tensor_util.constant_value(mvn.is_scalar_batch())) mvn = tfd.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event())) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_batch())) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = tf.placeholder_with_default(input=1, shape=[]) # None would fire an exception were it actually executed. self.assertTrue(normal._is_scalar_helper(x.get_shape(), lambda: None)) self.assertTrue( normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x))) x = tf.placeholder_with_default(input=[1], shape=[1]) # None would fire an exception were it actually executed. self.assertFalse(normal._is_scalar_helper(x.get_shape(), lambda: None)) self.assertFalse( normal._is_scalar_helper(tf.TensorShape(None), lambda: tf.shape(x))) # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return # Test case 3. x = tf.placeholder_with_default(input=1, shape=None) is_scalar = normal._is_scalar_helper(x.get_shape(), lambda: tf.shape(x)) self.assertTrue(self.evaluate(is_scalar)) x = tf.placeholder_with_default(input=[1], shape=None) is_scalar = normal._is_scalar_helper(x.get_shape(), lambda: tf.shape(x)) self.assertFalse(self.evaluate(is_scalar)) def _GetFakeDistribution(self): class FakeDistribution(tfd.Distribution): """Fake Distribution for testing _set_sample_static_shape.""" def __init__(self, batch_shape=None, event_shape=None): self._static_batch_shape = tf.TensorShape(batch_shape) self._static_event_shape = tf.TensorShape(event_shape) super(FakeDistribution, self).__init__( dtype=tf.float32, reparameterization_type=tfd.NOT_REPARAMETERIZED, validate_args=True, allow_nan_stats=True, name="DummyDistribution") def _batch_shape(self): return self._static_batch_shape def _event_shape(self): return self._static_event_shape return FakeDistribution def testSampleShapeHints(self): # In eager mode, all shapes are known, so these tests do not need to # execute. if tf.executing_eagerly(): return fake_distribution = self._GetFakeDistribution() # Make a new session since we're playing with static shapes. [And below.] x = tf.placeholder_with_default( input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None) dist = fake_distribution(batch_shape=[2, 3], event_shape=[5]) sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32) y = dist._set_sample_static_shape(x, sample_shape) # We use as_list since TensorShape comparison does not work correctly for # unknown values, ie, Dimension(None). self.assertAllEqual([6, 7, 2, 3, 5], y.get_shape().as_list()) x = tf.placeholder_with_default( input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None) dist = fake_distribution(batch_shape=[None, 3], event_shape=[5]) sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertAllEqual([6, 7, None, 3, 5], y.get_shape().as_list()) x = tf.placeholder_with_default( input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None) dist = fake_distribution(batch_shape=[None, 3], event_shape=[None]) sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertAllEqual([6, 7, None, 3, None], y.get_shape().as_list()) x = tf.placeholder_with_default( input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None) dist = fake_distribution(batch_shape=None, event_shape=None) sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertTrue(y.get_shape().ndims is None) x = tf.placeholder_with_default( input=np.ones((6, 7, 2, 3, 5), dtype=np.float32), shape=None) dist = fake_distribution(batch_shape=[None, 3], event_shape=None) # There's no notion of partially known shapes in eager mode, so exit # early. sample_shape = tf.convert_to_tensor([6, 7], dtype=tf.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertTrue(y.get_shape().ndims is None) def testNameScopeWorksCorrectly(self): x = tfd.Normal(loc=0., scale=1., name="x") x_duplicate = tfd.Normal(loc=0., scale=1., name="x") with tf.name_scope("y") as name: y = tfd.Bernoulli(logits=0., name=name) x_sample = x.sample(name="custom_sample") x_sample_duplicate = x.sample(name="custom_sample") x_log_prob = x.log_prob(0., name="custom_log_prob") x_duplicate_sample = x_duplicate.sample(name="custom_sample") self.assertEqual(x.name, "x/") self.assertEqual(y.name, "y/") # There's no notion of graph, hence the same name will be reused. # Tensors also do not have names in eager mode, so exit early. if tf.executing_eagerly(): return self.assertTrue(x_sample.name.startswith("x/custom_sample")) self.assertTrue(x_log_prob.name.startswith("x/custom_log_prob")) self.assertEqual(x_duplicate.name, "x_1/") self.assertTrue(x_duplicate_sample.name.startswith( "x_1/custom_sample")) self.assertTrue(x_sample_duplicate.name.startswith("x/custom_sample_1")) def testStrWorksCorrectlyScalar(self): # Usually we'd write np.float(X) here, but a recent Eager bug would # erroneously coerce the value to float32 anyway. We therefore use constants # here, until the bug is resolved in TensorFlow 1.12. normal = tfd.Normal(loc=tf.constant(0, tf.float16), scale=tf.constant(1, tf.float16)) self.assertEqual( str(normal), "tfp.distributions.Normal(" "\"Normal/\", " "batch_shape=(), " "event_shape=(), " "dtype=float16)") chi2 = tfd.Chi2(df=np.float32([1., 2.]), name="silly") self.assertEqual( str(chi2), "tfp.distributions.Chi2(" "\"silly/\", " # What a silly name that is! "batch_shape=(2,), " "event_shape=(), " "dtype=float32)") # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return exp = tfd.Exponential(rate=tf.placeholder_with_default( input=1., shape=None)) self.assertEqual( str(exp), "tfp.distributions.Exponential(\"Exponential/\", " # No batch shape. "event_shape=(), " "dtype=float32)") def testStrWorksCorrectlyMultivariate(self): mvn_static = tfd.MultivariateNormalDiag( loc=np.zeros([2, 2]), name="MVN") self.assertEqual( str(mvn_static), "tfp.distributions.MultivariateNormalDiag(" "\"MVN/\", " "batch_shape=(2,), " "event_shape=(2,), " "dtype=float64)") # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return mvn_dynamic = tfd.MultivariateNormalDiag( loc=tf.placeholder_with_default( input=np.ones((3, 3), dtype=np.float32), shape=[None, 3]), name="MVN2") self.assertEqual( str(mvn_dynamic), "tfp.distributions.MultivariateNormalDiag(" "\"MVN2/\", " "batch_shape=(?,), " # Partially known. "event_shape=(3,), " "dtype=float32)") def testReprWorksCorrectlyScalar(self): # Usually we'd write np.float(X) here, but a recent Eager bug would # erroneously coerce the value to float32 anyway. We therefore use constants # here, until the bug is resolved in TensorFlow 1.12. normal = tfd.Normal(loc=tf.constant(0, tf.float16), scale=tf.constant(1, tf.float16)) self.assertEqual( repr(normal), "<tfp.distributions.Normal" " 'Normal/'" " batch_shape=()" " event_shape=()" " dtype=float16>") chi2 = tfd.Chi2(df=np.float32([1., 2.]), name="silly") self.assertEqual( repr(chi2), "<tfp.distributions.Chi2" " 'silly/'" # What a silly name that is! " batch_shape=(2,)" " event_shape=()" " dtype=float32>") # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return exp = tfd.Exponential(rate=tf.placeholder_with_default( input=1., shape=None)) self.assertEqual( repr(exp), "<tfp.distributions.Exponential" " 'Exponential/'" " batch_shape=<unknown>" " event_shape=()" " dtype=float32>") def testReprWorksCorrectlyMultivariate(self): mvn_static = tfd.MultivariateNormalDiag( loc=np.zeros([2, 2]), name="MVN") self.assertEqual( repr(mvn_static), "<tfp.distributions.MultivariateNormalDiag" " 'MVN/'" " batch_shape=(2,)" " event_shape=(2,)" " dtype=float64>") # There's no notion of partially known shapes in eager mode, so exit # early. if tf.executing_eagerly(): return mvn_dynamic = tfd.MultivariateNormalDiag( loc=tf.placeholder_with_default( input=np.ones((3, 3), dtype=np.float32), shape=[None, 3]), name="MVN2") self.assertEqual( repr(mvn_dynamic), "<tfp.distributions.MultivariateNormalDiag" " 'MVN2/'" " batch_shape=(?,)" # Partially known. " event_shape=(3,)" " dtype=float32>") if __name__ == "__main__": tf.test.main()
f8d8ee4061dbff936f37094f60a8e6e5b2dbd040
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p2DJ/New/program/qiskit/noisy/startQiskit_noisy241.py
d59a29805cadc73e57d6ef26c5940d08ffc753ef
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,185
py
# qubit number=2 # total number=11 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure #for i in range(n): # prog.measure(input_qubit[i], classicals[i]) prog.swap(input_qubit[1],input_qubit[0]) # number=2 prog.swap(input_qubit[1],input_qubit[0]) # number=3 prog.cx(input_qubit[0],input_qubit[1]) # number=8 prog.x(input_qubit[1]) # number=9 prog.cx(input_qubit[0],input_qubit[1]) # number=10 prog.cx(input_qubit[0],input_qubit[1]) # number=7 prog.rx(-2.73004401596953,input_qubit[1]) # number=6 prog.z(input_qubit[1]) # number=4 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = FakeVigo() circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) circuit1.measure_all() prog = circuit1 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() writefile = open("../data/startQiskit_noisy241.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
5a0c7f2232c9b5b9b6aebd0299f3b756198fbcab
a1488a281e582373b7270d85059f08330c0b685d
/dueros/directive/Display/tag/NewTag.py
86f19cc6e51950cde6ea45a11b1821aef4bfab0f
[ "Apache-2.0" ]
permissive
xuchengzhi/bot-sdk-python
473fb8e7df629a6168983e26de74546bbca32768
966d103d55f9f1220c00d806ac13d0754015a31c
refs/heads/master
2020-12-06T17:00:55.587643
2019-10-18T02:54:45
2019-10-18T02:54:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
#!/usr/bin/env python3 # -*- encoding=utf-8 -*- # description: # author:jack # create_time: 2018/9/17 """ desc:pass """ from dueros.directive.Display.tag.TagTypeEnum import TagTypeEnum from dueros.directive.Display.tag.BaseTag import BaseTag class NewTag(BaseTag): def __init__(self): super(NewTag, self).__init__(TagTypeEnum.TAG_TYPE_NEW, '最新') if __name__ == '__main__': pass
71de969b7a916bf5eab2c78a574d3186cf9d290b
365186abceefc51e811706ad325a2f53a63a25f8
/tests/scripts/comparisonPlots.py
e0fbf4cda1982e9d1ea7945d69f32ca47e3b51b7
[ "MIT" ]
permissive
tboudreaux/pytopsscrape
a857bdca8558bf86f7afd5f8f3e6d2e5ca90fa64
c9f95e6a6419debb0b6a22f22d1574a8bbf73bd0
refs/heads/master
2023-04-06T17:48:08.812425
2023-04-04T00:01:13
2023-04-04T00:01:13
532,559,997
2
1
null
null
null
null
UTF-8
Python
false
false
1,499
py
import matplotlib.pyplot as plt from pyTOPSScrape.parse import load_opal import os import datetime def make_comparision_plot(): TargetPath = "./GS98Target.opac" TestPath = "./GS98TestResult.opac" OPALPath = "./GS98OPAL.opac" targetTime = datetime.datetime.fromtimestamp(os.path.getmtime(TargetPath)) testTime = datetime.datetime.fromtimestamp(os.path.getmtime(TestPath)) OPALTime = datetime.datetime.fromtimestamp(os.path.getmtime(OPALPath)) print(f"Target File Last Modified at: {targetTime}") print(f"Test File Last Modified at: {testTime}") print(f"OPAL Comp File Last Modified at: {OPALTime}") Target = load_opal(TargetPath) Test = load_opal(TestPath) OPAL = load_opal(OPALPath) fig, ax = plt.subplots(1,1,figsize=(10,7)) ax.plot(Target[0], Target[2][75, :, 13], label="Current Test Target") ax.plot(Test[0], Test[2][75, :, 13], label="Test Result") ax.plot(OPAL[0], OPAL[2][75, :, 13], label="OPAL") ax.legend() ax.set_xlabel("Log T") ax.set_ylabel("Opacity") ax.set_title("Comparision made at log(R)=-1.5") plt.savefig("comparison.pdf", bbox_inches='tight') fig, ax = plt.subplots(1,1,figsize=(10,7)) ax.plot(Target[0], Target[2][75, :, 13] - Test[2][75, :, 13]) ax.set_xlabel("Log T") ax.set_ylabel("Opacity") ax.set_title("Target - Result Residuals made at log(R)=-1.5") plt.savefig("TRResid.pdf", bbox_inches='tight') if __name__ == "__main__": make_comparision_plot()
6c7175ef0bf5c454553094b3f009ebac86114775
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/violin/_metasrc.py
466d497ebca4399340d12c5b16b62c2cd713264a
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
392
py
import _plotly_utils.basevalidators class MetasrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="metasrc", parent_name="violin", **kwargs): super(MetasrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
c3e40fb6c21a8b78a1912a6dddd65973f62ce9b6
a82dfb61b17fa66b9c75fe871401cff77aa77f56
/libmcell/definition/doc.py
48cdb0ffba9e2e4089d530fbc690a17b0601d563
[ "MIT" ]
permissive
mcellteam/mcell
49ca84048a091de8933adccc083d31b7bcb1529e
3920aec22c55013b78f7d6483b81f70a0d564d22
refs/heads/master
2022-12-23T15:01:51.931150
2021-09-29T16:49:14
2021-09-29T16:49:14
10,253,341
29
12
NOASSERTION
2021-07-08T01:56:40
2013-05-23T20:59:54
C++
UTF-8
Python
false
false
7,463
py
""" Copyright (C) 2021 by The Salk Institute for Biological Studies Use of this source code is governed by an MIT-style license that can be found in the LICENSE file or at https://opensource.org/licenses/MIT. """ import sys import os import yaml from constants import * from gen import indent_and_fix_rst_chars, yaml_type_to_py_type, get_default_or_unset_value_py def cat_to_title(cat): if cat == CATEGORY_CONSTANTS: return 'Enums and Constants' else: return cat.replace('_', ' ').capitalize() def write_cat_label(f, cat): f.write('.. _api-' + cat + ':\n\n') def gen_example_links(base_links): split_links = base_links.strip().split() n = len(split_links) if n == 0: return '' res = 'Example' + ('' if n == 1 else 's') + ': ' for l in split_links: name = os.path.basename(os.path.dirname(l)) + '/' + os.path.basename(l) res += '`' + name + ' <' + EXAMPLES_BASE_URL + l + '>`_ ' return res def write_h4(f, text, name, class_name): f.write('.. _' + class_name + '__' + name + ':\n\n') f.write(text + '\n') f.write('-' * len(text) + '\n\n') def get_method_declaration(method): res = method[KEY_NAME] + ' (' if KEY_PARAMS in method: num_params = len(method[KEY_PARAMS]) for i in range(num_params): param = method[KEY_PARAMS][i] t = yaml_type_to_py_type(param[KEY_TYPE]) res += param[KEY_NAME] + ': ' + t if KEY_DEFAULT in param: res += '=' + get_default_or_unset_value_py(param) if i != num_params - 1: res += ', ' res += ')' if KEY_RETURN_TYPE in method: res += ' -> ' + yaml_type_to_py_type(method[KEY_RETURN_TYPE]) return res def generate_class_documentation(f, class_name, class_def): f.write(class_name + '\n' + '='*len(class_name) + '\n\n') if KEY_DOC in class_def: f.write(class_def[KEY_DOC].strip() + '\n\n') if KEY_EXAMPLES in class_def: f.write(gen_example_links(class_def[KEY_EXAMPLES]) + '\n\n') if KEY_ITEMS in class_def and class_def[KEY_ITEMS]: f.write('Attributes:\n' + '*'*len('Attributes:') + '\n') num_items = len(class_def[KEY_ITEMS]) for item in class_def[KEY_ITEMS]: t = yaml_type_to_py_type(item[KEY_TYPE]) header = item[KEY_NAME] + ': ' + t write_h4(f, header, item[KEY_NAME], class_name) if KEY_DOC in item and item[KEY_DOC]: f.write(' | ' + indent_and_fix_rst_chars(item[KEY_DOC].strip(), ' | ') + '\n') if KEY_DEFAULT in item: f.write(' | - default argument value in constructor: ' + get_default_or_unset_value_py(item)) f.write('\n') if KEY_EXAMPLES in item: f.write('\n | ' + gen_example_links(item[KEY_EXAMPLES]) + '\n\n') f.write('\n') if KEY_METHODS in class_def and class_def[KEY_METHODS]: f.write('\nMethods:\n' + '*'*len('nMethods:') + '\n') for method in class_def[KEY_METHODS]: method_name = method[KEY_NAME] header = get_method_declaration(method) write_h4(f, header, method_name, class_name) if KEY_DOC in method: f.write('\n | ' + indent_and_fix_rst_chars(method[KEY_DOC].strip(), ' | ') + '\n\n') if KEY_PARAMS in method: num_params = len(method[KEY_PARAMS]) for param in method[KEY_PARAMS]: t = yaml_type_to_py_type(param[KEY_TYPE]) f.write('* | ' + param[KEY_NAME] + ': ' + t) if KEY_DEFAULT in param: f.write(' = ' + get_default_or_unset_value_py(param)) if KEY_DOC in param: f.write('\n | ' + indent_and_fix_rst_chars(param[KEY_DOC].strip(), ' | ') + '\n\n') else: f.write('\n') if KEY_EXAMPLES in method: f.write(' | ' + gen_example_links(method[KEY_EXAMPLES]) + '\n\n') f.write('\n') f.write('\n') def generate_documentation(data_classes): # generate constants with open(os.path.join(DOC_DIRECTORY, CATEGORY_CONSTANTS + EXT_RST), 'w') as f: write_cat_label(f, CATEGORY_CONSTANTS) f.write( '*******************\n' + cat_to_title(CATEGORY_CONSTANTS) + '\n' + '*******************\n\n' ) # generate enums first, then constants enums = data_classes[KEY_ENUMS] for enum in enums: enum_name = enum[KEY_NAME] f.write(enum_name + '\n' + '='*len(enum_name) + '\n\n') if KEY_DOC in enum: f.write('\n | ' + indent_and_fix_rst_chars(enum[KEY_DOC].strip(), ' | ') + '\n\n') for value in enum[KEY_VALUES]: f.write('* | **' + value[KEY_NAME] + '** = ' + str(value[KEY_VALUE]) + '\n') if KEY_DOC in value: f.write(' | ' + indent_and_fix_rst_chars(value[KEY_DOC].strip(), ' | ') + '\n\n') f.write('\n') f.write('\n\n') c = 'Constants' f.write(c + '\n' + '='*len(c) + '\n\n') constants = data_classes[KEY_CONSTANTS] for const in constants: const_name = const[KEY_NAME] f.write('* | **' + const_name + '**: ' + yaml_type_to_py_type(const[KEY_TYPE]) + \ ' = ' + str(const[KEY_VALUE]) +'\n') if KEY_DOC in const: f.write(' | ' + indent_and_fix_rst_chars(const[KEY_DOC].strip(), ' | ') + '\n\n') f.write('\n\n') # then generate classes into files by category for cat in CATEGORIES: if cat == CATEGORY_CONSTANTS: continue input_file = cat + EXT_RST with open(os.path.join(DOC_DIRECTORY, input_file), 'w') as f: write_cat_label(f, cat) cat_name = cat_to_title(cat) f.write('*'*len(cat_name) + '\n' + cat_name + '\n' + '*'*len(cat_name) + '\n') for key, value in sorted(data_classes.items()): if key != KEY_CONSTANTS and key != KEY_ENUMS and value[KEY_CATEGORY] == cat: generate_class_documentation(f, key, value) # and generate api.rst file with open(os.path.join(DOC_DIRECTORY, API_RST), 'w') as f: title = 'Python API Reference' f.write( title + '\n' + '='*len(title) + '\n\n' ) f.write( '.. toctree::\n' ' :maxdepth: 2\n' ' :hidden:\n' ' :caption: Contents\n\n' ) for cat in CATEGORIES: f.write(' ' + cat + '\n') f.write('\nThis section contains automatically generated documentation on Python classes, enums, ' 'and constants provided by MCell.\n\n') for cat in CATEGORIES: f.write('- :ref:`api-' + cat + '`\n')
23458d70bd4f9ae696d8d81fa5c01f56971f7da7
3b7474148c07df7f4755106a3d0ada9b2de5efdc
/training/c25_flask/examples/world_api/original/tools.py
1dc1684dc799c4417844116947e284621a8d0bee
[]
no_license
juancsosap/pythontraining
7f67466846138f32d55361d64de81e74a946b484
1441d6fc9544042bc404d5c7efffd119fce33aa7
refs/heads/master
2021-08-26T05:37:15.851025
2021-08-11T22:35:23
2021-08-11T22:35:23
129,974,006
1
2
null
null
null
null
UTF-8
Python
false
false
1,890
py
import pymysql from flask import request, jsonify, render_template, make_response, abort def xmlify(template, value): text = render_template(template, value=value) response = make_response(text) response.headers['Content-Type'] = 'application/xml' return response def prepare_response(template, info): if len(info) > 0: formats = ['application/json', 'application/xml'] accept = request.accept_mimetypes.best_match(formats) if accept == 'application/json': return jsonify(info) elif accept == 'application/xml': return xmlify(template, info) else: abort(406) return make_response(jsonify({}), 204) class MySQLDBManager: def __init__(self, **kwargs): self.host = kwargs['host'] if 'host' in kwargs else 'localhost' self.port = kwargs['port'] if 'port' in kwargs else 3306 self.user = kwargs['user'] if 'user' in kwargs else 'root' self.password = kwargs['password'] self.db = kwargs['db'] def connect(self): self.conn = pymysql.connect(host=self.host, port=self.port, db=self.db, user=self.user, password=self.password) self.cursor = self.conn.cursor() def disconnect(self): if self.conn: self.conn.close() def execute(self, sql, *args): if len(args) > 0: self.cursor.execute(sql, args) else: self.cursor.execute(sql) result = self.cursor.fetchall() return result dbman = MySQLDBManager(password='roottoor', db='world') module_name = 'tools.tools' if __name__ == '__main__': print('Loading {} module'.format(module_name)) else: print('Importing {} module'.format(module_name))
d37148f04674bda7b996896bf1686b7c6b7db8c4
a8b0599af76b5393039431f876be00d628a1fe43
/backend/kangas/server/__init__.py
4f348efc3c7c9d70831cec668eae3966b7210d79
[ "Apache-2.0" ]
permissive
comet-ml/kangas
c951f648d890dca5a66cbab405d3437be2f3e9e3
df0c1a495032cc4f1c367c74fcb0ef6e5a2063be
refs/heads/main
2023-06-12T23:38:43.068259
2023-06-05T18:38:34
2023-06-05T19:28:33
550,324,241
944
41
Apache-2.0
2023-06-05T19:28:35
2022-10-12T15:10:04
Jupyter Notebook
UTF-8
Python
false
false
2,379
py
# -*- coding: utf-8 -*- ###################################################### # _____ _____ _ _ # # (____ \ _ | ___) (_) | | # # _ \ \ ____| |_ ____| | ___ ___ _ _ | | # # | | | )/ _ | _)/ _ | |(_ / __) |/ || | # # | |__/ ( ( | | | ( ( | | |__| | | | ( (_| | # # |_____/ \_||_|___)\_||_|_____/|_| |_|\____| # # # # Copyright (c) 2023 Kangas Development Team # # All rights reserved # ###################################################### import os from .queries import KANGAS_ROOT # noqa def start_tornado_server(port, debug_level=None, max_workers=None): """ Args: port: (int) the port to start the frontend server debug_level: (str) None means suppress output from servers """ import asyncio from concurrent.futures import ThreadPoolExecutor import tornado import tornado.log import tornado.options import tornado.web from .tornado_server import datagrid_handlers async def main(): if debug_level is not None: tornado.options.options["logging"] = debug_level tornado.log.enable_pretty_logging() # set max_workers executor = ThreadPoolExecutor(max_workers=max_workers) print( "Kangas tornado backend server starting with %s max workers" % executor._max_workers ) for handler in datagrid_handlers: handler[1].executor = executor app = tornado.web.Application(datagrid_handlers) app.listen(port) await asyncio.Event().wait() try: asyncio.run(main()) except KeyboardInterrupt: print() print("Exiting Kangas tornado backend server") def start_flask_server(host, port, debug_level=None, max_workers=None): from .flask_server import run if max_workers is None: max_workers = min(32, os.cpu_count() + 4) print("Kangas flask backend server starting with %s max workers" % max_workers) try: run( host=host, port=port, debug_level=debug_level, max_workers=max_workers, ) except KeyboardInterrupt: print() print("Exiting Kangas flask backend server")
1e1ae4854016d822cbf704f310b243729c7e3e4a
21acc25dd3969318dd8476e364fe2fb4eabfe4f4
/podcastninja/migrations/0005_auto_20150423_1005.py
5c94549f4db338ebc255bd4a0a32cb7727b5426a
[]
no_license
monty5811/podcastninja
72dc98375974b1714a8457b09126981a76166b9a
94a55536270f3e1c4e4f2160e0a24e79c9f40b7f
refs/heads/master
2020-05-17T01:24:57.312486
2015-05-25T15:18:03
2015-05-25T15:18:03
35,883,288
1
0
null
null
null
null
UTF-8
Python
false
false
526
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.core.validators class Migration(migrations.Migration): dependencies = [ ('podcastninja', '0004_podcastitem_s3_url'), ] operations = [ migrations.AlterField( model_name='podcastitem', name='s3_url', field=models.TextField(blank=True, null=True, verbose_name=b's3 url', validators=[django.core.validators.URLValidator()]), ), ]
dc9bc77e75ec86cb2ad265207209d03d37bf69a4
7950c4faf15ec1dc217391d839ddc21efd174ede
/leetcode-cn/1929.0_Concatenation_of_Array.py
d8ab060fd5948df008b621e9dca0f8d6bf0d9362
[]
no_license
lixiang2017/leetcode
f462ecd269c7157aa4f5854f8c1da97ca5375e39
f93380721b8383817fe2b0d728deca1321c9ef45
refs/heads/master
2023-08-25T02:56:58.918792
2023-08-22T16:43:36
2023-08-22T16:43:36
153,090,613
5
0
null
null
null
null
UTF-8
Python
false
false
528
py
''' 执行用时:36 ms, 在所有 Python3 提交中击败了38.78% 的用户 内存消耗:15.1 MB, 在所有 Python3 提交中击败了51.26% 的用户 ''' class Solution: def getConcatenation(self, nums: List[int]) -> List[int]: return nums + nums ''' 执行用时:36 ms, 在所有 Python3 提交中击败了38.78% 的用户 内存消耗:15.1 MB, 在所有 Python3 提交中击败了47.15% 的用户 ''' class Solution: def getConcatenation(self, nums: List[int]) -> List[int]: return nums * 2
3668163b33ba19dd7eff00d702f7712c5fd93349
8a41a7f9340cfa784cb36d35dca1ecb1630e4097
/Programming/Python/Databases/mongodb_practice/mongodb_with_docker_container_class_based.py
2b5256a980b7d9de036f2423af2cae13cf65bfc6
[]
no_license
anishst/Learn
02e6b6cce43cf21621d328ef0fc25168267a9a3d
a1aed8b78b19acdb23e20be57b67fb242e0aefc5
refs/heads/master
2022-05-13T10:17:40.293640
2022-03-30T12:44:21
2022-03-30T12:44:21
173,595,812
0
0
null
null
null
null
UTF-8
Python
false
false
2,266
py
# UNDER DEV NOT FULLY WORKING import uuid import pymongo class Database(object): URI = "mongodb://192.168.1.50:27017" DATABASE = None @staticmethod def initialize(): client = pymongo.MongoClient(Database.URI) Database.DATABASE = client['items_test'] @staticmethod def insert(collection, data): Database.DATABASE[collection].insert(data) @staticmethod def find(collection, query): return Database.DATABASE[collection].find(query) @staticmethod def find_one(collection, query): return Database.DATABASE[collection].find_one(query) @staticmethod def update(collection, query, data): Database.DATABASE[collection].update(query, data, upsert=True) @staticmethod def remove(collection, query): return Database.DATABASE[collection].remove(query) class Items: def __init__(self, store, url, desc, target_price, _id=None): self._id = uuid.uuid4().hex if _id is None else _id self.store = store self.url = url self.desc = desc self.target_price = target_price def __repr__(self): return "<Item {} with URL {}>".format(self.store, self.url) def save_to_mongo(self): Database.update("items_test", {'_id': self._id}, self.json()) def json(self): return { "_id": self._id, "name": self.store, "url": self.url, "desc": self.desc, "target_price": self.target_price } def delete(self): Database.remove('items_test', {'_id': self._id}) @staticmethod def get_all_items(): return [elem for elem in Database.find('items_test', {})] @staticmethod def get_by_id(id): return Database.find_one('items_test', {"_id": id}) Database.initialize() # add new item # new_item = Items('amazon', 'url', 'desc1', '30') # new_item.save_to_mongo() # print(len(new_item.get_all_items())) all_items = Database.find('items_test',{}) for item in all_items: print(item["_id"]) print(item["name"]) print(item["url"]) # get by id print(Items.get_by_id('67913520e1af4ca2b0ed7f9abb5b5019')) # delete item Items.delete() # total count print(len(Items.get_all_items()))
c389303e3146bc35ff821cb1d46e512bb30de237
5a52ccea88f90dd4f1acc2819997fce0dd5ffb7d
/alipay/aop/api/domain/AnttechMorseMarketingSrtaConsultModel.py
ed15c1198c9962d4b975315a6f97b110b2a9d905
[ "Apache-2.0" ]
permissive
alipay/alipay-sdk-python-all
8bd20882852ffeb70a6e929038bf88ff1d1eff1c
1fad300587c9e7e099747305ba9077d4cd7afde9
refs/heads/master
2023-08-27T21:35:01.778771
2023-08-23T07:12:26
2023-08-23T07:12:26
133,338,689
247
70
Apache-2.0
2023-04-25T04:54:02
2018-05-14T09:40:54
Python
UTF-8
Python
false
false
3,452
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AnttechMorseMarketingSrtaConsultModel(object): def __init__(self): self._anonymous_mobile_sha_256_list = None self._blind_mobile_sha_256 = None self._extend_params = None self._order_amount = None self._resource_id = None @property def anonymous_mobile_sha_256_list(self): return self._anonymous_mobile_sha_256_list @anonymous_mobile_sha_256_list.setter def anonymous_mobile_sha_256_list(self, value): self._anonymous_mobile_sha_256_list = value @property def blind_mobile_sha_256(self): return self._blind_mobile_sha_256 @blind_mobile_sha_256.setter def blind_mobile_sha_256(self, value): self._blind_mobile_sha_256 = value @property def extend_params(self): return self._extend_params @extend_params.setter def extend_params(self, value): self._extend_params = value @property def order_amount(self): return self._order_amount @order_amount.setter def order_amount(self, value): self._order_amount = value @property def resource_id(self): return self._resource_id @resource_id.setter def resource_id(self, value): self._resource_id = value def to_alipay_dict(self): params = dict() if self.anonymous_mobile_sha_256_list: if hasattr(self.anonymous_mobile_sha_256_list, 'to_alipay_dict'): params['anonymous_mobile_sha_256_list'] = self.anonymous_mobile_sha_256_list.to_alipay_dict() else: params['anonymous_mobile_sha_256_list'] = self.anonymous_mobile_sha_256_list if self.blind_mobile_sha_256: if hasattr(self.blind_mobile_sha_256, 'to_alipay_dict'): params['blind_mobile_sha_256'] = self.blind_mobile_sha_256.to_alipay_dict() else: params['blind_mobile_sha_256'] = self.blind_mobile_sha_256 if self.extend_params: if hasattr(self.extend_params, 'to_alipay_dict'): params['extend_params'] = self.extend_params.to_alipay_dict() else: params['extend_params'] = self.extend_params if self.order_amount: if hasattr(self.order_amount, 'to_alipay_dict'): params['order_amount'] = self.order_amount.to_alipay_dict() else: params['order_amount'] = self.order_amount if self.resource_id: if hasattr(self.resource_id, 'to_alipay_dict'): params['resource_id'] = self.resource_id.to_alipay_dict() else: params['resource_id'] = self.resource_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AnttechMorseMarketingSrtaConsultModel() if 'anonymous_mobile_sha_256_list' in d: o.anonymous_mobile_sha_256_list = d['anonymous_mobile_sha_256_list'] if 'blind_mobile_sha_256' in d: o.blind_mobile_sha_256 = d['blind_mobile_sha_256'] if 'extend_params' in d: o.extend_params = d['extend_params'] if 'order_amount' in d: o.order_amount = d['order_amount'] if 'resource_id' in d: o.resource_id = d['resource_id'] return o
c89f1e925348210ada55438f3e47f2b3572cbe03
0412893529999de784ab9cb914f385ba788a3684
/test/test_ack_collector_down.py
af6a6ac2ccc5999ccfadc2c84f1e1ec9cacdf9c9
[ "Apache-2.0" ]
permissive
JeremyTangCD/lm-sdk-python
0326bf034c16b022b760600dc18fe7aaad42fa26
2a15e055e5a3f72d2f2e4fb43bdbed203c5a9983
refs/heads/master
2020-04-15T15:39:59.276224
2019-01-09T09:55:36
2019-01-09T09:55:36
164,803,314
0
0
Apache-2.0
2019-01-09T09:58:55
2019-01-09T06:33:40
Python
UTF-8
Python
false
false
1,154
py
# coding: utf-8 """ LogicMonitor REST API LogicMonitor is a SaaS-based performance monitoring platform that provides full visibility into complex, hybrid infrastructures, offering granular performance monitoring and actionable data and insights. logicmonitor_sdk enables you to manage your LogicMonitor account programmatically. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import logicmonitor_sdk from logicmonitor_sdk.models.ack_collector_down import AckCollectorDown # noqa: E501 from logicmonitor_sdk.rest import ApiException class TestAckCollectorDown(unittest.TestCase): """AckCollectorDown unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAckCollectorDown(self): """Test AckCollectorDown""" # FIXME: construct object with mandatory attributes with example values # model = logicmonitor_sdk.models.ack_collector_down.AckCollectorDown() # noqa: E501 pass if __name__ == '__main__': unittest.main()
3c2ddbefb534733402dab2315f80ebe6a3f1e70b
4f4ecdacdd57fddfec039439589472382875c539
/arelle/ModelRenderingObject.py
b01745af7d306800437c03ceca950e84d7240f08
[ "Apache-2.0" ]
permissive
irjudson/Arelle
0fadce7cf36d41115b1e833c9e30fb717c120613
d03be32dce33c34c3388e54afbe837bf83a4ff48
refs/heads/master
2020-05-29T11:39:16.391796
2013-11-07T23:00:14
2013-11-07T23:00:14
1,867,690
0
0
null
null
null
null
UTF-8
Python
false
false
69,169
py
''' Created on Mar 7, 2011 @author: Mark V Systems Limited (c) Copyright 2011 Mark V Systems Limited, All rights reserved. ''' import inspect, os from arelle import XmlUtil, XbrlConst, XPathParser, Locale, XPathContext from arelle.ModelDtsObject import ModelResource from arelle.ModelInstanceObject import ModelDimensionValue from arelle.ModelValue import qname, QName from arelle.ModelObject import ModelObject from arelle.ModelFormulaObject import (Trace, ModelFormulaResource, ModelFormulaRules, ModelConceptName, ModelParameter, Aspect, aspectStr) from arelle.ModelInstanceObject import ModelFact from arelle.FormulaEvaluator import (filterFacts as formulaEvaluatorFilterFacts, aspectsMatch, factsPartitions, VariableBinding) from arelle.PrototypeInstanceObject import FactPrototype ROLLUP_NOT_ANALYZED = 0 CHILD_ROLLUP_FIRST = 1 CHILD_ROLLUP_LAST = 2 CHILDREN_BUT_NO_ROLLUP = 3 OPEN_ASPECT_ENTRY_SURROGATE = '\uDBFF' EMPTY_SET = set() def definitionNodes(nodes): return [(ord.definitionNodeObject if isinstance(node, StructuralNode) else node) for node in nodes] # table linkbase structural nodes for rendering class StructuralNode: def __init__(self, parentStructuralNode, definitionNode, zInheritance=None, contextItemFact=None, breakdownTableNode=None): self.parentStructuralNode = parentStructuralNode self._definitionNode = definitionNode self._rendrCntx = getattr(definitionNode.modelXbrl, "rendrCntx", None) # None for EU 2010 table linkbases self.variables = {} self.aspects = {} self.childStructuralNodes = [] self.rollUpStructuralNode = None self.choiceStructuralNodes = [] self.zInheritance = zInheritance if contextItemFact is not None: self.contextItemBinding = VariableBinding(self._rendrCntx, boundFact=contextItemFact) if isinstance(self.contextItemBinding.yieldedFact, FactPrototype): for aspect in definitionNode.aspectsCovered(): if aspect != Aspect.DIMENSIONS: self.aspectEntryObjectId = self.aspects[aspect] = contextItemFact.aspectEntryObjectId break else: self.contextItemBinding = None self.subtreeRollUp = ROLLUP_NOT_ANALYZED self.depth = parentStructuralNode.depth + 1 if parentStructuralNode else 0 if breakdownTableNode is not None: self.breakdownTableNode = breakdownTableNode self.tagSelector = definitionNode.tagSelector self.isLabeled = True @property def modelXbrl(self): return self._definitionNode.modelXbrl @property def isAbstract(self): if self.subtreeRollUp: return self.subtreeRollUp == CHILDREN_BUT_NO_ROLLUP try: try: return self.abstract # ordinate may have an abstract attribute except AttributeError: # if none use axis object return self.definitionNode.isAbstract except AttributeError: # axis may never be abstract return False @property def isRollUp(self): return self.definitionNode.isRollUp @property def cardinalityAndDepth(self): return self.definitionNode.cardinalityAndDepth(self) @property def structuralDepth(self): if self.parentStructuralNode is not None: return self.parentStructuralNode.structuralDepth + 1 return 0 @property def definitionNode(self): if self.choiceStructuralNodes: return self.choiceStructuralNodes[getattr(self,"choiceNodeIndex",0)]._definitionNode return self._definitionNode def breakdownNode(self, tableELR): definitionNode = self._definitionNode if isinstance(definitionNode, ModelBreakdown): return definitionNode axisSubtreeRelSet = definitionNode.modelXbrl.relationshipSet((XbrlConst.tableBreakdownTree, XbrlConst.tableBreakdownTreeMMDD, XbrlConst.tableBreakdownTree201305, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011), tableELR) while (True): for parentRel in axisSubtreeRelSet.toModelObject(definitionNode): definitionNode = parentRel.fromModelObject if isinstance(definitionNode, ModelBreakdown): return definitionNode break # recurse to move to this node's parent breakdown node return definitionNode # give up here def constraintSet(self, tagSelectors=None): definitionNode = self.definitionNode if tagSelectors: for tag in tagSelectors: if tag in definitionNode.constraintSets: return definitionNode.constraintSets[tag] return definitionNode.constraintSets.get(None) # returns None if no default constraint set def aspectsCovered(self): return _DICT_SET(self.aspects.keys()) | self.definitionNode.aspectsCovered() def hasAspect(self, aspect, inherit=True): return (aspect in self.aspects or self.definitionNode.hasAspect(self, aspect) or (inherit and self.parentStructuralNode is not None and self.parentStructuralNode.hasAspect(aspect, inherit))) def aspectValue(self, aspect, inherit=True, dims=None, depth=0, tagSelectors=None): xc = self._rendrCntx if self.choiceStructuralNodes: # use aspects from choice structural node chosenStructuralNode = self.choiceStructuralNodes[getattr(self,"choiceNodeIndex",0)] aspects = chosenStructuralNode.aspects definitionNode = chosenStructuralNode._definitionNode contextItemBinding = chosenStructuralNode.contextItemBinding else: aspects = self.aspects definitionNode = self._definitionNode contextItemBinding = self.contextItemBinding constraintSet = self.constraintSet(tagSelectors) if aspect == Aspect.DIMENSIONS: if dims is None: dims = set() if inherit and self.parentStructuralNode is not None: dims |= self.parentStructuralNode.aspectValue(aspect, dims=dims, depth=depth+1) if aspect in aspects: dims |= aspects[aspect] elif constraintSet is not None and constraintSet.hasAspect(self, aspect): dims |= set(definitionNode.aspectValue(xc, aspect) or {}) if constraintSet is not None and constraintSet.hasAspect(self, Aspect.OMIT_DIMENSIONS): dims -= set(constraintSet.aspectValue(xc, Aspect.OMIT_DIMENSIONS)) return dims if aspect in aspects: return aspects[aspect] elif constraintSet is not None and constraintSet.hasAspect(self, aspect): if isinstance(definitionNode, ModelSelectionDefinitionNode): # result is in the indicated variable of ordCntx return self.variables.get(self._definitionNode.variableQname) elif isinstance(definitionNode, ModelFilterDefinitionNode): if contextItemBinding: return contextItemBinding.aspectValue(aspect) elif isinstance(definitionNode, ModelTupleDefinitionNode): if aspect == Aspect.LOCATION and contextItemBinding: return contextItemBinding.yieldedFact # non-location tuple aspects don't leak into cell bindings else: return constraintSet.aspectValue(xc, aspect) if inherit and self.parentStructuralNode is not None: return self.parentStructuralNode.aspectValue(aspect, depth=depth+1) return None ''' @property def primaryItemQname(self): # for compatibility with viewRelationsihps if Aspect.CONCEPT in self.aspects: return self.aspects[Aspect.CONCEPT] return self.definitionNode.primaryItemQname @property def explicitDims(self): return self.definitionNode.explicitDims ''' def objectId(self, refId=""): return self._definitionNode.objectId(refId) def header(self, role=None, lang=None, evaluate=True, returnGenLabel=True, returnMsgFormatString=False): # if ord is a nested selectionAxis selection, use selection-message or text contents instead of axis headers isZSelection = isinstance(self._definitionNode, ModelSelectionDefinitionNode) and hasattr(self, "zSelection") if role is None: # check for message before checking for genLabel msgsRelationshipSet = self._definitionNode.modelXbrl.relationshipSet( (XbrlConst.tableDefinitionNodeSelectionMessage201301, XbrlConst.tableAxisSelectionMessage2011) if isZSelection else (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011)) if msgsRelationshipSet: msg = msgsRelationshipSet.label(self._definitionNode, XbrlConst.standardMessage, lang, returnText=False) if msg is not None: if evaluate: if returnMsgFormatString: return msg.formatString # not possible to evaluate (during resolution) else: return self.evaluate(msg, msg.evaluate) else: return XmlUtil.text(msg) if isZSelection: # no message, return text of selection return self.variables.get(self._definitionNode.variableQname, "selection") if returnGenLabel: label = self._definitionNode.genLabel(role=role, lang=lang) if label: return label if self.isEntryAspect: # True if open node bound to a prototype, false if boudn to a real fact return OPEN_ASPECT_ENTRY_SURROGATE # sort pretty high, work ok for python 2.7/3.2 as well as 3.3 # if there's a child roll up, check for it if self.rollUpStructuralNode is not None: # check the rolling-up child too return self.rollUpStructuralNode.header(role, lang, evaluate, returnGenLabel, returnMsgFormatString) # if aspect is a concept of dimension, return its standard label concept = None for aspect in self.aspectsCovered(): aspectValue = self.aspectValue(aspect) if isinstance(aspect, QName) or aspect == Aspect.CONCEPT: # dimension or concept if isinstance(aspectValue, QName): concept = self.modelXbrl.qnameConcepts[aspectValue] break elif isinstance(aspectValue, ModelDimensionValue): if aspectValue.isExplicit: concept = aspectValue.member elif aspectValue.isTyped: return XmlUtil.innerTextList(aspectValue.typedMember) elif isinstance(aspectValue, ModelObject): text = XmlUtil.innerTextList(aspectValue) if not text and XmlUtil.hasChild(aspectValue, aspectValue.namespaceURI, "forever"): text = "forever" return text if concept is not None: label = concept.label(lang=lang) if label: return label # if there is a role, check if it's available on a parent node if role and self.parentStructuralNode is not None: return self.parentStructuralNode.header(role, lang, evaluate, returnGenLabel, returnMsgFormatString) return None def evaluate(self, evalObject, evalMethod, otherOrdinate=None, evalArgs=()): xc = self._rendrCntx if self.contextItemBinding and not isinstance(xc.contextItem, ModelFact): previousContextItem = xc.contextItem # xbrli.xbrl xc.contextItem = self.contextItemBinding.yieldedFact else: previousContextItem = None if self.choiceStructuralNodes and hasattr(self,"choiceNodeIndex"): variables = self.choiceStructuralNodes[self.choiceNodeIndex].variables else: variables = self.variables removeVarQnames = [] for variablesItems in (self.tableDefinitionNode.parameters.items(), variables.items()): for qn, value in variablesItems: if qn not in xc.inScopeVars: removeVarQnames.append(qn) xc.inScopeVars[qn] = value if self.parentStructuralNode is not None: result = self.parentStructuralNode.evaluate(evalObject, evalMethod, otherOrdinate, evalArgs) elif otherOrdinate is not None: # recurse to other ordinate (which will recurse to z axis) result = otherOrdinate.evaluate(evalObject, evalMethod, None, evalArgs) elif self.zInheritance is not None: result = self.zInheritance.evaluate(evalObject, evalMethod, None, evalArgs) else: try: result = evalMethod(xc, *evalArgs) except XPathContext.XPathException as err: xc.modelXbrl.error(err.code, _("%(element)s set %(xlinkLabel)s \nException: %(error)s"), modelObject=evalObject, element=evalObject.localName, xlinkLabel=evalObject.xlinkLabel, error=err.message) result = '' for qn in removeVarQnames: xc.inScopeVars.pop(qn) if previousContextItem is not None: xc.contextItem = previousContextItem # xbrli.xbrl return result def hasValueExpression(self, otherAxisStructuralNode=None): return (self.definitionNode.hasValueExpression or (otherAxisStructuralNode is not None and otherAxisStructuralNode.definitionNode.hasValueExpression)) def evalValueExpression(self, fact, otherAxisStructuralNode=None): for structuralNode in (self, otherAxisStructuralNode): if structuralNode is not None and structuralNode.definitionNode.hasValueExpression: return self.evaluate(self.definitionNode, structuralNode.definitionNode.evalValueExpression, otherAxisStructuralNode=otherAxisStructuralNode, evalArgs=(fact,)) return None @property def isEntryAspect(self): # true if open node and bound to a fact prototype return self.contextItemBinding is not None and isinstance(self.contextItemBinding.yieldedFact, FactPrototype) def isEntryPrototype(self, default=False): # true if all axis open nodes before this one are entry prototypes (or not open axes) if self.contextItemBinding is not None: # True if open node bound to a prototype, false if boudn to a real fact return isinstance(self.contextItemBinding.yieldedFact, FactPrototype) if self.parentStructuralNode is not None: return self.parentStructuralNode.isEntryPrototype(default) return default # nothing open to be bound to a fact @property def tableDefinitionNode(self): if self.parentStructuralNode is None: return self.breakdownTableNode else: return self.parentStructuralNode.tableDefinitionNode @property def tagSelectors(self): try: return self._tagSelectors except AttributeError: if self.parentStructuralNode is None: self._tagSelectors = set() else: self._tagSelectors = self.parentStructuralNode.tagSelectors if self.tagSelector: self._tagSelectors.add(self.tagSelector) return self._tagSelectors @property def leafNodeCount(self): childLeafCount = 0 for childStructuralNode in self.childStructuralNodes: childLeafCount += childStructuralNode.leafNodeCount if childLeafCount == 0: return 1 if not self.isAbstract and isinstance(self.definitionNode, (ModelClosedDefinitionNode, ModelEuAxisCoord)): childLeafCount += 1 # has a roll up return childLeafCount def setHasOpenNode(self): if self.parentStructuralNode is not None: self.parentStructuralNode.setHasOpenNode() else: self.hasOpenNode = True def inheritedPrimaryItemQname(self, view): return (self.primaryItemQname or self.inheritedPrimaryItemQname(self.parentStructuralNode, view)) def inheritedExplicitDims(self, view, dims=None, nested=False): if dims is None: dims = {} if self.parentOrdinateContext: self.parentStructuralNode.inheritedExplicitDims(view, dims, True) for dim, mem in self.explicitDims: dims[dim] = mem if not nested: return {(dim,mem) for dim,mem in dims.items() if mem != 'omit'} def inheritedAspectValue(self, otherAxisStructuralNode, view, aspect, tagSelectors, xAspectStructuralNodes, yAspectStructuralNodes, zAspectStructuralNodes): aspectStructuralNodes = xAspectStructuralNodes.get(aspect, EMPTY_SET) | yAspectStructuralNodes.get(aspect, EMPTY_SET) | zAspectStructuralNodes.get(aspect, EMPTY_SET) structuralNode = None if len(aspectStructuralNodes) == 1: structuralNode = aspectStructuralNodes.pop() elif len(aspectStructuralNodes) > 1: if aspect == Aspect.LOCATION: hasClash = False for _aspectStructuralNode in aspectStructuralNodes: if not _aspectStructuralNode.definitionNode.aspectValueDependsOnVars(aspect): if structuralNode: hasClash = True else: structuralNode = _aspectStructuralNode else: # take closest structural node hasClash = True ''' reported in static analysis by RenderingEvaluator.py if hasClash: from arelle.ModelFormulaObject import aspectStr view.modelXbrl.error("xbrlte:aspectClash", _("Aspect %(aspect)s covered by multiple axes."), modelObject=view.modelTable, aspect=aspectStr(aspect)) ''' if structuralNode: definitionNodeConstraintSet = structuralNode.constraintSet(tagSelectors) if definitionNodeConstraintSet is not None and definitionNodeConstraintSet.aspectValueDependsOnVars(aspect): return self.evaluate(definitionNodeConstraintSet, definitionNodeConstraintSet.aspectValue, # this passes a method otherAxisStructuralNode=otherAxisStructuralNode, evalArgs=(aspect,)) return structuralNode.aspectValue(aspect, tagSelectors=tagSelectors) return None def __repr__(self): return ("structuralNode[{0}]{1})".format(self.objectId(),self.definitionNode)) # Root class for rendering is formula, to allow linked and nested compiled expressions def definitionModelLabelsView(mdlObj): return tuple(sorted([("{} {} {} {}".format(label.localName, str(rel.order).rstrip("0").rstrip("."), os.path.basename(label.role), label.xmlLang), label.stringValue) for rel in mdlObj.modelXbrl.relationshipSet((XbrlConst.elementLabel,XbrlConst.elementReference)).fromModelObject(mdlObj) for label in (rel.toModelObject,)] + [("xlink:label", mdlObj.xlinkLabel)])) # 2010 EU Table linkbase class ModelEuTable(ModelResource): def init(self, modelDocument): super(ModelEuTable, self).init(modelDocument) self.aspectsInTaggedConstraintSets = set() @property def aspectModel(self): return "dimensional" @property def propertyView(self): return ((("id", self.id),) + self.definitionLabelsView) def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def parameters(self): return {} @property def definitionLabelsView(self): return definitionModelLabelsView(self) def __repr__(self): return ("table[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelEuAxisCoord(ModelResource): def init(self, modelDocument): super(ModelEuAxisCoord, self).init(modelDocument) @property def abstract(self): return self.get("abstract") or 'false' @property def isAbstract(self): return self.abstract == "true" @property def isMerged(self): return False @property def parentChildOrder(self): return self.get("parentChildOrder") @property def isRollUp(self): return False @property def parentDefinitionNode(self): try: return self._parentDefinitionNode except AttributeError: parentDefinitionNode = None for rel in self.modelXbrl.relationshipSet(XbrlConst.euAxisMember).toModelObject(self): parentDefinitionNode = rel.fromModelObject break self._parentDefinitionNode = parentDefinitionNode return parentDefinitionNode def aspectsCovered(self): aspectsCovered = set() if XmlUtil.hasChild(self, XbrlConst.euRend, "primaryItem"): aspectsCovered.add(Aspect.CONCEPT) if XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference"): aspectsCovered.add(Aspect.INSTANT) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): aspectsCovered.add(self.prefixedNameQname(e.get("dimension"))) return aspectsCovered @property def constraintSets(self): return {None: self} @property def tagSelector(self): # default constraint set for ruleNode has name None return None def hasAspect(self, structuralNode, aspect): if aspect == Aspect.CONCEPT: return XmlUtil.hasChild(self, XbrlConst.euRend, "primaryItem") elif aspect == Aspect.DIMENSIONS: return XmlUtil.hasChild(self, XbrlConst.euRend, "explicitDimCoord") elif aspect in (Aspect.PERIOD_TYPE, Aspect.INSTANT): return XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference") elif isinstance(aspect, QName): for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): if self.prefixedNameQname(e.get("dimension")) == aspect: return True return False def aspectValueDependsOnVars(self, aspect): return False def aspectValue(self, xpCtx, aspect, inherit=False): if aspect == Aspect.DIMENSIONS: dims = set(self.prefixedNameQname(e.get("dimension")) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord")) if inherit and self.parentDefinitionNode is not None: dims |= self.parentDefinitionNode.aspectValue(None, aspect, inherit) return dims if inherit and not self.hasAspect(None, aspect): if self.parentDefinitionNode is not None: return self.parentDefinitionNode.aspectValue(None, aspect, inherit) return None if aspect == Aspect.CONCEPT: priItem = XmlUtil.childAttr(self, XbrlConst.euRend, "primaryItem", "name") if priItem is not None: return self.prefixedNameQname(priItem) return None elif aspect == Aspect.PERIOD_TYPE: if XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference"): return "instant" elif aspect == Aspect.INSTANT: return XmlUtil.datetimeValue(XmlUtil.childAttr(self, XbrlConst.euRend, "timeReference", "instant"), addOneDay=True) elif isinstance(aspect, QName): for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): if self.prefixedNameQname(e.get("dimension")) == aspect: return self.prefixedNameQname(e.get("value")) return None ''' @property def primaryItemQname(self): priItem = XmlUtil.childAttr(self, XbrlConst.euRend, "primaryItem", "name") if priItem is not None: return self.prefixedNameQname(priItem) return None @property def explicitDims(self): return {(self.prefixedNameQname(e.get("dimension")), self.prefixedNameQname(e.get("value"))) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord")} @property def instant(self): return XmlUtil.datetimeValue(XmlUtil.childAttr(self, XbrlConst.euRend, "timeReference", "instant"), addOneDay=True) ''' def cardinalityAndDepth(self, structuralNode): return (1, 1) def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def hasValueExpression(self): return False @property def definitionLabelsView(self): return definitionModelLabelsView(self) @property def propertyView(self): explicitDims = self.aspectValue(None, Aspect.DIMENSIONS, inherit=True) return ((("id", self.id), ("primary item", self.aspectValue(None, Aspect.CONCEPT, inherit=True)), ("dimensions", "({0})".format(len(explicitDims)), tuple((str(dim),str(self.aspectValue(None, dim, inherit=True))) for dim in sorted(explicitDims))) if explicitDims else (), ("abstract", self.abstract)) + self.definitionLabelsView) def __repr__(self): return ("axisCoord[{0}]{1})".format(self.objectId(),self.propertyView)) # 2011 Table linkbase class ModelTable(ModelFormulaResource): def init(self, modelDocument): super(ModelTable, self).init(modelDocument) self.modelXbrl.modelRenderingTables.add(self) self.modelXbrl.hasRenderingTables = True self.aspectsInTaggedConstraintSets = set() @property def aspectModel(self): return self.get("aspectModel", "dimensional") # attribute removed 2013-06, always dimensional @property def descendantArcroles(self): return (XbrlConst.tableFilter, XbrlConst.tableFilterMMDD, XbrlConst.tableFilter201305, XbrlConst.tableFilter201301, XbrlConst.tableFilter2011, XbrlConst.tableBreakdown, XbrlConst.tableBreakdownMMDD, XbrlConst.tableBreakdown201305, XbrlConst.tableBreakdown201301, XbrlConst.tableAxis2011, XbrlConst.tableParameter, XbrlConst.tableParameterMMDD) @property def filterRelationships(self): try: return self._filterRelationships except AttributeError: rels = [] # order so conceptName filter is first (if any) (may want more sorting in future) for rel in self.modelXbrl.relationshipSet((XbrlConst.tableFilter, XbrlConst.tableFilterMMDD, XbrlConst.tableFilter201305, XbrlConst.tableFilter201301, XbrlConst.tableFilter2011)).fromModelObject(self): if isinstance(rel.toModelObject, ModelConceptName): rels.insert(0, rel) # put conceptName filters first else: rels.append(rel) self._filterRelationships = rels return rels @property def parameters(self): try: return self._parameters except AttributeError: self._parameters = {} xc = self.modelXbrl.rendrCntx for rel in self.modelXbrl.relationshipSet((XbrlConst.tableParameter, XbrlConst.tableParameterMMDD)).fromModelObject(self): if isinstance(rel.toModelObject, ModelParameter): varQname = rel.variableQname parameter = rel.toModelObject if isinstance(parameter, ModelParameter): self._parameters[varQname] = xc.inScopeVars.get(var.qname) return self._parameters def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def definitionLabelsView(self): return definitionModelLabelsView(self) @property def propertyView(self): return ((("id", self.id),) + self.definitionLabelsView) def __repr__(self): return ("modlTable[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelDefinitionNode(ModelFormulaResource): def init(self, modelDocument): super(ModelDefinitionNode, self).init(modelDocument) @property def parentDefinitionNode(self): return None @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD) def hasAspect(self, structuralNode, aspect): return False def aspectValueDependsOnVars(self, aspect): return False @property def variablename(self): """(str) -- name attribute""" return self.getStripped("name") @property def variableQname(self): """(QName) -- resolved name for an XPath bound result having a QName name attribute""" varName = self.variablename return qname(self, varName, noPrefixIsNoNamespace=True) if varName else None def aspectValue(self, xpCtx, aspect, inherit=True): if aspect == Aspect.DIMENSIONS: return [] return None def aspectsCovered(self): return set() @property def constraintSets(self): return {None: self} @property def tagSelector(self): return self.get("tagSelector") @property def valueExpression(self): return self.get("value") @property def hasValueExpression(self): return bool(self.valueProg) # non empty program def compile(self): if not hasattr(self, "valueProg"): value = self.valueExpression self.valueProg = XPathParser.parse(self, value, self, "value", Trace.VARIABLE) # duplicates formula resource for RuleAxis but not for other subclasses super(ModelDefinitionNode, self).compile() def evalValueExpression(self, xpCtx, fact): # compiled by FormulaResource compile() return xpCtx.evaluateAtomicValue(self.valueProg, 'xs:string', fact) ''' @property def primaryItemQname(self): # for compatibility with viewRelationsihps return None @property def explicitDims(self): return set() ''' @property def isAbstract(self): return False @property def isMerged(self): return False @property def isRollUp(self): return self.get("rollUp") == 'true' def cardinalityAndDepth(self, structuralNode): return (1, 1 if (structuralNode.header(evaluate=False) is not None) else 0) def header(self, role=None, lang=None, strip=False, evaluate=True): if role is None: # check for message before checking for genLabel msgsRelationshipSet = self.modelXbrl.relationshipSet((XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011)) if msgsRelationshipSet: msg = msgsRelationshipSet.label(self, XbrlConst.standardMessage, lang, returnText=False) if msg is not None: if evaluate: result = msg.evaluate(self.modelXbrl.rendrCntx) else: result = XmlUtil.text(msg) if strip: return result.strip() return result return self.genLabel(role=role, lang=lang, strip=strip) @property def definitionNodeView(self): return XmlUtil.xmlstring(self, stripXmlns=True, prettyPrint=True) @property def definitionLabelsView(self): return definitionModelLabelsView(self) class ModelBreakdown(ModelDefinitionNode): def init(self, modelDocument): super(ModelBreakdown, self).init(modelDocument) @property def parentChildOrder(self): return self.get("parentChildOrder") @property def descendantArcroles(self): return (XbrlConst.tableBreakdownTree, XbrlConst.tableBreakdownTreeMMDD, XbrlConst.tableBreakdownTree201305) @property def propertyView(self): return ((("id", self.id), ("parent child order", self.parentChildOrder), ("definition", self.definitionNodeView)) + self.definitionLabelsView) class ModelClosedDefinitionNode(ModelDefinitionNode): def init(self, modelDocument): super(ModelClosedDefinitionNode, self).init(modelDocument) @property def abstract(self): return self.get("abstract") @property def isAbstract(self): return self.abstract == 'true' @property def parentChildOrder(self): return self.get("parentChildOrder") @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) def filteredFacts(self, xpCtx, facts): aspects = self.aspectsCovered() axisAspectValues = dict((aspect, self.aspectValue(xpCtx, aspect)) for aspect in aspects) fp = FactPrototype(self, axisAspectValues) return set(fact for fact in facts if aspectsMatch(xpCtx, fact, fp, aspects)) class ModelConstraintSet(ModelFormulaRules): def init(self, modelDocument): super(ModelConstraintSet, self).init(modelDocument) self._locationSourceVar = self.source(Aspect.LOCATION_RULE, acceptFormulaSource=False) self._locationAspectCovered = set() self.aspectValues = {} # only needed if error blocks compiling this node, replaced by compile() self.aspectProgs = {} # ditto if self._locationSourceVar: self._locationAspectCovered.add(Aspect.LOCATION) # location is parent (tuple), not sibling def hasAspect(self, structuralNode, aspect, inherit=None): return self._hasAspect(structuralNode, aspect, inherit) def _hasAspect(self, structuralNode, aspect, inherit=None): # opaque from ModelRuleDefinitionNode if aspect == Aspect.LOCATION and self._locationSourceVar: return True return self.hasRule(aspect) def aspectValue(self, xpCtx, aspect, inherit=None): try: if xpCtx is None: xpCtx = self.modelXbrl.rendrCntx if aspect == Aspect.LOCATION and self._locationSourceVar in xpCtx.inScopeVars: return xpCtx.inScopeVars[self._locationSourceVar] return self.evaluateRule(xpCtx, aspect) except AttributeError: return '(unavailable)' # table defective or not initialized def aspectValueDependsOnVars(self, aspect): return aspect in _DICT_SET(self.aspectProgs.keys()) or aspect in self._locationAspectCovered def aspectsCovered(self): return _DICT_SET(self.aspectValues.keys()) | _DICT_SET(self.aspectProgs.keys()) | self._locationAspectCovered # provide model table's aspect model to compile() method of ModelFormulaRules @property def aspectModel(self): for frameRecord in inspect.stack(): obj = frameRecord[0].f_locals['self'] if isinstance(obj,ModelTable): return obj.aspectModel return None ''' @property def primaryItemQname(self): return self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.CONCEPT) @property def explicitDims(self): dimMemSet = set() dims = self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.DIMENSIONS) if dims: # may be none if no dim aspects on this ruleAxis for dim in dims: mem = self.evaluateRule(self.modelXbrl.rendrCntx, dim) if mem: # may be none if dimension was omitted dimMemSet.add( (dim, mem) ) return dimMemSet @property def instant(self): periodType = self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.PERIOD_TYPE) if periodType == "forever": return None return self.evaluateRule(self.modelXbrl.rendrCntx, {"instant": Aspect.INSTANT, "duration": Aspect.END}[periodType]) ''' def cardinalityAndDepth(self, structuralNode): if self.aspectValues or self.aspectProgs or structuralNode.header(evaluate=False) is not None: return (1, 1) else: return (0, 0) class ModelRuleSet(ModelConstraintSet, ModelFormulaResource): def init(self, modelDocument): super(ModelRuleSet, self).init(modelDocument) @property def tagName(self): # can't call it tag because that would hide ElementBase.tag return self.get("tag") class ModelRuleDefinitionNode(ModelConstraintSet, ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelRuleDefinitionNode, self).init(modelDocument) @property def merge(self): return self.get("merge") @property def isMerged(self): return self.merge == "true" @property def constraintSets(self): try: return self._constraintSets except AttributeError: self._constraintSets = dict((ruleSet.tagName, ruleSet) for ruleSet in XmlUtil.children(self, self.namespaceURI, "ruleSet")) if self.aspectsCovered(): # any local rule? self._constraintSets[None] = self return self._constraintSets def hasAspect(self, structuralNode, aspect): return any(constraintSet._hasAspect(structuralNode, aspect) for constraintSet in self.constraintSets.values()) @property def aspectsInTaggedConstraintSet(self): try: return self._aspectsInTaggedConstraintSet except AttributeError: self._aspectsInTaggedConstraintSet = set() for tag, constraintSet in self.constraitSets().items(): if tag is not None: for aspect in constraintSet.aspectsCovered(): if aspect != Aspect.DIMENSIONS: self._aspectsInTaggedConstraintSet.add(aspect) return self._aspectsInTaggedConstraintSet def compile(self): super(ModelRuleDefinitionNode, self).compile() for constraintSet in self.constraintSets.values(): if constraintSet != self: # compile nested constraint sets constraintSet.compile() @property def propertyView(self): return ((("id", self.id), ("abstract", self.abstract), ("merge", self.merge), ("definition", self.definitionNodeView)) + self.definitionLabelsView) def __repr__(self): return ("modelRuleDefinitionNode[{0}]{1})".format(self.objectId(),self.propertyView)) # deprecated 2013-05-17 class ModelTupleDefinitionNode(ModelRuleDefinitionNode): def init(self, modelDocument): super(ModelTupleDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableTupleContent201301, XbrlConst.tableTupleContent2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) @property def contentRelationships(self): return self.modelXbrl.relationshipSet((XbrlConst.tableTupleContent201301, XbrlConst.tableTupleContent2011)).fromModelObject(self) def hasAspect(self, structuralNode, aspect, inherit=None): return aspect == Aspect.LOCATION # non-location aspects aren't leaked to ordinate for Tuple or self.hasRule(aspect) def aspectValue(self, xpCtx, aspect, inherit=None): return self.evaluateRule(xpCtx, aspect) def aspectsCovered(self): return {Aspect.LOCATION} # tuple's aspects don't leak to ordinates def tupleAspectsCovered(self): return _DICT_SET(self.aspectValues.keys()) | _DICT_SET(self.aspectProgs.keys()) | {Aspect.LOCATION} def filteredFacts(self, xpCtx, facts): aspects = self.aspectsCovered() axisAspectValues = dict((aspect, self.tupleAspectsCovered(aspect)) for aspect in aspects if aspect != Aspect.LOCATION) # location determined by ordCntx, not axis fp = FactPrototype(self, axisAspectValues) return set(fact for fact in facts if fact.isTuple and aspectsMatch(xpCtx, fact, fp, aspects)) class ModelCompositionDefinitionNode(ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelCompositionDefinitionNode, self).init(modelDocument) @property def abstract(self): # always abstract, no filters, no data return 'true' class ModelRelationshipDefinitionNode(ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelRelationshipDefinitionNode, self).init(modelDocument) def aspectsCovered(self): return {Aspect.CONCEPT} @property def conceptQname(self): name = self.getStripped("conceptname") return qname(self, name, noPrefixIsNoNamespace=True) if name else None @property def relationshipSourceQname(self): sourceQname = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "relationshipSource") if sourceQname is not None: return qname( sourceQname, XmlUtil.text(sourceQname) ) return None @property def linkrole(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkrole") @property def axis(self): a = XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), ("axis", "formulaAxis")) if not a: a = 'descendant' # would be an XML error return a @property def isOrSelfAxis(self): return self.axis.endswith('-or-self') @property def generations(self): try: return _INT( XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "generations") ) except (TypeError, ValueError): if self.axis in ('sibling', 'child', 'parent'): return 1 return 0 @property def relationshipSourceQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "relationshipSourceExpression") @property def linkroleExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkroleExpression") @property def axisExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), ("axisExpression", "formulAxisExpression")) @property def generationsExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "generationsExpression") def compile(self): if not hasattr(self, "relationshipSourceQnameExpressionProg"): self.relationshipSourceQnameExpressionProg = XPathParser.parse(self, self.relationshipSourceQnameExpression, self, "relationshipSourceQnameExpressionProg", Trace.VARIABLE) self.linkroleExpressionProg = XPathParser.parse(self, self.linkroleExpression, self, "linkroleQnameExpressionProg", Trace.VARIABLE) self.axisExpressionProg = XPathParser.parse(self, self.axisExpression, self, "axisExpressionProg", Trace.VARIABLE) self.generationsExpressionProg = XPathParser.parse(self, self.generationsExpression, self, "generationsExpressionProg", Trace.VARIABLE) super(ModelRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): if self.relationshipSourceQname and self.relationshipSourceQname != XbrlConst.qnXfiRoot: if varRefSet is None: varRefSet = set() varRefSet.add(self.relationshipSourceQname) return super(ModelRelationshipDefinitionNode, self).variableRefs( [p for p in (self.relationshipSourceQnameExpressionProg, self.linkroleExpressionProg, self.axisExpressionProg, self.generationsExpressionProg) if p], varRefSet) def evalRrelationshipSourceQname(self, xpCtx, fact=None): if self.relationshipSourceQname: return self.relationshipSourceQname return xpCtx.evaluateAtomicValue(self.relationshipSourceQnameExpressionProg, 'xs:QName', fact) def evalLinkrole(self, xpCtx, fact=None): if self.linkrole: return self.linkrole return xpCtx.evaluateAtomicValue(self.linkroleExpressionProg, 'xs:anyURI', fact) def evalAxis(self, xpCtx, fact=None): if self.axis: return self.axis return xpCtx.evaluateAtomicValue(self.axisExpressionProg, 'xs:token', fact) def evalGenerations(self, xpCtx, fact=None): if self.generations: return self.generations return xpCtx.evaluateAtomicValue(self.generationsExpressionProg, 'xs:integer', fact) def cardinalityAndDepth(self, structuralNode): return self.lenDepth(self.relationships(structuralNode), self.axis.endswith('-or-self')) def lenDepth(self, nestedRelationships, includeSelf): l = 0 d = 1 for rel in nestedRelationships: if isinstance(rel, list): nl, nd = self.lenDepth(rel, False) l += nl nd += 1 # returns 0 if sublist is not nested if nd > d: d = nd else: l += 1 if includeSelf: l += 1 # root relationships include root in addition if includeSelf: d += 1 return (l, d) @property def propertyView(self): return ((("id", self.id), ("abstract", self.abstract), ("definition", self.definitionNodeView)) + self.definitionLabelsView) def __repr__(self): return ("modelRelationshipDefinitionNode[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelConceptRelationshipDefinitionNode(ModelRelationshipDefinitionNode): def init(self, modelDocument): super(ModelConceptRelationshipDefinitionNode, self).init(modelDocument) def hasAspect(self, structuralNode, aspect): return aspect == Aspect.CONCEPT @property def arcrole(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcrole") @property def arcQname(self): arcnameElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcname") if arcnameElt is not None: return qname( arcnameElt, XmlUtil.text(arcnameElt) ) return None @property def linkQname(self): linknameElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkname") if linknameElt is not None: return qname( linknameElt, XmlUtil.text(linknameElt) ) return None def compile(self): if not hasattr(self, "arcroleExpressionProg"): self.arcroleExpressionProg = XPathParser.parse(self, self.arcroleExpression, self, "arcroleExpressionProg", Trace.VARIABLE) self.linkQnameExpressionProg = XPathParser.parse(self, self.linkQnameExpression, self, "linkQnameExpressionProg", Trace.VARIABLE) self.arcQnameExpressionProg = XPathParser.parse(self, self.arcQnameExpression, self, "arcQnameExpressionProg", Trace.VARIABLE) super(ModelConceptRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelConceptRelationshipDefinitionNode, self).variableRefs( [p for p in (self.arcroleExpressionProg, self.linkQnameExpressionProg, self.arcQnameExpressionProg) if p], varRefSet) def evalArcrole(self, xpCtx, fact=None): if self.arcrole: return self.arcrole return xpCtx.evaluateAtomicValue(self.arcroleExpressionProg, 'xs:anyURI', fact) def evalLinkQname(self, xpCtx, fact=None): if self.linkQname: return self.linkQname return xpCtx.evaluateAtomicValue(self.linkQnameExpressionProg, 'xs:QName', fact) def evalArcQname(self, xpCtx, fact=None): if self.arcQname: return self.arcQname return xpCtx.evaluateAtomicValue(self.arcQnameExpressionProg, 'xs:QName', fact) @property def arcroleExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcroleExpression") @property def linkQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linknameExpression") @property def arcQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcnameExpression") def coveredAspect(self, ordCntx=None): return Aspect.CONCEPT def relationships(self, structuralNode): self._sourceQname = structuralNode.evaluate(self, self.evalRrelationshipSourceQname) or XbrlConst.qnXfiRoot linkrole = structuralNode.evaluate(self, self.evalLinkrole) if not linkrole: linkrole = "XBRL-all-linkroles" linkQname = (structuralNode.evaluate(self, self.evalLinkQname) or () ) arcrole = (structuralNode.evaluate(self, self.evalArcrole) or () ) arcQname = (structuralNode.evaluate(self, self.evalArcQname) or () ) self._axis = (structuralNode.evaluate(self, self.evalAxis) or () ) self._generations = (structuralNode.evaluate(self, self.evalGenerations) or () ) return concept_relationships(self.modelXbrl.rendrCntx, None, (self._sourceQname, linkrole, arcrole, self._axis.replace('-or-self',''), self._generations, linkQname, arcQname), True) # return nested lists representing concept tree nesting class ModelDimensionRelationshipDefinitionNode(ModelRelationshipDefinitionNode): def init(self, modelDocument): super(ModelDimensionRelationshipDefinitionNode, self).init(modelDocument) def hasAspect(self, structuralNode, aspect): return aspect == self.coveredAspect(structuralNode) or aspect == Aspect.DIMENSIONS def aspectValue(self, xpCtx, aspect, inherit=None): if aspect == Aspect.DIMENSIONS: return (self.coveredAspect(xpCtx), ) return None def aspectsCovered(self): return {self.dimensionQname} @property def dimensionQname(self): dimensionElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "dimension") if dimensionElt is not None: return qname( dimensionElt, XmlUtil.text(dimensionElt) ) return None @property def dimensionQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "dimensionExpression") def compile(self): if not hasattr(self, "dimensionQnameExpressionProg"): self.dimensionQnameExpressionProg = XPathParser.parse(self, self.dimensionQnameExpression, self, "dimensionQnameExpressionProg", Trace.VARIABLE) super(ModelDimensionRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelDimensionRelationshipDefinitionNode, self).variableRefs(self.dimensionQnameExpressionProg, varRefSet) def evalDimensionQname(self, xpCtx, fact=None): if self.dimensionQname: return self.dimensionQname return xpCtx.evaluateAtomicValue(self.dimensionQnameExpressionProg, 'xs:QName', fact) def coveredAspect(self, structuralNode=None): try: return self._coveredAspect except AttributeError: self._coveredAspect = self.dimRelationships(structuralNode, getDimQname=True) return self._coveredAspect def relationships(self, structuralNode): return self.dimRelationships(structuralNode, getMembers=True) def dimRelationships(self, structuralNode, getMembers=False, getDimQname=False): self._dimensionQname = structuralNode.evaluate(self, self.evalDimensionQname) self._sourceQname = structuralNode.evaluate(self, self.evalRrelationshipSourceQname) or XbrlConst.qnXfiRoot linkrole = structuralNode.evaluate(self, self.evalLinkrole) if not linkrole and getMembers: linkrole = "XBRL-all-linkroles" dimConcept = self.modelXbrl.qnameConcepts.get(self._dimensionQname) sourceConcept = self.modelXbrl.qnameConcepts.get(self._sourceQname) self._axis = (structuralNode.evaluate(self, self.evalAxis) or () ) self._generations = (structuralNode.evaluate(self, self.evalGenerations) or () ) if ((self._dimensionQname and (dimConcept is None or not dimConcept.isDimensionItem)) or (self._sourceQname and self._sourceQname != XbrlConst.qnXfiRoot and ( sourceConcept is None or not sourceConcept.isItem))): return () if dimConcept is not None: if getDimQname: return self._dimensionQname if sourceConcept is None: sourceConcept = dimConcept if getMembers: return concept_relationships(self.modelXbrl.rendrCntx, None, (self._sourceQname, linkrole, "XBRL-dimensions", # all dimensions arcroles self._axis.replace('-or-self',''), self._generations), True) # return nested lists representing concept tree nesting if getDimQname: if sourceConcept is not None: # look back from member to a dimension return self.stepDimRel(sourceConcept, linkrole) return None def stepDimRel(self, stepConcept, linkrole): if stepConcept.isDimensionItem: return stepConcept.qname for rel in self.modelXbrl.relationshipSet("XBRL-dimensions").toModelObject(stepConcept): if not linkrole or linkrole == rel.consecutiveLinkrole: dim = self.stepDimRel(rel.fromModelObject, rel.linkrole) if dim: return dim return None coveredAspectToken = {"concept": Aspect.CONCEPT, "entity-identifier": Aspect.VALUE, "period-start": Aspect.START, "period-end": Aspect.END, "period-instant": Aspect.INSTANT, "period-instant-end": Aspect.INSTANT_END, "unit": Aspect.UNIT} class ModelOpenDefinitionNode(ModelDefinitionNode): def init(self, modelDocument): super(ModelOpenDefinitionNode, self).init(modelDocument) # deprecated 2013-05-17 class ModelSelectionDefinitionNode(ModelOpenDefinitionNode): def init(self, modelDocument): super(ModelSelectionDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSelectionMessage201301, XbrlConst.tableAxisSelectionMessage2011) def clear(self): XPathParser.clearNamedProg(self, "selectProg") super(ModelSelectionDefinitionNode, self).clear() def coveredAspect(self, structuralNode=None): try: return self._coveredAspect except AttributeError: coveredAspect = self.get("coveredAspect") if coveredAspect in coveredAspectToken: self._coveredAspect = coveredAspectToken[coveredAspect] else: # must be a qname self._coveredAspect = qname(self, coveredAspect) return self._coveredAspect def aspectsCovered(self): return {self.coveredAspect} def hasAspect(self, structuralNode, aspect): return aspect == self.coveredAspect() or (isinstance(self._coveredAspect,QName) and aspect == Aspect.DIMENSIONS) @property def select(self): return self.get("select") def compile(self): if not hasattr(self, "selectProg"): self.selectProg = XPathParser.parse(self, self.select, self, "select", Trace.PARAMETER) super(ModelSelectionDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelSelectionDefinitionNode, self).variableRefs(self.selectProg, varRefSet) def evaluate(self, xpCtx, typeQname=None): if typeQname: return xpCtx.evaluateAtomicValue(self.selectProg, typeQname) else: return xpCtx.flattenSequence(xpCtx.evaluate(self.selectProg, None)) aspectNodeAspectCovered = {"conceptAspect": Aspect.CONCEPT, "unitAspect": Aspect.UNIT, "entityIdentifierAspect": Aspect.ENTITY_IDENTIFIER, "periodAspect": Aspect.PERIOD} class ModelFilterDefinitionNode(ModelOpenDefinitionNode): def init(self, modelDocument): super(ModelFilterDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableAspectNodeFilter, XbrlConst.tableAspectNodeFilterMMDD, XbrlConst.tableAspectNodeFilter201305, XbrlConst.tableFilterNodeFilter2011, XbrlConst.tableAxisFilter2011,XbrlConst.tableAxisFilter201205, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) @property def filterRelationships(self): try: return self._filterRelationships except AttributeError: rels = [] # order so conceptName filter is first (if any) (may want more sorting in future) for rel in self.modelXbrl.relationshipSet((XbrlConst.tableAspectNodeFilter, XbrlConst.tableAspectNodeFilterMMDD, XbrlConst.tableAspectNodeFilter201305, XbrlConst.tableFilterNodeFilter2011, XbrlConst.tableAxisFilter2011,XbrlConst.tableAxisFilter201205)).fromModelObject(self): if isinstance(rel.toModelObject, ModelConceptName): rels.insert(0, rel) # put conceptName filters first else: rels.append(rel) self._filterRelationships = rels return rels def hasAspect(self, structuralNode, aspect): return aspect in self.aspectsCovered() def aspectsCovered(self, varBinding=None): try: return self._aspectsCovered except AttributeError: self._aspectsCovered = set() self._dimensionsCovered = set() self.includeUnreportedValue = False if self.localName == "aspectNode": # after 2-13-05-17 aspectElt = XmlUtil.child(self, self.namespaceURI, ("conceptAspect", "unitAspect", "entityIdentifierAspect", "periodAspect", "dimensionAspect")) if aspectElt is not None: if aspectElt.localName == "dimensionAspect": dimQname = qname(aspectElt, aspectElt.textValue) self._aspectsCovered.add(dimQname) self._aspectsCovered.add(Aspect.DIMENSIONS) self._dimensionsCovered.add(dimQname) self.includeUnreportedValue = aspectElt.get("includeUnreportedValue") in ("true", "1") else: self._aspectsCovered.add(aspectNodeAspectCovered[aspectElt.localName]) else: # filter node (prior to 2013-05-17) for rel in self.filterRelationships: if rel.isCovered: _filter = rel.toModelObject self._aspectsCovered |= _filter.aspectsCovered(varBinding) self._dimensionsCovered = set(aspect for aspect in self._aspectsCovered if isinstance(aspect,QName)) if self._dimensionsCovered: self._aspectsCovered.add(Aspect.DIMENSIONS) return self._aspectsCovered def aspectValue(self, xpCtx, aspect, inherit=None): if aspect == Aspect.DIMENSIONS: return self._dimensionsCovered # does not apply to filter, value can only come from a bound fact return None def filteredFactsPartitions(self, xpCtx, facts): filteredFacts = formulaEvaluatorFilterFacts(xpCtx, VariableBinding(xpCtx), facts, self.filterRelationships, None) if not self.includeUnreportedValue: # remove unreported falue reportedAspectFacts = set() for fact in filteredFacts: if all(fact.context is not None and isinstance(fact.context.dimValue(dimAspect), ModelDimensionValue) for dimAspect in self._dimensionsCovered): reportedAspectFacts.add(fact) else: reportedAspectFacts = filteredFacts return factsPartitions(xpCtx, reportedAspectFacts, self.aspectsCovered()) @property def propertyView(self): return ((("id", self.id), ("aspect", ", ".join(aspectStr(aspect) for aspect in self.aspectsCovered() if aspect != Aspect.DIMENSIONS)), ("definition", self.definitionNodeView)) + self.definitionLabelsView) from arelle.ModelObjectFactory import elementSubstitutionModelClass elementSubstitutionModelClass.update(( # IWD (XbrlConst.qnTableTableMMDD, ModelTable), (XbrlConst.qnTableBreakdownMMDD, ModelBreakdown), (XbrlConst.qnTableRuleSetMMDD, ModelRuleSet), (XbrlConst.qnTableRuleNodeMMDD, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNodeMMDD, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNodeMMDD, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNodeMMDD, ModelFilterDefinitionNode), # PWD 2013-08-28 (XbrlConst.qnTableTable, ModelTable), (XbrlConst.qnTableBreakdown, ModelBreakdown), (XbrlConst.qnTableRuleNode, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNode, ModelFilterDefinitionNode), # PWD 2013-05-17 (XbrlConst.qnTableTable201305, ModelTable), (XbrlConst.qnTableBreakdown201305, ModelBreakdown), (XbrlConst.qnTableRuleNode201305, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode201305, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode201305, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNode201305, ModelFilterDefinitionNode), # PWD 2013-01-17 (XbrlConst.qnTableTable201301, ModelTable), (XbrlConst.qnTableRuleNode201301, ModelRuleDefinitionNode), (XbrlConst.qnTableCompositionNode201301, ModelCompositionDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode201301, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode201301, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableSelectionNode201301, ModelSelectionDefinitionNode), (XbrlConst.qnTableFilterNode201301, ModelFilterDefinitionNode), (XbrlConst.qnTableTupleNode201301, ModelTupleDefinitionNode), # PWD 2011 Montreal (XbrlConst.qnTableTable2011, ModelTable), (XbrlConst.qnTableRuleAxis2011, ModelRuleDefinitionNode), (XbrlConst.qnTableCompositionAxis2011, ModelCompositionDefinitionNode), (XbrlConst.qnTableConceptRelationshipAxis2011, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableSelectionAxis2011, ModelSelectionDefinitionNode), (XbrlConst.qnTableFilterAxis2011, ModelFilterDefinitionNode), (XbrlConst.qnTableTupleAxis2011, ModelTupleDefinitionNode), (XbrlConst.qnTableDimensionRelationshipAxis2011, ModelDimensionRelationshipDefinitionNode), # Eurofiling (XbrlConst.qnEuTable, ModelEuTable), (XbrlConst.qnEuAxisCoord, ModelEuAxisCoord), )) # import after other modules resolved to prevent circular references from arelle.FunctionXfi import concept_relationships
