blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
3dc9e30e5c222c2883a7eac6fdbd007fc805284a
a31de016611f3b4efc7a576e7113cad1a738419b
/9.8_exception_classes.py
f3fb70d78cdd6362c88d732831f0ffe476b30943
[]
no_license
Ing-Josef-Klotzner/python
9d4044d632672fff966b28ab80e1ef77763c78f5
3913729d7d6e1b7ac72b46db7b06ca0c58c8a608
refs/heads/master
2022-12-09T01:40:52.275592
2022-12-01T22:46:43
2022-12-01T22:46:43
189,040,355
0
0
null
2022-12-01T19:52:37
2019-05-28T14:05:16
Python
UTF-8
Python
false
false
207
py
# exception classes #import sys class B: pass class C(B): pass class D(C): pass for c in [B, C, D]: try: raise c() except D: print "D" except C: print "C" except B: print "B"
0ad259d0f323921f6882bfce2be18fa92b27acdc
e845f7f61ff76b3c0b8f4d8fd98f6192e48d542a
/djangocg/utils/safestring.py
f2b147175bdb1cb129a4deff7e5ed7f49f002395
[ "BSD-3-Clause" ]
permissive
timothyclemans/djangocg
fd150c028013cb5f53f5a3b4fdc960a07fdaaa78
52cf28e046523bceb5d436f8e6bf61e7d4ba6312
refs/heads/master
2021-01-18T13:20:13.636812
2012-08-31T23:38:14
2012-08-31T23:38:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,189
py
""" Functions for working with "safe strings": strings that can be displayed safely without further escaping in HTML. Marking something as a "safe string" means that the producer of the string has already turned characters that should not be interpreted by the HTML engine (e.g. '<') into the appropriate entities. """ from djangocg.utils.functional import curry, Promise from djangocg.utils import six class EscapeData(object): pass class EscapeBytes(bytes, EscapeData): """ A byte string that should be HTML-escaped when output. """ pass class EscapeText(six.text_type, EscapeData): """ A unicode string object that should be HTML-escaped when output. """ pass if six.PY3: EscapeString = EscapeText else: EscapeString = EscapeBytes # backwards compatibility for Python 2 EscapeUnicode = EscapeText class SafeData(object): pass class SafeBytes(bytes, SafeData): """ A bytes subclass that has been specifically marked as "safe" (requires no further escaping) for HTML output purposes. """ def __add__(self, rhs): """ Concatenating a safe byte string with another safe byte string or safe unicode string is safe. Otherwise, the result is no longer safe. """ t = super(SafeBytes, self).__add__(rhs) if isinstance(rhs, SafeText): return SafeText(t) elif isinstance(rhs, SafeBytes): return SafeBytes(t) return t def _proxy_method(self, *args, **kwargs): """ Wrap a call to a normal unicode method up so that we return safe results. The method that is being wrapped is passed in the 'method' argument. """ method = kwargs.pop('method') data = method(self, *args, **kwargs) if isinstance(data, bytes): return SafeBytes(data) else: return SafeText(data) decode = curry(_proxy_method, method=bytes.decode) class SafeText(six.text_type, SafeData): """ A unicode (Python 2) / str (Python 3) subclass that has been specifically marked as "safe" for HTML output purposes. """ def __add__(self, rhs): """ Concatenating a safe unicode string with another safe byte string or safe unicode string is safe. Otherwise, the result is no longer safe. """ t = super(SafeText, self).__add__(rhs) if isinstance(rhs, SafeData): return SafeText(t) return t def _proxy_method(self, *args, **kwargs): """ Wrap a call to a normal unicode method up so that we return safe results. The method that is being wrapped is passed in the 'method' argument. """ method = kwargs.pop('method') data = method(self, *args, **kwargs) if isinstance(data, bytes): return SafeBytes(data) else: return SafeText(data) encode = curry(_proxy_method, method=six.text_type.encode) if six.PY3: SafeString = SafeText else: SafeString = SafeBytes # backwards compatibility for Python 2 SafeUnicode = SafeText def mark_safe(s): """ Explicitly mark a string as safe for (HTML) output purposes. The returned object can be used everywhere a string or unicode object is appropriate. Can be called multiple times on a single string. """ if isinstance(s, SafeData): return s if isinstance(s, bytes) or (isinstance(s, Promise) and s._delegate_bytes): return SafeBytes(s) if isinstance(s, (six.text_type, Promise)): return SafeText(s) return SafeString(str(s)) def mark_for_escaping(s): """ Explicitly mark a string as requiring HTML escaping upon output. Has no effect on SafeData subclasses. Can be called multiple times on a single string (the resulting escaping is only applied once). """ if isinstance(s, (SafeData, EscapeData)): return s if isinstance(s, bytes) or (isinstance(s, Promise) and s._delegate_bytes): return EscapeBytes(s) if isinstance(s, (six.text_type, Promise)): return EscapeText(s) return EscapeBytes(bytes(s))
124ed1ef4d6daa12465b30bbddac78841214f9f8
6d116e51e92d199b65f60929ed51e3b8e2ffcba2
/dephell/commands/autocomplete.py
00fe5569a1e70210055c34b2de1fd44352a500b6
[ "MIT" ]
permissive
avallbona/dephell
a2ce64466092360b82b98ae314f242626d54b099
b96b401ea6906b464f9ea87f7ec9f52f9ac6297f
refs/heads/master
2020-05-20T08:47:12.498537
2019-05-08T21:12:03
2019-05-09T05:56:28
185,482,156
0
0
null
2019-05-07T21:42:04
2019-05-07T21:42:03
null
UTF-8
Python
false
false
2,208
py
# built-in from argparse import ArgumentParser from pathlib import Path # external from appdirs import user_data_dir from dephell_shells import Shells # app from ..actions import make_bash_autocomplete, make_zsh_autocomplete from ..config import builders from .base import BaseCommand class AutocompleteCommand(BaseCommand): """Enable DepHell commands autocomplete for current shell. https://dephell.readthedocs.io/en/latest/cmd-autocomplete.html """ @classmethod def get_parser(cls) -> ArgumentParser: parser = ArgumentParser( prog='dephell autocomplete', description=cls.__doc__, ) builders.build_config(parser) builders.build_output(parser) return parser def __call__(self): shell = Shells(bin_path=None).shell_name msg = 'Autocompletion installed. Please, reload your shell' if shell == 'bash': self._bash() self.logger.info(msg) return True if shell == 'zsh': self._zsh() self.logger.info(msg) return True self.logger.error('unsupported shell', extra=dict(shell=shell)) return False def _bash(self): script = make_bash_autocomplete() path = Path.home() / '.local' / 'etc' / 'bash_completion.d' / 'dephell.bash-completion' path.write_text(script) for rc_name in ('.bashrc', '.profile'): rc_path = Path.home() / rc_name if not rc_path.exists(): continue if 'bash_completion.d' not in rc_path.read_text(): with rc_path.open('a') as stream: stream.write('\n\nsource {}\n'.format(str(path))) break def _zsh(self): script = make_zsh_autocomplete() path = Path(user_data_dir('dephell')) / '_dephell_zsh_autocomplete' path.parent.mkdir(parents=True, exist_ok=True) path.write_text(script) path.chmod(0o777) rc_path = Path.home() / '.zshrc' if str(path) not in rc_path.read_text(): with rc_path.open('a') as stream: stream.write('\n\nsource {}\n'.format(str(path)))
82684a66eda279814ea72973da8efc55538b1150
4074db4436d5fc5fa5395de072557def620f993e
/0x07-python-test_driven_development/5-text_indentation.py
8cc9fff7f5c7176d0a15c39387dbc13dcfc8d719
[]
no_license
Hunt66/holbertonschool-higher_level_programming
49b4a93a8b565cdd588e26e6348bed5d3e9d6953
b26f42c1d41bb24842d77bf5cf86c441bd8fcf51
refs/heads/master
2020-03-28T11:11:52.204554
2019-03-25T19:45:28
2019-03-25T19:45:28
148,187,536
0
1
null
null
null
null
UTF-8
Python
false
false
299
py
#!/usr/bin/python3 def text_indentation(text): if not isinstance(text, str): raise TypeError("text must be a string") for i in range(0, len(text)): if text[i] == '.' or text[i] == '?' or text[i] == ':': text = text[:i + 1] + '\n\n' + text[i + 2:] print(text)
78216d61d2bb30903297162eb9e88377d48f746e
d64a5a065ec3d368ee508f197fc0e61fc7a6607e
/build/navigation/base_local_planner/catkin_generated/pkg.develspace.context.pc.py
7c5c6126d275af4617da46d917ce5215b4cfcc06
[]
no_license
ProgettoSGN/charlie
925f0373b79135cab9d307ddd9a4fbac0dba69cf
b44c65cbb518fe7d3d7fa1b022ece92df3882595
refs/heads/master
2023-01-19T09:18:27.382628
2020-11-16T12:59:16
2020-11-16T12:59:16
312,522,792
0
0
null
null
null
null
UTF-8
Python
false
false
819
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/robot/charlie_ws/devel/include;/home/robot/charlie_ws/src/navigation/base_local_planner/include".split(';') if "/home/robot/charlie_ws/devel/include;/home/robot/charlie_ws/src/navigation/base_local_planner/include" != "" else [] PROJECT_CATKIN_DEPENDS = "angles;costmap_2d;dynamic_reconfigure;geometry_msgs;message_runtime;nav_core;nav_msgs;pluginlib;roscpp;sensor_msgs;std_msgs;tf2;tf2_ros;voxel_grid".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lbase_local_planner;-ltrajectory_planner_ros".split(';') if "-lbase_local_planner;-ltrajectory_planner_ros" != "" else [] PROJECT_NAME = "base_local_planner" PROJECT_SPACE_DIR = "/home/robot/charlie_ws/devel" PROJECT_VERSION = "1.16.4"
27888c9296c46a1804a96ccbc084f8cacc2d38e5
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/A/alice_corona/mtv_italy_top_20_scraper.py
54032d35f4c41ec3e149925dd92b9a1ec496cc2a
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,626
py
import scraperwiki import scraperwiki import scraperwiki import requests import lxml.html html = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli-7-gennaio-2012').text root = lxml.html.fromstring(html) for item in root.cssselect("span.today") : date = item.text_content() date2 = date.replace(' ', '-') html2 = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli' + date2).text print date2 #root2 = lxml.html.fromstring(html2) # for item in root2.cssselect("a.cpChartEntryImage"): # song = item.text_content() # print song #for item in root2.cssselect("span.pos"): #position = item.text_content() #for box in root2.cssselect("a"): #print date, position #html3 = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli' + date2 + '/pagina-2').text #root3 = lxml.html.fromstring(html3)#for item in root3.cssselect("span.pos"): #position = item.text_content() #print date, position #for item in root3.cssselect("span.pos"): #position2 = item.text_content() #for name in root2.cssselect("a"): # print date, name.text_content(), # Blank Python import scraperwiki import scraperwiki import scraperwiki import requests import lxml.html html = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli-7-gennaio-2012').text root = lxml.html.fromstring(html) for item in root.cssselect("span.today") : date = item.text_content() date2 = date.replace(' ', '-') html2 = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli' + date2).text print date2 #root2 = lxml.html.fromstring(html2) # for item in root2.cssselect("a.cpChartEntryImage"): # song = item.text_content() # print song #for item in root2.cssselect("span.pos"): #position = item.text_content() #for box in root2.cssselect("a"): #print date, position #html3 = requests.get('http://classifiche.mtv.it/classifica/hitlist-italia-classifica-singoli/hitlist-italia-singoli' + date2 + '/pagina-2').text #root3 = lxml.html.fromstring(html3)#for item in root3.cssselect("span.pos"): #position = item.text_content() #print date, position #for item in root3.cssselect("span.pos"): #position2 = item.text_content() #for name in root2.cssselect("a"): # print date, name.text_content(), # Blank Python
f8adb2e5d9355b185e9cfa1e7aa552bd39f443f7
245b92f4140f30e26313bfb3b2e47ed1871a5b83
/airflow/serialization/serializers/kubernetes.py
0ed9c96f7186007e794cfdde0cc62bc5d2e9cec3
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
ephraimbuddy/airflow
238d6170a0e4f76456f00423124a260527960710
3193857376bc2c8cd2eb133017be1e8cbcaa8405
refs/heads/main
2023-05-29T05:37:44.992278
2023-05-13T19:49:43
2023-05-13T19:49:43
245,751,695
2
1
Apache-2.0
2021-05-20T08:10:14
2020-03-08T04:28:27
null
UTF-8
Python
false
false
2,226
py
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import annotations import logging from typing import TYPE_CHECKING from airflow.utils.module_loading import qualname # lazy loading for performance reasons serializers = [ "kubernetes.client.models.v1_resource_requirements.V1ResourceRequirements", "kubernetes.client.models.v1_pod.V1Pod", ] if TYPE_CHECKING: from airflow.serialization.serde import U __version__ = 1 deserializers: list[type[object]] = [] log = logging.getLogger(__name__) def serialize(o: object) -> tuple[U, str, int, bool]: from kubernetes.client import models as k8s if not k8s: return "", "", 0, False if isinstance(o, (k8s.V1Pod, k8s.V1ResourceRequirements)): from airflow.kubernetes.pod_generator import PodGenerator def safe_get_name(pod): """ We're running this in an except block, so we don't want it to fail under any circumstances, e.g. by accessing an attribute that isn't there """ try: return pod.metadata.name except Exception: return None try: return PodGenerator.serialize_pod(o), qualname(o), __version__, True except Exception: log.warning("Serialization failed for pod %s", safe_get_name(o)) log.debug("traceback for serialization error", exc_info=True) return "", "", 0, False return "", "", 0, False
574d55b848536bfcfa322627dbf0c6b104d9d507
c64bb34a3dde14d3c9bf813bde414a7b3f10611d
/ommat_addons/sprogroup_purchase_request/models/__init__.py
570e708fb07b60d951eacbd75670b5b49e901c7c
[]
no_license
sm2x/my_work
ebf2e1abd06191ee59b0d82a23534274a81a3195
efc469aee4cd20b038d48d4c09f8257f3f04ba1c
refs/heads/master
2021-01-07T20:41:45.254025
2020-02-12T16:02:46
2020-02-12T16:02:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
# -*- encoding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from . import sprogroup_purchase_request from . import vendor_model from . import products from . import stock_castom
abfb82095f1a7ee3c1b729cc4f99af3aa9ed2b7c
b9d54c64d4a280703b459b346e42518896e20e0a
/lingvo/tools/compare_params.py
4515d2c948c01e7afb76a2e16c89d9df30b14990
[ "Apache-2.0" ]
permissive
zh794390558/lingvo
55a27a4e241414389f0c7b40f381a672bb164372
ecdf678179018ca07f4f52d065b9bf3fe2dc7c5a
refs/heads/master
2020-09-26T18:32:31.631402
2019-12-06T04:01:22
2019-12-06T04:02:05
177,497,272
0
0
Apache-2.0
2019-03-25T02:05:42
2019-03-25T02:05:42
null
UTF-8
Python
false
false
3,983
py
# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library for comparing two models / hyperparams.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from lingvo import compat as tf from lingvo import model_registry def _hyperparams_text_to_dict(cfg_text): """Converts hyperparams config text to a dictionary of key-value pairs.""" txt_list = cfg_text.split("\n") pair_list = [] for v in txt_list: if not v: continue vals = v.split(" : ") if len(vals) != 2: raise ValueError(v) pair_list.append(vals) return dict(pair_list) def hyperparams_text_diff(cfg1_text, cfg2_text): """Computes the differences between two hyperparams.Params texts. Args: cfg1_text: A hyperparams.Params().ToText() of the first model config. cfg2_text: A hyperparams.Params().ToText() of the second model config. Returns: A tuple of 3 elements: - cfg1_not_cfg2: A list of keys in cfg1 but not cfg2. - cfg2_not_cfg1: A list of keys in cfg2 but not cfg1. - cfg1_and_cfg2_diff: A dict of common keys whose config values differ: each value is a tuple of the config values from cfg1 and cfg2 respectively. """ cfg1_dict = _hyperparams_text_to_dict(cfg1_text) cfg2_dict = _hyperparams_text_to_dict(cfg2_text) cfg1_keys = set(cfg1_dict.keys()) cfg2_keys = set(cfg2_dict.keys()) cfg1_not_cfg2 = sorted(list(cfg1_keys - cfg2_keys)) cfg2_not_cfg1 = sorted(list(cfg2_keys - cfg1_keys)) def get_class_name(v): try: idx = v.rindex("/") return v[idx + 1:] except ValueError: return v cfg1_and_cfg2_diff = {} for k_intersection in cfg1_keys & cfg2_keys: c1v = cfg1_dict[k_intersection] c2v = cfg2_dict[k_intersection] if k_intersection.endswith(".cls"): c1v = get_class_name(c1v) c2v = get_class_name(c2v) if c1v != c2v: cfg1_and_cfg2_diff[k_intersection] = (c1v, c2v) return cfg1_not_cfg2, cfg2_not_cfg1, cfg1_and_cfg2_diff def print_hyperparams_text_diff(path1, path2, cfg1_not_cfg2, cfg2_not_cfg1, cfg1_and_cfg2_diff): """Prints the differences of the output of hyperparams_text_diff. Args: path1: Name of registered model or path to model 1. path2: Name of registered model or path to model 2. cfg1_not_cfg2: A list of keys in cfg1 but not cfg2. cfg2_not_cfg1: A list of keys in cfg2 but not cfg1. cfg1_and_cfg2_diff: A dictionary of common keys whose config values differ; each value is a tuple of the config values from cfg1 and cfg2 respectively. """ if cfg1_not_cfg2: print("\n\nKeys in %s but not %s: \n%s\n\n" % (path1, path2, "\n".join(cfg1_not_cfg2))) if cfg2_not_cfg1: print("\n\nKeys in %s but not %s: \n%s\n\n" % (path2, path1, "\n".join(cfg2_not_cfg1))) if cfg1_and_cfg2_diff: print("\n\nKeys with differences and their values: \n\n") for k, v in sorted(cfg1_and_cfg2_diff.items()): v1, v2 = v print("%s: [%s] vs. [%s]" % (k, v1, v2)) print("\n\n") def get_model_params_as_text(model_path): try: cfg = model_registry.GetParams(model_path, "Train") return cfg.ToText() except LookupError: # Try reading as file. return tf.io.gfile.GFile(model_path).read()
621c1ffa8b324f1b4fe00aa56300fb2c3f0c237c
ca034a0fe0ae4661ed952ea597e1ba97a1f48d7e
/_build.py
60c79d7104f07978bcdb6ca7f56f2e3ed2bf1f18
[]
no_license
tokejepsen/docs
2bde19a64551b63c6017dec7103a17504f0d4019
631498f1552c3c5e45754e3f249aef0d254c9e15
refs/heads/master
2020-03-19T12:41:15.291282
2018-06-07T21:32:34
2018-06-07T21:32:34
136,533,338
0
0
null
2018-06-07T21:33:13
2018-06-07T21:33:13
null
UTF-8
Python
false
false
6,365
py
"""Generate markdown from template. This module converts bespoke markdown into markdown compatible with the bespoke mkdocs theme developed for Avalon. """ import sys import json import time import shutil import contextlib import subprocess from tempfile import mkdtemp @contextlib.contextmanager def tempfile(name): try: tempdir = mkdtemp() fname = os.path.join(tempdir, name) yield fname finally: shutil.rmtree(tempdir) def on_template(template): definition = template.strip("{{").rstrip().rstrip("}}") key, value = definition.split(":") if key == "schema": return on_schema(value) if key == "api" and value == "members": return on_api_members() return template def on_block(language, block): if language == "python": return on_python(block) return "" def on_page(page): formatted_time = time.strftime("%b %d %Y %H:%M:%S GMT+0", time.gmtime()) return """\ <p>{time}</p> <br> {content}\ """.format(time=formatted_time) def on_api_members(): from avalon import api table = """\ | Member | Description |:-------|:-------- """ row = "| `{name}` | {description}\n" for name in api.__all__: member = getattr(api, name) doc = member.__doc__ if doc is None: raise SyntaxError("'%s' is missing a docstring." % name) table += row.format( name=name, description=doc.splitlines()[0] ) return table def on_schema(name): from avalon import schema schema = schema._cache[name] description = """\ ```json {dump} ``` """.format(dump=json.dumps({ key: value.get("description", "") for key, value in schema["properties"].items() }, indent=4, sort_keys=True)) example = """\ **Example** ```json {dump} ``` """.format(dump=json.dumps({ key: value.get("example", "") for key, value in schema["properties"].items() }, indent=4, sort_keys=True)) definition = """\ **Definition** | Key | Description |:----|:------------ """ row = "| `{key}` | {description}\n" for key, data in schema["properties"].items(): if "requires" in schema and key not in schema["requires"]: continue if "description" not in data: raise SyntaxError("'%s' of %s must have a " "description" % (key, name)) data["key"] = key try: data["type"] = { "string": "str", "number": "int", "array": "list", "object": "dict" }[data["type"]] except KeyError: data["type"] = "any" data["required"] = str(key in schema.get("required", {})) definition += row.format(**data) root = "https://github.com/getavalon/core/tree/master/avalon/schema" link = """\ <a href="{root}/{name}" title="{name}" class="md-source-file"> {name} </a> """.format(root=root, name=name) return os.linesep.join([link, description, example]) def on_python(block): with tempfile("block.py") as fname: with open(fname, "w") as f: f.write(os.linesep.join(block)) try: output = subprocess.check_output( [sys.executable, fname], stderr=subprocess.STDOUT, universal_newlines=True ) except subprocess.CalledProcessError as e: output = e.output output = "\n".join( "<span class=\"p\">{line}</span>".format(line=line) for line in output.splitlines() ) source = """\ ```python {input} ``` """.format(input="".join(block)) output = """\ <table class="codehilitetable output"> <tbody> <tr> <td class="code"> <div class="codehilite" id="__code_1"> <pre> {output}\ </pre> </div> </td> </tr> </tbody> </table> """.format(output=output) if output else "" return "\n".join([source, output]) def parse(fname): parsed = list() blocks = list() with open(fname) as f: in_block = False current_block = None current_language = None line_no = 0 for line in f: line_no += 1 if line_no == 1 and line.startswith("build: false"): print("Skipping '%s'.." % fname) parsed = f.read() break if line.startswith("{{"): line = on_template(line) if in_block and line.startswith("```"): print("Running Python..") print("".join("\t%s" % line for line in current_block)) line = on_block(current_language, current_block) in_block = False current_language = None parsed.append(line) elif in_block: current_block.append(line) elif line.startswith("```python"): in_block = True current_language = "python" current_block = list() blocks.append(current_block) else: parsed.append(line) return "".join(parsed) if __name__ == '__main__': import os import argparse parser = argparse.ArgumentParser() parser.add_argument("path", nargs='?') args = parser.parse_args() cd = os.path.abspath(os.path.dirname(__file__)) os.chdir(cd) if args.path and os.path.isfile(args.path): files = [args.path] else: files = list() path = args.path for base, dirs, fnames in os.walk("pages"): for fname in fnames: name, ext = os.path.splitext(fname) if ext != ".md": continue src = os.path.join(base, fname) files.append(src) results = list() for src in files: print("Building '%s'.." % src) dst = src.replace("pages", "build") parsed = parse(src) results.append((dst, parsed)) # Parsing can take some time, so write # files all in one batch when done for dst, parsed in results: try: os.makedirs(os.path.dirname(dst)) except OSError: pass with open(dst, "w") as f: f.write(parsed)
95dd605d13b812f1e44aa83d1847cdec84539d9d
50e089f906489b2586cc586712420fd085f1f637
/nested_functions.py
bc7e0eb17a8dd8bb22b42ee4d5c4d9a3db320695
[]
no_license
AaronTho/Python_Notes
5ab629e3b3d49be5c68d2a285a79683dc604cd3e
4aa0e1fb4a35763458a1da467e1bb01e393bc972
refs/heads/main
2023-07-24T00:59:23.552952
2021-09-11T17:32:25
2021-09-11T17:32:25
375,399,260
0
0
null
null
null
null
UTF-8
Python
false
false
148
py
def greeting(first, last): def full_name(): return f'{first} {last}' print(f'Hi {full_name()}!') greeting('Kristine', 'Hudgens')
be5efb5f77e4571b19fcd2f4531c1a7779771783
f305f84ea6f721c2391300f0a60e21d2ce14f2a5
/22_专题/单词缩写/527. 单词缩写.py
05bf160951915d6d65e4e60fcb9259136c8d17ac
[]
no_license
981377660LMT/algorithm-study
f2ada3e6959338ae1bc21934a84f7314a8ecff82
7e79e26bb8f641868561b186e34c1127ed63c9e0
refs/heads/master
2023-09-01T18:26:16.525579
2023-09-01T12:21:58
2023-09-01T12:21:58
385,861,235
225
24
null
null
null
null
UTF-8
Python
false
false
1,753
py
from typing import List # 缩写规则: # 1. 初始缩写由起始字母+省略字母的数量+结尾字母组成。 # 2. 若存在冲突,则使用更长的前缀代替首字母,直到从单词到缩写的映射唯一 # 3. 若缩写并不比原单词更短,则保留原样。 # 贪心: # !首先给每个单词选择最短的缩写。然后我们对于所有重复的单词,我们增加这些重复项的长度。 class Solution: def wordsAbbreviation(self, words: List[str]) -> List[str]: def compress(word: str, start=0) -> str: if len(word) - start <= 3: return word return word[: start + 1] + str(len(word) - start - 2) + word[-1] n = len(words) res = list(map(compress, words)) needStartFrom = [0] * n for i in range(n): while True: dup = set() for j in range(i + 1, n): if res[i] == res[j]: dup.add(j) if not dup: break # 重复前缀的单词start+1 重新压缩 dup.add(i) for dupeIndex in dup: needStartFrom[dupeIndex] += 1 res[dupeIndex] = compress(words[dupeIndex], needStartFrom[dupeIndex]) return res print( Solution().wordsAbbreviation( words=[ "like", "god", "internal", "me", "internet", "interval", "intension", "face", "intrusion", ] ) ) # 输出: ["l2e","god","internal","me","i6t","interval","inte4n","f2e","intr4n"]
d0decda0750a41a8cd360423f492d5acd9c51db4
7d7ef4997628d92c9f2ad119ba956c711cc7470e
/preprocess/set_informations.py
1a0daaba394c3457093e1ac50ab82ccd56be0582
[]
no_license
jpra2/bifasico_v2
6a53031d2b4c37ee231770a61c09815146f897d8
061330d5cc1185946283379a2478732ae9bb1b3b
refs/heads/master
2020-06-01T14:39:30.547389
2019-06-26T14:42:51
2019-06-26T14:42:51
190,817,718
0
0
null
null
null
null
UTF-8
Python
false
false
4,145
py
from pymoab import types, rng def injector_producer_press(mb, gama_w, gama_o, gravity, all_nodes, volumes_d, tags): press_tag = tags['P'] values = mb.tag_get_data(press_tag, volumes_d, flat=True) wells_injector_tag = mb.tag_get_handle('WELLS_INJECTOR', 1, types.MB_TYPE_HANDLE, types.MB_TAG_SPARSE, True) wells_producer_tag = mb.tag_get_handle('WELLS_PRODUCER', 1, types.MB_TYPE_HANDLE, types.MB_TAG_SPARSE, True) tags['WELLS_INJECTOR'] = wells_injector_tag tags['WELLS_PRODUCER'] = wells_producer_tag wells_injector_meshset = mb.create_meshset() wells_producer_meshset = mb.create_meshset() m = values.mean() injectors = [] producers = [] for i, v in enumerate(values): if v > m: injectors.append(volumes_d[i]) else: producers.append(volumes_d[i]) producers = rng.Range(producers) injectors = rng.Range(injectors) mb.add_entities(wells_producer_meshset, producers) mb.add_entities(wells_injector_meshset, injectors) mb.tag_set_data(wells_injector_tag, 0, wells_injector_meshset) mb.tag_set_data(wells_producer_tag, 0, wells_producer_meshset) if gravity: set_p_with_gravity(mb, press_tag, all_nodes, injectors, producers, gama_w, gama_o, tags) return injectors, producers def set_p_with_gravity(mb, press_tag, all_nodes, injectors, producers, gama_w, gama_o, tags): coords = mb.tag_get_data(tags['NODES'], all_nodes) coords = coords.reshape([len(all_nodes), 3]) maxs = coords.max(axis=0) Lz = maxs[2] values = mb.tag_get_data(press_tag, injectors, flat=True) z_elems = -1*mb.tag_get_data(tags['CENT'], injectors)[:,2] delta_z = z_elems + Lz pressao = gama_w*(delta_z) + values mb.tag_set_data(press_tag, injectors, pressao) values = mb.tag_get_data(press_tag, producers, flat=True) z_elems = -1*mb.tag_get_data(tags['CENT'], producers)[:,2] delta_z = z_elems + Lz pressao = gama_o*(delta_z) + values mb.tag_set_data(press_tag, producers, pressao) def injector_producer(mb, gama_w, gama_o, gravity, all_nodes, volumes_d, volumes_n, tags): neuman_tag = tags['Q'] press_tag = tags['P'] wells_injector_tag = mb.tag_get_handle('WELLS_INJECTOR', 1, types.MB_TYPE_HANDLE, types.MB_TAG_SPARSE, True) wells_producer_tag = mb.tag_get_handle('WELLS_PRODUCER', 1, types.MB_TYPE_HANDLE, types.MB_TAG_SPARSE, True) wells_injector_meshset = mb.create_meshset() wells_producer_meshset = mb.create_meshset() mb.add_entities(wells_producer_meshset, volumes_d) mb.add_entities(wells_injector_meshset, volumes_n) mb.tag_set_data(wells_injector_tag, 0, wells_injector_meshset) mb.tag_set_data(wells_producer_tag, 0, wells_producer_meshset) if gravity: set_p_with_gravity(mb, tags['P'], all_nodes, volumes_n, volumes_d, gama_w, gama_o, tags) return volumes_n, volumes_d def convert_to_SI(mb, tags, all_volumes, all_faces, all_nodes, volumes_d, volumes_n): from preprocess import conversao as conv k_pe_to_m = 1.0 k_md_to_m2 = 1.0 k_psi_to_pa = 1.0 k_bbldia_to_m3seg = 1.0 k_pe_to_m = conv.pe_to_m(k_pe_to_m) k_md_to_m2 = conv.milidarcy_to_m2(k_md_to_m2) k_psi_to_pa = conv.psi_to_Pa(k_psi_to_pa) k_bbldia_to_m3seg = conv.bbldia_to_m3seg(k_bbldia_to_m3seg) p_tag = tags['P'] k_harm_tag = tags['KHARM'] cent_tag = tags['CENT'] press_values = mb.tag_get_data(tags['P'], volumes_d, flat=True) press_values *= k_psi_to_pa mb.tag_set_data(p_tag, volumes_d, press_values) if len(volumes_n) > 0: q_values = mb.tag_get_data(tags['Q'], volumes_n, flat=True) q_values *= k_bbldia_to_m3seg mb.tag_set_data(q_tag, volumes_q, q_values) k_harms = mb.tag_get_data(tags['KHARM'], all_faces, flat=True) k_harms *= k_md_to_m2*k_pe_to_m mb.tag_set_data(k_harm_tag, all_faces, k_harms) centroids = (k_pe_to_m)*mb.tag_get_data(cent_tag, all_volumes) mb.tag_set_data(cent_tag, all_volumes, centroids) coords = mb.tag_get_data(tags['NODES'], all_nodes) mb.tag_set_data(tags['NODES'], all_nodes, coords*(k_pe_to_m))
77878cfdb6cf7b01007cf4810306020ad7afae92
e2dc5943070ddb3e6198711a9fe3c4dda4e8449a
/190227/최소배열/venv/Scripts/easy_install-script.py
338e6276c2540c67179947380316d9e7e30b6741
[]
no_license
jiheelee/stack
eb7b34073180a9a46221b974585b4cd98cd42e59
b99dba43d1fb2bfae4b4643fda8a523ba18450e5
refs/heads/master
2020-04-25T15:25:53.306308
2019-02-27T08:53:28
2019-02-27T08:53:28
172,878,764
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
471
py
#!C:\Users\student\PycharmProjects\190227\Ãּҹ迭\venv\Scripts\python.exe -x # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
b4c9d08e5f326c5490092f715abc0fd8db325ea5
551b75f52d28c0b5c8944d808a361470e2602654
/huaweicloud-sdk-elb/huaweicloudsdkelb/v2/model/list_healthmonitors_request.py
55e42a77119b95340d34d87e638ffc28030ee5da
[ "Apache-2.0" ]
permissive
wuchen-huawei/huaweicloud-sdk-python-v3
9d6597ce8ab666a9a297b3d936aeb85c55cf5877
3683d703f4320edb2b8516f36f16d485cff08fc2
refs/heads/master
2023-05-08T21:32:31.920300
2021-05-26T08:54:18
2021-05-26T08:54:18
370,898,764
0
0
NOASSERTION
2021-05-26T03:50:07
2021-05-26T03:50:07
null
UTF-8
Python
false
false
15,706
py
# coding: utf-8 import pprint import re import six class ListHealthmonitorsRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'limit': 'int', 'marker': 'str', 'page_reverse': 'bool', 'id': 'str', 'name': 'str', 'delay': 'int', 'max_retries': 'int', 'admin_state_up': 'bool', 'timeout': 'int', 'type': 'str', 'monitor_port': 'int', 'expected_codes': 'str', 'domain_name': 'str', 'url_path': 'str', 'http_method': 'str' } attribute_map = { 'limit': 'limit', 'marker': 'marker', 'page_reverse': 'page_reverse', 'id': 'id', 'name': 'name', 'delay': 'delay', 'max_retries': 'max_retries', 'admin_state_up': 'admin_state_up', 'timeout': 'timeout', 'type': 'type', 'monitor_port': 'monitor_port', 'expected_codes': 'expected_codes', 'domain_name': 'domain_name', 'url_path': 'url_path', 'http_method': 'http_method' } def __init__(self, limit=None, marker=None, page_reverse=None, id=None, name=None, delay=None, max_retries=None, admin_state_up=None, timeout=None, type=None, monitor_port=None, expected_codes=None, domain_name=None, url_path=None, http_method=None): """ListHealthmonitorsRequest - a model defined in huaweicloud sdk""" self._limit = None self._marker = None self._page_reverse = None self._id = None self._name = None self._delay = None self._max_retries = None self._admin_state_up = None self._timeout = None self._type = None self._monitor_port = None self._expected_codes = None self._domain_name = None self._url_path = None self._http_method = None self.discriminator = None if limit is not None: self.limit = limit if marker is not None: self.marker = marker if page_reverse is not None: self.page_reverse = page_reverse if id is not None: self.id = id if name is not None: self.name = name if delay is not None: self.delay = delay if max_retries is not None: self.max_retries = max_retries if admin_state_up is not None: self.admin_state_up = admin_state_up if timeout is not None: self.timeout = timeout if type is not None: self.type = type if monitor_port is not None: self.monitor_port = monitor_port if expected_codes is not None: self.expected_codes = expected_codes if domain_name is not None: self.domain_name = domain_name if url_path is not None: self.url_path = url_path if http_method is not None: self.http_method = http_method @property def limit(self): """Gets the limit of this ListHealthmonitorsRequest. 分页查询中每页的健康检查个数 :return: The limit of this ListHealthmonitorsRequest. :rtype: int """ return self._limit @limit.setter def limit(self, limit): """Sets the limit of this ListHealthmonitorsRequest. 分页查询中每页的健康检查个数 :param limit: The limit of this ListHealthmonitorsRequest. :type: int """ self._limit = limit @property def marker(self): """Gets the marker of this ListHealthmonitorsRequest. 分页查询的起始的资源id,表示上一页最后一条查询记录的健康检查的id。不指定时表示查询第一页。 :return: The marker of this ListHealthmonitorsRequest. :rtype: str """ return self._marker @marker.setter def marker(self, marker): """Sets the marker of this ListHealthmonitorsRequest. 分页查询的起始的资源id,表示上一页最后一条查询记录的健康检查的id。不指定时表示查询第一页。 :param marker: The marker of this ListHealthmonitorsRequest. :type: str """ self._marker = marker @property def page_reverse(self): """Gets the page_reverse of this ListHealthmonitorsRequest. 分页的顺序,true表示从后往前分页,false表示从前往后分页,默认为false。 :return: The page_reverse of this ListHealthmonitorsRequest. :rtype: bool """ return self._page_reverse @page_reverse.setter def page_reverse(self, page_reverse): """Sets the page_reverse of this ListHealthmonitorsRequest. 分页的顺序,true表示从后往前分页,false表示从前往后分页,默认为false。 :param page_reverse: The page_reverse of this ListHealthmonitorsRequest. :type: bool """ self._page_reverse = page_reverse @property def id(self): """Gets the id of this ListHealthmonitorsRequest. 健康检查ID。 :return: The id of this ListHealthmonitorsRequest. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ListHealthmonitorsRequest. 健康检查ID。 :param id: The id of this ListHealthmonitorsRequest. :type: str """ self._id = id @property def name(self): """Gets the name of this ListHealthmonitorsRequest. 健康检查名称。 :return: The name of this ListHealthmonitorsRequest. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ListHealthmonitorsRequest. 健康检查名称。 :param name: The name of this ListHealthmonitorsRequest. :type: str """ self._name = name @property def delay(self): """Gets the delay of this ListHealthmonitorsRequest. 健康检查间隔,单位秒,取值范围[1,50]。 :return: The delay of this ListHealthmonitorsRequest. :rtype: int """ return self._delay @delay.setter def delay(self, delay): """Sets the delay of this ListHealthmonitorsRequest. 健康检查间隔,单位秒,取值范围[1,50]。 :param delay: The delay of this ListHealthmonitorsRequest. :type: int """ self._delay = delay @property def max_retries(self): """Gets the max_retries of this ListHealthmonitorsRequest. 健康检查最大重试次数,取值范围[1,10]。 :return: The max_retries of this ListHealthmonitorsRequest. :rtype: int """ return self._max_retries @max_retries.setter def max_retries(self, max_retries): """Sets the max_retries of this ListHealthmonitorsRequest. 健康检查最大重试次数,取值范围[1,10]。 :param max_retries: The max_retries of this ListHealthmonitorsRequest. :type: int """ self._max_retries = max_retries @property def admin_state_up(self): """Gets the admin_state_up of this ListHealthmonitorsRequest. 健康检查的管理状态。取值范围:true/false。默认为true;true表示开启健康检查;false表示关闭健康检查。 :return: The admin_state_up of this ListHealthmonitorsRequest. :rtype: bool """ return self._admin_state_up @admin_state_up.setter def admin_state_up(self, admin_state_up): """Sets the admin_state_up of this ListHealthmonitorsRequest. 健康检查的管理状态。取值范围:true/false。默认为true;true表示开启健康检查;false表示关闭健康检查。 :param admin_state_up: The admin_state_up of this ListHealthmonitorsRequest. :type: bool """ self._admin_state_up = admin_state_up @property def timeout(self): """Gets the timeout of this ListHealthmonitorsRequest. 健康检查超时时间,单位秒,取值范围[1,50]。 建议该值小于delay的值。 :return: The timeout of this ListHealthmonitorsRequest. :rtype: int """ return self._timeout @timeout.setter def timeout(self, timeout): """Sets the timeout of this ListHealthmonitorsRequest. 健康检查超时时间,单位秒,取值范围[1,50]。 建议该值小于delay的值。 :param timeout: The timeout of this ListHealthmonitorsRequest. :type: int """ self._timeout = timeout @property def type(self): """Gets the type of this ListHealthmonitorsRequest. 健康检查的类型。取值范围:TCP、UDP_CONNECT、HTTP。 :return: The type of this ListHealthmonitorsRequest. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this ListHealthmonitorsRequest. 健康检查的类型。取值范围:TCP、UDP_CONNECT、HTTP。 :param type: The type of this ListHealthmonitorsRequest. :type: str """ self._type = type @property def monitor_port(self): """Gets the monitor_port of this ListHealthmonitorsRequest. 健康检查端口号]。默认为空,表示使用后端云服务器的protocol_port作为健康检查的检查端口。 :return: The monitor_port of this ListHealthmonitorsRequest. :rtype: int """ return self._monitor_port @monitor_port.setter def monitor_port(self, monitor_port): """Sets the monitor_port of this ListHealthmonitorsRequest. 健康检查端口号]。默认为空,表示使用后端云服务器的protocol_port作为健康检查的检查端口。 :param monitor_port: The monitor_port of this ListHealthmonitorsRequest. :type: int """ self._monitor_port = monitor_port @property def expected_codes(self): """Gets the expected_codes of this ListHealthmonitorsRequest. 期望HTTP响应状态码;默认值:“200”。取值范围:单值,例如200;列表,例如200,202;区间,例如200-204。仅当type为HTTP时生效。 该字段为预留字段,暂未启用。 :return: The expected_codes of this ListHealthmonitorsRequest. :rtype: str """ return self._expected_codes @expected_codes.setter def expected_codes(self, expected_codes): """Sets the expected_codes of this ListHealthmonitorsRequest. 期望HTTP响应状态码;默认值:“200”。取值范围:单值,例如200;列表,例如200,202;区间,例如200-204。仅当type为HTTP时生效。 该字段为预留字段,暂未启用。 :param expected_codes: The expected_codes of this ListHealthmonitorsRequest. :type: str """ self._expected_codes = expected_codes @property def domain_name(self): """Gets the domain_name of this ListHealthmonitorsRequest. 健康检查时,发送的http请求的域名。仅当type为HTTP时生效。默认为空,表示使用负载均衡器的vip_address作为http请求的目的地址。以数字或字母开头,只能包含数字、字母、’-’、’.’。例如:www.huaweitest.com :return: The domain_name of this ListHealthmonitorsRequest. :rtype: str """ return self._domain_name @domain_name.setter def domain_name(self, domain_name): """Sets the domain_name of this ListHealthmonitorsRequest. 健康检查时,发送的http请求的域名。仅当type为HTTP时生效。默认为空,表示使用负载均衡器的vip_address作为http请求的目的地址。以数字或字母开头,只能包含数字、字母、’-’、’.’。例如:www.huaweitest.com :param domain_name: The domain_name of this ListHealthmonitorsRequest. :type: str """ self._domain_name = domain_name @property def url_path(self): """Gets the url_path of this ListHealthmonitorsRequest. 健康检查时发送的http请求路径。默认为“/”。以“/”开头。仅当type为HTTP时生效。例如:“/test” :return: The url_path of this ListHealthmonitorsRequest. :rtype: str """ return self._url_path @url_path.setter def url_path(self, url_path): """Sets the url_path of this ListHealthmonitorsRequest. 健康检查时发送的http请求路径。默认为“/”。以“/”开头。仅当type为HTTP时生效。例如:“/test” :param url_path: The url_path of this ListHealthmonitorsRequest. :type: str """ self._url_path = url_path @property def http_method(self): """Gets the http_method of this ListHealthmonitorsRequest. HTTP请求的方法;默认值:GET取值范围:GET、HEAD、POST、PUT、DELETE、TRACE、OPTIONS、CONNECT、PATCH。仅当type为HTTP时生效。 :return: The http_method of this ListHealthmonitorsRequest. :rtype: str """ return self._http_method @http_method.setter def http_method(self, http_method): """Sets the http_method of this ListHealthmonitorsRequest. HTTP请求的方法;默认值:GET取值范围:GET、HEAD、POST、PUT、DELETE、TRACE、OPTIONS、CONNECT、PATCH。仅当type为HTTP时生效。 :param http_method: The http_method of this ListHealthmonitorsRequest. :type: str """ self._http_method = http_method def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListHealthmonitorsRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
155751b1f16e508681de993ca06665d2975eb2ce
9c5abcd43318ef7553be95a95a859a0f3e41a467
/examples/tutorials/11_load.py
84afd7397952523fee2c5088abc9332745ba37a5
[ "BSD-3-Clause" ]
permissive
xzy103/PyEasyGraphics
d66da503f601868fe39d404a77b3b8d0a43a2e52
16bd6f21dd6f3d76edaab2b533500e9aa789c6b2
refs/heads/master
2020-05-19T07:31:22.005958
2019-02-25T09:54:41
2019-02-25T09:54:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
""" Load and display a image """ if __name__ == "__main__": from easygraphics import * init_graph(800, 600) img = load_image("test.png") draw_image((get_width() - img.get_width()) // 2, (get_height() - img.get_height()) // 2, img) pause() img.close() close_graph()
fd27ad6a8290c32a967a034eca6ecec5d2b83195
02b650423c122fd4c2a200eb6a90c4530a75511d
/tests/unit/api/commands/test_Schedule_Commands.py
0ab731997fe190c8d7405e2d013704fed5854efd
[ "Apache-2.0" ]
permissive
OpenSecuritySummit/OSS-Bot
67b5f83ca94c612fbbed7610b92e4174e1f512de
8341df2be0f12c59ca1b0e9c407b650ef2fa44f9
refs/heads/master
2021-08-10T15:28:22.046363
2020-05-28T22:56:41
2020-05-28T22:56:41
185,175,370
1
1
Apache-2.0
2019-06-03T09:49:15
2019-05-06T10:31:25
Python
UTF-8
Python
false
false
572
py
from pbx_gs_python_utils.utils.Dev import Dev from oss_bot.Deploy import Deploy from oss_bot.api.commands.Participant_Commands import Participant_Commands from oss_bot.api.commands.Schedule_Commands import Schedule_Commands from oss_bot.helpers.Test_Helper import Test_Helper class test_Schedule_Commands(Test_Helper): def setUp(self): super().setUp() self.result = None def tearDown(self): if self.result is not None: Dev.pprint(self.result) def test_today(self): Schedule_Commands.today(None,'DJ8UA0RFT',[])
714febafa72df8362cb0c1a03d8eeec7bb22472c
005d644bb56f8c9e168834ae7b8aa6eb6ac121fd
/splash/ui_splash_screen.py
f04928ecdf3274c3ce622ab71292fb9879474210
[]
no_license
TrendingTechnology/Notepy
950c797a111a57aedd521f558cdebe14e643e03d
029f0725a667d2085e20a9ad60e9032d4535830c
refs/heads/main
2023-06-20T21:02:48.004169
2021-07-17T05:47:56
2021-07-17T05:47:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,474
py
from PySide2.QtCore import (QCoreApplication, QMetaObject, QObject, QPoint, QRect, QSize, QUrl, Qt) from PySide2.QtGui import (QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QIcon, QLinearGradient, QPalette, QPainter, QPixmap, QRadialGradient) from PySide2.QtWidgets import * class Ui_SplashScreen(object): def setupUi(self, SplashScreen): if SplashScreen.objectName(): SplashScreen.setObjectName(u"SplashScreen") SplashScreen.resize(680, 400) self.centralwidget = QWidget(SplashScreen) self.centralwidget.setObjectName(u"centralwidget") self.verticalLayout = QVBoxLayout(self.centralwidget) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName(u"verticalLayout") self.verticalLayout.setContentsMargins(10, 10, 10, 10) self.dropShadowFrame = QFrame(self.centralwidget) self.dropShadowFrame.setObjectName(u"dropShadowFrame") self.dropShadowFrame.setStyleSheet(u"QFrame { \n" " background-color: rgb(255, 255, 255); \n" " color: rgb(220, 220, 220);\n" " border-radius: 10px;\n" "}") self.dropShadowFrame.setFrameShape(QFrame.StyledPanel) self.dropShadowFrame.setFrameShadow(QFrame.Raised) self.label_title = QLabel(self.dropShadowFrame) self.label_title.setObjectName(u"label_title") self.label_title.setGeometry(QRect(0, 90, 661, 61)) font = QFont() font.setFamily(u"Segoe UI") font.setPointSize(40) self.label_title.setFont(font) self.label_title.setStyleSheet(u"color: rgb(254, 121, 199);") self.label_title.setAlignment(Qt.AlignCenter) self.label_description = QLabel(self.dropShadowFrame) self.label_description.setObjectName(u"label_description") self.label_description.setGeometry(QRect(0, 150, 661, 31)) font1 = QFont() font1.setFamily(u"Segoe UI") font1.setPointSize(14) self.label_description.setFont(font1) self.label_description.setStyleSheet(u"color: rgb(98, 114, 164);") self.label_description.setAlignment(Qt.AlignCenter) self.progressBar = QProgressBar(self.dropShadowFrame) self.progressBar.setObjectName(u"progressBar") self.progressBar.setGeometry(QRect(50, 280, 561, 23)) self.progressBar.setStyleSheet(u"QProgressBar {\n" " \n" " background-color: rgb(98, 114, 164);\n" " color: rgb(200, 200, 200);\n" " border-style: none;\n" " border-radius: 10px;\n" " text-align: center;\n" "}\n" "QProgressBar::chunk{\n" " border-radius: 10px;\n" " background-color: qlineargradient(spread:pad, x1:0, y1:0.511364, x2:1, y2:0.523, stop:0 rgba(254, 121, 199, 255), stop:1 rgba(170, 85, 255, 255));\n" "}") self.progressBar.setValue(24) self.label_loading = QLabel(self.dropShadowFrame) self.label_loading.setObjectName(u"label_loading") self.label_loading.setGeometry(QRect(0, 320, 661, 21)) font2 = QFont() font2.setFamily(u"Segoe UI") font2.setPointSize(12) self.label_loading.setFont(font2) self.label_loading.setStyleSheet(u"color: rgb(98, 114, 164);") self.label_loading.setAlignment(Qt.AlignCenter) self.label_credits = QLabel(self.dropShadowFrame) self.label_credits.setObjectName(u"label_credits") self.label_credits.setGeometry(QRect(20, 350, 621, 21)) font3 = QFont() font3.setFamily(u"Segoe UI") font3.setPointSize(10) self.label_credits.setFont(font3) self.label_credits.setStyleSheet(u"color: rgb(98, 114, 164);") self.label_credits.setAlignment(Qt.AlignRight|Qt.AlignTrailing|Qt.AlignVCenter) self.verticalLayout.addWidget(self.dropShadowFrame) SplashScreen.setCentralWidget(self.centralwidget) self.retranslateUi(SplashScreen) QMetaObject.connectSlotsByName(SplashScreen) # setupUi def retranslateUi(self, SplashScreen): SplashScreen.setWindowTitle(QCoreApplication.translate("SplashScreen", u"MainWindow", None)) self.label_title.setText(QCoreApplication.translate("SplashScreen", u"<strong>Notepy</strong>", None)) self.label_loading.setText(QCoreApplication.translate("SplashScreen", u"'Writing is the painting of the voice'" , None)) self.label_credits.setText(QCoreApplication.translate("SplashScreen", u"<strong>Created by</strong>: Mirko Rovere", None)) # retranslateUi