8860fd14e571f6895267fbdf6e37de2a1b996050
dfab6798ece135946aebb08f93f162c37dd51791
/timber/luban.timber/__init__.py
a1439a83d3cd277a7cb77b0454e6d6e5598f66c6
[]
no_license
yxqd/luban
405f5f7dcf09015d214079fe7e23d644332be069
00f699d15c572c8bf160516d582fa37f84ac2023
refs/heads/master
2020-03-20T23:08:45.153471
2012-05-18T14:52:43
2012-05-18T14:52:43
137,831,650
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
# -*- Python -*- # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2011 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ************************************************************ # bad bad import luban luban.__doc__ += """* timber: default extension of luban core """ # ************************************************************ # activate extensions from . import elements, actions from . import luban_ext from . import controller # replace the core controllers with timber controllers. see eg .controllers.CherrypyController from .controller import setUploadPath # End of file
87477ba53d15435cb55aa99b65ce10afdee5a360
e52501eb4db862d90ae5541bd512a50df30e0726
/Chapter 2+3 Intro + Variables + Strings/Chapter3-7 ShrinkingGuestList.py
47c9f766034b09d285472e34a1f448ce0ac89821
[]
no_license
ericnwin/Python-Crash-Course-Lessons
b2b12c221f545c961a47f2343b2aa3dac901927b
7b755c0b4ce65528f4880b3583aca3be9547b33b
refs/heads/master
2022-12-19T10:55:35.987330
2020-09-13T23:23:54
2020-09-13T23:23:54
295,255,228
0
0
null
null
null
null
UTF-8
Python
false
false
2,190
py
# You just found out that your new dinner table won’t # arrive in time for the dinner, and you have space for only two guests. # • Start with your program from Exercise 3-6. Add a new line that prints a # message saying that you can invite only two people for dinner. # • Use pop() to remove guests from your list one at a time until only two # names remain in your list. Each time you pop a name from your list, print # a message to that person letting them know you’re sorry you can’t invite # them to dinner. # • Print a message to each of the two people still on your list, letting them # know they’re still invited. # • Use del to remove the last two names from your list, so you have an empty # list. Print your list to make sure you actually have an empty list at the end # of your program. dinner_guests = ['Joeji', 'Elon Musk', 'OpenAI'] print( f"Hey {dinner_guests[0]} I'm a huge fan of your music! Please join me for dinner. ") print(f"Hey {dinner_guests[1]} can I get a free car? We can talk over dinner.") print(f"Hey {dinner_guests[2]} teach me AI. I gib food as payment.") # Declare who can't make it declined_invitations = "OpenAI" dinner_guests.remove(declined_invitations) print(f"Unfortunately {declined_invitations} can't make it.\n") # Adding new person to invite list new_person_invite = "Kanye West" dinner_guests.append(new_person_invite) print(dinner_guests) # Making 2nd set of invitations print( '\n' f"Hey {dinner_guests[0]} I'm a huge fan of your music! Please join me for dinner. ") print(f"Hey {dinner_guests[1]} can I get a free car? We can talk over dinner.") print(f"Hey {dinner_guests[2]} I loved you in Titanic. Please eat with me.\n") # shrinking down to 2 people and sending msg to those who are invited print(f"Hey sorry we only have room for two... I'm uninviting one of you sorry.\n") uninvited = dinner_guests.pop() print(f"Hey sorry {uninvited} you've been uninvited :( \n") print(f"Hey {dinner_guests[0]} you're still invited.") print(f"Hey {dinner_guests[1]} you're still invited.") # Remove last 2 names from list and printing out an empty list del dinner_guests[0] del dinner_guests[0] print(dinner_guests)
644f53da5330e99d42a57e2457baa4815d3cc52f
d0a54a3faa1891b647f8c621521cd26c13bd2926
/backend/mytts.py
b5bd2373d11ec245d0b144f5f903e259d2fd903f
[ "MIT" ]
permissive
ishine/PTTS-WebAPP
166318593d3247c88d458c9d4fe39dca27ef408f
dcc07a79d8dd695ca15e4dd5a69811b3ddd91709
refs/heads/main
2023-04-02T06:03:41.237351
2021-04-14T02:37:16
2021-04-14T02:37:16
357,388,655
0
0
MIT
2021-04-14T02:37:17
2021-04-13T01:31:11
null
UTF-8
Python
false
false
2,595
py
#!/usr/bin/env python import os.path as osp import librosa import torch from .hparams import HParam from .transform import StandardNorm, TextProcessor from .models import MelGenerator, ParallelText2Mel from .synthesizer import Synthesizer try: from .manager import GPUManager except ImportError as err: print(err); gm = None else: gm = GPUManager() def select_device(device): cpu_request = device.lower() == 'cpu' # if device requested other than 'cpu' if device and not cpu_request: c = 1024 ** 2 # bytes to MB x = torch.cuda.get_device_properties(int(device)) s = f'Using torch {torch.__version__} ' print("%sCUDA:%s (%s, %dMB)" % (s, device, x.name, x.total_memory / c)) return torch.device(f'cuda:{device}') else: print(f'Using torch {torch.__version__} CPU') return torch.device('cpu') class MyTTS: def __init__(self, config=None, device=None): if torch.cuda.is_available(): index = device if device else str(0 if gm is None else gm.auto_choice()) else: index = 'cpu' self.device = device = select_device(index) self.hparams = hparams = HParam(config) \ if config else HParam(osp.join(osp.dirname(osp.abspath(__file__)), "config", "default.yaml")) checkpoint = osp.join(osp.dirname(osp.abspath(__file__)), "pretrained", hparams.parallel.checkpoint) vocoder_checkpoint = osp.join(osp.dirname(osp.abspath(__file__)), "pretrained", hparams.vocoder.checkpoint) normalizer = StandardNorm(hparams.audio.spec_mean, hparams.audio.spec_std) processor = TextProcessor(hparams.text) text2mel = ParallelText2Mel(hparams.parallel) text2mel.eval() vocoder = MelGenerator(hparams.audio.n_mel_channels).to(device) vocoder.eval(inference=True) self.synthesizer = Synthesizer( model=text2mel, checkpoint=checkpoint, vocoder=vocoder, vocoder_checkpoint=vocoder_checkpoint, processor=processor, normalizer=normalizer, device=device ) def __call__(self, texts, speed, volume, tone): rate = int(tone) / 3 alpha = (4 / int(speed)) * rate beta = int(volume) / 3 wave = self.synthesizer.inference(texts, alpha=alpha, beta=beta) wave = wave.cpu().detach().numpy() sr = self.hparams.audio.sampling_rate # use TSM + resample to change tone wave = librosa.core.resample(wave, int(sr*rate), sr) return wave, sr
b2fcc624e79ef9ef10c62818cb0c7d2d93c0d250
080bbe77da955b3917435c25fc63b90b0f3c724e
/botorch/utils/multi_objective/box_decomposition.py
e566f0c69e493acd4370a0a28582374334f572aa
[ "MIT" ]
permissive
irinaespejo/botorch
3d15d962ff0f5bb34fbd11b2eb7549db755af705
e4dcf603fdaf83f0e5f8b9b392f943c89dfff7eb
refs/heads/master
2023-07-11T18:02:11.853790
2021-08-19T15:57:21
2021-08-19T15:58:12
316,017,084
0
0
MIT
2020-11-25T18:02:11
2020-11-25T18:02:09
null
UTF-8
Python
false
false
744
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" DEPRECATED - Box decomposition algorithms. Use the botorch.utils.multi_objective.box_decompositions instead. """ import warnings from botorch.utils.multi_objective.box_decompositions.non_dominated import ( # noqa F401 NondominatedPartitioning, ) warnings.warn( "The botorch.utils.multi_objective.box_decomposition module has " "been renamed to botorch.utils.multi_objective.box_decompositions. " "botorch.utils.multi_objective.box_decomposition will be removed in " "the next release.", DeprecationWarning, )
a8569f82ed1a73ffbd59f8b49866754ec53e411d
9dfb3372a1e4516d970a6e9d0a9fd8360580eae7
/python pySerial/maping_data.py
feb9a76200b26899373a1eeba25711e6b4835877
[]
no_license
clambering-goat/cameron_pyton
d1cd0e7b04da14e7ba4f89dcb4d973f297a4626c
df0b0365b86e75cfcfc2c1fc21608f1536a3b79f
refs/heads/master
2021-07-14T20:37:37.021401
2019-02-28T07:52:11
2019-02-28T07:52:11
137,251,669
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
import serial y_points=[] with serial.Serial('COM4', 9600, timeout=1) as ser: for q in range(20000): line =ser.readline() x=line.decode("utf-8") #print(x) y_points.append(int(x)) import matplotlib.pyplot as plt x_points=[] for q in range(len(y_points)): x_points.append(q) plt.plot(x_points,y_points) plt.ylabel('some numbers') plt.xlabel('some numbers') plt.show()
664fef8dbbee5f880d4f0a0866edc6ccd5676737
0facb323be8a76bb4c168641309972fa77cbecf2
/Configurations/HWWSemiLepHighMass/Full_v6Production/template_seed/templates_jhchoi/MassPoints2018/List_MX.py
ca93c1c06e444ba9cee292c6bdab834fd117111f
[]
no_license
bhoh/SNuAnalytics
ef0a1ba9fa0d682834672a831739dfcfa1e7486b
34d1fc062e212da152faa83be50561600819df0e
refs/heads/master
2023-07-06T03:23:45.343449
2023-06-26T12:18:28
2023-06-26T12:18:28
242,880,298
0
1
null
2020-02-25T01:17:50
2020-02-25T01:17:49
null
UTF-8
Python
false
false
396
py
List_MX=[ 115 , 120 , 124 , 125 , 126 , 130 , 135 , 140 , 145 , 150 , 155 , 160 , 165 , 170 , 175 , 180 , 190 , 200 , 210 , 230 , 250 , 270 , 300 , 350 , 400 , 450 , 500 , 550 , 600 , 650 , 700 , 750 , 800 , 900 , 1000 , 1500 , 2000 , 2500 , 3000 , 4000 , 5000 , ] if __name__ == '__main__': #print('( '+" ".join(str(MX) for MX in List_MX)+' )') print " ".join(str(MX) for MX in List_MX)
145a90c675971039d677b9e3411c7b6f30d2cde6
59be93c710d9e1750d2767f1c98f347ed3dc635c
/elements/when.py
308f8c8d7c8fbbc825abfaf9cd8a8914f92fd203
[ "MIT" ]
permissive
artemZholus/elements
802d14eb574be0c3f18a50fdbc87ee262fbcd01a
21b4f27e854d91a65619e8fc81b3916386c5ef66
refs/heads/main
2023-07-10T05:21:28.947510
2021-08-18T18:02:05
2021-08-18T18:02:05
397,594,638
0
0
MIT
2021-08-18T12:35:49
2021-08-18T12:35:49
null
UTF-8
Python
false
false
711
py
class Every: def __init__(self, every): self._every = every self._last = None def __call__(self, step): step = int(step) if not self._every: return False if self._last is None: self._last = step return True if step >= self._last + self._every: self._last += self._every return True return False class Once: def __init__(self): self._once = True def __call__(self): if self._once: self._once = False return True return False class Until: def __init__(self, until): self._until = until def __call__(self, step): step = int(step) if not self._until: return True return step < self._until
9155110a9ae58bc903e5e05dc9dfed7c7bdc4cea
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-1645.py
4a5e725248f8e0b1a645420a84fb9273621ed52e
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,292
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if $Exp < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
c07aa82c886d791ed37e80ecf66b26fe3ba26449
f59860bb4d04007cf03258753aefcbf58e760db0
/music/migrations/0005_song_datetime.py
a64764e5215f82e94025a21d14a4720153be91ab
[]
no_license
Arefeh902/station_49
fc306d7668d64c68df7dba35adbdc25d5600544a
3076e4ab616759f5aa0a973525c0436b603f942f
refs/heads/master
2023-07-01T10:25:39.820956
2021-08-10T18:47:28
2021-08-10T18:47:28
391,368,241
1
1
null
null
null
null
UTF-8
Python
false
false
386
py
# Generated by Django 2.1.9 on 2021-08-07 08:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0004_auto_20210807_0806'), ] operations = [ migrations.AddField( model_name='song', name='datetime', field=models.DateTimeField(auto_now=True), ), ]
b563563bd985a3f9d737ea973f8314bd6fb8f40d
9d2b33eb85fca3a81ccb7272422c41a08467a8c4
/pdm/formats/requirements.py
37c230c8eab420dab9e877204074086b6fe605a6
[ "MIT" ]
permissive
skyoo2003/pdm
9b9d20079f325c087855c7a37a4270d36fa71131
95a758ee259dff02f00f0a3eab79fa23e5d2aa97
refs/heads/master
2022-12-12T18:01:36.331560
2020-09-04T01:16:41
2020-09-04T01:16:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,729
py
import hashlib import urllib.parse from pip._internal.req.req_file import parse_requirements from pdm.models.markers import Marker from pdm.models.requirements import parse_requirement from pdm.utils import get_finder def _requirement_to_str_lowercase_name(requirement): """Formats a packaging.requirements.Requirement with a lowercase name.""" parts = [requirement.name.lower()] if requirement.extras: parts.append("[{0}]".format(",".join(sorted(requirement.extras)))) if requirement.specifier: parts.append(str(requirement.specifier)) if requirement.url: parts.append("@ {0}".format(requirement.url)) if requirement.marker: parts.append("; {0}".format(requirement.marker)) return "".join(parts) def requirement_from_ireq(ireq): """Formats an `InstallRequirement` instance as a `pdm.models.requirement.Requirement`. Generic formatter for pretty printing InstallRequirements to the terminal in a less verbose way than using its `__str__` method. :param :class:`InstallRequirement` ireq: A pip **InstallRequirement** instance. :return: A formatted string for prettyprinting :rtype: str """ if ireq.editable: line = "{}".format(ireq.link) else: line = _requirement_to_str_lowercase_name(ireq.req) if str(ireq.req.marker) != str(ireq.markers): if not ireq.req.marker: line = "{}; {}".format(line, ireq.markers) else: name, markers = line.split(";", 1) markers = Marker(markers) & ireq.markers line = "{}; {}".format(name, markers) return parse_requirement(line, ireq.editable) def parse_requirement_file(filename): from pip._internal.req.constructors import install_req_from_parsed_requirement finder = get_finder([]) ireqs = [ install_req_from_parsed_requirement(pr) for pr in parse_requirements(filename, finder.session, finder) ] return ireqs, finder def check_fingerprint(project, filename): import tomlkit with open(filename, encoding="utf-8") as fp: try: tomlkit.parse(fp.read()) except ValueError: # the file should be a requirements.txt if it not a TOML document. return True else: return False def convert_url_to_source(url, name=None): if not name: name = hashlib.sha1(url.encode("utf-8")).hexdigest()[:6] return {"name": name, "url": url, "verify_ssl": url.startswith("https://")} def convert(project, filename): ireqs, finder = parse_requirement_file(str(filename)) reqs = [requirement_from_ireq(ireq) for ireq in ireqs] data = {"dependencies": dict(req.as_req_dict() for req in reqs)} if finder.index_urls: sources = [convert_url_to_source(finder.index_urls[0], "pypi")] sources.extend(convert_url_to_source(url) for url in finder.index_urls[1:]) data["source"] = sources return data def export(project, candidates, options): lines = [] for candidate in candidates: req = candidate.req.as_line() lines.append(req) if options.hashes and candidate.hashes: for item in candidate.hashes.values(): lines.append(f" \\\n --hash={item}") lines.append("\n") sources = project.tool_settings.get("source", []) for source in sources: url = source["url"] prefix = "--index-url" if source["name"] == "pypi" else "--extra-index-url" lines.append(f"{prefix} {url}\n") if not source["verify_ssl"]: host = urllib.parse.urlparse(url).hostname lines.append(f"--trusted-host {host}\n") return "".join(lines)
bef3b9ad03bdc33f7171cc9b588f198ce873e861
62922a76e40003f3d3a7d02282853f9a2b76c6fc
/cv2/ch22/test1.py
1172f8de48d2bc9bfba7168431a2727b16325054
[]
no_license
cchangcs/ai_learning_record
a7d0d9c7fcdc1e97d8869aa7e63b535f8cf62df2
235a90ff5fe0205334376a927d462b8ae64e4e70
refs/heads/master
2020-04-01T16:59:31.203223
2018-11-21T11:12:34
2018-11-21T11:12:34
153,408,023
0
0
null
null
null
null
UTF-8
Python
false
false
1,103
py
# encoding:utf-8 ''' 斑点检测SimpleBlodDetector() 斑点检测:默认检测黑色点,如果要检测白色的点需要设置bycolor为true,并且color数值为255 斑点通常是指与周围有着颜色和灰度差别的区域,在实际的图中,往往存在着大量这样的斑点,如一棵树是一个斑点,一块草地是一个斑点。 由于斑点代表的是一个区域,相比单纯的角点,它的稳定性更好,抗噪声能力更强,所以它在图像配准上扮演着重要的角色。 同时有时图像中的斑点也是我们关心的区域,比如在医学与生物领域,我们需要从一些X光照片或细胞显微照片中提取一些具有特殊意义的斑点的位置或数量 ''' import cv2 import numpy as np im = cv2.imread('blob.jpg', cv2.IMREAD_GRAYSCALE) detector = cv2.SimpleBlobDetector_create() keypoints = detector.detect(im) im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) cv2.imshow("Keypoints", im_with_keypoints) cv2.waitKey(0) cv2.destroyAllWindows()
b1d84ff6d8719c6d1cb346458bafaa88df886d86
0facb323be8a76bb4c168641309972fa77cbecf2
/Configurations/HWWSemiLepHighMass/nanoAODv5/v6_production/2017/NJET_biined_WJets/SKIM10/HMVar10_Full_ALL_var/MassPoints/structure_M1500.py
006d035cd83abd3e70ffc306361571ee477e383b
[]
no_license
bhoh/SNuAnalytics
ef0a1ba9fa0d682834672a831739dfcfa1e7486b
34d1fc062e212da152faa83be50561600819df0e
refs/heads/master
2023-07-06T03:23:45.343449
2023-06-26T12:18:28
2023-06-26T12:18:28
242,880,298
0
1
null
2020-02-25T01:17:50
2020-02-25T01:17:49
null
UTF-8
Python
false
false
1,725
py
#['WW', 'ggHWWlnuqq_M1500', 'DY', 'DATA', 'WZ', 'ggHWWlnuqq_M125', 'ZZZ', 'ggHWWlnuqq_M900', 'vbfHWWlnuqq_M500', 'Wjets1j', 'QCD_MU', 'WZZ', 'vbfHWWlnuqq_M900', 'QCD_bcToE', 'Wjets2j', 'QCD_EM', 'ggHWWlnuqq_M500', 'ZZ', 'WWW', 'vbfHWWlnuqq_M1500', 'vbfHWWlnuqq_M125', 'WWZ', 'Wjets0j', 'top'] QCD_MU=['QCD_Pt-15to20_MuEnrichedPt5', 'QCD_Pt-20to30_MuEnrichedPt5', 'QCD_Pt-30to50_MuEnrichedPt5', 'QCD_Pt-50to80_MuEnrichedPt5', 'QCD_Pt-80to120_MuEnrichedPt5', 'QCD_Pt-120to170_MuEnrichedPt5', 'QCD_Pt-170to300_MuEnrichedPt5', 'QCD_Pt-300to470_MuEnrichedPt5', 'QCD_Pt-470to600_MuEnrichedPt5', 'QCD_Pt-600to800_MuEnrichedPt5', 'QCD_Pt-800to1000_MuEnrichedPt5', 'QCD_Pt-1000toInf_MuEnrichedPt5', ] QCD_EM=[ 'QCD_Pt-20to30_EMEnriched', 'QCD_Pt-30to50_EMEnriched', 'QCD_Pt-50to80_EMEnriched', 'QCD_Pt-80to120_EMEnriched', 'QCD_Pt-120to170_EMEnriched', 'QCD_Pt-170to300_EMEnriched', 'QCD_Pt-300toInf_EMEnriched' ] QCD_bcToE=[ 'QCD_Pt_20to30_bcToE', 'QCD_Pt_30to80_bcToE', 'QCD_Pt_80to170_bcToE', 'QCD_Pt_170to250_bcToE', 'QCD_Pt_250toInf_bcToE', ] for name in [ 'DY', 'WZZ', 'WWZ','WWW','ZZZ', 'ZZ', 'WZ', 'WW', 'WpWmJJ_EWK_QCD_noHiggs', 'top', 'Wjets0j', 'Wjets1j', 'Wjets2j','vbfHWWlnuqq_M125','ggHWWlnuqq_M125'] + ['QCD_MU','QCD_EM','QCD_bcToE']: structure[name] = { 'isSignal' : 0, 'isData' : 0 } #ggHWWlnuqq_M1500_S_B_I structure['ggHWWlnuqq_M1500'] = { 'isSignal' : 1, 'isData' : 0 } structure['vbfHWWlnuqq_M1500'] = { 'isSignal' : 1, 'isData' : 0 } structure['PseudoData'] = { 'isSignal' : 0, 'isData' : 1 }
622882398cd5c1e5077722f60c7aa9e77ef203af
0ad8fc76aebe7ce22abe771fbeadf227e5b471cb
/app/productdb/tasks.py
8cb6cd358ef178da1d7cd5290af4ab4a8389c040
[ "MIT" ]
permissive
ppavlu/product-database
354c6a1a3e9ebfdc931f2aacf8751ed0f149401c
09610c09600c63eb91106c0b5a2fa995b134dbf4
refs/heads/master
2021-01-17T22:51:43.247027
2015-10-11T11:37:12
2015-10-11T11:37:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,251
py
from django_project.celery import app as app from app.productdb.models import Settings import app.productdb.crawler.cisco_eox_api_crawler as cisco_eox_api_crawler import logging logger = logging.getLogger(__name__) @app.task(serializer='json', name="synchronize_with_cisco_eox_api") def execute_task_to_synchronize_cisco_eox_states(): """ This task will automatically synchronize the Cisco EoX states with the local database. It will execute the configured queries and saves the information to the local database. There are two types of operation: * cisco_eox_api_auto_sync_auto_create_elements is set to true - will create any element which is not part of the blacklist and not in the database * cisco_eox_api_auto_sync_auto_create_elements is set to false - will only update entries, which are already included in the database :return: """ logger.info("execute synchronize Cisco EoX update task...") # update based on the configured query settings result = cisco_eox_api_crawler.synchronize_with_cisco_eox_api() logger.info("result: %s" % str(result)) s = Settings.objects.get(id=0) s.eox_api_sync_task_id = "" s.save() return result
e7c933c7739f81bba762a05bd13220dda275b7ae
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Wyx_w_M_w_Sob_to_Wz_focus/IN_Sob_k5_EroMore/Sob_k35_s001_EroM/pyr_Tcrop255_p60_j15/pyr_5s/L7/step09_5side_L7.py
94ce9cec1f7924ce4d28ef2ca3b168732be84876
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
399,932
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_Wxy_w_M_to_Wz_combine import Wyx_w_M_to_Wz from step08_b_use_G_generate_0_util import Tight_crop from step09_c_train_step import Train_step_Wyx_w_M_to_Wz from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME from step10_a1_loss import Sobel_MAE Sob_k5_s001_erose_M = Sobel_MAE(sobel_kernel_size=5, sobel_kernel_scale=1, erose_M=True, erose_More=True) use_gen_op = Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale= 0), sobel=Sob_k5_s001_erose_M, sobel_only=True ) use_train_step = Train_step_Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale=15), sobel=Sob_k5_s001_erose_M, sobel_only=True ) import time start_time = time.time() ############################################################################################################################################################################################### ################################## ### 5side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side1 OK 1 pyramid_1side_1__2side_1__3side_1_4side_1_5s1 = [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side2 OK 4 pyramid_1side_2__2side_1__3side_1_4side_1_5s1 = [5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5] pyramid_1side_2__2side_2__3side_1_4side_1_5s1 = [5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5] pyramid_1side_2__2side_2__3side_2_4side_1_5s1 = [5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5] pyramid_1side_2__2side_2__3side_2_4side_2_5s1 = [5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_3__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5] pyramid_1side_3__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5] pyramid_1side_3__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5] pyramid_1side_3__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5] pyramid_1side_3__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5] pyramid_1side_3__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 5] pyramid_1side_3__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5] pyramid_1side_3__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5] pyramid_1side_3__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5] pyramid_1side_3__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_4__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 5] pyramid_1side_4__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5] pyramid_1side_4__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5] pyramid_1side_4__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 5] pyramid_1side_4__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5] pyramid_1side_4__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 5] pyramid_1side_4__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 5] pyramid_1side_4__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5] pyramid_1side_4__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 5] pyramid_1side_4__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 5] pyramid_1side_4__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 5] pyramid_1side_4__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 5] pyramid_1side_4__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 4, 5] pyramid_1side_4__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 5] pyramid_1side_4__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 5] pyramid_1side_4__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_5__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 5] pyramid_1side_5__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 5] pyramid_1side_5__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 3, 5] pyramid_1side_5__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5] pyramid_1side_5__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5] pyramid_1side_5__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 3, 5] pyramid_1side_5__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 5] pyramid_1side_5__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 3, 5] pyramid_1side_5__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 3, 5] pyramid_1side_5__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 3, 5] pyramid_1side_5__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 5] pyramid_1side_5__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 3, 5] pyramid_1side_5__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 3, 5] pyramid_1side_5__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 3, 5] pyramid_1side_5__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 3, 5] pyramid_1side_5__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 4, 5] pyramid_1side_5__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 4, 5] pyramid_1side_5__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 4, 5] pyramid_1side_5__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5] pyramid_1side_5__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 4, 5] pyramid_1side_5__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 4, 5] pyramid_1side_5__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 4, 5] pyramid_1side_5__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 4, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 0, 0, 0, 0, 0, 1, 2, 4, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 0, 0, 0, 0, 0, 1, 3, 4, 4, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 0, 0, 0, 0, 0, 2, 2, 4, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 0, 0, 0, 0, 0, 2, 3, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 0, 0, 0, 0, 0, 3, 3, 4, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 0, 0, 0, 0, 0, 1, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 0, 0, 0, 0, 0, 2, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 0, 0, 0, 0, 0, 3, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_6__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 5] pyramid_1side_6__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 5] pyramid_1side_6__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 5] pyramid_1side_6__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 5] pyramid_1side_6__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 3, 5] pyramid_1side_6__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 3, 5] pyramid_1side_6__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 5] pyramid_1side_6__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 5] pyramid_1side_6__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 3, 5] pyramid_1side_6__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 3, 5] pyramid_1side_6__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 2, 5] pyramid_1side_6__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 3, 5] pyramid_1side_6__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 3, 5] pyramid_1side_6__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 3, 5] pyramid_1side_6__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 5] pyramid_1side_6__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 3, 5] pyramid_1side_6__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 3, 5] pyramid_1side_6__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 5] pyramid_1side_6__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 4, 5] pyramid_1side_6__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 4, 5] pyramid_1side_6__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 4, 5] pyramid_1side_6__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 4, 5] pyramid_1side_6__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 4, 5] pyramid_1side_6__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 4, 5] pyramid_1side_6__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 4, 5] pyramid_1side_6__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 4, 5] pyramid_1side_6__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 0, 0, 0, 1, 1, 1, 4, 4, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 0, 0, 0, 1, 1, 2, 4, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 0, 0, 0, 1, 1, 3, 4, 4, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 0, 0, 0, 1, 2, 2, 4, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 0, 0, 0, 1, 2, 3, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 0, 0, 0, 1, 3, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 0, 0, 0, 2, 2, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 0, 0, 0, 2, 3, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 0, 0, 0, 3, 3, 3, 4, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 0, 0, 0, 1, 1, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 0, 0, 0, 1, 2, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 0, 0, 0, 1, 3, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 0, 0, 0, 2, 2, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 0, 0, 0, 2, 3, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 0, 0, 0, 3, 3, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 0, 0, 0, 1, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 0, 0, 0, 2, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 0, 0, 0, 3, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 4, 5] # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 pyramid_1side_7__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 5] pyramid_1side_7__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 5] pyramid_1side_7__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 3, 5] pyramid_1side_7__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 5] pyramid_1side_7__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 3, 5] pyramid_1side_7__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 3, 5] pyramid_1side_7__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 5] pyramid_1side_7__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 3, 5] pyramid_1side_7__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5] pyramid_1side_7__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 3, 5] pyramid_1side_7__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 2, 5] pyramid_1side_7__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 3, 5] pyramid_1side_7__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 3, 5] pyramid_1side_7__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 3, 5] pyramid_1side_7__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 5] pyramid_1side_7__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 5] pyramid_1side_7__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 3, 5] pyramid_1side_7__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_7__2side_7__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_7__2side_7__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_7__2side_7__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 4, 5] pyramid_1side_7__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 4, 5] pyramid_1side_7__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 4, 5] pyramid_1side_7__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 4, 5] pyramid_1side_7__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 4, 5] pyramid_1side_7__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 4, 5] pyramid_1side_7__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 4, 5] pyramid_1side_7__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_7__2side_7__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 1, 0, 1, 1, 1, 1, 4, 4, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 1, 0, 1, 1, 1, 2, 4, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 1, 0, 1, 1, 1, 3, 4, 4, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 2, 4, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 1, 0, 1, 1, 3, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 1, 0, 1, 2, 2, 2, 4, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 1, 0, 1, 2, 2, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 1, 0, 1, 2, 3, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 1, 0, 1, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 0, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 0, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 0, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 0, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 1, 0, 1, 1, 1, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 1, 0, 1, 1, 2, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 1, 0, 1, 1, 3, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 1, 0, 1, 2, 2, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 1, 0, 1, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 0, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 0, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 0, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 0, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 1, 0, 1, 1, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 1, 0, 1, 2, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 1, 0, 1, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 0, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 0, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 0, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 1, 0, 1, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 0, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 0, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 5] # 1 3 6 10 15 21 28 "36" 45 55 # side8 OK 120 pyramid_1side_8__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5] pyramid_1side_8__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5] pyramid_1side_8__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5] pyramid_1side_8__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5] pyramid_1side_8__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5] pyramid_1side_8__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5] pyramid_1side_8__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 5] pyramid_1side_8__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 5] pyramid_1side_8__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 5] pyramid_1side_8__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 