223fd5fbb8b7756b2d9e6bea44f9505273bd3aa9
b022d86a5beabbc830d3896ccfba4f219875cbca
/meshio/medit_io.py
87bcf8e31d2cc5a2c2217046f45872dff2bb8d40
[ "MIT" ]
permissive
nicoguaro/meshio
4bb136417f0c93990b8ebbc3b9cd53d0b0b044c1
5b3a15e72f3a0c134d176b016d2c16e10e890f27
refs/heads/master
2021-01-22T04:24:37.177143
2017-05-18T17:45:50
2017-05-18T17:45:50
92,463,341
1
0
null
2017-05-26T02:24:27
2017-05-26T02:24:27
null
UTF-8
Python
false
false
3,757
py
# -*- coding: utf-8 -*- # ''' I/O for Medit's format, cf. <https://people.sc.fsu.edu/~jburkardt/data/medit/medit.html>. .. moduleauthor:: Nico Schlömer <[email protected]> ''' from itertools import islice import numpy def read(filename): with open(filename) as f: points, cells = read_buffer(f) return points, cells, {}, {}, {} def read_buffer(f): dim = 0 cells = {} while True: try: line = next(islice(f, 1)) except StopIteration: break stripped = line.strip() # skip comments and empty lines if len(stripped) == 0 or stripped[0] == '#': continue assert stripped[0].isalpha() keyword = stripped.split(' ')[0] meshio_from_medit = { 'Edges': ('line', 2), 'Triangles': ('triangle', 3), 'Quadrilaterals': ('quad', 4), 'Tetrahedra': ('tetra', 4), 'Hexahedra': ('hexahedra', 8) } if keyword == 'MeshVersionFormatted': assert stripped[-1] == '1' elif keyword == 'Dimension': dim = int(stripped[-1]) elif keyword == 'Vertices': assert dim > 0 # The first line is the number of nodes line = next(islice(f, 1)) num_verts = int(line) points = numpy.empty((num_verts, dim), dtype=float) for k, line in enumerate(islice(f, num_verts)): # Throw away the label immediately points[k] = numpy.array(line.split(), dtype=float)[:-1] elif keyword in meshio_from_medit: meshio_name, num = meshio_from_medit[keyword] # The first line is the number of elements line = next(islice(f, 1)) num_cells = int(line) cell_data = numpy.empty((num_cells, num), dtype=int) for k, line in enumerate(islice(f, num_cells)): data = numpy.array(line.split(), dtype=int) # Throw away the label cell_data[k] = data[:-1] # adapt 0-base cells[meshio_name] = cell_data - 1 elif keyword == 'End': pass else: raise RuntimeError('Unknown keyword \'%s\'.' % keyword) return points, cells def write( filename, points, cells, point_data=None, cell_data=None, field_data=None ): with open(filename, 'wb') as fh: fh.write(b'MeshVersionFormatted 1\n') fh.write(b'# Created by meshio\n') # Dimension info d = '\nDimension %d\n' % points.shape[1] fh.write(d.encode('utf-8')) # vertices fh.write(b'\nVertices\n') fh.write(('%d\n' % len(points)).encode('utf-8')) labels = numpy.ones(len(points), dtype=int) data = numpy.c_[points, labels] fmt = ' '.join(['%r'] * points.shape[1]) + ' %d' numpy.savetxt(fh, data, fmt) medit_from_meshio = { 'line': ('Edges', 2), 'triangle': ('Triangles', 3), 'quad': ('Quadrilaterals', 4), 'tetra': ('Tetrahedra', 4), 'hexahedra': ('Hexahedra', 8) } for key, data in cells.items(): medit_name, num = medit_from_meshio[key] fh.write(b'\n') fh.write(('%s\n' % medit_name).encode('utf-8')) fh.write(('%d\n' % len(data)).encode('utf-8')) labels = numpy.ones(len(data), dtype=int) # adapt 1-base data_with_label = numpy.c_[data + 1, labels] fmt = ' '.join(['%d'] * (num + 1)) numpy.savetxt(fh, data_with_label, fmt) fh.write(b'\nEnd\n') return
da978648cea65bbf38b0bdafda58e143903f1c6e
5c36cf1f219f8a4f665f68346951d8f92b40eb28
/BUILD/doc/source/conf.py
b20254e88f9b52d9134c5fb4d06239d392f139ca
[ "MIT" ]
permissive
c1rdan/pytan
33fbee6bf51a69479c0a8bca54b95f72ad69c2b1
5e537a6dcf4136e3b9c3905a39f073396e7f044f
refs/heads/master
2020-04-02T14:21:37.339108
2018-10-25T12:07:25
2018-10-25T12:07:25
154,521,218
1
0
MIT
2018-10-24T15:04:36
2018-10-24T15:04:35
null
UTF-8
Python
false
false
10,135
py
# -*- coding: utf-8 -*- # # PyTan documentation build configuration file, created by # sphinx-quickstart on Wed Dec 3 05:16:49 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import imp # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) my_file = os.path.abspath(__file__) my_dir = os.path.dirname(my_file) root_dir = os.path.join(my_dir, os.pardir, os.pardir, os.pardir) root_dir = os.path.abspath(root_dir) lib_dir = os.path.join(root_dir, 'lib') test_dir = os.path.join(root_dir, 'test') path_adds = [my_dir, lib_dir, test_dir] for aa in path_adds: if aa not in sys.path: sys.path.append(aa) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'sphinx.ext.inheritance_diagram', 'sphinx.ext.intersphinx', 'numpydoc', ] # autodoc_default_flags = ['members', 'show-inheritance'] autosummary_generate = True numpydoc_show_class_members = False numpydoc_class_members_toctree = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. copyright = u'2015, Tanium Inc.' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # pyscript_path = os.path.join(lib_dir, 'pytan', '__init__.py') a = imp.load_source('a', pyscript_path) version = a.__version__ release = version project = u'PyTan v{}'.format(version) # The short X.Y version. # version = '1.0.4' # The full version, including alpha/beta/rc tags. # release = '1.0.4' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. keep_warnings = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinxdoc' html_theme = "sphinx_rtd_theme" html_theme_path = ["_themes", ] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True html_domain_indices = ['py-modindex'] # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'PyTandoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. 'preamble': '''\usepackage{enumitem} \setlistdepth{99}''', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'PyTan.tex', u'PyTan Documentation', u'Jim Olsen', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pytan', u'PyTan Documentation', [u'Jim Olsen'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'PyTan', u'PyTan Documentation', u'Jim Olsen', 'PyTan', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False intersphinx_mapping = {'python': ('http://docs.python.org/2.7', None)}
22b155a60cc9f26f8fbcbfb19da779853da72f7b
fc7cad490cb774d769c1b463ac6d1d9a8ea97024
/pages/tests/test_views.py
1769e7849fc404679d64f326e2eea26408bcaedd
[]
no_license
Aviemusca/curriculum-dev
c301915532353836cb085130fd12e2734da4b956
691a6536718ef496ac603b1c8daee7508b3e8ff2
refs/heads/master
2022-12-26T20:56:55.031344
2020-10-01T08:11:49
2020-10-01T08:11:49
297,643,769
0
0
null
null
null
null
UTF-8
Python
false
false
1,158
py
from django.test import SimpleTestCase from django.urls import reverse class HomePageViewTests(SimpleTestCase): def test_home_page_status_code(self): response = self.client.get('/') self.assertEqual(response.status_code, 200) def test_home_view_url_by_name(self): response = self.client.get(reverse('pages:home')) self.assertEqual(response.status_code, 200) def test_home_view_template(self): response = self.client.get(reverse('pages:home')) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'home.html') class AboutPageViewTests(SimpleTestCase): def test_about_page_status_code(self): response = self.client.get('/about/') self.assertEqual(response.status_code, 200) def test_about_view_url_by_name(self): response = self.client.get(reverse('pages:about')) self.assertEqual(response.status_code, 200) def test_about_view_template(self): response = self.client.get(reverse('pages:about')) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'about.html')
b6a3f94427f43ae734fb20b7e2c1c4f6c926b604
2aace9bb170363e181eb7520e93def25f38dbe5c
/build/idea-sandbox/system/python_stubs/cache/1ed4e86933efe88eca97680f436c5548265533bfbc196a385877104ccb45103b/_cython_0_29_11.py
091c1badfe884dc8faa5756d595898a85fb668e4
[]
no_license
qkpqkp/PlagCheck
13cb66fd2b2caa2451690bb72a2634bdaa07f1e6
d229904674a5a6e46738179c7494488ca930045e
refs/heads/master
2023-05-28T15:06:08.723143
2021-06-09T05:36:34
2021-06-09T05:36:34
375,235,940
1
0
null
null
null
null
UTF-8
Python
false
false
4,290
py
# encoding: utf-8 # module _cython_0_29_11 # from C:\Users\Doly\Anaconda3\lib\site-packages\skimage\measure\_marching_cubes_lewiner_cy.cp37-win_amd64.pyd # by generator 1.147 # no doc # no imports # Variables with simple values __loader__ = None __spec__ = None # no functions # classes class cython_function_or_method(object): def __call__(self, *args, **kwargs): # real signature unknown """ Call self as a function. """ pass def __get__(self, *args, **kwargs): # real signature unknown """ Return an attribute of instance, which is of type owner. """ pass def __init__(self, *args, **kwargs): # real signature unknown pass def __reduce__(self, *args, **kwargs): # real signature unknown pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass func_closure = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_code = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_defaults = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_dict = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_doc = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_globals = property(lambda self: object(), lambda self, v: None, lambda self: None) # default func_name = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __annotations__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __closure__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __code__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __defaults__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __globals__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __kwdefaults__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __self__ = property(lambda self: object(), lambda self, v: None, lambda self: None) # default __dict__ = None # (!) real value is "mappingproxy({'__repr__': <slot wrapper '__repr__' of 'cython_function_or_method' objects>, '__call__': <slot wrapper '__call__' of 'cython_function_or_method' objects>, '__get__': <slot wrapper '__get__' of 'cython_function_or_method' objects>, '__reduce__': <method '__reduce__' of 'cython_function_or_method' objects>, '__module__': <member '__module__' of 'cython_function_or_method' objects>, 'func_doc': <attribute 'func_doc' of 'cython_function_or_method' objects>, '__doc__': <attribute '__doc__' of 'cython_function_or_method' objects>, 'func_name': <attribute 'func_name' of 'cython_function_or_method' objects>, '__name__': <attribute '__name__' of 'cython_function_or_method' objects>, '__qualname__': <attribute '__qualname__' of 'cython_function_or_method' objects>, '__self__': <attribute '__self__' of 'cython_function_or_method' objects>, 'func_dict': <attribute 'func_dict' of 'cython_function_or_method' objects>, '__dict__': <attribute '__dict__' of 'cython_function_or_method' objects>, 'func_globals': <attribute 'func_globals' of 'cython_function_or_method' objects>, '__globals__': <attribute '__globals__' of 'cython_function_or_method' objects>, 'func_closure': <attribute 'func_closure' of 'cython_function_or_method' objects>, '__closure__': <attribute '__closure__' of 'cython_function_or_method' objects>, 'func_code': <attribute 'func_code' of 'cython_function_or_method' objects>, '__code__': <attribute '__code__' of 'cython_function_or_method' objects>, 'func_defaults': <attribute 'func_defaults' of 'cython_function_or_method' objects>, '__defaults__': <attribute '__defaults__' of 'cython_function_or_method' objects>, '__kwdefaults__': <attribute '__kwdefaults__' of 'cython_function_or_method' objects>, '__annotations__': <attribute '__annotations__' of 'cython_function_or_method' objects>})" __name__ = 'cython_function_or_method' __qualname__ = 'cython_function_or_method'
6751ec11b96160d04f89626642ceb462999b1053
ab621c65fc91f5194c4032d68e750efaa5f85682
/pabi_asset_management/wizard/account_asset_compute.py
d6cacc753c4c8d1e7b206c84a6b2f2cc5727aea3
[]
no_license
pabi2/pb2_addons
a1ca010002849b125dd89bd3d60a54cd9b9cdeef
e8c21082c187f4639373b29a7a0905d069d770f2
refs/heads/master
2021-06-04T19:38:53.048882
2020-11-25T03:18:24
2020-11-25T03:18:24
95,765,121
6
15
null
2022-10-06T04:28:27
2017-06-29T10:08:49
Python
UTF-8
Python
false
false
1,524
py
# -*- coding: utf-8 -*- import ast from openerp import models, fields, api, _ class AccountAssetCompute(models.Model): # Change to a Model _inherit = 'account.asset.compute' _rec_name = 'id' _order = 'id desc' id = fields.Integer( string='ID', readonly=True, ) period_id = fields.Many2one( readonly=True, states={'draft': [('readonly', False)]}, ) state = fields.Selection( [('draft', 'Draft'), ('done', 'Done')], string='Status', readonly=True, default='draft', ) move_ids = fields.Many2many( 'account.move', 'asset_compute_account_move_rel', 'compute_id', 'move_id', string='Journal Entries', readonly=True, ) @api.multi def asset_compute(self): res = super(AccountAssetCompute, self).asset_compute() domain = ast.literal_eval(res['domain']) move_ids = domain[0][2] self.write({'move_ids': [(6, 0, move_ids)], 'state': 'done'}) return True @api.multi def open_entries(self): self.ensure_one() return { 'name': _("Journal Entries"), 'view_type': 'form', 'view_mode': 'tree,form', 'res_model': 'account.move', 'view_id': False, 'type': 'ir.actions.act_window', 'context': self._context, 'nodestroy': True, 'domain': [('id', 'in', self.move_ids.ids)], }
0b2dfc4a3aeb2cffa837508f7aeee51394e57bd1
2cfa0cd5e016d81ecdd3f643e95bd6382652f1ab
/toTheMoon/leetcode_139_WordBreak.py
64604808320a3a83f58121a9a3c08cfb7d26d7ca
[ "MIT" ]
permissive
jercas/offer66-leetcode-newcode
b863871840875cc38e0310b1e20ccaa4040ea134
a2e5256f27dbfb23fc34119fc857cd9b00e28c03
refs/heads/master
2020-05-07T17:43:43.326326
2019-10-24T12:52:32
2019-10-24T12:52:32
180,738,543
0
0
null
null
null
null
UTF-8
Python
false
false
2,094
py
# -*- coding: utf-8 -*- """ Created on Thu Apr 18 20:32:31 2019 @author: jercas """ """ leetcode-139: 单词拆分 MEDIUM '动态规划' 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 Hint: (1)设dp[i]表示字符串s[0:i]是否可以被拆分,False 不能,True能。 (2)现在要想求dp[i]的值,很显然只要判断dp[i - k]的值和子串s[i - k: i]是否存在wordDict中, 其中k为wordDict中一个单词的长度,所以在这一块,可以遍历所有的单词来求。 (3)可以先求出wordDict中每个长度,并且给它排序,方便后面的计算。 """ class Solution(object): def wordBreak1(self, s, wordDict): """ :type s: str :type wordDict: List[str] :rtype: bool """ if len(s) == 0 or not wordDict: return False max_stride = max([len(x) for x in wordDict]) res = [0] * (len(s) + 1) res[0] = 1 for i in range(1, len(s) + 1): for j in range(i - max_stride, i): if res[j] == 1 and s[j:i] in wordDict: res[i] = 1 if res[-1] == 1: return True else: return False def wordBreak2(self, s, wordDict): """ :type s: str :type wordDict: List[str] :rtype: bool """ words = set(wordDict) lengths = sorted({len(w) for w in words}) dp = [False] * (len(s) + 1) dp[0] = True for i in range(1, len(s) + 1): for k in lengths: if not dp[i] and i - k >= 0: dp[i] = (dp[i - k] and s[i - k: i] in words) #print(i, dp[i]) #print(dp) return dp[-1] if __name__ == "__main__": s = ["leetcode", "applepenapple", "catsandog", "cars"] wordDict = [["leet", "code"], ["apple", "pen"], ["cats", "dog", "sand", "and", "cat"], ["car", "ca", "rs"]] A = [True, True, False, True] solution = Solution() for i in range(4): if A[i] == solution.wordBreak2(s[i], wordDict[i]): print(s[i],"+", wordDict[i], "-->", A[i]) print('AC')
4e2e3d32be1cba99eb676eb1b0b9eb38a7c57daf
4a8c1f7d9935609b780aff95c886ef7781967be0
/atcoder/_codeforces/1359_d.py
e4583d55e18b587b4ff08fba68b0847da062511c
[]
no_license
recuraki/PythonJunkTest
d5e5f5957ac5dd0c539ef47759b1fe5ef7a2c52a
2556c973d468a6988d307ce85c5f2f8ab15e759a
refs/heads/master
2023-08-09T17:42:21.875768
2023-07-18T23:06:31
2023-07-18T23:06:31
13,790,016
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
import sys from io import StringIO import unittest import logging logging.basicConfig(level=logging.DEBUG) def resolve(): from pprint import pprint import sys input = sys.stdin.readline n = int(input()) dat = list(map(int, input().split())) s = [0] * (n+1) for i in range(n): s[i+1] = s[i] + dat[i]; resval = -999999999999999999999 res = 0 for i in range(n): vmin = dat[i] for j in range(i+1, n): v = s[j+1] - s[i] vmin = max(vmin, dat[j]) tmp = v - vmin resval = max(resval, tmp) #print(i, j, v, vmin, tmp) if resval < 0: print(0) else: print(resval) class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin self.assertEqual(out, output) def test_input_1(self): print("test_input_1") input = """5 5 -2 10 -1 4""" output = """6""" self.assertIO(input, output) def test_input_2(self): print("test_input_2") input = """8 5 2 5 3 -30 -30 6 9""" output = """10""" self.assertIO(input, output) def test_input_3(self): print("test_input_3") input = """3 -10 6 -15""" output = """0""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
369cc333ac5f443e085115379b09a143723492e7
936c893f29a7e3c99450b49512d5ad6dd7e63d12
/api/migrations/0006_codesubbietype.py
7a09f80fdcddf9e4a90dccbe52897390cab09456
[]
no_license
pavithra994/cormack_dev
0d3f5f794173013f3219c786b83779df2f2ae344
78927eaeea27320908b117aa50380ddacd6e2662
refs/heads/master
2023-04-09T22:34:33.746134
2021-04-13T20:12:08
2021-04-13T20:12:08
357,628,147
0
0
null
null
null
null
UTF-8
Python
false
false
1,504
py
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Ocom Software- All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by Ocom Software <[email protected], 2019 # # # Generated by Django 1.10.7 on 2017-12-12 04:36 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('api', '0005_hash'), ] operations = [ migrations.CreateModel( name='CodeSubbieType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('modified_date', models.DateTimeField(auto_now=True, null=True)), ('created_date', models.DateTimeField(auto_now_add=True)), ('active_start_date', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Active Start Date')), ('active_end_date', models.DateTimeField(blank=True, null=True, verbose_name='Active End Date')), ('description', models.TextField()), ('code', models.CharField(blank=True, max_length=255, null=True, unique=True)), ], options={ 'verbose_name_plural': 'Subbie Types', 'db_table': 'code_subbie_type', 'verbose_name': 'Subbie Type', }, ), ]
b19af4145b02f7ea5d7e947944ec9842a0a92632
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02886/s480047151.py
182b8aad58af1035a08c56cbe0d021cb65d131cb
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
N=int(input()) List = list(map(int, input().split())) wa = 0 for i in range(N): for j in range(N): if j == i: pass else: wa += List[i]*List[j] wa = wa //2 print(wa)
8d2091e6ed66f99a803f6b2852b1ad75f6b5c9b0
cca752de5ce7f2ce2a225a4d67fc05f917716572
/pyemma/coordinates/clustering/assign.py
62de35890757e6f5f8dd27392fac2db8b2345893
[ "BSD-2-Clause" ]
permissive
kziolkowska/PyEMMA
aef5cf697c4d470e380d888e87d4ec81197f3651
358edf630f02a893795c41f57bb8ae2843510444
refs/heads/master
2021-01-16T22:46:03.817339
2015-02-23T07:48:46
2015-02-23T07:48:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,655
py
''' Created on 18.02.2015 @author: marscher ''' from pyemma.coordinates.clustering.interface import AbstractClustering from pyemma.msm.io import read_matrix import numpy as np class AssignCenters(AbstractClustering): """Assigns given (precalculated) cluster centers. If you already have cluster centers from somewhere, you use this class to assign your data to it. Parameters ---------- clustercenters : path to file (csv) or ndarray cluster centers to use in assignment of data Examples -------- Assuming you have stored your centers in a CSV file: >>> from pyemma.coordinates.clustering import AssignCenters >>> from pyemma.coordinates import discretizer >>> reader = ... >>> assign = AssignCenters('my_centers.dat') >>> disc = discretizer(reader, cluster=assign) >>> disc.run() """ def __init__(self, clustercenters): super(AssignCenters, self).__init__() if isinstance(clustercenters, str): self.clustercenters = read_matrix(clustercenters) self.clustercenters = clustercenters assert isinstance(self.clustercenters, np.ndarray) def param_add_data(self, X, itraj, t, first_chunk, last_chunk_in_traj, last_chunk, ipass, Y=None): # discretize all if t == 0: n = self.data_producer.trajectory_length(itraj) self.dtrajs.append(np.empty(n, dtype=int)) L = np.shape(X)[0] # TODO: optimize: assign one chunk at once for i in xrange(L): self.dtrajs[itraj][i + t] = self.map(X[i]) if last_chunk: return True
5fbe51365e416484320375db8432cd15c9a6a8f0
ea9b8accf7040cc7d463cb162c798e9675f16533
/edittask
3e3fb3f7085e5c25fa4576cfc0f4486dba8ed4d0
[]
no_license
thomasballinger/ballingercalendar
d51619310cc9b39ff343547366caa764ee86404b
6ebaa8b97d6fb3a393ce1a7d988e22a1daaaec49
refs/heads/master
2021-01-10T21:04:52.684282
2011-05-27T21:06:44
2011-05-27T21:06:44
32,118,158
0
0
null
null
null
null
UTF-8
Python
false
false
12,963
#!/usr/bin/python # edittask # being updated for use with spreadsheet-based tasks # [email protected] import time import os, sys, optparse import datetime, parse import gssltask as task import calendarhours as hours origDir = os.getcwd() scriptFile = os.path.abspath(__file__) scriptDir = os.path.basename(scriptFile) import cmd import pretty from pprint import pprint class EditTasksCLI(cmd.Cmd): def __init__(self): cmd.Cmd.__init__(self) self.prompt = ':) ' self.selected_task = None self.task_list = task.createTasks() def do_updateLocalTasklist(self, arg): self.task_list = task.createTasks() def do_exit(self, arg): sys.exit(0) def do_quit(self, arg): sys.exit(0) def do_EOF(self, arg): print('') return True def do_prettyHours(self, arg): if not arg: return False splitargs = arg.split() (ds1, ds2) = splitargs[:2] if len(splitargs) == 3: filename = splitargs[2] return pretty.showWeekly(ds1, ds2, filename=filename) return pretty.showWeekly(ds1, ds2) def do_listtasks(self, arg): print self.task_list def do_task(self, arg): if arg: arg = arg.replace('_',' ') l = [x for x in self.task_list if x.name == arg] if not l: l = [x.name.replace('-','_').replace("'",'') for x in self.task_list if x.name.replace('-','_').replace("'",'') == arg] print('no such task') return self.selected_task = l[0] print(self.selected_task) elif self.selected_task: print(self.selected_task) else: print('select a task, or create a new one') def complete_task(self, text, line, beginindex, endindex): if not text: a = [x.name.replace(' ','_').replace('-','_').replace("'",'') for x in self.task_list] return a else: a = [x.name.replace(' ','_').replace('-','_').replace("'",'') for x in [t for t in self.task_list if text.lower() in t.name.replace(' ','_').replace("'",'').lower()]] return a def do_rename(self,arg): if not self.selected_task: print('choose a task first'); return self.selected_task.name = arg.replace('_',' ') self.selected_task.put() self.task_list = task.createTasks() def do_newtask(self,arg): if not arg: arg = raw_input('task name:') if not arg: print('nm') return False t = task.newTask(arg.replace('_',' ')) self.selected_task = t time.sleep(1) def do_description(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print('description:'+self.selected_task.description) return self.selected_task.description = arg self.selected_task.put() self.task_list = task.createTasks() def do_timeLeft(self, arg): """Displays time left before a task is due, """ if not self.selected_task: print('choose a task first'); return self.selected_task.timespent = hours.get_hours_worked(self.selected_task.id) overdue = self.selected_task.duedate - datetime.datetime.now() left = self.selected_task.estimatedtime - self.selected_task.timespent if self.selected_task.iscompleted: print 'task completed.' print 'estimated time for task: ', self.selected_task.estimatedtime print 'time spent on task: ', self.selected_task.timespent else: if overdue < datetime.timedelta(0): print 'task overdue by: ', abs(overdue) else: print 'time until task due: ', overdue if left < datetime.timedelta(0): print 'task is overbudget by: ', abs(left) else: print 'estimated time to complete', left print 'estimated time for task: ', self.selected_task.estimatedtime print 'time spent so far: ', self.selected_task.timespent def do_due(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'due date:',self.selected_task.duedate return time = parse.parseDate(arg) self.selected_task.duedate = time print 'due date:',time self.selected_task.put() self.task_list = task.createTasks() def do_assigner(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'assigner:',self.selected_task.assigner return self.selected_task.assigner = arg self.selected_task.put() self.task_list = task.createTasks() def do_whose(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'whose:',self.selected_task.whose return self.selected_task.whose = arg self.selected_task.put() self.task_list = task.createTasks() def do_priority(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'priority:',self.selected_task.priority return if not -1<int(arg)<10: print('bad priority value') return self.selected_task.priority = int(arg) self.selected_task.put() self.task_list = task.createTasks() def do_estimatedTime (self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'estimated time:',self.selected_task.estimatedtime return timedelta = parse.parseTimedelta(arg) self.selected_task.estimatedtime = timedelta self.selected_task.put() self.task_list = task.createTasks() print 'estimated time:',self.selected_task.estimatedtime def do_timespent(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'time spend:',self.selected_task.timespent return interval = parse.parseTimeInterval(arg) self.selected_task.timeSpend.append() self.selected_task.put() self.task_list = task.createTasks() print 'time spend:',self.selected_task.timespent def do_wait(self, arg): if not self.selected_task: print('choose a task first'); return if not arg: print 'waits:',self.selected_task.waits return self.selected_task.waits.append(task.Wait()) self.selected_task.waits[-1].whatFor = arg selected_task.put() print 'waits:',self.selected_task.waits def do_appointment(self, arg): if not self.selected_task: print('choose a task first'); return self.selected_task.isappointment = True self.selected_task.put() self.task_list = task.createTasks() print 'task is now an appointment' def do_notAppointment(self, arg): if not self.selected_task: print('choose a task first'); return self.selected_task.isappointment = False self.selected_task.put() self.task_list = task.createTasks() print 'task is now not an appointment' def do_notComplete(self, arg): if not self.selected_task: print('choose a task first'); return self.selected_task.iscompleted= False self.selected_task.put() self.task_list = task.createTasks() def do_complete(self, arg): if not self.selected_task: print('choose a task first'); return self.selected_task.iscompleted= True self.selected_task.put() self.task_list = task.createTasks() def do_showCurrentTask(self, arg): if not self.selected_task: print 'select a task first'; return t = self.selected_task print(t.name) for (label,prop) in zip( ['desc:','due:','assigned by:','priority:','time estimate:','time spent','start time','waits','is appointment:','is complete:'], [t.description, t.duedate, t.assigner, t.priority, t.estimatedtime, t.timespent, t.starttime, t.waitids, t.isappointment, t.iscompleted]): if prop: print label,prop def do_removeTask(self, arg): if not self.selected_task: print 'select a task first'; return check = parse.parseBoolean(raw_input('really delete task'+self.selected_task.__repr__()+'?\n')) if check: task.deleteTask(self.selected_task) self.selected_task = None def do_listChronologicallyByDueDate(self, arg): pprint(task.getTheStack(self.task_list)) def do_listOverdue(self, arg): pprint([t for t in self.task_list if t.duedate < datetime.datetime.now() and not t.iscompleted]) def do_listCompleted(self, arg): pprint([t for t in self.task_list if t.iscompleted]) def do_listInProgress(self, arg): task_list = [t for t in self.task_list if not t.iscompleted] task_list.sort(key=lambda t: datetime.timedelta(t.priority*365*10) + (t.duedate - datetime.datetime.now())) task_list.reverse() maxTaskLength = max(len(t.name) for t in task_list) print ('task name'+' '*maxTaskLength)[:maxTaskLength]+ ' p' + ' ' + 'time left' + ' ' + 'time till due' for t in task_list: timeToGo = self.timedeltaToHoursString(t.estimatedtime - t.timespent) timeTillDue = self.timedeltaToDaysString(t.duedate - datetime.datetime.now()) print (t.name + ' '*maxTaskLength)[:maxTaskLength]+' '+str(t.priority)+' '+(timeToGo+' '*10)[:10]+timeTillDue def do_listProjects(self, arg): task_list = [t for t in self.task_list if not t.iscompleted] #task_list.sort(key=lambda t: datetime.timedelta(t.priority*365*10) + (t.duedate - datetime.datetime.now())) task_list.sort(key=lambda t: t.assigner) maxTaskLength = max(len(t.name) for t in task_list) for t in task_list: timeToGo = self.timedeltaToHoursString(t.estimatedtime - t.timespent) timeTillDue = self.timedeltaToDaysString(t.duedate - datetime.datetime.now()) print timeToGo+'\t'+str(t.id)+'\t'+str(t.priority)+'\t'+(t.name + ' '*maxTaskLength)[:maxTaskLength]+'\t'+t.assigner print '\t'+t.description+'\n' def timedeltaToDaysString(self, td): if abs(td) < datetime.timedelta(1): output = str(abs(td).seconds / 3600)+':'+('00'+str(abs(td).seconds / 60))[-2:] else: output = str(abs(td).days)+' days' # output = str(abs(td).days)+' days, '+('00'+str(abs(td).seconds / 3600))[-2:]+':'+('00'+str(abs(td).seconds / 60))[-2:] if td < datetime.timedelta(0): # overdue timedelta return 'overdue by '+output else: return output def timedeltaToHoursString(self, td): s = td.seconds + 24 * 60 * 60 * td.days h = s / 60 / 60 m = int(s / 60 % 60) return str(h)+':'+('00'+str(m))[-2:] def do_graphTasks(self, arg): pass def do_workedOn(self, arg): "doesn't do anything yet" return parse.parseTimeInterval(arg) def do_debug(self, arg): "enters debug mode" import pudb; pudb.set_trace() def do_updateTimeSpent(self, arg): if not self.selected_task: print 'select a task first' return self.selected_task.timespent = hours.get_hours_worked(self.selected_task.id) print self.selected_task.timespent self.selected_task.put() self.task_list = task.createTasks() def do_clockHours(self, arg): if not self.selected_task: print 'select a task first' return if arg and len(arg.split()) % 2 == 0: hours.clock_time( self.selected_task.id, title=self.selected_task.name, description=self.selected_task.description, start_datetime=parse.parseTimeInterval(' '.join(arg.split()[:len(arg.split()/2)])), end_datetime=parse.parseTimeInterval(' '.join(arg.split()[arg.split()/2:])) ) else: hours.clock_time( self.selected_task.id, title=self.selected_task.name, description=self.selected_task.description) print 'hours clocked' def do_clear(self, arg): for i in range(100): print '' def do_hours(self, arg): pprint([(t.name, t.timespent) for t in self.task_list]) if __name__ == '__main__': cli = EditTasksCLI() cli.cmdloop()
0b045919b9d842b5ca1abb59d93d7ecbd92dd4d6
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_156/ch23_2020_03_09_19_36_00_577839.py
3639b7a9881fc419db9d75cc326fb12e7b140fb9
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
x = int(input('Velocidade do carro: ?')) if x>80: print("Voce foi multado: {0}".format((x-80)*5)) else: print("Não foi multado")
6b71d61f7c665ab19ef6b4a329625f9dd05d5188
b6c7f367306f8f3d9fad7551810c68b392a1b879
/omoide/tests/unit/infra/test_walking.py
9dd3fab1ae1c23cbaf0f50c2bc112f8e5e83b910
[ "MIT" ]
permissive
TaXeH/Omoide
c96ef35b1394125fc98367e8a9ef1674718e7e9e
8ccc9d47e802433bb2de21ff930e6630658cd5e3
refs/heads/main
2023-07-18T12:00:15.469707
2021-08-28T11:37:23
2021-08-28T11:37:23
400,773,814
0
0
MIT
2021-08-28T11:17:55
2021-08-28T11:17:55
null
UTF-8
Python
false
false
1,110
py
"""Tests. """ import tempfile from unittest import mock import pytest from omoide import infra @pytest.fixture() def filesystem(): return infra.Filesystem() def test_walk(filesystem): with tempfile.TemporaryDirectory() as tmp_dir: fake_stdout = mock.Mock() path_1 = filesystem.join(tmp_dir, 'source_1') path_2 = filesystem.join(tmp_dir, 'source_1', 'migration_1') path_3 = filesystem.join(tmp_dir, 'source_1', 'migration_2') path_4 = filesystem.join(tmp_dir, 'source_2', 'migration_3') path_5 = filesystem.join(tmp_dir, 'source_2', 'migration_4') for path in (path_1, path_2, path_3, path_4, path_5): filesystem.ensure_folder_exists(path, fake_stdout) gen = infra.walk(tmp_dir, filesystem, branch='source_2', leaf='migration_3') assert list(gen) == [('source_2', 'migration_3', filesystem.join(tmp_dir, 'source_2', 'migration_3'))]
e2453c1ab2c4cb5b531f46e966480c82014a35bf
450fc27c8c11eb3ffe7c764081c048d506a7fdea
/src/py_script.py
26f9d3ec788457a4b83465a273dc735636edc2c5
[]
no_license
rduvalwa5/SysExamples
6228fd93d4cec66e189ff3561af5c4e062349ea5
e47e8843b10c06f4f02d94d89a3f75b133c1d617
refs/heads/master
2020-04-06T06:28:07.657630
2016-10-12T06:37:20
2016-10-12T06:37:20
70,551,976
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
#!/usr/local/bin/python ''' Created on Feb 19, 2016 @author: rduvalwa2 To run a script, go to directory were script is a execute Simpple Python script ''' print("1) go run a script, go to directory were script is") print("2) make sure is defined by system as executable") print("3) at command line type the script name and hit return") print("example >./PytthonScriptExmaple.py") print("4) Or type python <script name> and hit return") print("example > python PytthonScriptExmaple.py") import math # Use math.pow method. a = math.pow(2, 3) # Use operator. b = 2 ** 3 # Print results. print(a) print(b) #Output #8.0 #8
c8377597fc5c29bc3e200dfff5a26e53cad854ca
d57b51ec207002e333b8655a8f5832ed143aa28c
/.history/1/PyGame/game_20200606103432.py
a377557bcf3c7a0484507e7545a9a8cfba1b1108
[]
no_license
yevheniir/python_course_2020
b42766c4278a08b8b79fec77e036a1b987accf51
a152d400ab4f45d9d98d8ad8b2560d6f0b408c0b
refs/heads/master
2022-11-15T07:13:24.193173
2020-07-11T15:43:26
2020-07-11T15:43:26
278,890,802
0
1
null
null
null
null
UTF-8
Python
false
false
7,306
py
# 1 - Import library import pygame from pygame.locals import * import math import random import os import json # 2 - Initialize the game pygame.init() width, height = 640, 480 screen=pygame.display.set_mode((width, height)) keys = [False, False, False, False] playerpos=[100,100] acc=[0,0] arrows=[] badtimer=100 badtimer1=0 badguys=[[640,100]] healthvalue=194 pygame.mixer.init() # 3 - Load image player = pygame.image.load("resources/images/dude.png") grass = pygame.image.load("resources/images/grass.png") castle = pygame.image.load("resources/images/castle.png") arrow = pygame.image.load("resources/images/bullet.png") badguyimg1 = pygame.image.load("resources/images/badguy.png") badguyimg=badguyimg1 healthbar = pygame.image.load("resources/images/healthbar.png") health = pygame.image.load("resources/images/health.png") gameover = pygame.image.load("resources/images/gameover.png") youwin = pygame.image.load("resources/images/youwin.png") # 3.1 - Load audio hit = pygame.mixer.Sound("resources/audio/explode.wav") enemy = pygame.mixer.Sound("resources/audio/enemy.wav") shoot = pygame.mixer.Sound("resources/audio/shoot.wav") hit.set_volume(0.05) enemy.set_volume(0.05) shoot.set_volume(0.05) pygame.mixer.music.load('resources/audio/moonlight.wav') pygame.mixer.music.play(-1, 0.0) pygame.mixer.music.set_volume(0.25) # 4 - keep looping through running = 1 exitcode = 0 while running: badtimer-=1 # 5 - clear the screen before drawing it again screen.fill(0) # 6 - draw the player on the screen at X:100, Y:100 for x in range(width//grass.get_width()+1): for y in range(height//grass.get_height()+1): screen.blit(grass,(x*100,y*100)) # initialize font; must be called after 'pygame.init()' to avoid 'Font not Initialized' error myfont = pygame.font.SysFont("monospace", 15) mpcs = [] dir_path = os.path.dirname(os.path.realpath(__file__)) + "/../save.json" with open("") as json_file: mpcs = json.load(json_file).map(lambda x: x.name) step = height // len(mpcs) for x in range(1, len(mpcs)): label = myfont.render(mpcs[x], 1, (255,255,0)) screen.blit(castle,(0,x*step)) screen.blit(castle,(0,30)) screen.blit(castle,(0,135)) screen.blit(castle,(0,240)) screen.blit(castle,(0,345 )) # 6.1 - Set player position and rotation position = pygame.mouse.get_pos() angle = math.atan2(position[1]-(playerpos[1]+32),position[0]-(playerpos[0]+26)) playerrot = pygame.transform.rotate(player, 360-angle*57.29) playerpos1 = (playerpos[0]-playerrot.get_rect().width/2, playerpos[1]-playerrot.get_rect().height/2) screen.blit(playerrot, playerpos1) # 6.2 - Draw arrows for bullet in arrows: index=0 velx=math.cos(bullet[0])*10 vely=math.sin(bullet[0])*10 bullet[1]+=velx bullet[2]+=vely if bullet[1]<-64 or bullet[1]>640 or bullet[2]<-64 or bullet[2]>480: arrows.pop(index) index+=1 for projectile in arrows: arrow1 = pygame.transform.rotate(arrow, 360-projectile[0]*57.29) screen.blit(arrow1, (projectile[1], projectile[2])) # 6.3 - Draw badgers if badtimer==0: badguys.append([640, random.randint(50,430)]) badtimer=100-(badtimer1*2) if badtimer1>=35: badtimer1=35 else: badtimer1+=5 index=0 for badguy in badguys: if badguy[0]<-64: badguys.pop(index) badguy[0]-=5 # 6.3.1 - Attack castle badrect=pygame.Rect(badguyimg.get_rect()) badrect.top=badguy[1] badrect.left=badguy[0] if badrect.left<64: hit.play() healthvalue -= random.randint(5,20) badguys.pop(index) #6.3.2 - Check for collisions index1=0 for bullet in arrows: bullrect=pygame.Rect(arrow.get_rect()) bullrect.left=bullet[1] bullrect.top=bullet[2] if badrect.colliderect(bullrect): enemy.play() acc[0]+=1 badguys.pop(index) arrows.pop(index1) index1+=1 # 6.3.3 - Next bad guy index+=1 for badguy in badguys: screen.blit(badguyimg, badguy) # 6.4 - Draw clock font = pygame.font.Font(None, 24) survivedtext = font.render(str((90000-pygame.time.get_ticks())/60000)+":"+str((90000-pygame.time.get_ticks())/1000%60).zfill(2), True, (0,0,0)) textRect = survivedtext.get_rect() textRect.topright=[635,5] screen.blit(survivedtext, textRect) # 6.5 - Draw health bar screen.blit(healthbar, (5,5)) for health1 in range(healthvalue): screen.blit(health, (health1+8,8)) # 7 - update the screen pygame.display.flip() # 8 - loop through the events for event in pygame.event.get(): # check if the event is the X button if event.type==pygame.QUIT: # if it is quit the game pygame.quit() exit(0) if event.type == pygame.KEYDOWN: if event.key==K_w: keys[0]=True elif event.key==K_a: keys[1]=True elif event.key==K_s: keys[2]=True elif event.key==K_d: keys[3]=True if event.type == pygame.KEYUP: if event.key==pygame.K_w: keys[0]=False elif event.key==pygame.K_a: keys[1]=False elif event.key==pygame.K_s: keys[2]=False elif event.key==pygame.K_d: keys[3]=False if event.type==pygame.MOUSEBUTTONDOWN: shoot.play() position=pygame.mouse.get_pos() acc[1]+=1 arrows.append([math.atan2(position[1]-(playerpos1[1]+32),position[0]-(playerpos1[0]+26)),playerpos1[0]+32,playerpos1[1]+32]) # 9 - Move player if keys[0]: playerpos[1]-=5 elif keys[2]: playerpos[1]+=5 if keys[1]: playerpos[0]-=5 elif keys[3]: playerpos[0]+=5 #10 - Win/Lose check if pygame.time.get_ticks()>=90000: running=0 exitcode=1 if healthvalue<=0: running=0 exitcode=0 if acc[1]!=0: accuracy=acc[0]*1.0/acc[1]*100 else: accuracy=0 # 11 - Win/lose display if exitcode==0: pygame.font.init() font = pygame.font.Font(None, 24) text = font.render("Accuracy: "+str(accuracy)+"%", True, (255,0,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(gameover, (0,0)) screen.blit(text, textRect) else: pygame.font.init() font = pygame.font.Font(None, 24) text = font.render("Accuracy: "+str(accuracy)+"%", True, (0,255,0)) textRect = text.get_rect() textRect.centerx = screen.get_rect().centerx textRect.centery = screen.get_rect().centery+24 screen.blit(youwin, (0,0)) screen.blit(text, textRect) while 1: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit(0) pygame.display.flip()
914e9bb4f96c7ca489cc4fbe7f9151479e95c700
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/pg_1705+398/sdB_PG_1705+398_lc.py
fb5a2c9a6010f68b8235076c5ed37319371ad64e
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[256.681792,39.732494], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_PG_1705+398 /sdB_PG_1705+398_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
f062e5a2033afeb2b59a95e2eeb47f1166817c97
56ade096db1fe376ee43d38c96b43651ee07f217
/023. Merge k Sorted Lists/Python/Solution.py
955cbe788c96145af7c9fd5e35bd21a77b6ede15
[]
no_license
xiaole0310/leetcode
c08649c3f9a9b04579635ee7e768fe3378c04900
7a501cf84cfa46b677d9c9fced18deacb61de0e8
refs/heads/master
2020-03-17T05:46:41.102580
2018-04-20T13:05:32
2018-04-20T13:05:32
133,328,416
1
0
null
null
null
null
UTF-8
Python
false
false
1,196
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def mergeKLists(self, lists): """ :type lists: List[ListNode] :rtype: ListNode """ def partition(lists, start, end): if start == end: return lists[start] if start < end: mid = (start + end) // 2 list_1 = partition(lists, start, mid) list_2 = partition(lists, mid + 1, end) return merge(list_1, list_2) return None def merge(list_1, list_2): fake_head = ListNode(0) current = fake_head while list_1 and list_2: if list_1.val < list_2.val: current.next = list_1 list_1 = list_1.next else: current.next = list_2 list_2 = list_2.next current = current.next current.next = list_1 if list_1 else list_2 return fake_head.next return partition(lists, 0, len(lists) - 1)
7fa5192bb918b94bae014f603e2807d7b5949b69
43eb7f8581a8dbfa1298b4e6d84fc7b7a552e335
/python/kserve/kserve/models/v1beta1_xg_boost_spec.py
afd2ad2cb98960f28ef7270b898f7d8bcede6bd5
[ "Apache-2.0" ]
permissive
Suresh-Nakkeran/kserve
c2d114f7258a70b4c8ddeb8ee8c584d4eee0f81b
d3910e0fc6af4bf73156a53bd912d6e4acc87533
refs/heads/master
2023-07-29T00:17:28.900100
2021-09-11T08:04:54
2021-09-11T08:04:54
406,243,335
0
0
Apache-2.0
2021-09-14T05:59:05
2021-09-14T05:59:04
null
UTF-8
Python
false
false
32,713
py