5] pyramid_1side_8__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 5] pyramid_1side_8__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 5] pyramid_1side_8__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5] pyramid_1side_8__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 3, 5] pyramid_1side_8__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_7__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_7__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_7__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_8__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_8__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_8__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_8_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 5] pyramid_1side_8__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 5] pyramid_1side_8__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5] pyramid_1side_8__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 5] pyramid_1side_8__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5] pyramid_1side_8__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5] pyramid_1side_8__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_7__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_8__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 4, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 1, 1, 1, 1, 2, 2, 4, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 1, 1, 1, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 1, 1, 1, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 1, 1, 1, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 1, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 1, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 1, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 1, 1, 1, 1, 2, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 1, 1, 1, 1, 3, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 1, 1, 1, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 1, 1, 1, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 1, 1, 1, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 1, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 1, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 2, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 2, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 1, 1, 1, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 1, 1, 1, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 1, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 1, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 2, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 1, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 1, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s1 = [5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5] ################################## ### 5side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_2__2side_2__3side_2_4side_2_5s2 = [5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_3__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5] pyramid_1side_3__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 5] pyramid_1side_3__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5] pyramid_1side_3__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_4__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 5] pyramid_1side_4__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5] pyramid_1side_4__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 5] pyramid_1side_4__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 5, 5] pyramid_1side_4__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_5__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 5, 5] pyramid_1side_5__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 5, 5] pyramid_1side_5__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 5] pyramid_1side_5__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 5, 5] pyramid_1side_5__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 5, 5] pyramid_1side_5__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 0, 0, 0, 0, 0, 1, 2, 4, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 0, 0, 0, 0, 0, 1, 3, 4, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 0, 0, 0, 0, 0, 2, 2, 4, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 0, 0, 0, 0, 0, 2, 3, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 0, 0, 0, 0, 0, 3, 3, 4, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 0, 0, 0, 0, 0, 1, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 0, 0, 0, 0, 0, 2, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 0, 0, 0, 0, 0, 3, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_6__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 5, 5] pyramid_1side_6__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 5, 5] pyramid_1side_6__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 5, 5] pyramid_1side_6__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 5, 5] pyramid_1side_6__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 5, 5] pyramid_1side_6__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 0, 0, 0, 1, 1, 1, 4, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 0, 0, 0, 1, 1, 2, 4, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 0, 0, 0, 1, 1, 3, 4, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 0, 0, 0, 1, 2, 2, 4, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 2, 3, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 0, 0, 0, 1, 3, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 0, 0, 0, 2, 2, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 0, 0, 0, 2, 3, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 0, 0, 0, 3, 3, 3, 4, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 0, 0, 0, 1, 1, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 0, 0, 0, 1, 2, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 0, 0, 0, 1, 3, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 0, 0, 0, 2, 2, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 0, 0, 0, 2, 3, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 0, 0, 0, 3, 3, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 0, 0, 0, 1, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 0, 0, 0, 2, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 0, 0, 0, 3, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 5, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_7__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 5, 5] pyramid_1side_7__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 5, 5] pyramid_1side_7__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 5, 5] pyramid_1side_7__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 5, 5] pyramid_1side_7__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 1, 0, 1, 1, 1, 1, 4, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 1, 0, 1, 1, 1, 2, 4, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 1, 0, 1, 1, 1, 3, 4, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 1, 0, 1, 1, 2, 2, 4, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 1, 0, 1, 1, 3, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 1, 0, 1, 2, 2, 2, 4, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 1, 0, 1, 2, 2, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 1, 0, 1, 2, 3, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 1, 0, 1, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 0, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 0, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 0, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 0, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 1, 0, 1, 1, 1, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 1, 0, 1, 1, 2, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 1, 0, 1, 1, 3, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 1, 0, 1, 2, 2, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 1, 0, 1, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 0, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 0, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 0, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 0, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 1, 0, 1, 1, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 1, 0, 1, 2, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 1, 0, 1, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 0, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 0, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 0, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 1, 0, 1, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 0, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 0, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 5, 5] # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 pyramid_1side_8__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5] pyramid_1side_8__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 5] pyramid_1side_8__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5] pyramid_1side_8__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5] pyramid_1side_8__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 1, 1, 1, 1, 2, 2, 4, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 1, 1, 1, 1, 3, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 1, 1, 1, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 1, 1, 1, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 1, 1, 1, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 1, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 1, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 1, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 1, 1, 1, 1, 2, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 1, 1, 1, 1, 3, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 1, 1, 1, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 1, 1, 1, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 1, 1, 1, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 1, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 1, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 2, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 2, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 2, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 1, 1, 1, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 1, 1, 1, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 1, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 1, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 2, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 1, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 1, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s2 = [5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5] ################################## ### 5side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_3__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_4__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 2, 5, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_5__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 0, 0, 0, 0, 0, 1, 1, 5, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 0, 0, 0, 0, 0, 1, 2, 5, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 0, 0, 0, 0, 0, 1, 3, 5, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 0, 0, 0, 0, 0, 2, 2, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 0, 0, 0, 0, 0, 2, 3, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 0, 0, 0, 0, 0, 3, 3, 5, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 0, 0, 0, 0, 0, 1, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 0, 0, 0, 0, 0, 2, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 0, 0, 0, 0, 0, 4, 4, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_6__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 0, 0, 0, 1, 1, 1, 5, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 0, 0, 0, 1, 1, 2, 5, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 0, 0, 0, 1, 1, 3, 5, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 0, 0, 0, 1, 2, 2, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 0, 0, 0, 1, 2, 3, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 0, 0, 0, 1, 3, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 0, 0, 0, 2, 2, 2, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 0, 0, 0, 2, 2, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 0, 0, 0, 2, 3, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 0, 0, 0, 3, 3, 3, 5, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 0, 0, 0, 1, 1, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 0, 0, 0, 1, 2, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 0, 0, 0, 1, 3, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 0, 0, 0, 2, 2, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 0, 0, 0, 2, 3, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 0, 0, 0, 3, 3, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 0, 0, 0, 1, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 0, 0, 0, 2, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 0, 0, 0, 3, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 0, 0, 0, 4, 4, 4, 5, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_7__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 1, 0, 1, 1, 1, 1, 5, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 1, 0, 1, 1, 1, 2, 5, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 1, 0, 1, 1, 1, 3, 5, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 1, 0, 1, 1, 2, 2, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 1, 0, 1, 1, 2, 3, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 1, 0, 1, 1, 3, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 1, 0, 1, 2, 2, 2, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 1, 0, 1, 2, 2, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 1, 0, 1, 2, 3, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 1, 0, 1, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 0, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 0, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 0, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 0, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 0, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 1, 0, 1, 1, 1, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 1, 0, 1, 1, 2, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 1, 0, 1, 1, 3, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 1, 0, 1, 2, 2, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 1, 0, 1, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 0, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 0, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 0, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 0, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 1, 0, 1, 1, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 1, 0, 1, 2, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 1, 0, 1, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 0, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 0, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 0, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 1, 0, 1, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 0, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 0, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 5, 5, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_8__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 5, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 1, 1, 1, 1, 2, 3, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 1, 1, 1, 1, 3, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 1, 1, 1, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 1, 1, 1, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 1, 1, 1, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 1, 1, 1, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 1, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 1, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 1, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 1, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 1, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 2, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 2, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 2, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 1, 1, 1, 1, 1, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 1, 1, 1, 1, 2, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 1, 1, 1, 1, 3, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 1, 1, 1, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 1, 1, 1, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 1, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 1, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 1, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 1, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 2, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 1, 1, 1, 1, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 1, 1, 1, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 1, 1, 1, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 1, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 1, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 2, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 2, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 2, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 1, 1, 1, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 1, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 1, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 2, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 2, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 3, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s3 = [5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5] ################################## ### 5side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_5__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 0, 0, 0, 0, 0, 1, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 0, 0, 0, 0, 0, 2, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 0, 0, 0, 0, 0, 3, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 0, 0, 0, 0, 0, 4, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_6__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 0, 0, 0, 1, 1, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 0, 0, 0, 1, 2, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 0, 0, 0, 1, 3, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 0, 0, 0, 2, 2, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 0, 0, 0, 2, 3, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 0, 0, 0, 3, 3, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 0, 0, 0, 1, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 0, 0, 0, 2, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 0, 0, 0, 3, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 0, 0, 0, 4, 4, 5, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_7__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 1, 0, 1, 1, 1, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 1, 0, 1, 1, 2, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 1, 0, 1, 1, 3, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 1, 0, 1, 2, 2, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 1, 0, 1, 2, 3, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 1, 0, 1, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 0, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 0, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 0, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 0, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 1, 0, 1, 1, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 1, 0, 1, 2, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 1, 0, 1, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 0, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 0, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 0, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 1, 0, 1, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 0, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 0, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 0, 4, 4, 4, 5, 5, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_8__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 1, 1, 1, 1, 2, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 1, 1, 1, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 1, 1, 1, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 1, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 1, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 1, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 1, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 2, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 2, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 2, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 1, 1, 1, 1, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 1, 1, 1, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 1, 1, 1, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 1, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 1, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 2, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 2, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 2, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 1, 1, 1, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 1, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 1, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 2, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 2, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 1, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 2, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 3, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s4 = [5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5] ################################## ### 5side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_5__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_6__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 0, 0, 0, 1, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 0, 0, 0, 2, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 0, 0, 0, 3, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 0, 0, 0, 4, 5, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_7__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 1, 0, 1, 1, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 1, 0, 1, 2, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 1, 0, 1, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 0, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 0, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 0, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 1, 0, 1, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 0, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 0, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 0, 4, 4, 5, 5, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_8__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 1, 1, 1, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 1, 1, 1, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 1, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 1, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 1, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 2, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 2, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 1, 1, 1, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 1, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 1, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 2, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 2, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 3, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 1, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 2, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 3, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s5 = [5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5] ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_6__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 0, 0, 0, 5, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_7__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 1, 0, 1, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 0, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 0, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 0, 4, 5, 5, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_8__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 1, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 1, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 2, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 2, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 3, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 1, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 2, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 3, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s6 = [5, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5] ################################## ### 5side7 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_7__2side_7__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 0, 5, 5, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_8__2side_7__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s7 = [5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5] ################################## ### 5side8 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_8__2side_8__3side_8_4side_8_5s8 = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] ############################################################################################################################################################################################### ############################################################################################################################################################################################### ############################################################################################################################################################################################### ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_1__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side7 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side8 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side3 OK 1 ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side3 OK 4 ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 28 "36" 45 55 # 2side8 OK 120 ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s8, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ############################################################################################################################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1)) use_model = ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1 use_model = use_model.build() result = use_model.generator(data) print(result.shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary() print(use_model.model_describe)
89c2127cdb13c6c6248abfba21d3cdb0eba90d73
3b9fdd117bfcfa86b1e354b2c193727e7567cb76
/proxyuser17/proxyuser17/apps/myapp/models.py
9a06f4b7a626979e8ea1971891cbd06fbebd22c1
[ "BSD-3-Clause" ]
permissive
marcofucci/django-ticket-24506
84beb913b2db2993034e199c3a63c2cde60fa9aa
88a36d792e77fb70c12224ea6a02774015ddbc84
refs/heads/master
2021-01-21T11:37:23.621884
2015-03-22T12:55:25
2015-03-22T12:55:25
32,672,309
0
1
null
2015-03-22T12:55:25
2015-03-22T11:11:24
Python
UTF-8
Python
false
false
314
py
from django.db import models class FKUserModel(models.Model): user = models.ForeignKey('core.User') def __unicode__(self): return u'%s' % self.user class OneToOneUserModel(models.Model): user = models.OneToOneField('core.User') def __unicode__(self): return u'%s' % self.user
c3ca98e5d8c7a2b7a60bee0667267c57f753f0a6
6bf97e57103b9ddd639a91a0c371f86b3bce60d8
/pure_ee/earth_engine_start.py
48154028788ff39dfead3649a9176c9cbc69a261
[ "Apache-2.0" ]
permissive
geosconsulting/gee_wapor
655372722eed9e1c00ef7880870bd85c7953d64a
c3c451fcb21664172a74647fe5d9e56f312aa1df
refs/heads/master
2021-01-13T05:01:37.233979
2017-03-01T14:09:08
2017-03-01T14:09:08
81,427,303
2
1
null
null
null
null
UTF-8
Python
false
false
327
py
# -*- coding: utf-8 -*- """ Created on Tue Jan 3 04:59:03 2017 @author: fabio """ # Import the Earth Engine Python Package import ee # Initialize the Earth Engine object, using the authentication credentials. ee.Initialize() # Print the information for an image asset. image = ee.Image('srtm90_v4') print(image.getInfo())
b2516c9040789df5a0e98f754aab40508283b38c
c834c1b7ef5d0039a706f174ed3f7b0ab82fa2e5
/optOnMysql/data2mysql.py
5903606b3171c597649676ce4e1d13f00e79309e
[]
no_license
yangze01/Laws-Search-Project
126ffc5ec1ad1c2e9d95c2490104e8e37e766ad4
d1fff57a9298aa0d883a1b988aa98804d0ab00c1
refs/heads/master
2021-08-14T15:26:27.455518
2017-11-16T03:59:58
2017-11-16T03:59:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
#coding=utf8 import sys import time reload(sys) sys.setdefaultencoding('utf8') from optOnMysql.DocumentsOnMysql import * from optOnMysql.DocumentUnit import * import json BasePath = sys.path[0] def is_valid_date(str): '''判断是否是一个有效的日期字符串''' try: time.strptime(str, "%Y-%m-%d") return True except: return False# def document_format(line, criminal): line = json.loads(line.decode('utf8')) document_unit = dict() document_unit["title"] = line['title'] # print(len(document_unit['title'])) document_unit["court"] = line['court'] document_unit["url"] = line['url'] document_unit["content"] = '|'.join(line['content']).encode('utf8') # print(len(document_unit["content"])) document_unit["criminal"] = criminal if(is_valid_date(line["date"])): document_unit["date"] = line['date'] else: document_unit["date"] = "0000-00-00" return document_unit def save_document2mysql(file_path, criminal): opt = DocumentsOnMysql() i = 0 for line in open(file_path): print(i) i = i + 1 document_unit = document_format(line, criminal) opt.insertOneDocuments(document_unit) opt.connClose() print(u"finished") if __name__ == "__main__": opt = DocumentsOnMysql() # opt.insertOneDocuments(document_unit) # print(opt) opt.findById("1") a = opt.findall() for i in a : print(i) opt.connClose() # file_path = BasePath + "/../data/judgment_trafficking.txt" # save_document2mysql(file_path,u"拐卖妇女儿童罪")
9ea362e7e23645d74ada3c82eae8bd8ed6962067
6f6b7e1a9837fb581cc5fed92b66b4ad12ea30f5
/19-05-161_STOCK_profit_AIC_BIC_L500_github/4plot_profit_nh6.py
4d358b74123f153c55f5113d35716f99896e3ac4
[ "MIT" ]
permissive
danhtaihoang/stock
f7b4f4989ff0c2b267766761d402adc599fc893d
9c3a3e467839dda095a0152055e347254abaf271
refs/heads/master
2020-06-10T01:35:59.136032
2019-06-24T17:13:35
2019-06-24T17:13:35
193,546,744
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
import numpy as np import matplotlib.pyplot as plt #========================================================================================= # average: p1 = np.loadtxt('profit_cost_nhmax6.dat') p2 = np.loadtxt('profit_AIC_nhmax6.dat') p3 = np.loadtxt('profit_BIC_nhmax6.dat') tmax = np.shape(p1)[0] t = np.arange(0,tmax,1) plt.figure(figsize=(20,16)) plt.subplot(2,2,1) #plt.figure(figsize=(5,4)) plt.title('trade everyday') plt.plot(t, p1[:,0],'k-',label='cost') plt.plot(t, p2[:,0],'b-',label='AIC') plt.plot(t, p3[:,0],'r-',label='BIC') plt.legend() plt.xlabel('time') plt.ylabel('cumulative profit') plt.ylim([-1,4]) plt.grid(linestyle='dotted') plt.subplot(2,2,2) plt.title('not trade everyday') plt.plot(t, p1[:,1],'k-',label='cost') plt.plot(t, p2[:,1],'b-',label='AIC') plt.plot(t, p3[:,1],'r-',label='BIC') plt.legend() plt.xlabel('time') plt.ylabel('cumulative profit') plt.ylim([-1,4]) plt.grid(linestyle='dotted') #plt.tight_layout(h_pad=0.8, w_pad=1.2) plt.savefig('profit_cost_AIC_BIC_nhmax6.pdf', format='pdf', dpi=300)
5fe9b2191e2862a97b4b0500d3c4777c88eab68c
56e96acad654d7480d17d5cae7402a2bc6cbaa76
/share/py_module/dataset.py
fc4a162fa0c59a4f2c53f521c749910a52a91ef4
[]
no_license
LitingLin/VehicleDC
641b1e25c22cac2ffb1dcba519b1af5ac7d9f2c8
2ac0b8ad708f033b59c0bc924ca7ec169e86b063
refs/heads/master
2020-05-17T19:30:00.556691
2019-07-12T16:21:12
2019-07-12T16:21:12
183,916,512
1
0
null
null
null
null
UTF-8
Python
false
false
4,885
py
# coding: utf-8 import os import re import numpy as np import torch from torch.utils import data from torchvision import transforms as T from PIL import Image color_attrs = ['Black', 'Blue', 'Brown', 'Gray', 'Green', 'Pink', 'Red', 'White', 'Yellow'] direction_attrs = ['Front', 'Rear'] type_attrs = ['passengerCar', 'saloonCar', 'shopTruck', 'suv', 'trailer', 'truck', 'van', 'waggon'] class Vehicle(data.Dataset): """ 属性向量多标签:配合cross entropy loss的使用 使用处理过的数据: 去掉所有的unknown """ def __init__(self, root, transform=None, is_train=True): """ :return: """ if not os.path.exists(root): print('=> [Err]: root not exists.') return if is_train: print('=> train data root: ', root) else: print('=> test data root: ', root) # 统计非空子目录并按名称(类别名称)自然排序 self.img_dirs = [os.path.join(root, x) for x in os.listdir(root) \ if os.path.isdir(os.path.join(root, x))] self.img_dirs = [x for x in self.img_dirs if len(os.listdir(x)) != 0] if len(self.img_dirs) == 0: print('=> [Err]: empty sub-dirs.') return self.img_dirs.sort() # 默认自然排序, 从小到大 # print('=> total {:d} classes for training'.format(len(self.img_dirs))) # 将多标签分开 self.color_attrs = color_attrs self.direction_attrs = direction_attrs self.type_attrs = type_attrs # 按子目录(类名)的顺序排序文件路径 self.imgs_path = [] self.labels = [] for x in self.img_dirs: match = re.match('([a-zA-Z]+)_([a-zA-Z]+)_([a-zA-Z]+)', os.path.split(x)[1]) color = match.group(1) # 车身颜色 direction = match.group(2) # 车身方向 type = match.group(3) # 车身类型 # print('=> color: %s, direction: %s, type: %s' % (color, direction, type)) for y in os.listdir(x): # 添加文件路径 self.imgs_path.append(os.path.join(x, y)) # 添加label color_idx = int(np.where(self.color_attrs == np.array(color))[0]) direction_idx = int(np.where(self.direction_attrs == np.array(direction))[0]) type_idx = int(np.where(self.type_attrs == np.array(type))[0]) label = np.array([color_idx, direction_idx, type_idx], dtype=int) label = torch.Tensor(label) # torch.from_numpy(label) self.labels.append(label) # Tensor(label) # print(label) if is_train: print('=> total {:d} samples for training.'.format(len(self.imgs_path))) else: print('=> total {:d} samples for testing.'.format(len(self.imgs_path))) # 加载数据变换 if transform is not None: self.transform = transform else: # default image transformation self.transform = T.Compose([ T.Resize(448), T.CenterCrop(448), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # --------------------- serialize imgs_path to disk # root_parent = os.path.abspath(os.path.join(root, '..')) # print('=> parent dir: ', root_parent) # if is_train: # imgs_path = os.path.join(root_parent, 'train_imgs_path.pkl') # else: # imgs_path = os.path.join(ropytorch docot_parent, 'test_imgs_path.pkl') # print('=> dump imgs path: ', imgs_path) # pickle.dump(self.imgs_path, open(imgs_path, 'wb')) def __getitem__(self, idx): """ :param idx: :return: """ image = Image.open(self.imgs_path[idx]) # 数据变换, 灰度图转换成'RGB' if image.mode == 'L' or image.mode == 'I': # 8bit或32bit灰度图 image = image.convert('RGB') if self.transform is not None: image = self.transform(image) label = self.labels[idx] f_path = os.path.split(self.imgs_path[idx])[0].split('/')[-2] + \ '/' + os.path.split(self.imgs_path[idx])[0].split('/')[-1] + \ '/' + os.path.split(self.imgs_path[idx])[1] return image, label, f_path def __len__(self): """os.path.split(self.imgs_path[idx])[0].split('/')[-2] :return: """ return len(self.imgs_path)
6321392e8ea506f89ad8138de98709a7d3aeef3a
e5f1befb7c7ca0072747b33086fc6569a6befd01
/old/flaskold/json/008.py
f4caad8db1b8d37bfc3909c746dc3bac66210760
[]
no_license
nepomnyashchii/TestGit
ae08d8bb1b7d2ab9389a309fd1dc9e24729b019c
c7abf4ab08ee3c2f3ea1fb09a1938bff7a3e0e5c
refs/heads/master
2020-04-28T23:41:51.053547
2020-01-24T12:22:40
2020-01-24T12:22:40
175,666,093
0
1
null
2019-03-15T13:44:03
2019-03-14T17:08:58
null
UTF-8
Python
false
false
147
py
from flask import Flask app = Flask(__name__) @app.route('/') def index(): return "test" if __name__ =="__main__": app.run(debug=True)
50e9870739673efcfa7b101e2a5fab4d46cee95a
e0b7fb64e57823d24ad6b8ca4e130c657ba437a4
/analysis/yields/plot.py
1c98b8833d00a74347fe5b76ba3b506ff8435f4a
[]
no_license
cfangmeier/FTAnalysis
66644189f02ddf43dadb8e029e4709950572e7cf
6612f40b67689d6d946866710ad2e0256b790821
refs/heads/master
2021-09-11T00:16:35.222837
2018-01-09T22:26:50
2018-01-09T22:26:50
106,859,187
0
0
null
2017-10-13T18:23:23
2017-10-13T18:23:23
null
UTF-8
Python
false
false
24,136
py
import os import sys import ROOT as r import sys sys.path.insert(0,'../../') from common.Software.dataMCplotMaker.dataMCplotMaker import dataMCplot from analysis.limits.runLimits import get_lims from analysis.limits.singleBinLimits import get_singlebin_limits from analysis.limits.makeScan import make_scan from analysis.limits.getPostFit import get_postfit_dict def reduce_bins(h_in, ndrop=2): # drop first [ndrop] bins nbins_reduced = h_in.GetNbinsX() - ndrop h_out = r.TH1F(h_in.GetName()+"_reduced"+str(ndrop), h_in.GetTitle(), nbins_reduced, 0.5, nbins_reduced+0.5) binvals = list(h_in) # includes under and overflow, so bin 1 is index 1 for ibin,val in enumerate(binvals): if ibin <= ndrop: continue h_out.SetBinContent(ibin-ndrop,val) h_out.SetBinError(ibin-ndrop,h_in.GetBinError(ibin)) return h_out def scale_hist(h_in, scale=1.): # return scaled histogram h_out = h_in.Clone(h_in.GetName()+"_scaled") h_out.Scale(scale) return h_out if __name__ == "__main__": os.system("mkdir -p plots") r.gROOT.SetBatch(1) bginfo = [ ("flips", "Charge misid.", r.kGray+2, 0.2), ("rares", "Rare", r.kMagenta-7, 0.5), ("xg", "X#gamma", r.kViolet+2, 0.5), ("ttvv", "t#bar{t}VV", r.kAzure-4, 0.5), ("ttz", "t#bar{t}Z", r.kGreen-6, 0.40), ("fakes", "Nonprompt lep.", 18, 0.30), ("tth", "t#bar{t}H", r.kBlue-5, 0.50), ("ttw", "t#bar{t}W", r.kGreen+3, 0.40), ] bgnames, titles, colors, systs = map(list,zip(*bginfo)) f1 = r.TFile("histos.root") cards_dir = "../limits/{0}".format(f1.Get("metadata").GetTitle()) d_postfit, fitratios = get_postfit_dict("{}/mlfit.root".format(cards_dir)) # d_postfit, fitratios = get_postfit_dict("../limits/v0.10_Jul20/mlfit.root".format(cards_dir)) # print d_postfit # print fitratios for proc,h1 in d_postfit.items(): if not h1: continue vals,errs = zip(*[[h1.GetBinContent(ib),h1.GetBinError(ib)] for ib in range(1,h1.GetNbinsX()+1)]) # print proc, zip(vals,errs) # print d_postfit, fitratios commonopts = "--darkColorLines --lumi 35.9 --topYaxisTitle Data/Pred. --type Preliminary --poissonErrorsNoZeros --dataName Data --outOfFrame --systInclStat --systFillStyle 3344 " d_opts_br = { # "SR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp .03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], # "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp .03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], # "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel H_{T} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events "], # "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel p_{T}^{miss} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events "], # "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel N_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events / bin "], # "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel N_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --makeTable --yAxisLabel Events / bin "], "SR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.15 --makeTable --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.10 --legendRight -0.08 --legendTaller 0.20 --yTitleOffset -0.00 --makeTable --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel #it{H}_{T} --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events "], "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel #it{p}_{T}^{miss} --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events "], "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel #it{N}_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events / bin "], "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel #it{N}_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.16 --yTitleOffset -0.1 --makeTable --yAxisLabel Events / bin "], # "SR_TOTAL" : [("",), commonopts+" --xAxisLabel SR --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 "], # "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 "], # "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel H_{T} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel E_{T}^{miss} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mvis" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m^{vis} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "mtvis" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{T}^{vis} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel N_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel N_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --makeTable "], # "mtmin" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{T}^{min} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mll" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{ll} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mllos" : [("ttzcr",), commonopts+" --xAxisLabel Z cand m_{ll} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "type" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --xAxisBinLabels #mu#mu,#mu e,e#mu,ee "], # "charge" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel charge --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "nleps" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel Nleps --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1pt" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel ordered l1pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2pt" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel ordered l2pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l3pt" : [("ttzcr",), commonopts+" --xAxisLabel ordered l3pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mtop1" : [("sr",), commonopts+" --xAxisLabel m_{top,1} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "mtop2" : [("sr",), commonopts+" --xAxisLabel m_{top,2} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # # "mva" : [("sr","br"), commonopts+" --xAxisLabel lep1,2 el MVA --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_mu_lep1" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_mu_lep2" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mu_l1pt" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mu_l2pt" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "mu_l3pt" : [("sr","br"), commonopts+" --xAxisLabel lep3 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "l3eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep3 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_mu_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_mu_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_mu_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_mu_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_el_lep1" : [("sr","br"), commonopts+" --xAxisLabel lep1 el sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_el_lep2" : [("sr","br"), commonopts+" --xAxisLabel lep2 el sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "el_l1pt" : [("sr","br"), commonopts+" --xAxisLabel lep1 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "el_l2pt" : [("sr","br"), commonopts+" --xAxisLabel lep2 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "el_l3pt" : [("sr","br"), commonopts+" --xAxisLabel lep3 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep1 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep2 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "l3eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep3 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_el_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep1 el miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_el_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep2 el miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_el_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep1 el ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_el_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep2 el ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "bjetpt" : [("sr","br"), commonopts+" --xAxisLabel p_{T}(bjets) --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "jetpt" : [("sr","br"), commonopts+" --xAxisLabel p_{T}(jets) --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "disc" : [("br",), commonopts+" --isLinear --xAxisLabel disc --legendUp .0 --legendRight -0.08 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable "], # "disc2" : [("br",), commonopts+" --isLinear --xAxisLabel disc2 --legendUp .0 --legendRight -0.08 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable "], # "SRDISC_TOTAL" : [("",), commonopts+" --xAxisLabel SR_{disc} --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox "], # "ntops" : [("sr",), commonopts+" --xAxisLabel N_{tops} --noXaxisUnit --nDivisions 5 --noDivisionLabel --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset 0.1 --makeTable "], # "ntopness" : [("sr",), commonopts+" --xAxisLabel N_{tops}ness --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], } do_stats = True for key in d_opts_br.keys(): types, opts_str = d_opts_br[key] for typ in types: if len(typ) == 0: name = key[:] else: name = "{}_{}".format(typ,key) oname = "plots/%s.pdf" % name.replace("_TOTAL","") # title = typ.upper() title = "" subtitle = "" d_newopts = { "outputName": oname, } # if key == "njets" and typ == "ttwcr": subtitle = "(a)" # if key == "nbtags" and typ == "ttwcr": subtitle = "(b)" # if key == "njets" and typ == "ttzcr": subtitle = "(c)" # if key == "nbtags" and typ == "ttzcr": subtitle = "(d)" # if key == "njets" and typ == "sr": subtitle = "(a)" # if key == "nbtags" and typ == "sr": subtitle = "(b)" # if key == "ht" and typ == "sr": subtitle = "(c)" # if key == "met" and typ == "sr": subtitle = "(d)" # if key == "SRCR_TOTAL": subtitle = "(a)" # if key == "SR_TOTAL": subtitle = "(b)" if key == "njets" and typ == "ttwcr": subtitle = "CRW" if key == "nbtags" and typ == "ttwcr": subtitle = "CRW" if key == "njets" and typ == "ttzcr": subtitle = "CRZ" if key == "nbtags" and typ == "ttzcr": subtitle = "CRZ" if key == "njets" and typ == "sr": subtitle = "" if key == "nbtags" and typ == "sr": subtitle = "" if key == "ht" and typ == "sr": subtitle = "" if key == "met" and typ == "sr": subtitle = "" if key == "SRCR_TOTAL": subtitle = "" if key == "SR_TOTAL": subtitle = "" if typ in ["ttzcr","sr"] and ("njets" in name or "nbtags" in name or "met" in name): d_newopts["ratioUpperBound"] = 4.0 if key in ["njets","nbtags","ht","met"] and typ == "sr": d_newopts["ratioUpperBound"] = 5.0 print name, typ bgs = map(lambda x: f1.Get("{0}_{1}".format(name,x)), ["data", "tttt"]+bgnames) h_data,h_tttt,bgs = bgs[0], bgs[1], bgs[2:] h_data_empty = h_data.Clone("empty") h_data_empty.Reset() h_tttt.Sumw2() tttt_sf = 5.0 h_tttt.Scale(tttt_sf) do_unblind = True d_newopts["noDataWidth"] = True # if do_stats and key == "SRCR_TOTAL": # # if key == "SRCR_TOTAL": # make_scan(cards_dir, do_blind=not do_unblind) # os.system("cp scan.pdf plots/scan.pdf") # if do_stats and key in ["SRCR_TOTAL"]: # regions="srcr" # if "DISC" in key: regions="srdisc" # d_lims = get_lims(card=cards_dir, regions=regions, redocard=True, redolimits=True, domcfakes=False) # exp, expp1, expm1 = d_lims["exp"], d_lims["sp1"]-d_lims["exp"], d_lims["exp"]-d_lims["sm1"] # subtitle = "#sigma^{UL}_{exp} = %.2f^{+%.1f}_{-%.1f} fb" % (exp, expp1, expm1) # do_unblind = typ in ["ttwcr","ttzcr", "sr"] do_blind = not do_unblind if do_unblind: if "l3eta_el" not in name and "el_l3pt" not in name: d_newopts["noTextBetweenPads"] = True d_newopts["noGrass"] = True dataMCplot(h_data, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) new_d_newopts = d_newopts.copy() new_h_tttt = h_tttt.Clone("new_tttt") new_h_tttt.Scale(1.0/tttt_sf) # undo above scaling new_bgs = bgs+[new_h_tttt] new_colors = colors+[r.kPink-1] new_systs = systs+[0.1] new_titles = titles+["t#bar{t}t#bar{t}"] new_d_newopts["poissonErrorsNoZeros"] = False new_d_newopts["noTextBetweenPads"] = False new_d_newopts["preserveBackgroundOrder"] = True def get_name(hist): return hist.GetName().rsplit("_",1)[-1] if do_stats and key == "SR_TOTAL": # new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") # dataMCplot(h_data_empty, bgs=new_bgs, systs=new_systs, titles=new_titles, title="Prefit", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str) new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noTextBetweenPads"] = True del new_d_newopts["noGrass"] postfit_bgs = [reduce_bins(d_postfit[get_name(bg)],2) for bg in new_bgs] h_totalsyst = reduce_bins(d_postfit["total"],2) # total_background is tot bg, total is totbg+sig dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, total_syst=h_totalsyst) if do_stats and key == "SRCR_TOTAL": new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noTextBetweenPads"] = True del new_d_newopts["noGrass"] this_opts_str = opts_str.replace("--isLinear","--setMinimum 0.1") # this_opts_str = this_opts_str.replace("--legendUp -.05","--legendUp .00") postfit_bgs = [reduce_bins(d_postfit[get_name(bg)],0) for bg in new_bgs] h_totalsyst = reduce_bins(d_postfit["total"],0) # total_background is tot bg, total is totbg+sig dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=this_opts_str, total_syst=h_totalsyst) if do_stats and key not in ["SR_TOTAL","SRCR_TOTAL"]: new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noGrass"] = True postfit_bgs = [scale_hist(bg,scale=fitratios[get_name(bg)]) for bg in new_bgs] # dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="Postfit "+title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title=""+title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) if do_stats and key not in ["SR_TOTAL","SRCR_TOTAL"]: new_d_newopts["noGrass"] = True new_d_newopts["outputName"] = oname.replace(".pdf","_stacked.pdf") dataMCplot(h_data, bgs=new_bgs, titles=new_titles, title=title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) # if do_blind: # d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_blind.pdf") # d_newopts["poissonErrorsNoZeros"] = False # d_newopts["noTextBetweenPads"] = False # # For SRCR, "blind" is actually partially blind (first two bins -- CRZ,CRW -- are unblinded) # # make data with only CR unblinded (first two bins) # h_data_cronly = h_data.Clone("cronly") # for i in range(1,h_data.GetNbinsX()+1): # if i in [1,2]: h_data_cronly.SetBinContent(i, h_data.GetBinContent(i)) # else: h_data_cronly.SetBinContent(i, 0) # if key == "SRCR_TOTAL": # dataMCplot(h_data_cronly, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) # else: # dataMCplot(h_data_empty, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) # os.system("ic plots/SRCR_postfit.pdf") # os.system("niceplots plots plots_tttt_Jul20_unblind") # os.system("niceplots plots plots_tttt_Aug1_sr4") # os.system("niceplots plots plots_tttt_Aug8") # os.system("niceplots plots plots_tttt_Sep11") os.system("niceplots plots plots_tttt_Oct9")
f4a850cce56f0f8cf0a4527768d60ba75d2eb5df
e06ff08424324ac5d6c567ae9cd6954290ff9bd4
/Yudi TANG/axe/KNN/KNN_dating.py
ba4684b05e29ddc86468b5905cf90baf69208d11
[ "Apache-2.0" ]
permissive
JKChang2015/Machine_Learning
b1bdfcf9ea43a98fc7efd5c0624bbaf5d9dbf495
f8b46bf23e4d1972de6bd652dd4286e9322ed62f
refs/heads/master
2021-06-06T19:18:16.596549
2020-05-03T22:28:18
2020-05-03T22:28:18
119,390,891
1
1
null
null
null
null
UTF-8
Python
false
false
4,671
py
# KNN_dating # Created by JKChang # 29/01/2020, 10:20 # Tag: # Description: dating people recommendation # Feature: 1. Number of frequent flyer miles earned per year # 2. Percentage of time spent playing video games # 3. Liters of ice cream consumed per week # classifies:1. doesn't like # 2. small like # 3. large like import operator import matplotlib.pyplot as plt # from mpl_toolkits import mplot3d import numpy as np def viewMatrix(matrix, labels, arg1, arg2): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(matrix[:, arg1 - 1], matrix[:, arg2 - 1], 15.0 * np.array(labels), 15.0 * np.array(labels)) plt.show() def view3DMatrix(matrix, labels): fig = plt.figure() ax = plt.axes(projection='3d') # Data for a three-dimensional line zline = np.linspace(0, 1, 1000) xline = np.sin(zline) yline = np.cos(zline) ax.plot3D(xline, yline, zline, 'gray') # Data for three-dimensional scattered points zdata = matrix[:, 0] xdata = matrix[:, 1] ydata = matrix[:, 2] ax.scatter3D(xdata, ydata, zdata, c=labels) fig.show() def kNNClassify(newInput, dataSet, labels, k): numSamples = dataSet.shape[0] # shape[0] stands for the number of rows # Step 1: calculate Euclidean distance diff = np.tile(newInput, (numSamples, 1)) - dataSet squareDiff = diff ** 2 squareSum = squareDiff.sum(axis=1) distance = squareSum ** 0.5 # Step 2: Sort distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndicies = distance.argsort() classCount = {} # key: label , value: laebl count for i in range(k): # Step 3: choose the min k distance voteLabel = labels[sortedDistIndicies[i]] # Step 4: count the label frequency classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # Step 5: the max voted class label will return # Sort the dictionary according to the values sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def file2matrix(filename): with open(filename, 'r') as f: resMatrix = np.zeros((1, 3)) labels = [] for line in f.readlines(): content = line.split('\t') lineVector = np.asfarray([content[:3]]) resMatrix = np.r_[resMatrix, lineVector] labels.append(int(content[-1])) DataMatrix = np.delete(resMatrix, (0), axis=0) return DataMatrix, labels def autoNorm(dataSet): # normalization: # nor_value = (old_Value - minimum_value) / (max - min) # get list of minimum value for each col minValue = dataSet.min(0) # get list of maximum value for each col maxValue = dataSet.max(0) normDataSet = np.zeros(np.shape(dataSet)) m = dataSet.shape[0] # copy the minValue to size(m,1) matrix normDataSet = dataSet - np.tile(minValue, (m, 1)) normDataSet = normDataSet / np.tile(maxValue - minValue, (m, 1)) return normDataSet, maxValue - minValue, minValue def datingClassTest(filename): hoRatio = 0.1 dataMatrix, labels = file2matrix(filename) norm_matrix, ranges, min = autoNorm(dataMatrix) # row number m = norm_matrix.shape[0] # number of test row numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): res = kNNClassify(norm_matrix[i, :], norm_matrix[numTestVecs:m, :], labels[numTestVecs:m], 3) print('The classifier came back with: %d, the real answer is %d' % (res, labels[i])) if (res != labels[i]): errorCount += 1.0 print('the total error rate is: %f' % (errorCount / float(numTestVecs))) def classifypersion(testSetName): resultList = ['not at all', 'in small doses', 'in large doses'] percentTats = float(input('percentage of time spent playing video games? ')) ffMiles = float(input('frequent flier miles earned per year? ')) iceCream = float(input('liters of ice creamconsued per year? ')) datingDataMat, datingLabels = file2matrix(testSetName) normMat, ranges, minVals = autoNorm(datingDataMat) inArr = np.array([ffMiles, percentTats, iceCream]) classifierResult = kNNClassify((inArr - minVals / ranges), normMat, datingLabels, 3) print('You will probably like this persion : %s' % resultList[int(classifierResult) - 1]) filename = '../resource/dating/datingTestSet2.txt' # matrix, labels = file2matrix(filename) # norm_matrix, ranges, min = autoNorm(matrix) # view3DMatrix(norm_matrix, labels) # datingClassTest(filename) classifypersion(filename)
f8d2154649e59afa419b79b4777684cdda82eb5c
56b4d00870af18752b4414495b08e2ec3adf3ae4
/src/clims/api/endpoints/process_assignments.py
c5fd2f83c03d0928f0637275f0b82856ee822b26
[ "BSD-2-Clause" ]
permissive
commonlims/commonlims
26c3f937eaa18e6935c5d3fcec823053ab7fefd9
36a02ed244c7b59ee1f2523e64e4749e404ab0f7
refs/heads/develop
2021-07-01T17:20:46.586630
2021-02-02T08:53:22
2021-02-02T08:53:22
185,200,241
4
1
NOASSERTION
2021-02-02T08:53:23
2019-05-06T13:16:37
Python
UTF-8
Python
false
false
1,028
py
from __future__ import absolute_import from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from sentry.api.base import Endpoint, SessionAuthentication class ProcessAssignmentsEndpoint(Endpoint): authentication_classes = (SessionAuthentication, ) permission_classes = (IsAuthenticated, ) def post(self, request, organization_slug): """ Assign one or more item to a workflow. The items are assigned by global_id. """ # TODO-auth: Ensure that the user is only assigning samples that are under the organization # Entities is a list of global ids (e.g. Substance-100) entities = request.data["entities"] definition = request.data["definitionId"] variables = request.data["variables"] assignments = list() assignments += self.app.workflows.batch_assign( entities, definition, request.user, variables) return Response({"assignments": len(assignments)}, status=201)
1186de1cba914cdcc904a0e0a09520080aa16289
46492cc7429c83fe362b0ed566fc54982e52c46e
/pitches/main/forms.py
bb9c5b6a6c3f20f413c47970a696323c03307838
[ "MIT" ]
permissive
jakhax/pitches
15c8d87825c879b56cd931d26d398e736636134f
e56358d00089bd46addd54192220bcca0478e0da
refs/heads/master
2020-03-18T00:36:09.254870
2018-05-20T14:48:14
2018-05-20T14:48:14
134,102,974
1
1
null
null
null
null
UTF-8
Python
false
false
7,399
py
from flask import current_app, session from flask_babel import lazy_gettext from flask_wtf import FlaskForm from wtforms import StringField, TextAreaField, BooleanField, SelectField, SubmitField, IntegerField from wtforms import ValidationError from wtforms.validators import DataRequired, InputRequired, Length, Email, Regexp from ..models import Role, User, TopicGroup class FormHelpersMixIn(object): @property def submit_fields(self): return [getattr(self, field) for field, field_type in self._fields.items() if isinstance(field_type, SubmitField)] @staticmethod def is_has_data(*fields): return any([field.data for field in fields]) def get_flashed_errors(self): errors = session.pop('_form_errors') if '_form_errors' in session else {} self.errors.update(errors) for field, errors in errors.items(): if hasattr(self, field): form_field = getattr(self, field) if form_field.errors: form_field.errors.extend(errors) else: form_field.errors = errors class EditProfileForm(FlaskForm): name = StringField(lazy_gettext('Real name'), validators=[Length(0, 64)]) homeland = StringField(lazy_gettext('Homeland'), validators=[Length(0, 64)]) about = TextAreaField(lazy_gettext('About me')) avatar = StringField(lazy_gettext('Link to avatar'), validators=[Length(0, 256)]) submit = SubmitField(lazy_gettext('Save')) class EditProfileAdminForm(FlaskForm): email = StringField(lazy_gettext('Email'), validators=[DataRequired(), Length(1, 64), Email()]) username = StringField(lazy_gettext('Username'), validators=[ DataRequired(), Length(1, 32), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, lazy_gettext( 'Usernames must have only letters, numbers, dots or underscores'))]) confirmed = BooleanField(lazy_gettext('Confirmed')) role = SelectField(lazy_gettext('Role'), coerce=int) name = StringField(lazy_gettext('Real name'), validators=[Length(0, 64)]) homeland = StringField(lazy_gettext('Homeland'), validators=[Length(0, 64)]) about = TextAreaField(lazy_gettext('About me')) avatar = StringField(lazy_gettext('Link to avatar'), validators=[Length(0, 256)]) submit = SubmitField(lazy_gettext('Save')) def __init__(self, user, *args, **kwargs): super(EditProfileAdminForm, self).__init__(*args, **kwargs) self.role.choices = [(role.id, role.name) for role in Role.query.order_by(Role.name).all()] self.user = user def validate_email(self, field): if (field.data.lower() != self.user.email and User.query.filter_by(email=field.data.lower()).first()): raise ValidationError(lazy_gettext('Email already registered.')) def validate_username(self, field): if (field.data.lower() != self.user.username_normalized and User.query.filter_by(username_normalized=field.data.lower()).first()): raise ValidationError(lazy_gettext('Username already in use.')) class TopicForm(FlaskForm): title = StringField(lazy_gettext('Title'), validators=[DataRequired(), Length(0, 128)]) group_id = IntegerField(lazy_gettext('Topic group ID'), validators=[InputRequired()]) body = TextAreaField(lazy_gettext('Text'), validators=[DataRequired()], render_kw={'rows': 20}) poll_question="Rank" poll_answers="Upvote\n Downvote" submit = SubmitField(lazy_gettext('Save')) cancel = SubmitField(lazy_gettext('Cancel')) delete = SubmitField(lazy_gettext('Delete')) def remove_edit_fields(self): del self.group_id del self.delete def validate_group_id(self, field): if not TopicGroup.query.filter_by(id=field.data).first(): raise ValidationError(lazy_gettext('Topic group with such ID is not exist.')) class TopicWithPollForm(FlaskForm): title = StringField(lazy_gettext('Title'), validators=[DataRequired(), Length(0, 128)]) group_id = IntegerField(lazy_gettext('Topic group ID'), validators=[InputRequired()]) body = TextAreaField(lazy_gettext('Text'), validators=[DataRequired()], render_kw={'rows': 20}) poll_question = StringField(lazy_gettext('Poll question'), validators=[DataRequired(), Length(0, 256)]) poll_answers = TextAreaField(lazy_gettext('Poll answers'), validators=[DataRequired()], render_kw={'rows': 10}) submit = SubmitField(lazy_gettext('Save')) cancel = SubmitField(lazy_gettext('Cancel')) delete = SubmitField(lazy_gettext('Delete')) def remove_edit_fields(self): del self.group_id del self.delete def validate_group_id(self, field): if not TopicGroup.query.filter_by(id=field.data).first(): raise ValidationError(lazy_gettext('Topic group with such ID is not exist.')) class TopicGroupForm(FlaskForm): title = StringField(lazy_gettext('Title'), validators=[DataRequired(), Length(0, 64)]) group_id = IntegerField(lazy_gettext('Parent topic group ID'), validators=[InputRequired()]) priority = SelectField(lazy_gettext('Priority'), coerce=int) protected = BooleanField(lazy_gettext('Moderators only')) submit = SubmitField(lazy_gettext('Save')) cancel = SubmitField(lazy_gettext('Cancel')) delete = SubmitField(lazy_gettext('Delete')) def __init__(self, *args, **kwargs): super(TopicGroupForm, self).__init__(*args, **kwargs) self.priority.choices = [(p, p) for p in current_app.config['TOPIC_GROUP_PRIORITY']] def remove_edit_fields(self): del self.group_id del self.delete def validate_group_id(self, field): if not TopicGroup.query.filter_by(id=field.data).first(): raise ValidationError(lazy_gettext('Topic group with such ID is not exist.')) class CommentForm(FlaskForm): body = TextAreaField(lazy_gettext('Leave your comment, {username}:'), validators=[DataRequired()], render_kw={'rows': 4}) submit = SubmitField(lazy_gettext('Submit')) def __init__(self, user, *args, **kwargs): super(CommentForm, self).__init__(*args, **kwargs) self.body.label.text = self.body.label.text.format(username=user.username) class CommentEditForm(FlaskForm): body = TextAreaField(lazy_gettext('Text'), validators=[DataRequired()], render_kw={'rows': 8}) submit = SubmitField(lazy_gettext('Save')) cancel = SubmitField(lazy_gettext('Cancel')) delete = SubmitField(lazy_gettext('Delete')) class MessageReplyForm(FlaskForm): title = StringField(lazy_gettext('Subject'), validators=[DataRequired(), Length(0, 128)]) body = TextAreaField(lazy_gettext('Text'), validators=[DataRequired()], render_kw={'rows': 4}) send = SubmitField(lazy_gettext('Send')) close = SubmitField(lazy_gettext('Close')) delete = SubmitField(lazy_gettext('Delete')) class MessageSendForm(FlaskForm): title = StringField(lazy_gettext('Subject'), validators=[DataRequired(), Length(0, 128)]) body = TextAreaField(lazy_gettext('Text'), validators=[DataRequired()], render_kw={'rows': 4}) send = SubmitField(lazy_gettext('Send')) cancel = SubmitField(lazy_gettext('Cancel')) class SearchForm(FlaskForm): text = StringField('', validators=[DataRequired(), Length(1, 64)]) search = SubmitField(lazy_gettext('Search'))
eef750f84f81a27c35f5f451faf9e9a1b93c1cc4
4c117ea3617a576ddd07d8ea8aaab1a925fc402f
/bin/individualization/VennPlot.py
18f444e66a82a4f9f64427b83e18f591f031b0f6
[]
no_license
452990729/Rep-seq
7be6058ba3284bea81282f2db7fd3bd7895173ba
e217b115791e0aba064b2426e4502a5c1b032a94
refs/heads/master
2021-12-11T14:27:46.912144
2019-06-04T03:49:40
2019-06-04T03:49:40
190,124,555
0
1
null
null
null
null
UTF-8
Python
false
false
1,549
py
#!/usr/bin/env python import os import sys import re import matplotlib matplotlib.use('Agg') import venn from matplotlib import pyplot as plt def HandleFq(file_in): base = '_'.join(re.split('_', os.path.basename(file_in))[:2]) list_tmp = [] m = 0 with open(file_in, 'r') as in1: for line in in1: m += 1 if m%4 == 2: list_tmp.append(line.strip()) return set(list_tmp), base def ReadTab(file_in): list_tmp = [] label = '_'.join(re.split('_', os.path.basename(file_in))[:2]) with open(file_in, 'r') as in1: for line in in1.readlines()[1:]: list_tmp.append(re.split('\t', line.strip())[36]) return set(list_tmp), label def main(): len_arg = len(sys.argv) if sys.argv[1] == 'fastq': func = HandleFq elif sys.argv[1] == 'tab': func = ReadTab list_l = [] list_lb = [] for i in range(len_arg-2): l, lb = func(sys.argv[i+2]) list_l.append(l) list_lb.append(lb) labels = venn.get_labels(list_l, fill=['number',]) if len_arg == 4: fig, ax = venn.venn2(labels, names=list_lb) elif len_arg == 5: fig, ax = venn.venn3(labels, names=list_lb) elif len_arg == 6: fig, ax = venn.venn4(labels, names=list_lb) elif len_arg == 7: fig, ax = venn.venn5(labels, names=list_lb) elif len_arg == 8: fig, ax = venn.venn6(labels, names=list_lb) plt.savefig('{}wayvenn.png'.format(str(len_arg-2))) if __name__ == '__main__': main()
23206587aae4835dbc893edeaad63d67170d75c3
23e877d2e65cdc49cf9a456845470f97194674bc
/src/main/resources/http/http_request.py
e9a3e1cdc87380b5ff871b18466c069841a84cdd
[ "MIT" ]
permissive
xebialabs-community/xld-github-dynamic-dictionaries-plugin
77da6a4fea1ca2b96207d77b0396011e088ac850
67c3a596f4a7f58f9d0a939bb57091d1f82c51ee
refs/heads/master
2021-07-13T17:15:15.222551
2020-11-02T12:49:14
2020-11-02T12:49:14
68,606,897
2
2
MIT
2021-03-26T22:14:23
2016-09-19T13:09:01
Python
UTF-8
Python
false
false
9,826
py
# # Copyright 2020 XEBIALABS # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import re import urllib from java.lang import String from org.apache.commons.codec.binary import Base64 from org.apache.http import HttpHost from org.apache.http.client.config import RequestConfig from org.apache.http.client.methods import HttpGet, HttpPost, HttpPut, HttpDelete from org.apache.http.util import EntityUtils from org.apache.http.impl.client import HttpClients from http.http_response import HttpResponse class HttpRequest: def __init__(self, params, username = None, password = None): """ Builds an HttpRequest :param params: an HttpConnection :param username: the username (optional, it will override the credentials defined on the HttpConnection object) :param password: an password (optional, it will override the credentials defined on the HttpConnection object) """ self.params = params self.username = username self.password = password def do_request(self, **options): """ Performs an HTTP Request :param options: A keyword arguments object with the following properties : method: the HTTP method : 'GET', 'PUT', 'POST', 'DELETE' (optional: GET will be used if empty) context: the context url (optional: the url on HttpConnection will be used if empty) body: the body of the HTTP request for PUT & POST calls (optional: an empty body will be used if empty) contentType: the content type to use (optional, no content type will be used if empty) headers: a dictionary of headers key/values (optional, no headers will be used if empty) :return: an HttpResponse instance """ request = self.build_request( options.get('method', 'GET'), options.get('context', ''), options.get('entity', ''), options.get('contentType', None), options.get('headers', None)) return self.execute_request(request) def do_request_without_headers(self, **options): """ Performs an HTTP Request :param options: A keyword arguments object with the following properties : method: the HTTP method : 'GET', 'PUT', 'POST', 'DELETE' (optional: GET will be used if empty) context: the context url (optional: the url on HttpConnection will be used if empty) body: the body of the HTTP request for PUT & POST calls (optional: an empty body will be used if empty) contentType: the content type to use (optional, no content type will be used if empty) headers: a dictionary of headers key/values (optional, no headers will be used if empty) :return: an HttpResponse instance """ request = self.build_request_without_headers( options.get('method', 'GET'), options.get('context', ''), options.get('entity', '')) return self.execute_request(request) def get(self, context, **options): """ Performs an Http GET Request :param context: the context url :param options: the options keyword argument described in do_request() :return: an HttpResponse instance """ options['method'] = 'GET' options['context'] = context return self.do_request(**options) def put(self, context, entity, **options): """ Performs an Http PUT Request :param context: the context url :param body: the body of the HTTP request :param options: the options keyword argument described in do_request() :return: an HttpResponse instance """ options['method'] = 'PUT' options['context'] = context options['entity'] = entity return self.do_request(**options) def post(self, context, entity, **options): """ Performs an Http POST Request :param context: the context url :param body: the body of the HTTP request :param options: the options keyword argument described in do_request() :return: an HttpResponse instance """ options['method'] = 'POST' options['context'] = context options['entity'] = entity return self.do_request(**options) def post_without_headers(self, context, entity, **options): """ Performs an Http POST Request :param context: the context url :param body: the body of the HTTP request :param options: the options keyword argument described in do_request() :return: an HttpResponse instance """ options['method'] = 'POST' options['context'] = context options['entity'] = entity return self.do_request_without_headers(**options) def delete(self, context, **options): """ Performs an Http DELETE Request :param context: the context url :param options: the options keyword argument described in do_request() :return: an HttpResponse instance """ options['method'] = 'DELETE' options['context'] = context return self.do_request(**options) def build_request(self, method, context, entity, contentType, headers): url = self.quote(self.create_path(self.params.getUrl(), context)) method = method.upper() if method == 'GET': request = HttpGet(url) elif method == 'POST': request = HttpPost(url) request.setEntity(entity) elif method == 'PUT': request = HttpPut(url) request.setEntity(entity) elif method == 'DELETE': request = HttpDelete(url) else: raise Exception('Unsupported method: ' + method) request.addHeader('Content-Type', contentType) request.addHeader('Accept', contentType) self.set_credentials(request) self.set_proxy(request) self.setHeaders(request, headers) return request def build_request_without_headers(self, method, context, entity): url = self.quote(self.create_path(self.params.getUrl(), context)) method = method.upper() if method == 'GET': request = HttpGet(url) elif method == 'POST': request = HttpPost(url) request.setEntity(entity) elif method == 'PUT': request = HttpPut(url) request.setEntity(entity) elif method == 'DELETE': request = HttpDelete(url) else: raise Exception('Unsupported method: ' + method) self.set_credentials(request) self.set_proxy(request) return request def create_path(self, url, context): url = re.sub('/*$', '', url) if context is None: return url elif context.startswith('/'): return url + context else: return url + '/' + context def quote(self, url): return urllib.quote(url, ':/?&=%') def set_credentials(self, request): if self.username: username = self.username password = self.password elif self.params.getUsername(): username = self.params.getUsername() password = self.params.getPassword() else: return encoding = Base64.encodeBase64String(String(username + ':' + password).getBytes()) request.addHeader('Authorization', 'Basic ' + encoding) def set_proxy(self, request): if not self.params.getProxyHost(): return proxy = HttpHost(self.params.getProxyHost(), int(self.params.getProxyPort())) config = RequestConfig.custom().setProxy(proxy).build() request.setConfig(config) def setHeaders(self, request, headers): if headers: for key in headers: request.setHeader(key, headers[key]) def execute_request(self, request): client = None response = None try: client = HttpClients.createDefault() response = client.execute(request) status = response.getStatusLine().getStatusCode() entity = response.getEntity() result = EntityUtils.toString(entity, "UTF-8") if entity else None headers = response.getAllHeaders() EntityUtils.consume(entity) return HttpResponse(status, result, headers) finally: if response: response.close() if client: client.close()
c423950c678b966d72c428c4dadd7d1045308bbb
c536c764aab4170c64f3f8b78bd91593dcb161a3
/vigenereb62.py
037292215097560084e9451db9c5655b7c2fb996
[]
no_license
numberly/vigenere-b62
63bbc95c1f9390e9623a5882a9c2a14d110851b4
3dea3394ee557ba2e589af014cbc4454ebbbc874
refs/heads/master
2023-02-16T02:13:31.254670
2021-01-11T15:24:58
2021-01-11T15:24:58
328,698,862
4
1
null
null
null
null
UTF-8
Python
false
false
535
py
def iter_reverse_digits(number, base): while number != 0: digit = number % base yield digit number -= digit number //= base def encode(alphabets, seed, size=6): if len(alphabets) < size: raise ValueError("There should be an alphabet per character you want") secret = "".join( alphabets[i][digit] for i, digit in enumerate(iter_reverse_digits(seed, len(alphabets[0]))) ) secret += "".join(alphabets[i][0] for i in range(len(secret), size)) return secret
705c2db27a5d0906938b557caab4e18133150a24
19ac1d0131a14ba218fd2c55d585170222eb9400
/social_login/wsgi.py
9523f947cda705e24cea5e1c828e7fb9ee17044c
[]
no_license
oereo/social-login
4ed27658c585dd0a24484e628e053070fe012518
41e67b889354189c986da45bcf03c20c1f1063e3
refs/heads/master
2023-01-15T22:38:06.667909
2020-11-22T12:12:08
2020-11-22T12:12:08
303,985,281
1
0
null
null
null
null
UTF-8
Python
false
false
401
py
""" WSGI config for social_login project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'social_login.settings') application = get_wsgi_application()
1bff440e67a7189665b42fe0833a0c9b007950e7
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_defenders.py
bb7548df4efbbe4fec4aeb39f3eec118e52a2ba7
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
252
py
from xai.brain.wordbase.nouns._defender import _DEFENDER #calss header class _DEFENDERS(_DEFENDER, ): def __init__(self,): _DEFENDER.__init__(self) self.name = "DEFENDERS" self.specie = 'nouns' self.basic = "defender" self.jsondata = {}
8339c4b6670fe18b61771e18903739838373f58c
01ce2eec1fbad3fb2d98085ebfa9f27c7efb4152
/itertools/itertools-combinations.py
b32166fe2a76aece52bb636b0b8705a63f17c3ce
[ "MIT" ]
permissive
anishLearnsToCode/hackerrank-python
4cfeaf85e33f05342df887896fa60dae5cc600a5
7d707c07af051e7b00471ebe547effd7e1d6d9d9
refs/heads/master
2023-01-01T23:39:01.143328
2020-11-01T07:31:15
2020-11-01T07:31:15
265,767,347
8
4
null
null
null
null
UTF-8
Python
false
false
252
py
# https://www.hackerrank.com/challenges/itertools-combinations/problem import itertools line = input().split() word = sorted(line[0]) k = int(line[1]) for i in range(1, k + 1): for j in itertools.combinations(word, i): print(''.join(j))
e4603076015ad9b338c87de21b02807faa509853
91948d5be26636f1f2b941cb933701ea626a695b
/amazon_longest_substring_with_no_repeat.py
30208e55e14fb6ba9b3eabe03ddda30851bc6a3b
[ "MIT" ]
permissive
loghmanb/daily-coding-problem
4ae7dd201fde5ee1601e0acae9e9fc468dcd75c9
b2055dded4276611e0e7f1eb088e0027f603aa7b
refs/heads/master
2023-08-14T05:53:12.678760
2023-08-05T18:12:38
2023-08-05T18:12:38
212,894,228
1
0
null
null
null
null
UTF-8
Python
false
false
2,709
py