# Copyright 2020 kubeflow.org. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ KServe Python SDK for KServe # noqa: E501 The version of the OpenAPI document: v0.1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kserve.configuration import Configuration class V1beta1XGBoostSpec(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'args': 'list[str]', 'command': 'list[str]', 'env': 'list[V1EnvVar]', 'env_from': 'list[V1EnvFromSource]', 'image': 'str', 'image_pull_policy': 'str', 'lifecycle': 'V1Lifecycle', 'liveness_probe': 'V1Probe', 'name': 'str', 'ports': 'list[V1ContainerPort]', 'protocol_version': 'str', 'readiness_probe': 'V1Probe', 'resources': 'V1ResourceRequirements', 'runtime_version': 'str', 'security_context': 'V1SecurityContext', 'startup_probe': 'V1Probe', 'stdin': 'bool', 'stdin_once': 'bool', 'storage_uri': 'str', 'termination_message_path': 'str', 'termination_message_policy': 'str', 'tty': 'bool', 'volume_devices': 'list[V1VolumeDevice]', 'volume_mounts': 'list[V1VolumeMount]', 'working_dir': 'str' } attribute_map = { 'args': 'args', 'command': 'command', 'env': 'env', 'env_from': 'envFrom', 'image': 'image', 'image_pull_policy': 'imagePullPolicy', 'lifecycle': 'lifecycle', 'liveness_probe': 'livenessProbe', 'name': 'name', 'ports': 'ports', 'protocol_version': 'protocolVersion', 'readiness_probe': 'readinessProbe', 'resources': 'resources', 'runtime_version': 'runtimeVersion', 'security_context': 'securityContext', 'startup_probe': 'startupProbe', 'stdin': 'stdin', 'stdin_once': 'stdinOnce', 'storage_uri': 'storageUri', 'termination_message_path': 'terminationMessagePath', 'termination_message_policy': 'terminationMessagePolicy', 'tty': 'tty', 'volume_devices': 'volumeDevices', 'volume_mounts': 'volumeMounts', 'working_dir': 'workingDir' } def __init__(self, args=None, command=None, env=None, env_from=None, image=None, image_pull_policy=None, lifecycle=None, liveness_probe=None, name=None, ports=None, protocol_version=None, readiness_probe=None, resources=None, runtime_version=None, security_context=None, startup_probe=None, stdin=None, stdin_once=None, storage_uri=None, termination_message_path=None, termination_message_policy=None, tty=None, volume_devices=None, volume_mounts=None, working_dir=None, local_vars_configuration=None): # noqa: E501 """V1beta1XGBoostSpec - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._args = None self._command = None self._env = None self._env_from = None self._image = None self._image_pull_policy = None self._lifecycle = None self._liveness_probe = None self._name = None self._ports = None self._protocol_version = None self._readiness_probe = None self._resources = None self._runtime_version = None self._security_context = None self._startup_probe = None self._stdin = None self._stdin_once = None self._storage_uri = None self._termination_message_path = None self._termination_message_policy = None self._tty = None self._volume_devices = None self._volume_mounts = None self._working_dir = None self.discriminator = None if args is not None: self.args = args if command is not None: self.command = command if env is not None: self.env = env if env_from is not None: self.env_from = env_from if image is not None: self.image = image if image_pull_policy is not None: self.image_pull_policy = image_pull_policy if lifecycle is not None: self.lifecycle = lifecycle if liveness_probe is not None: self.liveness_probe = liveness_probe if name is not None: self.name = name if ports is not None: self.ports = ports if protocol_version is not None: self.protocol_version = protocol_version if readiness_probe is not None: self.readiness_probe = readiness_probe if resources is not None: self.resources = resources if runtime_version is not None: self.runtime_version = runtime_version if security_context is not None: self.security_context = security_context if startup_probe is not None: self.startup_probe = startup_probe if stdin is not None: self.stdin = stdin if stdin_once is not None: self.stdin_once = stdin_once if storage_uri is not None: self.storage_uri = storage_uri if termination_message_path is not None: self.termination_message_path = termination_message_path if termination_message_policy is not None: self.termination_message_policy = termination_message_policy if tty is not None: self.tty = tty if volume_devices is not None: self.volume_devices = volume_devices if volume_mounts is not None: self.volume_mounts = volume_mounts if working_dir is not None: self.working_dir = working_dir @property def args(self): """Gets the args of this V1beta1XGBoostSpec. # noqa: E501 Arguments to the entrypoint. The docker image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :return: The args of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[str] """ return self._args @args.setter def args(self, args): """Sets the args of this V1beta1XGBoostSpec. Arguments to the entrypoint. The docker image's CMD is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :param args: The args of this V1beta1XGBoostSpec. # noqa: E501 :type: list[str] """ self._args = args @property def command(self): """Gets the command of this V1beta1XGBoostSpec. # noqa: E501 Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :return: The command of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[str] """ return self._command @command.setter def command(self, command): """Sets the command of this V1beta1XGBoostSpec. Entrypoint array. Not executed within a shell. The docker image's ENTRYPOINT is used if this is not provided. Variable references $(VAR_NAME) are expanded using the container's environment. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not. Cannot be updated. More info: https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#running-a-command-in-a-shell # noqa: E501 :param command: The command of this V1beta1XGBoostSpec. # noqa: E501 :type: list[str] """ self._command = command @property def env(self): """Gets the env of this V1beta1XGBoostSpec. # noqa: E501 List of environment variables to set in the container. Cannot be updated. # noqa: E501 :return: The env of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[V1EnvVar] """ return self._env @env.setter def env(self, env): """Sets the env of this V1beta1XGBoostSpec. List of environment variables to set in the container. Cannot be updated. # noqa: E501 :param env: The env of this V1beta1XGBoostSpec. # noqa: E501 :type: list[V1EnvVar] """ self._env = env @property def env_from(self): """Gets the env_from of this V1beta1XGBoostSpec. # noqa: E501 List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated. # noqa: E501 :return: The env_from of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[V1EnvFromSource] """ return self._env_from @env_from.setter def env_from(self, env_from): """Sets the env_from of this V1beta1XGBoostSpec. List of sources to populate environment variables in the container. The keys defined within a source must be a C_IDENTIFIER. All invalid keys will be reported as an event when the container is starting. When a key exists in multiple sources, the value associated with the last source will take precedence. Values defined by an Env with a duplicate key will take precedence. Cannot be updated. # noqa: E501 :param env_from: The env_from of this V1beta1XGBoostSpec. # noqa: E501 :type: list[V1EnvFromSource] """ self._env_from = env_from @property def image(self): """Gets the image of this V1beta1XGBoostSpec. # noqa: E501 Docker image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets. # noqa: E501 :return: The image of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._image @image.setter def image(self, image): """Sets the image of this V1beta1XGBoostSpec. Docker image name. More info: https://kubernetes.io/docs/concepts/containers/images This field is optional to allow higher level config management to default or override container images in workload controllers like Deployments and StatefulSets. # noqa: E501 :param image: The image of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._image = image @property def image_pull_policy(self): """Gets the image_pull_policy of this V1beta1XGBoostSpec. # noqa: E501 Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images # noqa: E501 :return: The image_pull_policy of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._image_pull_policy @image_pull_policy.setter def image_pull_policy(self, image_pull_policy): """Sets the image_pull_policy of this V1beta1XGBoostSpec. Image pull policy. One of Always, Never, IfNotPresent. Defaults to Always if :latest tag is specified, or IfNotPresent otherwise. Cannot be updated. More info: https://kubernetes.io/docs/concepts/containers/images#updating-images # noqa: E501 :param image_pull_policy: The image_pull_policy of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._image_pull_policy = image_pull_policy @property def lifecycle(self): """Gets the lifecycle of this V1beta1XGBoostSpec. # noqa: E501 :return: The lifecycle of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1Lifecycle """ return self._lifecycle @lifecycle.setter def lifecycle(self, lifecycle): """Sets the lifecycle of this V1beta1XGBoostSpec. :param lifecycle: The lifecycle of this V1beta1XGBoostSpec. # noqa: E501 :type: V1Lifecycle """ self._lifecycle = lifecycle @property def liveness_probe(self): """Gets the liveness_probe of this V1beta1XGBoostSpec. # noqa: E501 :return: The liveness_probe of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1Probe """ return self._liveness_probe @liveness_probe.setter def liveness_probe(self, liveness_probe): """Sets the liveness_probe of this V1beta1XGBoostSpec. :param liveness_probe: The liveness_probe of this V1beta1XGBoostSpec. # noqa: E501 :type: V1Probe """ self._liveness_probe = liveness_probe @property def name(self): """Gets the name of this V1beta1XGBoostSpec. # noqa: E501 Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated. # noqa: E501 :return: The name of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this V1beta1XGBoostSpec. Name of the container specified as a DNS_LABEL. Each container in a pod must have a unique name (DNS_LABEL). Cannot be updated. # noqa: E501 :param name: The name of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._name = name @property def ports(self): """Gets the ports of this V1beta1XGBoostSpec. # noqa: E501 List of ports to expose from the container. Exposing a port here gives the system additional information about the network connections a container uses, but is primarily informational. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default \"0.0.0.0\" address inside a container will be accessible from the network. Cannot be updated. # noqa: E501 :return: The ports of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[V1ContainerPort] """ return self._ports @ports.setter def ports(self, ports): """Sets the ports of this V1beta1XGBoostSpec. List of ports to expose from the container. Exposing a port here gives the system additional information about the network connections a container uses, but is primarily informational. Not specifying a port here DOES NOT prevent that port from being exposed. Any port which is listening on the default \"0.0.0.0\" address inside a container will be accessible from the network. Cannot be updated. # noqa: E501 :param ports: The ports of this V1beta1XGBoostSpec. # noqa: E501 :type: list[V1ContainerPort] """ self._ports = ports @property def protocol_version(self): """Gets the protocol_version of this V1beta1XGBoostSpec. # noqa: E501 Protocol version to use by the predictor (i.e. v1 or v2) # noqa: E501 :return: The protocol_version of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._protocol_version @protocol_version.setter def protocol_version(self, protocol_version): """Sets the protocol_version of this V1beta1XGBoostSpec. Protocol version to use by the predictor (i.e. v1 or v2) # noqa: E501 :param protocol_version: The protocol_version of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._protocol_version = protocol_version @property def readiness_probe(self): """Gets the readiness_probe of this V1beta1XGBoostSpec. # noqa: E501 :return: The readiness_probe of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1Probe """ return self._readiness_probe @readiness_probe.setter def readiness_probe(self, readiness_probe): """Sets the readiness_probe of this V1beta1XGBoostSpec. :param readiness_probe: The readiness_probe of this V1beta1XGBoostSpec. # noqa: E501 :type: V1Probe """ self._readiness_probe = readiness_probe @property def resources(self): """Gets the resources of this V1beta1XGBoostSpec. # noqa: E501 :return: The resources of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1ResourceRequirements """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this V1beta1XGBoostSpec. :param resources: The resources of this V1beta1XGBoostSpec. # noqa: E501 :type: V1ResourceRequirements """ self._resources = resources @property def runtime_version(self): """Gets the runtime_version of this V1beta1XGBoostSpec. # noqa: E501 Runtime version of the predictor docker image # noqa: E501 :return: The runtime_version of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._runtime_version @runtime_version.setter def runtime_version(self, runtime_version): """Sets the runtime_version of this V1beta1XGBoostSpec. Runtime version of the predictor docker image # noqa: E501 :param runtime_version: The runtime_version of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._runtime_version = runtime_version @property def security_context(self): """Gets the security_context of this V1beta1XGBoostSpec. # noqa: E501 :return: The security_context of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1SecurityContext """ return self._security_context @security_context.setter def security_context(self, security_context): """Sets the security_context of this V1beta1XGBoostSpec. :param security_context: The security_context of this V1beta1XGBoostSpec. # noqa: E501 :type: V1SecurityContext """ self._security_context = security_context @property def startup_probe(self): """Gets the startup_probe of this V1beta1XGBoostSpec. # noqa: E501 :return: The startup_probe of this V1beta1XGBoostSpec. # noqa: E501 :rtype: V1Probe """ return self._startup_probe @startup_probe.setter def startup_probe(self, startup_probe): """Sets the startup_probe of this V1beta1XGBoostSpec. :param startup_probe: The startup_probe of this V1beta1XGBoostSpec. # noqa: E501 :type: V1Probe """ self._startup_probe = startup_probe @property def stdin(self): """Gets the stdin of this V1beta1XGBoostSpec. # noqa: E501 Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false. # noqa: E501 :return: The stdin of this V1beta1XGBoostSpec. # noqa: E501 :rtype: bool """ return self._stdin @stdin.setter def stdin(self, stdin): """Sets the stdin of this V1beta1XGBoostSpec. Whether this container should allocate a buffer for stdin in the container runtime. If this is not set, reads from stdin in the container will always result in EOF. Default is false. # noqa: E501 :param stdin: The stdin of this V1beta1XGBoostSpec. # noqa: E501 :type: bool """ self._stdin = stdin @property def stdin_once(self): """Gets the stdin_once of this V1beta1XGBoostSpec. # noqa: E501 Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false # noqa: E501 :return: The stdin_once of this V1beta1XGBoostSpec. # noqa: E501 :rtype: bool """ return self._stdin_once @stdin_once.setter def stdin_once(self, stdin_once): """Sets the stdin_once of this V1beta1XGBoostSpec. Whether the container runtime should close the stdin channel after it has been opened by a single attach. When stdin is true the stdin stream will remain open across multiple attach sessions. If stdinOnce is set to true, stdin is opened on container start, is empty until the first client attaches to stdin, and then remains open and accepts data until the client disconnects, at which time stdin is closed and remains closed until the container is restarted. If this flag is false, a container processes that reads from stdin will never receive an EOF. Default is false # noqa: E501 :param stdin_once: The stdin_once of this V1beta1XGBoostSpec. # noqa: E501 :type: bool """ self._stdin_once = stdin_once @property def storage_uri(self): """Gets the storage_uri of this V1beta1XGBoostSpec. # noqa: E501 This field points to the location of the trained model which is mounted onto the pod. # noqa: E501 :return: The storage_uri of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._storage_uri @storage_uri.setter def storage_uri(self, storage_uri): """Sets the storage_uri of this V1beta1XGBoostSpec. This field points to the location of the trained model which is mounted onto the pod. # noqa: E501 :param storage_uri: The storage_uri of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._storage_uri = storage_uri @property def termination_message_path(self): """Gets the termination_message_path of this V1beta1XGBoostSpec. # noqa: E501 Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated. # noqa: E501 :return: The termination_message_path of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._termination_message_path @termination_message_path.setter def termination_message_path(self, termination_message_path): """Sets the termination_message_path of this V1beta1XGBoostSpec. Optional: Path at which the file to which the container's termination message will be written is mounted into the container's filesystem. Message written is intended to be brief final status, such as an assertion failure message. Will be truncated by the node if greater than 4096 bytes. The total message length across all containers will be limited to 12kb. Defaults to /dev/termination-log. Cannot be updated. # noqa: E501 :param termination_message_path: The termination_message_path of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._termination_message_path = termination_message_path @property def termination_message_policy(self): """Gets the termination_message_policy of this V1beta1XGBoostSpec. # noqa: E501 Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated. # noqa: E501 :return: The termination_message_policy of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._termination_message_policy @termination_message_policy.setter def termination_message_policy(self, termination_message_policy): """Sets the termination_message_policy of this V1beta1XGBoostSpec. Indicate how the termination message should be populated. File will use the contents of terminationMessagePath to populate the container status message on both success and failure. FallbackToLogsOnError will use the last chunk of container log output if the termination message file is empty and the container exited with an error. The log output is limited to 2048 bytes or 80 lines, whichever is smaller. Defaults to File. Cannot be updated. # noqa: E501 :param termination_message_policy: The termination_message_policy of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._termination_message_policy = termination_message_policy @property def tty(self): """Gets the tty of this V1beta1XGBoostSpec. # noqa: E501 Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false. # noqa: E501 :return: The tty of this V1beta1XGBoostSpec. # noqa: E501 :rtype: bool """ return self._tty @tty.setter def tty(self, tty): """Sets the tty of this V1beta1XGBoostSpec. Whether this container should allocate a TTY for itself, also requires 'stdin' to be true. Default is false. # noqa: E501 :param tty: The tty of this V1beta1XGBoostSpec. # noqa: E501 :type: bool """ self._tty = tty @property def volume_devices(self): """Gets the volume_devices of this V1beta1XGBoostSpec. # noqa: E501 volumeDevices is the list of block devices to be used by the container. # noqa: E501 :return: The volume_devices of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[V1VolumeDevice] """ return self._volume_devices @volume_devices.setter def volume_devices(self, volume_devices): """Sets the volume_devices of this V1beta1XGBoostSpec. volumeDevices is the list of block devices to be used by the container. # noqa: E501 :param volume_devices: The volume_devices of this V1beta1XGBoostSpec. # noqa: E501 :type: list[V1VolumeDevice] """ self._volume_devices = volume_devices @property def volume_mounts(self): """Gets the volume_mounts of this V1beta1XGBoostSpec. # noqa: E501 Pod volumes to mount into the container's filesystem. Cannot be updated. # noqa: E501 :return: The volume_mounts of this V1beta1XGBoostSpec. # noqa: E501 :rtype: list[V1VolumeMount] """ return self._volume_mounts @volume_mounts.setter def volume_mounts(self, volume_mounts): """Sets the volume_mounts of this V1beta1XGBoostSpec. Pod volumes to mount into the container's filesystem. Cannot be updated. # noqa: E501 :param volume_mounts: The volume_mounts of this V1beta1XGBoostSpec. # noqa: E501 :type: list[V1VolumeMount] """ self._volume_mounts = volume_mounts @property def working_dir(self): """Gets the working_dir of this V1beta1XGBoostSpec. # noqa: E501 Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated. # noqa: E501 :return: The working_dir of this V1beta1XGBoostSpec. # noqa: E501 :rtype: str """ return self._working_dir @working_dir.setter def working_dir(self, working_dir): """Sets the working_dir of this V1beta1XGBoostSpec. Container's working directory. If not specified, the container runtime's default will be used, which might be configured in the container image. Cannot be updated. # noqa: E501 :param working_dir: The working_dir of this V1beta1XGBoostSpec. # noqa: E501 :type: str """ self._working_dir = working_dir def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1XGBoostSpec): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta1XGBoostSpec): return True return self.to_dict() != other.to_dict()
a91d226941fc0003ace12552f033eb694ed8630a
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/eqpt/egrtotal15min.py
4b39e4bc1852a11791deb8bef7fb97bc03e4298d
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
42,132
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class EgrTotal15min(Mo): """ A class that represents the most current statistics for Egress in a 15 minute sampling interval. This class updates every 5 minutes. """ meta = StatsClassMeta("cobra.model.eqpt.EgrTotal15min", "Egress") counter = CounterMeta("util", CounterCategory.GAUGE, "percentage", "Egress Link Utilization") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "utilLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "utilMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "utilMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "utilAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "utilSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "utilTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "utilThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "utilTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "utilTr" meta._counters.append(counter) counter = CounterMeta("pktsRate", CounterCategory.GAUGE, "packets-per-second", "Total Egress Packets rate") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "pktsRateLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "pktsRateMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "pktsRateMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "pktsRateAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "pktsRateSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "pktsRateTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "pktsRateThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "pktsRateTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "pktsRateTr" meta._counters.append(counter) counter = CounterMeta("pkts", CounterCategory.COUNTER, "packets", "Total Egress Packets") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "pktsLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "pktsCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "pktsPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "pktsMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "pktsMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "pktsAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "pktsSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "pktsBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "pktsThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "pktsTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "pktsTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "pktsRate" meta._counters.append(counter) counter = CounterMeta("bytesRate", CounterCategory.GAUGE, "bytes-per-second", "Total Egress Bytes rate") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "bytesRateLast" counter._propRefs[PropCategory.IMPLICIT_MIN] = "bytesRateMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "bytesRateMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "bytesRateAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "bytesRateSpct" counter._propRefs[PropCategory.IMPLICIT_TOTAL] = "bytesRateTtl" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "bytesRateThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "bytesRateTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "bytesRateTr" meta._counters.append(counter) counter = CounterMeta("bytes", CounterCategory.COUNTER, "bytes", "Total Egress Bytes") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "bytesLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "bytesCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "bytesPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "bytesMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "bytesMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "bytesAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "bytesSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "bytesBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "bytesThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "bytesTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "bytesTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "bytesRate" meta._counters.append(counter) meta.moClassName = "eqptEgrTotal15min" meta.rnFormat = "CDeqptEgrTotal15min" meta.category = MoCategory.STATS_CURRENT meta.label = "current Egress stats in 15 minute" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.mgmt.MgmtIf") meta.parentClasses.add("cobra.model.eqpt.CpuP") meta.parentClasses.add("cobra.model.pc.AggrIf") meta.parentClasses.add("cobra.model.l1.PhysIf") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.eqpt.EgrTotal") meta.rnPrefixes = [ ('CDeqptEgrTotal15min', False), ] prop = PropMeta("str", "bytesAvg", "bytesAvg", 8129, PropCategory.IMPLICIT_AVG) prop.label = "Total Egress Bytes average value" prop.isOper = True prop.isStats = True meta.props.add("bytesAvg", prop) prop = PropMeta("str", "bytesBase", "bytesBase", 8124, PropCategory.IMPLICIT_BASELINE) prop.label = "Total Egress Bytes baseline" prop.isOper = True prop.isStats = True meta.props.add("bytesBase", prop) prop = PropMeta("str", "bytesCum", "bytesCum", 8125, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Total Egress Bytes cumulative" prop.isOper = True prop.isStats = True meta.props.add("bytesCum", prop) prop = PropMeta("str", "bytesLast", "bytesLast", 8123, PropCategory.IMPLICIT_LASTREADING) prop.label = "Total Egress Bytes current value" prop.isOper = True prop.isStats = True meta.props.add("bytesLast", prop) prop = PropMeta("str", "bytesMax", "bytesMax", 8128, PropCategory.IMPLICIT_MAX) prop.label = "Total Egress Bytes maximum value" prop.isOper = True prop.isStats = True meta.props.add("bytesMax", prop) prop = PropMeta("str", "bytesMin", "bytesMin", 8127, PropCategory.IMPLICIT_MIN) prop.label = "Total Egress Bytes minimum value" prop.isOper = True prop.isStats = True meta.props.add("bytesMin", prop) prop = PropMeta("str", "bytesPer", "bytesPer", 8126, PropCategory.IMPLICIT_PERIODIC) prop.label = "Total Egress Bytes periodic" prop.isOper = True prop.isStats = True meta.props.add("bytesPer", prop) prop = PropMeta("str", "bytesRate", "bytesRate", 8134, PropCategory.IMPLICIT_RATE) prop.label = "Total Egress Bytes rate" prop.isOper = True prop.isStats = True meta.props.add("bytesRate", prop) prop = PropMeta("str", "bytesRateAvg", "bytesRateAvg", 8153, PropCategory.IMPLICIT_AVG) prop.label = "Total Egress Bytes rate average value" prop.isOper = True prop.isStats = True meta.props.add("bytesRateAvg", prop) prop = PropMeta("str", "bytesRateLast", "bytesRateLast", 8150, PropCategory.IMPLICIT_LASTREADING) prop.label = "Total Egress Bytes rate current value" prop.isOper = True prop.isStats = True meta.props.add("bytesRateLast", prop) prop = PropMeta("str", "bytesRateMax", "bytesRateMax", 8152, PropCategory.IMPLICIT_MAX) prop.label = "Total Egress Bytes rate maximum value" prop.isOper = True prop.isStats = True meta.props.add("bytesRateMax", prop) prop = PropMeta("str", "bytesRateMin", "bytesRateMin", 8151, PropCategory.IMPLICIT_MIN) prop.label = "Total Egress Bytes rate minimum value" prop.isOper = True prop.isStats = True meta.props.add("bytesRateMin", prop) prop = PropMeta("str", "bytesRateSpct", "bytesRateSpct", 8154, PropCategory.IMPLICIT_SUSPECT) prop.label = "Total Egress Bytes rate suspect count" prop.isOper = True prop.isStats = True meta.props.add("bytesRateSpct", prop) prop = PropMeta("str", "bytesRateThr", "bytesRateThr", 8156, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Total Egress Bytes rate thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("bytesRateThr", prop) prop = PropMeta("str", "bytesRateTr", "bytesRateTr", 8158, PropCategory.IMPLICIT_TREND) prop.label = "Total Egress Bytes rate trend" prop.isOper = True prop.isStats = True meta.props.add("bytesRateTr", prop) prop = PropMeta("str", "bytesRateTrBase", "bytesRateTrBase", 8157, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Total Egress Bytes rate trend baseline" prop.isOper = True prop.isStats = True meta.props.add("bytesRateTrBase", prop) prop = PropMeta("str", "bytesRateTtl", "bytesRateTtl", 8155, PropCategory.IMPLICIT_TOTAL) prop.label = "Total Egress Bytes rate total sum" prop.isOper = True prop.isStats = True meta.props.add("bytesRateTtl", prop) prop = PropMeta("str", "bytesSpct", "bytesSpct", 8130, PropCategory.IMPLICIT_SUSPECT) prop.label = "Total Egress Bytes suspect count" prop.isOper = True prop.isStats = True meta.props.add("bytesSpct", prop) prop = PropMeta("str", "bytesThr", "bytesThr", 8131, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Total Egress Bytes thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("bytesThr", prop) prop = PropMeta("str", "bytesTr", "bytesTr", 8133, PropCategory.IMPLICIT_TREND) prop.label = "Total Egress Bytes trend" prop.isOper = True prop.isStats = True meta.props.add("bytesTr", prop) prop = PropMeta("str", "bytesTrBase", "bytesTrBase", 8132, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Total Egress Bytes trend baseline" prop.isOper = True prop.isStats = True meta.props.add("bytesTrBase", prop) prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "pktsAvg", "pktsAvg", 8177, PropCategory.IMPLICIT_AVG) prop.label = "Total Egress Packets average value" prop.isOper = True prop.isStats = True meta.props.add("pktsAvg", prop) prop = PropMeta("str", "pktsBase", "pktsBase", 8172, PropCategory.IMPLICIT_BASELINE) prop.label = "Total Egress Packets baseline" prop.isOper = True prop.isStats = True meta.props.add("pktsBase", prop) prop = PropMeta("str", "pktsCum", "pktsCum", 8173, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "Total Egress Packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("pktsCum", prop) prop = PropMeta("str", "pktsLast", "pktsLast", 8171, PropCategory.IMPLICIT_LASTREADING) prop.label = "Total Egress Packets current value" prop.isOper = True prop.isStats = True meta.props.add("pktsLast", prop) prop = PropMeta("str", "pktsMax", "pktsMax", 8176, PropCategory.IMPLICIT_MAX) prop.label = "Total Egress Packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("pktsMax", prop) prop = PropMeta("str", "pktsMin", "pktsMin", 8175, PropCategory.IMPLICIT_MIN) prop.label = "Total Egress Packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("pktsMin", prop) prop = PropMeta("str", "pktsPer", "pktsPer", 8174, PropCategory.IMPLICIT_PERIODIC) prop.label = "Total Egress Packets periodic" prop.isOper = True prop.isStats = True meta.props.add("pktsPer", prop) prop = PropMeta("str", "pktsRate", "pktsRate", 8182, PropCategory.IMPLICIT_RATE) prop.label = "Total Egress Packets rate" prop.isOper = True prop.isStats = True meta.props.add("pktsRate", prop) prop = PropMeta("str", "pktsRateAvg", "pktsRateAvg", 8201, PropCategory.IMPLICIT_AVG) prop.label = "Total Egress Packets rate average value" prop.isOper = True prop.isStats = True meta.props.add("pktsRateAvg", prop) prop = PropMeta("str", "pktsRateLast", "pktsRateLast", 8198, PropCategory.IMPLICIT_LASTREADING) prop.label = "Total Egress Packets rate current value" prop.isOper = True prop.isStats = True meta.props.add("pktsRateLast", prop) prop = PropMeta("str", "pktsRateMax", "pktsRateMax", 8200, PropCategory.IMPLICIT_MAX) prop.label = "Total Egress Packets rate maximum value" prop.isOper = True prop.isStats = True meta.props.add("pktsRateMax", prop) prop = PropMeta("str", "pktsRateMin", "pktsRateMin", 8199, PropCategory.IMPLICIT_MIN) prop.label = "Total Egress Packets rate minimum value" prop.isOper = True prop.isStats = True meta.props.add("pktsRateMin", prop) prop = PropMeta("str", "pktsRateSpct", "pktsRateSpct", 8202, PropCategory.IMPLICIT_SUSPECT) prop.label = "Total Egress Packets rate suspect count" prop.isOper = True prop.isStats = True meta.props.add("pktsRateSpct", prop) prop = PropMeta("str", "pktsRateThr", "pktsRateThr", 8204, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Total Egress Packets rate thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("pktsRateThr", prop) prop = PropMeta("str", "pktsRateTr", "pktsRateTr", 8206, PropCategory.IMPLICIT_TREND) prop.label = "Total Egress Packets rate trend" prop.isOper = True prop.isStats = True meta.props.add("pktsRateTr", prop) prop = PropMeta("str", "pktsRateTrBase", "pktsRateTrBase", 8205, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Total Egress Packets rate trend baseline" prop.isOper = True prop.isStats = True meta.props.add("pktsRateTrBase", prop) prop = PropMeta("str", "pktsRateTtl", "pktsRateTtl", 8203, PropCategory.IMPLICIT_TOTAL) prop.label = "Total Egress Packets rate total sum" prop.isOper = True prop.isStats = True meta.props.add("pktsRateTtl", prop) prop = PropMeta("str", "pktsSpct", "pktsSpct", 8178, PropCategory.IMPLICIT_SUSPECT) prop.label = "Total Egress Packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("pktsSpct", prop) prop = PropMeta("str", "pktsThr", "pktsThr", 8179, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Total Egress Packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("pktsThr", prop) prop = PropMeta("str", "pktsTr", "pktsTr", 8181, PropCategory.IMPLICIT_TREND) prop.label = "Total Egress Packets trend" prop.isOper = True prop.isStats = True meta.props.add("pktsTr", prop) prop = PropMeta("str", "pktsTrBase", "pktsTrBase", 8180, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Total Egress Packets trend baseline" prop.isOper = True prop.isStats = True meta.props.add("pktsTrBase", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "utilAvg", "utilAvg", 8222, PropCategory.IMPLICIT_AVG) prop.label = "Egress Link Utilization average value" prop.isOper = True prop.isStats = True meta.props.add("utilAvg", prop) prop = PropMeta("str", "utilLast", "utilLast", 8219, PropCategory.IMPLICIT_LASTREADING) prop.label = "Egress Link Utilization current value" prop.isOper = True prop.isStats = True meta.props.add("utilLast", prop) prop = PropMeta("str", "utilMax", "utilMax", 8221, PropCategory.IMPLICIT_MAX) prop.label = "Egress Link Utilization maximum value" prop.isOper = True prop.isStats = True meta.props.add("utilMax", prop) prop = PropMeta("str", "utilMin", "utilMin", 8220, PropCategory.IMPLICIT_MIN) prop.label = "Egress Link Utilization minimum value" prop.isOper = True prop.isStats = True meta.props.add("utilMin", prop) prop = PropMeta("str", "utilSpct", "utilSpct", 8223, PropCategory.IMPLICIT_SUSPECT) prop.label = "Egress Link Utilization suspect count" prop.isOper = True prop.isStats = True meta.props.add("utilSpct", prop) prop = PropMeta("str", "utilThr", "utilThr", 8225, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "Egress Link Utilization thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("utilThr", prop) prop = PropMeta("str", "utilTr", "utilTr", 8227, PropCategory.IMPLICIT_TREND) prop.label = "Egress Link Utilization trend" prop.isOper = True prop.isStats = True meta.props.add("utilTr", prop) prop = PropMeta("str", "utilTrBase", "utilTrBase", 8226, PropCategory.IMPLICIT_TREND_BASE) prop.label = "Egress Link Utilization trend baseline" prop.isOper = True prop.isStats = True meta.props.add("utilTrBase", prop) prop = PropMeta("str", "utilTtl", "utilTtl", 8224, PropCategory.IMPLICIT_TOTAL) prop.label = "Egress Link Utilization total sum" prop.isOper = True prop.isStats = True meta.props.add("utilTtl", prop) # Deployment Meta meta.deploymentQuery = True meta.deploymentType = "Ancestor" meta.deploymentQueryPaths.append(DeploymentPathMeta("l1EthIfToEPg", "EPG", "cobra.model.fv.EPg")) meta.deploymentQueryPaths.append(DeploymentPathMeta("EqptPortToEPg", "EPG", "cobra.model.fv.EPg")) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
575e4ca2deb65350aa1786280363eb93b2489ec8
9e98a7770465227e8e0e962c02850acc5c172e96
/backend/admin/secure.py
e8efebe1599d1525a767e1c7dad8388d4a903692
[ "MIT" ]
permissive
pengjinfu/flask-bigger
281a43770958584c406accb34b2d13eebd4ba8cc
cc5ba476c20129a009ad8a8366daf4dc060bd4ac
refs/heads/master
2021-04-19T21:24:20.385510
2019-03-09T01:07:06
2019-03-09T01:07:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
# -*- coding: utf-8 -*- from functools import wraps from flask import ( g, session, request, redirect, url_for, current_app, abort ) def login_required(func): @wraps(func) def decorated_function(*args, **kwargs): not_in_g = not hasattr(g, 'login_user') or g.login_user is None not_in_s = not 'login_user' in session or session['login_user'] is None if not_in_g and not_in_s: _route = 'admin.login_view' return redirect(url_for(_route, next=request.url)) if not_in_g: g.login_user = session['login_user'] return func(*args, **kwargs) return decorated_function def admin_required(func): @wraps(func) def decorated_function(*args, **kwargs): in_g = hasattr(g, 'login_user') and not getattr(g, 'login_user') is None in_s = 'login_user' in session and not session['login_user'] is None if in_g or in_s: g_admin = in_g and getattr(g, 'login_user').is_admin s_admin = in_s and 'is_admin' in session['login_user'] and bool(session['login_user']['is_admin']) if g_admin or s_admin: if not in_g: g.login_user = session['login_user'] return func(*args, **kwargs) else: return abort(403) else: _route = 'admin.login_view' return redirect(url_for(_route, next=request.url)) return decorated_function
c4e79832b0eae413614aef8f2f1b3143244b8230
0b14062e8db610817b7f0730bfb21bf3e93765b8
/component/intent/response.py
8539ee74f4e2f507f8567ee3b13ee8c97c86dc48
[ "MIT" ]
permissive
bkosciow/tenchi
63fa827607b7b725ea61b73119193904bde25a6a
e53e59df34934e3e81da3e9321c1648a844aa23c
refs/heads/develop
2023-06-24T17:14:45.696811
2023-06-12T09:53:40
2023-06-12T09:53:40
175,896,569
0
0
MIT
2023-06-12T09:53:42
2019-03-15T21:59:49
Python
UTF-8
Python
false
false
682
py
class Response(object): def __init__(self, request=None): self.intent_name = request.intent_name if request else '' self.lang = request.lang if request else '' self.data = request.data if request else '' self._speech = '' self._text = '' @property def text(self): if self._text == '': return self._speech return self._text @text.setter def text(self, value): self._text = value @property def speech(self): if self._speech == '': return self._text return self._speech @speech.setter def speech(self, value): self._speech = value
4b3d81773808ab07ce6131fa88b8d2fc3dd8e8e0
9edaf93c833ba90ae9a903aa3c44c407a7e55198
/bpmn/models/t_global_conversation.py
d14fa1bdd32f9e7ae6b1d934d12d5dd4c4b99b1d
[]
no_license
tefra/xsdata-samples
c50aab4828b8c7c4448dbdab9c67d1ebc519e292
ef027fe02e6a075d8ed676c86a80e9647d944571
refs/heads/main
2023-08-14T10:31:12.152696
2023-07-25T18:01:22
2023-07-25T18:01:22
222,543,692
6
1
null
2023-06-25T07:21:04
2019-11-18T21:00:37
Python
UTF-8
Python
false
false
250
py
from dataclasses import dataclass from .t_collaboration import TCollaboration __NAMESPACE__ = "http://www.omg.org/spec/BPMN/20100524/MODEL" @dataclass class TGlobalConversation(TCollaboration): class Meta: name = "tGlobalConversation"
3cddfeb55bb003700c11e2ec31184cc755b38f94
3e4fd46157cd8bee454fe0bff227da6204ade9f4
/api/migrations/0020_cdekkey_updated_at.py
c6a46496d2f3621b432afd3eeca684ce5a14729b
[]
no_license
skiboorg/docs_api
8e7017457cc111311d836f572597aeb3d6bed1c4
4bae50c8ea772439b93bf4e0fc95cb6395bb9cfb
refs/heads/master
2023-06-26T14:43:54.248638
2021-08-02T15:32:28
2021-08-02T15:32:28
336,874,780
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# Generated by Django 3.1.5 on 2021-02-24 10:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0019_cdekkey'), ] operations = [ migrations.AddField( model_name='cdekkey', name='updated_at', field=models.DateTimeField(auto_now=True), ), ]
7e7edd6dae26504cd0c4210724cf8208bcd5fe68
5357b71f92e25f9fae36560daef33512c15cded6
/CommonTools/test/buildWZworkspace_f4_ATLASCMSforComb_signalShapeFix_less1sigmaInputForNegativeSystBkgDD_lnNall.py
a207b63daf03ed856867f0291e7c5caddee23903
[]
no_license
senka/ATLASCMS_combination_2
b0740cb00479db9d5692b42d1e0bb9be3568c640
080a2abff576a3f07dd2e78e95955eb673f38cbf
refs/heads/master
2021-01-15T10:47:01.015627
2014-08-06T08:54:10
2014-08-06T08:54:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
39,768
py