''' Longest Substring Without Repeat Asked in: Amazon https://www.interviewbit.com/problems/longest-substring-without-repeat/ Given a string, find the length of the longest substring without repeating characters. Example: The longest substring without repeating letters for "abcabcbb" is "abc", which the length is 3. For "bbbbb" the longest substring is "b", with the length of 1. ''' # @param A : string # @return an integer def lengthOfLongestSubstring(A): if not A: return 0 result = 0 letters = set() N = len(A) i = j = 0 while i<N and j<N: if A[j] in letters: letters.remove(A[i]) i += 1 else: letters.add(A[j]) j += 1 result = max(result, j-i) return result if __name__ == "__main__": data = [ ['abcabcbb', 3], ['Wnb9z9dMc7E8v1RTUaZPoDNIAXRlzkqLaa97KMWLzbitaCkRpiE4J4hJWhRcGnC8H6mwasgDfZ76VKdXhvEYmYrZY4Cfmf4HoSlchYWFEb1xllGKyEEmZOLPh1V6RuM7Mxd7xK72aNrWS4MEaUmgEn7L4rW3o14Nq9l2EN4HH6uJWljI8a5irvuODHY7A7ku4PJY2anSWnfJJE1w8p12Ks3oZRxAF3atqGBlzVQ0gltOwYmeynttUmQ4QBDLDrS4zn4VRZLosOITo4JlIqPD6t4NjhHThOjJxpMp9fICkrgJeGiDAwsb8a3I7Txz5BBKV9bEfMsKNhCuY3W0ZHqY0MhBfz1CbYCzwZZdM4p65ppP9s5QJcfjadmMMi26JKz0TVVwvNA8LP5Vi1QsxId4SI19jfcUH97wmZu0pbw1zFtyJ8GAp5yjjQTzFIboC1iRzklnOJzJld9TMaxqvBNBJKIyDjWrdfLOY8FGMOcPhfJ97Dph35zfxYyUf4DIqFi94lm9J0skYqGz9JT0kiAABQZDazZcNi80dSSdveSl6h3dJjHmlK8qHIlDsqFd5FMhlEirax8WA0v3NDPT8vPhwKpxcnVeu14Gcxr3h1wAXXV0y7Xy9qqB2NQ5HQLJ7cyXAckEYHsLCPSy28xcdNJatx1KLWohOQado4WywJbGvsFR17rKmvOPABweXnFD3odrbSMD4Na4nuBBswvMmFRTUOcf7jZi4z5JnJqXz6hitaPnaEtjoSEBq82a52nvqYy7hhldBoxen2et2OMadVEHeTYLL7GLsIhTP6UizHIuzcJMljo4lFgW5AyrfUlIBPAlhwaSiJtTvcbVZynDSM6RO1PqFKWKg2MHIgNhjuzENg2oFCfW7z5KJvEL9qWqKzZNc0o3BMRjS04NCHFvhtsteQoQRgz84XZBHBJRdekCdcVVXu9c01gYRAz7oIAxN3zKZb64EFKssfQ4HW971jv3H7x5E9dAszA0HrKTONyZDGYtHWt4QLhNsIs8mo4AIN7ecFKewyvGECAnaJpDn1MTTS4yTgZnm6N6qnmfjVt6ZU51F9BxH0jVG0kovTGSjTUkmb1mRTLQE5mTlVHcEz3yBOh4WiFFJjKJdi1HBIBaDL4r45HzaBvmYJPlWIomkqKEmQ4rLAbYG7C5rFfpMu8rHvjU7hP0JVvteGtaGn7mqeKsn7CgrJX1tb8t0ldaS3iUy8SEKAo5IZHNKOfEaij3nI4oRVzeVOZsH91pMsA4jRYgEohubPW8ciXwVrFi1qEWjvB8gfalyP60n1fHyjsiLW0T5uY1JzQWHKCbLVh7QFoJFAEV0L516XmzIo556yRH1vhPnceOCjebqgsmO78AQ8Ir2d4pHFFHAGB9lESn3OtJye1Lcyq9D6X93UakA3JKVKEt6JZDLVBMp4msOefkPKSw59Uix9d9kOQm8WCepJTangdNSOKaxblZDNJ5eHvEroYacBhd9UdafEitdF3nfStF7AhkSfQVC61YWWkKTNdx96OoJGTnxuqt4oFZNFtO7aMuN3IJAkw3m3kgZFRGyd3D3wweagNL9XlYtvZwejbjpkDOZz33C0jbEWaMEaUPw6BG49XqyQoUwtriguO0yvWyaJqD4ye3o0E46huKYAsdKAq6MLWMxF6tfyPVaoqOGd0eOBHbAF89XXmDd4AIkoFPXkAOW8hln5nXnIWP6RBbfEkPPbxoToMbV', 27] ] for d in data: print('input', d[0], lengthOfLongestSubstring(d[0]))
5722c5bd79ba59802f5e4174de590823f9b31f54
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5631989306621952_1/Python/Hotshot8325/Q2.py
c61b1a46284a8ff8a0e7daff7477923bbd7b7f0f
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
968
py
#CodeJam pancake problem import csv import string #import data from test file in the form [[[],[]],[[],[]].... with [[],[]] being one test case with open('a-large.in') as csvfile: testCase = csv.reader(csvfile, delimiter = ' ', quotechar='|') rowNum = 0 inputText = [] #swapCount = [] for row in testCase: #row = [str(i) for i in row] if rowNum == 0: numTestCases = int(row[0]) else: inputText.append(row) rowNum = rowNum + 1 for i in range(0,numTestCases): letterInput = inputText[i][0] lastWord = letterInput[0] for j in range(1,len(letterInput)): if string.uppercase.index(letterInput[j])>=string.uppercase.index(lastWord[0]): lastWord = letterInput[j]+lastWord else: lastWord = lastWord +letterInput[j] print "Case #"+str(i+1)+": "+lastWord
566302b568f0103bd3c6c2d54e6988ac6dd06f4b
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/JD9vSKZGrxQhLbA9r_11.py
8153c6d8cc99992256ea1d82f8771cd6328f44f3
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
def pile_of_cubes(m): if m >= 10252519345963644753026: return None x = m**0.5 if (x%1==0): c = 1 while (x != c and x > 0): x = x - c c = c + 1 if (x == c): return c return None
05f1c23936d977e70fdef1e44fc27ab9f069cadf
55647a80c8b412af9df0ba3f50595cc2f29c25e6
/res/scripts/common/Lib/encodings/gbk.py
4b4a46dcbfdea9c2f98724c76a52405e54febf9c
[]
no_license
cnsuhao/WOT-0.9.17-CT
0035eb6070fb4fab8d8ee9f8bbc676c10d511cfb
d1f932d8cabaf8aa21708622e87f83c8d24d6451
refs/heads/master
2021-06-08T18:11:07.039293
2016-11-19T19:12:37
2016-11-19T19:12:37
null
0
0
null
null
null
null
WINDOWS-1250
Python
false
false
1,136
py
# 2016.11.19 19:58:56 Střední Evropa (běžný čas) # Embedded file name: scripts/common/Lib/encodings/gbk.py import _codecs_cn, codecs import _multibytecodec as mbc codec = _codecs_cn.getcodec('gbk') class Codec(codecs.Codec): encode = codec.encode decode = codec.decode class IncrementalEncoder(mbc.MultibyteIncrementalEncoder, codecs.IncrementalEncoder): codec = codec class IncrementalDecoder(mbc.MultibyteIncrementalDecoder, codecs.IncrementalDecoder): codec = codec class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader): codec = codec class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter): codec = codec def getregentry(): return codecs.CodecInfo(name='gbk', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter) # okay decompyling c:\Users\PC\wotsources\files\originals\res\scripts\common\Lib\encodings\gbk.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2016.11.19 19:58:56 Střední Evropa (běžný čas)
cd75f26df497e0e47746786f0197f8dc9b218f06
930c207e245c320b108e9699bbbb036260a36d6a
/BRICK-RDFAlchemy/generatedCode/brick/brickschema/org/schema/_1_0_2/Brick/FCU_Return_Air_Temperature_Sensor.py
d4ac39c9698a57051d03037b2f79dc41b5511c4b
[]
no_license
InnovationSE/BRICK-Generated-By-OLGA
24d278f543471e1ce622f5f45d9e305790181fff
7874dfa450a8a2b6a6f9927c0f91f9c7d2abd4d2
refs/heads/master
2021-07-01T14:13:11.302860
2017-09-21T12:44:17
2017-09-21T12:44:17
104,251,784
1
0
null
null
null
null
UTF-8
Python
false
false
457
py
from rdflib import Namespace, Graph, Literal, RDF, URIRef from rdfalchemy.rdfSubject import rdfSubject from rdfalchemy import rdfSingle, rdfMultiple, rdfList from brick.brickschema.org.schema._1_0_2.Brick.Return_Air_Temperature_Sensor import Return_Air_Temperature_Sensor class FCU_Return_Air_Temperature_Sensor(Return_Air_Temperature_Sensor): rdf_type = Namespace('https://brickschema.org/schema/1.0.2/Brick#').FCU_Return_Air_Temperature_Sensor
1158acb79cf822c0ded1ea29f10b77727305c073
cd142a4e15d3576546fcb44841417039f0b8fb00
/build/double/catkin_generated/pkg.installspace.context.pc.py
9b014836f2e3e476722b6c40aa901294660dad37
[]
no_license
mgou123/rplidar
4389819eb1998d404d1066c7b4a983972d236ce7
608c1f6da2d3e5a8bac06e8d55d8569af828a40b
refs/heads/master
2022-11-10T05:51:56.403293
2020-06-29T04:16:14
2020-06-29T04:16:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;std_msgs;sensor_msgs".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "double" PROJECT_SPACE_DIR = "/home/xu/dogkin_ws/install" PROJECT_VERSION = "0.0.0"
237743cb29e83580cbade37977253888764a05b4
f4f54015298eedfbbdfcaaf5e2a9603112f803a5
/sachin/gocept.filestore-0.3/gocept.filestore-0.3/src/gocept/filestore/tests.py
39487c46c2cf44f18a2df60610d46b4e1e9848c4
[]
no_license
raviramawat8/Old_Python_Codes
f61e19bff46856fda230a096aa789c7e54bd97ca
f940aed0611b0636e1a1b6826fa009ceb2473c2b
refs/heads/master
2020-03-22T22:54:50.964816
2018-06-16T01:39:43
2018-06-16T01:39:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
335
py
# Copyright (c) 2007 gocept gmbh & co. kg # See also LICENSE.txt # $Id: tests.py 5111 2007-08-30 11:27:23Z zagy $ import unittest from zope.testing import doctest def test_suite(): suite = unittest.TestSuite() suite.addTest(doctest.DocFileSuite( 'README.txt', optionflags=doctest.ELLIPSIS)) return suite
1eb7d4b356ecdfbafd7359821f946512d7724998
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/googlecloudsdk/generated_clients/apis/artifactregistry/v1beta2/resources.py
1c5440583e39b379a1c8a68cde0b2d6841f35146
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
3,295
py
# -*- coding: utf-8 -*- # # Copyright 2023 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource definitions for Cloud Platform Apis generated from apitools.""" import enum BASE_URL = 'https://artifactregistry.googleapis.com/v1beta2/' DOCS_URL = 'https://cloud.google.com/artifacts/docs/' class Collections(enum.Enum): """Collections for all supported apis.""" PROJECTS = ( 'projects', 'projects/{projectsId}', {}, ['projectsId'], True ) PROJECTS_LOCATIONS = ( 'projects.locations', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}', }, ['name'], True ) PROJECTS_LOCATIONS_OPERATIONS = ( 'projects.locations.operations', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/operations/' '{operationsId}', }, ['name'], True ) PROJECTS_LOCATIONS_REPOSITORIES = ( 'projects.locations.repositories', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/repositories/' '{repositoriesId}', }, ['name'], True ) PROJECTS_LOCATIONS_REPOSITORIES_FILES = ( 'projects.locations.repositories.files', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/repositories/' '{repositoriesId}/files/{filesId}', }, ['name'], True ) PROJECTS_LOCATIONS_REPOSITORIES_PACKAGES = ( 'projects.locations.repositories.packages', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/repositories/' '{repositoriesId}/packages/{packagesId}', }, ['name'], True ) PROJECTS_LOCATIONS_REPOSITORIES_PACKAGES_TAGS = ( 'projects.locations.repositories.packages.tags', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/repositories/' '{repositoriesId}/packages/{packagesId}/tags/{tagsId}', }, ['name'], True ) PROJECTS_LOCATIONS_REPOSITORIES_PACKAGES_VERSIONS = ( 'projects.locations.repositories.packages.versions', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/repositories/' '{repositoriesId}/packages/{packagesId}/versions/{versionsId}', }, ['name'], True ) def __init__(self, collection_name, path, flat_paths, params, enable_uri_parsing): self.collection_name = collection_name self.path = path self.flat_paths = flat_paths self.params = params self.enable_uri_parsing = enable_uri_parsing
9805ffe4daef50c8bdfe737999913fe9357c8479
e4da82e4beb9b1af7694fd5b49824a1c53ee59ff
/AutoWorkup/SEMTools/registration/averagebraingenerator.py
b206faa7d7b842adead8675771f35338e6d91db4
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
ipekoguz/BRAINSTools
c8732a9206525adb5779eb0c2ed97f448e2df47f
dc32fa0820a0d0b3bd882fa744e79194c9c137bc
refs/heads/master
2021-01-18T08:37:03.883250
2013-05-14T21:08:33
2013-05-14T21:08:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,709
py
# -*- coding: utf8 -*- """Autogenerated file - DO NOT EDIT If you spot a bug, please report it on the mailing list and/or change the generator.""" from nipype.interfaces.base import CommandLine, CommandLineInputSpec, SEMLikeCommandLine, TraitedSpec, File, Directory, traits, isdefined, InputMultiPath, OutputMultiPath import os class AverageBrainGeneratorInputSpec(CommandLineInputSpec): inputDirectory = File(desc="Image To Warp", exists=True, argstr="--inputDirectory %s") templateVolume = File(desc="Reference image defining the output space", exists=True, argstr="--templateVolume %s") resolusion = traits.Str(desc="The resolusion.", argstr="--resolusion %s") iteration = traits.Str(desc="The iteration.", argstr="--iteration %s") pixelType = traits.Enum("uchar", "short", "ushort", "int", "uint", "float", desc="Specifies the pixel type for the input/output images", argstr="--pixelType %s") outputVolume = traits.Either(traits.Bool, File(), hash_files=False, desc="Resulting deformed image", argstr="--outputVolume %s") class AverageBrainGeneratorOutputSpec(TraitedSpec): outputVolume = File(desc="Resulting deformed image", exists=True) class AverageBrainGenerator(SEMLikeCommandLine): """title: Average Brain Generator category: Registration description: This programs creates synthesized average brain. version: 0.1 documentation-url: http:://mri.radiology.uiowa.edu/mriwiki license: NEED TO ADD contributor: This tool was developed by Yongqiang Zhao. """ input_spec = AverageBrainGeneratorInputSpec output_spec = AverageBrainGeneratorOutputSpec _cmd = " AverageBrainGenerator " _outputs_filenames = {'outputVolume':'outputVolume'}
4ff8a625e52e7a2fc0f40fd40fdb70a36086c6e2
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/sunData/SType/ST_facets/ST_facets00201m/ST_facets00201m9_p.py
6b09bb1b8dd9512268b76bbd79e2c658e0d3fc7d
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
139
py
from output.models.sun_data.stype.st_facets.st_facets00201m.st_facets00201m9_xsd.st_facets00201m9 import Test obj = Test( value=10 )
8927c9bfdeb3e5161e03c5bbfb20291758317781
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2367/60791/254956.py
3891197249694bfc95edf61b7fdb4f59e0c7209d
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
127
py
k = int(input()) n = '1' if(k%2==0 or k%5==0): print(-1) else: while(int(n)%k != 0): n += '1' print(len(n))
e6dfd9cb391b1dc09795b1911c78d7980a0ff1ee
b7f45072d056b80ed49e6bcde91877d8576e970d
/ImageJ/py/Wayne-blob-example.py
610a35e6e5ddb80455ce608015ed6b1efdfc7ff2
[]
no_license
jrminter/tips
128a18ee55655a13085c174d532c77bcea412754
f48f8b202f8bf9e36cb6d487a23208371c79718e
refs/heads/master
2022-06-14T08:46:28.972743
2022-05-30T19:29:28
2022-05-30T19:29:28
11,463,325
5
8
null
2019-12-18T16:24:02
2013-07-17T00:16:43
Jupyter Notebook
UTF-8
Python
false
false
321
py
from org.python.core import codecs codecs.setDefaultEncoding('utf-8') import os from ij import IJ, WindowManager IJ.run("Close All") img = IJ.openImage("http://wsr.imagej.net/images/blobs.gif") IJ.setAutoThreshold(img, "Default") IJ.run(img, "Analyze Particles...", " show=[Bare Outlines] include in_situ") img.show()
014cbf61158fb280b11d2f149b026f48d5234c0e
2e2a54e30f8c8018fe0d163a5fd4b0d854ef165d
/src/gluonts/torch/model/deep_npts/_network.py
c29d1935c3d32e884ec124b33fde866e0b55aa92
[ "Apache-2.0" ]
permissive
kashif/gluon-ts
b742021ca0292ca2885b3b079150f24cdf3e6dec
a818f69dc049c1c1d57e09d2ccb8b5f7a0cff656
refs/heads/master
2023-09-05T00:00:22.861992
2023-08-09T15:47:28
2023-08-09T15:47:28
222,552,468
5
0
null
2019-11-18T21:56:52
2019-11-18T21:56:52
null
UTF-8
Python
false
false
14,377
py
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from functools import partial from typing import Optional, Callable, List, Union import torch from torch import nn from torch.distributions import ( Categorical, MixtureSameFamily, Normal, ) from gluonts.core.component import validated from gluonts.torch.distributions import DiscreteDistribution from .scaling import ( min_max_scaling, standard_normal_scaling, ) INPUT_SCALING_MAP = { "min_max_scaling": partial(min_max_scaling, dim=1, keepdim=True), "standard_normal_scaling": partial( standard_normal_scaling, dim=1, keepdim=True ), } def init_weights(module: nn.Module, scale: float = 1.0): if type(module) == nn.Linear: nn.init.uniform_(module.weight, -scale, scale) nn.init.zeros_(module.bias) class FeatureEmbedder(nn.Module): """Creates a feature embedding for the static categorical features.""" @validated() def __init__( self, cardinalities: List[int], embedding_dimensions: List[int], ): super().__init__() assert ( len(cardinalities) > 0 ), "Length of `cardinalities` list must be greater than zero" assert len(cardinalities) == len( embedding_dimensions ), "Length of `embedding_dims` and `embedding_dims` should match" assert all( [c > 0 for c in cardinalities] ), "Elements of `cardinalities` should be > 0" assert all( [d > 0 for d in embedding_dimensions] ), "Elements of `embedding_dims` should be > 0" self.embedders = [ torch.nn.Embedding(num_embeddings=card, embedding_dim=dim) for card, dim in zip(cardinalities, embedding_dimensions) ] for embedder in self.embedders: embedder.apply(init_weights) def forward(self, features: torch.Tensor): """ Parameters ---------- features Input features to the model, shape: (-1, num_features). Returns ------- torch.Tensor Embedding, shape: (-1, sum(self.embedding_dimensions)). """ embedded_features = torch.cat( [ embedder(features[:, i].long()) for i, embedder in enumerate(self.embedders) ], dim=-1, ) return embedded_features class DeepNPTSNetwork(nn.Module): """Base class implementing a simple feed-forward neural network that takes in static and dynamic features and produces `num_hidden_nodes` independent outputs. These outputs are then used by derived classes to construct the forecast distribution for a single time step. Note that the dynamic features are just treated as independent features without considering their temporal nature. """ @validated() def __init__( self, context_length: int, num_hidden_nodes: List[int], cardinality: List[int], embedding_dimension: List[int], num_time_features: int, batch_norm: bool = False, input_scaling: Optional[Union[Callable, str]] = None, dropout_rate: float = 0.0, ): super().__init__() self.context_length = context_length self.num_hidden_nodes = num_hidden_nodes self.batch_norm = batch_norm self.input_scaling = ( INPUT_SCALING_MAP[input_scaling] if isinstance(input_scaling, str) else input_scaling ) self.dropout_rate = dropout_rate # Embedding for categorical features self.embedder = FeatureEmbedder( cardinalities=cardinality, embedding_dimensions=embedding_dimension ) total_embedding_dim = sum(embedding_dimension) # We have two target related features: past_target and observed value # indicator each of length `context_length`. # Also, +1 for the static real feature. dimensions = [ context_length * (num_time_features + 2) + total_embedding_dim + 1 ] + num_hidden_nodes modules: List[nn.Module] = [] for in_features, out_features in zip(dimensions[:-1], dimensions[1:]): modules += [nn.Linear(in_features, out_features), nn.ReLU()] if self.batch_norm: modules.append(nn.BatchNorm1d(out_features)) if self.dropout_rate > 0: modules.append(nn.Dropout(self.dropout_rate)) self.model = nn.Sequential(*modules) self.model.apply(partial(init_weights, scale=0.07)) # TODO: Handle missing values using the observed value indicator. def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ): """ Parameters ---------- feat_static_cat Shape (-1, num_features). feat_static_real Shape (-1, num_features). past_target Shape (-1, context_length). past_observed_values Shape (-1, context_length). past_time_feat Shape (-1, context_length, self.num_time_features). """ x = past_target if self.input_scaling: loc, scale = self.input_scaling(x) x_scaled = (x - loc) / scale else: x_scaled = x embedded_cat = self.embedder(feat_static_cat) static_feat = torch.cat( (embedded_cat, torch.tensor(feat_static_real)), dim=1, ) time_features = torch.cat( [ x_scaled.unsqueeze(dim=-1), past_observed_values.unsqueeze(dim=-1), past_time_feat, ], dim=-1, ) features = torch.cat( [ time_features.reshape(time_features.shape[0], -1), static_feat, ], dim=-1, ) return self.model(features) class DeepNPTSNetworkDiscrete(DeepNPTSNetwork): """ Extends `DeepNTPSNetwork` by implementing the output layer which converts the outputs from the base network into probabilities of length `context_length`. These probabilities together with the past values in the context window constitute the one-step-ahead forecast distribution. Specifically, the forecast is always one of the values observed in the context window with the corresponding predicted probability. Parameters ---------- *args Arguments to ``DeepNPTSNetwork``. use_softmax Flag indicating whether to use softmax or normalization for converting the outputs of the base network to probabilities. kwargs Keyword arguments to ``DeepNPTSNetwork``. """ @validated() def __init__(self, *args, use_softmax: bool = False, **kwargs): super().__init__(*args, **kwargs) self.use_softmax = use_softmax modules: List[nn.Module] = ( [] if self.dropout_rate > 0 else [nn.Dropout(self.dropout_rate)] ) modules.append( nn.Linear(self.num_hidden_nodes[-1], self.context_length) ) self.output_layer = nn.Sequential(*modules) self.output_layer.apply(init_weights) def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ) -> DiscreteDistribution: h = super().forward( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, ) outputs = self.output_layer(h) probs = ( nn.functional.softmax(outputs, dim=1) if self.use_softmax else nn.functional.normalize( nn.functional.softplus(outputs), p=1, dim=1 ) ) return DiscreteDistribution(values=past_target, probs=probs) class DeepNPTSNetworkSmooth(DeepNPTSNetwork): """ Extends `DeepNTPSNetwork` by implementing the output layer which converts the outputs from the base network into a smoothed mixture distribution. The components of the mixture are Gaussians centered around the observations in the context window. The mixing probabilities as well as the width of the Gaussians are predicted by the network. This mixture distribution represents the one-step-ahead forecast distribution. Note that the forecast can contain values not observed in the context window. """ @validated() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) modules = ( [] if self.dropout_rate > 0 else [nn.Dropout(self.dropout_rate)] ) modules += [ nn.Linear(self.num_hidden_nodes[-1], self.context_length + 1), nn.Softplus(), ] self.output_layer = nn.Sequential(*modules) self.output_layer.apply(init_weights) def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ) -> MixtureSameFamily: h = super().forward( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, ) outputs = self.output_layer(h) probs = outputs[:, :-1] kernel_width = outputs[:, -1:] mix = Categorical(probs) components = Normal(loc=past_target, scale=kernel_width) return MixtureSameFamily( mixture_distribution=mix, component_distribution=components ) class DeepNPTSMultiStepNetwork(nn.Module): """ Implements multi-step prediction given a trained `DeepNPTSNetwork` model that outputs one-step-ahead forecast distribution. """ @validated() def __init__( self, net: DeepNPTSNetwork, prediction_length: int, num_parallel_samples: int = 100, ): super().__init__() self.net = net self.prediction_length = prediction_length self.num_parallel_samples = num_parallel_samples def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, future_time_feat: torch.Tensor, ): """Generates samples from the forecast distribution. Parameters ---------- feat_static_cat Shape (-1, num_features). feat_static_real Shape (-1, num_features). past_target Shape (-1, context_length). past_observed_values Shape (-1, context_length). past_time_feat Shape (-1, context_length, self.num_time_features). future_time_feat Shape (-1, prediction_length, self.num_time_features). Returns ------- torch.Tensor Tensor containing samples from the predicted distribution. Shape is (-1, self.num_parallel_samples, self.prediction_length). """ # Blow up the initial `x` by the number of parallel samples required. # (batch_size * num_parallel_samples, context_length) past_target = past_target.repeat_interleave( self.num_parallel_samples, dim=0 ) # Note that gluonts returns empty future_observed_values. future_observed_values = torch.ones( (past_observed_values.shape[0], self.prediction_length) ) observed_values = torch.cat( [past_observed_values, future_observed_values], dim=1 ) observed_values = observed_values.repeat_interleave( self.num_parallel_samples, dim=0 ) time_feat = torch.cat([past_time_feat, future_time_feat], dim=1) time_feat = time_feat.repeat_interleave( self.num_parallel_samples, dim=0 ) feat_static_cat = feat_static_cat.repeat_interleave( self.num_parallel_samples, dim=0 ) feat_static_real = feat_static_real.repeat_interleave( self.num_parallel_samples, dim=0 ) future_samples = [] for t in range(self.prediction_length): distr = self.net( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=observed_values[ :, t : -self.prediction_length + t ], past_time_feat=time_feat[ :, t : -self.prediction_length + t, : ], ) samples = distr.sample() if past_target.dim() != samples.dim(): samples = samples.unsqueeze(dim=-1) future_samples.append(samples) past_target = torch.cat([past_target[:, 1:], samples], dim=1) # (batch_size * num_parallel_samples, prediction_length) samples_out = torch.stack(future_samples, dim=1) # (batch_size, num_parallel_samples, prediction_length) return samples_out.reshape( -1, self.num_parallel_samples, self.prediction_length )
fd8cfb47b2d8e17dae6ea7bb6a37a38a95978a58
ef5f8a1d7b098391b5e5fce57edc83870204fe69
/albert_model/clue_classifier_utils_char_no_space.py
b1755d70cbfbb75c08b321f41ecb2ab40f4d9ea6
[ "Apache-2.0" ]
permissive
guome/subchar-transformers
9829ded6c312adabf481c11ea25a2eaa069a1aaa
54c3bfb5c197946fa5a8b6ed5524b81284259613
refs/heads/master
2022-07-04T16:21:12.589815
2020-05-13T12:49:54
2020-05-13T12:49:54
263,630,138
1
0
null
2020-05-13T12:57:25
2020-05-13T12:57:24
null
UTF-8
Python
false
false
21,002
py
# -*- coding: utf-8 -*- # @Author: bo.shi # @Date: 2019-12-01 22:28:41 # @Last Modified by: bo.shi # @Last Modified time: 2019-12-02 18:36:50 # coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for GLUE classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import csv import os import six import tensorflow as tf def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def __init__(self, args): self.args = args def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, delimiter="\t", quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter=delimiter, quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines @classmethod def _read_txt(cls, input_file): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = f.readlines() lines = [] for line in reader: lines.append(line.strip().split("_!_")) return lines @classmethod def _read_json(cls, input_file): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = f.readlines() lines = [] for line in reader: lines.append(json.loads(line.strip())) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def _create_examples(self, lines, set_type): """See base class.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = convert_to_unicode(line['premise']) text_b = convert_to_unicode(line['hypo']) label = convert_to_unicode(line['label']) if set_type != 'test' else 'contradiction' examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] class TnewsProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" labels = [] for i in range(17): if i == 5 or i == 11: continue labels.append(str(100 + i)) return labels def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['sentence'].strip() if hasattr(self.args, "max_sent_length"): text_a = text_a[: self.args.max_sent_length] if self.args.do_lower_case: text_a = text_a.lower() text_a = convert_to_unicode(text_a) text_b = None label = convert_to_unicode(line['label']) if set_type != 'test' else "100" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class iFLYTEKDataProcessor(DataProcessor): """Processor for the iFLYTEKData data set (GLUE version).""" def __init__(self, args): super(iFLYTEKDataProcessor, self).__init__(args) self.args = args def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" labels = [] for i in range(119): labels.append(str(i)) return labels def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" # dict_char2comp = json.load(open("./resources/char2comp.json", "r")) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['sentence'].strip() if hasattr(self.args, "max_sent_length"): text_a = text_a[: self.args.max_sent_length] if self.args.do_lower_case: text_a = text_a.lower() # print(text_a) text_a = convert_to_unicode(text_a) text_b = None label = convert_to_unicode(line['label']) if set_type != 'test' else "0" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) if i < 5: print(text_a) print(text_b) return examples class ChnSentiCorpDataProcessor(DataProcessor): """Processor for the iFLYTEKData data set (GLUE version).""" def __init__(self, args): super(ChnSentiCorpDataProcessor, self).__init__(args) self.args = args def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" labels = [] for i in range(2): labels.append(str(i)) return labels def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" # dict_char2comp = json.load(open("./resources/char2comp.json", "r")) examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['sentence'].strip() if hasattr(self.args, "max_sent_length"): text_a = text_a[: self.args.max_sent_length] if self.args.do_lower_case: text_a = text_a.lower() # print(text_a) text_a = convert_to_unicode(text_a) text_b = None label = convert_to_unicode(line['label']) if set_type != 'test' else "0" examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) if i < 5: print(text_a) print(text_b) return examples class LCQMCProcessor(DataProcessor): """Processor for the internal data set. sentence pair classification""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['sentence1'].strip() if hasattr(self.args, "max_sent_length"): text_a = text_a[: self.args.max_sent_length] if self.args.do_lower_case: text_a = text_a.lower() text_a = convert_to_unicode(text_a) text_b = line['sentence2'].strip() if hasattr(self.args, "max_sent_length"): text_b = text_b[: self.args.max_sent_length] if self.args.do_lower_case: text_b = text_b.lower() text_b = convert_to_unicode(text_b) label = convert_to_unicode(line['label']) if set_type != 'test' else '0' examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) if i < 5: print(text_a) print(text_b) return examples class AFQMCProcessor(DataProcessor): """Processor for the internal data set. sentence pair classification""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = convert_to_unicode(line['sentence1']) text_b = convert_to_unicode(line['sentence2']) label = convert_to_unicode(line['label']) if set_type != 'test' else '0' examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class CMNLIProcessor(DataProcessor): """Processor for the CMNLI data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples_json(os.path.join(data_dir, "train.json"), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples_json(os.path.join(data_dir, "dev.json"), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples_json(os.path.join(data_dir, "test.json"), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples_json(self, file_name, set_type): """Creates examples for the training and dev sets.""" examples = [] lines = tf.gfile.Open(file_name, "r") index = 0 for line in lines: line_obj = json.loads(line) index = index + 1 guid = "%s-%s" % (set_type, index) text_a = convert_to_unicode(line_obj["sentence1"]) text_b = convert_to_unicode(line_obj["sentence2"]) label = convert_to_unicode(line_obj["label"]) if set_type != 'test' else 'neutral' if label != "-": examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class CslProcessor(DataProcessor): """Processor for the CSL data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = convert_to_unicode(" ".join(line['keyword'])) text_b = convert_to_unicode(line['abst']) label = convert_to_unicode(line['label']) if set_type != 'test' else '0' examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WSCProcessor(DataProcessor): """Processor for the internal data set. sentence pair classification""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" return ["true", "false"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = convert_to_unicode(line['text']) text_a_list = list(text_a) target = line['target'] query = target['span1_text'] query_idx = target['span1_index'] pronoun = target['span2_text'] pronoun_idx = target['span2_index'] assert text_a[pronoun_idx: (pronoun_idx + len(pronoun)) ] == pronoun, "pronoun: {}".format(pronoun) assert text_a[query_idx: (query_idx + len(query))] == query, "query: {}".format(query) if pronoun_idx > query_idx: text_a_list.insert(query_idx, "_") text_a_list.insert(query_idx + len(query) + 1, "_") text_a_list.insert(pronoun_idx + 2, "[") text_a_list.insert(pronoun_idx + len(pronoun) + 2 + 1, "]") else: text_a_list.insert(pronoun_idx, "[") text_a_list.insert(pronoun_idx + len(pronoun) + 1, "]") text_a_list.insert(query_idx + 2, "_") text_a_list.insert(query_idx + len(query) + 2 + 1, "_") text_a = "".join(text_a_list) if set_type == "test": label = "true" else: label = line['label'] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class COPAProcessor(DataProcessor): """Processor for the internal data set. sentence pair classification""" def __init__(self): self.language = "zh" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "train.json")), "train") # dev_0827.tsv def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "dev.json")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_json(os.path.join(data_dir, "test.json")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @classmethod def _create_examples_one(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): guid1 = "%s-%s" % (set_type, i) # try: if line['question'] == 'cause': text_a = convert_to_unicode(line['premise'] + '原因是什么呢?' + line['choice0']) text_b = convert_to_unicode(line['premise'] + '原因是什么呢?' + line['choice1']) else: text_a = convert_to_unicode(line['premise'] + '造成了什么影响呢?' + line['choice0']) text_b = convert_to_unicode(line['premise'] + '造成了什么影响呢?' + line['choice1']) label = convert_to_unicode(str(1 if line['label'] == 0 else 0)) if set_type != 'test' else '0' examples.append( InputExample(guid=guid1, text_a=text_a, text_b=text_b, label=label)) # except Exception as e: # print('###error.i:',e, i, line) return examples @classmethod def _create_examples(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): i = 2 * i guid1 = "%s-%s" % (set_type, i) guid2 = "%s-%s" % (set_type, i + 1) # try: premise = convert_to_unicode(line['premise']) choice0 = convert_to_unicode(line['choice0']) label = convert_to_unicode(str(1 if line['label'] == 0 else 0)) if set_type != 'test' else '0' #text_a2 = convert_to_unicode(line['premise']) choice1 = convert_to_unicode(line['choice1']) label2 = convert_to_unicode( str(0 if line['label'] == 0 else 1)) if set_type != 'test' else '0' if line['question'] == 'effect': text_a = premise text_b = choice0 text_a2 = premise text_b2 = choice1 elif line['question'] == 'cause': text_a = choice0 text_b = premise text_a2 = choice1 text_b2 = premise else: print('wrong format!!') return None examples.append( InputExample(guid=guid1, text_a=text_a, text_b=text_b, label=label)) examples.append( InputExample(guid=guid2, text_a=text_a2, text_b=text_b2, label=label2)) # except Exception as e: # print('###error.i:',e, i, line) return examples
59accba5a656d5b413c7c3ad528bee9b9a83ad95
9025c27655e2f150d01e64ce0826df8166ac6813
/core/urls.py
a1c84250501f6e331d1daaab5d0a66f5b2db6bbf
[]
no_license
kairat3/bella-plain
02dd219f6bf087c99772490a32d61cd242a18f28
1950fd46dc53b800461f6077af3044bdfcf8300c
refs/heads/master
2023-07-13T05:06:17.575811
2021-08-19T14:05:29
2021-08-19T14:05:29
393,064,884
0
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from rest_framework.routers import DefaultRouter from product.views import ProductApiView from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi schema_view = get_schema_view( openapi.Info( title="Bella API", default_version='v1', description="Test description", terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(email="[email protected]"), license=openapi.License(name="BSD License"), ), public=True, permission_classes=(permissions.AllowAny,), ) router = DefaultRouter() router.register('products', ProductApiView) urlpatterns = [ path('', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), path('docs/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-redoc'), path('', include('account.urls')), path('', include('product.urls')), path('admin/', admin.site.urls), path('', include(router.urls)), path('', include('info.urls')), path('', include('news.urls')), path('', include('cart.urls')), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
50363bbf710a2b67812e488531ed086fe0b32138
d40fbefbd5db39f1c3fb97f17ed54cb7b6f230e0
/datadog_checks_dev/datadog_checks/dev/tooling/config.py
7d63ecb7890e8d4df068f1419c36389ea8bb11bc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
slightilusion/integrations-core
47a170d791e809f3a69c34e2426436a6c944c322
8f89e7ba35e6d27c9c1b36b9784b7454d845ba01
refs/heads/master
2020-05-20T18:34:41.716618
2019-05-08T21:51:17
2019-05-08T21:51:17
185,708,851
2
0
BSD-3-Clause
2019-05-09T02:05:19
2019-05-09T02:05:18
null
UTF-8
Python
false
false
3,143
py
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os from collections import OrderedDict, deque from copy import deepcopy import toml from appdirs import user_data_dir from atomicwrites import atomic_write from six import string_types from ..compat import FileNotFoundError from ..utils import ensure_parent_dir_exists, file_exists, read_file APP_DIR = user_data_dir('dd-checks-dev', '') CONFIG_FILE = os.path.join(APP_DIR, 'config.toml') SECRET_KEYS = {'dd_api_key', 'github.token', 'pypi.pass', 'trello.key', 'trello.token'} DEFAULT_CONFIG = OrderedDict( [ ('core', os.path.join('~', 'dd', 'integrations-core')), ('extras', os.path.join('~', 'dd', 'integrations-extras')), ('agent', os.path.join('~', 'dd', 'datadog-agent')), ('repo', 'core'), ('agent6', OrderedDict((('docker', 'datadog/agent-dev:master'), ('local', 'latest')))), ('agent5', OrderedDict((('docker', 'datadog/dev-dd-agent:master'), ('local', 'latest')))), ('dd_api_key', os.getenv('DD_API_KEY')), ('github', OrderedDict((('user', ''), ('token', '')))), ('pypi', OrderedDict((('user', ''), ('pass', '')))), ('trello', OrderedDict((('key', ''), ('token', '')))), ] ) def config_file_exists(): return file_exists(CONFIG_FILE) def copy_default_config(): return deepcopy(DEFAULT_CONFIG) def save_config(config): ensure_parent_dir_exists(CONFIG_FILE) with atomic_write(CONFIG_FILE, mode='wb', overwrite=True) as f: f.write(toml.dumps(config).encode('utf-8')) def load_config(): config = copy_default_config() try: config.update(toml.loads(read_config_file(), OrderedDict)) except FileNotFoundError: pass return config def read_config_file(): return read_file(CONFIG_FILE) def read_config_file_scrubbed(): return toml.dumps(scrub_secrets(load_config())) def restore_config(): config = copy_default_config() save_config(config) return config def update_config(): config = copy_default_config() config.update(load_config()) # Support legacy config where agent5 and agent6 were strings if isinstance(config['agent6'], string_types): config['agent6'] = OrderedDict((('docker', config['agent6']), ('local', 'latest'))) if isinstance(config['agent5'], string_types): config['agent5'] = OrderedDict((('docker', config['agent5']), ('local', 'latest'))) save_config(config) return config def scrub_secrets(config): for secret_key in SECRET_KEYS: branch = config paths = deque(secret_key.split('.')) while paths: path = paths.popleft() if not hasattr(branch, 'get'): break if path in branch: if not paths: old_value = branch[path] if isinstance(old_value, string_types): branch[path] = '*' * len(old_value) else: branch = branch[path] else: break return config
beb223699fadcff443ec1b36fb64cecf67b2359c
b5d0a6254b54c0a778181a67bcda14cc6663e871
/0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.5-question.py
5ec618baaa19cdb2c7b27b33ac1bfb9f081b82c6
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
Web-Dev-Collaborative/Lambda-Final-Backup
113e719a76a144b86d06f3a412afe4b02689cad7
e9ab84928faa8364bacd863009ae9aec01ff9d1e
refs/heads/master
2023-06-07T15:34:00.682815
2021-04-17T01:53:14
2021-04-17T01:53:14
358,899,122
0
0
MIT
2023-05-30T04:03:16
2021-04-17T14:24:53
JavaScript
UTF-8
Python
false
false
318
py
# Sparse Search # Given a sorted array of strings that is interspersed with empty strings, # write a method to find the location of a given string. # EXAMPLE: INPUT: ball, {"at", "", "", "", "ball", "", "", "car", "", "", "dad", "", ""} # OUTPUT: 4 # time complexity: O() # space complexity: O()
a2dd70fc69879a4648eb45dac4bea8dae1233790