import pyroot_logon import limits import os import sys from array import * from ROOT import * from optparse import OptionParser from ConfigParser import SafeConfigParser l2nu2_bkgMC=[0,0,0,0,8.53, 8.38, 4.14] l2nu2_bkgDD=[0.63,0.2,0.09,0.011,17.48, 7.58, 0.78] l2nu2_signal=[27.93, 14.63, 9.28, 1.55, 13.55, 15.66, 10.14] stat_signal_err=[0.24, 0.17, 0.14, 0.06, 0.22, 0.28, 0.14] stat_bkgDD_err=[0.75, 0.24, 0.1, 0.01, 4.38, 2.69, 1.7] syst_bkgDD_err=[0.48, 0.15, 0.07, 0.008, 1.12, 0.68, 0.19] stat_bkgMC_err=[0., 0., 0., 0.0, 0.78, 0.74, 0.66] syst_bkgMC_err=[0., 0., 0., 0.0, 0.19, 0.19, 0.09] syst_signal_reco_err=[0.97, 0.55, 0.37, 0.07, 0.27, 0.48, 0.4] syst_signal_th_err=[1.79, 1.04, 0.79, 0.25, 1.29, 1.64, 1.35] stat_signal_err_rel_Up=[] stat_bkgDD_err_rel_Up=[] syst_bkgDD_err_rel_Up=[] stat_bkgMC_err_rel_Up=[] syst_bkgMC_err_rel_Up=[] syst_signal_reco_err_rel_Up=[] syst_signal_th_err_rel_Up=[] stat_signal_err_rel_Down=[] stat_bkgDD_err_rel_Down=[] syst_bkgDD_err_rel_Down=[] stat_bkgMC_err_rel_Down=[] syst_bkgMC_err_rel_Down=[] syst_signal_reco_err_rel_Down=[] syst_signal_th_err_rel_Down=[] for i in range(0,7): stat_signal_err_rel_Up.append([]) stat_bkgDD_err_rel_Up.append([]) syst_bkgDD_err_rel_Up.append([]) stat_bkgMC_err_rel_Up.append([]) syst_bkgMC_err_rel_Up.append([]) syst_signal_reco_err_rel_Up.append([]) syst_signal_th_err_rel_Up.append([]) stat_signal_err_rel_Down.append([]) stat_bkgDD_err_rel_Down.append([]) syst_bkgDD_err_rel_Down.append([]) stat_bkgMC_err_rel_Down.append([]) syst_bkgMC_err_rel_Down.append([]) syst_signal_reco_err_rel_Down.append([]) syst_signal_th_err_rel_Down.append([]) print 'i= ',i,'\t',stat_signal_err[i],'\t',l2nu2_signal[i] if l2nu2_signal[i]>0: if stat_signal_err[i]<l2nu2_signal[i]: stat_signal_err_rel_Down[i]=1.-stat_signal_err[i]/l2nu2_signal[i] else: stat_signal_err_rel_Down[i]=0.001 stat_signal_err_rel_Up[i]=1.+stat_signal_err[i]/l2nu2_signal[i] syst_signal_reco_err_rel_Up[i]=1.+syst_signal_reco_err[i]/l2nu2_signal[i] syst_signal_th_err_rel_Up[i]=1.+syst_signal_th_err[i]/l2nu2_signal[i] syst_signal_reco_err_rel_Down[i]=1.-syst_signal_reco_err[i]/l2nu2_signal[i] syst_signal_th_err_rel_Down[i]=1.-syst_signal_th_err[i]/l2nu2_signal[i] else: stat_signal_err_rel_Up[i]=1. syst_signal_reco_err_rel_Up[i]=1. syst_signal_th_err_rel_Up[i]=1. stat_signal_err_rel_Down[i]=1. syst_signal_reco_err_rel_Down[i]=1. syst_signal_th_err_rel_Down[i]=1. if l2nu2_bkgDD[i]>0: if stat_bkgDD_err[i]<l2nu2_bkgDD[i]: stat_bkgDD_err_rel_Down[i]=1.-stat_bkgDD_err[i]/l2nu2_bkgDD[i] else: stat_bkgDD_err_rel_Down[i]=0.001 stat_bkgDD_err_rel_Up[i]=1.+stat_bkgDD_err[i]/l2nu2_bkgDD[i] syst_bkgDD_err_rel_Up[i]=1.+syst_bkgDD_err[i]/l2nu2_bkgDD[i] syst_bkgDD_err_rel_Down[i]=1.-syst_bkgDD_err[i]/l2nu2_bkgDD[i] else: stat_bkgDD_err_rel_Up[i]=1. syst_bkgDD_err_rel_Up[i]=1. stat_bkgDD_err_rel_Down[i]=1. syst_bkgDD_err_rel_Down[i]=1. if l2nu2_bkgMC[i]>0: stat_bkgMC_err_rel_Up[i]=1.+stat_bkgMC_err[i]/l2nu2_bkgMC[i] syst_bkgMC_err_rel_Up[i]=1.+syst_bkgMC_err[i]/l2nu2_bkgMC[i] stat_bkgMC_err_rel_Down[i]=1.-stat_bkgMC_err[i]/l2nu2_bkgMC[i] syst_bkgMC_err_rel_Down[i]=1.-syst_bkgMC_err[i]/l2nu2_bkgMC[i] else: stat_bkgMC_err_rel_Up[i]=1. syst_bkgMC_err_rel_Up[i]=1. stat_bkgMC_err_rel_Down[i]=1. syst_bkgMC_err_rel_Down[i]=1. syst_signal_sum_err = [] for i in range(0,7): syst_signal_sum_err.append([]) print i syst_signal_sum_err[i]=sqrt(syst_signal_reco_err[i]*syst_signal_reco_err[i]+syst_signal_th_err[i]*syst_signal_th_err[i]) def isItCorrelated(name): print '\t ----> isItCorrelated: testing ',name if ('_MC_syst' in name or '_les' in name or '_DD_syst' in name or '_recoth' in name or '_reco' in name or '_th' in name): print '-> true' return True else: print '-> false' return False doAllLnN=True parser = OptionParser(description="%prog : A RooStats Implementation of Anomalous Triple Gauge Coupling Analysis.", usage="buildWZworkspace --config=example_config.cfg") cfgparse = SafeConfigParser() parser.add_option("--config",dest="config",help="The name of the input configuration file.") (options,args) = parser.parse_args() miss_options = False if options.config is None: print 'Need to specify --config' miss_options=True if miss_options: exit(1) cfgparse.read(options.config) options.config = cfgparse # put the parsed config file into our options cfg = options.config #lType = sys.argv[1] #codename = "" #planeID = sys.argv[2] norm_sig_sm = -1 norm_sig_sm_up = -1 norm_sig_sm_down = -1 norm_bkg = -1 norm_obs = -1 fit_sections = cfg.sections() fit_sections.remove('Global') #don't need to iterate over the global configuration basepath = '%s/src/CombinedEWKAnalysis/CommonTools/data/WV_semileptonic'%os.environ['CMSSW_BASE'] for section in fit_sections: codename = section lType = codename print '\n\tlType=',lType f = TFile('%s/%s_boosted_withSignalSyst_adjustedUnc_f4.root'%(basepath,codename)) Nbkg = cfg.get(codename,'Nbkg') print "Nbkg= ",Nbkg Nbkg_int=int(Nbkg) bkg_name = [] for i in range(1,Nbkg_int+1): bkg_name.append(cfg.get(codename,'bkg%i_name'%i)) background = [] for i in range(0,Nbkg_int): background.append(f.Get(bkg_name[i])) print 'backgrounds= ',background background_shapeSyst = [] for i in range(0,Nbkg_int): background_shapeSyst.append([]) for name in cfg.get(codename,'bkg%i_shape_syst'%(i+1)).split(','): background_shapeSyst[i].append(name) background_backshapeUp = [] background_backshapeDown = [] for j in range(0,Nbkg_int): background_backshapeUp.append([]) background_backshapeDown.append([]) for i in range(0,len(background_shapeSyst[j])): print ' bkg shape syst: ',background_shapeSyst[j] print ' getting bkgUp ','%sUp'%background_shapeSyst[j][i] background_backshapeUp[j].append(f.Get('%sUp'%background_shapeSyst[j][i])) background_backshapeDown[j].append(f.Get('%sDown'%background_shapeSyst[j][i])) data_obs = f.Get('data_obs') diboson = f.Get('diboson') doSignalShape_unc=False cfg_items=cfg.items(codename) for cfg_item in cfg_items: if 'signal_shape_syst' in cfg_item: doSignalShape_unc = True print 'doSignalShape_unc=',doSignalShape_unc if (doSignalShape_unc): diboson_up = {} diboson_down = {} norm_sig_sm_up = {} norm_sig_sm_down = {} signal_shapeSyst = [string(i) for i in cfg.get(codename,'signal_shape_syst').split(',')] for i in range(0,len(signal_shapeSyst)): print ' signal shape syst: ',signal_shapeSyst[i] diboson_up[i] = f.Get('%sUp'%signal_shapeSyst[i]) diboson_down[i] = f.Get('%sDown'%signal_shapeSyst[i]) norm_sig_sm_up[i] = diboson_up[i].Integral() norm_sig_sm_down[i] = diboson_down[i].Integral() norm_sig_sm = diboson.Integral() norm_bkg = [] for i in range(0,Nbkg_int): norm_bkg.append(background[i].Integral()) norm_obs = data_obs.Integral() print 'bkg integral: ',norm_bkg if (doSignalShape_unc): print 'signal shape unc: ',norm_sig_sm_down,' ',norm_sig_sm,' ',norm_sig_sm_up theWS = RooWorkspace('WV_%sboosted'%codename, 'WV_%sboosted'%codename) wpt = theWS.factory('W_pt_%s[%f,%f]' % (codename,data_obs.GetBinLowEdge(1), data_obs.GetBinLowEdge(data_obs.GetNbinsX())+data_obs.GetBinWidth(data_obs.GetNbinsX()))) binning=array('d',[]) for i in range(1, data_obs.GetNbinsX()+1): binning.append(data_obs.GetBinLowEdge(i)) binning.append(data_obs.GetBinLowEdge(data_obs.GetNbinsX()+1)) print "bining: " for i in range(0, len(binning)): print binning[i] bins=RooBinning(len(binning)-1, binning) wpt.setBinning(bins) lz = theWS.factory('lZ[0., -0.025, 0.025]') lz.setConstant(False) dkg = theWS.factory('dkg[0.,-0.025, 0.025]') dg1 = theWS.factory('dg1[0.,-0.025, 0.025]') vars = RooArgList(wpt) varSet = RooArgSet(wpt) data = RooDataHist('data_obs', 'data_obs_WV_%s'%codename, vars, data_obs) bkgHist = {} for i in range(0,Nbkg_int): bkgHist[i] = RooDataHist('WV_semileptonic_bkg%i_%s'%(i+1,codename), 'WV_semileptonic_bkg%i_%s'%(i+1,codename), vars, background[i]) bkgHist_systUp = [] bkgHist_systDown = [] for j in range(0,Nbkg_int): bkgHist_systUp.append([]) bkgHist_systDown.append([]) for i in range(0,len(background_shapeSyst[j])): if (isItCorrelated(background_shapeSyst[j][i])): print ' \n\t\t ==================================> <=========================== ' name_forCorr=background_shapeSyst[j][i] print ' name_forCorr= ',name_forCorr if ('_DD_syst' in name_forCorr and ('ch1' in name_forCorr or 'ch3' in name_forCorr)): name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch1_','odd_') name_forCorr=name_forCorr.replace('ch3_','odd_') elif ('_DD_syst' in name_forCorr and ('ch2' in name_forCorr or 'ch4' in name_forCorr)): name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch2_','even_') name_forCorr=name_forCorr.replace('ch4_','even_') else: name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch1_','') name_forCorr=name_forCorr.replace('ch2_','') name_forCorr=name_forCorr.replace('ch3_','') name_forCorr=name_forCorr.replace('ch4_','') print ' -> name_forCorr= ',name_forCorr bkgHist_systUp[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,name_forCorr), 'WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,name_forCorr), vars, background_backshapeUp[j][i])) bkgHist_systDown[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,name_forCorr), 'WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,name_forCorr), vars, background_backshapeDown[j][i])) else: bkgHist_systUp[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), 'WV_semileptonic_bkg%i_%s_%sUp'%(j+1,codename,background_shapeSyst[j][i]), vars, background_backshapeUp[j][i])) bkgHist_systDown[j].append(RooDataHist('WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), 'WV_semileptonic_bkg%i_%s_%sDown'%(j+1,codename,background_shapeSyst[j][i]), vars, background_backshapeDown[j][i])) dibosonHist = RooDataHist('WV_semileptonic_SM_%s_rawshape'%codename, 'WV_semileptonic_SM_%s_rawshape'%codename, vars, diboson) if (doSignalShape_unc): dibosonHist_up = {} dibosonHist_down = {} for i in range(0,len(signal_shapeSyst)): if (isItCorrelated(str(signal_shapeSyst[i]))): print ' \n\t\t ==================================> <=========================== ' name_forCorr=str(signal_shapeSyst[i]) print ' name_forCorr= ',name_forCorr name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch1_','') name_forCorr=name_forCorr.replace('ch2_','') name_forCorr=name_forCorr.replace('ch3_','') name_forCorr=name_forCorr.replace('ch4_','') print ' -> name_forCorr= ',name_forCorr dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,name_forCorr), vars, diboson_up[i]) dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,name_forCorr), vars, diboson_down[i]) else: dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), vars, diboson_up[i]) dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), vars, diboson_down[i]) # dibosonHist_up[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_rawshape_%sUp'%(codename,signal_shapeSyst[i]), # vars, # diboson_up[i]) # dibosonHist_down[i] = RooDataHist('WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_rawshape_%sDown'%(codename,signal_shapeSyst[i]), # vars, # diboson_down[i]) dibosonPdf = RooHistFunc('WV_semileptonic_SM_%s_shape'%codename, 'WV_semileptonic_SM_%s_shape'%codename, varSet, dibosonHist) if (doSignalShape_unc): dibosonPdf_up = {} dibosonPdf_down = {} for i in range(0,len(signal_shapeSyst)): if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch1_','') name_forCorr=name_forCorr.replace('ch2_','') name_forCorr=name_forCorr.replace('ch3_','') name_forCorr=name_forCorr.replace('ch4_','') dibosonPdf_up[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sUp'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_shape_%sUp'%(codename,name_forCorr), varSet, dibosonHist_up[i]) dibosonPdf_down[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sDown'%(codename,name_forCorr), 'WV_semileptonic_SM_%s_shape_%sDown'%(codename,name_forCorr), varSet, dibosonHist_down[i]) else: dibosonPdf_up[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), varSet, dibosonHist_up[i]) dibosonPdf_down[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), 'WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), varSet, dibosonHist_down[i]) # dibosonPdf_up[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_shape_%sUp'%(codename,signal_shapeSyst[i]), # varSet, # dibosonHist_up[i]) # dibosonPdf_down[i] = RooHistFunc('WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), # 'WV_semileptonic_SM_%s_shape_%sDown'%(codename,signal_shapeSyst[i]), # varSet, # dibosonHist_down[i]) print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ reading RooATGCFunction\n' # aTGC = RooATGCFunction_wz('ATGC_shapescale_WWgammaZ_WV_atgc_semileptonic_%s'%codename, # 'ATGC_shapescale_%s'%codename, # wpt, # lz, # dkg, # dg1, # '%s/signal_%s_f4.root'%(basepath,codename)) print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ read RooATGCFunction\n' limtype = -1 planeID = 'dkglZ' print 'setting up for %s plane!'%planeID if ( planeID == 'dkglZ' ): limtype = 0 elif ( planeID == 'dg1lZ' ): limtype = 1 elif ( planeID == 'dkgdg1'): limtype = 2 else: raise RuntimeError('InvalidCouplingChoice', 'We can only use [dkg,lZ], [dg1,lZ], and [dkg,dg1]'\ ' as POIs right now!') print limtype print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ reading RooATGCSemi\n' if (doSignalShape_unc): kappaLow = {} kappaHigh = {} aTGCPdf_norm = {} theta = {} kappaLow_sum_d = 1. kappaHigh_sum_d = 1. for i in range(0,len(signal_shapeSyst)): kappaLow[i] = RooRealVar("kappaL_%s_%s"%(i+1,codename),"kappaL_%s_%s"%(i+1,codename),norm_sig_sm_down[i]/norm_sig_sm) kappaLow[i].setConstant(True) kappaHigh[i] = RooRealVar("kappaH_%s_%s"%(i+1,codename),"kappaH_%s_%s"%(i+1,codename),norm_sig_sm_up[i]/norm_sig_sm) kappaHigh[i].setConstant(True) kappaLow_sum_d = kappaLow_sum_d*norm_sig_sm_down[i]/norm_sig_sm kappaHigh_sum_d = kappaHigh_sum_d*norm_sig_sm_up[i]/norm_sig_sm # theWS.factory("%s[-7,7]"%signal_shapeSyst[i]) # theta[i] = theWS.var("%s"%signal_shapeSyst[i]) if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('ch1_','') name_forCorr=name_forCorr.replace('ch2_','') name_forCorr=name_forCorr.replace('ch3_','') name_forCorr=name_forCorr.replace('ch4_','') if not doAllLnN: theWS.factory("%s[-7,7]"%name_forCorr) theta[i] = theWS.var("%s"%name_forCorr) else: if not doAllLnN: theWS.factory("%s[-7,7]"%signal_shapeSyst[i]) theta[i] = theWS.var("%s"%signal_shapeSyst[i]) if not doAllLnN: aTGCPdf_norm[i] = AsymPow('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_integral%s'%(codename,i+1), 'ATGCPdf_WV_%s_integral%s'%(codename,i+1), kappaLow[i], kappaHigh[i], theta[i]) if not doAllLnN: if (len(signal_shapeSyst)==1): aTGCPdf_norm_sum = aTGCPdf_norm[0] else: for i in range(0,len(signal_shapeSyst)): if (i==0): prodset=RooArgList(aTGCPdf_norm[i]) else: prodset.add(RooArgList(aTGCPdf_norm[i])) aTGCPdf_norm_sum = RooProduct("aTGCPdf_norm_sum","aTGCPdf_norm_sum",prodset) kappaLow_sum = RooRealVar("kappaLow_sum","kappaLow_sum",kappaLow_sum_d) kappaHigh_sum = RooRealVar("kappaHigh_sum","kappaHigh_sum",kappaHigh_sum_d) aTGCPdf_norm_sum.SetNameTitle('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_norm'%codename, 'ATGCPdf_WV_%s_norm'%codename) aTGCPdf = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s'%codename, 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf, '%s/signal_%s_f4.root'%(basepath,codename), limtype ) if (doSignalShape_unc): aTGCPdf_up = {} aTGCPdf_down = {} for i in range(0,len(signal_shapeSyst)): if (isItCorrelated(str(signal_shapeSyst[i]))): name_forCorr=str(signal_shapeSyst[i]) name_forCorr=name_forCorr.replace('l4_','') name_forCorr=name_forCorr.replace('l2nu2_','') name_forCorr=name_forCorr.replace('ch1_','') name_forCorr=name_forCorr.replace('ch2_','') name_forCorr=name_forCorr.replace('ch3_','') name_forCorr=name_forCorr.replace('ch4_','') aTGCPdf_up[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sUp'%(codename,name_forCorr), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_up[i], '%s/signal_%s_f4.root'%(basepath,codename), limtype ) aTGCPdf_down[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sDown'%(codename,name_forCorr), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_down[i], '%s/signal_%s_f4.root'%(basepath,codename), limtype ) else: aTGCPdf_up[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sUp'%(codename,signal_shapeSyst[i]), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_up[i], '%s/signal_%s_f4.root'%(basepath,codename), limtype ) aTGCPdf_down[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sDown'%(codename,signal_shapeSyst[i]), 'ATGCPdf_WV_%s'%codename, wpt, dkg, lz, dg1, dibosonPdf_down[i], '%s/signal_%s_f4.root'%(basepath,codename), limtype ) # aTGCPdf_up[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sUp'%(codename,signal_shapeSyst[i]), # 'ATGCPdf_WV_%s'%codename, # wpt, # dkg, # lz, # dg1, # dibosonPdf_up[i], # '%s/signal_%s_f4.root'%(basepath,codename), # limtype # ) # aTGCPdf_down[i] = RooATGCSemiAnalyticPdf_wz('ATGCPdf_WWgammaZ_WV_atgc_semileptonic_%s_%sDown'%(codename,signal_shapeSyst[i]), # 'ATGCPdf_WV_%s'%codename, # wpt, # dkg, # lz, # dg1, # dibosonPdf_down[i], # '%s/signal_%s_f4.root'%(basepath,codename), # limtype # ) print '\n@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ read RooATGCSemi\n' getattr(theWS, 'import')(data) for i in range(0,Nbkg_int): getattr(theWS, 'import')(bkgHist[i]) getattr(theWS, 'import')(aTGCPdf) if not doAllLnN: for j in range(0,Nbkg_int): for i in range(0,len(background_shapeSyst[j])): getattr(theWS, 'import')(bkgHist_systUp[j][i]) getattr(theWS, 'import')(bkgHist_systDown[j][i]) if (doSignalShape_unc): for i in range(0,len(signal_shapeSyst)): getattr(theWS, 'import')(aTGCPdf_up[i]) getattr(theWS, 'import')(aTGCPdf_down[i]) # getattr(theWS, 'import')(aTGCPdf_norm[i]) getattr(theWS, 'import')(aTGCPdf_norm_sum) theWS.Print() fout = TFile('%s_boosted_ws.root'%(codename), 'recreate') theWS.Write() fout.Close() leptons="" ch=100 ## calculate relative error: if (codename=="ch1"): ch=0 leptons="l4" codename_forBKGDDsyst="odd" if (codename=="ch2"): ch=1 leptons="l4" codename_forBKGDDsyst="even" if (codename=="ch3"): ch=2 leptons="l4" codename_forBKGDDsyst="odd" if (codename=="ch4"): ch=3 leptons="l4" codename_forBKGDDsyst="even" if (codename=="ch5"): ch=4 codename_forBKGDDsyst="odd" leptons="l2nu2" Nbkg_int=2 norm_bkg.append([]) norm_bkg[0]=l2nu2_bkgMC[4] norm_bkg[1]=l2nu2_bkgDD[4] if (codename=="ch6"): ch=5 codename_forBKGDDsyst="even" Nbkg_int=2 leptons="l2nu2" norm_bkg.append([]) norm_bkg[0]=l2nu2_bkgMC[5] norm_bkg[1]=l2nu2_bkgDD[5] if (codename=="ch7"): ch=6 leptons="l2nu2" codename_forBKGDDsyst="odd" Nbkg_int=2 norm_bkg.append([]) norm_bkg[0]=l2nu2_bkgMC[6] norm_bkg[1]=l2nu2_bkgDD[6] print "===================> channel: ",ch+1 ### make the card for this channel and plane ID card = """ # Simple counting experiment, with one signal and a few background processes imax 1 number of channels jmax {Nbkg_int} number of backgrounds kmax * number of nuisance parameters (sources of systematical uncertainties) ------------""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,Nbkg_int=Nbkg_int) for i in range(0,Nbkg_int): card += """ shapes WV_semileptonic_bkg{Nbkg_int}_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:$PROCESS WV_{codename}boosted:$PROCESS""".format(Nbkg_int=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ shapes data_obs {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:$PROCESS """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs,Nbkg_int=Nbkg_int) if (doSignalShape_unc): card += """ shapes WWgammaZ_WV_atgc_semileptonic_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:ATGCPdf_$PROCESS WV_{codename}boosted:ATGCPdf_$PROCESS """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) else: card += """ shapes WWgammaZ_WV_atgc_semileptonic_{codename} {codename}boosted ./{codename}_boosted_ws.root WV_{codename}boosted:ATGCPdf_$PROCESS """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) card += """ ------------ bin {codename}boosted observation {norm_obs} ------------ bin {codename}boosted\t\t""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg,norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """\t\t\t{codename}boosted""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ process\t\t\t WWgammaZ_WV_atgc_semileptonic_{codename} """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """\tWV_semileptonic_bkg{Nbkg_int}_{codename}""".format(Nbkg_int=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ process 0 """.format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """ \t\t\t\t{i}""".format(i=i+1,codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) card += """ rate {norm_sig_sm}\t""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) for i in range(0,Nbkg_int): card += """ \t\t\t{norm_bkg}""".format(codename=codename,norm_sig_sm=norm_sig_sm,norm_bkg=norm_bkg[i],norm_obs=norm_obs) if (codename=="mu" or codename=="el" or codename=="elmu"): card += """ ------------ lumi_8TeV lnN 1.022 """ for i in range(0,Nbkg_int): card += """\t\t\t\t-""" card += """ sig_other lnN 1.1342 """ for i in range(0,Nbkg_int): card += """\t\t\t\t-""" card += """ background_{codename}boosted_backshape lnN - """.format(codename=codename) for i in range(0,Nbkg_int): card += """\t\t\t\t0.7/1.3""" card += """ signal_th lnN 0.96/1.04 """.format(codename=codename) for i in range(0,Nbkg_int): card += """\t\t\t\t-""" else: if (leptons=="l2nu2"): card += """ ------------ lumi_8TeV lnN 1.039\t\t\t1.039\t\t\t-""" else: card += """ ------------ lumi_8TeV lnN 1.039\t\t\t-""" if (leptons=="l2nu2"): card += """ {leptons}_{codename}_background_MC_stat lnN - {err_down}/{err_up} -""".format(leptons=leptons,codename=codename,err_down=stat_bkgMC_err_rel_Down[ch],err_up=stat_bkgMC_err_rel_Up[ch]) card += """ background_MC_syst lnN - {err_down}/{err_up} -""".format(leptons=leptons,codename=codename,err_down=syst_bkgMC_err_rel_Down[ch],err_up=syst_bkgMC_err_rel_Up[ch]) if (leptons=="l2nu2"): card += """ {leptons}_{codename}_background_DD_factor2p5_stat lnN - - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=stat_bkgDD_err_rel_Down[ch],err_up=stat_bkgDD_err_rel_Up[ch]) if (codename_forBKGDDsyst=="odd"): card += """ odd_background_DD_syst lnN - - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=syst_bkgDD_err_rel_Down[ch],err_up=syst_bkgDD_err_rel_Up[ch]) else: card += """ even_background_DD_syst lnN - - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=syst_bkgDD_err_rel_Down[ch],err_up=syst_bkgDD_err_rel_Up[ch]) card += """ {leptons}_{codename}_signal_stat lnN {err_down}/{err_up} - -""".format(leptons=leptons,codename=codename,err_down=stat_signal_err_rel_Down[ch],err_up=stat_signal_err_rel_Up[ch]) card += """ signal_reco lnN {err_down}/{err_up} - -""".format(leptons=leptons,codename=codename,err_down=syst_signal_reco_err_rel_Down[ch],err_up=syst_signal_reco_err_rel_Up[ch]) card += """ signal_th lnN {err_down}/{err_up} - -""".format(leptons=leptons,codename=codename,err_down=syst_signal_th_err_rel_Down[ch],err_up=syst_signal_th_err_rel_Up[ch]) else: card += """ {leptons}_{codename}_background_DD_factor1p5_stat lnN - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=stat_bkgDD_err_rel_Down[ch],err_up=stat_bkgDD_err_rel_Up[ch]) if (codename_forBKGDDsyst=="odd"): card += """ odd_background_DD_syst lnN - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=syst_bkgDD_err_rel_Down[ch],err_up=syst_bkgDD_err_rel_Up[ch]) else: card += """ even_background_DD_syst lnN - {err_down}/{err_up}""".format(leptons=leptons,codename=codename,err_down=syst_bkgDD_err_rel_Down[ch],err_up=syst_bkgDD_err_rel_Up[ch]) card += """ {leptons}_{codename}_signal_stat lnN {err_down}/{err_up} -""".format(leptons=leptons,codename=codename,err_down=stat_signal_err_rel_Down[ch],err_up=stat_signal_err_rel_Up[ch]) card += """ signal_reco lnN {err_down}/{err_up} -""".format(leptons=leptons,codename=codename,err_down=syst_signal_reco_err_rel_Down[ch],err_up=syst_signal_reco_err_rel_Up[ch]) card += """ signal_th lnN {err_down}/{err_up} -""".format(leptons=leptons,codename=codename,err_down=syst_signal_th_err_rel_Down[ch],err_up=syst_signal_th_err_rel_Up[ch]) #lumi_8TeV lnN {err_down}/{err_up}39 {err_down}/{err_up}39 - #l2nu2_ch3_background_MC_stat shape - {err_down}/{err_up} .format(err_down=stat_bkgMC_err_rel_Down[ch],err_up=stat_bkgMC_err_rel_Up[ch]) - #background_MC_syst shape - {err_down}/{err_up} - #l2nu2_ch3_background_DD_factor2p5_stat shape - - 1.845 #odd_background_DD_syst shape - - {err_down}/{err_up} #l2nu2_ch3_signal_stat shape1 {err_down}/{err_up} - - #signal_reco shape1 {err_down}/{err_up} - - #signal_th shape1 {err_down}/{err_up} - - #lumi_8TeV lnN 1.039 - #l4_ch1_background_DD_factor1p5_stat shape - 1.335 #odd_background_DD_syst shape - 1.0 #l4_ch1_signal_stat shape1 1.0 - #signal_reco shape1 1.0 - #signal_th shape1 1.0 - print card cardfile = open('wv_semil_%sboosted.txt'%(codename),'w') cardfile.write(card) cardfile.close
744c5eaa6cb3ca445d2636ef9869716a03f6577a
498e792e16ab1a74ac034c53177c4cccbeef2749
/classification/swin_transformer/utils.py
96ad54a4b596ffeb720d7ffd0dac0cc47157abe1
[]
no_license
ydwisroad/imageprocessingpytorch
f97bec4469c087f6bbbca5d42da180c95be8b13f
bd8d1af228619c9c6c9c1a2b880422f7d5048dd5
refs/heads/master
2023-07-29T05:05:11.145832
2022-02-21T23:32:03
2022-02-21T23:32:03
284,976,501
7
3
null
2023-07-24T01:08:22
2020-08-04T12:43:24
Jupyter Notebook
UTF-8
Python
false
false
6,729
py
import os import sys import json import pickle import random import torch from tqdm import tqdm import matplotlib.pyplot as plt def read_split_data(root: str, val_rate: float = 0.2): random.seed(0) # 保证随机结果可复现 assert os.path.exists(root), "dataset root: {} does not exist.".format(root) # 遍历文件夹,一个文件夹对应一个类别 flower_class = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla))] # 排序,保证顺序一致 flower_class.sort() # 生成类别名称以及对应的数字索引 class_indices = dict((k, v) for v, k in enumerate(flower_class)) json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4) with open('class_indices.json', 'w') as json_file: json_file.write(json_str) train_images_path = [] # 存储训练集的所有图片路径 train_images_label = [] # 存储训练集图片对应索引信息 val_images_path = [] # 存储验证集的所有图片路径 val_images_label = [] # 存储验证集图片对应索引信息 every_class_num = [] # 存储每个类别的样本总数 supported = [".jpg", ".JPG", ".png", ".PNG"] # 支持的文件后缀类型 # 遍历每个文件夹下的文件 for cla in flower_class: cla_path = os.path.join(root, cla) # 遍历获取supported支持的所有文件路径 images = [os.path.join(root, cla, i) for i in os.listdir(cla_path) if os.path.splitext(i)[-1] in supported] # 获取该类别对应的索引 image_class = class_indices[cla] # 记录该类别的样本数量 every_class_num.append(len(images)) # 按比例随机采样验证样本 val_path = random.sample(images, k=int(len(images) * val_rate)) for img_path in images: if img_path in val_path: # 如果该路径在采样的验证集样本中则存入验证集 val_images_path.append(img_path) val_images_label.append(image_class) else: # 否则存入训练集 train_images_path.append(img_path) train_images_label.append(image_class) print("{} images were found in the dataset.".format(sum(every_class_num))) print("{} images for training.".format(len(train_images_path))) print("{} images for validation.".format(len(val_images_path))) plot_image = False if plot_image: # 绘制每种类别个数柱状图 plt.bar(range(len(flower_class)), every_class_num, align='center') # 将横坐标0,1,2,3,4替换为相应的类别名称 plt.xticks(range(len(flower_class)), flower_class) # 在柱状图上添加数值标签 for i, v in enumerate(every_class_num): plt.text(x=i, y=v + 5, s=str(v), ha='center') # 设置x坐标 plt.xlabel('image class') # 设置y坐标 plt.ylabel('number of images') # 设置柱状图的标题 plt.title('flower class distribution') plt.show() return train_images_path, train_images_label, val_images_path, val_images_label def plot_data_loader_image(data_loader): batch_size = data_loader.batch_size plot_num = min(batch_size, 4) json_path = './class_indices.json' assert os.path.exists(json_path), json_path + " does not exist." json_file = open(json_path, 'r') class_indices = json.load(json_file) for data in data_loader: images, labels = data for i in range(plot_num): # [C, H, W] -> [H, W, C] img = images[i].numpy().transpose(1, 2, 0) # 反Normalize操作 img = (img * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255 label = labels[i].item() plt.subplot(1, plot_num, i+1) plt.xlabel(class_indices[str(label)]) plt.xticks([]) # 去掉x轴的刻度 plt.yticks([]) # 去掉y轴的刻度 plt.imshow(img.astype('uint8')) plt.show() def write_pickle(list_info: list, file_name: str): with open(file_name, 'wb') as f: pickle.dump(list_info, f) def read_pickle(file_name: str) -> list: with open(file_name, 'rb') as f: info_list = pickle.load(f) return info_list def train_one_epoch(model, optimizer, data_loader, device, epoch): model.train() loss_function = torch.nn.CrossEntropyLoss() accu_loss = torch.zeros(1).to(device) # 累计损失 accu_num = torch.zeros(1).to(device) # 累计预测正确的样本数 optimizer.zero_grad() sample_num = 0 data_loader = tqdm(data_loader, file=sys.stdout) for step, data in enumerate(data_loader): images, labels = data sample_num += images.shape[0] pred = model(images.to(device)) pred_classes = torch.max(pred, dim=1)[1] accu_num += torch.eq(pred_classes, labels.to(device)).sum() loss = loss_function(pred, labels.to(device)) loss.backward() accu_loss += loss.detach() data_loader.desc = "[train epoch {}] loss: {:.3f}, acc: {:.3f}".format(epoch, accu_loss.item() / (step + 1), accu_num.item() / sample_num) if not torch.isfinite(loss): print('WARNING: non-finite loss, ending training ', loss) sys.exit(1) optimizer.step() optimizer.zero_grad() return accu_loss.item() / (step + 1), accu_num.item() / sample_num @torch.no_grad() def evaluate(model, data_loader, device, epoch): loss_function = torch.nn.CrossEntropyLoss() model.eval() accu_num = torch.zeros(1).to(device) # 累计预测正确的样本数 accu_loss = torch.zeros(1).to(device) # 累计损失 sample_num = 0 data_loader = tqdm(data_loader, file=sys.stdout) for step, data in enumerate(data_loader): images, labels = data sample_num += images.shape[0] pred = model(images.to(device)) pred_classes = torch.max(pred, dim=1)[1] accu_num += torch.eq(pred_classes, labels.to(device)).sum() loss = loss_function(pred, labels.to(device)) accu_loss += loss data_loader.desc = "[valid epoch {}] loss: {:.3f}, acc: {:.3f}".format(epoch, accu_loss.item() / (step + 1), accu_num.item() / sample_num) return accu_loss.item() / (step + 1), accu_num.item() / sample_num
1acb498dd3826b34f113982a9323dd004030e092
5335098059388245cf65f0b0c791f1c3c910b74d
/mysite/settings.py
9dccea7de9f3ab318d24763e77c548922f870a70
[]
no_license
Mariia1991/my-first-blog
c333cbcf3648b12e1018a23da3995a76eb8be612
91fc87e054ccf95f7da422ea1f6453c5d96fec19
refs/heads/master
2021-01-10T16:17:43.171755
2016-03-06T10:42:57
2016-03-06T10:42:57
53,248,539
0
0
null
null
null
null
UTF-8
Python
false
false
2,706
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.8. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'sv7qfi55@*-no03^gl0!nqb5p=62+r=i5+4ox5u2ad9%xwq6qh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Moscow' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
18e9b2b74f11283b6321cc911e118ff92ad27bc1
0c6b4e9c5ecc5a7595717f9699953b227486ef3e
/tests/unit/modules/remote_management/oneview/test_oneview_network_set.py
925b136aea929159834fde6379a0dea5fd372036
[]
no_license
ansible-collection-migration/ansible.misc
d9c92e8bb0c17b3e2a92976215f523c2afaa5a46
3c02be2a8c03b2e375a1e1f37b0c119145ea358c
refs/heads/master
2020-12-26T23:11:36.544511
2020-02-03T22:18:53
2020-02-03T22:18:53
237,681,535
0
0
null
null
null
null
UTF-8
Python
false
false
6,364
py
# Copyright (c) 2016-2017 Hewlett Packard Enterprise Development LP # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from ansible_collections.ansible.misc.tests.unit.compat import unittest, mock from .hpe_test_utils import OneViewBaseTestCase from .oneview_module_loader import NetworkSetModule FAKE_MSG_ERROR = 'Fake message error' NETWORK_SET = dict( name='OneViewSDK Test Network Set', networkUris=['/rest/ethernet-networks/aaa-bbb-ccc'] ) NETWORK_SET_WITH_NEW_NAME = dict(name='OneViewSDK Test Network Set - Renamed') PARAMS_FOR_PRESENT = dict( config='config.json', state='present', data=dict(name=NETWORK_SET['name'], networkUris=['/rest/ethernet-networks/aaa-bbb-ccc']) ) PARAMS_WITH_CHANGES = dict( config='config.json', state='present', data=dict(name=NETWORK_SET['name'], newName=NETWORK_SET['name'] + " - Renamed", networkUris=['/rest/ethernet-networks/aaa-bbb-ccc', 'Name of a Network']) ) PARAMS_FOR_ABSENT = dict( config='config.json', state='absent', data=dict(name=NETWORK_SET['name']) ) class NetworkSetModuleSpec(unittest.TestCase, OneViewBaseTestCase): """ OneViewBaseTestCase has common tests for class constructor and main function, also provides the mocks used in this test case. """ def setUp(self): self.configure_mocks(self, NetworkSetModule) self.resource = self.mock_ov_client.network_sets self.ethernet_network_client = self.mock_ov_client.ethernet_networks def test_should_create_new_network_set(self): self.resource.get_by.return_value = [] self.resource.create.return_value = NETWORK_SET self.mock_ansible_module.params = PARAMS_FOR_PRESENT NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=True, msg=NetworkSetModule.MSG_CREATED, ansible_facts=dict(network_set=NETWORK_SET) ) def test_should_not_update_when_data_is_equals(self): self.resource.get_by.return_value = [NETWORK_SET] self.mock_ansible_module.params = PARAMS_FOR_PRESENT NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, msg=NetworkSetModule.MSG_ALREADY_PRESENT, ansible_facts=dict(network_set=NETWORK_SET) ) def test_update_when_data_has_modified_attributes(self): data_merged = dict(name=NETWORK_SET['name'] + " - Renamed", networkUris=['/rest/ethernet-networks/aaa-bbb-ccc', '/rest/ethernet-networks/ddd-eee-fff'] ) self.resource.get_by.side_effect = [NETWORK_SET], [] self.resource.update.return_value = data_merged self.ethernet_network_client.get_by.return_value = [{'uri': '/rest/ethernet-networks/ddd-eee-fff'}] self.mock_ansible_module.params = PARAMS_WITH_CHANGES NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=True, msg=NetworkSetModule.MSG_UPDATED, ansible_facts=dict(network_set=data_merged) ) def test_should_raise_exception_when_ethernet_network_not_found(self): self.resource.get_by.side_effect = [NETWORK_SET], [] self.ethernet_network_client.get_by.return_value = [] self.mock_ansible_module.params = PARAMS_WITH_CHANGES NetworkSetModule().run() self.mock_ansible_module.fail_json.assert_called_once_with( exception=mock.ANY, msg=NetworkSetModule.MSG_ETHERNET_NETWORK_NOT_FOUND + "Name of a Network" ) def test_should_remove_network(self): self.resource.get_by.return_value = [NETWORK_SET] self.mock_ansible_module.params = PARAMS_FOR_ABSENT NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=True, msg=NetworkSetModule.MSG_DELETED ) def test_should_do_nothing_when_network_set_not_exist(self): self.resource.get_by.return_value = [] self.mock_ansible_module.params = PARAMS_FOR_ABSENT NetworkSetModule().run() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, msg=NetworkSetModule.MSG_ALREADY_ABSENT ) def test_update_scopes_when_different(self): params_to_scope = PARAMS_FOR_PRESENT.copy() params_to_scope['data']['scopeUris'] = ['test'] self.mock_ansible_module.params = params_to_scope resource_data = NETWORK_SET.copy() resource_data['scopeUris'] = ['fake'] resource_data['uri'] = 'rest/network-sets/fake' self.resource.get_by.return_value = [resource_data] patch_return = resource_data.copy() patch_return['scopeUris'] = ['test'] self.resource.patch.return_value = patch_return NetworkSetModule().run() self.resource.patch.assert_called_once_with('rest/network-sets/fake', operation='replace', path='/scopeUris', value=['test']) self.mock_ansible_module.exit_json.assert_called_once_with( changed=True, ansible_facts=dict(network_set=patch_return), msg=NetworkSetModule.MSG_UPDATED ) def test_should_do_nothing_when_scopes_are_the_same(self): params_to_scope = PARAMS_FOR_PRESENT.copy() params_to_scope['data']['scopeUris'] = ['test'] self.mock_ansible_module.params = params_to_scope resource_data = NETWORK_SET.copy() resource_data['scopeUris'] = ['test'] self.resource.get_by.return_value = [resource_data] NetworkSetModule().run() self.resource.patch.not_been_called() self.mock_ansible_module.exit_json.assert_called_once_with( changed=False, ansible_facts=dict(network_set=resource_data), msg=NetworkSetModule.MSG_ALREADY_PRESENT ) if __name__ == '__main__': unittest.main()
f07650432096a5e2ce129c31565a46449a0bc4ac
9fc6604ae98e1ae91c490e8201364fdee1b4222a
/eg_unifonic_sms/wizards/__init__.py
ac6faede52edcd98fc0b73903df17624720de3c3
[]
no_license
nabiforks/baytonia
b65e6a7e1c7f52a7243e82f5fbcc62ae4cbe93c4
58cb304d105bb7332f0a6ab685015f070988ba56
refs/heads/main
2023-03-23T21:02:57.862331
2021-01-04T03:40:58
2021-01-04T03:40:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
39
py
from . import unifonic_post_sms_wizard
864af22112c10a166d04ae1997c58bc756b43a51
f3f38a66daddccbb7fd0bfc1cacce40c7ad31010
/tippecanoe-downloads.py
0f09b1da5d9ca1e7df0f83a2ca8a0e864b40bc63
[]
no_license
kimballjohnson/dotmaps
386b5b87ce757412eeb7712def8bb595cc59e98f
09c9a3ceb16ba7f350247eee9a3b65ddb53fe290
refs/heads/master
2021-09-12T09:28:11.772233
2017-03-01T19:44:56
2017-03-01T19:44:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,221
py
import sys, csv, zipfile, os, itertools, io, json, tempfile, subprocess OA_PROPERTIES = 'HASH', 'NUMBER', 'STREET', 'UNIT', 'CITY', 'POSTCODE' with open('downloaded/files.csv') as file: run_rows = csv.DictReader(file) set_key = lambda run_row: int(run_row['set_id']) sorted_rows = sorted(run_rows, key=set_key, reverse=False) grouped_rows = itertools.groupby(sorted_rows, set_key) for (set_id, runs) in grouped_rows: print('Starting set', set_id, '...', file=sys.stderr) mbtiles_filename = 'set_{}.mbtiles'.format(set_id) cmd = 'tippecanoe', '-l', 'dots', '-r', '3', \ '-n', 'OpenAddresses Dots, Set {}'.format(set_id), '-f', \ '-t', tempfile.gettempdir(), '-o', mbtiles_filename print(' '.join(cmd), file=sys.stderr) tippecanoe = subprocess.Popen(cmd, stdin=subprocess.PIPE, bufsize=1) for run_row in runs: data_path = os.path.join('downloaded', run_row['path']) _, data_ext = os.path.splitext(data_path) if data_ext == '.csv': csv_buff = open(data_path) elif data_ext == '.zip': zip = zipfile.ZipFile(data_path) (csv_name, ) = [name for name in zip.namelist() if os.path.splitext(name)[1] == '.csv'] csv_buff = io.TextIOWrapper(zip.open(csv_name)) for csv_row in csv.DictReader(csv_buff): try: x, y = float(csv_row['LON']), float(csv_row['LAT']) except ValueError: continue else: geometry = dict(type='Point', coordinates=[x, y]) properties = {key.lower(): csv_row.get(key, '') for key in OA_PROPERTIES} properties.update(source_path=run_row['source_path']) feature = dict(type='Feature', geometry=geometry, properties=properties) tippecanoe.stdin.write(json.dumps(feature).encode('utf8')) tippecanoe.stdin.write(b'\n') #break tippecanoe.stdin.close() tippecanoe.wait() #break
01eb492e08352e8b7c503545b15924f421b2b23a
a46d135ba8fd7bd40f0b7d7a96c72be446025719
/packages/python/plotly/plotly/validators/choroplethmapbox/_reversescale.py
50dd2164ab3093d034fb5a3d4f8f4c172e533564
[ "MIT" ]
permissive
hugovk/plotly.py
5e763fe96f225d964c4fcd1dea79dbefa50b4692
cfad7862594b35965c0e000813bd7805e8494a5b
refs/heads/master
2022-05-10T12:17:38.797994
2021-12-21T03:49:19
2021-12-21T03:49:19
234,146,634
0
0
MIT
2020-01-15T18:33:43
2020-01-15T18:33:41
null
UTF-8
Python
false
false
435
py
import _plotly_utils.basevalidators class ReversescaleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="reversescale", parent_name="choroplethmapbox", **kwargs ): super(ReversescaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), **kwargs )
ffa5db07a8c27e2c3241e1df2652096ea125e9a5
fc73e7249e227e5507976bd3825af037fbe6b46b
/legacy/geraldCode.save.py
739942b2397f49a83ea6644f3d89cbc5392f3f20
[ "LicenseRef-scancode-philippe-de-muyter" ]
permissive
mussard/SecondQuantizationAlgebra
32d10d85abae82da343c9b41764802f3f541d551
ee32159e24d510654a6d38df391b544ec9ffeb4a
refs/heads/master
2020-03-17T21:46:28.875095
2019-07-10T17:31:26
2019-07-10T17:31:26
133,974,911
0
0
null
2018-05-18T15:50:13
2018-05-18T15:50:13
null
UTF-8
Python
false
false
29,699
py
import secondQuantizationAlgebra as sqa def replaceindex(tensor, a, b) : for i in range(len(tensor.indices)): if (tensor.indices[i].name == a): tensor.indices[i] = b def replaceAllKdeltaWithDeltas(term, rdmDelta): import string l = list(string.ascii_lowercase) #list of all printables usedIndices = [] for t in term.tensors: for index in t.indices: usedIndices.append(index.name) unUsedList = sorted(list(set(l) - set(usedIndices))) Deltas = [] import copy tensorcopy = copy.deepcopy(term.tensors) removeDelta = [] for t in tensorcopy: if (t.name == "kdelta"): if (t.indices[0].indType[0] == sqa.options.core_type): Deltas.append(rdmDelta[0].copy()) elif (t.indices[0].indType[0] == sqa.options.active_type): Deltas.append(rdmDelta[1].copy()) elif (t.indices[0].indType[0] == sqa.options.virtual_type): Deltas.append(rdmDelta[2].copy()) Deltas[-1].indices[0].name = t.indices[0].name Deltas[-1].indices[1].name = t.indices[1].name removeDelta.append(t) # term.tensors.remove(t) # break for t in removeDelta: # print(t) term.tensors.remove(t) for d in Deltas: # print(d) term.tensors.append(d) # exit(0) return term def replaceSingleKdeltaWithDeltas(term, rdmDelta): import string l = list(string.ascii_lowercase) #list of all printables usedIndices = [] for t in term.tensors: for index in t.indices: usedIndices.append(index.name) unUsedList = sorted(list(set(l) - set(usedIndices))) Deltas = [] import copy tensorcopy = copy.copy(term.tensors) numNonDeltaTensors = 0 for t in tensorcopy: if (t.name != "kdelta"): numNonDeltaTensors += 1 if (numNonDeltaTensors>0): return term for t in tensorcopy: if (t.name == "kdelta"): if (t.indices[0].indType[0] == sqa.options.core_type): Deltas.append(rdmDelta[0].copy()) elif (t.indices[0].indType[0] == sqa.options.active_type): Deltas.append(rdmDelta[1].copy()) elif (t.indices[0].indType[0] == sqa.options.virtual_type): Deltas.append(rdmDelta[2].copy()) Deltas[-1].indices[0].name = t.indices[0].name Deltas[-1].indices[1].name = t.indices[1].name term.tensors.remove(t) break for d in Deltas: term.tensors.append(d) return term def replaceRepeatIndicesWithDeltas(term, rdmDelta): import string l = list(string.ascii_lowercase) #list of all printables usedIndices = [] for t in term.tensors: for index in t.indices: usedIndices.append(index.name) unUsedList = sorted(list(set(l) - set(usedIndices))) Deltas = [] for t in term.tensors: if (t.name == "kdelta"): continue uniques = list(set(t.indices)) numRepeats = len(uniques)*[0] for index in t.indices: numRepeats[ uniques.index(index) ] +=1 for i in range(len(numRepeats)): if (numRepeats[i] > 2): print("more than a double repeat in tensor ", t) exit(0) if (numRepeats[i] == 2): repeatIndex = uniques[i] repeatPositions = [j for j, x in enumerate(t.indices) if x == uniques[i]] if ( len(repeatPositions) != 2): print(uniques[i].name," should occur twice in ", t) exit(0) newName = unUsedList[0] unUsedList.remove(newName) t.indices[ repeatPositions[1] ].name = newName if (t.indices[ repeatPositions[1] ].indType[0] == sqa.options.core_type): Deltas.append(rdmDelta[0].copy()) elif (t.indices[ repeatPositions[1] ].indType[0] == sqa.options.active_type): Deltas.append(rdmDelta[1].copy()) if (t.indices[ repeatPositions[1] ].indType[0] == sqa.options.virtual_type): Deltas.append(rdmDelta[2].copy()) Deltas[-1].indices[0].name = newName Deltas[-1].indices[1].name = uniques[i].name for d in Deltas: term.tensors.append( d) return term def printTensor(tensor, keymap): string = tensor.name +"[" for i in range(len(tensor.indices)): if (keymap.has_key(tensor.indices[i].name)): string += keymap[tensor.indices[i].name]+"," else: string += tensor.indices[i].name+"," string = string[:-1]+"]" return string def printIntTensor(tensor, activeInEinsum = False): string = tensor.name +"[" for i in range(len(tensor.indices)): if (tensor.indices[i].name[0]=="V"): string += "nc:," elif (tensor.indices[i].name[0] == "A"): if (not activeInEinsum): string += tensor.indices[i].name+"+ncore," else: string += "ncore:nc," elif (tensor.indices[i].name[0] == "C"): string += tensor.indices[i].name+"," elif (len(tensor.indices[i].name[0]) == 1): if (len(tensor.indices[i].indType) > 1): print("Something wrong index is a composite of core/active/virtual") exit(0) elif (tensor.indices[i].indType[0] == sqa.options.core_type) : string += ":ncore," elif (tensor.indices[i].indType[0] == sqa.options.active_type) : string += "ncore:nc," elif (tensor.indices[i].indType[0] == sqa.options.virtual_type) : string += "nc:," else : print("index seems to be neither dummy nor defined") exit(0) string = string[:-1]+"]" return string def printETensor(tensor, activeInEinsum = False): string = tensor.name +"[" for i in range(len(tensor.indices)): if (tensor.indices[i].name[0]=="V"): print("RDM cannot have virtual index") exit(0) elif (tensor.indices[i].name[0] == "A"): if (not activeInEinsum): string += tensor.indices[i].name+"," else: string += ":," elif (tensor.indices[i].name[0] == "C"): print("RDM cannot have core index") exit(0) elif (len(tensor.indices[i].name[0]) == 1): if (len(tensor.indices[i].indType) > 1): print("Something wrong index is a composite of core/active/virtual") exit(0) elif (tensor.indices[i].indType[0] == sqa.options.core_type) : print("RDM cannot have core index") exit(0) elif (tensor.indices[i].indType[0] == sqa.options.active_type) : string += ":," elif (tensor.indices[i].indType[0] == sqa.options.virtual_type) : print("RDM cannot have virtual index") exit(0) else : print("index seems to be neither dummy nor defined") exit(0) string = string[:-1]+"]" return string def writeTensors(AllTensors, CommentKey, Domains, Usage,commentE3=False): UsageKey = {"A":"USAGE_Amplitude",\ "R":"USAGE_Residual",\ "H":"USAGE_Hamiltonian",\ "D":"USAGE_Density",\ "I":"USAGE_Intermediate"} i = 0 not_commented=0 outString='' for tensor in AllTensors: if (CommentKey[tensor]=="E3" and commentE3): intro='// /*{:3}*/'.format(i) else: intro=' /*{:3}*/'.format(i) not_commented+=1 outString += intro+'{{"{:8}, "{:10}, "", {:18}}},\n'\ .format(CommentKey[tensor]+'"',\ Domains[i]+'"',\ UsageKey[Usage[i]]) i += 1 outString = " FTensorDecl TensorDecls[%i] = {\n"%(not_commented)\ +outString[:-1]+"\n };\n" print(outString) return not_commented def WriteCodeSimple(result, AllTensors, commentTensor, scale=1.0, commentE3=False): tensorIndexes=[] middleLine =[] tensorNumbers=[] commentLine =[] commented =[] for t in result: commented.append(False) # tensorIndexes tensorIndexStringList = [] for i in range(len(t.tensors)): tensor = t.tensors[i] tensorIndexString = '' for index in range(len(tensor.indices)): if ( len(tensor.indices[index].name) > 1): tensorIndexString += tensor.indices[index].name[-1].capitalize() else : tensorIndexString += tensor.indices[index].name[0] tensorIndexStringList.append(tensorIndexString) #tensor index string of output indexes='' for indexstring in tensorIndexStringList: indexes += indexstring+',' tensorIndexes.append('{"'+indexes[:-1]+'",') # middleLine middleLine.append('{:6}, {:3}, {{'.format(t.numConstant*scale,len(tensorIndexStringList))) # tensorNumbers and commentLine index = 1 indexes='' commentString = ' //{:6} '.format(t.numConstant*scale) for i in range(len(t.tensors)): tensor = t.tensors[i] if ((tensor.name=="E3" and commentE3) or (tensor.name=="int2v")): commented[-1]=True indexes+= '{:2},'.format(AllTensors.index(tensor.name)) commentString += commentTensor[tensor.name]+'['+tensorIndexStringList[index-1]+'] ' index += 1 commentLine.append(commentString) tensorNumbers.append(indexes[:-1]+'}},') width1=len(max(tensorIndexes, key=len)) width2=len(max(tensorNumbers, key=len)) print("\tFEqInfo EqsRes[%i] = {" %(commented.count(False))) for i in range(len(tensorIndexes)): if commented[i]: print('// {:{width1}}{:}{:{width2}}{:}'.format(tensorIndexes[i],middleLine[i],tensorNumbers[i],commentLine[i],width1=width1,width2=width2)) else: print(' {:{width1}}{:}{:{width2}}{:}'.format(tensorIndexes[i],middleLine[i],tensorNumbers[i],commentLine[i],width1=width1,width2=width2)) print("\t};\n") return commented.count(False) def WriteCode(result, tensors): outString = "" for t in result: tensorString = "" ifstatement = "if" tensorcopy = t.tensors dontprint= [] indexKey = {'Va': 'Va', 'Vb' : 'Vb'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Vc" or tensor.indices[0].name == "Vd") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Vc" or tensor.indices[1].name == "Vd") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.name +" == " +tensor.name + " and" if (len(ifstatement) != 2) : outString += ifstatement[:-3]+" : " outString += '\t\t{"CDRS,' for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if ( len(tensor.indices[index].name) > 1): outString += tensor.indices[index].name[-1].capitalize() else : outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Va"][-1].capitalize()+indexKey["Vb"][-1].capitalize()+'PQ", '+str(t.numConstant)+", 4 , {1" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): outString+= " , "+ str(tensors[tensor.name]) outString += ", 0}},\n" print(outString[:-1]+"\n\t};") def WriteCode_ccaa(result, SupressActive, intmapkey, RDMmapkey, activeInEinsum = False): if (SupressActive): for t in result: tensorString = "" ifstatement = "\tif " tensorcopy = t.tensors dontprint= [] indexKey = {'Ap': 'Ap', 'Aq' : 'Aq'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Ar" or tensor.indices[0].name == "As") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Ar" or tensor.indices[1].name == "As") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.indices[0].name +" == " +tensor.indices[1].name + " and " #start by printint the if statement outString = "" if (len(ifstatement) != 4) : outString += ifstatement[:-4]+" : \n\t" #now print(the einsum string) outString += "\tCout += ("+ str(t.numConstant)+ ") *numpy.einsum( '" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if (tensor.name[:3] == "int" and len(tensor.indices[index].name) > 1 and tensor.indices[index].name[0] == "A"): outString += tensor.indices[index].name[-1].capitalize() elif (tensor.name[:1] == "E" and len(tensor.indices[index].name) > 1 and tensor.indices[index].name[0] == "A"): outString += tensor.indices[index].name[-1].capitalize() elif len(tensor.indices[index].name) == 1: outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Ap"][-1].capitalize()+indexKey["Aq"][-1].capitalize()+" -> RS' " for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): if (tensor.name[:3] == "int") : outString+= " , "+ printIntTensor(tensor, activeInEinsum) elif (tensor.name[0] == "E"): outString+= " , "+ printETensor(tensor, activeInEinsum) else: outString+= " , "+ printTensor(tensor, {}) outString += " , Cin)" print(outString) else : for t in result: tensorString = "" ifstatement = "if" tensorcopy = t.tensors dontprint= [] indexKey = {'Va': 'Va', 'Vb' : 'Vb'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Vc" or tensor.indices[0].name == "Vd") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Vc" or tensor.indices[1].name == "Vd") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.name +" == " +tensor.name + " and" outString = "" if (len(ifstatement) != 2) : outString += ifstatement[:-3]+" : " outString += "\t Cout[Vc,Vd,Ar,As] += ("+ str(t.numConstant)+ ") *numpy.einsum( '" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if ( len(tensor.indices[index].name) > 1): outString += tensor.indices[index].name[-1].capitalize() else : outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Va"][-1].capitalize()+indexKey["Vb"][-1].capitalize()+"PQ -> CDRS' " for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): outString+= " , "+ tensor.__str__() outString += " , Cin[" + indexKey["Va"]+ ","+ indexKey["Vb"]+ ",Ap,Aq])" print(outString) def WriteCode_ccav(result, SupressActive, intmapkey, RDMmapkey, activeInEinsum = False): if (SupressActive): for t in result: tensorString = "" ifstatement = "\tif " tensorcopy = t.tensors dontprint= [] indexKey = {'Ap': 'Ap', 'Va' : 'Va'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Aq" or tensor.indices[0].name == "Vb") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Aq" or tensor.indices[1].name == "Vb") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.indices[0].name +" == " +tensor.indices[1].name + " and " #start by printint the if statement outString = "" if (len(ifstatement) != 4) : outString += ifstatement[:-4]+" : \n\t" #now print(the einsum string) outString += "\tCout += ("+ str(t.numConstant)+ ") *numpy.einsum( '" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if (tensor.name[:3] == "int" and len(tensor.indices[index].name) > 1 and (tensor.indices[index].name[0] == "A" or tensor.indices[index].name[0] == "V")): outString += tensor.indices[index].name[-1].capitalize() elif (tensor.name[:1] == "E" and len(tensor.indices[index].name) > 1 and (tensor.indices[index].name[0] == "A" or tensor.indices[index].name[0] == "V")): outString += tensor.indices[index].name[-1].capitalize() elif len(tensor.indices[index].name) == 1: outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Ap"][-1].capitalize()+indexKey["Va"][-1].capitalize()+" -> QB' " for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): if (tensor.name[:3] == "int") : outString+= " , "+ printIntTensor(tensor, True) elif (tensor.name[0] == "E"): outString+= " , "+ printETensor(tensor, True) else: outString+= " , "+ printTensor(tensor, {}) outString += " , Cin)" print(outString) else : for t in result: tensorString = "" ifstatement = "if" tensorcopy = t.tensors dontprint= [] indexKey = {'Va': 'Va', 'Vb' : 'Vb'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Vc" or tensor.indices[0].name == "Vd") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Vc" or tensor.indices[1].name == "Vd") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.name +" == " +tensor.name + " and" outString = "" if (len(ifstatement) != 2) : outString += ifstatement[:-3]+" : " outString += "\t Cout[Vc,Vd,Ar,As] += ("+ str(t.numConstant)+ ") *numpy.einsum( '" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if ( len(tensor.indices[index].name) > 1): outString += tensor.indices[index].name[-1].capitalize() else : outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Va"][-1].capitalize()+indexKey["Vb"][-1].capitalize()+"PQ -> CDRS' " for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): outString+= " , "+ tensor.__str__() outString += " , Cin[" + indexKey["Va"]+ ","+ indexKey["Vb"]+ ",Ap,Aq])" print(outString) def WriteCode_caav(result, SupressActive, intmapkey, RDMmapkey, activeInEinsum = False): if (SupressActive): for t in result: tensorString = "" ifstatement = "\tif " tensorcopy = t.tensors dontprint= [] indexKey = {'Ap': 'Ap', 'Aq' : 'Aq', 'Va' : 'Va'} for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): dontprint.append(i) if (tensor.indices[0].name == "Ar" or tensor.indices[0].name == "As" or tensor.indices[0].name == "Vb") : indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) elif (tensor.indices[1].name == "Ar" or tensor.indices[1].name == "As" or tensor.indices[1].name == "Vb") : indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) else : ifstatement += tensor.indices[0].name +" == " +tensor.indices[1].name + " and " #start by printint the if statement outString = "" if (len(ifstatement) != 4) : outString += ifstatement[:-4]+" : \n\t" #now print(the einsum string) outString += "\tCout += ("+ str(t.numConstant)+ ") *numpy.einsum( '" for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): for index in range(len(tensor.indices)): if (tensor.name[:3] == "int" and len(tensor.indices[index].name) > 1 and (tensor.indices[index].name[0] == "A" or tensor.indices[index].name[0] == "V")): outString += tensor.indices[index].name[-1].capitalize() elif (tensor.name[:1] == "E" and len(tensor.indices[index].name) > 1 and (tensor.indices[index].name[0] == "A" or tensor.indices[index].name[0] == "V")): outString += tensor.indices[index].name[-1].capitalize() elif len(tensor.indices[index].name) == 1: outString += tensor.indices[index].name[0] outString += " ," outString += indexKey["Ap"][-1].capitalize()+indexKey["Aq"][-1].capitalize()+indexKey["Va"][-1].capitalize()+" -> RSB' " for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): if (tensor.name[:3] == "int") : outString+= " , "+ printIntTensor(tensor, True) elif (tensor.name[0] == "E"): outString+= " , "+ printETensor(tensor, True) else: outString+= " , "+ printTensor(tensor, {}) outString += " , Cin)" print(outString) def WriteCode_lcc(result, AllTensors, inputIndices, outIndicesString, commentTensor, inputtensorname="p", outputtensorname="Ap", EquationName="EqsRes", scale=1.0): outString = "" for t in result: tensorString = "" indexKey = {} for index in inputIndices: indexKey[index] = index tensorcopy = t.tensors dontprint= [] for i in range(len(tensorcopy)): tensor = tensorcopy[i] #check the delta function if (tensor.name == "kdelta"): #take the delta functions and if one of the index is in Cin then replace that index with other in all tensors if (tensor.indices[0].name in indexKey): dontprint.append(i) indexKey[tensor.indices[0].name] = tensor.indices[1].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[1].name, tensor.indices[0].name) elif (tensor.indices[1].name in indexKey): dontprint.append(i) indexKey[tensor.indices[1].name] = tensor.indices[0].name for j in range(len(t.tensors)): if (j not in dontprint): replaceindex(t.tensors[j], tensor.indices[0].name, tensor.indices[1].name) tensorIndexStringList = [outIndicesString] #output tensor indices for i in range(len(tensorcopy)): tensor = tensorcopy[i] tensorIndexString = "" if(i not in dontprint): for index in range(len(tensor.indices)): if ( len(tensor.indices[index].name) > 1): tensorIndexString += tensor.indices[index].name[-1].capitalize() else : tensorIndexString += tensor.indices[index].name[0] tensorIndexStringList.append(tensorIndexString) #tensor index string of output inputIndicesString = "" for key in inputIndices: inputIndicesString += indexKey[key][-1].capitalize() if (inputIndicesString != ""): tensorIndexStringList.append(inputIndicesString) #now make the string for the equation commentString = "\t\t//" outString += "\t\t{\"" for indexstring in tensorIndexStringList: outString += indexstring+"," outString = outString[:-1] +"\"," outString +=" "+ str(t.numConstant*scale)+" , "+str(len(tensorIndexStringList))+", {"+str(AllTensors.index(outputtensorname)) commentString += outputtensorname+"["+tensorIndexStringList[0]+"] += "+str(t.numConstant*scale)+" " index = 1 for i in range(len(tensorcopy)): tensor = tensorcopy[i] if(i not in dontprint): outString+= ","+ str(AllTensors.index(tensor.name)) commentString += commentTensor[tensor.name]+"["+tensorIndexStringList[index]+"] " index += 1 commentString += inputtensorname+"["+inputIndicesString+"]" if (inputtensorname != "") : outString += ","+str(AllTensors.index(inputtensorname)) +"}},"+commentString+ "\n" else: outString = outString[:-1]+"}},"+commentString+ "\n" print(outString[:-1])
e748ebb1dc90bf83276047fd9bf39673e39504bb
7d1fd87e1aaf7e6b2ea72ab086a128d03ab059f1
/Python_Web_Udemy/Udemy_REST_APIs/4_FLASK_RESFUL_MYSQLITE/create_table.py
62f58b871ea5f67e59f094c3c47fae03970e0dbb
[]
no_license
efren1990/codepy
05fb34fb608d9921cd5b1c257a9869f2d42eafae
1bd957e7a7285d459ba76e99c4bccb8dbabf8da4
refs/heads/main
2023-06-30T06:31:51.154519
2021-08-13T01:30:57
2021-08-13T01:30:57
395,486,511
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
""" #APLICACION FLASK RESTFUL SQLITE3 ---------------------------------------------------------------- Archivo para crear base de datos y tablas """ # Libreria Sqlite3 -------> import sqlite3 # Conexion -------> connection = sqlite3.connect('data.db') # Cursor -------> cursor = connection.cursor() # Query table -------> # INTEGER- ENTERO AUTOINCREMENTAL EN SQLITE3 create_table = "CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, username text, password text)" # Ejecutar query table users-------> cursor.execute(create_table) # Ejecutar query table items-------> create_table = "CREATE TABLE IF NOT EXISTS items (id INTEGER PRIMARY KEY, name text, price real)" cursor.execute(create_table) cursor.execute("INSERT INTO items VALUES(NULL, 'test', 9.99)") # Commit -------> connection.commit() # Cierre -------> connection.close()
f353297693f93cf1bb526a1b505a7bc7cceb929c
4a5f11b55e23999a82b62f5c72b44e9a36d24f63
/simplemooc/settings.py
16965576ab5e4b9506cda51fa320f5cf46a46247
[]
no_license
diogo-alves/simplemooc
dca62bfcb2ea6357a551a5760778537f083b675c
cfec59f99888e4e23d41f020ff06bfdf39f70203
refs/heads/master
2022-05-10T10:32:18.686313
2019-06-04T19:30:43
2019-06-04T19:30:43
190,260,470
0
0
null
2022-04-22T21:34:44
2019-06-04T18:46:43
Python
UTF-8
Python
false
false
4,739
py
""" Django settings for simplemooc project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import django_heroku from decouple import config from dj_database_url import parse as db_url # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) ADMINS = [('Diogo Alves', '[email protected]')] # Allow host headers for Heroku ALLOWED_HOSTS = ['http://mymooc.herokuapp.com', '127.0.0.1', 'localhost'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'taggit', 'simplemooc.core', 'simplemooc.accounts', 'simplemooc.courses', 'simplemooc.forum', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', # Simplified static file serving. 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'simplemooc.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'simplemooc.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': config( 'DATABASE_URL', default='sqlite:///' + os.path.join(BASE_DIR, 'db.sqlite3'), cast=db_url ) } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' # Extra places for collectstatic to find static files. STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' MEDIA_ROOT = os.path.join(BASE_DIR, 'simplemooc', 'media') MEDIA_URL = '/media/' # E-mails # EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' EMAIL_HOST = config('EMAIL_HOST', default='localhost') EMAIL_HOST_USER = config('EMAIL_HOST_USER', default='') EMAIL_PORT = config('EMAIL_PORT', default=25, cast=int) EMAIL_USE_TLS = config('EMAIL_USE_TLS', default=False, cast=bool) EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD', default='') DEFAULT_FROM_EMAIL = config('DEFAULT_FROM_EMAIL', default='') EMAIL_LINK_DOMAIN = config('EMAIL_LINK_DOMAIN', default='') CONTACT_EMAIL = config('CONTACT_EMAIL', default='') # Auth LOGIN_URL = 'accounts:login' LOGIN_REDIRECT_URL = 'core:home' LOGOUT_URL = 'accounts:logout' AUTH_USER_MODEL = 'accounts.User' PASSWORD_RESET_TIMEOUT_DAYS = 2 # Activate Django-Heroku. django_heroku.settings(locals()) SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')
82ae50b9ae51ccd60366426d9c0ace8f68d0e24f
b719159a9980ef876b6e67131322917796320eb6
/tests/test_package.py
d846944bfda91415c8afc57c8ce9f43cf63fa854
[ "BSD-3-Clause" ]
permissive
rblack42/TikzBuilder
b4c369038c374fca32a0aa24c8366dbdd5d3bbdb
ec69517db422ebda947c6e236c0b9ea597c3a934
refs/heads/master
2020-03-10T15:18:33.651883
2018-04-19T01:24:15
2018-04-19T01:24:15
129,446,030
0
0
null
null
null
null
UTF-8
Python
false
false
118
py
from TikzBuilder.Builder import Builder def test_package(): tb = Builder() assert "version" in tb.version()
cb7f7346fbcbae97170d156650e13081a6403c4e
c8c1c8b3327ae93ceaa671681d5f9eac0933e738
/mrgpylinux/femcalc/meshgrid/iomrg.py
f99b0df5e027c53c26122eaa74a6195950cb345e
[]
no_license
gpspelle/acoustic-pollution
bbb2a6492b3d02d046cb533470affabcacb38409
ad80f1fd582f47ce679748bb6ac93ff3149fd445
refs/heads/master
2022-07-28T06:49:20.493083
2019-11-15T00:27:52
2019-11-15T00:27:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
45,951
py
__pyarmor__(__name__, __file__, b'\x50\x59\x41\x52\x4d\x4f\x52\x00\x00\x03\x06\x00\x33\x0d\x0d\x0a\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00\x96\x2c\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x50\x8c\x64\x26\x42\xd6\x01\x0d\x71\x36\x36\xae\xbf\x7c\xd7\x13\xbc\x29\x13\x84\x8a\x2e\x8a\x0c\x07\x8b\x3d\x9e\x1f\x8f\x32\x6a\x52\x1a\x8f\xe2\x2a\x7b\x53\xa2\x03\x4b\xef\xb0\x7b\xf3\x41\x8d\xf8\x7e\x94\xe3\x1b\xf1\x5f\x04\xe5\xac\x4f\xcd\xa8\x74\xdf\x98\x26\x5e\x9f\x12\x10\x25\x16\xcd\xed\x8c\xbd\xde\xf0\xa6\x8f\x6d\xe2\xb1\x35\xeb\xe2\x25\xb4\xd3\xe1\xb7\x0c\x3c\x99\x64\xb0\xd1\x77\x5f\xde\x3f\x99\x7c\x75\x07\x6f\x72\x10\x16\x2f\x6f\x9f\x38\xc7\x77\xcb\xc6\x2f\x8e\x0e\x9a\x6d\x12\x8f\x68\x8d\x1d\x28\x77\xd6\xe5\x6c\x34\x82\xf6\x66\x05\x47\x07\x34\x78\x74\x2a\x79\x99\xc4\x84\x57\x18\xfe\x19\xab\xb7\x1d\x43\xb0\xb7\x87\x5c\x9d\x08\x99\xb5\xfb\x52\xb1\x22\xf2\x0b\xfd\x6c\xd3\xcf\x8b\x11\x70\x15\x8d\xca\x9c\xfd\xd9\x89\x42\x32\x71\x6c\x54\xa3\x5d\xdb\x2f\xb4\x83\xe5\x55\x9e\x54\xf5\x07\xc3\x9a\x35\x17\xaa\x7c\x87\x9a\x72\xfd\x6d\x56\x1f\x1a\x3c\x0d\xdf\x05\x19\xa4\x15\xd3\x91\xb6\x70\xd2\x0e\x12\x9c\xf1\x1d\x45\xc1\x56\x52\x47\x15\xb1\x5b\xa4\x71\xbd\xbf\x45\x4c\x3e\xe6\x3f\x09\x09\x1f\xa7\x12\xdf\x8c\xbe\xc6\xea\x0d\x83\x75\xb6\x6f\xce\xfa\xd2\x44\x28\x57\xa2\x6c\xe7\x5c\xcc\xcf\x7d\xce\x71\x8a\x01\x88\x8f\x2d\xbe\xc4\x1e\x7b\x98\x18\xcf\xa9\x1f\xff\xa0\x77\x65\x31\x20\x51\xb2\x83\xa9\xb4\x18\xb6\x7b\xb5\x65\xcc\xb6\x66\x55\x40\xaf\x2c\xa7\x39\x8f\xd2\xe7\x48\x86\xe2\xa8\x65\x9f\x38\x43\xbf\xca\xb8\x60\x7b\x3c\x8f\xe1\xe2\x00\x75\x58\xa6\xe6\x1e\xf6\xd1\x11\xdc\x70\xc2\xe3\x12\x6b\xf0\x78\x48\x20\x62\xda\xcf\xe1\xed\x9e\x8a\x49\x93\xd8\x3b\x3b\x94\xf0\xbf\x49\xb4\x4d\xf9\xc0\x3e\xbd\x36\x6a\xa9\xa7\x5f\x6d\xeb\x00\x2d\x97\x49\x4c\x7d\xb3\x73\xc6\xf8\x90\xa4\xa4\xc2\x60\x6a\x2e\x7d\x77\x0d\x9f\xd9\xfb\xff\x70\xcb\x6d\xa9\xe8\x28\xb8\x57\x73\xda\xe8\x98\x50\x6a\x9f\xab\x76\x04\xaf\xd5\x26\x86\xe3\x89\x58\xf8\xe3\xdf\xd8\x49\x88\x5c\xb8\xcc\xb1\x90\x9c\x1e\x78\x57\xa3\x61\x2e\x33\xac\xb1\x4e\x1a\x05\x2a\x7a\x6c\x2d\x9b\xd4\x6e\x4e\xc6\x64\x50\xaa\x71\x64\x65\xc0\xed\x12\x4a\xfc\x3b\x90\x81\xb5\x72\x89\xdc\x41\x8d\x49\xec\x60\x4b\x04\x53\xb2\x4a\xea\xfe\x74\xa4\x1b\x96\xeb\x03\x2b\x0a\xe5\x8e\x5e\xf3\x3b\xc5\xb4\x28\x56\xc0\x68\x13\x72\x72\xa6\xc2\x6d\x2c\x1e\x05\xf6\x72\x64\x8f\xcd\x71\xa3\x11\xe6\xf8\x46\xbe\x0b\x66\x89\xb0\x4d\x5a\x0a\x8b\x1c\xe3\xa4\x63\x2b\x4b\x1a\xe2\x54\x1c\x50\x18\x82\xe8\xbd\xf2\x0e\x2d\xcf\x6f\x6a\xa5\x00\xb5\xad\xe9\x8a\x2a\x84\xd6\x49\x52\xc4\x0c\x36\x04\xd1\x29\xa1\x09\x24\x36\x18\x97\x58\xc2\x3b\xe9\x54\xd2\x25\x23\x59\x40\x14\x4f\xb6\x95\xe7\x8f\x0f\xd0\xfa\x2d\x3a\xc1\x69\x61\xe1\x34\x72\x90\x48\x48\x2b\xe5\x1b\x20\x30\xe7\x7e\x8c\xf1\x9d\x50\x9b\xd0\x7e\xa2\x8f\x9f\x24\x5a\x78\xb6\xf9\x0c\x42\xb7\xc7\x4b\x6b\x9e\x6c\x85\x5a\x6a\xe2\x6b\x74\xf0\x8a\x7a\x1f\xcd\x2a\xfe\x2c\xed\x59\x9d\xd8\xe1\xa6\x11\xe6\x1d\x76\x2f\x24\x3a\xd5\x0a\x0b\x24\xdc\x23\x97\x39\x04\x2e\x34\x83\xbf\x22\xb2\x11\x12\xc1\x58\x28\xfe\xbb\xc8\x79\x6f\x20\xe5\x90\x5d\xdd\xb2\xd7\x73\x3c\x69\xdd\xe4\x7a\xde\x55\xad\xf9\x33\x63\x3a\xda\x72\x1d\xca\x14\xb7\x71\xf7\x27\x8f\x98\xd6\x7f\xee\x06\xaf\x08\x57\xcd\x12\x53\xc7\xd8\x88\xb9\xe3\xf3\xaf\xa0\xe2\xc4\x8f\xfe\xf9\x52\xb1\x23\x57\x09\x71\xb9\xfa\x48\x38\x1a\x22\x4a\xc6\xdd\x22\x70\xce\x94\x34\x16\x9b\x2b\x34\xc2\x98\x36\xb7\x72\x50\xf4\x28\x3f\x00\xa7\x62\x33\x5c\xcf\x68\x98\xed\xf6\xb6\x1f\x1b\xcd\xfb\xe3\xe3\xed\xb6\xfb\x90\x2b\x34\x73\x6f\x10\x36\xc5\x78\x7a\x27\xfc\x44\xe2\x05\xfe\x38\xa1\x32\xe1\x38\x46\x76\x3b\x48\xb4\xb4\x95\xd3\x19\xac\x72\xc8\x18\x54\x3b\xe4\xeb\x70\x24\xcd\xcd\xe0\xfb\x5e\x05\xa0\x13\x1b\xac\x9d\xd6\x6f\x31\x12\x67\xb4\xe6\x68\x8d\x2f\x01\xf1\x27\x5a\xab\xa6\x56\x88\xa7\x79\x34\xb7\x74\x9a\x62\x1a\x4a\xcf\x0b\x32\x99\x7e\x7a\x2d\x66\xe0\x30\xe4\xbc\xae\xee\xa9\xdb\x60\x02\x4c\xca\x92\x21\xd7\xaa\x57\xda\xa4\x23\xd7\x6f\x00\xd8\x4a\x08\x7a\x2c\x79\xe5\x47\x96\x8f\x5e\x6a\x33\xf7\xaf\xca\x47\xee\xff\x8e\x7f\xfe\x64\x8c\xf9\xcb\x22\xf4\x26\x94\xbb\x0b\xa7\x40\x45\x78\x2d\x28\x7e\x9b\x6c\xef\x62\xed\x1b\xcc\xbd\xed\x6e\x82\xd3\x12\x1a\x5c\x22\xec\xbc\x59\x76\xcf\xd7\x69\x0b\x9b\xc9\xbb\xb5\x1f\x11\x14\x4c\xad\x28\x85\xad\xbb\x15\x6b\x34\xa0\x69\xcc\x9c\xc9\x0f\xe3\x06\x0c\x25\xba\x9c\xe8\xab\x00\x12\xf3\x30\x7e\x47\x01\x32\x33\x77\xba\xcf\xbe\xc2\x58\xd9\x60\x58\xbb\x41\x3d\x43\xc0\x4c\x22\x8a\xb7\x22\xab\xeb\xb2\x33\x4b\x14\xd7\x66\x09\x73\x7b\x7f\x95\xda\xd3\xfc\xcb\x0c\xae\x04\x62\x5c\x4f\x79\xf5\xd5\xff\x93\x60\x51\xb7\x99\x26\x39\xc7\xe1\xd9\x0d\x18\xe9\x29\x63\x40\xfd\x75\x8f\x36\xb7\x7b\xae\x97\x39\x69\x39\x84\xbb\x9f\x98\x09\x3b\x5d\xed\x67\xcb\x90\xc6\x4d\xdb\xe4\x02\x95\x75\x38\x7b\x0f\xfc\xd0\x99\xf6\x3e\x3e\xa8\xe2\x6c\x30\xd7\xbc\x1a\xe9\xdb\x4e\x41\x0a\x63\x84\xb8\x52\x5b\x5b\x7a\x6a\x34\xe2\xbc\x42\xe9\x93\x69\x60\x4a\x25\xd6\xfa\xc4\x36\xf7\x2a\x3f\x0c\xdb\x4e\x05\xbd\x5e\x89\xa9\xc1\x2e\xd6\xea\xaf\x19\x8b\xd0\x86\xc3\x7a\x3a\x93\xf1\x72\x20\x85\xb4\x0c\xef\x91\x64\xe8\x47\xad\x3a\xc2\x34\x2b\x09\xae\xf8\xd5\x42\x34\x82\x94\x3e\x06\x41\xa9\x20\x34\xa9\xde\x75\xf1\xd6\x61\x31\x4f\x24\x14\xba\x04\x69\x04\xc1\xd8\xf5\x9c\x83\x1c\xcc\x42\x10\x89\xb5\x07\x16\xb7\x49\xa7\xf1\x78\xab\xe1\x0d\x37\x9a\xca\xaf\xab\xc8\xe1\x46\xb8\x55\x8c\x52\x78\xe7\x87\x5f\x55\x80\xe8\x49\x29\x1c\xd0\x2c\x15\x5c\x03\x32\x6b\x76\x94\xc8\x50\x7d\x95\x90\x43\xa8\x3d\xe3\x9a\xa3\x85\xe9\xae\x9e\x3b\x33\xc4\x21\x05\x57\x46\xb3\x85\x63\xae\xd9\xee\x67\xb6\x49\x13\x81\x9e\x81\x94\xaf\xeb\x32\xb3\x5b\x49\x38\x9d\xad\x4b\x4b\xb1\x15\x61\x4e\x27\x6b\x85\x8b\x67\x8a\x7b\xf6\x27\x6d\x67\x53\xcd\xa4\x85\x02\x2b\xc4\xec\x26\x43\x37\xda\x92\x2c\xef\xbc\x5d\xc7\xc1\x63\x17\x8c\xc4\x3b\x22\x86\x54\x63\x37\xa3\x59\x6f\x7d\xf6\x14\x34\xe0\xd4\xda\x5f\x03\x27\x13\xc8\x60\x86\xb9\xc3\x8f\x3d\x7d\xd6\x51\xfc\x9d\xfa\xf8\xf1\xd1\x59\xf9\xfa\x6c\xc8\x7f\x21\xc0\xc0\x9d\x38\x74\x14\x29\x46\xca\x32\x2f\xfb\x27\x2f\xa8\x27\xcf\xdd\xe7\x4a\x85\xc4\x64\x44\xc0\x47\x87\xba\xcc\xcc\x49\xe7\x1c\x03\x04\xff\x06\x63\x9f\xd7\xf7\xa7\x1f\x08\xd7\x45\x3f\xbd\x71\xf0\xd1\x9b\x4a\x2c\xca\xf1\x23\x34\xf3\xdb\x30\x69\x9f\x81\xf7\xfc\x27\xc6\x76\xfc\x71\x77\x5a\xf5\x28\x0d\xbe\xb9\xc1\x2c\x08\xff\x37\x0a\xb0\xac\x1c\xa9\x78\xa9\xaf\xf5\xa9\x9d\x14\xc0\x81\xdb\x91\xae\xc8\xc5\x6a\xe0\x81\xa4\x2a\xd6\x9b\xb7\xbf\xdb\x9a\x17\x92\x04\xb3\x2b\xf8\xd6\x01\xbf\x53\x68\xe7\x9e\x90\xb9\x43\x60\xef\xa5\xc4\x71\xa4\x11\x61\xf9\x31\x0e\xfb\x6f\xbb\x66\x6f\x40\xd5\x5c\x87\x27\x35\x85\xc0\x86\xf4\xd7\x7d\xc5\x70\x22\xe3\x63\x93\x8d\x95\x79\x82\x3d\x22\x61\xeb\xbf\x36\x11\xec\x30\x2a\x65\x66\x5d\xa9\x9e\xed\x1a\x49\x11\x00\x57\x15\x00\xcc\xdb\x0a\x92\xf3\x98\x94\xc4\x7c\x4c\xc0\xe5\xf1\xe0\x90\xfd\xb9\x31\xcd\x29\x51\x08\x94\x7b\xb8\xa4\x37\xf1\xb5\xaf\xf8\xb1\x10\x2d\x9a\x5c\xdd\xa5\x7d\xfd\x26\xb2\xe3\x29\x1b\xd0\x18\xb0\x4b\x97\x1b\xfb\x23\x07\x4b\x86\x2f\xdb\x8a\xf5\x86\xef\x5f\xfa\x5c\x41\x77\xfe\xc4\xdf\x07\xe3\xb8\x73\xe3\x3e\x53\xf6\x76\x41\x35\x3d\x6d\xf9\x33\x47\xeb\x8c\xe6\xe2\x35\x8d\x46\x16\x2e\xa4\x2f\xd2\xe1\xa6\x44\x85\xbc\x7f\xb8\x63\xd7\x3a\x58\x51\x61\x10\x72\x2b\x6e\xa9\x9f\xb6\xac\xa8\xeb\x10\x4d\x50\x01\x0d\x53\xbc\x6b\x7e\x4c\x94\x95\x9c\x58\x3f\x50\xf5\xba\xba\x01\xc9\x0e\x25\x59\xf5\x1a\x70\xb2\x82\xa5\xe6\x66\xf9\x22\x98\x75\xae\x10\x4c\x7d\x06\x60\x8d\x34\x1b\xfb\x53\x16\xce\xcf\xe0\xd4\xc7\xcd\xbe\x04\x30\x9b\xb1\x47\xcc\xe0\x34\x01\x26\x74\x21\xfe\xda\x91\x6c\xa9\x23\x79\x6e\xda\xe5\xd8\x18\xab\xf0\x39\xd2\x38\x8c\x09\xec\xed\x6b\x43\x52\x3a\x66\x20\xf2\xae\xd2\x19\x48\x42\x53\xc0\x85\x9c\x33\x2e\xf5\x5c\xb5\xfe\x25\x85\x54\xbf\x45\xc0\xde\xa4\x1d\x09\x87\x21\x02\xa8\x5c\x7e\x69\x73\xd7\x94\x76\x94\xbb\x1d\x08\x7b\xe9\xc6\x12\xbd\x1c\x8b\x00\x2e\x1b\x93\xa0\xb0\x71\x48\xb5\x08\x00\x87\x38\x25\xa3\x64\x93\x9b\x23\x34\x00\x07\x91\x0c\x2a\x76\x44\xa4\xb6\xc7\x53\xbd\x11\x52\x7c\x40\x74\xcc\xb4\xeb\x20\x9a\x80\x4c\x6e\x04\xed\x5c\xce\x0c\x37\xd7\xe7\xb0\x3d\xe5\x2d\x90\x47\xab\x4d\x72\x25\x0c\xc4\x5c\xbb\x8e\xbc\xa0\x03\x4f\x0c\xbe\xf2\xc6\x5e\xd9\x4d\x5b\x4a\xc7\xc1\x41\xb2\x70\xfe\xe8\x85\x00\xce\x99\x7b\x62\x08\x42\xbb\xcc\xe4\x50\x7c\xd9\x66\x7d\x93\x0f\xcd\x3d\xef\x00\xc7\x10\xfa\x71\x26\x6e\xa4\x4a\x49\xdb\xc9\x08\xa9\x7c\x66\xc6\x1b\xf0\x6b\xd8\x1c\x55\x09\x3e\x3f\xa2\x4b\x90\xcf\xcf\x10\x3c\x98\x60\x9e\x22\x06\x44\xdc\x17\xa5\x1e\x87\x83\xc1\x50\x10\x98\xf0\xc9\x4f\x63\x92\x66\x08\x67\x05\x87\xf3\x3c\x72\x87\x71\x7e\xd1\x03\x57\xb7\x84\xe6\x69\xa0\x7a\x84\xcf\xca\xe2\x97\x6b\x8b\x2b\x2c\x69\x5d\xac\x4c\x5a\xca\xc7\x0d\xae\xfa\xad\xd6\x3d\x49\x8c\xf2\x10\xc7\xdd\xdb\xd8\xf4\xe0\x91\x20\x6d\x7d\x66\x12\x76\x5d\xce\x87\x3b\x7f\xce\x90\xbf\x61\x2d\x27\xe2\x83\xea\x7c\x34\x91\x69\x37\xa6\x8f\x1a\x15\x62\x94\xf4\x0b\x90\xd9\x9a\x93\xc3\xb1\x51\x5e\x21\xa3\x34\x6a\x38\x5b\xdc\x99\x13\xeb\x2e\x2e\x91\xce\xfe\xc3\xec\x9c\xfd\x1f\x12\xb9\x36\x3a\x19\xaf\x67\x51\xb4\x8b\x7d\xc0\xb9\xc0\xbc\x23\xa7\x95\x98\x5e\xfb\xfc\x79\xcc\x91\xb2\x55\x60\x2d\xc1\x8f\xdb\x87\x7f\xc5\xd5\xe6\x0d\x3b\xc2\x55\xbd\x38\xe6\x9c\x57\xd3\xcf\x66\xf4\xac\x98\x5a\x24\x5c\x3f\x0a\x88\x91\x62\x99\x5d\xd3\xdd\xc8\x55\x02\x7a\x67\xe7\x30\x14\x62\xa7\x38\xb4\xbe\x72\xa5\xd0\x96\x45\xfd\xce\xd9\x0d\xb5\xc1\x06\x60\xfd\x55\x7b\x73\x90\xb0\xd7\x69\xa2\x62\x22\x80\x99\xbb\x96\x75\xee\xc5\x7d\x59\x14\xf5\x61\x15\xf2\x25\x63\x18\x59\x0e\x33\x81\xf3\x24\x47\xe6\x62\x57\x0d\xad\xbd\x51\x17\x11\x68\x29\xfe\x83\xaf\xfc\xe4\x9c\xa2\x7b\xf6\x66\xa8\x0a\x91\x4c\xdb\x9e\x79\xb5\x8e\xe2\x99\xcf\x48\x45\xba\x16\x83\x74\xc6\x59\x97\xe4\x5f\xff\x1c\x97\x5d\x1d\x85\xad\xcc\x2f\x4b\xfc\x0c\x2a\xb8\xff\xa6\xbc\xbe\xac\x19\xb5\x23\xf0\xb3\xab\x51\xa7\x58\xb7\xa6\x2d\x9a\x2e\xbd\xd8\xc3\x20\xa1\x00\xc8\x68\x70\x22\x44\x66\x0e\xac\x9c\xac\x10\xf2\x6a\xae\xe2\xd1\x02\xfd\x16\xfa\x05\xea\x6f\xf7\x64\x75\xfd\x3e\xf9\x00\xdc\x54\xd9\xd9\xfe\x9c\xb7\x62\x22\x77\xea\xf0\x79\x36\x84\x8b\x09\x84\x81\xe6\x7b\x3a\x66\x21\x87\x5d\x95\x90\xac\x84\xc3\x8a\xe8\xaa\x07\x31\x40\xb8\x90\xa8\xff\x51\x01\xd8\xbd\xba\x97\x7b\xcf\x5f\x2a\xa8\x5e\xcb\xfe\xff\x24\xcc\xa0\x58\x42\x8e\xc8\x4a\x42\x52\x62\x8c\x23\x57\x9f\x34\xf3\xc0\xef\x97\x03\x42\x0f\x33\x4a\x71\x0d\x52\x39\x5d\x46\xff\xfb\xf9\x72\xba\x83\xf6\xbc\xb4\xc5\x63\x4e\x48\x68\x2b\x60\xff\x6f\x59\x85\x88\x29\xe7\x77\x40\x01\x72\xcd\x77\x0e\x8a\x31\xdb\x2b\x7b\xa1\x44\x99\x59\x7b\xdd\xe7\x03\xd0\x75\x1f\xff\x73\xf7\x82\x68\x62\xbd\x49\x20\xa5\xe8\xcb\xb1\x03\x25\x04\x73\x26\x01\x54\x2a\x1f\xbe\xa8\x4a\x2a\x86\x8f\xcf\xf6\xc4\x71\x7a\x1f\x73\xca\x77\xbb\x54\xb0\xf1\x8f\x3d\xa4\x4f\xc8\x11\x41\x5b\xef\x8d\xee\x23\x97\xbb\x24\xf9\x9e\xc0\x35\xab\x03\x2c\x3c\xba\xd8\x62\xff\x27\x0c\x45\xf3\x5d\x5d\x05\xcd\xfa\x25\xbb\xdd\xc5\x73\x2d\xda\x35\xfd\xc1\xd4\xc5\x21\x49\xde\xb4\x97\x5c\xb1\x65\xd9\x92\xf4\xfb\x0b\xbd\xc5\x57\x80\x73\x0d\x15\x0a\x78\xda\x82\x16\x77\x4a\xd6\x4a\xd5\x99\xf9\xbb\xce\x86\xf2\x1d\x13\xa6\x59\xa6\x16\x50\xd4\x27\xef\x24\x04\xa0\x26\x74\x01\x45\x37\xb1\xc0\xda\x34\xf3\xca\xf3\x3b\x4e\x91\x50\x98\x82\x46\xdb\x2a\xa4\xec\x1e\x52\xda\xf9\x5d\x7d\xc0\xe0\xe6\x1f\x89\xa8\x66\x51\x83\xd9\x15\x78\x58\x3b\xac\xef\xb1\x11\xed\x3d\x03\xad\xbe\xd3\xb8\x36\xdd\x51\xfa\xf6\xa8\x21\xfe\x1e\xa5\x92\xcd\xfa\x9d\x80\xbe\x78\xa1\x03\x44\x62\x2e\x97\x25\x31\x2e\x8f\xec\xe0\xbe\x55\xc1\xad\x05\xd0\x96\x01\x56\x84\x69\xda\xbe\xf4\xf5\x3f\xb1\x77\xdc\x22\xa8\x81\x05\x2a\x9f\x48\x00\x26\xef\x81\x86\x85\x8f\xc9\xcd\xcf\x0e\xfe\xaa\xee\x93\xf4\x56\xb6\x2b\x12\x5c\x07\xa4\x80\x2d\xdf\x4c\x02\xcc\x1d\xe9\xc9\x2f\x81\xac\xf8\x41\xc6\xa7\xad\xb4\x50\xeb\xbb\x2c\x65\xf3\x75\xef\x64\x3e\xc9\x76\x0e\x82\x99\x9d\x0e\x3c\xcf\x1a\xea\x8b\x2d\x0a\x91\x99\x54\x67\xf1\x5c\x4e\x2c\x3e\xcd\xb4\x57\xf0\xec\x8e\x74\xb0\xe7\x71\x61\x2e\x47\x70\xf4\x04\xbc\x62\x81\x4a\x8d\x05\xe8\x11\xe4\xeb\x5a\x58\xd1\x0d\x20\xc1\x2a\xa1\x1d\xc4\x8f\x1f\xc8\xbd\x80\xda\xb1\xf1\x6f\xce\x9a\xce\x1a\x0b\x65\x54\x47\x41\xb3\xc0\x56\x03\x85\xb2\x16\x9e\x11\xe6\x9d\xe4\x6a\x1d\x93\xeb\x12\xdc\x62\x43\x77\x79\x07\xfb\x12\xaa\x68\x95\x29\x33\x81\xf7\x78\x52\x63\xe0\x0a\x22\xc7\xcf\xd5\xb8\xef\x45\x9f\x6f\xf4\x0e\x3b\xae\x63\x9e\x37\x1a\xb4\x92\x34\x03\x8c\x38\x46\x69\x63\x53\xb6\x00\x17\x5c\x6a\xea\xd6\x2d\xe3\xaa\xcd\x03\x85\xd9\x71\x29\x45\xa7\x60\x40\xa9\xe9\x1e\x2b\x59\xd8\x98\x89\xf9\x60\x8d\xb3\x81\xf9\x5e\x7d\xfc\x28\xab\xe2\x07\x45\x51\x5b\x94\x1c\xcc\xe0\x94\x55\x33\x1b\x0b\x63\x73\xda\x58\x11\x70\x9d\x08\xb9\xc4\x04\xc2\xfa\x47\xbb\x0e\x17\xd4\xcb\x45\x9c\x14\x3b\x4d\xe4\x6d\x7e\x15\xb5\x2b\xa8\xd5\x55\xb1\xe5\x90\x02\x81\x46\x7b\xac\x1d\x60\xc4\xcc\x48\xb6\x8b\xa5\x02\x6d\x9b\x33\x65\xd1\x08\xf6\xc4\x1d\xca\x0e\x36\x3e\x76\x4c\x17\xef\x0c\x83\xe7\x39\x0a\x00\xeb\x8f\x1f\xfe\x02\x8b\xfb\xf3\x7a\x02\x7f\x16\x27\x9a\x51\xdc\x8c\x3f\x22\x27\x00\x0e\x28\x6a\x3b\x8d\xa8\xba\xc0\xfe\x03\x1f\x2e\x84\xe6\x96\x49\x09\x44\xdd\xcb\x9e\x59\x1a\x40\x9d\xc4\xc0\xfb\x6e\x48\x9c\x13\x08\xf9\xab\xd1\xb2\x1d\x57\x14\x70\x5d\xab\x33\xe7\x62\xf0\x8d\x1f\x39\x76\xaf\x71\xd6\x1a\x9b\x35\xd2\xe1\xd0\x38\x1c\x5b\xa7\x44\x5e\x04\x5e\x7e\xa2\x65\x0a\xf5\x4d\x09\x71\xa6\x2a\x38\x25\x7e\xed\x08\x75\xbe\xe9\xbd\x07\x93\x6b\x3c\x37\x37\x89\xf9\xfc\x26\x3a\xb3\xa9\x20\xea\x95\xae\x7d\xf2\x69\xb9\xba\x1a\x7b\x99\x99\x1d\xdd\xc5\xaf\xcc\x89\xe8\x23\xbe\x67\x8d\xc1\xab\x5b\x5f\x11\x2a\x48\x14\x0c\xed\x37\x3b\x3a\xcb\xfd\x77\xbf\xb7\x43\x01\xbf\x62\x39\x7d\x6b\x53\xac\x0c\x63\xac\xb7\x88\x97\x39\x06\x3c\x05\x5a\x40\xd7\x09\x22\xe2\x39\x16\xf6\x61\x81\x31\x05\xe0\xe1\x72\x7f\x91\xac\x7b\x1c\x28\x75\xab\xff\x5e\x65\xc0\xa2\x2c\x8c\x07\xc5\xe0\x1f\xbf\xc1\x6a\x3b\x51\x52\xca\x01\xe7\xb4\x8b\x16\xb7\x90\xc3\x7e\x2a\xeb\x86\x0f\x86\xcc\x94\x16\x58\x6c\xbe\xc3\x0f\xa0\xf6\x2c\x9e\x64\x9a\x0e\x48\x98\xfc\x56\xb9\x30\xa4\x58\x61\x4a\xd0\x9f\xd3\x12\xa6\xbb\xd9\xac\x96\x86\x97\xf5\x2a\x5e\x45\x84\x62\x10\xd8\xe2\xea\x91\x44\x05\x88\x0d\xbb\x5a\xde\xc7\xd4\x28\xe5\x56\xd2\x18\x0a\x2f\x93\xbd\x08\x03\xff\x10\xf5\xc3\x5e\x01\xf1\x82\xd4\x69\xf7\x3c\x54\x4e\x33\x81\x4b\x26\x35\x1c\xaf\x37\xbe\x58\xa9\xea\x01\xca\xc1\x36\x14\xc2\xa8\x0d\xa4\xbd\x82\x11\xba\x0f\x60\xcb\x70\xb2\xff\xa1\x17\x3b\x1f\xd0\xb3\xa1\x62\x51\xa4\xf7\x76\x46\xda\xd1\x16\x93\x2a\xb5\xe7\xea\x16\xef\xeb\x5c\x60\xb6\xe8\x62\x30\x6e\x46\x00\x31\x75\x39\x84\xb4\x5a\x21\xcf\xdd\x5d\x45\x08\xac\x89\xec\xfb\x67\x8b\xc5\xf9\xc3\xde\xba\x00\xc2\xe8\x4f\xfc\x70\xdf\x00\x65\x3f\xe1\xee\xee\xa8\x23\x12\x45\x60\x95\xd6\xe2\x85\x5e\x6c\x8c\xe9\x90\xd4\xaa\xa4\x40\xdd\x65\xe8\x77\xf7\xed\x48\x84\xa5\x67\x03\x57\x9c\x23\x31\x4e\x8a\x85\xdc\x3d\x9e\x2a\x4b\x20\x40\xa6\xa6\xad\xe3\x98\x75\x4b\x82\x4e\x95\x0c\x1f\xa8\x09\x04\x1c\x99\xc0\x36\x16\xcd\x90\xdb\xb1\xf8\x36\xf0\x80\x45\x76\x17\x76\x5a\xea\x44\xa0\xef\xd8\x31\x63\xdc\x5c\x17\x8e\x51\xe2\x36\x64\x2d\xd6\x83\x84\xb2\xd2\xdf\x99\x62\x2e\x25\xea\xa8\xe1\xd5\xd3\xfd\x2f\xf6\xd9\xd8\x37\x70\x56\xc7\x11\x49\x76\x68\xf4\x13\x02\x98\xd5\xe8\x27\x2d\xeb\x83\x7d\x85\x53\xa8\x13\x1a\x72\x2b\x75\xd6\x96\xb0\x47\x4a\x02\xbe\xe9\x42\xa5\x83\x12\x2e\x66\xaf\xc7\x3a\xa2\xf3\xc4\x74\x27\x36\x00\x3f\xfe\xc0\xdd\xc0\x4b\x03\x85\xc7\x60\x91\x7e\x70\xc1\x67\x02\x8b\xfd\x77\x8e\x79\xe5\x9f\x68\x6e\x5f\xa3\xfb\xf5\xd5\x25\x82\x2d\x9b\xef\x9f\x25\x3a\xc9\x77\xc4\x45\x92\x27\x7a\xbd\xc4\x41\xd3\xb1\x0b\x08\x99\xc9\xe9\x7e\x66\x96\xf5\x90\x44\xdd\xb4\x67\x50\xb1\x83\xa7\x28\x64\x1d\x8a\xf8\xd2\x61\x1e\x75\xc9\x6c\xe7\x1a\x81\x01\xb2\x34\x22\x0c\x5c\xb9\xde\x3e\x56\x27\xfc\xf0\xd8\xbb\xeb\x61\x56\x45\xca\x12\x4f\xbb\xb3\x30\x9f\x38\x5b\xd8\xf3\x6c\xbd\x82\xbd\x5a\xd3\xd7\x23\x9c\x0a\x6a\x33\x92\x31\x50\xce\x7f\x1a\xaf\xfa\xb6\x8c\x27\x2f\x25\xb1\xf4\x36\xcd\x68\x1a\x2f\xf7\xf7\xa1\x54\xe4\x68\x32\xb5\xb4\xf1\x78\x1b\x0c\x07\x0d\x56\xb3\x56\xac\x17\xce\xd0\xa3\x72\x1b\x7a\x6d\x69\x06\x0e\xfc\x92\x63\xe9\xb3\xe7\xbf\x32\x21\xe1\x69\xc8\xec\x8a\xbb\x3c\x20\x5c\x1c\xaf\x8e\x6b\x4d\xaa\x6b\x70\xd0\xc0\x6c\x15\x1a\x56\x43\x04\xd6\x1f\xe3\x04\x64\xda\x37\x0c\xd4\x62\x10\x00\x55\xf0\x3a\x9e\xae\xc3\x78\xc2\x2d\x1a\x15\xc5\x90\xe1\x2d\x9e\xa6\x42\x48\x11\x95\xf6\x0a\xc7\xe0\xf9\x91\x4f\x09\xc8\x6b\x95\x36\xba\x7d\x75\x3e\xe7\x87\xcb\xff\xff\x5a\x6c\x18\x73\xbe\x0c\x15\xf6\xc6\x41\x6e\xb1\x24\x00\x66\xb5\x70\xb8\xa4\x03\xe7\xd0\xc6\x2a\x5d\xe7\x37\x78\x37\x03\xa0\x50\xe8\xcd\x5a\xcd\xfa\x42\x5b\x0c\xcc\x0a\xab\x39\x23\xfc\x67\x08\x93\x02\x85\x87\xa9\x90\x5a\x14\x32\x1d\x9e\x8c\xc7\x9b\xeb\x7d\x7b\xa0\x57\x4a\xa7\x7d\xc1\xfd\xde\x81\x65\xc5\x55\xe9\x23\x13\x27\x35\x99\x66\x6d\x06\x62\x20\x8b\x1c\x6a\xc5\x36\xd4\xc0\xc2\x9e\x5c\xec\x56\x97\x79\x5b\x7c\x01\x26\x48\x63\x50\xcd\x0c\x2f\x08\x12\xe5\xcb\x52\xdc\xd2\x9a\xab\x54\x08\xb0\x04\xd8\xf4\x47\xa5\x2a\x4b\xfd\xe5\x7d\xd1\x8b\x42\xe9\x7d\x6d\x50\x21\xb2\xbd\x9c\x7b\x21\x20\x86\x6d\x11\xd1\xe3\x9b\x39\x84\xc5\x59\x8b\x1c\x58\xab\xd8\x32\x30\xfd\x76\x0d\x6c\x99\x92\xc5\x3e\x6c\x5a\xfc\xb4\x32\x0b\xed\x44\x78\x4d\xe8\x66\x26\x72\x49\x5f\x03\x6b\xd8\x3f\x32\xd1\xe4\xec\x48\x38\x00\x4e\x52\x58\x0c\x64\x8d\x21\x5d\xee\xb1\x23\x32\x5c\x8a\x5b\xbb\xbf\x68\x29\x14\x51\xdd\x49\xcc\x96\xe3\x55\x50\x52\x88\x1f\x3a\xb0\x7e\x5a\x73\xa8\x82\x5f\x60\x5e\x69\x94\xfb\xbd\x64\xf6\xa9\x1b\xa9\xcb\x64\xee\x5c\xa1\x54\x11\x42\x27\xbc\x33\xab\x26\xc9\x34\xe8\x23\xef\x21\x3c\x6b\x9c\xf3\x87\x1b\xce\xfb\xb4\x8d\x65\xbe\x5d\x27\x45\xf2\x97\x82\x1c\x04\xd0\x7c\xda\xe5\xb6\x88\x74\xfb\xda\xfe\x47\xec\x6f\xe8\xe2\xbc\xf8\xe3\xc7\xe4\xec\x9d\x4e\xdc\x7d\x88\x16\x00\x02\x5f\x87\x25\x97\x7b\xc2\x69\x83\x7f\x81\xfc\x45\xfc\xd4\xbb\x68\x14\x5e\x05\xca\x5c\x05\xa2\x3a\x00\x3a\xc0\x26\x6b\x26\xeb\xcb\x51\x60\xe3\xca\x17\x51\xa6\xbb\x1d\x69\x07\xa3\x85\xbc\x65\xe7\xe7\x71\x08\xec\x4a\x2e\x54\xe2\x62\xaf\xba\x6b\xe9\xfd\x57\xe0\xe1\xc4\x50\x20\x72\x14\x2d\x19\xa5\x7a\xa7\xfb\x7d\xf9\xee\xd3\x05\xb4\x5c\x19\xf6\xbd\x06\xb9\x3c\x92\x8f\x75\x81\xe7\x11\x37\x72\x36\x2a\x68\xac\x11\xeb\x67\xc6\x07\xe9\x21\xe7\x3b\x74\xeb\x5b\x5a\x1f\xc9\x81\x55\x32\x69\x54\x60\xcb\xc5\x45\x92\x4e\x25\x21\xf8\x7f\xec\xb9\xa9\x8c\xbf\x24\xb7\xb6\x1a\x46\x14\x96\xd4\x99\xc8\xa2\x73\xb6\x9b\xfc\xe0\x14\x9a\xfa\x23\x96\xc8\x49\x89\x25\x30\xfd\xdb\xcf\xce\x30\x44\xb8\x75\xdb\x24\x07\xa7\x2b\xc3\xd1\x74\x6d\xa9\xc1\x6f\x2d\xcf\x74\x11\x5f\xfd\x2f\xfc\x7b\x3e\x37\x4f\x53\x50\xfc\x69\x83\xbd\x4e\xc5\x69\x6c\x91\xc9\x6c\x7b\xca\x2e\x1c\x3f\x70\x1f\x30\x4a\x31\x93\xaa\xb2\x0c\x02\xa0\x69\xd3\x08\x15\xce\x00\x28\x4b\x8e\xea\xfc\x72\xd3\x91\x0c\x19\x1f\x2c\x2a\x06\x4c\xc3\x38\x63\x37\x51\xad\x46\x2c\xc2\x77\xa9\x04\xce\x73\xb8\xbb\x6b\x10\x4e\x70\x1e\x5c\x7f\x3f\xb6\xad\xff\xe1\xa8\xb8\x18\x81\x10\x92\x98\xd4\xe0\x8a\x34\x27\xfd\x1d\x0c\xfa\xa9\xc0\x35\x4a\x1a\x50\xf5\xa1\x3f\x79\xd2\x50\xed\xc3\xa7\xb2\x8c\xc5\x90\xef\x77\xca\xe7\xd7\x98\x90\xdf\x67\x1d\xdf\x64\x2e\xd5\xee\x4b\x36\xf4\xa6\x87\xe9\xf5\x97\xa8\x3f\x96\x98\x08\x65\xa5\x91\x9b\x4e\x7d\x5e\xe6\x46\xf6\x4a\x17\x9e\x0c\x32\xcf\x83\x70\x0c\x8a\x49\xb5\xf2\xec\x0f\x5f\xee\xd4\xee\xae\x00\xd8\xf1\x44\x8a\x6e\xa4\x3f\x9c\xab\x14\x26\xbd\x65\x54\xc2\x34\x3d\xce\x60\xd0\x35\xdb\xe7\xef\x33\xd2\x7d\x94\xad\x7f\x61\x17\x58\xea\x80\x96\x7f\xe9\x5a\x37\x79\x3c\x7a\x68\xf9\xb8\x1d\x09\x79\x73\x56\x6a\x46\x4b\xde\x94\xeb\x10\x2b\x9e\xc4\xcb\xe5\x7d\x5e\x4e\xe9\xc8\x77\x90\x3e\x94\x40\x2b\xb9\xaf\x79\xf1\x33\xda\x82\x8a\x81\x28\x97\xd3\xf6\xff\x64\x44\xe5\x06\x7a\x27\x93\xec\x1c\xec\x71\x0d\xe0\xad\x73\x85\x69\x5b\xdf\x5d\xfb\xc4\xe7\x98\xdf\x03\xe4\xf8\xf2\xfa\xa3\x28\xc9\xf9\x3e\xf8\x79\xb7\x99\x19\x90\x14\x6f\x85\x35\x2f\x0e\x0e\x04\xa7\xc2\xb0\x76\x3b\x68\x86\x52\x44\x1f\x79\xb4\x23\xc0\x4a\x6d\x24\x0b\xf2\x2a\xb7\xf6\x82\xce\x37\x40\x1c\x66\xec\xc0\x27\x56\xd1\xb3\x5c\x72\x05\x5b\x23\xc3\xb1\x38\x53\x60\x1f\x8f\x07\xe3\xa3\xcd\xdd\x75\x6c\xbe\xb1\x16\x58\x5d\x5e\x6e\x9e\x72\xba\x9a\xd8\x3a\x15\xa0\xfb\x71\x24\xd8\xf3\xe4\x0f\x0f\xe4\x3a\x9e\xa0\x7b\x10\x42\x0e\x15\x2a\xe9\xcb\x43\x7a\x78\x66\x8c\xc2\xbb\x87\xa0\xb0\xa9\xc5\x03\x1a\x85\xa5\xf9\xdf\xc0\x35\xef\xcc\xaf\xca\x31\x88\xe8\x2e\x28\xf7\x49\x7b\xcf\x94\xac\xa6\xfd\x77\xa8\x99\x3e\x9c\x94\x71\xca\x46\x79\x22\x33\xca\x2a\x62\xfe\x78\x3d\xea\x89\x5c\x39\xca\x77\xf5\x53\xf2\xd6\xa9\x69\xe2\x66\x28\x35\x27\xf5\x8b\xb8\xc0\x87\x78\x78\x7e\xa8\x62\x04\x6b\x8d\xea\x5e\xbf\xc3\xee\xa0\xbc\xb3\xea\x33\xd5\x14\x5c\xad\xe2\xee\xd7\xeb\xdd\xd9\xe2\xb3\x5d\xcc\x8a\x53\xca\xcd\xd2\xbb\x06\x6b\x27\xdb\x40\xb7\x78\x99\xe2\x95\xfd\xc3\xa3\xba\x62\x46\xcd\xb6\xc3\x03\xa1\xa8\x86\xa7\xa4\xb0\x3a\xa8\xfa\x85\xd5\xfa\x8a\xbc\xe9\x59\xe7\x96\xbe\xbc\xef\xcf\x7e\x44\x51\x7d\x17\xae\xec\x83\x43\x12\xe3\x5e\x08\x95\x15\x74\x11\x37\x08\x0e\x24\x3e\xd0\x81\x86\xb0\xc5\xcd\x74\x60\x44\xbd\x53\x08\xcf\x7f\x30\x81\x9a\x18\xd0\x71\xc5\x6c\x1c\x52\x2e\x66\x3b\x07\x03\xd3\xa5\x75\x3c\xdc\xa8\x88\x9d\x9c\x33\xd1\x04\x09\xe5\x76\x1a\x1b\x74\xf6\x23\x77\x3f\x92\x6f\x86\xd2\x87\xc9\x5d\x68\x38\xd2\x28\xad\x29\x12\xc5\xbb\xa5\xf2\x8b\xc8\x21\x6e\x27\x14\xfc\x0e\x82\xfe\x64\x33\x17\x28\x2d\x20\xc9\xe2\xb8\xa3\x51\xfe\xc0\xc8\xd4\x83\xd4\xb7\x22\xb5\xf6\x50\x9e\x9f\xc9\x48\xe3\x2f\x78\x48\xda\x6c\xf6\xa9\xfc\x5e\x58\xc4\x55\x9a\x53\x13\x5f\xfe\x05\xef\x06\x97\xdc\x79\xb9\x2e\xe0\xdd\x45\x35\x2c\xad\x21\xb8\x43\xe6\x66\x25\x93\x32\x82\xc5\x88\x61\x2c\xbf\x7a\xfc\x16\x36\x2e\x6e\x0e\x6c\x5d\xbd\x42\x3b\x01\x01\x74\xf0\x5d\x43\x30\xec\x4b\x00\x34\xf4\xbf\x0d\x2c\x59\x56\x89\x41\x57\x0a\x1d\xd9\xee\xc5\x33\x87\x15\x8f\xdb\x20\x10\x25\x84\x92\x78\x34\x4c\x41\xa2\xef\x8f\x65\xfd\x69\x77\x87\x19\xfd\xed\xfd\x6c\x91\xfc\xf5\xbe\x9d\xc9\xcd\x9a\x29\xaa\x98\xcd\x94\x5a\xee\x2c\x8d\x05\xc4\x61\xac\x12\xac\x9f\xf1\x68\xc9\x7e\x21\x41\x8c\x4a\xa6\x06\xc1\xfd\x05\xc3\x2a\x26\x07\x0e\x53\x42\xc8\x2d\xfd\x86\xdb\x02\xb2\x88\xd3\x0f\xd7\x40\xf7\xd9\xb8\xf6\x21\xf1\xda\x35\x80\x4e\x16\xe0\x8b\x5c\xe0\xab\x69\xf2\x11\xd6\x79\x40\x43\x7c\x9c\xf4\x2d\x17\x66\x58\x47\xb5\x05\x31\xc9\x02\xe3\x0d\x0e\xcf\x06\xf8\xea\xce\x84\xda\x3c\xcd\x12\x07\xfe\xf6\x56\x22\xa0\x92\x4e\x48\x96\xfd\xc4\xd4\x0d\x00\x5d\x6b\x65\x35\xcb\xa9\x8c\x16\xd0\x65\x30\x12\x85\xbe\x31\xbb\xae\x7a\x9d\x59\x0b\xd8\x10\x79\x96\x1a\x28\x9f\x07\x9f\xcc\x2f\xf4\x1f\x04\x37\x0d\x93\x0c\x7f\x0a\x63\xf2\xad\x9a\x7d\xb0\xe4\x35\x0f\xd8\xe5\xea\x29\x3e\x86\xc4\x38\xc3\x33\x24\x0b\x73\xb7\xf0\x2b\x01\xd1\x6b\xd7\x3a\x23\xb2\x6d\x53\xa2\x33\x88\x9d\xae\xe3\xb4\x7f\x41\xee\x29\xf4\xa7\xff\x66\x81\x86\x7d\xba\x51\x60\x17\x27\x04\x82\xf7\xf1\x39\xca\xb6\x74\xa9\x28\xec\xde\x30\xb6\x25\x2e\xdc\x89\xcc\xd7\xc8\x7b\xe8\x22\x1b\xbb\x1f\xd0\xc2\x8f\xd3\x5e\xdc\x4c\x05\xf9\x83\x9b\xea\x4e\x65\xc5\xf6\xf3\x48\x97\xf8\x7c\x2a\xd4\x82\x4f\x8a\xae\xa9\xad\x3b\x2d\x88\xfc\xd2\x22\x25\xfb\xdc\xcf\xe8\xd0\x49\xd7\xd2\x60\x1c\x63\xc0\xd6\x63\x41\xe4\xf0\x6f\x4b\xe9\xfd\xd0\xcc\x14\x1a\xdf\xc3\x33\x4b\x56\xff\xb2\xea\xff\xc1\xfb\x54\xa9\xbe\xde\x5b\xa9\xec\x91\xf8\xef\x61\x95\xee\x96\x02\x1f\x4d\xa9\x4a\xdc\x49\xb4\xa1\x50\x85\x46\xa5\x55\x69\x42\xdd\x6e\xe6\x93\xb9\xfb\xe6\xa9\xec\xfe\x5a\x5f\xae\xde\x23\x25\xa4\x4e\x1a\x0a\xb4\xe4\x7f\xd9\x65\xa3\x95\x07\x50\xc8\x7e\xc0\xe7\xf4\x7b\x99\x4e\x4f\x58\x8f\x64\x1e\x52\xaa\xb3\xd0\xa9\xcb\xae\x70\x4e\x9e\x1f\x39\xfa\x27\xe4\xe2\x6d\x38\xd9\x28\xbf\x8f\xf8\x59\xbd\xbf\x60\x61\xdd\x50\x53\x48\xd1\x2a\xdd\xb3\x60\xe8\xe2\x7e\x21\x6b\xcc\x9e\xaf\xc0\xf4\x96\x7d\x27\xad\xb1\x10\x0b\x0c\x25\x9d\xc3\x80\xab\x67\x9e\x1b\x0e\x4a\x8b\xdb\x6e\x64\x1a\xb1\x51\x47\xf3\xc7\x7c\x3c\xa9\xc2\x6f\x30\x9d\x82\x8a\x6c\xd5\xf7\x31\x36\x5d\x74\x5f\x63\x84\x5d\x23\xec\xff\x29\xf6\x00\xa1\x39\x65\xb4\x6a\x75\xe0\x95\x90\x61\xd4\xdd\xb7\x16\x23\x6a\xa1\xf5\x7b\x33\x83\x38\x9f\xd0\xa6\x0d\x5c\x03\x62\xe9\xb1\x33\x79\xa2\xae\x7c\xaa\x27\x6f\x11\xfd\xb6\x39\x55\x1d\x76\xcd\x34\x08\xcd\x13\x12\xfd\xc1\xf7\x1b\xf7\x43\x6d\xe4\x50\x27\x2e\x3a\xaa\x95\x0e\x93\x5c\x72\x5c\x6b\xec\x1b\x14\x4b\x14\x63\x29\x07\x4b\x2c\x17\x01\x16\x5e\x6f\x31\xdf\x96\x3f\x9e\x2c\x1c\x7b\x05\xa7\x60\x01\x12\x81\x82\x03\xb8\x95\xac\x23\xd2\x06\x22\x19\x35\x6a\xe6\x5a\x10\x96\x2c\xa5\x72\x29\x15\xcb\x6a\x53\x98\x60\xff\x18\x6c\x2c\x17\x31\xcb\x18\xca\x5c\xd9\x7d\xe4\x83\x79\x15\x1e\x18\xcd\x93\x34\x8c\xf2\x0a\x61\x99\xf3\xe8\x59\x3a\x4f\x39\x9d\x69\x9f\xb7\x05\x51\x44\x53\x4c\x9b\x93\x90\xa5\x4c\x08\x42\xf5\x55\x9e\xcd\x5f\x2e\x3f\x91\xa4\x5e\xd0\x4b\x99\xcf\xe6\xe9\xa2\x74\x2d\x43\x5f\x9b\x31\xa6\xba\x27\x63\x6e\xcb\xfa\x08\x5e\xc5\xdc\x74\x0c\x2d\x10\x2e\x31\x1d\xcb\x27\x9b\xf9\x5e\xab\x44\x8f\x50\xf8\x88\x8f\xc5\xa0\x6c\xfb\x6d\xd3\xa4\x5f\x84\xe3\x1e\x1f\xa8\x0d\x83\x11\x81\xad\x21\x86\xf3\x91\xb2\x0d\xbf\x12\x79\x1f\xe2\x4e\x0b\xe4\x8b\x2e\xaf\x9e\x79\x08\x7f\xb2\xec\x45\xc8\x55\x0a\x1b\xbe\x7d\xdd\x58\x3a\xdf\x71\x59\x18\xea\x6f\xf9\x3e\xc5\xb7\x65\x1f\x02\x46\xfd\x19\xca\xff\x0e\xf6\x00\xd5\xf2\xc3\x64\x5b\x87\x6a\xf5\xe9\x29\x8d\x09\xd6\xdc\x51\x47\x32\x04\xe0\x04\xa6\x40\x95\x0a\x2f\x6f\xb4\xa0\x32\x1f\x58\x35\x52\x80\xbd\xeb\x07\x5f\x37\x1d\x1c\x4d\xab\x29\xe7\x1a\xb1\xfc\xc7\xcf\x33\x69\xac\x06\x37\x81\x84\x79\x63\x53\xd8\x2f\x85\xdd\x03\x7b\xe6\xa0\xde\x29\x83\xf0\xdb\x0b\x92\xfe\xf9\x1c\xf2\x10\x87\x96\xf7\x6f\x22\x65\x5b\xb3\x7d\x69\x7c\x81\x5f\x66\x8c\x53\x8a\xa4\x04\xc4\xc6\xb1\x06\x3e\xa4\x51\xff\xd5\x33\x6d\xf1\x03\x8c\x0a\x0a\xf2\x21\x09\x14\xea\x16\x63\x66\x4a\x16\x53\x08\x03\xd7\xa4\x2c\x01\xf0\x86\x25\xa3\x77\x82\x70\x1d\x7d\x17\x44\xc4\x3b\xd1\x62\x81\xfa\xb0\xcf\xeb\x78\xbb\x04\x26\x34\x97\x62\x5b\x35\x71\xd9\x92\x80\x82\x40\xc3\xf9\x37\xb3\xd7\x8a\x16\xca\xdb\x00\x6c\x26\x2b\xec\x2d\x36\x04\x9e\xc9\xfb\xbc\x87\x3e\xc5\xfc\xa4\x42\x36\xc8\xca\x05\x12\x07\x1a\xf6\xab\x25\x1c\x9a\xb2\xdb\x8c\xb7\xcb\xe8\x72\x29\xf6\x02\x1e\xb2\x6d\xe8\xfe\xde\x2b\x85\x4d\xbf\xa1\x3e\x85\xd2\x06\x73\xa4\x31\xd8\xba\x1a\xda\x7f\x02\x93\xf9\x0f\x94\xcb\x03\xc3\x8c\x50\x30\xd7\x91\x86\x60\x26\xad\x70\xb9\xa1\x2d\xf2\xc3\x26\xfd\xc1\xa1\xbe\x92\xea\x71\xa4\xe5\x85\x37\x64\xf9\x13\x7b\xff\xd5\xdc\x5a\x5b\x58\xf4\x58\x65\x62\x7e\x93\x5e\xda\xe3\x01\xbf\x3e\x09\x1b\xb3\xf3\x98\x96\x56\x4a\xa2\x17\x12\x68\x4e\x56\xbd\xc1\x3d\xa6\x9b\x2f\x2d\x8d\xed\x07\xa7\xb4\x49\x88\xc8\xd9\x29\x0c\x3d\xa5\xb4\x98\xb1\xac\xb2\x25\x02\x11\x2a\x97\x54\x7d\x06\x00\xfa\x15\x1e\x7a\x87\xc9\x8e\x2a\xa1\x74\x28\x69\xf2\xa4\x83\x0b\x7f\x9e\x7d\x72\xe