d83118503614bb83ad8edb72dda7f449a1226f8b
/src/dprj/platinumegg/app/cabaret/views/application/effect.py
40b158532e97911174a83a5334610da7b7a1310a
[]
no_license
hitandaway100/caba
686fe4390e182e158cd9714c90024a082deb8c69
492bf477ac00c380f2b2758c86b46aa7e58bbad9
refs/heads/master
2021-08-23T05:59:28.910129
2017-12-03T19:03:15
2017-12-03T19:03:15
112,512,044
0
0
null
null
null
null
UTF-8
Python
false
false
54,649
py
# -*- coding: utf-8 -*- from platinumegg.app.cabaret.views.apphandler import AppHandler from platinumegg.app.cabaret.util.api import BackendApi import settings from platinumegg.app.cabaret.util.url_maker import UrlMaker from platinumegg.lib.pljson import Json import settings_sub from urlparse import urlparse import urllib from defines import Defines from platinumegg.app.cabaret.util.scout import ScoutEventNone from platinumegg.app.cabaret.util.card import CardUtil from platinumegg.lib.opensocial.util import OSAUtil from platinumegg.app.cabaret.util.present import PresentSet import datetime from platinumegg.app.cabaret.util.datetime_util import DateTimeUtil from platinumegg.app.cabaret.util.rediscache import LoginBonusTimeLimitedAnimationSet from platinumegg.app.cabaret.views.application.loginbonus.base import LoginBonusHandler class Handler(AppHandler): """演出のパラメータを取得. """ @classmethod def get_default_status(cls): """デフォルトで返すHttpStatus. """ return 500 def processError(self, error_message): self.response.set_status(500) self.response.end() def __sendErrorResponse(self, status): self.response.set_status(status) self.response.end() def checkUser(self): pass def check_process_pre(self): if settings_sub.IS_LOCAL: return True elif self.osa_util.is_dbg_user: pass elif not settings_sub.IS_DEV and self.osa_util.viewer_id in ('10814964', '11404810', '39121', '12852359', '1412759', '11830507', '11467913', '10128761', '11868885', '434009', '23427632', '10918839', '21655464', '17279084', '24500573', '28774432', '11739356','2588824','28978730','20174324'): pass elif not self.checkMaintenance(): return False return True def process(self): args = self.getUrlArgs('/effect/') ope = args.get(0) f = getattr(self, 'proc_%s' % ope, None) if f is None: self.__sendErrorResponse(404) return f(args) def writeResponseBody(self, params): if self.isUsePCEffect(): body = Json.encode({ 'flashVars' : self.makeFlashVars(params) }) else: body = Json.encode(params) self.response.set_header('Content-Type', 'plain/text') self.response.set_status(200) self.response.send(body) def proc_battle(self, args): """バトル演出. """ model_mgr = self.getModelMgr() v_player = self.getViewerPlayer(True) if v_player is None: # 結果が存在しない. self.osa_util.logger.error('Player is None. opensocial_viewer_id=%s' % self.osa_util.viewer_id) self.__sendErrorResponse(404) return # 結果データ. battleresult = BackendApi.get_battleresult(model_mgr, v_player.id, using=settings.DB_READONLY) if battleresult is None or not battleresult.anim: # 結果が存在しない. self.osa_util.logger.error('result is None') self.__sendErrorResponse(404) return # 演出用パラメータ. animationdata = battleresult.anim params = animationdata.to_animation_data(self) if BackendApi.get_current_battleevent_master(model_mgr, using=settings.DB_READONLY): params['feverFlag'] = 0 # イベントでは表示しない. urldata = urlparse(self.url_cgi) url = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = url + UrlMaker.battleresultanim() url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params['backUrl'] = url self.writeResponseBody(params) def proc_battleevent(self, args): """イベントバトル演出. """ model_mgr = self.getModelMgr() v_player = self.getViewerPlayer(True) if v_player is None: # 結果が存在しない. self.osa_util.logger.error('Player is None. opensocial_viewer_id=%s' % self.osa_util.viewer_id) self.__sendErrorResponse(404) return uid = v_player.id try: eventid = int(args.get(1)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return # 結果データ. battleresult = BackendApi.get_battleevent_battleresult(model_mgr, eventid, uid, using=settings.DB_READONLY) if battleresult is None or not battleresult.anim: # 結果が存在しない. self.osa_util.logger.error('result is None') self.__sendErrorResponse(404) return # 演出用パラメータ. animationdata = battleresult.anim params = animationdata.to_animation_data(self) params['feverFlag'] = 0 # イベントでは表示しない. rarity = args.getInt(2) piecenumber = args.getInt(3) is_complete = args.getInt(4) urldata = urlparse(self.url_cgi) url = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = url + UrlMaker.battleevent_battleresultanim(eventid, rarity, piecenumber, is_complete) url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params['backUrl'] = url self.writeResponseBody(params) def proc_scout(self, args): """スカウト演出. """ try: scoutid = int(args.get(1)) scoutkey = urllib.unquote(args.get(2)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return v_player = self.getViewerPlayer() model_mgr = self.getModelMgr() uid = v_player.id using = settings.DB_READONLY # 進行情報. playdata = BackendApi.get_scoutprogress(model_mgr, uid, [scoutid], using=using).get(scoutid, None) if playdata is None or playdata.alreadykey != scoutkey: # DBからとり直すべき. playdata = BackendApi.get_scoutprogress(model_mgr, uid, [scoutid], using=settings.DB_DEFAULT, reflesh=True).get(scoutid, None) if playdata is None or playdata.alreadykey != scoutkey: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return eventlist = playdata.result.get('event', []) if eventlist: # ここで必要なのははじめの1件. event = eventlist[0] else: # なにも起きなかった. event = ScoutEventNone.create() eventKind = event.get_type() backUrl = None # イベント毎の設定. if eventKind == Defines.ScoutEventType.NONE: # そのままもう一回. backUrl = UrlMaker.scoutdo(scoutid, playdata.confirmkey) elif eventKind in (Defines.ScoutEventType.LEVELUP, Defines.ScoutEventType.COMPLETE, Defines.ScoutEventType.HAPPENING): # 結果表示へ. backUrl = UrlMaker.scoutresultanim(scoutid, scoutkey, 0) # 結果表示へ. backUrl = backUrl or UrlMaker.scoutresult(scoutid, scoutkey) # 演出のパラメータ. scoutmaster = BackendApi.get_scouts(model_mgr, [scoutid], using=using)[0] resultlist = playdata.result.get('result', []) params = BackendApi.make_scoutanim_params(self, scoutmaster, eventlist, resultlist) if params is None: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return urldata = urlparse(self.url_cgi) url = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = self.osa_util.makeLinkUrl(self.addTimeStamp(url + backUrl)) params['backUrl'] = url self.writeResponseBody(params) def __make_eventscoutanim_params(self, stagemaster, playdata, backUrl): """スカウトイベント演出. """ eventlist = playdata.result.get('event', []) # 演出のパラメータ. resultlist = playdata.result.get('result', []) params = BackendApi.make_scoutanim_params(self, stagemaster, eventlist, resultlist, feveretime=getattr(playdata, 'feveretime', None)) if params is None: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return urldata = urlparse(self.url_cgi) url = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = self.osa_util.makeLinkUrl(self.addTimeStamp(url + backUrl)) params['backUrl'] = url return params def proc_scoutevent(self, args): """スカウトイベント演出. """ try: stageid = int(args.get(1)) scoutkey = urllib.unquote(args.get(2)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return v_player = self.getViewerPlayer() model_mgr = self.getModelMgr() using = settings.DB_READONLY eventmaster = BackendApi.get_current_scouteventmaster(model_mgr, using=using) if eventmaster is None: # 引数がおかしい. self.osa_util.logger.error('Event Not Found') self.__sendErrorResponse(404) return mid = eventmaster.id # 進行情報. playdata = BackendApi.get_event_playdata(model_mgr, mid, v_player.id, using) if playdata is None or playdata.alreadykey != scoutkey: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return eventlist = playdata.result.get('event', []) if eventlist: # ここで必要なのははじめの1件. event = eventlist[0] else: # なにも起きなかった. event = ScoutEventNone.create() eventKind = event.get_type() backUrl = None # イベント毎の設定. if eventKind == Defines.ScoutEventType.NONE: # そのままもう一回. backUrl = UrlMaker.scouteventdo(stageid, playdata.confirmkey) else: if playdata.result.get('feverstart'): # フィーバー演出 backUrl = UrlMaker.scouteventfever(stageid, scoutkey) elif playdata.result.get('lovetime_start'): # 逢引タイム演出. backUrl = UrlMaker.scouteventlovetime(stageid, scoutkey) elif eventKind in (Defines.ScoutEventType.LEVELUP, Defines.ScoutEventType.COMPLETE, Defines.ScoutEventType.HAPPENING): # 結果表示へ. backUrl = UrlMaker.scouteventresultanim(stageid, scoutkey, 0) # 結果表示へ. backUrl = backUrl or UrlMaker.scouteventresult(stageid, scoutkey) stagemaster = BackendApi.get_event_stage(model_mgr, stageid, using=using) params = self.__make_eventscoutanim_params(stagemaster, playdata, backUrl) if self.response.isEnd: return self.writeResponseBody(params) def proc_raideventscout(self, args): """スカウトイベント演出. """ try: stageid = int(args.get(1)) scoutkey = urllib.unquote(args.get(2)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return v_player = self.getViewerPlayer() uid = v_player.id model_mgr = self.getModelMgr() using = settings.DB_READONLY eventmaster = BackendApi.get_current_raideventmaster(model_mgr, using=using) if eventmaster is None: # 引数がおかしい. self.osa_util.logger.error('Event Not Found') self.__sendErrorResponse(404) return mid = eventmaster.id # 進行情報. playdata = BackendApi.get_raideventstage_playdata(model_mgr, mid, uid, using) if playdata is None or playdata.alreadykey != scoutkey: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return eventlist = playdata.result.get('event', []) if eventlist: # ここで必要なのははじめの1件. event = eventlist[0] else: # なにも起きなかった. event = ScoutEventNone.create() eventKind = event.get_type() backUrl = None # イベント毎の設定. if eventKind == Defines.ScoutEventType.NONE: # そのままもう一回. backUrl = UrlMaker.raidevent_scoutdo(stageid, playdata.confirmkey) elif eventKind in (Defines.ScoutEventType.LEVELUP, Defines.ScoutEventType.COMPLETE, Defines.ScoutEventType.HAPPENING): # 結果表示へ. backUrl = UrlMaker.raidevent_scoutresultanim(stageid, scoutkey, 0) # 結果表示へ. backUrl = backUrl or UrlMaker.raidevent_scoutresult(stageid, scoutkey) stagemaster = BackendApi.get_raidevent_stagemaster(model_mgr, stageid, using=using) params = self.__make_eventscoutanim_params(stagemaster, playdata, backUrl) if self.response.isEnd: return self.writeResponseBody(params) def proc_produceeventscout(self, args): """プロデュースイベントのスカウトイベント演出. """ try: stageid = int(args.get(1)) scoutkey = urllib.unquote(args.get(2)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return v_player = self.getViewerPlayer() uid = v_player.id model_mgr = self.getModelMgr() using = settings.DB_READONLY eventmaster = BackendApi.get_current_produce_event_master(model_mgr, using=using) if eventmaster is None: # 引数がおかしい. self.osa_util.logger.error('Event Not Found') self.__sendErrorResponse(404) return mid = eventmaster.id # 進行情報. playdata = BackendApi.get_raideventstage_playdata(model_mgr, mid, uid, using) playdata = BackendApi.get_produceeventstage_playdata(model_mgr, mid, uid, using) if playdata is None or playdata.alreadykey != scoutkey: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return eventlist = playdata.result.get('event', []) if eventlist: # ここで必要なのははじめの1件. event = eventlist[0] else: # なにも起きなかった. event = ScoutEventNone.create() eventKind = event.get_type() backUrl = None # イベント毎の設定. if eventKind == Defines.ScoutEventType.NONE: # そのままもう一回. backUrl = UrlMaker.produceevent_scoutdo(stageid, playdata.confirmkey) elif eventKind in (Defines.ScoutEventType.LEVELUP, Defines.ScoutEventType.COMPLETE, Defines.ScoutEventType.HAPPENING): # 結果表示へ. backUrl = UrlMaker.produceevent_scoutresultanim(stageid, scoutkey, 0) # 結果表示へ. backUrl = backUrl or UrlMaker.produceevent_scoutresult(stageid, scoutkey) stagemaster = BackendApi.get_produceevent_stagemaster(model_mgr, stageid, using=using) params = self.__make_eventscoutanim_params(stagemaster, playdata, backUrl) if self.response.isEnd: return self.writeResponseBody(params) def proc_gacha(self, args): """ガチャ演出. """ CONTENT_NUM_PER_PAGE = 10 try: mid = int(args.get(1)) reqkey = urllib.unquote(args.get(2)) page = int(args.get(3) or 0) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return model_mgr = self.getModelMgr() using = settings.DB_READONLY v_player = self.getViewerPlayer() uid = v_player.id gachamaster = BackendApi.get_gachamaster(model_mgr, mid, using) playdata = None gachamasterstep = None if gachamaster: if gachamaster.stepsid > 0: if gachamaster.stepsid != gachamaster.id: gachamasterstep = BackendApi.get_gachamaster(model_mgr, gachamaster.stepsid, using=using) if gachamasterstep is None: self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return else: gachamasterstep = gachamaster playdata = BackendApi.get_gachaplaydata(model_mgr, uid, [gachamaster.boxid], using=using).get(gachamaster.boxid) if playdata is None or not playdata.result: # 結果がない. self.osa_util.logger.error('Not Found') self.__sendErrorResponse(404) return if gachamaster.consumetype == Defines.GachaConsumeType.RANKING: cardtextformat_getter = lambda master : Defines.EffectTextFormat.RANKINGGACHA_CARDTEXT else: cardtextformat_getter = lambda master : Defines.EffectTextFormat.GACHA_CARDTEXT if master.ckind == Defines.CardKind.NORMAL else Defines.EffectTextFormat.GACHA_ITEMTEXT sep = Defines.ANIMATION_SEPARATE_STRING urlsep = Defines.ANIMATION_URLSEPARATE_STRING newFlag = [] rarityFlag = [] cardText = [] image = [] pointlist = [] expectation = [] is_first = page == 0 is_last = True # 獲得したカード. resultlist = playdata.result['result'] if isinstance(playdata.result, dict) else playdata.result if gachamaster.consumetype in (Defines.GachaConsumeType.FUKUBUKURO, Defines.GachaConsumeType.FUKUBUKURO2016, Defines.GachaConsumeType.FUKUBUKURO2017): page_last = int((len(resultlist) + CONTENT_NUM_PER_PAGE - 1) / CONTENT_NUM_PER_PAGE) - 1 page = min(page, page_last) offset = page * CONTENT_NUM_PER_PAGE resultlist = resultlist[offset:(offset+CONTENT_NUM_PER_PAGE)] is_last = page == page_last if gachamaster.consumetype == Defines.GachaConsumeType.FIXEDSR: try: gachamorecast = int(args.get(5)) except: self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return if gachamorecast == 0: resultlist = resultlist[gachamaster.rarity_fixed_num:] cardidlist = [data['id'] for data in resultlist] cardmasters = BackendApi.get_cardmasters(cardidlist, model_mgr, using=settings.DB_READONLY) groupidlist = [data['group'] for data in resultlist] groupmaster_dict = BackendApi.get_gachagroupmaster_dict(model_mgr, groupidlist, using=settings.DB_READONLY) rarityFlag_getter = None if gachamaster.consumetype == Defines.GachaConsumeType.CHRISTMAS: image_getter = lambda idx,master:(CardUtil.makeThumbnailUrlIcon(master) if idx < gachamaster.continuity-1 else CardUtil.makeThumbnailUrlMiddle(master)) cardtext_getter = lambda idx,master:master.name elif gachamaster.consumetype in (Defines.GachaConsumeType.FUKUBUKURO, Defines.GachaConsumeType.FUKUBUKURO2016, Defines.GachaConsumeType.FUKUBUKURO2017): image_getter = lambda idx,master:CardUtil.makeThumbnailUrlMiddle(master) cardtext_getter = lambda idx,master:master.name elif gachamaster.consumetype == Defines.GachaConsumeType.XMAS_OMAKE: image_getter = lambda idx,master:CardUtil.makeThumbnailUrlIcon(master) cardtext_getter = lambda idx,master:master.name elif gachamaster.consumetype == Defines.GachaConsumeType.SCOUTEVENT and Defines.SCOUTEVENTGACHA_USE_EXCLUSIVE_USE_EFFECT: image_getter = lambda idx,master:CardUtil.makeThumbnailUrlMiddle(master) cardtext_getter = lambda idx,master:(cardtextformat_getter(master) % master.name) else: image_getter = lambda idx,master:self.makeAppLinkUrlImg(CardUtil.makeThumbnailUrlMiddle(master)) cardtext_getter = lambda idx,master:(cardtextformat_getter(master) % master.name) rarityFlag_getter = rarityFlag_getter or (lambda master:'1' if Defines.Rarity.SUPERRARE <= master.rare else '0') max_rare = Defines.Rarity.NORMAL for idx,data in enumerate(resultlist): master = cardmasters[data['id']] groupmaster = groupmaster_dict.get(data['group']) newFlag.append(str(int(bool(data['is_new'])))) cardText.append(cardtext_getter(idx, master)) image.append(image_getter(idx, master)) pointlist.append(str(data['point'])) expectation.append(str(groupmaster.expectation) if groupmaster else str(Defines.RankingGachaExpect.LOW)) rarityFlag.append(rarityFlag_getter(master)) if max_rare < master.rare: max_rare = master.rare v_player = self.getViewerPlayer() # シートガチャ情報. seatmodels = BackendApi.get_gachaseatmodels_by_gachamaster(model_mgr, uid, gachamasterstep or gachamaster, do_get_result=False, using=settings.DB_READONLY) urldata = urlparse(self.url_cgi) urlhead = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) if seatmodels.get('playdata'): # シート演出へ. url = urlhead + UrlMaker.gachaseatanim(gachamaster.id, reqkey) else: url = urlhead + UrlMaker.gacharesult(gachamaster.id, reqkey) backUrl = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params = { 'newFlag': sep.join(newFlag), 'cardText' : sep.join(cardText), 'image' : urlsep.join(image), } if gachamaster.consumetype == Defines.GachaConsumeType.CHRISTMAS: params['logoPre'] = self.url_static + 'effect/sp/v2/gachaxmas/data/' params['pre'] = self.url_static_img params['cardText'] = cardText[-1] elif gachamaster.consumetype == Defines.GachaConsumeType.RANKING: params.update({ 'point' : sep.join(pointlist), 'expectation' : sep.join(expectation), 'pre' : self.url_static + 'img/sp/large/gacha/ranking/rank_01/', # TODO:DBを見るように修正が必要. 'logo_img' : 'event_logo.png', 'logo_w_img' : 'event_logo_w.png', }) elif gachamaster.consumetype == Defines.GachaConsumeType.SCOUTEVENT and Defines.SCOUTEVENTGACHA_USE_EXCLUSIVE_USE_EFFECT: eventmaster = BackendApi.get_current_present_scouteventmaster(model_mgr, using=settings.DB_READONLY) if Defines.SCOUTEVENTGACHA_FOR_VALENTINE: params.update({ 'pre' : self.url_static_img, 'effectPre' : self.url_static + 'effect/sp/v2/gachascev/data/scev_25/', 'cardText' : params['cardText'].replace('が入店しました', ''), # js, flash の修正をすると作業が大きくなるのでquick hack. }) else: params.update({ 'imagePre' : self.url_static_img, 'rarityFlag' : sep.join(rarityFlag), 'logoPre' : self.makeAppLinkUrlImg('event/scevent/%s/gacha/' % eventmaster.codename), }) elif gachamaster.consumetype in (Defines.GachaConsumeType.FUKUBUKURO, Defines.GachaConsumeType.FUKUBUKURO2016, Defines.GachaConsumeType.FUKUBUKURO2017): url = None if is_last: if isinstance(playdata.result, dict) and playdata.result.get('omake'): prizelist = BackendApi.get_prizelist(model_mgr, playdata.result['omake'], using=settings.DB_READONLY) presentlist = BackendApi.create_present_by_prize(model_mgr, v_player.id, prizelist, 0, using=settings.DB_READONLY, do_set_save=False) presentsetlist = PresentSet.presentToPresentSet(model_mgr, presentlist, using=settings.DB_READONLY) thumblist = [] omakeindexes = [] for presentset in presentsetlist: if presentset.present.itype in (Defines.ItemType.GOLD, Defines.ItemType.GACHA_PT): num = 1 else: num = presentset.num if presentset.itemthumbnail in thumblist: idx = thumblist.index(presentset.itemthumbnail) else: idx = len(thumblist) thumblist.append(presentset.itemthumbnail) omakeindexes.extend([str(idx)] * num) if thumblist: params.update({ 'itemImage' : urlsep.join(thumblist), 'itemImageIdx' : sep.join(omakeindexes), }) else: url = urlhead + UrlMaker.gachaanimsub(gachamaster.id) url = OSAUtil.addQuery(url, Defines.URLQUERY_PAGE, page + 1) url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params.update({ 'skipUrl': backUrl, 'pre' : self.url_static_img, # 4月ver #'logoPre' : self.url_static + 'effect/sp/v2/gachahappybag201604/data/', #'logoPre' : self.url_static + 'effect/sp/v2/gachahappybag201605/data/', # 'logoPre' : self.url_static + 'effect/sp/v2/gachahappybag201607/data/', # 'logoPre' : self.url_static + 'effect/sp/v2/gachahappybag201608/data/', 'logoPre' : self.url_static + 'effect/sp/v2/gachahappybag201701/data/', 'isFirst' : is_first, 'isLast' : is_last, 'n' : gachamaster.continuity, 'rarityFlag' : sep.join(rarityFlag), }) del params['cardText'] backUrl = url or backUrl elif gachamaster.consumetype == Defines.GachaConsumeType.SR_SSR_PROBABILITY_UP or gachamaster.consumetype == Defines.GachaConsumeType.PTCHANGE: #トレードショップが開いていたら if gachamaster.trade_shop_master_id is not None and 0 < gachamaster.trade_shop_master_id: try: lottery_point = int(args.get(4)) url = urlhead + UrlMaker.gacharesult(gachamaster.id, reqkey, lottery_point=lottery_point) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return else: url = urlhead + UrlMaker.gacharesult(gachamaster.id, reqkey) # URL作り直し backUrl = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) elif gachamaster.consumetype == Defines.GachaConsumeType.FIXEDSR: try: gachamorecast = int(args.get(5)) except: self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return if gachamorecast == 0: url = urlhead + UrlMaker.gachamorecast(gachamaster.id, reqkey) backUrl = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) else: if 0 < gachamaster.rarity_fixed_num: fixed_card_id = cardidlist[0] card = BackendApi.get_cardmasters([fixed_card_id], model_mgr).get(fixed_card_id) backUrl = self.makeAppLinkUrl(UrlMaker.gacharesult(gachamaster.id, reqkey)) params = { 'cardText': Defines.EffectTextFormat.GACHA_CARDTEXT % card.name, 'image': self.makeAppLinkUrlImg(CardUtil.makeThumbnailUrlMiddle(card)), 'pre': 'img/', } else: self.osa_util.logger.error('Not set Gachamaster.rarity_fixed_num') self.__sendErrorResponse(400) return elif gachamaster.consumetype == Defines.GachaConsumeType.XMAS_OMAKE: params = { 'pre' : self.url_static_img, 'logoPre' : self.url_static + 'effect/sp/v2/gachaxmas2015/', 'image' : urlsep.join(image), 'newFlag': sep.join(newFlag) } params['backUrl'] = backUrl self.writeResponseBody(params) def proc_panelmission(self, args): """パネルミッション. """ try: panel = int(args.get(1)) except: # 引数がおかしい. self.osa_util.logger.error('Invalid arguments') self.__sendErrorResponse(400) return model_mgr = self.getModelMgr() using = settings.DB_READONLY # パネルのマスターデータ. panelmaster = None if panel: panelmaster = BackendApi.get_panelmission_panelmaster(model_mgr, panel, using=using) if panelmaster is None: self.osa_util.logger.error('Illigal panel number') self.__sendErrorResponse(400) return v_player = self.getViewerPlayer() uid = v_player.id now = OSAUtil.get_now() # 進行情報. panelplaydata = BackendApi.get_panelmission_data(model_mgr, uid, panel, using=using, get_instance=False) if panelplaydata is None: self.osa_util.logger.error('Illigal panel number') self.__sendErrorResponse(400) return # 演出パラメータ. params = { # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201412/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201505/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201508/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201512/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201602/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201604/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201606/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201607/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201610/', # 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201612/', 'logoPre' : self.url_static + 'effect/sp/v2/panel_mission/data/201702/', 'pre' : self.url_static_img, 'panel' : panel, 'bg' : panelmaster.image, } # ミッションのマスター. missionmaster_list = BackendApi.get_panelmission_missionmaster_by_panelid(model_mgr, panel, using=using) # 全クリフラグ. is_allend = True # 今回クリアしたミッション. max_time = None clearlist = [] missionmaster_dict = {} for missionmaster in missionmaster_list: number = missionmaster.number missionmaster_dict[number] = missionmaster idx = number - 1 data = panelplaydata.get_data(number) rtime = data['rtime'] if now < rtime: # 未達成のミッション画像と名前. params['m%d' % idx] = missionmaster.image_pre params['mtext%d' % idx] = missionmaster.name is_allend = False continue elif max_time and rtime < max_time: continue elif max_time is None or max_time < rtime: max_time = rtime clearlist = [] clearlist.append(str(idx)) if not clearlist: self.osa_util.logger.error('You can not view the effect.') self.__sendErrorResponse(400) return params['clear'] = ','.join(clearlist) # 今回達成したミッションの画像と名前. for idx in clearlist: missionmaster = missionmaster_dict[int(idx) + 1] params['m%s' % idx] = missionmaster.image_pre params['mtext%s' % idx] = missionmaster.name if is_allend: # 獲得したカード画像と名前. prizelist = BackendApi.get_prizelist(model_mgr, panelmaster.prizes, using=using) if not prizelist: self.osa_util.logger.error('prize none.') self.__sendErrorResponse(400) return presentlist = BackendApi.create_present_by_prize(model_mgr, uid, prizelist, 0, using=using, do_set_save=False) presentset = PresentSet.presentToPresentSet(model_mgr, presentlist[:1], using=using)[0] params['card'] = presentset.itemthumbnail_middle params['cname'] = presentset.itemname # 次のパネル. next_panelmaster = BackendApi.get_panelmission_panelmaster(model_mgr, panel + 1, using=using) if next_panelmaster: next_panelmissionmaster_list = BackendApi.get_panelmission_missionmaster_by_panelid(model_mgr, next_panelmaster.id, using=using) for next_panelmissionmaster in next_panelmissionmaster_list: idx = next_panelmissionmaster.number - 1 params['next%s' % idx] = next_panelmissionmaster.image_pre urldata = urlparse(self.url_cgi) url = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = url + UrlMaker.panelmissiontop() url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params['backUrl'] = url self.writeResponseBody(params) def proc_loginbonustimelimited(self, args): """期限付きログインボーナス. """ mid = args.getInt(1) loginbonus = args.getInt(2) str_midlist = self.request.get(Defines.URLQUERY_ID) or '' midlist = [int(str_mid) for str_mid in str_midlist.split(',') if str_mid.isdigit()] model_mgr = self.getModelMgr() now = OSAUtil.get_now() master = BackendApi.get_loginbonustimelimitedmaster(model_mgr, mid, using=settings.DB_READONLY) if master is None: self.osa_util.logger.error('masterdata is not found.') self.__sendErrorResponse(400) return # プレイヤー情報. v_player = self.getViewerPlayer() if BackendApi.check_lead_loginbonustimelimited(model_mgr, v_player.id, now): # まだ受け取っていない. self.osa_util.logger.error('not received.') self.__sendErrorResponse(400) return logindata = BackendApi.get_logintimelimited_data(model_mgr, v_player.id, mid, using=settings.DB_READONLY) if logindata is None: self.osa_util.logger.error('logindata is None.') self.__sendErrorResponse(400) return # 表示するログインボーナスを選別(現在の日数のボーナスの前のボーナスから4つ表示したい). table = BackendApi.get_loginbonustimelimiteddaysmaster_day_table_by_timelimitedmid(model_mgr, mid, using=settings.DB_READONLY) params = { 'pre' : self.url_static_img, } # 設定情報. config = BackendApi.get_current_loginbonustimelimitedconfig(model_mgr, using=settings.DB_READONLY) config_data = dict(config.getDataList()).get(master.id) making_functions = { 'monthly_login' : self.__makeMonthlyLoginBonusParams, } func = making_functions.get(master.effectname, self.__makeCommonLoginBonusParams) tmp, cur_bonusmaster, next_bonusmaster = func(master, logindata, table, config_data) params.update(**tmp) #取得したアイテム(名前,日数). if cur_bonusmaster: params['td'] = cur_bonusmaster.day params['tt'] = self.getBonusItemText(cur_bonusmaster) else: # 演出いらない. self.osa_util.logger.error('can not view the effect.') self.__sendErrorResponse(400) return if next_bonusmaster: params['nt'] = self.getBonusItemText(next_bonusmaster) # 遷移先. url = None if mid in midlist: next_idx = midlist.index(mid)+1 if next_idx < len(midlist): # 次がある. url = UrlMaker.loginbonustimelimitedanim(midlist[next_idx], loginbonus) url = OSAUtil.addQuery(url, Defines.URLQUERY_ID, str_midlist) if url is None: if loginbonus: # ログインボーナス. url = UrlMaker.loginbonusanim() else: url = LoginBonusHandler.getEffectBackUrl(self) anniversary_data = {} if master.effectname == 'countdown_login_2ndanniversary': anniversary_data = { 'ten_digit': params['day'] / 10, 'one_digit': params['day'] % 10, } elif master.effectname == 'countdown_login_3rdanniversary': anniversary_data = { 'one_digit': params['day'] % 10, 'predata': self.url_static + 'effect/sp/v2/countdown_login_3rdanniversary/data/' } params.update(anniversary_data) urldata = urlparse(self.url_cgi) urlhead = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = urlhead + url url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) params['backUrl'] = url self.writeResponseBody(params) def __makeCommonLoginBonusParams(self, master, logindata, day_table, config_data): """共通のログインボーナス演出パラメータ. """ VIEW_ITEM_NUM_MAX_TABLE = { Defines.LoginBonusTimeLimitedType.TOTAL : 4, Defines.LoginBonusTimeLimitedType.FIXATION : 6, Defines.LoginBonusTimeLimitedType.MONTHLY : 3, } VIEW_ITEM_NUM_MAX_TABLE_BY_EFFECTNAME = { 'hinamatsuri_login' : 4, 'countdown_login_2ndanniversary' : 4, 'countdown_login_3rdanniversary' : 4, '2nd_anniversary_login' : 4, '3rd_anniversary_login' : 4, 'valentine2016' : 6, 'end_of_year_countdown' : 3, 'newyear_login' : 7, 'newbie_login' : 7, } item_num_max = VIEW_ITEM_NUM_MAX_TABLE_BY_EFFECTNAME.get(master.effectname, VIEW_ITEM_NUM_MAX_TABLE[master.lbtype]) model_mgr = self.getModelMgr() cur_day = logindata.days params = {} cur_bonusmaster = None next_bonusmaster = None mid = master.id days = day_table.keys() days.sort() tmp_days = list(set(days + [cur_day])) tmp_days.sort() start = max(0, min(tmp_days.index(cur_day) - 1, len(days) - item_num_max)) bonusmidlist = [] has_next = False for day in days[start:]: if not day_table.has_key(day): continue elif len(bonusmidlist) == item_num_max: has_next = True break bonusmidlist.append(day_table[day]) bonusmaster_list = BackendApi.get_loginbonustimelimiteddaysmaster_by_idlist(model_mgr, bonusmidlist, using=settings.DB_READONLY) params.update(has_next=has_next) if master.lbtype == Defines.LoginBonusTimeLimitedType.FIXATION: min_time = DateTimeUtil.strToDateTime(logindata.lbtltime.strftime("%Y%m01"), "%Y%m%d") - datetime.timedelta(seconds=1) min_time = DateTimeUtil.toLoginTime(min_time) receive_flags = BackendApi.get_loginbonustimelimited_fixation_received_dates(logindata.uid, mid, min_time).keys() params['logoPre'] = self.url_static + 'effect/sp/v2/%s/data/' % master.effectname else: params['logoPre'] = self.url_static + 'effect/sp/v2/%s/data/' % master.effectname receive_flags = None make_date_string = { Defines.LoginBonusTimeLimitedType.FIXATION : lambda x:u'%s月%s日' % (logindata.lbtltime.month, x), Defines.LoginBonusTimeLimitedType.MONTHLY : lambda x:u'%s日' % (logindata.lbtltime.month, x), }.get(master.lbtype, lambda x:'%d日目' % x) #アイテム一覧(日数と画像URL). bonusmaster_list.sort(key=lambda x:x.day) for idx, bonusmaster in enumerate(bonusmaster_list): params['i%d' % idx] = bonusmaster.thumb params['d%d' % idx] = bonusmaster.day params['date%d' % idx] = make_date_string(bonusmaster.day) if cur_day == bonusmaster.day: cur_bonusmaster = bonusmaster params['idx'] = idx elif cur_bonusmaster and not next_bonusmaster: next_bonusmaster = bonusmaster if receive_flags is not None: params['f%d' % idx] = 1 if bonusmaster.day in receive_flags else 0 # 最終日までの日数. td = config_data['etime'] - logindata.lbtltime params['day'] = td.days if next_bonusmaster and 0 < td.days: params['idxnext'] = params['idx'] + 1 if master.lbtype == Defines.LoginBonusTimeLimitedType.TOTAL: for i in xrange(params['idx']): params['f%d' % i] = 1 def getEffectDBValue(attname, default): v = getattr(cur_bonusmaster, attname, '') if cur_bonusmaster else '' return v or default # 演出用文言. params['logo'] = master.logo params['preEffect'] = self.url_static_img + master.img_effect params['bg'] = getEffectDBValue(u'bg', u'bg.png') params['tlogo'] = getEffectDBValue(u'text_logo', master.text_logo) params['t0'] = getEffectDBValue(u'text_start', master.text_start) params['t1'] = getEffectDBValue(u'text_itemlist', master.text_itemlist) params['t2'] = getEffectDBValue(u'text_itemget', master.text_itemget) params['t3'] = getEffectDBValue(u'text_itemnext', master.text_itemnext) params['t4'] = getEffectDBValue(u'text_end', master.text_end) if cur_bonusmaster: params['ix'] = cur_bonusmaster.item_x params['iy'] = cur_bonusmaster.item_y params['gx'] = cur_bonusmaster.item_x params['gy'] = cur_bonusmaster.item_y return params, cur_bonusmaster, next_bonusmaster def __makeMonthlyLoginBonusParams(self, master, logindata, day_table, config_data): """月末ログインボーナス演出用パラメータ. """ LOOP_CNT = 3 ITEM_NUM_MAX = 3 model_mgr = self.getModelMgr() mid = master.id cur_day = logindata.days params = {} params['logoPre'] = self.url_static + 'effect/sp/v2/monthly_login/data/default/' # TODO: これをマスターデータで設定しないと. # 次の日. tomorrow = logindata.lbtltime + datetime.timedelta(days=1) # 月末はなんか特殊. bonusmaster_list = BackendApi.get_loginbonustimelimiteddaysmaster_by_idlist(model_mgr, day_table.values(), using=settings.DB_READONLY) bonusmaster_list.sort(key=lambda x:x.id) cur_bonusmaster = BackendApi.get_loginbonustimelimiteddaysmaster(model_mgr, mid, cur_day, using=settings.DB_READONLY) next_bonusmaster = None if config_data['stime'] <= tomorrow < config_data['etime']: # 次の日が期間内. next_bonusmaster = BackendApi.get_loginbonustimelimiteddaysmaster(model_mgr, mid, tomorrow.day, using=settings.DB_READONLY) cur_prizeid = cur_bonusmaster.prizes[0] if cur_bonusmaster and cur_bonusmaster.prizes else 0 next_prizeid = next_bonusmaster.prizes[0] if next_bonusmaster and next_bonusmaster.prizes else 0 prizeidlist = [] for bonusmaster in bonusmaster_list: if not bonusmaster.prizes: continue prizeid = bonusmaster.prizes[0] if prizeid in prizeidlist: continue idx = len(prizeidlist) params['i%d' % idx] = bonusmaster.thumb prizeidlist.append(prizeid) if ITEM_NUM_MAX <= len(prizeidlist): break idx = prizeidlist.index(cur_prizeid) params['idx'] = idx if next_prizeid: params['idxnext'] = prizeidlist.index(next_prizeid) params['rouletteCnt'] = LOOP_CNT * ITEM_NUM_MAX + idx return params, cur_bonusmaster, next_bonusmaster def getBonusItemText(self, master): """ログインボーナスのテキストを作成 """ if LoginBonusTimeLimitedAnimationSet.exists(master.mid, master.day): items = LoginBonusTimeLimitedAnimationSet.get(master.mid, master.day) else: model_mgr = self.getModelMgr() prizelist = BackendApi.get_prizelist(model_mgr, master.prizes, using=settings.DB_READONLY) prizeinfo = BackendApi.make_prizeinfo(self, prizelist, using=settings.DB_READONLY) items = [listitem['text'] for listitem in prizeinfo['listitem_list']] LoginBonusTimeLimitedAnimationSet.save(master.mid, master.day, items) return Defines.STR_AND.join(items) #============================================================== # イベントシナリオ. def proc_eventscenario(self, args): """イベントシナリオ. """ number = args.getInt(1) edt = args.get(2) or '' backUrl = '/'.join(args.args[3:]) model_mgr = self.getModelMgr() data = BackendApi.get_eventscenario_by_number(model_mgr, number, using=settings.DB_READONLY) if not data: self.osa_util.logger.error('the scenario is not found...%s' % number) self.__sendErrorResponse(404) return urldata = urlparse(self.url_cgi) urlhead = '%s://%s%s' % (urldata.scheme, settings_sub.WEB_GLOBAL_HOST, urldata.path) url = '%s/%s' % (urlhead, backUrl) url = self.osa_util.makeLinkUrl(self.addTimeStamp(url)) img_pre = self.url_static_img + (data.get('thumb') or 'event/scenario/%d/' % number) params = { 'backUrl' : url, 'pre' : img_pre, 'edt' : edt, } params.update(data) self.writeResponseBody(params) #============================================================== # 双六. def proc_sugoroku(self, args): """双六ログイン. """ mid = args.getInt(1) if mid is None: self.__sendErrorResponse(404) return page = args.getInt(2) or 0 model_mgr = self.getModelMgr() # プレイヤー情報. v_player = self.getViewerPlayer() viewer_id = v_player.id # 結果情報を取得. logindata = BackendApi.get_loginbonus_sugoroku_playerdata(model_mgr, viewer_id, mid, using=settings.DB_DEFAULT) if logindata is None: self.__sendErrorResponse(404) return # 停まったマス. squares_id_list = logindata.result.get('square_id_list') squares_master_list = BackendApi.get_loginbonus_sugoroku_map_squares_master_list_by_id(model_mgr, squares_id_list, using=settings.DB_READONLY) squares_master_dict = dict([(squares_master.id, squares_master) for squares_master in squares_master_list]) page_cnt = 0 arr = [] mapid = None for squares_id in squares_id_list: squares_master = squares_master_dict[squares_id] if mapid is None: mapid = squares_master.mid elif mapid != squares_master.mid: page_cnt += 1 if page < page_cnt: # 次のマップの分も入れておく. arr.append(squares_master) break mapid = squares_master.mid if page_cnt == page: arr.append(squares_master) squares_master_list = arr # マップ. mapmaster = BackendApi.get_loginbonus_sugoroku_map_master(model_mgr, mapid, using=settings.DB_READONLY) # 演出パラメータ. params = dict( backUrl = self.request.get('backUrl'), logoPre = self.url_static_img + 'sugo6/{}/'.format(mapmaster.effectname), pre = self.url_static_img, lt = 0, ) # 報酬. prizeidlist_list = [] message_items = [] def get_prize_number(prizeidlist): if prizeidlist in prizeidlist_list: return prizeidlist_list.index(prizeidlist) else: prizeidlist_list.append(prizeidlist) return len(prizeidlist_list) - 1 # 現在地. if 0 < page: params['continue'] = '1' params['cp'] = 0 else: squares_master = squares_master_list.pop(0) params['cp'] = squares_master.number if len(squares_id_list) == 1: # 動いていない. if squares_master.last: # 最終マス. params['completeitem'] = get_prize_number(mapmaster.prize) message_items.append(params['completeitem']) else: # 休み. params['lt'] = logindata.lose_turns + 1 # マップ情報. map_squares_master_list = BackendApi.get_loginbonus_sugoroku_map_squares_master_by_mapid(model_mgr, mapid, using=settings.DB_READONLY) for squares_master in map_squares_master_list: number = squares_master.number params['et{}'.format(number)] = squares_master.event_type params['ev{}'.format(number)] = squares_master.event_value if squares_master.prize: params['ei{}'.format(number)] = get_prize_number(squares_master.prize) # 停まったマス. params['pn'] = len(squares_master_list) pre_event_type = Defines.SugorokuMapEventType.NONE for i,squares_master in enumerate(squares_master_list): if squares_master.mid == mapid: params['p{}'.format(i)] = squares_master.number if squares_master.prize: message_items.append(get_prize_number(squares_master.prize)) elif pre_event_type == Defines.SugorokuMapEventType.BACK: # 戻って前のマップへ. pre_map_squares_master_list = BackendApi.get_loginbonus_sugoroku_map_squares_master_by_mapid(model_mgr, squares_master.mid, using=settings.DB_READONLY) params['p{}'.format(i)] = squares_master.number - len(pre_map_squares_master_list) else: # 進んで次のマップへ. params['p{}'.format(i)] = len(map_squares_master_list) + squares_master.number pre_event_type = squares_master.event_type # アイテム. params['in'] = len(prizeidlist_list) for i,prizeidlist in enumerate(prizeidlist_list): # アイテム画像. if i in message_items: prizelist = BackendApi.get_prizelist(model_mgr, prizeidlist, using=settings.DB_READONLY) prizeinfo = BackendApi.make_prizeinfo(self, prizelist, using=settings.DB_READONLY) # アイテム名. params['in{}'.format(i)] = Defines.STR_AND.join([listitem['text'] for listitem in prizeinfo['listitem_list']]) else: prizelist = BackendApi.get_prizelist(model_mgr, [prizeidlist[0]], using=settings.DB_READONLY) prizeinfo = BackendApi.make_prizeinfo(self, prizelist, using=settings.DB_READONLY) # アイテム画像. params['i{}'.format(i)] = prizeinfo['listitem_list'][0]['thumbUrl'].replace(params['pre'], '') self.writeResponseBody(params) def main(request): return Handler.run(request)
a8a1af44b4ff29b22520121f30295c8ebe1d693f
554ec84f23825452f7692f91f742bdc81fa50e84
/chatbot_27549/urls.py
7d1264887b9b6eb6dad7fc662d8571cc66eddd66
[]
no_license
crowdbotics-apps/chatbot-27549
a7806af210b6e7ccdfb3db3dbaaac9e9dcb5a5af
0e615cbb191a8d91e2874e7329b059193a8ad625
refs/heads/master
2023-05-26T13:30:53.116812
2021-05-29T07:24:50
2021-05-29T07:24:50
371,908,087
0
0
null
null
null
null
UTF-8
Python
false
false
2,022
py
"""chatbot_27549 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Chatbot" admin.site.site_title = "Chatbot Admin Portal" admin.site.index_title = "Chatbot Admin" # swagger api_info = openapi.Info( title="Chatbot API", default_version="v1", description="API documentation for Chatbot App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
f8b918dbc080c727941fe32353727591500f3f2d
5c61851a03dd1ac98d03c2e98f27487f188ff00f
/{{cookiecutter.repo_name}}/manage.py
13bffdcfd10dc0e98343059f47512923a6698335
[ "BSD-3-Clause" ]
permissive
tony/cookiecutter-flask-pythonic
e7208a8fc9ccbde10e541f8e657dbf4da7b388b3
d1274ec5d5b72cab128e593ed78de88c29bd54b5
refs/heads/master
2023-05-29T20:49:21.927268
2021-10-05T12:39:04
2021-10-05T12:39:04
35,064,692
39
4
null
2023-05-01T21:06:54
2015-05-04T22:52:20
Python
UTF-8
Python
false
false
1,203
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from flask_script import Manager from {{ cookiecutter.repo_name }} import {{ cookiecutter.repo_name | capitalize }} """If not using Flask-Script:: app = {{ cookiecutter.repo_name | capitalize }}.from_cli(sys.argv[1:]) Does the trick for retrieving an application object using pure argparse. But let's hook into Flask-Script's CLI argparse instance. """ def app_wrapper(*args, **kwargs): """App factory returns the :class:`flask.Flask` via ``__call__``, but because of the way :class:`flask_script.Manager` handles accepting app objects, this wrapper returns the flask object directly. :returns: Flask object build from CLI :rtype: :class:`flask.Flask` """ return {{ cookiecutter.repo_name | capitalize }}.from_file(*args, **kwargs).app manager = Manager(app_wrapper) manager.add_option('-c', '--config', dest='config', required=False) @manager.command def run_server(*args, **kwargs): {{ cookiecutter.repo_name | capitalize }}.from_file().run() @manager.command def testing(*args, **kwargs): print('Run "./run-tests.py" or "python setup.py test".') if __name__ == "__main__": run_server()
e6acc1a14b714638e4d8eb6b3210b8ad4b35a3c2
37069009dd428ce59819ffea2fcffc07dda6e712
/django_analyze/migrations/0068_auto__add_field_genotype_max_memory_usage.py
550ac7b81c79b27de932d2c0ecb1788805c93c03
[]
no_license
chrisspen/django-analyze
829f560d7c5f2fb1c19fc07bc77cb1a83238e696
421ee35235f76ff8657f7befe5212acd7ccf3989
refs/heads/master
2020-04-28T15:42:51.773823
2015-04-18T14:50:02
2015-04-18T14:50:02
14,995,029
2
2
null
2014-07-07T12:39:22
2013-12-06T22:26:29
Python
UTF-8
Python
false
false
18,209
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Genotype.max_memory_usage' db.add_column(u'django_analyze_genotype', 'max_memory_usage', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Genotype.max_memory_usage' db.delete_column(u'django_analyze_genotype', 'max_memory_usage') models = { 'django_analyze.epoche': { 'Meta': {'ordering': "('genome', '-index')", 'unique_together': "(('genome', 'index'),)", 'object_name': 'Epoche'}, 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'epoches'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'mean_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'oldest_epoche_of_creation': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'django_analyze.gene': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('genome', 'name'),)", 'object_name': 'Gene'}, 'coverage_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'default': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'exploration_priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genes'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_increment': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'max_value': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'max_value_observed': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'min_value': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'min_value_observed': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'mutation_weight': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'values': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'django_analyze.genedependency': { 'Meta': {'unique_together': "(('gene', 'dependee_gene', 'dependee_value'),)", 'object_name': 'GeneDependency'}, 'dependee_gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'dependents'", 'to': "orm['django_analyze.Gene']"}), 'dependee_value': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'dependencies'", 'to': "orm['django_analyze.Gene']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'positive': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'django_analyze.genestatistics': { 'Meta': {'ordering': "('genome', 'gene', '-mean_fitness')", 'object_name': 'GeneStatistics', 'managed': 'False'}, 'gene': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Gene']", 'on_delete': 'models.DO_NOTHING', 'db_column': "'gene_id'"}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'gene_statistics'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'genome_id'", 'to': "orm['django_analyze.Genome']"}), 'genotype_count': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'primary_key': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mean_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '1000'}) }, 'django_analyze.genome': { 'Meta': {'object_name': 'Genome'}, '_epoche': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'current_genome'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Epoche']"}), 'delete_inferiors': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'elite_ratio': ('django.db.models.fields.FloatField', [], {'default': '0.1'}), 'epoche': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'epoche_stall': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'epoches_since_improvement': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'error_report': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'evaluating_part': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'evaluation_timeout': ('django.db.models.fields.PositiveIntegerField', [], {'default': '300'}), 'evaluator': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'evolution_start_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'evolving': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'max_species': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'maximum_evaluated_population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1000'}), 'maximum_population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mutation_rate': ('django.db.models.fields.FloatField', [], {'default': '0.1'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'production_at_best': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_evaluation_timeout': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'production_genotype': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'production_genomes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Genotype']"}), 'production_genotype_auto': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'ratio_evaluated': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'django_analyze.genotype': { 'Meta': {'ordering': "('-fitness',)", 'unique_together': "(('genome', 'fingerprint'),)", 'object_name': 'Genotype', 'index_together': "(('valid', 'fresh', 'fitness'), ('genome', 'fresh'))"}, 'accuracy': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'complete_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'complete_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'epoche': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'genotypes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Epoche']"}), 'epoche_of_creation': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'epoche_of_evaluation': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'error': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'evaluating': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'evaluating_pid': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'fingerprint': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '700', 'null': 'True', 'db_column': "'fingerprint'", 'blank': 'True'}), 'fingerprint_fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'fitness_evaluation_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fitness_evaluation_datetime_start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'gene_count': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'generation': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genotypes'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immortal': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'max_memory_usage': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'mean_absolute_error': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'mean_evaluation_seconds': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mean_memory_usage': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'memory_usage_samples': ('picklefield.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'ontime_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'ontime_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_complete_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_complete_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_error': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'production_evaluating': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_evaluating_pid': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_evaluation_end_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_evaluation_start_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_ontime_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_ontime_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_success_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_success_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_total_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_valid': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'species': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'genotypes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Species']"}), 'success_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'success_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'total_evaluation_seconds': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'total_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'valid': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}) }, 'django_analyze.genotypegene': { 'Meta': {'ordering': "('gene__name',)", 'unique_together': "(('genotype', 'gene'),)", 'object_name': 'GenotypeGene'}, '_value': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'db_column': "'value'"}), '_value_genome': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Genome']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'gene_values'", 'to': "orm['django_analyze.Gene']"}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genes'", 'to': "orm['django_analyze.Genotype']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'django_analyze.genotypegeneillegal': { 'Meta': {'object_name': 'GenotypeGeneIllegal', 'managed': 'False'}, 'gene_value': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.GenotypeGene']", 'on_delete': 'models.DO_NOTHING', 'primary_key': 'True', 'db_column': "'illegal_genotypegene_id'"}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'illegal_gene_values'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'illegal_genotype_id'", 'to': "orm['django_analyze.Genotype']"}), 'illegal_gene_name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}) }, u'django_analyze.genotypegenemissing': { 'Meta': {'object_name': 'GenotypeGeneMissing', 'managed': 'False'}, 'default': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Gene']", 'on_delete': 'models.DO_NOTHING', 'primary_key': 'True', 'db_column': "'gene_id'"}), 'gene_name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'missing_gene_values'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'genotype_id'", 'to': "orm['django_analyze.Genotype']"}) }, 'django_analyze.species': { 'Meta': {'ordering': "('genome', 'index')", 'unique_together': "(('genome', 'index'),)", 'object_name': 'Species', 'index_together': "(('genome', 'index'),)"}, 'centroid': ('picklefield.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'species'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) } } complete_apps = ['django_analyze']
[ "chris@coronis" ]
chris@coronis
af5d3531a0c3b27b202c1ef66223d898bd77ec13
008aada8c0e718e0220eabc5b54732a1e1b07f97
/sergeant/connector/_connector.py
ee1985d5cf05a1683d5b4b588c6a582648b9599b
[ "MIT" ]
permissive
gabriel-yahav/sergeant
59259a92c4c072e317d82022f19b440b21d2c294
0de9bfb4fdca62f061d6588c6839c4491c5d4f9b
refs/heads/master
2022-09-30T04:38:48.414842
2020-05-26T10:28:50
2020-05-26T10:28:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
import typing class Lock: def acquire( self, timeout: typing.Optional[float] = None, check_interval: float = 1.0, ttl: int = 60, ) -> bool: raise NotImplementedError() def release( self, ) -> bool: raise NotImplementedError() def is_locked( self, ) -> bool: raise NotImplementedError() def set_ttl( self, ttl: int, ) -> bool: raise NotImplementedError() def get_ttl( self, ) -> typing.Optional[int]: raise NotImplementedError() class Connector: name: str def key_set( self, key: str, value: bytes, ) -> bool: raise NotImplementedError() def key_get( self, key: str, ) -> typing.Optional[bytes]: raise NotImplementedError() def key_delete( self, key: str, ) -> bool: raise NotImplementedError() def queue_pop( self, queue_name: str, ) -> typing.Optional[bytes]: raise NotImplementedError() def queue_pop_bulk( self, queue_name: str, number_of_items: int, ) -> typing.List[bytes]: raise NotImplementedError() def queue_push( self, queue_name: str, item: bytes, priority: str = 'NORMAL', ) -> bool: raise NotImplementedError() def queue_push_bulk( self, queue_name: str, items: typing.Iterable[bytes], priority: str = 'NORMAL', ) -> bool: raise NotImplementedError() def queue_length( self, queue_name: str, ) -> int: raise NotImplementedError() def queue_delete( self, queue_name: str, ) -> bool: raise NotImplementedError() def lock( self, name: str, ) -> Lock: raise NotImplementedError()
b12892a96f4b48796a35f6700c11b1ce1875c2cf
94c8dd4126da6e9fe9acb2d1769e1c24abe195d3
/test/python/circuit/library/test_phase_estimation.py
8bf3d15d9ea0a395cd1d2ede7c122fdb666605b4
[ "Apache-2.0" ]
permissive
levbishop/qiskit-terra
a75c2f96586768c12b51a117f9ccb7398b52843d
98130dd6158d1f1474e44dd5aeacbc619174ad63
refs/heads/master
2023-07-19T19:00:53.483204
2021-04-20T16:30:16
2021-04-20T16:30:16
181,052,828
1
0
Apache-2.0
2019-06-05T15:32:13
2019-04-12T17:20:54
Python
UTF-8
Python
false
false
5,238
py
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test library of phase estimation circuits.""" import unittest import numpy as np from qiskit.test.base import QiskitTestCase from qiskit import BasicAer, execute from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import PhaseEstimation, QFT from qiskit.quantum_info import Statevector class TestPhaseEstimation(QiskitTestCase): """Test the phase estimation circuit.""" def assertPhaseEstimationIsCorrect(self, pec: QuantumCircuit, eigenstate: QuantumCircuit, phase_as_binary: str): r"""Assert that the phase estimation circuit implements the correct transformation. Applying the phase estimation circuit on a target register which holds the eigenstate :math:`|u\rangle` (say the last register), the final state should be .. math:: |\phi_1\rangle \cdots |\phi_t\rangle |u\rangle where the eigenvalue is written as :math:`e^{2\pi i \phi}` and the angle is represented in binary fraction, i.e. :math:`\phi = 0.\phi_1 \ldots \phi_t`. Args: pec: The circuit implementing the phase estimation circuit. eigenstate: The eigenstate as circuit. phase_as_binary: The phase of the eigenvalue in a binary fraction. E.g. if the phase is 0.25, the binary fraction is '01' as 0.01 = 0 * 0.5 + 1 * 0.25 = 0.25. """ # the target state eigenstate_as_vector = Statevector.from_instruction(eigenstate).data reference = eigenstate_as_vector zero, one = [1, 0], [0, 1] for qubit in phase_as_binary[::-1]: reference = np.kron(reference, zero if qubit == '0' else one) # the simulated state circuit = QuantumCircuit(pec.num_qubits) circuit.compose(eigenstate, list(range(pec.num_qubits - eigenstate.num_qubits, pec.num_qubits)), inplace=True) circuit.compose(pec, inplace=True) # TODO use Statevector for simulation once Qiskit/qiskit-terra#4681 is resolved # actual = Statevector.from_instruction(circuit).data backend = BasicAer.get_backend('statevector_simulator') actual = execute(circuit, backend).result().get_statevector() np.testing.assert_almost_equal(reference, actual) def test_phase_estimation(self): """Test the standard phase estimation circuit.""" with self.subTest('U=S, psi=|1>'): unitary = QuantumCircuit(1) unitary.s(0) eigenstate = QuantumCircuit(1) eigenstate.x(0) # eigenvalue is 1j = exp(2j pi 0.25) thus phi = 0.25 = 0.010 = '010' # using three digits as 3 evaluation qubits are used phase_as_binary = '0100' pec = PhaseEstimation(4, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) with self.subTest('U=SZ, psi=|11>'): unitary = QuantumCircuit(2) unitary.z(0) unitary.s(1) eigenstate = QuantumCircuit(2) eigenstate.x([0, 1]) # eigenvalue is -1j = exp(2j pi 0.75) thus phi = 0.75 = 0.110 = '110' # using three digits as 3 evaluation qubits are used phase_as_binary = '110' pec = PhaseEstimation(3, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) with self.subTest('a 3-q unitary'): unitary = QuantumCircuit(3) unitary.x([0, 1, 2]) unitary.cz(0, 1) unitary.h(2) unitary.ccx(0, 1, 2) unitary.h(2) eigenstate = QuantumCircuit(3) eigenstate.h(0) eigenstate.cx(0, 1) eigenstate.cx(0, 2) # the unitary acts as identity on the eigenstate, thus the phase is 0 phase_as_binary = '00' pec = PhaseEstimation(2, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) def test_phase_estimation_iqft_setting(self): """Test default and custom setting of the QFT circuit.""" unitary = QuantumCircuit(1) unitary.s(0) with self.subTest('default QFT'): pec = PhaseEstimation(3, unitary) expected_qft = QFT(3, inverse=True, do_swaps=False).reverse_bits() self.assertEqual(pec.data[-1][0].definition, expected_qft) with self.subTest('custom QFT'): iqft = QFT(3, approximation_degree=2).inverse() pec = PhaseEstimation(3, unitary, iqft=iqft) self.assertEqual(pec.data[-1][0].definition, iqft) if __name__ == '__main__': unittest.main()
aa3069e85491124d364115e57d1a97e1ff6dbda7
e2589896ad0e629d933f1e9e03f9963eb922664a
/backend/cool_dust_27675/wsgi.py
297564f38beadc76f1ea37eeabd22b393dcbc0c4
[]
no_license
crowdbotics-apps/cool-dust-27675
89b947ddd6c87d70febeb2af15ffab3706b6cc13
f2fa1d6f4206955173a2ebf1b0f824ee5d184d1a
refs/heads/master
2023-05-08T10:46:07.382608
2021-06-02T06:44:22
2021-06-02T06:44:22
373,066,266
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" WSGI config for cool_dust_27675 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'cool_dust_27675.settings') application = get_wsgi_application()
b94eb3cd9714f1550d11a2faa1808f08db720be0
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/surface/storage/delete.py
b0dd92d45fc1d77f4de21763de0131975f546827
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
5,897
py
# -*- coding: utf-8 -*- # # Copyright 2013 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to list Cloud Storage objects.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.storage import storage_api from googlecloudsdk.api_lib.storage import storage_util from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.storage import expansion from googlecloudsdk.command_lib.storage import flags from googlecloudsdk.command_lib.storage import storage_parallel from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io @base.Hidden @base.Deprecate(is_removed=False, warning='This command is deprecated. ' 'Use `gcloud alpha storage rm` instead.') @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Delete(base.Command): """Delete Cloud Storage objects and buckets.""" detailed_help = { 'DESCRIPTION': """\ *{command}* lets you delete Cloud Storage objects and buckets. You can specify one or more paths (including wildcards) and all matching objects and buckets will be deleted. """, 'EXAMPLES': """\ To delete an object, run: $ *{command}* gs://mybucket/a.txt To delete all objects in a directory, run: $ *{command}* gs://mybucket/remote-dir/* The above command will delete all objects under remote-dir/ but not its sub-directories. To delete a directory and all its objects and subdirectories, run: $ *{command}* --recursive gs://mybucket/remote-dir $ *{command}* gs://mybucket/remote-dir/** To delete all objects and subdirectories of a directory, without deleting the directory itself, run: $ *{command}* --recursive gs://mybucket/remote-dir/* or $ *{command}* gs://mybucket/remote-dir/** To delete all objects and directories in a bucket without deleting the bucket itself, run: $ *{command}* gs://mybucket/** To delete all text files in a bucket or a directory, run: $ *{command}* gs://mybucket/*.txt $ *{command}* gs://mybucket/remote-dir/*.txt To go beyond directory boundary and delete all text files in a bucket or a directory, run: $ *{command}* gs://mybucket/**/*.txt $ *{command}* gs://mybucket/remote-dir/**/*.txt To delete a bucket, run: $ *{command}* gs://mybucket You can use wildcards in bucket names. To delete all buckets with prefix of `my`, run: $ *{command}* --recursive gs://my* """, } @staticmethod def Args(parser): parser.add_argument( 'path', nargs='+', help='The path of objects and directories to delete. The path must ' 'begin with gs:// and may or may not contain wildcard characters.') parser.add_argument( '--recursive', action='store_true', help='Recursively delete the contents of any directories that match ' 'the path expression.') parser.add_argument( '--num-threads', type=int, hidden=True, default=16, help='The number of threads to use for the delete.') flags.add_additional_headers_flag(parser) def Run(self, args): paths = args.path or ['gs://'] expander = expansion.GCSPathExpander() objects, dirs = expander.ExpandPaths(paths) if dirs and not args.recursive: raise exceptions.RequiredArgumentException( '--recursive', 'Source path matches directories but --recursive was not specified.') buckets = [] dir_paths = [] for d in dirs: obj_ref = storage_util.ObjectReference.FromUrl(d, allow_empty_object=True) if not obj_ref.name: buckets.append(obj_ref.bucket_ref) dir_paths.append(d + '**') sub_objects, _ = expander.ExpandPaths(dir_paths) objects.update(sub_objects) tasks = [] for o in sorted(objects): tasks.append(storage_parallel.ObjectDeleteTask( storage_util.ObjectReference.FromUrl(o))) if buckets: # Extra warnings and confirmation if any buckets will be deleted. log.warning('Deleting a bucket is irreversible and makes that bucket ' 'name available for others to claim.') message = 'This command will delete the following buckets:\n ' message += '\n '.join([b.bucket for b in buckets]) console_io.PromptContinue( message=message, throw_if_unattended=True, cancel_on_no=True) # TODO(b/120033753): Handle long lists of items. message = 'You are about to delete the following:' message += ''.join(['\n ' + b.ToUrl() for b in buckets]) message += ''.join(['\n ' + t.obj_ref.ToUrl() for t in tasks]) console_io.PromptContinue( message=message, throw_if_unattended=True, cancel_on_no=True) storage_parallel.ExecuteTasks(tasks, num_threads=args.num_threads, progress_bar_label='Deleting Files') log.status.write( 'Deleted [{}] file{}.\n'.format( len(tasks), 's' if len(tasks) > 1 else '')) storage_client = storage_api.StorageClient() for b in buckets: storage_client.DeleteBucket(b) log.DeletedResource(b.ToUrl(), kind='bucket')
74d689c8c85d5d2561a6abc2a06ba077a7496e0e
0fa82ccc0b93944c4cbb8255834b019cf16d128d
/Az/temp.py
caf3bc211fbf8fccda75e10e1fee9d32caddc4ec
[]
no_license
Akashdeepsingh1/project
6ad477088a3cae2d7eea818a7bd50a2495ce3ba8
bdebc6271b39d7260f6ab5bca37ab4036400258f
refs/heads/master
2022-12-13T23:09:35.782820
2020-08-27T14:22:37
2020-08-27T14:22:37
279,722,741
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
def mincostTickets (days, costs): dp = [0] * 366 for i in range (1,max (days)+1): if i in days: dp[i] = min (dp[i - 1] + costs[0], dp[i - 7] + costs[1], dp[i - 30] + costs[2]) else: dp[i] = dp[i-1] return dp[:max (days) + 1][-1] def mincostTickets2( days, costs): dp = [0]*366 for i in range(1,max(days)+1): dp[i] = min(dp[i-1] + costs[0] , dp[i-7] + costs[1], dp[i-30] + costs[2]) return dp[:max(days)+1][-1] days = [1,4,6,7,8,20] costs= [2,7,15] print (mincostTickets2 (days, costs))
114910137765ee9246494ef8b775990951da0d1f
b321ca6310cd84bd8603fa9685365bb2a4acc945
/公司真题/拼多多/phone_number.py
144534cc23631ee5da9b7f732598e83ae9e6c492
[]
no_license
baixiaoyanvision/python-algorithm
71b2fdf7d6b57be8a2960c44160f2a7459e153ae
6cbb61213af8264e083af1994522929fb7711616
refs/heads/master
2020-08-27T03:41:08.332322
2019-10-02T13:28:49
2019-10-02T13:28:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
# line1 = input() # line2 = input() line1 = '6 5' line2 = '787585' N, K = [int(i) for i in line1.split()] line2 = [int(i) for i in line2] result = [] line2_set = set(line2) min_money = 99999999 for val in line2_set: sub_vals = [abs(val - number) for number in line2] sort_sub_vals = sorted( list(range(len(sub_vals))), key=lambda x: sub_vals[x] ) pay_money = sum([sub_vals[i] for i in sort_sub_vals[:K]]) equal_val = sub_vals[sort_sub_vals[K-1]] copy_line2 = line2[:] for i in sort_sub_vals[:K-1]: copy_line2[i] = val last_change = None for i in range(len(copy_line2)): if abs(copy_line2[i]-val) == equal_val: last_change = i copy_line2[last_change] = val copy_line2 = [str(i) for i in copy_line2] copy_line2 = ''.join(copy_line2) if pay_money > min_money: continue elif pay_money < min_money: result = [] result.append(copy_line2) min_money = pay_money else: result.append(copy_line2) result = sorted(result) print(min_money) print(result[0])
8b97fb6b8a7718a7b273586c5c11230785335bf5
51d348426c6e5fa79f2e77baf59bdbf8357d9f12
/week10/Инфоматрикс/d.массивы/1.py
39e914161d08fae03f9bd90984ada04bfe926359
[]
no_license
Zhansayaas/webdev
c01325b13abf92cef13138d7ffc123cf9bc4f81a
dd054d0bcafc498eccc5f4626ab45fd8b46b3a3f
refs/heads/main
2023-04-10T23:33:30.469465
2021-04-17T10:21:53
2021-04-17T10:21:53
322,049,225
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
n=int(input()) a=input().split() for i in range(0,n,2): print(a[i],end=' ')
c0d29ea3e56d0a9a1129476105c243a8a2566772
8d2a124753905fb0455f624b7c76792c32fac070
/pytnon-month01/周六练习-practice on saturday/独立完成/OOP-fanb-1_student_manager_system.py
370a4186757ac84e2f949eca27cb01e393c5348c
[]
no_license
Jeremy277/exercise
f38e4f19aae074c804d265f6a1c49709fd2cae15
a72dd82eb2424e4ae18e2f3e9cc66fc4762ec8fa
refs/heads/master
2020-07-27T09:14:00.286145
2019-09-17T11:31:44
2019-09-17T11:31:44
209,041,629
0
0
null
null
null
null
UTF-8
Python
false
false
5,533
py
#学生信息管理系统: # 数据模型类:StudentModel # 数据:编号 id,姓名 name,年龄 age,成绩 score class StudentModel: def __init__(self,name,age,score,id = 0): self.name = name self.age = age self.score = score self.id = id # 逻辑控制类:StudentManagerController # 数据:学生列表 __stu_list # (#私有属性,提供只读) # 行为:获取列表 stu_list,添加学生 add_student,删除学生remove_student, # 修改学生update_student,根据成绩排序order_by_score。 class StudentManagerController: __stu_id = 1000 def __init__(self): #函数中不需要定义行参 self.__stu_list = [] #赋值空列表 @property def stu_list(self): return self.__stu_list def add_student(self,stu): StudentManagerController.__stu_id += 1 stu.id = StudentManagerController.__stu_id self.__stu_list.append(stu) def remove_student(self,id): for item in self.__stu_list: if item.id == id: self.__stu_list.remove(item) return True def update_student(self,stu): for item in self.__stu_list: if item.id == stu.id: item.name = stu.name item.age = stu.age item.score = stu.score return True def order_by_score(self): for i in range(len(self.__stu_list)-1): for j in range(i+1,len(self.__stu_list)): if self.__stu_list[i].score > self.__stu_list[j].score: self.__stu_list[i],self.__stu_list[j] = self.__stu_list[j],self.__stu_list[i] # 界面视图类:StudentManagerView # 数据:逻辑控制对象__manager # 行为:显示菜单__display_menu,选择菜单项__select_menu_item,入口逻辑main, # 输入学生__input_students,输出学生__output_students, # 删除学生__delete_student,修改学生信息__modify_student class StudentManagerView(): def __init__(self): self.__manager = StudentManagerController() def __display_menu(self): print(''' 学生信息管理系统1.0 +-----------------------+ | 0)退出管理系统 | | 1)添加学生信息 | | 2)显示学生信息 | | 3)删除学生信息 | | 4)修改学生信息 | | 5)按照成绩排序 | +-----------------------+ ''') def main(self): choice = None while choice != 0: self.__display_menu() choice = input('请输入选项:') if choice == '0': print('谢谢使用,退出!') break elif choice == '1': self.__input_students() elif choice == '2': self.__output_students() elif choice == '3': self.__delete_student() elif choice == '4': self.__modify_student() elif choice == '5': self.__sort_by_score() else: print('请重新输入选项!') def __input_students(self): name = input('请输入学生姓名:') age = int(input('请输入学生年龄:')) score = int(input('请输入学生成绩:')) stu = StudentModel(name,age,score) self.__manager.add_student(stu) print('添加学生信息成功!') def __output_students(self): print('学生信息:') for item in self.__manager.stu_list: print(item.id,item.name,item.age,item.score) def __delete_student(self): stu_id = int(input('请输入学生编号:')) if self.__manager.remove_student(stu_id): print('删除学生信息成功!') else: print('删除学生信息失败!') def __modify_student(self): id = int(input('请输入需要修改的学生ID:')) name = input('请输入修改后学生姓名:') age = int(input('请输入修改后学生年龄:')) score = int(input('请输入修改后学生成绩:')) stu = StudentModel(name, age, score, id) if self.__manager.update_student(stu): print('修改学生信息成功!') else: print('修改学生信息失败!') def __sort_by_score(self): self.__manager.order_by_score() print('排序成功!') view = StudentManagerView() view.main() #1.测试逻辑控制代码 #测试添加学员 # manger = StudentManagerController() # s01 = StudentModel('许瑶',18,98) # s02 = StudentModel('许仙',16,99) # s03 = StudentModel('小青',15,79) # s04 = StudentModel('姐夫',15,79) # manger.add_student(s01) # manger.add_student(s02) # manger.add_student(s03) # manger.add_student(s04) # for item in manger.stu_list: # print(item.id,item.name,item.age,item.score) # # #manger.stu_list列表 保存学生对象 # # print(manger.stu_list[1].name) # # #测试删除学员 # manger.remove_student(1004) # for item in manger.stu_list: # print('删除后:',item.id,item.name) # # #测试修改学员 # manger.update_student(StudentModel('娘子',19,80,1001)) # for item in manger.stu_list: # print('修改后:',item.id,item.name,item.age,item.score) # # #测试按成绩排序 # manger.order_by_score() # for item in manger.stu_list: # print('按分数升序排列:',item.id,item.name,item.age,item.score)
edbc5843172b296c275bf4d38092d8dabd6213fe
bd3b1eaedfd0aab45880c100b86bc4714149f5cd
/student/dyp1/11.py
c6e63aa6b223b8b5cdbb13353fe5872beeeea0a7
[]
no_license
ophwsjtu18/ohw19f
a008cd7b171cd89fa116718e2a5a5eabc9f7a93e
96dedf53a056fbb4d07c2e2d37d502171a6554a6
refs/heads/master
2020-08-08T12:59:38.875197
2020-04-01T10:38:14
2020-04-01T10:38:14
213,835,959
3
1
null
null
null
null
UTF-8
Python
false
false
1,178
py
import numpy as np import cv2 capture = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier('C:\\Users\\DING-DING\\AppData\\Local\\Programs\\Python\\Python36\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('C:\\Users\\DING-DING\\AppData\\Local\\Programs\\Python\\Python36\\Lib\\site-packages\\cv2\\data\\haarcascade_eye.xml') while(True): ret, frame = capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: img = cv2.rectangle(gray,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] def hhh( lists ): for (x,y,w,h) in lists: a = x for num in range(1,4): for num in range(1,4): cv2.rectangle(img,(x,y),(x+int(w/3),y+int(h/3)),(255,0,0),2) x+=int(w/3) x=a y+=int(h/3) hhh(faces) cv2.imshow('frame',gray) cv2.waitKey(0) cv2.destroyAllWindows()
34fc9717d6ba5477e1aa8e8cc9c71b46b8ee7fd2
2f2feae3dee5847edbf95c1eeb14e656490dae35
/2022/day_13_distress_signal_1.py
e89f9fb5f20ecbd78b7b38f8d58eca40028031af
[]
no_license
olga3n/adventofcode
32597e9044e11384452410b7a7dda339faf75f32
490a385fb8f1c45d22deb27bf21891e193fe58a2
refs/heads/master
2023-01-07T09:19:04.090030
2022-12-25T13:31:22
2022-12-25T13:31:22
163,669,598
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
#!/usr/bin/env python3 import sys import json from typing import Iterable, List, Any, Tuple, Optional def is_right_order(left: List[Any], right: List[Any]) -> Optional[bool]: iter_left = iter(left) iter_right = iter(right) while True: item_left = next(iter_left, None) item_right = next(iter_right, None) if item_left is None and item_right is None: return None if item_left is None: return True if item_right is None: return False if isinstance(item_left, int) and isinstance(item_right, int): if item_left < item_right: return True if item_left > item_right: return False if item_right == item_left: continue if isinstance(item_left, int): item_left = [item_left] if isinstance(item_right, int): item_right = [item_right] value = is_right_order(item_left, item_right) if value is not None: return value def build_pairs(data: Iterable[str]) -> Iterable[Tuple[List[Any], List[Any]]]: buf = [] for line in data: if not line.strip(): continue buf.append(line) if len(buf) == 2: yield json.loads(buf[0]), json.loads(buf[1]) buf = [] def right_order_pairs(data: Iterable[str]) -> int: return sum( index + 1 for index, pair in enumerate(build_pairs(data)) if is_right_order(pair[0], pair[1]) ) def test_right_order_pairs(): data = [ '[1,1,3,1,1]', '[1,1,5,1,1]', '', '[[1],[2,3,4]]', '[[1],4]', '', '[9]', '[[8,7,6]]', '', '[[4,4],4,4]', '[[4,4],4,4,4]', '', '[7,7,7,7]', '[7,7,7]', '', '[]', '[3]', '', '[[[]]]', '[[]]', '', '[1,[2,[3,[4,[5,6,7]]]],8,9]', '[1,[2,[3,[4,[5,6,0]]]],8,9]' ] assert right_order_pairs(data) == 13 def main(): data = sys.stdin result = right_order_pairs(data) print(result) if __name__ == '__main__': main()
9c7357576d312b577fde01d5955822e944b46c7b
d0f11aa36b8c594a09aa06ff15080d508e2f294c
/leecode/1-500/401-500/472-连接词.py
4edb1540db15225aeb711ca0bd0954fa23641a7b
[]
no_license
saycmily/vtk-and-python
153c1fe9953fce685903f938e174d3719eada0f5
5045d7c44a5af5c16df5a3b72c157e9a2928a563
refs/heads/master
2023-01-28T14:02:59.970115
2021-04-28T09:03:32
2021-04-28T09:03:32
161,468,316
1
1
null
2023-01-12T05:59:39
2018-12-12T10:00:08
Python
UTF-8
Python
false
false
1,016
py
class Solution: def findAllConcatenatedWordsInADict(self, words): def search(word, pre_dict): if len(word)==0: return True cur_dict = pre_dict for i,c in enumerate(word): cur_dict = cur_dict.get(c,None) if not cur_dict: return False if '#' in cur_dict: if search(word[i+1:], pre_dict): return True return False def insert(word, cur_dict): for c in word: if c not in cur_dict: cur_dict[c] = {} cur_dict = cur_dict[c] cur_dict['#'] ={} words.sort(key=lambda x: len(x)) ret = [] pre_dict = {} for word in words: if len(word)==0: continue if search(word, pre_dict): ret.append(word) else: insert(word, pre_dict) return ret
713b479653ed7764eabad8e061233c7fc1086f24
0c2ca3b3c7f307c29f45957e87ed940c23571fae
/fhirclient/models/bodysite_tests.py
a3aaa3593967b5390640ec04095fcc47317b4e4a
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
myungchoi/client-py-1.0.3
49c3d15b8dfb845e7cbc933084ed5fcc37e7c4ed
08e4e5828fb461c105907fd454b19dfc8463aad8
refs/heads/master
2021-06-25T04:36:26.952685
2021-02-11T16:27:26
2021-02-11T16:27:26
209,669,881
0
0
NOASSERTION
2021-03-20T01:45:42
2019-09-20T00:11:10
Python
UTF-8
Python
false
false
2,663
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 on 2016-03-23. # 2016, SMART Health IT. import os import io import unittest import json from . import bodysite from .fhirdate import FHIRDate class BodySiteTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("BodySite", js["resourceType"]) return bodysite.BodySite(js) def testBodySite1(self): inst = self.instantiate_from("bodysite-example.json") self.assertIsNotNone(inst, "Must have instantiated a BodySite instance") self.implBodySite1(inst) js = inst.as_json() self.assertEqual("BodySite", js["resourceType"]) inst2 = bodysite.BodySite(js) self.implBodySite1(inst2) def implBodySite1(self, inst): self.assertEqual(inst.code.coding[0].code, "53120007") self.assertEqual(inst.code.coding[0].display, "Arm") self.assertEqual(inst.code.coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.code.text, "Arm") self.assertEqual(inst.description, "front of upper left arm directly below the tattoo") self.assertEqual(inst.id, "example") self.assertEqual(inst.identifier[0].system, "http://www.acmehosp.com/bodysites") self.assertEqual(inst.identifier[0].use, "official") self.assertEqual(inst.identifier[0].value, "12345") self.assertEqual(inst.image[0].contentType, "image/png;base64") self.assertEqual(inst.image[0].title, "ARM") self.assertEqual(inst.modifier[0].coding[0].code, "419161000") self.assertEqual(inst.modifier[0].coding[0].display, "Unilateral left") self.assertEqual(inst.modifier[0].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[0].text, "Left") self.assertEqual(inst.modifier[1].coding[0].code, "261183002") self.assertEqual(inst.modifier[1].coding[0].display, "Upper") self.assertEqual(inst.modifier[1].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[1].text, "Upper") self.assertEqual(inst.modifier[2].coding[0].code, "255549009") self.assertEqual(inst.modifier[2].coding[0].display, "Anterior") self.assertEqual(inst.modifier[2].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[2].text, "Anterior") self.assertEqual(inst.text.status, "generated")