2\x5c\x4b\x9b\x9d\xcb\xb0\xb5\x0d\xf6\x98\x55\xe9\x47\x74\x7d\x41\x22\x55\x53\xf9\x75\xfc\x2c\x2c\xcc\x70\xbf\x19\xf9\x60\x24\xfe\xe5\xd9\xd0\x22\x3c\xb5\x94\xf4\xbc\xfa\x12\xa8\x65\x56\xfe\x46\xef\x63\x05\x9a\x12\xba\x02\x83\x1a\x55\x9c\x1b\x39\x8c\x13\xa3\x8f\xd8\xb7\xb5\x2e\x46\x55\xf6\x46\x1b\xdf\x2b\xeb\xf6\xec\x3f\xcc\x81\xbc\x34\x2b\xc9\x8d\x26\x16\xf3\xce\x09\x21\x38\x10\x5e\xfd\x6a\x5b\xb6\x2b\x2e\x98\x2f\x9f\x3c\x0d\xbb\xee\xb4\x97\x79\x63\xee\xe1\xbb\xc4\x9c\x0b\x6a\x2c\x3a\x2b\x99\x96\x5f\x79\x61\x64\xe2\x02\xef\xd9\x43\x13\x8b\x97\xf4\x3d\x8b\x39\xdd\x60\x2a\xbc\x69\x3a\xd5\x4b\x71\xdb\x49\x82\xf9\x93\x2b\x57\x8a\x60\xa0\xc4\x9c\x0a\x02\xc5\xce\x53\xa7\x7a\x92\x0a\xa3\xa2\xa3\x95\xa6\x44\x00\x86\xa3\x04\x06\xcc\xc5\x63\xcf\x4a\xc2\xc8\x9e\x7d\x3c\x0b\xac\x79\x94\xd5\x6b\xc2\x61\xab\x3e\x32\xb8\x10\x7a\x46\x15\xfc\xc5\xe3\xd5\xe2\x0f\x83\x96\x7e\x0c\xbd\x1d\xc0\x10\x25\x92\x42\xaa\x9e\x41\x41\x1d\xf4\x4a\xaa\x33\xdb\x9e\x17\xd8\xfb\x31\x4f\x98\x3a\x84\xdc\xc9\x78\xd8\xb1\x22\xd6\xc0\x98\xf4\x54\xd0\xa5\x63\xca\xcc\xe8\x0b\x73\x74\x15\xa9\x1c\xb9\xfb\xa6\x66\x2a\x05\x16\x98\x21\xa0\xdd\x28\x4e\x86\x5c\x8b\x9b\xb4\x7d\x96\xa8\x8d\x9b\x2f\x2c\xc3\x07\xd5\xa0\x12\xf6\xe3\x76\x20\x73\x05\xbf\xdf\x40\x2d\x60\x70\xed\x1c\x64\x2a\x52\x5e\xbc\x09\x8b\xcd\x5f\xa1\x13\x62\x7a\xf8\xe4\x06\xdc\xfd\x59\x0e\x27\xf3\x2b\xc0\xfa\x23\xbc\xd7\x44\xab\x42\xf8\x80\xbe\x4c\x9a\x2b\x17\x64\x7d\xfd\x2d\x9b\xb1\x09\x95\xf1\x06\x97\x84\xee\x63\x55\xe0\xb4\x1f\xd7\x69\x89\xde\x0b\x10\xbe\x8b\x3e\xbf\xe7\xbb\x53\xc5\x9e\xae\xc2\x81\x44\x04\x9a\x3f\xd9\x66\xeb\x28\x93\x32\xb3\xa3\x94\x53\xca\x28\xac\x09\xee\xf5\x07\x88\x5c\xe6\x86\x27\xbf\xa4\x4d\x5d\xa4\x2c\x1d\xf2\xf1\x9a\x98\x22\x55\xee\x2f\x17\x07\xb7\xce\x75\xfe\xa0\x7e\x87\x0a\xcf\x39\x71\x9d\xcd\x07\x2c\x57\xaa\xec\x15\x62\xc7\x0e\x69\xf1\xc0\x9b\xd0\x69\x47\x4a\xc1\x14\x0e\x89\xbf\xd3\x35\x25\xf5\x71\x43\x76\xc9\xb2\x50\x7f\x22\xbf\xa0\xdf\x2a\x8e\x89\x46\x70\x4c\x6d\x84\xb5\x51\x17\xc3\x80\x65\x04\xbe\x6c\xe2\x72\x6b\xd2\x20\x5b\x7b\xf3\x28\x37\x9f\x80\x0f\x69\x04\xed\xec\xbf\x4a\x08\x16\xab\x8e\x42\xe9\xc0\xa0\xf3\x00\xdb\x84\xd2\x78\xa6\x31\x0e\x39\x38\x75\x3e\xf2\x75\x84\x7c\x2a\x93\xff\x4c\x24\x72\xf1\x85\x27\xbf\x29\x72\xe6\x08\x4b\xd0\x2f\xb5\x66\x02\x60\x2b\xb4\x71\x26\x3a\xb5\xb3\x98\x40\x5b\x8c\xda\xd3\x03\xa2\xc5\xc2\x1e\x05\xbb\xb8\x35\xc8\xf2\x35\x81\x01\x3e\x1a\x82\x82\x9a\x2d\xe0\x49\x70\x2c\xce\x1f\xd4\x12\x9e\x80\x20\xef\xc0\xed\xc7\x8c\x61\xfc\x1b\x2b\x2d\x95\xf9\x54\x8a\xf8\x36\x9a\xae\xe8\x73\x23\x61\x03\xcd\xa7\x6b\x1a\xfb\x61\x33\xc1\x3a\x3c\x3c\x22\x61\x96\x3c\x1f\x58\xe0\x04\x7d\x98\x85\x0a\x93\x4e\x19\x8f\xcf\x84\xaf\x04\x32\x25\xa0\x5e\xec\x79\xf8\x5a\x2c\x9c\xc0\x28\xda\x75\x77\xbc\x8d\xf1\xa4\x1c\x20\x04\x37\x18\xe9\xa5\x0d\xbe\xa8\x65\xf2\x82\xa5\x38\x38\x18\x67\x22\x20\x58\x1a\x0b\x1e\x3e\x00\x09\x61\x2a\x25\x34\xe6\xa1\x0a\x59\x5b\xa2\x8c\x2b\x90\xde\x28\x32\x98\x34\xe2\x77\x2d\x9e\x80\x85\xeb\x2a\x42\x5d\xcd\xba\xbc\x4b\x7f\x27\x80\x20\xb8\xa4\x8a\xf1\xd4\x07\xc8\xd1\x11\xd4\x6d\x3a\xfa\x9e\x97\x12\xa2\xed\x2f\x43\x0d\x4e\x4b\xa9\x3f\x3d\xea\xd5\x33\xea\xc5\x77\x98\x6c\x12\x5d\x41\x6e\x17\x99\xa8\xe4\x91\x70\x86\x1b\x9f\x16\x1f\x64\x7b\xd0\x5c\x68\xfc\x5b\x0c\x27\xdb\x0a\x11\x09\xfd\x06\x34\x9e\x53\x70\xe6\xf5\x11\xb7\xe5\xf0\xac\x0f\x9c\x99\x2d\x04\xa1\xfa\x61\x89\x27\x58\x26\xfd\xb5\x37\xc6\x7a\x27\x82\xeb\x50\x5b\x10\x7e\x4e\xff\x9c\x3d\xe2\xfc\xb6\x54\xf5\x26\xa2\x0b\x95\xd4\xef\xc4\xe6\x69\x72\x4b\x22\x27\x1d\x94\x84\x8d\xa2\x70\x5f\x29\x4c\x17\xae\x70\x28\xc5\x18\x05\xbd\x91\x57\x46\x46\xde\x88\xc5\xcd\x1e\x42\x5a\xb8\xcf\x63\x11\xf1\x02\xf3\x77\x49\x9c\x60\x49\xf8\xfd\x54\x8c\xc0\x54\x2f\xc2\x2d\x07\x42\xd4\x23\x6c\x30\x80\x69\xa9\x7f\xf5\x9a\xac\x07\xc8\xdf\xa4\x45\xe4\x02\x2b\x14\x4b\xff\x91\xb7\x06\xb2\xca\x75\x5a\xf6\x97\x3c\x03\x14\x26\x62\xaa\x48\x93\x6f\x82\xdc\xc3\xc2\x15\x7b\xa0\x50\x5b\x9b\x87\x90\x57\x6e\xd0\x9e\xc3\xec\x6e\x9a\x59\xc9\x83\x50\xc0\x8d\x65\xee\xc9\x79\x37\x86\x6f\x3a\x80\xb5\xd9\x6d\x9b\xb1\xc3\x83\x05\xae\x11\x6b\xfb\x62\xb1\x38\x22\x71\x4e\x99\xbc\x85\x47\x7f\xbc\x0e\x9d\x0a\x41\x61\x68\xdb\x64\xb7\x13\x14\xcf\x36\xf4\x9a\xd2\x01\x6d\x2d\xaa\x38\x14\xa4\x90\xd0\xe0\xa7\xf0\xf7\xb0\xd4\xc8\x2e\x9c\x27\x8c\xe4\x94\x05\x01\xb2\x3a\xb3\xd1\x34\x69\xd0\x95\xd9\x56\x66\x03\x25\xde\x79\xbc\xe9\x9c\x70\x84\x61\x24\x43\x50\xa0\xfc\x36\x93\xa2\x4f\x09\xc0\x4f\x95\x25\x62\xd4\xef\x76\xd0\xa7\xda\x22\x73\x24\xde\x5f\xdf\xcd\x02\xc0\x6c\x6d\x39\x55\x6f\xdc\x6e\x5f\x60\x6f\x55\x0a\xf8\xd1\x48\x74\xcc\x4d\xd2\x48\xd7\x61\x2d\x41\x0a\x8a\x86\x64\x8f\xb7\x13\x76\xfd\xb1\x0e\xd8\x7d\x41\xaf\x27\x51\x51\x80\x86\x27\x71\x57\xcc\xb7\x57\x3d\x09\xaa\xaf\x2d\xcf\x50\xdd\x61\xa2\xc0\x54\x50\x8d\x32\x57\x69\x5e\x07\x31\x8f\xef\xc4\x66\xda\x60\x96\x23\x27\x64\x3b\xd6\xa7\x4d\x1f\xf9\x6a\x82\xb0\x74\x56\xf4\x7d\x26\x9c\x42\x61\x00\x01\x0e\x06\xa7\x82\x25\xd8\x3c\x4e\xa7\x11\x22\xc3\xed\x06\x2c\x83\x86\x14\x95\xbf\x2e\x5e\x17\x7b\xe9\xa2\xbb\x2e\x0a\xd8\x40\x55\x88\x25\x90\xb2\x48\xc9\x5e\x7e\x2e\x0e\x7d\xcd\x7c\x7c\x35\x60\x7b\xc1\x55\x4b\xbc\xbb\x06\xda\x82\x0f\xdb\x3e\xd7\xf3\xce\x71\xa9\x35\x64\xa3\x9a\x5b\x28\xfa\xd8\x34\x12\x2a\xc0\xf2\x87\x27\x8c\xd5\x70\x49\x70\x79\x67\x53\x03\x8c\x7c\x78\xfb\x6b\xfa\x6c\x43\xd0\xa3\x72\x77\xd5\xc9\xca\x07\xea\x2a\x17\x6c\x86\xec\x29\xe5\x1c\x19\xe8\xe6\xa2\x59\xfd\xe7\xde\x9b\xd0\x76\xeb\x0b\x74\xcc\x84\x66\xcf\x58\x35\x1e\x98\xfc\x9a\x97\xb3\x7d\x86\xe2\x88\xb7\x99\x6a\x70\x97\x97\xf4\xe7\x48\x1f\xea\x07\x9f\xdc\x08\x32\x6e\xdb\xa2\xbf\x25\xec\x05\x08\x71\xe0\x0d\x1e\xda\x9d\xe7\x0a\x2d\xa3\xd3\x82\xfd\x28\xd3\xec\xb2\x4a\xf7\x6e\xe9\xe1\xb1\xa6\x4a\x63\xb9\x82\x81\xf9\x92\x88\x8d\x5f\x1d\xaa\x2a\x7f\x82\x4a\xf4\x67\xc0\xea\x3f\x49\x7c\xdc\x26\xf1\x43\x5e\x93\x40\x2b\xd3\xe4\x75\x57\x73\x8d\x58\x7f\x2f\xdb\x78\x8d\xf3\x33\x47\x45\x24\x22\x06\x49\x91\xba\xbf\xd5\x5a\x37\xfc\x36\x32\xe3\xba\x00\xa8\xaa\xef\x6a\x46\x00\x3b\x31\x95\xfe\xfe\xe3\x03\x1c\xb5\xa8\x17\xd2\x6b\x07\x69\x64\x44\x3f\x59\x48\xdc\xab\x4d\xe4\x7a\x73\x89\xf2\x35\x9e\x16\xa8\xe9\x8c\x9b\x8c\xc9\xdc\x42\x0f\x17\x96\x83\x8b\x7c\x78\x5a\x6a\x77\x56\xd8\x3a\x62\x15\x8d\x25\x66\xa3\x9b\x6a\x15\x9c\x3b\x27\x15\xb2\xe3\x90\xca\xf0\x9e\x49\x6a\xd3\xe7\x10\x90\x2d\x45\xaa\xe9\xe0\x72\x79\xcc\xd2\x25\xab\x62\xf7\xc9\xa9\x58\xeb\x40\x6d\x5f\x93\x2a\xb3\x7e\x40\x42\x21\x73\x70\x65\x6a\x7d\x6b\x7c\x66\x29\xf1\x26\x11\x77\x2a\x62\xa4\x50\xdf\x45\xa0\xc9\xad\x24\x21\xcf\x37\x6c\x29\xbc\xc8\x6f\x3a\xd2\x89\x9e\x32\x3d\x58\x68\xfc\x83\x4f\xb9\x49\xad\x57\x95\xd2\xb5\x0b\x23\x63\xe4\xd6\x35\x95\x91\xa6\x21\xb0\xdf\x9b\x19\x62\x1d\xce\x57\xa1\xfe\xac\x04\x00\x9d\x9a\x25\x58\x4d\x7f\x7e\x1d\x0f\x67\x04\x97\x8c\x62\x0e\x20\x7c\x64\x01\x1c\x6f\x9a\x5b\xe0\x33\xd3\xb0\x78\x60\x19\x9b\x38\x09\x4f\x17\x8a\x0d\xa9\xc2\x5e\xea\x45\x87\x66\x35\x61\xff\x28\x68\x84\x3a\x75\x65\xa9\xb3\x57\x85\xad\x3b\x78\x31\x09\x50\x57\xd7\xe6\x19\x6f\xc7\xfe\xbd\xee\x4c\x1a\x44\x5f\x77\x9a\x6b\x10\x0a\x47\x9b\x00\x9b\x49\x47\x2c\x68\xa4\xde\x30\xef\xd6\xc3\xa6\xbd\xa4\x53\x7f\xed\x7f\x1c\x5d\x6f\x8f\xb6\x7e\x22\x9f\xd1\xed\x1b\x71\xf5\xa2\xf3\xf4\x8e\xcc\xd0\x79\xef\x03\x40\x18\xfc\xe7\x56\x6a\xfd\x2c\x80\xf5\x94\x19\x5a\xa1\x6b\xeb\x82\xf3\x14\x6b\xf3\x2c\xe8\x99\x88\x4d\x78\xb8\x17\x67\xfd\x1d\x90\xb1\xe0\xc0\xf2\x45\x1a\x48\x3e\xdf\xf7\xd1\x2a\x1a\xff\xe8\x7e\x26\xba\x3b\x76\xa1\xd1\xba\xb2\x67\xfa\x1e\x33\x25\xcd\x86\x92\x92\x17\xc7\x5f\xb5\x79\x63\xc7\x66\x99\x4d\xc5\xca\xd5\x01\x55\x2e\x04\xf9\x0c\x77\x8a\xa8\xcd\x42\xa6\xf8\xe8\x02\x48\x1a\x20\xec\x99\x85\xce\x92\x84\x3e\x7a\x04\xb4\xb7\xfc\x81\xf3\x2f\x72\xf4\x1d\x86\x3f\x9a\xa6\x6a\x3a\x56\xd9\x81\x90\x72\x8f\xa5\xbc\xe8\x66\xa1\x39\xf7\x8c\x9b\xcf\xc8\x17\xe2\x6c\xee\x87\x20\xa1\x48\xe8\x1c\xb1\x0d\xe0\xf9\xf4\x72\xe6\xcb\xad\x42\x57\x90\xd1\x18\xd6\xf8\xa8\x0e\x5a\xbf\x9e\xd0\x61\xab\x0d\x95\xa4\xb3\x0f\x2d\xdb\x00\xa6\x5d\xa8\x75\x76\x62\x04\xd9\xcd\xac\xe2\x90\x2b\x2a\xa7\x3d\x12\x80\x42\x95\x08\x72\x3c\xc6\x39\x60\xa2\x34\x06\xfc\xcd\xec\x5d\x28\x67\x74\x02\x16\x77\xa8\x51\x2e\xc5\x32\x85\xf6\x6b\x1a\xa3\xe9\x01\x53\x92\x3c\xd9\x66\x49\x66\x58\x07\x2d\x40\xac\x40\xd1\x42\x64\xe8\xb0\x6b\x08\xec\x7a\x46\x03\x2f\xee\x96\x34\xc0\x3a\x9a\xd6\xab\xb8\x2e\x7d\x4a\x92\xdf\x13\xee\x96\xb2\xaa\x60\x93\x42\x69\x37\x02\x6f\x49\x12\x20\x6e\xfd\xe8\x71\x28\x55\xfa\xc7\x2b\x04\x5e\x44\xdf\x69\x36\xf4\xf8\x39\x3b\xa2\x9c\x02\x47\x24\x05\x79\x09\x40\x57\x2f\x38\x03\xeb\xeb\xaa\xb0\x18\x5f\x85\x75\x91\x1e\x76\x4b\x5d\x74\xb2\x49\xb4\xf3\x65\x2e\x42\x7b\xc1\xa8\x14\x72\x1e\xdc\x86\x87\x29\x2b\x65\x06\xb5\x0d\x6a\x2c\x07\xf5\xba\x23\x32\x60\xb5\xf6\x21\x43\x7c\xca\xb0\x8a\x82\x56\x86\xd8\x83\xf3\xbc\xd5\x10\xa0\xf2\xf0\xef\xa7\x63\xc3\xaf\x5e\x8f\x8d\x03\xc0\x5b\x14\x79\x0e\xcc\xef\xe1\x2c\x06\x9c\xd1\xe3\xfc\x0e\x98\x5d\x1e\x31\xd4\x6c\x1d\xa4\xe5\x05\x35\x4c\x0e\xf7\x15\x3c\x3d\x72\x78\xad\xb1\xd2\x40\xcc\x7f\xb8\xd8\x45\x65\x32\x49\xc9\x69\x2f\xc7\x4b\x2d\x30\xdf\x88\xbb\x7b\x20\xa0\x2c\xa4\x05\x28\xdf\x8d\xb7\x4c\xed\x3d\x6f\x74\x5b\xc2\x14\x5a\x78\x08\x82\x2e\xae\x10\x45\xf4\x03\xba\xf9\x41\x43\xa8\xee\x50\xa9\x56\x35\x86\xc5\xf7\x65\x8a\xf8\xe4\x0c\x6b\x11\x29\x6b\xe3\xc6\x81\x4e\x4d\x9a\xbc\x0e\x3c\xd7\x44\xfc\x5c\x86\x36\xb6\xdc\x40\x6b\xf9\x4f\x3e\xc1\xee\xef\xe7\x57\x68\x1a\xa1\xc8\x8f\xec\xe1\xe9\xd1\xa8\xf9\xbb\x67\xfd\x0f\xf1\x20\xcf\x98\xe8\x5f\x2d\x89\xf1\x1e\x99\xe8\x2d\x54\x88\x04\x71\x09\xda\xfb\xdc\x10\xb4\xd6\x0c\x11\xc3\xf0\x67\x85\xfb\x0b\x35\x82\xad\xc5\x8d\xcf\xfe\xfd\xb8\x77\xba\x8e\x3a\x5e\x71\x49\x96\xe2\xc4\x1e\xc7\xd1\xa6\x9e\xa4\xe1\xbc\xd9\xd1\x98\x5e\xbe\xd0\x20\x4c\x0a\x0c\xde\x77\x68\xe1\x0e\xa2\x10\xfd\xfc\x5e\x83\x20\x20\x5d\x1f\x3c\xca\x9b\xd1\x05\x9a\xe1\x83\x0c\x1e\x69\x94\x19\xf9\x41\x5f\xed\xc0\xef\xcc\xb6\x12\xf2\x4b\xd1\xca\xb4\xbc\xf3\xec\x20\xca\x6e\x54\x07\x2a\xdd\x7e\xdf\x57\xf2\xaa\xb7\xb9\xff\x3f\xc3\x7e\xbc\xed\x59\xb3\xf5\x8a\xcf\x77\x25\x41\xc2\x69\xe8\x8e\x8d\xf7\x26\xe0\xa2\xed\x2f\x3b\x7b\x0c\xd2\x6c\x7a\xa2\x8f\x38\xbf\x2c\xfb\xa9\x9c\x49\x00\x13\xf3\xe5\x75\x75\x74\x7c\xd4\x08\xd3\xa6\x24\x89\x57\x12\x5b\x8d\x21\xd3\x20\x54\xe2\x55\x6c\x63\x7c\xa2\xc1\xdc\xed\x88\x34\x43\x14\x9d\xb4\xeb\xff\xff\x2f\x1b\x20\x31\x77\x0c\x9c\xd6\x09\xdd\x8e\xc1\x44\xcf\xef\x89\x94\xcf\x03\x03\xe7\x0e\x7a\x9c\x10\x2a\x84\x6a\x6c\x26\x14\xe2\xa0\x8c\x95\x0c\xee\xea\x35\xc9\x53\xf4\xc9\x07\x55\xaa\xa6\x87\xa4\x7e\x42\xe2\xfd\xcc\xbd\x84\x74\xf3\x48\x92\xf0\x26\xd6\x01\x8b\xf2\x77\xaa\xd6\x36\xb2\xbb\x36\x43\xa3\xfa\xaf\x01\x09\xbc\xd6\x0e\x20\xb0\x51\xd2\x9d\x6f\x0a\x41\xfe\x36\xb8\x22\xcf\x29\x9b\x7d\xc6\xbf\xc8\x61\x46\xbd\xc9\x11\x8a\xe8\x73\xce\x4c\x9b\xd2\xc2\x4b\x5a\x24\x38\x32\x92\x1b\x04\x31\xa4\xa0\x6a\x24\xfa\x92\x12\x89\xca\x45\x79\x8f\x40\x18\x47\xe1\x93\x20\xa3\x4f\xa4\xed\xe7\x4e\x2b\xc9\xf2\x2a\xe7\x5e\xce\x1e\x17\x65\x9c\x6e\x09\x49\x1a\x30\xf3\x55\xf0\x73\xfc\xf7\x6b\x46\x5f\xbd\x67\x66\x80\x9d\xb1\x70\x0f\x6e\x64\x9b\xe3\x17\x86\x57\x12\xb5\xb4\x68\x90\xc2\xe9\x11\x33\xd6\x9f\xd6\x12\xa5\x42\xab\xfb\x33\xf7\x37\x16\x9f\xd8\x78\x24\x6a\x9e\x3a\xab\xf3\x92\xdb\x34\x3b\x48\x17\xa9\x9d\xcf\xda\x9d\x6c\xe4\xba\x2f\x23\xd0\x23\x2c\x1c\x1b\xde\x8c\x96\x27\x6f\x04\x9b\xa0\x4a\xb4\x08\x12\x29\x4e\xc9\x98\x1a\x68\x3c\xed\x5a\xb1\x87\x7f\x6f\x60\x73\x39\xaa\xb7\x5e\x35\x90\x24\xb5\x74\x8f\x03\xb4\xee\x87\xdf\xc7\x67\xc1\x71\xa1\x47\x25\x76\x09\x0e\x29\x1f\x04\x2b\xae\xa3\x02\x24\x79\x2f\x33\x50\x0d\xc5\xd1\x47\x33\x58\xf8\xc4\xd6\x81\x9b\x84\x3e\x91\xd9\xa3\x98\xf6\x88\x63\xb3\x96\xe8\x3d\xd4\xe1\x62\x7d\x1c\x3b\xce\xc4\x91\xaa\x95\x73\x9b\xfc\x74\x53\xea\x23\x84\xe0\x82\x62\xd3\xa8\x93\x09\xbe\x1c\xbd\xd5\xb1\xcc\xcb\xa7\x36\x3f\x46\xad\x7f\xc1\x08\xa0\x91\xbc\x32\x5c\xf5\xba\xe1\x3f\xde\x8a\xaa\x51\x67\x6a\x60\x13\x8b\x11\x82\xdd\x16\x0b\x8c\x0a\xc2\x45\xc3\x5a\x73\x3a\xff\x1b\xe4\xba\x50\x88\xce\xd0\xf7\x3b\x3d\x55\xc9\x84\x2c\x77\xcf\xd4\xa0\x98\x39\x1b\xcf\x83\xc8\xbb\x47\x0c\x74\x77\xec\xde\x40\xa8\xe0\x1d\xf0\xda\xaa\x00\x18\x3c\x36\xce\xb7\x10\x10\xdf\xce\x8f\xd8\x3a\x3c\x7e\x67\x81\x29\x12\xf2\x15\x44\x67\x07\xda\xff\xee\x44\xe0\x0b\xf8\x12\xe2\xbb\x15\xe2\x2f\xb8\xb7\x9f\x2e\xb5\xa6\xe5\x4f\x87\x9b\x78\x33\xe2\x89\x65\x9e\x07\x51\xf8\x7b\x5e\x7b\xd3\xd2\x79\xc1\x7b\x6f\x40\x49\x94\x6a\x7c\x23\x16\x63\x1d\x42\x80\xd4\x0d\xdf\x1d\x94\x4f\xbd\x35\xce\x7b\x16\xf0\x9b\x2e\xab\xc1\x70\xb9\xdf\xa4\xc7\xf4\xd5\xa3\xc2\xf7\xc5\xed\x64\xfb\xbb\xfd\xec\x37\x7c\x2a\x66\x04\xbd\x6c\xec\xab\x18\xdf\x36\x42\x4e\x1f\x76\xd0\xd6\x10\x1c\xd6\x2d\x75\x26\x10\x9e\x3f\xe0\xe4\x14\xd5\x62\xbf\x5b\x0a\xcc\x1b\xd0\x85\x7a\xfa\x65\xa9\x8e\x57\xc9\x5f\xd8\xd9\x6a\xfc\xfe\xe5\x28\x9f\x67\x38\x5e\x2c\xeb\x5e\x4b\x60\x17\x03\x3e\x60\x04\x4c\x54\xac\x3b\x7f\xed\xf2\x85\xd5\xac\x4e\x82\x86\xbe\xd1\xe3\x28\x56\xd7\x51\xe3\x5e\x0d\x89\x59\xc2\x69\x2f\xca\x23\xa7\x58\x56\xaf\x63\x54\x31\x36\x53\x33\x8a\xfa\xd7\xae\xad\x5a\x06\x16\xa9\x0c\xba\x6d\xc1\x77\x2c\xf1\x57\xff\xe4\xa9\xb5\xa2\x84\x96\x94\x27\x70\x82\xaa\x52\x2e\xb2\x36\xa5\x70\xd1\xc4\x4a\x5d\xd6\xa3\xc6\x72\x2e\x49\x0d\xb5\x8f\xce\xaf\x4e\x16\xa3\x0b\x7a\x70\xd0\x40\x04\xe8\xc7\x6e\xb4\x69\x24\x83\xea\xe9\x0d\xe9\x2f\x8d\x2a\x01\x93\x26\xf8\x19\x3a\x2b\x82\xa8\xdb\xa6\x70\x07\xf7\x9e\xbf\xe7\x1c\xaa\xa9\xb8\xbc\x61\x6e\x41\x3e\x29\x69\x10\xe8\x6f\x9b\xbb\x74\x6a\x1e\xd9\x22\xc0\xcb\xa3\x77\x09\xa0\x3d\xc5\xf9\xc9\xfa\x01\xa4\xc1\x26\x2a\x66\xe3\x27\x93\xa6\x8f\xb6\x32\x28\xd2\x8b\x63\xb0\x23\x4b\x4f\xdf\xa9\xdf\x92\x3b\xec\x8e\x93\x8f\x52\x4e\xf1\x4d\x5e\xa9\x21\xb3\x04\xa2\x04\xca\x22\x35\xf3\xc2\xab\xca\x86\xfc\x2f\xa7\xfe\x9e\x81\x9e\x83\x61\xd4\xba\xae\xb6\x2e\x48\xca\x52\xf9\xd3\x80\xd7\x5a\x81\x5a\x60\xc0\xb1\xfa\x9d\xba\xfe\x14\x2f\x95\xf9\x3a\xa2\x86\xa0\x15\x66\x8c\x3b\xf4\xa1\x78\x5f\x8d\x70\xe9\x77\x25\x60\xcf\x9a\x82\xe3\x1b\x2e\xb4\xc2\xb8\xa8\x38\xf3\xe7\xbb\xe0\x65\x43\x98\xa4\xb3\x9a\x57\x88\x2e\x6f\x4e\x19\xa9\xd1\xa0\xd3\x19\x36\x8b\xf5\xbc\x88\x3d\xef\x44\xf0\x26\x44\x2c\xfd\x97\x82\x55\x48\x9e\x61\xf5\xea\xe8\x0d\x34\xc1\x5c\xa8\x8f\x24\x68\xa0\xd3\x4a\xc9\xe9\xf2\xf8\x68\x1c\x5a\x8f\x79\x4f\x73\x26\x2b\xb6\x5d\x5b\x8a\x31\x78\x67\x65\xe1\xb6\x07\x32\x84\x9e\xe1\xb9\x89\x66\xa2\x1d\x7a\xc7\xa1\xbe\xea\xf0\x02\x2d\x54\x38\x71\xa4\x77\x84\x28\x35\xfd\x30\x6f\x94\x45\x15\xff\x25\xe2\xa1\x0f\x6f\x60\x02\x09\x26\x1d\xce\x15\x64\xc5\x9e\x6c\xa1\x39\x45\xa2\xe5\xa8\x7e\x09\x2a\x76\x8c\xdc\xd6\x9e\x9a\xd4\xfa\xc2\xd8\x17\xa3\xf6\xb7\x2d\x8b\xb5\x1f\x81\x3f\x11\x4f\x39\x5f\xfb\x98\xf6\xc2\x0f\x43\x1d\x5e\xb4\x4c\xd6\x85\x00\xd4\x79\xde\xa9\xe5\x93\x1a\x84\x2f\x13\x9a\xde\xc7\xb7\x75\x99\xa5\xbb\xba\x7c\x3a\x9c\x8f\xa3\x41\x83\xc0\x1a\x15\xe7\xda\xc2\xd4\x52\x86\x68\x83\xcf\x39\x66\x00\x90\x46\x4b\x68\x11\xd0\xeb\x97\xe5\xff\xb8\x5d\x3a\x7a\x97\x43\x0d\xd1\x5b\x3a\x28\xab\x4d\xb4\x81\xc1\x41\x97\xc9\x43\xe1\xa0\x85\x71\x00\x4e\x3a\x09\xb6\x7f\x5e\x44\x09\xc0\x1d\x66\xae\xd2\x66\xe6\x13\x9d\x01\x6a\x6b\xf6\x09\x44\xd4\xec\xb2\xf1\x97\xb8\xf3\x93\x27\xf8\x21\x5a\x5a\x04\x34\x82\x6a\x7d\x45\x4e\x5a\xbe\x67\x04\x77\xc2\x77\x96\xdd\xec\x9a\x8c\x90\x13\x54\x82\x29\xe1\xbe\x7a\x4a\x6d\xf3\xa7\xa2\x96\xa5\x70\xef\x76\xdb\x47\x8f\x5c\xe6\x79\x0a\x83\xea\xce\xc6\x0a\xae\x46\x21\xb3\x93\xa8\xb5\xb9\xed\x39\xf3\x33\xb0\xee\xab\x28\x8d\x46\x5d\xca\x78\x2d\x9c\x0d\x70\x0e\xb3\x9c\xd2\x5e\xc2\x7e\x6a\x2e\x6f\x9b\xad\x36\x73\x63\x4d\x8b\xe9\x7a\x39\x67\xd2\x8c\x2a\x83\x9e\x23\x78\x8b\x80\x2d\x6f\x53\x8d\x9e\x18\xfa\xa8\xaa\x62\x34\xf9\x80\xeb\x32\xa4\x94\xc3\xf7\x33\x4e\x7d\x32\xbb\xfe\xc9\x31\xf0\xa0\x64\x83\xa0\xdd\xce\xa0\x6b\xc0\xf0\xe6\x90\xcb\x4d\xa5\x66\x76\x8b\xbf\x11\x26\x2c\x78\x60\x55\xba\xdd\xa3\xb4\xe6\xa1\x36\x9e\x29\x5b\xac\x9a\x25\x6f\xc0\x80\x96\xe0\x6d\x0e\x81\xec\x06\x69\xc8\x8a\x5d\x4e\x25\xbe\x9b\x82\xf0\x29\x27\x54\x86\x52\xa9\xd6\x11\xb9\xac\x03\xef\x98\x85\x4a\xe0\xa7\x8b\x06\x23\xbb\x6f\x4d\x25\xbf\x6a\xe9\x36\x59\xa3\x05\x73\x74\x7b\x0b\xe1\xbb\xec\x55\xc2\xfb\xc7\x76\x6a\x5c\x55\x4c\x56\xdc\x49\x71\xac\xc5\xca\x61\x1b\xfe\x87\x5d\xae\xb3\x8c\x1d\xd2\x4e\x87\xb8\xc6\x40\x2b\xf7\x0f\xec\xa9\x6b\x1b\x9d\xdb\x70\xfe\xf4\x24\x17\x85\xeb\xd2\x34\xa1\xca\xf7\xee\x80\x29\xe4\xf6\x29\xfe\x48\x99\x64\x66\x9c\xe2\x6f\x50\xe4\x75\x6b\xf6\xe3\x67\x15\x52\x69\x4d\xf7\xed\x26\x23\x5c\xca\x91\xc1\x1b\x2f\x94\x85\x3f\xa7\x0a\x8c\xd0\xc8\xda\x89\xeb\xef\xf2\x03\x9a\x5f\x8b\x58\x14\x12\x24\x6c\x3c\x5f\x42\xc1\x7b\xdb\x93\x6c\xdf\x68\xa1\x01\xf9\x52\xfe\x96\x12\xb0\x7d\x70\xb0\x0b\xa9\x35\x41\xce\x96\xbe\x9d\x1f\x50\x3b\xbb\x74\x02\x8b\x44\xd0\x79\x7c\x95\x32\x62\xdb\xf6\xe0\x7a\x8a\x23\xf2\x1b\x32\xe8\x9a\x74\xef\xc7\x43\x42\xe4\x2b\x76\xcf\x11\x80\xa0\xc2\x1a\xe8\x8b\x05\x50\x5d\x4e\x76\x67\x21\x4f\x33\x94\x22\x87\x02\xb7\xe1\x77\x8a\x68\xc3\xe0\x87\x65\xe1\x1c\x42\x6e\x23\x66\xfe\x9f\x0e\x82\x8e\x2e\x43\x21\x76\x07\xc3\xb5\x34\x27\x60\x78\x89\xac\x09\x13\x36\x87\x78\x2b\x1d\x38\xa0\xf2\xc5\x7c\x43\x48\x01\xa1\x23\xd5\x84\x38\x27\x0a\x26\x49\x9b\x85\x11\xc5\xfb\x0f\xa2\x82\x75\x1b\x64\x3e\x9f\x45\xa0\x64\x59\xa1\xa4\xff\x0f\xd8\x06\xdb\x27\x05\x82\x0d\x16\x97\xe7\x28\xb4\x47\x3e\x07\x8e\x38\xef\x55\x62\xcd\x24\x57\xd8\xf3\x24\xa5\xfe\x89\xd4\xa7\x80\xe4\xf1\x00\x8a\xfc\xc0\x42\xa7\x6d\x0d\x99\x35\x55\xd9\x1d\xa6\x47\x49\x89\xea\x15\x61\x8a\x29\xa8\xad\x47\x9e\x86\xd0\xda\xfe\x65\x95\x36\x08\x0d\x57\x75\x9d\x3f\x28\x9d\x6d\x67\x50\x1a\x06\xd9\xfa\xc7\x7a\x5f\xfd\xd4\x18\x54\x11\xbf\xaf\x59\x69\x09\xe9\x12\x99\x5e\x92\x92\xe8\x9d\x4a\x10\xa8\xbf\x94\x43\xa3\x85\x30\x3b\xd0\x0d\x72\xe3\xd8\x4d\xb2\xf3\xdd\xf5\x75\xe1\xe5\xaa\x5f\xd5\x56\x34\x97\x9a\x1c\xd6\xaf\x61\x0b\xbd\x0d\x92\xef\x72\x3a\x65\xe4\xcc\xff\xde\x9b\xc7\x50\x5c\xa9\x9c\x9a\xd1\xe2\xf9\x05\xa5\x2a\x8b\xbf\xab\x93\x5a\x1e\xac\x96\x7f\xbd\xd1\x0f\x5e\xb8\xdf\x83\x2c\x9c\x4e\x71\xfc\xdd\xa8\x76\x3d\x7c\xb5\x3e\xe8\xf0\x78\x80\xd6\x21\x4d\x23\x28\x1f\x7c\xae\xd3\x7b\x2b\xb1\x75\xdd\xb4\x3b\xe1\xa6\xe4\x6b\xe7\x1b\x38\xff\x72\xb1\xe5\x96\x82\x19\xe4\xcd\xcd\xf1\x6b\x8f\x9b\xf0\x8c\xf3\xd0\x9a\x27\xf9\xda\xce\x9a\xd3\x6a\x3e\xf6\xac\x47\xc8\x44\xe9\x5f\x4d\x96\xad\xb1\x23\x0f\x6e\x41\x88\xba\x45\xf7\x11\x9d\x25\xfd\xe9\x25\x3d\x7d\x96\x0e\x1b\xda\xbe\x01\xe8\x9c\x0e\xdf\x82\x3b\xfd\xa5\x48\xf2\x17\xa4\x59\x94\x11\xfa\xa0\x2b\x55\xfb\x92\x2f\xee\x18\x81\x50\x91\x83\xc4\x68\x2f\x48\x23\xcd\xeb\x23\x2f\x7d\x67\x66\xf2\x66\xe6\xbe\x70\x29\xe2\x6b\x6e\x70\x50\x07\xdb\x57\x05\xbe\x82\xf5\xb1\x18\x60\xd9\x4d\xbf\xc4\x61\xbb\x2e\xf1\x2d\x6b\x60\x0a\xf3\xf6\x78\x8a\x04\x8e\xde\xb9\xfc\xe8\x7f\x39\x3d\x6d\xc2\x92\x46\x23\x34\xbc\xde\x60\xe9\x96\xfe\x96\xef\xaa\xe9\xf6\x52\xab\x05\x47\xfa\x60\xa8\xb2\xdc\x77\xf8\xec\xa6\x62\x95\xbb\xc8\xe1\xca\xf7\xc3\x6e\x2b\xd0\xe9\x48\x3f\x9d\xd3\x8c\x75\x42\x6e\x42\xa2\x6d\xc0\x56\x08\xb9\x6c\x82\x6a\x82\x41\x9c\xb8\x2d\x80\xe5\x8e\xfc\xbd\xa7\xde\x6a\xf1\xc3\x4a\x24\xc6\x44\xfa\x95\x7b\x9e\x73\xba\xde\xcd\x92\x91\x95\x51\x6a\x9f\xdf\x26\x4d\x23\x53\x0c\xc9\x97\x77\x99\x68\x24\x70\x69\x33\x25\xc5\xf6\x3b\x47\xce\xbf\xe4\x79\x7e\x85\xb1\xa4\xea\x0b\xf0\x96\x13\xfb\xd6\xf5\x68\xdc\x11\x27\x4c\x54\x54\x01\xfa\x12\x50\xf8\x03\xc2\xb7\x46\x7f\x77\x20\x3e\x5c\x06\xb4\x4a\x5a\x59\xbe\x47\xfe\x2e\x01\xb6\x1d\x47\x74\xe8\x55\xf1\x53\x05\xda\x1b\x38\x91\x9d\x4d\x59\x30\x8a\x2f\xc8\x31\xd6\xc8\xf5\x0f\x8b\x04\xeb\x4c\x58\x61\x69\x3c\x2c\x7f\xa3\xa2\xd6\xf8\xe8\x5f\x44\xb0\x91\xa1\xce\x1d\x17\x7a\x93\xef\x0d\x8f\x29\x88\x1f\xb7\xca\xbf\x84\xa1\xfc\x27\x7b\x74\x0f\x35\x70\x47\x73\x7f\x6d\x72\xe5\xdd\xf3\x79\x7e\x18\x4c\xfa\xcd\x27\xeb\x34\x80\xbe\xdb\x71\x94\xb7\x14\x80\x2a\x0f\xe1\xb0\x36\x87\xdb\x88\x54\x19\x20\x2e\x40\x15\x43\x9e\x64\x18\xaf\x64\xb1\x3a\xb6\xc8\x29\xbc\xb1\xb0\xf9\x37\x61\x74\xa0\xef\x67\xcf\xf8\x43\x88\xb7\x13\xef\x8c\xdd\xf5\x93\x5c\x25\x7a\x30\xe7\x58\x93\x6f\x01\x24\x3d\x87\x0b\xaa\x4f\x29\x96\xa7\xc3\x57\x66\xa4\x13\x76\x14\xff\x1c\x3f\x70\x3b\xfe\xe5\x65\x11\x06\xbd\x2b\x70\x83\xd2\xa7\xa1\x85\x16\x93\x85\xcb\xd1\xd8\xae\xbb\xf2\x48\x67\x2a\x2c\x2c\x7e\xf9\x50\x9c\x32\x85\xf2\x28\x6c\xd0\x51\x5f\xc1\x1f\x87\x73\xbf\xd7\xc6\x6f\xe7\x2f\xc6\x9a\x05\xe0\xc8\x69\x71\xcd\x8a\x01\x67\x86\x11\x08\x84\xff\x5d\x32\x54\x65\xac\x3a\xa0\x61\xee\xec\xb8\xb4\x5f\x44\xd1\x49\x7d\x74\x5c\x22\x19\x41\x05\xac\xb2\xb2\xfa\xe9\x3c\x88\x30\x19\x25\x47\xb7\xe4\x7e\xd3\x93\xaf\x66\x77\xfc\xc6\xc7\x9e\x0a\x8b\x49\x9e\x45\xed\xd0\xde\x45\xe2\x2f\x7b\xb9\xf7\xab\x3e\x6c\xe5\x4f\x1f\x3e\x6e\x09\x48\xf6\xfa\x21\x88\x31\x4c\x79\xaf\x85\xb6\x6f\xb4\x8b\x91\xda\x21\xb6\x66\x43\x67\x22\xdb\xc5\x30\xb3\x0b\xed\x9f\xf6\x65\xec\x78\x42\x21\xc1\x3c\x32\x33\xb2', 1)
7656c3adcf817be7059c97d960b189aefd1dfef1
db5b57a505d0ecdecf342d80b79a0e22e280c606
/bitbox/script.py
fcf5815868eb3669d4753c83febb5073ad144e43
[ "MIT" ]
permissive
lightswarm124/bitbox-py
6620ead6fc4272585389f3004aeec05b2b6784a3
67ee0d216e2630fd44dba83b5233f33c315dd30b
refs/heads/master
2020-09-12T18:00:01.353437
2019-11-17T02:33:52
2019-11-17T02:33:52
222,001,618
0
0
MIT
2019-11-15T20:54:24
2019-11-15T20:54:23
null
UTF-8
Python
false
false
3,640
py
class Script: def opcodes(): codes = { "OP_FALSE": 0, "OP_0": 0, "OP_PUSHDATA1": 76, "OP_PUSHDATA2": 77, "OP_PUSHDATA4": 78, "OP_1NEGATE": 79, "OP_RESERVED": 80, "OP_TRUE": 81, "OP_1": 81, "OP_2": 82, "OP_3": 83, "OP_4": 84, "OP_5": 85, "OP_6": 86, "OP_7": 87, "OP_8": 88, "OP_9": 89, "OP_10": 90, "OP_11": 91, "OP_12": 92, "OP_13": 93, "OP_14": 94, "OP_15": 95, "OP_16": 96, "OP_NOP": 97, "OP_VER": 98, "OP_IF": 99, "OP_NOTIF": 100, "OP_VERIF": 101, "OP_VERNOTIF": 102, "OP_ELSE": 103, "OP_ENDIF": 104, "OP_VERIFY": 105, "OP_RETURN": 106, "OP_TOALTSTACK": 107, "OP_FROMALTSTACK": 108, "OP_2DROP": 109, "OP_2DUP": 110, "OP_3DUP": 111, "OP_2OVER": 112, "OP_2ROT": 113, "OP_2SWAP": 114, "OP_IFDUP": 115, "OP_DEPTH": 116, "OP_DROP": 117, "OP_DUP": 118, "OP_NIP": 119, "OP_OVER": 120, "OP_PICK": 121, "OP_ROLL": 122, "OP_ROT": 123, "OP_SWAP": 124, "OP_TUCK": 125, "OP_CAT": 126, "OP_SPLIT": 127, "OP_NUM2BIN": 128, "OP_BIN2NUM": 129, "OP_SIZE": 130, "OP_INVERT": 131, "OP_AND": 132, "OP_OR": 133, "OP_XOR": 134, "OP_EQUAL": 135, "OP_EQUALVERIFY": 136, "OP_RESERVED1": 137, "OP_RESERVED2": 138, "OP_1ADD": 139, "OP_1SUB": 140, "OP_2MUL": 141, "OP_2DIV": 142, "OP_NEGATE": 143, "OP_ABS": 144, "OP_NOT": 145, "OP_0NOTEQUAL": 146, "OP_ADD": 147, "OP_SUB": 148, "OP_MUL": 149, "OP_DIV": 150, "OP_MOD": 151, "OP_LSHIFT": 152, "OP_RSHIFT": 153, "OP_BOOLAND": 154, "OP_BOOLOR": 155, "OP_NUMEQUAL": 156, "OP_NUMEQUALVERIFY": 157, "OP_NUMNOTEQUAL": 158, "OP_LESSTHAN": 159, "OP_GREATERTHAN": 160, "OP_LESSTHANOREQUAL": 161, "OP_GREATERTHANOREQUAL": 162, "OP_MIN": 163, "OP_MAX": 164, "OP_WITHIN": 165, "OP_RIPEMD160": 166, "OP_SHA1": 167, "OP_SHA256": 168, "OP_HASH160": 169, "OP_HASH256": 170, "OP_CODESEPARATOR": 171, "OP_CHECKSIG": 172, "OP_CHECKSIGVERIFY": 173, "OP_CHECKMULTISIG": 174, "OP_CHECKMULTISIGVERIFY": 175, "OP_NOP1": 176, "OP_NOP2": 177, "OP_CHECKLOCKTIMEVERIFY": 177, "OP_NOP3": 178, "OP_CHECKSEQUENCEVERIFY": 178, "OP_NOP4": 179, "OP_NOP5": 180, "OP_NOP6": 181, "OP_NOP7": 182, "OP_NOP8": 183, "OP_NOP9": 184, "OP_NOP10": 185, "OP_CHECKDATASIG": 186, "OP_CHECKDATASIGVERIFY": 187, "OP_PUBKEYHASH": 253, "OP_PUBKEY": 254, "OP_INVALIDOPCODE": 255 } return codes
f3340d0bd5c5e5f803e09c14c522220a33e21689
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_8/fkzluv001/question1.py
ceffc8905a53ff115df948b1aef2e73ac10f9c3c
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
603
py
"""program with a recursive function to calculate whether or not a string is a palindrome Luvo Fokazi 09 May 2014""" def alt(n,var,j,count): if j>n: return count else: if var%j==0: count+=1 j+=1 return alt(n,var,j,count) def Palindrome(dString,n): d=(n+1)*-1 if n+1==len(dString): return "Palindrome!" if(dString[n]==dString[d]): return Palindrome(dString,n+1) else: return "Not a palindrome!" if __name__ == "__main__": x=input("Enter a string:\n") print(Palindrome(x,0))
a3e6f64e66ad6b90edc86ac5a3a78782dd3ef12b
11c00c704a3d1171d1bf4474be7ff1779a1dcb69
/LSTM_Stateful/recurrent_v2.py
f97804311d3bca360167caab49fdee3d89de4684
[]
no_license
mikechen66/LSTM-TF2
89bd67ca481ded7264191e240e45f792cc5546c3
741250374509c332d9f4f5ddebcb1a966e268df0
refs/heads/main
2023-04-08T15:59:46.999735
2021-04-20T01:53:34
2021-04-20T01:53:34
305,043,822
0
0
null
null
null
null
UTF-8
Python
false
false
109,883
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Recurrent layers and their base classes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import activations from tensorflow.python.keras import backend as K from tensorflow.python.keras import constraints from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.engine.input_spec import InputSpec from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import state_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.tracking import base as trackable from tensorflow.python.training.tracking import data_structures from tensorflow.python.util import nest from tensorflow.python.util.tf_export import keras_export @keras_export('keras.layers.StackedRNNCells') class StackedRNNCells(Layer): """Wrapper allowing a stack of RNN cells to behave as a single cell. Used to implement efficient stacked RNNs. Arguments: cells: List of RNN cell instances. Examples: ```python cells = [ keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), ] inputs = keras.Input((timesteps, input_dim)) x = keras.layers.RNN(cells)(inputs) ``` """ def __init__(self, cells, **kwargs): for cell in cells: if not hasattr(cell, 'call'): raise ValueError('All cells must have a `call` method. ' 'received cells:', cells) if not hasattr(cell, 'state_size'): raise ValueError('All cells must have a ' '`state_size` attribute. ' 'received cells:', cells) self.cells = cells # reverse_state_order determines whether the state size will be in a reverse # order of the cells' state. User might want to set this to True to keep the # existing behavior. This is only useful when use RNN(return_state=True) # since the state will be returned as the same order of state_size. self.reverse_state_order = kwargs.pop('reverse_state_order', False) if self.reverse_state_order: logging.warning('reverse_state_order=True in StackedRNNCells will soon ' 'be deprecated. Please update the code to work with the ' 'natural order of states if you rely on the RNN states, ' 'eg RNN(return_state=True).') super(StackedRNNCells, self).__init__(**kwargs) @property def state_size(self): return tuple(c.state_size for c in (self.cells[::-1] if self.reverse_state_order else self.cells)) @property def output_size(self): if getattr(self.cells[-1], 'output_size', None) is not None: return self.cells[-1].output_size elif _is_multiple_state(self.cells[-1].state_size): return self.cells[-1].state_size[0] else: return self.cells[-1].state_size def get_initial_state(self, inputs=None, batch_size=None, dtype=None): initial_states = [] for cell in self.cells[::-1] if self.reverse_state_order else self.cells: get_initial_state_fn = getattr(cell, 'get_initial_state', None) if get_initial_state_fn: initial_states.append(get_initial_state_fn( inputs=inputs, batch_size=batch_size, dtype=dtype)) else: initial_states.append(_generate_zero_filled_state_for_cell( cell, inputs, batch_size, dtype)) return tuple(initial_states) def call(self, inputs, states, constants=None, **kwargs): # Recover per-cell states. state_size = (self.state_size[::-1] if self.reverse_state_order else self.state_size) nested_states = nest.pack_sequence_as(state_size, nest.flatten(states)) # Call the cells in order and store the returned states. new_nested_states = [] for cell, states in zip(self.cells, nested_states): states = states if nest.is_sequence(states) else [states] # TF cell does not wrap the state into list when there is only one state. is_tf_rnn_cell = getattr(cell, '_is_tf_rnn_cell', None) is not None states = states[0] if len(states) == 1 and is_tf_rnn_cell else states if generic_utils.has_arg(cell.call, 'constants'): inputs, states = cell.call(inputs, states, constants=constants, **kwargs) else: inputs, states = cell.call(inputs, states, **kwargs) new_nested_states.append(states) return inputs, nest.pack_sequence_as(state_size, nest.flatten(new_nested_states)) @tf_utils.shape_type_conversion def build(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] for cell in self.cells: if isinstance(cell, Layer): if not cell.built: cell.build(input_shape) if getattr(cell, 'output_size', None) is not None: output_dim = cell.output_size elif _is_multiple_state(cell.state_size): output_dim = cell.state_size[0] else: output_dim = cell.state_size input_shape = tuple([input_shape[0]] + tensor_shape.as_shape(output_dim).as_list()) self.built = True def get_config(self): cells = [] for cell in self.cells: cells.append({ 'class_name': cell.__class__.__name__, 'config': cell.get_config() }) config = {'cells': cells} base_config = super(StackedRNNCells, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top cells = [] for cell_config in config.pop('cells'): cells.append( deserialize_layer(cell_config, custom_objects=custom_objects)) return cls(cells, **config) @keras_export('keras.layers.RNN') class RNN(Layer): """Base class for recurrent layers. Arguments: cell: A RNN cell instance or a list of RNN cell instances. A RNN cell is a class that has: - A `call(input_at_t, states_at_t)` method, returning `(output_at_t, states_at_t_plus_1)`. The call method of the cell can also take the optional argument `constants`, see section "Note on passing external constants" below. - A `state_size` attribute. This can be a single integer (single state) in which case it is the size of the recurrent state. This can also be a list/tuple of integers (one size per state). The `state_size` can also be TensorShape or tuple/list of TensorShape, to represent high dimension state. - A `output_size` attribute. This can be a single integer or a TensorShape, which represent the shape of the output. For backward compatible reason, if this attribute is not available for the cell, the value will be inferred by the first element of the `state_size`. - A `get_initial_state(inputs=None, batch_size=None, dtype=None)` method that creates a tensor meant to be fed to `call()` as the initial state, if the user didn't specify any initial state via other means. The returned initial state should have a shape of [batch_size, cell.state_size]. The cell might choose to create a tensor full of zeros, or full of other values based on the cell's implementation. `inputs` is the input tensor to the RNN layer, which should contain the batch size as its shape[0], and also dtype. Note that the shape[0] might be `None` during the graph construction. Either the `inputs` or the pair of `batch_size` and `dtype` are provided. `batch_size` is a scalar tensor that represents the batch size of the inputs. `dtype` is `tf.DType` that represents the dtype of the inputs. For backward compatible reason, if this method is not implemented by the cell, the RNN layer will create a zero filled tensor with the size of [batch_size, cell.state_size]. In the case that `cell` is a list of RNN cell instances, the cells will be stacked on top of each other in the RNN, resulting in an efficient stacked RNN. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. Call arguments: inputs: Input tensor. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is for use with cells that use dropout. initial_state: List of initial state tensors to be passed to the first call of the cell. constants: List of constant tensors to be passed to the cell at each timestep. Input shape: N-D tensor with shape `(batch_size, timesteps, ...)` or `(timesteps, batch_size, ...)` when time_major is True. Output shape: - If `return_state`: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape `(batch_size, state_size)`, where `state_size` could be a high dimension tensor shape. - If `return_sequences`: N-D tensor with shape `(batch_size, timesteps, output_size)`, where `output_size` could be a high dimension tensor shape, or `(timesteps, batch_size, output_size)` when `time_major` is True. - Else, N-D tensor with shape `(batch_size, output_size)`, where `output_size` could be a high dimension tensor shape. Masking: This layer supports masking for input data with a variable number of timesteps. To introduce masks to your data, use an [Embedding](embeddings.md) layer with the `mask_zero` parameter set to `True`. Note on using statefulness in RNNs: You can set RNN layers to be 'stateful', which means that the states computed for the samples in one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one mapping between samples in different successive batches. To enable statefulness: - Specify `stateful=True` in the layer constructor. - Specify a fixed batch size for your model, by passing If sequential model: `batch_input_shape=(...)` to the first layer in your model. Else for functional model with 1 or more Input layers: `batch_shape=(...)` to all the first layers in your model. This is the expected shape of your inputs *including the batch size*. It should be a tuple of integers, e.g. `(32, 10, 100)`. - Specify `shuffle=False` when calling fit(). To reset the states of your model, call `.reset_states()` on either a specific layer, or on your entire model. Note on specifying the initial state of RNNs: You can specify the initial state of RNN layers symbolically by calling them with the keyword argument `initial_state`. The value of `initial_state` should be a tensor or list of tensors representing the initial state of the RNN layer. You can specify the initial state of RNN layers numerically by calling `reset_states` with the keyword argument `states`. The value of `states` should be a numpy array or list of numpy arrays representing the initial state of the RNN layer. Note on passing external constants to RNNs: You can pass "external" constants to the cell using the `constants` keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This requires that the `cell.call` method accepts the same keyword argument `constants`. Such constants can be used to condition the cell transformation on additional static inputs (not changing over time), a.k.a. an attention mechanism. Examples: ```python # First, let's define a RNN Cell, as a layer subclass. class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(MinimalRNNCell, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = K.dot(inputs, self.kernel) output = h + K.dot(prev_output, self.recurrent_kernel) return output, [output] # Let's use this cell in a RNN layer: cell = MinimalRNNCell(32) x = keras.Input((None, 5)) layer = RNN(cell) y = layer(x) # Here's how to use the cell to build a stacked RNN: cells = [MinimalRNNCell(32), MinimalRNNCell(64)] x = keras.Input((None, 5)) layer = RNN(cells) y = layer(x) ``` """ def __init__(self, cell, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, time_major=False, **kwargs): if isinstance(cell, (list, tuple)): cell = StackedRNNCells(cell) if not hasattr(cell, 'call'): raise ValueError('`cell` should have a `call` method. ' 'The RNN was passed:', cell) if not hasattr(cell, 'state_size'): raise ValueError('The RNN cell should have ' 'an attribute `state_size` ' '(tuple of integers, ' 'one integer per RNN state).') # If True, the output for masked timestep will be zeros, whereas in the # False case, output from previous timestep is returned for masked timestep. self.zero_output_for_mask = kwargs.pop('zero_output_for_mask', False) if 'input_shape' not in kwargs and ( 'input_dim' in kwargs or 'input_length' in kwargs): input_shape = (kwargs.pop('input_length', None), kwargs.pop('input_dim', None)) kwargs['input_shape'] = input_shape super(RNN, self).__init__(**kwargs) self.cell = cell self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful self.unroll = unroll self.time_major = time_major self.supports_masking = True # The input shape is unknown yet, it could have nested tensor inputs, and # the input spec will be the list of specs for nested inputs, the structure # of the input_spec will be the same as the input. self.input_spec = None self.state_spec = None self._states = None self.constants_spec = None self._num_constants = 0 @property def states(self): if self._states is None: state = nest.map_structure(lambda _: None, self.cell.state_size) return state if nest.is_sequence(self.cell.state_size) else [state] return self._states @states.setter # Automatic tracking catches "self._states" which adds an extra weight and # breaks HDF5 checkpoints. @trackable.no_automatic_dependency_tracking def states(self, states): self._states = states def compute_output_shape(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] # Check whether the input shape contains any nested shapes. It could be # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from numpy # inputs. try: input_shape = tensor_shape.as_shape(input_shape) except (ValueError, TypeError): # A nested tensor input input_shape = nest.flatten(input_shape)[0] batch = input_shape[0] time_step = input_shape[1] if self.time_major: batch, time_step = time_step, batch if _is_multiple_state(self.cell.state_size): state_size = self.cell.state_size else: state_size = [self.cell.state_size] def _get_output_shape(flat_output_size): output_dim = tensor_shape.as_shape(flat_output_size).as_list() if self.return_sequences: if self.time_major: output_shape = tensor_shape.as_shape([time_step, batch] + output_dim) else: output_shape = tensor_shape.as_shape([batch, time_step] + output_dim) else: output_shape = tensor_shape.as_shape([batch] + output_dim) return output_shape if getattr(self.cell, 'output_size', None) is not None: # cell.output_size could be nested structure. output_shape = nest.flatten(nest.map_structure( _get_output_shape, self.cell.output_size)) output_shape = output_shape[0] if len(output_shape) == 1 else output_shape else: # Note that state_size[0] could be a tensor_shape or int. output_shape = _get_output_shape(state_size[0]) if self.return_state: def _get_state_shape(flat_state): state_shape = [batch] + tensor_shape.as_shape(flat_state).as_list() return tensor_shape.as_shape(state_shape) state_shape = nest.map_structure(_get_state_shape, state_size) return generic_utils.to_list(output_shape) + nest.flatten(state_shape) else: return output_shape def compute_mask(self, inputs, mask): # Time step masks must be the same for each input. # This is because the mask for an RNN is of size [batch, time_steps, 1], # and specifies which time steps should be skipped, and a time step # must be skipped for all inputs. # TODO(scottzhu): Should we accept multiple different masks? mask = nest.flatten(mask)[0] output_mask = mask if self.return_sequences else None if self.return_state: state_mask = [None for _ in self.states] return [output_mask] + state_mask else: return output_mask def build(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] # The input_shape here could be a nest structure. # do the tensor_shape to shapes here. The input could be single tensor, or a # nested structure of tensors. def get_input_spec(shape): if isinstance(shape, tensor_shape.TensorShape): input_spec_shape = shape.as_list() else: input_spec_shape = list(shape) batch_index, time_step_index = (1, 0) if self.time_major else (0, 1) if not self.stateful: input_spec_shape[batch_index] = None input_spec_shape[time_step_index] = None return InputSpec(shape=tuple(input_spec_shape)) def get_step_input_shape(shape): if isinstance(shape, tensor_shape.TensorShape): shape = tuple(shape.as_list()) # remove the timestep from the input_shape return shape[1:] if self.time_major else (shape[0],) + shape[2:] # Check whether the input shape contains any nested shapes. It could be # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from numpy # inputs. try: input_shape = tensor_shape.as_shape(input_shape) except (ValueError, TypeError): # A nested tensor input pass if not nest.is_sequence(input_shape): # This indicates the there is only one input. if self.input_spec is not None: self.input_spec[0] = get_input_spec(input_shape) else: self.input_spec = [get_input_spec(input_shape)] step_input_shape = get_step_input_shape(input_shape) else: if self.input_spec is not None: self.input_spec[0] = nest.map_structure(get_input_spec, input_shape) else: self.input_spec = generic_utils.to_list( nest.map_structure(get_input_spec, input_shape)) step_input_shape = nest.map_structure(get_step_input_shape, input_shape) # allow cell (if layer) to build before we set or validate state_spec if isinstance(self.cell, Layer): if not self.cell.built: self.cell.build(step_input_shape) # set or validate state_spec if _is_multiple_state(self.cell.state_size): state_size = list(self.cell.state_size) else: state_size = [self.cell.state_size] if self.state_spec is not None: # initial_state was passed in call, check compatibility self._validate_state_spec(state_size, self.state_spec) else: self.state_spec = [ InputSpec(shape=[None] + tensor_shape.as_shape(dim).as_list()) for dim in state_size ] if self.stateful: self.reset_states() self.built = True @staticmethod def _validate_state_spec(cell_state_sizes, init_state_specs): """Validate the state spec between the initial_state and the state_size. Args: cell_state_sizes: list, the `state_size` attribute from the cell. init_state_specs: list, the `state_spec` from the initial_state that is passed in `call()`. Raises: ValueError: When initial state spec is not compatible with the state size. """ validation_error = ValueError( 'An `initial_state` was passed that is not compatible with ' '`cell.state_size`. Received `state_spec`={}; ' 'however `cell.state_size` is ' '{}'.format(init_state_specs, cell_state_sizes)) flat_cell_state_size = nest.flatten(cell_state_sizes) flat_state_spec = nest.flatten(init_state_specs) if len(flat_cell_state_size) != len(flat_state_spec): raise validation_error for i in range(len(flat_cell_state_size)): if not tensor_shape.TensorShape( # Ignore the first axis for init_state which is for batch flat_state_spec[i].shape[1:]).is_compatible_with( tensor_shape.TensorShape(flat_cell_state_size[i])): raise validation_error def get_initial_state(self, inputs): get_initial_state_fn = getattr(self.cell, 'get_initial_state', None) if nest.is_sequence(inputs): # The input are nested sequences. Use the first element in the seq to get # batch size and dtype. inputs = nest.flatten(inputs)[0] input_shape = array_ops.shape(inputs) batch_size = input_shape[1] if self.time_major else input_shape[0] dtype = inputs.dtype if get_initial_state_fn: init_state = get_initial_state_fn( inputs=None, batch_size=batch_size, dtype=dtype) else: init_state = _generate_zero_filled_state(batch_size, self.cell.state_size, dtype) # Keras RNN expect the states in a list, even if it's a single state tensor. if not nest.is_sequence(init_state): init_state = [init_state] # Force the state to be a list in case it is a namedtuple eg LSTMStateTuple. return list(init_state) def __call__(self, inputs, initial_state=None, constants=None, **kwargs): inputs, initial_state, constants = _standardize_args(inputs, initial_state, constants, self._num_constants) if initial_state is None and constants is None: return super(RNN, self).__call__(inputs, **kwargs) # If any of `initial_state` or `constants` are specified and are Keras # tensors, then add them to the inputs and temporarily modify the # input_spec to include them. additional_inputs = [] additional_specs = [] if initial_state is not None: additional_inputs += initial_state self.state_spec = nest.map_structure( lambda s: InputSpec(shape=K.int_shape(s)), initial_state) additional_specs += self.state_spec if constants is not None: additional_inputs += constants self.constants_spec = [ InputSpec(shape=K.int_shape(constant)) for constant in constants ] self._num_constants = len(constants) additional_specs += self.constants_spec # at this point additional_inputs cannot be empty is_keras_tensor = K.is_keras_tensor(nest.flatten(additional_inputs)[0]) for tensor in nest.flatten(additional_inputs): if K.is_keras_tensor(tensor) != is_keras_tensor: raise ValueError('The initial state or constants of an RNN' ' layer cannot be specified with a mix of' ' Keras tensors and non-Keras tensors' ' (a "Keras tensor" is a tensor that was' ' returned by a Keras layer, or by `Input`)') if is_keras_tensor: # Compute the full input spec, including state and constants full_input = [inputs] + additional_inputs # The original input_spec is None since there could be a nested tensor # input. Update the input_spec to match the inputs. full_input_spec = generic_utils.to_list( nest.map_structure(lambda _: None, inputs)) + additional_specs # Perform the call with temporarily replaced input_spec self.input_spec = full_input_spec output = super(RNN, self).__call__(full_input, **kwargs) # Remove the additional_specs from input spec and keep the rest. It is # important to keep since the input spec was populated by build(), and # will be reused in the stateful=True. self.input_spec = self.input_spec[:-len(additional_specs)] return output else: if initial_state is not None: kwargs['initial_state'] = initial_state if constants is not None: kwargs['constants'] = constants return super(RNN, self).__call__(inputs, **kwargs) def call(self, inputs, mask=None, training=None, initial_state=None, constants=None): inputs, initial_state, constants = self._process_inputs( inputs, initial_state, constants) if mask is not None: # Time step masks must be the same for each input. # TODO(scottzhu): Should we accept multiple different masks? mask = nest.flatten(mask)[0] if nest.is_sequence(inputs): # In the case of nested input, use the first element for shape check. input_shape = K.int_shape(nest.flatten(inputs)[0]) else: input_shape = K.int_shape(inputs) timesteps = input_shape[0] if self.time_major else input_shape[1] if self.unroll and timesteps is None: raise ValueError('Cannot unroll a RNN if the ' 'time dimension is undefined. \n' '- If using a Sequential model, ' 'specify the time dimension by passing ' 'an `input_shape` or `batch_input_shape` ' 'argument to your first layer. If your ' 'first layer is an Embedding, you can ' 'also use the `input_length` argument.\n' '- If using the functional API, specify ' 'the time dimension by passing a `shape` ' 'or `batch_shape` argument to your Input layer.') kwargs = {} if generic_utils.has_arg(self.cell.call, 'training'): kwargs['training'] = training # TF RNN cells expect single tensor as state instead of list wrapped tensor. is_tf_rnn_cell = getattr(self.cell, '_is_tf_rnn_cell', None) is not None if constants: if not generic_utils.has_arg(self.cell.call, 'constants'): raise ValueError('RNN cell does not support constants') def step(inputs, states): constants = states[-self._num_constants:] # pylint: disable=invalid-unary-operand-type states = states[:-self._num_constants] # pylint: disable=invalid-unary-operand-type states = states[0] if len(states) == 1 and is_tf_rnn_cell else states output, new_states = self.cell.call( inputs, states, constants=constants, **kwargs) if not nest.is_sequence(new_states): new_states = [new_states] return output, new_states else: def step(inputs, states): states = states[0] if len(states) == 1 and is_tf_rnn_cell else states output, new_states = self.cell.call(inputs, states, **kwargs) if not nest.is_sequence(new_states): new_states = [new_states] return output, new_states # `input_length` is passed as the `maximum_iterations` arg to tf.while_loop. # We only specify that when building for XLA since that causes slowdowns # on GPU in TF. if (not context.executing_eagerly() and control_flow_util.GraphOrParentsInXlaContext(ops.get_default_graph())): input_length = timesteps else: input_length = None last_output, outputs, states = K.rnn( step, inputs, initial_state, constants=constants, go_backwards=self.go_backwards, mask=mask, unroll=self.unroll, input_length=input_length, time_major=self.time_major, zero_output_for_mask=self.zero_output_for_mask) if self.stateful: updates = [] for state_, state in zip(nest.flatten(self.states), nest.flatten(states)): updates.append(state_ops.assign(state_, state)) self.add_update(updates) if self.return_sequences: output = outputs else: output = last_output if self.return_state: if not isinstance(states, (list, tuple)): states = [states] else: states = list(states) return generic_utils.to_list(output) + states else: return output def _process_inputs(self, inputs, initial_state, constants): # input shape: `(samples, time (padded with zeros), input_dim)` # note that the .build() method of subclasses MUST define # self.input_spec and self.state_spec with complete input shapes. if (isinstance(inputs, collections.Sequence) and not isinstance(inputs, tuple)): # get initial_state from full input spec # as they could be copied to multiple GPU. if not self._num_constants: initial_state = inputs[1:] else: initial_state = inputs[1:-self._num_constants] constants = inputs[-self._num_constants:] if len(initial_state) == 0: initial_state = None inputs = inputs[0] if initial_state is not None: pass elif self.stateful: initial_state = self.states else: initial_state = self.get_initial_state(inputs) if len(initial_state) != len(self.states): raise ValueError('Layer has ' + str(len(self.states)) + ' states but was passed ' + str(len(initial_state)) + ' initial states.') return inputs, initial_state, constants def reset_states(self, states=None): if not self.stateful: raise AttributeError('Layer must be stateful.') spec_shape = None if self.input_spec is None else self.input_spec[0].shape if spec_shape is None: # It is possible to have spec shape to be None, eg when construct a RNN # with a custom cell, or standard RNN layers (LSTM/GRU) which we only know # it has 3 dim input, but not its full shape spec before build(). batch_size = None else: batch_size = spec_shape[1] if self.time_major else spec_shape[0] if not batch_size: raise ValueError('If a RNN is stateful, it needs to know ' 'its batch size. Specify the batch size ' 'of your input tensors: \n' '- If using a Sequential model, ' 'specify the batch size by passing ' 'a `batch_input_shape` ' 'argument to your first layer.\n' '- If using the functional API, specify ' 'the batch size by passing a ' '`batch_shape` argument to your Input layer.') # initialize state if None if nest.flatten(self.states)[0] is None: def create_state_variable(state): return K.zeros([batch_size] + tensor_shape.as_shape(state).as_list()) self.states = nest.map_structure( create_state_variable, self.cell.state_size) if not nest.is_sequence(self.states): self.states = [self.states] elif states is None: for state, size in zip(nest.flatten(self.states), nest.flatten(self.cell.state_size)): K.set_value(state, np.zeros([batch_size] + tensor_shape.as_shape(size).as_list())) else: flat_states = nest.flatten(self.states) flat_input_states = nest.flatten(states) if len(flat_input_states) != len(flat_states): raise ValueError('Layer ' + self.name + ' expects ' + str(len(flat_states)) + ' states, ' 'but it received ' + str(len(flat_input_states)) + ' state values. Input received: ' + str(states)) set_value_tuples = [] for i, (value, state) in enumerate(zip(flat_input_states, flat_states)): if value.shape != state.shape: raise ValueError( 'State ' + str(i) + ' is incompatible with layer ' + self.name + ': expected shape=' + str( (batch_size, state)) + ', found shape=' + str(value.shape)) set_value_tuples.append((state, value)) K.batch_set_value(set_value_tuples) def get_config(self): config = { 'return_sequences': self.return_sequences, 'return_state': self.return_state, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'time_major': self.time_major } if self._num_constants: config['num_constants'] = self._num_constants if self.zero_output_for_mask: config['zero_output_for_mask'] = self.zero_output_for_mask cell_config = self.cell.get_config() config['cell'] = { 'class_name': self.cell.__class__.__name__, 'config': cell_config } base_config = super(RNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top cell = deserialize_layer(config.pop('cell'), custom_objects=custom_objects) num_constants = config.pop('num_constants', 0) layer = cls(cell, **config) layer._num_constants = num_constants return layer @keras_export('keras.layers.AbstractRNNCell') class AbstractRNNCell(Layer): """Abstract object representing an RNN cell. This is the base class for implementing RNN cells with custom behavior. Every `RNNCell` must have the properties below and implement `call` with the signature `(output, next_state) = call(input, state)`. Examples: ```python class MinimalRNNCell(AbstractRNNCell): def __init__(self, units, **kwargs): self.units = units super(MinimalRNNCell, self).__init__(**kwargs) @property def state_size(self): return self.units def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = K.dot(inputs, self.kernel) output = h + K.dot(prev_output, self.recurrent_kernel) return output, output ``` This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units. An RNN cell, in the most abstract setting, is anything that has a state and performs some operation that takes a matrix of inputs. This operation results in an output matrix with `self.output_size` columns. If `self.state_size` is an integer, this operation also results in a new state matrix with `self.state_size` columns. If `self.state_size` is a (possibly nested tuple of) TensorShape object(s), then it should return a matching structure of Tensors having shape `[batch_size].concatenate(s)` for each `s` in `self.batch_size`. """ def call(self, inputs, states): """The function that contains the logic for one RNN step calculation. Args: inputs: the input tensor, which is a slide from the overall RNN input by the time dimension (usually the second dimension). states: the state tensor from previous step, which has the same shape as `(batch, state_size)`. In the case of timestep 0, it will be the initial state user specified, or zero filled tensor otherwise. Returns: A tuple of two tensors: 1. output tensor for the current timestep, with size `output_size`. 2. state tensor for next step, which has the shape of `state_size`. """ raise NotImplementedError('Abstract method') @property def state_size(self): """size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. """ raise NotImplementedError('Abstract method') @property def output_size(self): """Integer or TensorShape: size of outputs produced by this cell.""" raise NotImplementedError('Abstract method') def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) class DropoutRNNCellMixin(object): """Object that hold dropout related fields for RNN Cell. This class is not a standalone RNN cell. It suppose to be used with a RNN cell by multiple inheritance. Any cell that mix with class should have following fields: dropout: a float number within range [0, 1). The ratio that the input tensor need to dropout. recurrent_dropout: a float number within range [0, 1). The ratio that the recurrent state weights need to dropout. This object will create and cache created dropout masks, and reuse them for the incoming data, so that the same mask is used for every batch input. """ def __init__(self, *args, **kwargs): # Note that the following two masks will be used in "graph function" mode, # e.g. these masks are symbolic tensors. In eager mode, the `eager_*_mask` # tensors will be generated differently than in the "graph function" case, # and they will be cached. # Also note that in graph mode, we still cache those masks only because the # RNN could be created with `unroll=True`. In that case, the `cell.call()` # function will be invoked multiple times, and we want to ensure same mask # is used every time. self._dropout_mask = None self._recurrent_dropout_mask = None self._eager_dropout_mask = None self._eager_recurrent_dropout_mask = None super(DropoutRNNCellMixin, self).__init__(*args, **kwargs) def reset_dropout_mask(self): """Reset the cached dropout masks if any. This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch. """ self._dropout_mask = None self._eager_dropout_mask = None def reset_recurrent_dropout_mask(self): """Reset the cached recurrent dropout masks if any. This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch. """ self._recurrent_dropout_mask = None self._eager_recurrent_dropout_mask = None def get_dropout_mask_for_cell(self, inputs, training, count=1): """Get the dropout mask for RNN cell's input. It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell. Args: inputs: the input tensor whose shape will be used to generate dropout mask. training: boolean tensor, whether its in training mode, dropout will be ignored in non-training mode. count: int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together. Returns: List of mask tensor, generated or cached mask based on context. """ if self.dropout == 0: return None if (not context.executing_eagerly() and self._dropout_mask is None or context.executing_eagerly() and self._eager_dropout_mask is None): # Generate new mask and cache it based on context. dp_mask = _generate_dropout_mask( array_ops.ones_like(inputs), self.dropout, training=training, count=count) if context.executing_eagerly(): self._eager_dropout_mask = dp_mask else: self._dropout_mask = dp_mask else: # Reuse the existing mask. dp_mask = (self._eager_dropout_mask if context.executing_eagerly() else self._dropout_mask) return dp_mask def get_recurrent_dropout_mask_for_cell(self, inputs, training, count=1): """Get the recurrent dropout mask for RNN cell. It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell. Args: inputs: the input tensor whose shape will be used to generate dropout mask. training: boolean tensor, whether its in training mode, dropout will be ignored in non-training mode. count: int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together. Returns: List of mask tensor, generated or cached mask based on context. """ if self.recurrent_dropout == 0: return None if (not context.executing_eagerly() and self._recurrent_dropout_mask is None or context.executing_eagerly() and self._eager_recurrent_dropout_mask is None): # Generate new mask and cache it based on context. rec_dp_mask = _generate_dropout_mask( array_ops.ones_like(inputs), self.recurrent_dropout, training=training, count=count) if context.executing_eagerly(): self._eager_recurrent_dropout_mask = rec_dp_mask else: self._recurrent_dropout_mask = rec_dp_mask else: # Reuse the existing mask. rec_dp_mask = (self._eager_recurrent_dropout_mask if context.executing_eagerly() else self._recurrent_dropout_mask) return rec_dp_mask @keras_export('keras.layers.SimpleRNNCell') class SimpleRNNCell(DropoutRNNCellMixin, Layer): """Cell class for SimpleRNN. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Call arguments: inputs: A 2D tensor. states: List of state tensors corresponding to the previous timestep. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNNCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_size = self.units self.output_size = self.units @tf_utils.shape_type_conversion def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight( shape=(self.units,), name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs, states, training=None): prev_output = states[0] dp_mask = self.get_dropout_mask_for_cell(inputs, training) rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( prev_output, training) if dp_mask is not None: h = K.dot(inputs * dp_mask, self.kernel) else: h = K.dot(inputs, self.kernel) if self.bias is not None: h = K.bias_add(h, self.bias) if rec_dp_mask is not None: prev_output = prev_output * rec_dp_mask output = h + K.dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) return output, [output] def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(SimpleRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.SimpleRNN') class SimpleRNN(RNN): """Fully-connected RNN where the output is to be fed back to input. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. Call arguments: inputs: A 3D tensor. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used. initial_state: List of initial state tensors to be passed to the first call of the cell. """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if 'implementation' in kwargs: kwargs.pop('implementation') logging.warning('The `implementation` argument ' 'in `SimpleRNN` has been deprecated. ' 'Please remove it from your layer call.') cell = SimpleRNNCell( units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, dtype=kwargs.get('dtype')) super(SimpleRNN, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell.reset_dropout_mask() self.cell.reset_recurrent_dropout_mask() return super(SimpleRNN, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(SimpleRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config: config.pop('implementation') return cls(**config) @keras_export(v1=['keras.layers.GRUCell']) class GRUCell(DropoutRNNCellMixin, Layer): """Cell class for the GRU layer. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). Call arguments: inputs: A 2D tensor. states: List of state tensors corresponding to the previous timestep. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, reset_after=False, **kwargs): super(GRUCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.reset_after = reset_after self.state_size = self.units self.output_size = self.units @tf_utils.shape_type_conversion def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if not self.reset_after: bias_shape = (3 * self.units,) else: # separate biases for input and recurrent kernels # Note: the shape is intentionally different from CuDNNGRU biases # `(2 * 3 * self.units,)`, so that we can distinguish the classes # when loading and converting saved weights. bias_shape = (2, 3 * self.units) self.bias = self.add_weight(shape=bias_shape, name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs, states, training=None): h_tm1 = states[0] # previous memory dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=3) rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( h_tm1, training, count=3) if self.use_bias: if not self.reset_after: input_bias, recurrent_bias = self.bias, None else: input_bias, recurrent_bias = array_ops.unstack(self.bias) if self.implementation == 1: if 0. < self.dropout < 1.: inputs_z = inputs * dp_mask[0] inputs_r = inputs * dp_mask[1] inputs_h = inputs * dp_mask[2] else: inputs_z = inputs inputs_r = inputs inputs_h = inputs x_z = K.dot(inputs_z, self.kernel[:, :self.units]) x_r = K.dot(inputs_r, self.kernel[:, self.units:self.units * 2]) x_h = K.dot(inputs_h, self.kernel[:, self.units * 2:]) if self.use_bias: x_z = K.bias_add(x_z, input_bias[:self.units]) x_r = K.bias_add(x_r, input_bias[self.units: self.units * 2]) x_h = K.bias_add(x_h, input_bias[self.units * 2:]) if 0. < self.recurrent_dropout < 1.: h_tm1_z = h_tm1 * rec_dp_mask[0] h_tm1_r = h_tm1 * rec_dp_mask[1] h_tm1_h = h_tm1 * rec_dp_mask[2] else: h_tm1_z = h_tm1 h_tm1_r = h_tm1 h_tm1_h = h_tm1 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel[:, :self.units]) recurrent_r = K.dot(h_tm1_r, self.recurrent_kernel[:, self.units:self.units * 2]) if self.reset_after and self.use_bias: recurrent_z = K.bias_add(recurrent_z, recurrent_bias[:self.units]) recurrent_r = K.bias_add(recurrent_r, recurrent_bias[self.units:self.units * 2]) z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) # reset gate applied after/before matrix multiplication if self.reset_after: recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) if self.use_bias: recurrent_h = K.bias_add(recurrent_h, recurrent_bias[self.units * 2:]) recurrent_h = r * recurrent_h else: recurrent_h = K.dot(r * h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) hh = self.activation(x_h + recurrent_h) else: if 0. < self.dropout < 1.: inputs = inputs * dp_mask[0] # inputs projected by all gate matrices at once matrix_x = K.dot(inputs, self.kernel) if self.use_bias: # biases: bias_z_i, bias_r_i, bias_h_i matrix_x = K.bias_add(matrix_x, input_bias) x_z = matrix_x[:, :self.units] x_r = matrix_x[:, self.units: 2 * self.units] x_h = matrix_x[:, 2 * self.units:] if 0. < self.recurrent_dropout < 1.: h_tm1 = h_tm1 * rec_dp_mask[0] if self.reset_after: # hidden state projected by all gate matrices at once matrix_inner = K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: matrix_inner = K.bias_add(matrix_inner, recurrent_bias) else: # hidden state projected separately for update/reset and new matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units]) recurrent_z = matrix_inner[:, :self.units] recurrent_r = matrix_inner[:, self.units:2 * self.units] z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) if self.reset_after: recurrent_h = r * matrix_inner[:, 2 * self.units:] else: recurrent_h = K.dot(r * h_tm1, self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) # previous and candidate state mixed by update gate h = z * h_tm1 + (1 - z) * hh return h, [h] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after } base_config = super(GRUCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) @keras_export(v1=['keras.layers.GRU']) class GRU(RNN): """Gated Recurrent Unit - Cho et al. 2014. There are two variants. The default one is based on 1406.1078v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has the order reversed. The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU. Thus it has separate biases for `kernel` and `recurrent_kernel`. Use `'reset_after'=True` and `recurrent_activation='sigmoid'`. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). Call arguments: inputs: A 3D tensor. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used. initial_state: List of initial state tensors to be passed to the first call of the cell. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, reset_after=False, **kwargs): if implementation == 0: logging.warning('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') cell = GRUCell( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, reset_after=reset_after, dtype=kwargs.get('dtype')) super(GRU, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell.reset_dropout_mask() self.cell.reset_recurrent_dropout_mask() return super(GRU, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation @property def reset_after(self): return self.cell.reset_after def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after } base_config = super(GRU, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) @keras_export(v1=['keras.layers.LSTMCell']) class LSTMCell(DropoutRNNCellMixin, Layer): """Cell class for the LSTM layer. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. Call arguments: inputs: A 2D tensor. states: List of state tensors corresponding to the previous timestep. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, **kwargs): super(LSTMCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation # tuple(_ListWrapper) was silently dropping list content in at least 2.7.10, # and fixed after 2.7.16. Converting the state_size to wrapper around # NoDependency(), so that the base_layer.__setattr__ will not convert it to # ListWrapper. Down the stream, self.states will be a list since it is # generated from nest.map_structure with list, and tuple(list) will work # properly. self.state_size = data_structures.NoDependency([self.units, self.units]) self.output_size = self.units @tf_utils.shape_type_conversion def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(input_dim, self.units * 4), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return K.concatenate([ self.bias_initializer((self.units,), *args, **kwargs), initializers.Ones()((self.units,), *args, **kwargs), self.bias_initializer((self.units * 2,), *args, **kwargs), ]) else: bias_initializer = self.bias_initializer self.bias = self.add_weight( shape=(self.units * 4,), name='bias', initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def _compute_carry_and_output(self, x, h_tm1, c_tm1): """Computes carry and output using split kernels.""" x_i, x_f, x_c, x_o = x h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1 i = self.recurrent_activation( x_i + K.dot(h_tm1_i, self.recurrent_kernel[:, :self.units])) f = self.recurrent_activation(x_f + K.dot( h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2])) c = f * c_tm1 + i * self.activation(x_c + K.dot( h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3])) o = self.recurrent_activation( x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:])) return c, o def _compute_carry_and_output_fused(self, z, c_tm1): """Computes carry and output using fused kernels.""" z0, z1, z2, z3 = z i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) return c, o def call(self, inputs, states, training=None): h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state dp_mask = self.get_dropout_mask_for_cell(inputs, training, count=4) rec_dp_mask = self.get_recurrent_dropout_mask_for_cell( h_tm1, training, count=4) if self.implementation == 1: if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs k_i, k_f, k_c, k_o = array_ops.split( self.kernel, num_or_size_splits=4, axis=1) x_i = K.dot(inputs_i, k_i) x_f = K.dot(inputs_f, k_f) x_c = K.dot(inputs_c, k_c) x_o = K.dot(inputs_o, k_o) if self.use_bias: b_i, b_f, b_c, b_o = array_ops.split( self.bias, num_or_size_splits=4, axis=0) x_i = K.bias_add(x_i, b_i) x_f = K.bias_add(x_f, b_f) x_c = K.bias_add(x_c, b_c) x_o = K.bias_add(x_o, b_o) if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 x = (x_i, x_f, x_c, x_o) h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o) c, o = self._compute_carry_and_output(x, h_tm1, c_tm1) else: if 0. < self.dropout < 1.: inputs = inputs * dp_mask[0] z = K.dot(inputs, self.kernel) if 0. < self.recurrent_dropout < 1.: h_tm1 = h_tm1 * rec_dp_mask[0] z += K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z = array_ops.split(z, num_or_size_splits=4, axis=1) c, o = self._compute_carry_and_output_fused(z, c_tm1) h = o * self.activation(c) return h, [h, c] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation } base_config = super(LSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return list(_generate_zero_filled_state_for_cell( self, inputs, batch_size, dtype)) @keras_export('keras.experimental.PeepholeLSTMCell') class PeepholeLSTMCell(LSTMCell): """Equivalent to LSTMCell class but adds peephole connections. Peephole connections allow the gates to utilize the previous internal state as well as the previous hidden state (which is what LSTMCell is limited to). This allows PeepholeLSTMCell to better learn precise timings over LSTMCell. From [Gers et al.](http://www.jmlr.org/papers/volume3/gers02a/gers02a.pdf): "We find that LSTM augmented by 'peephole connections' from its internal cells to its multiplicative gates can learn the fine distinction between sequences of spikes spaced either 50 or 49 time steps apart without the help of any short training exemplars." The peephole implementation is based on: [Long short-term memory recurrent neural network architectures for large scale acoustic modeling. ](https://research.google.com/pubs/archive/43905.pdf) Example: ```python # Create 2 PeepholeLSTMCells peephole_lstm_cells = [PeepholeLSTMCell(size) for size in [128, 256]] # Create a layer composed sequentially of the peephole LSTM cells. layer = RNN(peephole_lstm_cells) input = keras.Input((timesteps, input_dim)) output = layer(input) ``` """ def build(self, input_shape): super(PeepholeLSTMCell, self).build(input_shape) # The following are the weight matrices for the peephole connections. These # are multiplied with the previous internal state during the computation of # carry and output. self.input_gate_peephole_weights = self.add_weight( shape=(self.units,), name='input_gate_peephole_weights', initializer=self.kernel_initializer) self.forget_gate_peephole_weights = self.add_weight( shape=(self.units,), name='forget_gate_peephole_weights', initializer=self.kernel_initializer) self.output_gate_peephole_weights = self.add_weight( shape=(self.units,), name='output_gate_peephole_weights', initializer=self.kernel_initializer) def _compute_carry_and_output(self, x, h_tm1, c_tm1): x_i, x_f, x_c, x_o = x h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1 i = self.recurrent_activation( x_i + K.dot(h_tm1_i, self.recurrent_kernel[:, :self.units]) + self.input_gate_peephole_weights * c_tm1) f = self.recurrent_activation(x_f + K.dot( h_tm1_f, self.recurrent_kernel[:, self.units:self.units * 2]) + self.forget_gate_peephole_weights * c_tm1) c = f * c_tm1 + i * self.activation(x_c + K.dot( h_tm1_c, self.recurrent_kernel[:, self.units * 2:self.units * 3])) o = self.recurrent_activation( x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:]) + self.output_gate_peephole_weights * c) return c, o def _compute_carry_and_output_fused(self, z, c_tm1): z0, z1, z2, z3 = z i = self.recurrent_activation(z0 + self.input_gate_peephole_weights * c_tm1) f = self.recurrent_activation(z1 + self.forget_gate_peephole_weights * c_tm1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3 + self.output_gate_peephole_weights * c) return c, o @keras_export(v1=['keras.layers.LSTM']) class LSTM(RNN): """Long Short-Term Memory layer - Hochreiter 1997. Note that this cell is not optimized for performance on GPU. Please use `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs.. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output. in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. Call arguments: inputs: A 3D tensor. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used. initial_state: List of initial state tensors to be passed to the first call of the cell. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if implementation == 0: logging.warning('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') cell = LSTMCell( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, unit_forget_bias=unit_forget_bias, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, dtype=kwargs.get('dtype')) super(LSTM, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell.reset_dropout_mask() self.cell.reset_recurrent_dropout_mask() return super(LSTM, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def unit_forget_bias(self): return self.cell.unit_forget_bias @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation } base_config = super(LSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) def _generate_dropout_mask(ones, rate, training=None, count=1): def dropped_inputs(): return K.dropout(ones, rate) if count > 1: return [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(count) ] return K.in_train_phase(dropped_inputs, ones, training=training) def _standardize_args(inputs, initial_state, constants, num_constants): """Standardizes `__call__` to a single list of tensor inputs. When running a model loaded from a file, the input tensors `initial_state` and `constants` can be passed to `RNN.__call__()` as part of `inputs` instead of by the dedicated keyword arguments. This method makes sure the arguments are separated and that `initial_state` and `constants` are lists of tensors (or None). Arguments: inputs: Tensor or list/tuple of tensors. which may include constants and initial states. In that case `num_constant` must be specified. initial_state: Tensor or list of tensors or None, initial states. constants: Tensor or list of tensors or None, constant tensors. num_constants: Expected number of constants (if constants are passed as part of the `inputs` list. Returns: inputs: Single tensor or tuple of tensors. initial_state: List of tensors or None. constants: List of tensors or None. """ if isinstance(inputs, list): # There are several situations here: # In the graph mode, __call__ will be only called once. The initial_state # and constants could be in inputs (from file loading). # In the eager mode, __call__ will be called twice, once during # rnn_layer(inputs=input_t, constants=c_t, ...), and second time will be # model.fit/train_on_batch/predict with real np data. In the second case, # the inputs will contain initial_state and constants as eager tensor. # # For either case, the real input is the first item in the list, which # could be a nested structure itself. Then followed by initial_states, which # could be a list of items, or list of list if the initial_state is complex # structure, and finally followed by constants which is a flat list. assert initial_state is None and constants is None if num_constants: constants = inputs[-num_constants:] inputs = inputs[:-num_constants] if len(inputs) > 1: initial_state = inputs[1:] inputs = inputs[:1] if len(inputs) > 1: inputs = tuple(inputs) else: inputs = inputs[0] def to_list_or_none(x): if x is None or isinstance(x, list): return x if isinstance(x, tuple): return list(x) return [x] initial_state = to_list_or_none(initial_state) constants = to_list_or_none(constants) return inputs, initial_state, constants def _is_multiple_state(state_size): """Check whether the state_size contains multiple states.""" return (hasattr(state_size, '__len__') and not isinstance(state_size, tensor_shape.TensorShape)) def _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype): if inputs is not None: batch_size = array_ops.shape(inputs)[0] dtype = inputs.dtype return _generate_zero_filled_state(batch_size, cell.state_size, dtype) def _generate_zero_filled_state(batch_size_tensor, state_size, dtype): """Generate a zero filled tensor with shape [batch_size, state_size].""" if batch_size_tensor is None or dtype is None: raise ValueError( 'batch_size and dtype cannot be None while constructing initial state: ' 'batch_size={}, dtype={}'.format(batch_size_tensor, dtype)) def create_zeros(unnested_state_size): flat_dims = tensor_shape.as_shape(unnested_state_size).as_list() init_state_size = [batch_size_tensor] + flat_dims return array_ops.zeros(init_state_size, dtype=dtype) if nest.is_sequence(state_size): return nest.map_structure(create_zeros, state_size) else: return create_zeros(state_size)
38af6589a64233b172d528c200c9076dee62b25d
0806d939ef0e8218c0f727e025eb0b3bb328d343
/vote/vote/urls.py
74da84523c3b4c2be083cf880e6398fd17ab17ef
[]
no_license
aiegoo/django-web
bcd89687d951e0877000c23230661ce566144e78
5476ed77cf95919d9b825f4cef03d42f217768ce
refs/heads/master
2021-07-17T01:20:24.279227
2020-09-27T05:15:05
2020-09-27T05:15:05
215,240,173
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
from django.urls import path from . import views app_name = 'vote' urlpatterns = [ # ex: /polls/ path('', views.IndexView.as_view(), name='index'), # ex: /polls/5/ path('<int:pk>/', views.DetailView.as_view(), name='detail'), # ex: /polls/5/results/ path('<int:pk>/results/', views.ResultsView.as_view(), name='results'), # ex: /polls/5/vote/ path('<int:question_id>/vote/', views.vote, name='vote'), ]
c24181654bf4d3d4afa935bc6785919436c43826
82ca891008793f570668a7f2c760ae0f22d40494
/src/VAMPzero/Component/Fuel/Mass/mFuelMAX.py
3af884d709051594463eba984ea2a716f1333e4e
[ "Apache-2.0" ]
permissive
p-chambers/VAMPzero
22f20415e83140496b1c5702b6acbb76a5b7bf52
4b11d059b1c7a963ec7e7962fa12681825bc2f93
refs/heads/master
2021-01-19T10:49:06.393888
2015-06-24T10:33:41
2015-06-24T10:33:41
82,208,448
1
0
null
2017-02-16T17:42:55
2017-02-16T17:42:55
null
UTF-8
Python
false
false
3,632
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Copyright: Deutsches Zentrum fuer Luft- und Raumfahrt e.V., 2015 (c) Contact: [email protected] and [email protected] ''' from cmath import sqrt from VAMPzero.Handler.Parameter import parameter class mFuelMAX(parameter): ''' The maximum fuel mass that can be stored in the tanks :Unit: [kg] ''' def __init__(self, value=0., unit='kg', parent='', cpacsPath=''): super(mFuelMAX, self).__init__(value=value, unit=unit, doc=self.__doc__, status='init', parent=parent, cpacsPath=cpacsPath) def calc(self): ''' Sets the calc method to calcHeinze ''' self.calc = self.calcHeinze def calcHeinze(self): ''' Calculates the maximum fuel mass that can be stored in the wing from the geometrical definition of a single trapezoid k Faktor from Heinze was chosen to be 0.32 :Source: Entwerfen von Verkehrsflugzeugen II, W. Heinze, TU Braunschweig, 2005, pp. 169 ''' taperRatio = self.parent.aircraft.wing.taperRatio.getValue() span = self.parent.aircraft.wing.span.getValue() cRoot = self.parent.aircraft.wing.cRoot.getValue() tcRoot = self.parent.aircraft.wing.airfoilr.tc.getValue() tcTip = self.parent.aircraft.wing.airfoilt.tc.getValue() k = 0.32 density = 775 #[kg/m3] #Calculate the tanks Volume if tcRoot != 0.: brace1 = 1 + taperRatio ** 2 * tcTip / tcRoot + taperRatio * sqrt(tcTip / tcRoot) else: brace1 = 0. Vtank = 2. / 3. * span / 2. * k * cRoot ** 2 * tcRoot * (brace1) #Return result as Volume of the tank times the density return self.setValueCalc(Vtank * density) def calcFLOPS(self): ''' Calculation of the maximum Fuel Mass from the amount of fuel that can be stored in the wing Calculation Method in Flops sets FWMX to 23 as default. This is altered to 23/2.2046 for SI Units :Source: Flight Optimization System (FLOPS) User's Guide, McCullers, L.A., NASA Langeley, 2009, p. ''' FWMX = 23 / 2.2046 refArea = self.parent.aircraft.wing.refArea.getValue() taperRatio = self.parent.aircraft.wing.taperRatio.getValue() span = self.parent.aircraft.wing.span.getValue() tcAVG = self.parent.aircraft.wing.tcAVG.getValue() #Span and Area must be converted into ft / ft**2 for correct results term1 = tcAVG * (refArea / 0.092903 ) ** 2 / (span / 0.3048) term2 = taperRatio / (1 + taperRatio) ** 2 FuelMass = FWMX * term1 * (1 - term2) return self.setValueCalc(FuelMass) ################################################################################################### #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE# ###################################################################################################
c352969fb7fafde0ee6e6ff1bb2743e14ce90e4c
7e729ea05a6a4e297bb832b77720a18cd0227805
/Projects/Online Workouts/w3resource/String/program-52.py
5515ab19e111fdd9fa6c453eb8b5e32cb3e6da1c
[ "MIT" ]
permissive
ivenpoker/Python-Projects
943d127ae900df52b43aac07c395e9d717196115
2975e1bd687ec8dbcc7a4842c13466cb86292679
refs/heads/master
2022-12-18T16:36:37.954835
2020-09-14T19:42:46
2020-09-14T19:43:09
180,323,469
1
0
MIT
2022-12-08T01:05:35
2019-04-09T08:42:40
Python
UTF-8
Python
false
false
1,891
py
############################################################################################# # # # Program purpose: Prints all permutation with given repetition number of characters # # of a given string. # # Program Author : Happi Yvan <[email protected]> # # Creation Date : October 25, 2019 # # # ############################################################################################# from itertools import product def obtain_user_data(mess: str): is_valid = False user_data = '' while is_valid is False: try: user_data = input(mess) if len(user_data) == 0: raise ValueError('Please provide some data to work with') is_valid = True except ValueError as ve: print(f'[ERROR]: {ve}') return user_data def all_repeat(main_str: str, perm_num: int): chars = list(main_str) results = [] for c in product(chars, repeat=perm_num): results.append(c) return results if __name__ == "__main__": main_data = obtain_user_data(mess='Enter some data: ') num_perm, valid = 0, False while not valid: try: num_perm = int(obtain_user_data(mess='Enter number of permutations: ')) if num_perm <= 0: raise ValueError('Please, enter positive number') valid = True except ValueError as ve: print(f'[ERROR]: {ve}') # main test print(f"Combinations with repeat #{num_perm}: {all_repeat(main_str=main_data, perm_num=num_perm)}")
4beb0e58abe9c75d8744830eb9004bed5a7b0751
433da00d8da1c28b528a34775db66a53cb505d82
/players/Different Experiment and Final Script /Ex7- Script58/Script53.py
1848a546e0ad6521427d135594d2fa0e7661a879
[]
no_license
maithrreye/Cant-stop-game
9cf0e5ffe4862a6f5cd9aaafcb9e0e6359debfd9
225b638854643af3168fb75516a08167a431bb35
refs/heads/master
2022-11-05T21:07:32.627004
2020-03-04T09:03:59
2020-03-04T09:03:59
244,762,576
0
0
null
null
null
null
UTF-8
Python
false
false
3,102
py
from players.player import Player import random from players.scripts.DSL import DSL class Script53(Player): def __init__(self): self._counter_calls = [] for i in range(17): self._counter_calls.append(0) def get_counter_calls(self): return self._counter_calls def get_action(self, state): actions = state.available_moves() for a in actions: if DSL.actionWinsColumn(state,a) and DSL.actionWinsColumn(state,a): self._counter_calls[0] += 1 return a if DSL.isStopAction(a) and DSL.isStopAction(a): self._counter_calls[1] += 1 return a if DSL.numberPositionsConquered(state, 4 ) > 1 and DSL.containsNumber(a, 4 ): self._counter_calls[2] += 1 return a if DSL.containsNumber(a, 4 ) and DSL.actionWinsColumn(state,a): self._counter_calls[3] += 1 return a if DSL.isDoubles(a) and DSL.isDoubles(a): self._counter_calls[4] += 1 return a if DSL.isDoubles(a): self._counter_calls[5] += 1 return a if DSL.actionWinsColumn(state,a) and DSL.hasWonColumn(state,a): self._counter_calls[6] += 1 return a if DSL.containsNumber(a, 4 ): self._counter_calls[7] += 1 return a if DSL.actionWinsColumn(state,a): self._counter_calls[8] += 1 return a if DSL.isStopAction(a): self._counter_calls[9] += 1 return a if DSL.isDoubles(a) and DSL.containsNumber(a, 5 ): self._counter_calls[10] += 1 return a if DSL.containsNumber(a, 2 ): self._counter_calls[11] += 1 return a if DSL.hasWonColumn(state,a): self._counter_calls[12] += 1 return a if DSL.containsNumber(a, 3 ) and DSL.containsNumber(a, 3 ) and DSL.isDoubles(a): self._counter_calls[13] += 1 return a if DSL.numberPositionsConquered(state, 3 ) > 0 and DSL.containsNumber(a, 3 ): self._counter_calls[14] += 1 return a if DSL.actionWinsColumn(state,a) and DSL.actionWinsColumn(state,a) and DSL.actionWinsColumn(state,a): self._counter_calls[15] += 1 return a if DSL.containsNumber(a, 3 ): self._counter_calls[16] += 1 return a return actions[0]
590ddb59f9578a5276547b3f499842f78bb87130
e7adbd8e9effb5c112e24adab012101fe07f2674
/tests/__init__.py
40e52aedb91313660e2c9dbfcc2ccd353891d38f
[ "MIT" ]
permissive
markmo/naya
6e35312ea218d357b1dfccfba5390adea609ccc7
8bdf4221ee8c2bc0b80ad5bb05c2d18114edf9e5
refs/heads/master
2020-04-11T15:49:21.910830
2018-12-15T13:14:29
2018-12-15T13:14:29
161,904,256
0
0
MIT
2018-12-15T12:46:26
2018-12-15T12:46:26
null
UTF-8
Python
false
false
21
py
__author__ = 'dyule'
e0766521e175164493e412fdd41801bcf8248c51
65e73c6c4a9e66715be2cbdd93339ebcab93976e
/windmill/boletagem/forms.py
ed5142d00f80dfe6141151b93321bb3cbde5cdf4
[]
no_license
AnimaTakeshi/windmill-django
3577f304d5e7f74750c7d95369e87d37209f1ac6
78bde49ace1ed215f6238fe94c142eac16e164dc
refs/heads/master
2022-12-13T11:13:21.859012
2019-02-07T20:50:01
2019-02-07T20:50:01
150,470,109
0
0
null
2022-12-08T01:29:36
2018-09-26T18:13:54
Python
UTF-8
Python
false
false
786
py
from django import forms from . import models class FormBoletaAcao(forms.ModelForm): class Meta: model = models.BoletaAcao fields = "__all__" def clean_quantidade(self): data = self.cleaned_data['quantidade'] print(data) if self.cleaned_data['operacao'] == 'C': data = abs(data) else: data = -abs(data) return data class FormBoletaRendaFixaLocal(forms.ModelForm): class Meta: model = models.BoletaRendaFixaLocal fields = "__all__" def clean_quantidade(self): data = self.cleaned_data['quantidade'] print(data) if self.cleaned_data['operacao'] == 'C': data = abs(data) else: data = -abs(data) return data
afd1459f1116172ee4305c5657bb7774a8069b34
103c413086fbfadee1c52a7ea3125b9f20864f67
/setup.py
7c43572a3cb6819a6055ef6a5645b869c9dbb5c1
[ "MIT" ]
permissive
tudstlennkozh/python-minifobf
2dff2cb407c665afc6cb23f795661092086b4ff7
1d4a59ede7298d46cde43a27f739991ad60c5171
refs/heads/master
2023-07-25T06:27:34.359672
2021-05-16T13:30:23
2021-07-22T16:41:21
398,327,879
1
0
null
null
null
null
UTF-8
Python
false
false
1,933
py
import os.path from setuptools import setup, find_packages readme_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'README.md') with open(readme_path) as f: long_desc = f.read() setup( name='python_minifier', description='Transform Python source code into it\'s most compact representation', author='Daniel Flook', author_email='[email protected]', url='https://github.com/dflook/python-minifier', license='MIT', project_urls={ 'Issues': 'https://github.com/dflook/python-minifier/issues', 'Documentation': 'https://dflook.github.io/python-minifier/', }, keywords='minify minifier', use_scm_version=True, package_dir={'': 'src'}, packages=find_packages('src'), long_description=long_desc, long_description_content_type='text/markdown', python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <3.10', setup_requires=['setuptools_scm'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Intended Audience :: Developers', 'Topic :: Software Development' ], entry_points = { 'console_scripts': ['pyminify=python_minifier.__main__:main'] }, zip_safe=True )
961058db0405e628c78d3744179be1a2aa4f188f
d507d0846902e0012a4b2a0aaaea1cbbdb21db46
/supervisely_lib/metric/classification_metrics.py
4392dea0801a666cd774015e3b43a9e1891fafec
[]
no_license
wpilibsuite/supervisely
a569fdc0d5e5f2fb912f32beab8f3fedb277504e
19805ca9b2bd20e31d6d41a99dc37dc439bc257a
refs/heads/master
2022-09-09T02:32:54.883109
2020-06-01T20:55:49
2020-06-01T20:55:49
267,916,361
2
3
null
2020-06-03T13:59:56
2020-05-29T17:27:30
Python
UTF-8
Python
false
false
5,021
py
# coding: utf-8 from copy import deepcopy from supervisely_lib.sly_logger import logger from supervisely_lib.annotation.tag_meta import TagValueType from supervisely_lib.metric.metric_base import MetricsBase from supervisely_lib.metric.common import log_line, safe_ratio, sum_counters, TRUE_POSITIVE, TRUE_NEGATIVE, \ FALSE_POSITIVE, FALSE_NEGATIVE, ACCURACY, PRECISION, RECALL, F1_MEASURE RAW_COUNTERS = [TRUE_POSITIVE, TRUE_NEGATIVE, FALSE_POSITIVE, FALSE_NEGATIVE] class ClassificationMetrics(MetricsBase): def __init__(self, tags_mapping, confidence_threshold=0): if len(tags_mapping) < 1: raise RuntimeError('At least one tags pair should be defined!') self._tags_mapping = tags_mapping.copy() self._confidence_threshold = confidence_threshold self._counters = {tag_name_gt: {counter: 0 for counter in RAW_COUNTERS} for tag_name_gt in self._tags_mapping.keys()} def _classification_metrics(self, ann_1, ann_2): def is_passes_confidence_threshold(tag): if tag.meta.value_type == TagValueType.NONE: return True elif tag.meta.value_type == TagValueType.ANY_NUMBER: return tag.value >= self._confidence_threshold elif tag.meta.value_type == TagValueType.ANY_STRING or tag.meta.value_type == TagValueType.ONEOF_STRING: logger.warning("Classification tag '{}'".format(tag.name)) return True current_metric_res = {} for tag_name_gt, tag_name_pred in self._tags_mapping.items(): tag1 = ann_1.img_tags.get(tag_name_gt) tag2 = ann_2.img_tags.get(tag_name_pred) c1 = is_passes_confidence_threshold(tag1) if tag1 is not None else False c2 = is_passes_confidence_threshold(tag2) if tag2 is not None else False current_metric_res[tag_name_gt] = { TRUE_POSITIVE: int(c1 and c2), TRUE_NEGATIVE: int(not c1 and not c2), FALSE_POSITIVE: int(not c1 and c2), FALSE_NEGATIVE: int(c1 and not c2) } return current_metric_res def add_pair(self, ann_gt, ann_pred): res = self._classification_metrics(ann_gt, ann_pred) for tag_name_gt, met_data in res.items(): for metric_name, metric_value in met_data.items(): self._counters[tag_name_gt][metric_name] += metric_value @staticmethod def _calculate_complex_metrics(values): tp = values[TRUE_POSITIVE] tn = values[TRUE_NEGATIVE] fp = values[FALSE_POSITIVE] fn = values[FALSE_NEGATIVE] values[ACCURACY] = safe_ratio(tp + tn, tp + tn + fp + fn) values[PRECISION] = safe_ratio(tp, tp + fp) values[RECALL] = safe_ratio(tp, tp + fn) values[F1_MEASURE] = safe_ratio(2.0 * tp, 2.0 * tp + fp + fn) def get_metrics(self): result = deepcopy(self._counters) for pair_counters in result.values(): self._calculate_complex_metrics(pair_counters) return result def get_total_metrics(self): result = sum_counters(self._counters.values(), (TRUE_POSITIVE, TRUE_NEGATIVE, FALSE_POSITIVE, FALSE_NEGATIVE)) self._calculate_complex_metrics(result) return result def log_total_metrics(self): common_info = """ P = condition positive (the number of real positive cases in the data) N = condition negative (the number of real negative cases in the data) TP = True Positive prediction TN = True Negative prediction FP = False Positive prediction (Type I error) FN = False Negative prediction (Type II error) Accuracy = (TP + TN)/(TP + TN + FP + FN) = TRUE/TOTAL Precision = TP / (TP + FP) Recall = TP / (TP + FN) F1-Measure = (2 * TP) / (2 * TP + FP + FN) """ log_line() log_line(c='*') for line in common_info.split('\n'): line = line.strip() if len(line) > 0: logger.info(line.ljust(80)) log_line(c='*') log_line() def print_evaluation_values(tag_pair_metrics): labels = [ACCURACY, PRECISION, RECALL, F1_MEASURE, TRUE_POSITIVE, TRUE_NEGATIVE, FALSE_POSITIVE, FALSE_NEGATIVE] for label in labels: logger.info(' {0}: {1:2.4f}'.format(label.ljust(16), tag_pair_metrics[label])) for i, (tag_name_gt, tag_metrics) in enumerate(self.get_metrics().items(), start=1): logger.info('{}) {} <--> {}:'.format(i, tag_name_gt, self._tags_mapping[tag_name_gt])) print_evaluation_values(tag_metrics) log_line() logger.info('Total values:') total_values = self.get_total_metrics() print_evaluation_values(total_values) log_line() log_line(c='*')
b8d15a47a5af0f68dbc337f3085e8229d1001478
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5769900270288896_0/Python/gilesg/B.py
9b6e7164caea2e5f0ee7de5be27548db97ad2c10
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,116
py
def ints(): return map(int, raw_input().split()) INF = 10 ** 9 LIM = 16 num_cases, = ints() def count(grid): R = len(grid) C = len(grid[0]) ret = 0 for i in range(R): for j in range(C): for d in ((0, 1), (1, 0)): ii = i + d[0] jj = j + d[1] if ii < R and jj < C: if grid[i][j] and grid[ii][jj]: ret += 1 return ret def construct(R, C, x): ret = [] for i in range(R): row = [0] * C for j in range(C): row[j] = x % 2 x /= 2 ret.append(row) return ret def bf(R, C): ret = [INF] * (R*C + 1) for x in range(2 ** (R*C)): grid = construct(R, C, x) n = sum(sum(row) for row in grid) cost = count(grid) ret[n] = min(ret[n], cost) return ret d = {} for R in range(1, LIM+1): for C in range(1, LIM+1): if R * C <= LIM: d[(R, C)] = bf(R, C) for case_num in xrange(1, num_cases + 1): R, C, N = ints() print "Case #%d: %s" % (case_num, d[(R, C)][N])
1fff13e4ffd8369a4724c0d5ac905d670593c68b
a8769709aeb7299fa3757f0e7bba5c617eb8cfe3
/lesson-3/k8s/lib/python2.7/site-packages/adal/self_signed_jwt.py
54c0fd9913797739a85a8e938eb40ccea83fac03
[ "Apache-2.0" ]
permissive
simox-83/workshop-k8s
2ac5e8b282bb7c3337acc726a7d972717bf649cc
04cb18e8b5925a3cfd84ca316952a6cb64960b31
refs/heads/master
2020-03-31T20:52:21.421995
2018-10-11T14:43:08
2018-10-11T14:43:08
152,558,678
0
0
Apache-2.0
2018-10-11T08:37:20
2018-10-11T08:37:20
null
UTF-8
Python
false
false
4,883
py
#------------------------------------------------------------------------------ # # Copyright (c) Microsoft Corporation. # All rights reserved. # # This code is licensed under the MIT License. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #------------------------------------------------------------------------------ import time import datetime import uuid import base64 import binascii import re import jwt from .constants import Jwt from .log import Logger from .adal_error import AdalError def _get_date_now(): return datetime.datetime.now() def _get_new_jwt_id(): return str(uuid.uuid4()) def _create_x5t_value(thumbprint): hex_val = binascii.a2b_hex(thumbprint) return base64.urlsafe_b64encode(hex_val).decode() def _sign_jwt(header, payload, certificate): try: encoded_jwt = _encode_jwt(payload, certificate, header) except Exception as exp: raise AdalError("Error:Invalid Certificate: Expected Start of Certificate to be '-----BEGIN RSA PRIVATE KEY-----'", exp) _raise_on_invalid_jwt_signature(encoded_jwt) return encoded_jwt def _encode_jwt(payload, certificate, header): return jwt.encode(payload, certificate, algorithm='RS256', headers=header).decode() def _raise_on_invalid_jwt_signature(encoded_jwt): segments = encoded_jwt.split('.') if len(segments) < 3 or not segments[2]: raise AdalError('Failed to sign JWT. This is most likely due to an invalid certificate.') class SelfSignedJwt(object): NumCharIn128BitHexString = 128/8*2 numCharIn160BitHexString = 160/8*2 ThumbprintRegEx = r"^[a-f\d]*$" def __init__(self, call_context, authority, client_id): self._log = Logger('SelfSignedJwt', call_context['log_context']) self._call_context = call_context self._authortiy = authority self._token_endpoint = authority.token_endpoint self._client_id = client_id def _create_header(self, thumbprint): x5t = _create_x5t_value(thumbprint) header = {'typ':'JWT', 'alg':'RS256', 'x5t':x5t} self._log.debug("Creating self signed JWT header. x5t: %(x5t)s", {"x5t": x5t}) return header def _create_payload(self): now = _get_date_now() minutes = datetime.timedelta(0, 0, 0, 0, Jwt.SELF_SIGNED_JWT_LIFETIME) expires = now + minutes self._log.debug( 'Creating self signed JWT payload. Expires: %(expires)s NotBefore: %(nbf)s', {"expires": expires, "nbf": now}) jwt_payload = {} jwt_payload[Jwt.AUDIENCE] = self._token_endpoint jwt_payload[Jwt.ISSUER] = self._client_id jwt_payload[Jwt.SUBJECT] = self._client_id jwt_payload[Jwt.NOT_BEFORE] = int(time.mktime(now.timetuple())) jwt_payload[Jwt.EXPIRES_ON] = int(time.mktime(expires.timetuple())) jwt_payload[Jwt.JWT_ID] = _get_new_jwt_id() return jwt_payload def _raise_on_invalid_thumbprint(self, thumbprint): thumbprint_sizes = [self.NumCharIn128BitHexString, self.numCharIn160BitHexString] size_ok = len(thumbprint) in thumbprint_sizes if not size_ok or not re.search(self.ThumbprintRegEx, thumbprint): raise AdalError("The thumbprint does not match a known format") def _reduce_thumbprint(self, thumbprint): canonical = thumbprint.lower().replace(' ', '').replace(':', '') self._raise_on_invalid_thumbprint(canonical) return canonical def create(self, certificate, thumbprint): thumbprint = self._reduce_thumbprint(thumbprint) header = self._create_header(thumbprint) payload = self._create_payload() return _sign_jwt(header, payload, certificate)
b7f79c4d8d2f67f78e73f488547be2567370dd3a
998a978c0cefcb62d462c64ec88f61b8bdcbbbab
/braindecode/datautil/splitters.py
3cb3f7769369e41edc1817d0ee0b238ab085eb98
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
petsas/braindecode
cf16b52f0bb0897165e14110959e486d0e379d64
651ef3d7a467b22948802527018a7a8e686c567d
refs/heads/master
2020-03-31T00:31:35.215291
2018-09-19T10:33:20
2018-09-19T10:33:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,840
py
import numpy as np from braindecode.datautil.iterators import get_balanced_batches from braindecode.datautil.signal_target import apply_to_X_y, SignalAndTarget def concatenate_sets(sets): """ Concatenate all sets together. Parameters ---------- sets: list of :class:`.SignalAndTarget` Returns ------- concatenated_set: :class:`.SignalAndTarget` """ concatenated_set = sets[0] for s in sets[1:]: concatenated_set = concatenate_two_sets(concatenated_set, s) return concatenated_set def concatenate_two_sets(set_a, set_b): """ Concatenate two sets together. Parameters ---------- set_a, set_b: :class:`.SignalAndTarget` Returns ------- concatenated_set: :class:`.SignalAndTarget` """ new_X = concatenate_np_array_or_add_lists(set_a.X, set_b.X) new_y = concatenate_np_array_or_add_lists(set_a.y, set_b.y) return SignalAndTarget(new_X, new_y) def concatenate_np_array_or_add_lists(a, b): if hasattr(a, 'ndim') and hasattr(b, 'ndim'): new = np.concatenate((a, b), axis=0) else: if hasattr(a, 'ndim'): a = a.tolist() if hasattr(b, 'ndim'): b = b.tolist() new = a + b return new def split_into_two_sets(dataset, first_set_fraction=None, n_first_set=None): """ Split set into two sets either by fraction of first set or by number of trials in first set. Parameters ---------- dataset: :class:`.SignalAndTarget` first_set_fraction: float, optional Fraction of trials in first set. n_first_set: int, optional Number of trials in first set Returns ------- first_set, second_set: :class:`.SignalAndTarget` The two splitted sets. """ assert (first_set_fraction is None) != (n_first_set is None), ( "Pass either first_set_fraction or n_first_set") if n_first_set is None: n_first_set = int(round(len(dataset.X) * first_set_fraction)) assert n_first_set < len(dataset.X) first_set = apply_to_X_y(lambda a: a[:n_first_set], dataset) second_set = apply_to_X_y(lambda a: a[n_first_set:], dataset) return first_set, second_set def select_examples(dataset, indices): """ Select examples from dataset. Parameters ---------- dataset: :class:`.SignalAndTarget` indices: list of int, 1d-array of int Indices to select Returns ------- reduced_set: :class:`.SignalAndTarget` Dataset with only examples selected. """ # probably not necessary indices = np.array(indices) if hasattr(dataset.X, 'ndim'): # numpy array new_X = np.array(dataset.X)[indices] else: # list new_X = [dataset.X[i] for i in indices] new_y = np.asarray(dataset.y)[indices] return SignalAndTarget(new_X, new_y) def split_into_train_valid_test(dataset, n_folds, i_test_fold, rng=None): """ Split datasets into folds, select one valid fold, one test fold and merge rest as train fold. Parameters ---------- dataset: :class:`.SignalAndTarget` n_folds: int Number of folds to split dataset into. i_test_fold: int Index of the test fold (0-based). Validation fold will be immediately preceding fold. rng: `numpy.random.RandomState`, optional Random Generator for shuffling, None means no shuffling Returns ------- reduced_set: :class:`.SignalAndTarget` Dataset with only examples selected. """ n_trials = len(dataset.X) if n_trials < n_folds: raise ValueError("Less Trials: {:d} than folds: {:d}".format( n_trials, n_folds )) shuffle = rng is not None folds = get_balanced_batches( n_trials, rng, shuffle, n_batches=n_folds) test_inds = folds[i_test_fold] valid_inds = folds[i_test_fold - 1] all_inds = list(range(n_trials)) train_inds = np.setdiff1d(all_inds, np.union1d(test_inds, valid_inds)) assert np.intersect1d(train_inds, valid_inds).size == 0 assert np.intersect1d(train_inds, test_inds).size == 0 assert np.intersect1d(valid_inds, test_inds).size == 0 assert np.array_equal(np.sort( np.union1d(train_inds, np.union1d(valid_inds, test_inds))), all_inds) train_set = select_examples(dataset, train_inds) valid_set = select_examples(dataset, valid_inds) test_set = select_examples(dataset, test_inds) return train_set, valid_set, test_set def split_into_train_test(dataset, n_folds, i_test_fold, rng=None): """ Split datasets into folds, select one test fold and merge rest as train fold. Parameters ---------- dataset: :class:`.SignalAndTarget` n_folds: int Number of folds to split dataset into. i_test_fold: int Index of the test fold (0-based) rng: `numpy.random.RandomState`, optional Random Generator for shuffling, None means no shuffling Returns ------- reduced_set: :class:`.SignalAndTarget` Dataset with only examples selected. """ n_trials = len(dataset.X) if n_trials < n_folds: raise ValueError("Less Trials: {:d} than folds: {:d}".format( n_trials, n_folds )) shuffle = rng is not None folds = get_balanced_batches(n_trials, rng, shuffle, n_batches=n_folds) test_inds = folds[i_test_fold] all_inds = list(range(len(n_trials))) train_inds = np.setdiff1d(all_inds, test_inds) assert np.intersect1d(train_inds, test_inds).size == 0 assert np.array_equal(np.sort(np.union1d(train_inds, test_inds)), all_inds) train_set = select_examples(dataset, train_inds) test_set = select_examples(dataset, test_inds) return train_set, test_set
e7ad8276225b9d99786edd79c442cec80c355739
d687928d05e05fac765f3b936c1e0c0d1950c68a
/src/hg/hourglass_tiny.py
0df5b078f74d54702491d4a5a8d86f714e885111
[]
no_license
PeterZs/PuzzleTunnelDiscovery
0b75dc3e62d0e8d18941e3c37646aec498b3a251
badd6debb5cf4882598038ac2cab454e014fc24b
refs/heads/master
2022-06-17T20:03:51.210708
2020-04-30T05:14:16
2020-04-30T05:14:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,233
py
# -*- coding: utf-8 -*- """ Deep Human Pose Estimation Project by Walid Benbihi MSc Individual Project Imperial College Created on Mon Jul 10 19:13:56 2017 @author: Walid Benbihi @mail : w.benbihi(at)gmail.com @github : https://github.com/wbenbihi/hourglasstensorlfow/ Abstract: This python code creates a Stacked Hourglass Model (Credits : A.Newell et al.) (Paper : https://arxiv.org/abs/1603.06937) Code translated from 'anewell' github Torch7(LUA) --> TensorFlow(PYTHON) (Code : https://github.com/anewell/pose-hg-train) Modification are made and explained in the report Goal : Achieve Real Time detection (Webcam) ----- Modifications made to obtain faster results (trade off speed/accuracy) This work is free of use, please cite the author if you use it! """ import time import tensorflow as tf import numpy as np import sys import datetime import os from scipy.misc import imsave import progressbar class HourglassModel(): """ HourglassModel class: (to be renamed) Generate TensorFlow model to train and predict Human Pose from images (soon videos) Please check README.txt for further information on model management. """ def __init__(self, nFeat = 512, nStack = 4, nModules = 1, nLow = 4, outputDim = 16, batch_size = 16, drop_rate = 0.2, lear_rate = 2.5e-4, decay = 0.96, decay_step = 2000, dataset = None, dataset_name='', training = True, w_summary = True, logdir_train = None, logdir_test = None,tiny = True, attention = False,modif = True,w_loss = False, name = 'tiny_hourglass', joints = ['r_anckle', 'r_knee', 'r_hip', 'l_hip', 'l_knee', 'l_anckle', 'pelvis', 'thorax', 'neck', 'head', 'r_wrist', 'r_elbow', 'r_shoulder', 'l_shoulder', 'l_elbow', 'l_wrist']): """ Initializer Args: nStack : number of stacks (stage/Hourglass modules) nFeat : number of feature channels on conv layers nLow : number of downsampling (pooling) per module outputDim : number of output Dimension (16 for MPII) batch_size : size of training/testing Batch dro_rate : Rate of neurons disabling for Dropout Layers lear_rate : Learning Rate starting value decay : Learning Rate Exponential Decay (decay in ]0,1], 1 for constant learning rate) decay_step : Step to apply decay dataset : Dataset (class DataGenerator) dataset_name : Name of the Dataset training : (bool) True for training / False for prediction w_summary : (bool) True/False for summary of weight (to visualize in Tensorboard) tiny : (bool) Activate Tiny Hourglass attention : (bool) Activate Multi Context Attention Mechanism (MCAM) modif : (bool) Boolean to test some network modification # DO NOT USE IT ! USED TO TEST THE NETWORK name : name of the model """ self.nStack = nStack self.nFeat = nFeat self.nModules = nModules self.outDim = outputDim self.batchSize = batch_size self.training = training self.w_summary = w_summary self.tiny = tiny self.dropout_rate = drop_rate self.learning_rate = lear_rate self.decay = decay self.name = name self.attention = attention self.decay_step = decay_step self.nLow = nLow self.modif = modif self.dataset = dataset self.dataset_name = dataset_name self.cpu = '/cpu:0' self.gpu = '/gpu:0' self.logdir_train = logdir_train self.logdir_test = logdir_test self.joints = joints self.njoints = len(self.joints) self.w_loss = w_loss self.c_dim = dataset.c_dim assert self.njoints == dataset.d_dim, 'Number of joints ({}) does not match output dimensions ({})'.format(self.njoints, dataset.d_dim) # ACCESSOR def get_input(self): """ Returns Input (Placeholder) Tensor Image Input : Shape: (None,256,256,c_dim) Type : tf.float32 Warning: Be sure to build the model first """ return self.img def get_output(self): """ Returns Output Tensor Output Tensor : Shape: (None, nbStacks, 64, 64, outputDim) Type : tf.float32 Warning: Be sure to build the model first """ return self.output def get_label(self): """ Returns Label (Placeholder) Tensor Image Input : Shape: (None, nbStacks, 64, 64, outputDim) Type : tf.float32 Warning: Be sure to build the model first """ return self.gtMaps def get_loss(self): """ Returns Loss Tensor Image Input : Shape: (1,) Type : tf.float32 Warning: Be sure to build the model first """ return self.loss def get_saver(self): """ Returns Saver /!\ USE ONLY IF YOU KNOW WHAT YOU ARE DOING Warning: Be sure to build the model first """ return self.saver def generate_model(self): """ Create the complete graph """ startTime = time.time() print('CREATE MODEL:') with tf.device(self.gpu): with tf.name_scope('inputs'): # Shape Input Image - batchSize: None, height: 256, width: 256, channel: 3 (RGB) self.img = tf.placeholder(dtype= tf.float32, shape= (None, 256, 256, self.c_dim), name = 'input_img') if self.w_loss: self.weights = tf.placeholder(dtype = tf.float32, shape = (None, self.outDim)) # Shape Ground Truth Map: batchSize x nStack x 64 x 64 x outDim self.gtMaps = tf.placeholder(dtype = tf.float32, shape = (None, self.nStack, 64, 64, self.outDim)) # TODO : Implement weighted loss function # NOT USABLE AT THE MOMENT #weights = tf.placeholder(dtype = tf.float32, shape = (None, self.nStack, 1, 1, self.outDim)) inputTime = time.time() print('---Inputs : Done (' + str(int(abs(inputTime-startTime))) + ' sec.)') if self.attention: self.output = self._graph_mcam(self.img) else : self.output = self._graph_hourglass(self.img) graphTime = time.time() print('---Graph : Done (' + str(int(abs(graphTime-inputTime))) + ' sec.)') with tf.name_scope('loss'): if self.w_loss: self.loss = tf.reduce_mean(self.weighted_bce_loss(), name='reduced_loss') else: self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.output, labels= self.gtMaps), name= 'cross_entropy_loss') lossTime = time.time() print('---Loss : Done (' + str(int(abs(graphTime-lossTime))) + ' sec.)') with tf.device(self.cpu): with tf.name_scope('accuracy'): self._accuracy_computation() accurTime = time.time() print('---Acc : Done (' + str(int(abs(accurTime-lossTime))) + ' sec.)') with tf.name_scope('steps'): self.train_step = tf.Variable(0, name = 'global_step', trainable= False) with tf.name_scope('lr'): self.lr = tf.train.exponential_decay(self.learning_rate, self.train_step, self.decay_step, self.decay, staircase= True, name= 'learning_rate') lrTime = time.time() print('---LR : Done (' + str(int(abs(accurTime-lrTime))) + ' sec.)') with tf.device(self.gpu): #with tf.name_scope('rmsprop'): #self.optimizer = tf.train.RMSPropOptimizer(learning_rate= self.lr) with tf.name_scope('adam'): self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) optimTime = time.time() print('---Optim : Done (' + str(int(abs(optimTime-lrTime))) + ' sec.)') with tf.name_scope('minimizer'): self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(self.update_ops): self.train_optimize = self.optimizer.minimize(self.loss, self.train_step) minimTime = time.time() print('---Minimizer : Done (' + str(int(abs(optimTime-minimTime))) + ' sec.)') self.init = tf.global_variables_initializer() initTime = time.time() print('---Init : Done (' + str(int(abs(initTime-minimTime))) + ' sec.)') with tf.device(self.cpu): with tf.name_scope('training'): tf.summary.scalar('loss', self.loss, collections = ['train']) tf.summary.scalar('learning_rate', self.lr, collections = ['train']) tf.summary.image('gt_img', self.get_label()[:,0,:,:,:], collections = ['train']) tf.summary.image('pred_img', self.output[:,0,:,:,:], collections = ['train']) with tf.name_scope('summary'): for i in range(len(self.joints)): tf.summary.scalar(self.joints[i], self.joint_accur[i], collections = ['train', 'test']) self.train_op = tf.summary.merge_all('train') self.test_op = tf.summary.merge_all('test') self.weight_op = tf.summary.merge_all('weight') endTime = time.time() print('Model created (' + str(int(abs(endTime-startTime))) + ' sec.)') del endTime, startTime, initTime, optimTime, minimTime, lrTime, accurTime, lossTime, graphTime, inputTime def restore(self, load = None): """ Restore a pretrained model Args: load : Model to load (None if training from scratch) (see README for further information) """ with tf.name_scope('Session'): with tf.device(self.gpu): self._init_session() self._define_saver_summary(summary = False) if load is not None: print('Loading Trained Model') t = time.time() self.saver.restore(self.Session, load) print('Model Loaded (', time.time() - t,' sec.)') else: print('Please give a Model in args (see README for further information)') def _train(self, nEpochs = 10, epochSize = 1000, saveStep = 500, validIter = 10): """ """ with tf.name_scope('Train'): self.generator = self.dataset._aux_generator(self.batchSize, self.nStack, normalize = True, sample_set = 'train') self.valid_gen = self.dataset._aux_generator(self.batchSize, self.nStack, normalize = True, sample_set = 'valid') startTime = time.time() self.resume = {} self.resume['accur'] = [] self.resume['loss'] = [] self.resume['err'] = [] for epoch in range(nEpochs): epochstartTime = time.time() avg_cost = 0. cost = 0. print('Epoch :' + str(epoch) + '/' + str(nEpochs) + '\n') # Training Set for i in range(epochSize): # DISPLAY PROGRESS BAR # TODO : Customize Progress Bar percent = (float(i+1)/float(epochSize)) * 100 num = np.int(20*percent/100) tToEpoch = int((time.time() - epochstartTime) * (100 - percent)/(percent)) sys.stdout.write('\r Train: {0}>'.format("="*num) + "{0}>".format(" "*(20-num)) + '||' + str(percent)[:4] + '%' + ' -cost: ' + str(cost)[:6] + ' -avg_loss: ' + str(avg_cost)[:5] + ' -timeToEnd: ' + str(tToEpoch) + ' sec.') sys.stdout.flush() img_train, gt_train, weight_train = next(self.generator) if saveStep >= 0 and i % saveStep == 0: if self.w_loss: _, c, summary = self.Session.run([self.train_optimize, self.loss, self.train_op], feed_dict = {self.img : img_train, self.gtMaps: gt_train, self.weights: weight_train}) else: _, c, summary = self.Session.run([self.train_optimize, self.loss, self.train_op], feed_dict = {self.img : img_train, self.gtMaps: gt_train}) # Save summary (Loss + Accuracy) self.train_summary.add_summary(summary, epoch*epochSize + i) self.train_summary.flush() else: if self.w_loss: _, c, = self.Session.run([self.train_optimize, self.loss], feed_dict = {self.img : img_train, self.gtMaps: gt_train, self.weights: weight_train}) else: _, c, = self.Session.run([self.train_optimize, self.loss], feed_dict = {self.img : img_train, self.gtMaps: gt_train}) cost += c avg_cost += c/epochSize epochfinishTime = time.time() #Save Weight (axis = epoch) if self.w_loss: weight_summary = self.Session.run(self.weight_op, {self.img : img_train, self.gtMaps: gt_train, self.weights: weight_train}) else : weight_summary = self.Session.run(self.weight_op, {self.img : img_train, self.gtMaps: gt_train}) self.train_summary.add_summary(weight_summary, epoch) self.train_summary.flush() #self.weight_summary.add_summary(weight_summary, epoch) #self.weight_summary.flush() print('Epoch ' + str(epoch) + '/' + str(nEpochs) + ' done in ' + str(int(epochfinishTime-epochstartTime)) + ' sec.' + ' -avg_time/batch: ' + str(((epochfinishTime-epochstartTime)/epochSize))[:4] + ' sec.') with tf.name_scope('save'): self.saver.save(self.Session, os.path.join(os.getcwd(),str(self.name + '_' + str(epoch + 1)))) self.resume['loss'].append(cost) # Validation Set accuracy_array = np.array([0.0]*len(self.joint_accur)) for i in range(validIter): img_valid, gt_valid, w_valid = next(self.generator) accuracy_pred = self.Session.run(self.joint_accur, feed_dict = {self.img : img_valid, self.gtMaps: gt_valid}) accuracy_array += np.array(accuracy_pred, dtype = np.float32) / validIter print('--Avg. Accuracy = {} %'.format((np.sum(accuracy_array) / len(accuracy_array)) * 100)) self.resume['accur'].append(accuracy_pred) self.resume['err'].append(np.sum(accuracy_array) / len(accuracy_array)) valid_summary = self.Session.run(self.test_op, feed_dict={self.img : img_valid, self.gtMaps: gt_valid}) self.test_summary.add_summary(valid_summary, epoch) self.test_summary.flush() print('Training Done') print('Resume:' + '\n' + ' Epochs: ' + str(nEpochs) + '\n' + ' n. Images: ' + str(nEpochs * epochSize * self.batchSize) ) print(' Final Loss: ' + str(cost) + '\n' + ' Relative Loss: ' + str(100*self.resume['loss'][-1]/(self.resume['loss'][0] + 0.1)) + '%' ) print(' Relative Improvement: ' + str((self.resume['err'][-1] - self.resume['err'][0]) * 100) +'%') print(' Training Time: ' + str( datetime.timedelta(seconds=time.time() - startTime))) def testing_init(self, nEpochs = 1, epochSize = 1000, saveStep = 0, dataset=None, load=None): with tf.name_scope('Session'): with tf.device(self.gpu): self._init_weight() self._define_saver_summary() assert load is not None ckpt = tf.train.get_checkpoint_state(load) assert ckpt and ckpt.model_checkpoint_path ckpt_name = os.path.basename(ckpt.model_checkpoint_path) self.saver.restore(self.Session, os.path.join(load, ckpt_name)) self._test(nEpochs=1, epochSize=epochSize, saveStep=0, out_dir=load) def _test(self, nEpochs = 1, epochSize = 1000, saveStep = 500, out_dir=None): assert nEpochs == 1 assert self.w_loss is False assert out_dir is not None assert saveStep <= 0 tres = 2048 atex = np.zeros(shape=(tres,tres), dtype=np.float32) # accumulator texture atex_count = np.zeros(shape=(tres,tres), dtype=np.int) # present in the input image """ """ with tf.name_scope('Train'): self.generator = self.dataset._aux_generator(self.batchSize, self.nStack, normalize = True, sample_set = 'test') startTime = time.time() pred = self.output[:, self.nStack - 1] ''' Notes about profiling (on 1080 Ti, 16384 * 4 samples, '~' means ETA from progressbar): batch size 4: 19 mins batch size 4 w/o assignment: ~14 mins batch size 8: ~17-18 mins (6999 MB) batch size 8 w/o assignment: ~12 mins batch size 16: ~13 mins (7511 MB) batch size 16 w/o assignment: ~11 mins batch size 32: ~12 mins (7511 MB) batch size 32 w/o assignment: ~11 mins batch size 32 rendering only: 3:51 ''' PROFILING2=False # w/o prediction and assignment (generation only) PROFILING=False or PROFILING2 # w/o assignment for epoch in range(nEpochs): epochstartTime = time.time() print('Epoch :' + str(epoch) + '/' + str(nEpochs) + '\n') # Training Set for i in progressbar.progressbar(range(epochSize)): # DISPLAY PROGRESS BAR # TODO : Customize Progress Bar img_test, batch_uv, _ = next(self.generator) if PROFILING2: continue [test_y] = self.Session.run([pred], feed_dict = {self.img : img_test}) if PROFILING: continue # Profiling, check the % of time used by prediction for uvi,labeli in zip(batch_uv, test_y): # np.clip(labeli, 0.0, 1.0, out=labeli) labeli = np.reshape(labeli, (64,64)) labeli = np.kron(labeli, np.ones((4,4))) # 64x64 -> 256x256 nz = np.nonzero(labeli) scores = labeli[nz] uvs = uvi[nz] us = 1.0 - uvs[:,1] us = np.array(tres * us, dtype=int) vs = uvs[:,0] vs = np.array(tres * vs, dtype=int) # Filtering US and VS us_inrange = (us >= 0) us_inrange = np.logical_and(us < tres, us_inrange) # Not sure the effect when out=one of the input vs_inrange = (vs >= 0) vs_inrange = np.logical_and(vs < tres, vs_inrange) # Not sure the effect when out=one of the input inrange = np.logical_and(us_inrange, vs_inrange) f_us = us[inrange] f_vs = vs[inrange] f_sc = scores[inrange] atex[f_us,f_vs] += f_sc atex_count[f_us,f_vs] += 1 ''' # TODO: Better efficiency for iu,iv,s in zip(us,vs,scores): if iu < 0 or iu >= tres or iv < 0 or iv > tres: continue atex[iu,iv] += s ''' epochfinishTime = time.time() print('Epoch ' + str(epoch) + '/' + str(nEpochs) + ' done in ' + str(int(epochfinishTime-epochstartTime)) + ' sec.' + ' -avg_time/batch: ' + str(((epochfinishTime-epochstartTime)/epochSize))[:4] + ' sec.') if PROFILING or PROFILING2: # Explicit better than implicit (PROFILING2 implies PROFILING) return npz_fn = '{}/{}-atex.npz'.format(out_dir, self.dataset_name) png_fn = '{}/{}-atex.png'.format(out_dir, self.dataset_name) avgnpz_fn = '{}/{}-atex-avg.npz'.format(out_dir, self.dataset_name) avgpng_fn = '{}/{}-atex-avg.png'.format(out_dir, self.dataset_name) print('Testing Done. Saving files to\n{}\n{}'.format(npz_fn, png_fn)) np.clip(atex_count, a_min=1, a_max=None, out=atex_count) np.savez(npz_fn, ATEX=atex, ATEX_COUNT=atex_count) np.savez(avgnpz_fn, ATEX=atex/atex_count) natex = atex / np.amax(atex) imsave(png_fn, natex) natex = atex/atex_count imsave(avgpng_fn, natex) def record_training(self, record): """ Record Training Data and Export them in CSV file Args: record : record dictionnary """ out_file = open(self.name + '_train_record.csv', 'w') for line in range(len(record['accur'])): out_string = '' labels = [record['loss'][line]] + [record['err'][line]] + record['accur'][line] for label in labels: out_string += str(label) + ', ' out_string += '\n' out_file.write(out_string) out_file.close() print('Training Record Saved') def training_init(self, nEpochs = 10, epochSize = 1000, saveStep = 500, dataset = None, load = None): """ Initialize the training Args: nEpochs : Number of Epochs to train epochSize : Size of one Epoch saveStep : Step to save 'train' summary (has to be lower than epochSize) dataset : Data Generator (see generator.py) load : Model to load (None if training from scratch) (see README for further information) """ with tf.name_scope('Session'): with tf.device(self.gpu): self._init_weight() self._define_saver_summary() if load is not None: self.saver.restore(self.Session, load) #try: # self.saver.restore(self.Session, load) #except Exception: # print('Loading Failed! (Check README file for further information)') self._train(nEpochs, epochSize, saveStep, validIter=10) def weighted_bce_loss(self): """ Create Weighted Loss Function WORK IN PROGRESS """ self.bceloss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.output, labels= self.gtMaps), name= 'cross_entropy_loss') e1 = tf.expand_dims(self.weights,axis = 1, name = 'expdim01') e2 = tf.expand_dims(e1,axis = 1, name = 'expdim02') e3 = tf.expand_dims(e2,axis = 1, name = 'expdim03') return tf.multiply(e3,self.bceloss, name = 'lossW') def _accuracy_computation(self): """ Computes accuracy tensor """ self.joint_accur = [] for i in range(len(self.joints)): self.joint_accur.append(self._accur(self.output[:, self.nStack - 1, :, :,i], self.gtMaps[:, self.nStack - 1, :, :, i], self.batchSize)) def _define_saver_summary(self, summary = True): """ Create Summary and Saver Args: logdir_train : Path to train summary directory logdir_test : Path to test summary directory """ if (self.logdir_train == None) or (self.logdir_test == None): raise ValueError('Train/Test directory not assigned') else: with tf.device(self.cpu): self.saver = tf.train.Saver() if summary: with tf.device(self.gpu): self.train_summary = tf.summary.FileWriter(self.logdir_train, tf.get_default_graph()) self.test_summary = tf.summary.FileWriter(self.logdir_test) def _init_weight(self): """ Initialize weights """ print('Session initialization') config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True self.Session = tf.Session(config=config) t_start = time.time() self.Session.run(self.init) print('Sess initialized in ' + str(int(time.time() - t_start)) + ' sec.') def _init_session(self): """ Initialize Session """ print('Session initialization') t_start = time.time() config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True self.Session = tf.Session(config=config) print('Sess initialized in ' + str(int(time.time() - t_start)) + ' sec.') def _graph_hourglass(self, inputs): """Create the Network Args: inputs : TF Tensor (placeholder) of shape (None, 256, 256, c_dim) #TODO : Create a parameter for customize size """ with tf.name_scope('model'): with tf.name_scope('preprocessing'): # Input Dim : nbImages x 256 x 256 x 3 pad1 = tf.pad(inputs, [[0,0],[2,2],[2,2],[0,0]], name='pad_1') # Dim pad1 : nbImages x 260 x 260 x 3 conv1 = self._conv_bn_relu(pad1, filters= 64, kernel_size = 6, strides = 2, name = 'conv_256_to_128') # Dim conv1 : nbImages x 128 x 128 x 64 r1 = self._residual(conv1, numOut = 128, name = 'r1') # Dim pad1 : nbImages x 128 x 128 x 128 pool1 = tf.contrib.layers.max_pool2d(r1, [2,2], [2,2], padding='VALID') # Dim pool1 : nbImages x 64 x 64 x 128 if self.tiny: r3 = self._residual(pool1, numOut=self.nFeat, name='r3') else: r2 = self._residual(pool1, numOut= int(self.nFeat/2), name = 'r2') r3 = self._residual(r2, numOut= self.nFeat, name = 'r3') # Storage Table hg = [None] * self.nStack ll = [None] * self.nStack ll_ = [None] * self.nStack drop = [None] * self.nStack out = [None] * self.nStack out_ = [None] * self.nStack sum_ = [None] * self.nStack if self.tiny: with tf.name_scope('stacks'): with tf.name_scope('stage_0'): hg[0] = self._hourglass(r3, self.nLow, self.nFeat, 'hourglass') drop[0] = tf.layers.dropout(hg[0], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[0] = self._conv_bn_relu(drop[0], self.nFeat, 1, 1, name = 'll') if self.modif: # TEST OF BATCH RELU out[0] = self._conv_bn_relu(ll[0], self.outDim, 1, 1, 'VALID', 'out') else: out[0] = self._conv(ll[0], self.outDim, 1, 1, 'VALID', 'out') out_[0] = self._conv(out[0], self.nFeat, 1, 1, 'VALID', 'out_') sum_[0] = tf.add_n([out_[0], ll[0], r3], name = 'merge') for i in range(1, self.nStack - 1): with tf.name_scope('stage_' + str(i)): hg[i] = self._hourglass(sum_[i-1], self.nLow, self.nFeat, 'hourglass') drop[i] = tf.layers.dropout(hg[i], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[i] = self._conv_bn_relu(drop[i], self.nFeat, 1, 1, name= 'll') if self.modif: # TEST OF BATCH RELU out[i] = self._conv_bn_relu(ll[i], self.outDim, 1, 1, 'VALID', 'out') else: out[i] = self._conv(ll[i], self.outDim, 1, 1, 'VALID', 'out') out_[i] = self._conv(out[i], self.nFeat, 1, 1, 'VALID', 'out_') sum_[i] = tf.add_n([out_[i], ll[i], sum_[i-1]], name= 'merge') with tf.name_scope('stage_' + str(self.nStack - 1)): hg[self.nStack - 1] = self._hourglass(sum_[self.nStack - 2], self.nLow, self.nFeat, 'hourglass') drop[self.nStack-1] = tf.layers.dropout(hg[self.nStack-1], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[self.nStack - 1] = self._conv_bn_relu(drop[self.nStack-1], self.nFeat,1,1, 'VALID', 'conv') if self.modif: out[self.nStack - 1] = self._conv_bn_relu(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out') else: out[self.nStack - 1] = self._conv(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out') if self.modif: return tf.nn.sigmoid(tf.stack(out, axis= 1 , name= 'stack_output'),name = 'final_output') else: return tf.stack(out, axis= 1 , name = 'final_output') else: with tf.name_scope('stacks'): with tf.name_scope('stage_0'): hg[0] = self._hourglass(r3, self.nLow, self.nFeat, 'hourglass') drop[0] = tf.layers.dropout(hg[0], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[0] = self._conv_bn_relu(drop[0], self.nFeat, 1,1, 'VALID', name = 'conv') ll_[0] = self._conv(ll[0], self.nFeat, 1, 1, 'VALID', 'll') if self.modif: # TEST OF BATCH RELU out[0] = self._conv_bn_relu(ll[0], self.outDim, 1, 1, 'VALID', 'out') else: out[0] = self._conv(ll[0], self.outDim, 1, 1, 'VALID', 'out') out_[0] = self._conv(out[0], self.nFeat, 1, 1, 'VALID', 'out_') sum_[0] = tf.add_n([out_[0], r3, ll_[0]], name='merge') for i in range(1, self.nStack -1): with tf.name_scope('stage_' + str(i)): hg[i] = self._hourglass(sum_[i-1], self.nLow, self.nFeat, 'hourglass') drop[i] = tf.layers.dropout(hg[i], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[i] = self._conv_bn_relu(drop[i], self.nFeat, 1, 1, 'VALID', name= 'conv') ll_[i] = self._conv(ll[i], self.nFeat, 1, 1, 'VALID', 'll') if self.modif: out[i] = self._conv_bn_relu(ll[i], self.outDim, 1, 1, 'VALID', 'out') else: out[i] = self._conv(ll[i], self.outDim, 1, 1, 'VALID', 'out') out_[i] = self._conv(out[i], self.nFeat, 1, 1, 'VALID', 'out_') sum_[i] = tf.add_n([out_[i], sum_[i-1], ll_[0]], name= 'merge') with tf.name_scope('stage_' + str(self.nStack -1)): hg[self.nStack - 1] = self._hourglass(sum_[self.nStack - 2], self.nLow, self.nFeat, 'hourglass') drop[self.nStack-1] = tf.layers.dropout(hg[self.nStack-1], rate = self.dropout_rate, training = self.training, name = 'dropout') ll[self.nStack - 1] = self._conv_bn_relu(drop[self.nStack-1], self.nFeat, 1, 1, 'VALID', 'conv') if self.modif: out[self.nStack - 1] = self._conv_bn_relu(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out') else: out[self.nStack - 1] = self._conv(ll[self.nStack - 1], self.outDim, 1,1, 'VALID', 'out') if self.modif: return tf.nn.sigmoid(tf.stack(out, axis= 1 , name= 'stack_output'),name = 'final_output') else: return tf.stack(out, axis= 1 , name = 'final_output') def _conv(self, inputs, filters, kernel_size = 1, strides = 1, pad = 'VALID', name = 'conv'): """ Spatial Convolution (CONV2D) Args: inputs : Input Tensor (Data Type : NHWC) filters : Number of filters (channels) kernel_size : Size of kernel strides : Stride pad : Padding Type (VALID/SAME) # DO NOT USE 'SAME' NETWORK BUILT FOR VALID name : Name of the block Returns: conv : Output Tensor (Convolved Input) """ with tf.name_scope(name): # Kernel for convolution, Xavier Initialisation kernel = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([kernel_size,kernel_size, inputs.get_shape().as_list()[3], filters]), name= 'weights') conv = tf.nn.conv2d(inputs, kernel, [1,strides,strides,1], padding=pad, data_format='NHWC') if self.w_summary: with tf.device('/cpu:0'): tf.summary.histogram('weights_summary', kernel, collections = ['weight']) return conv def _conv_bn_relu(self, inputs, filters, kernel_size = 1, strides = 1, pad = 'VALID', name = 'conv_bn_relu'): """ Spatial Convolution (CONV2D) + BatchNormalization + ReLU Activation Args: inputs : Input Tensor (Data Type : NHWC) filters : Number of filters (channels) kernel_size : Size of kernel strides : Stride pad : Padding Type (VALID/SAME) # DO NOT USE 'SAME' NETWORK BUILT FOR VALID name : Name of the block Returns: norm : Output Tensor """ with tf.name_scope(name): kernel = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([kernel_size,kernel_size, inputs.get_shape().as_list()[3], filters]), name= 'weights') conv = tf.nn.conv2d(inputs, kernel, [1,strides,strides,1], padding='VALID', data_format='NHWC') norm = tf.contrib.layers.batch_norm(conv, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) if self.w_summary: with tf.device('/cpu:0'): tf.summary.histogram('weights_summary', kernel, collections = ['weight']) return norm def _conv_block(self, inputs, numOut, name = 'conv_block'): """ Convolutional Block Args: inputs : Input Tensor numOut : Desired output number of channel name : Name of the block Returns: conv_3 : Output Tensor """ if self.tiny: with tf.name_scope(name): norm = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) pad = tf.pad(norm, np.array([[0,0],[1,1],[1,1],[0,0]]), name= 'pad') conv = self._conv(pad, int(numOut), kernel_size=3, strides=1, pad = 'VALID', name= 'conv') return conv else: with tf.name_scope(name): with tf.name_scope('norm_1'): norm_1 = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) conv_1 = self._conv(norm_1, int(numOut/2), kernel_size=1, strides=1, pad = 'VALID', name= 'conv') with tf.name_scope('norm_2'): norm_2 = tf.contrib.layers.batch_norm(conv_1, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) pad = tf.pad(norm_2, np.array([[0,0],[1,1],[1,1],[0,0]]), name= 'pad') conv_2 = self._conv(pad, int(numOut/2), kernel_size=3, strides=1, pad = 'VALID', name= 'conv') with tf.name_scope('norm_3'): norm_3 = tf.contrib.layers.batch_norm(conv_2, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) conv_3 = self._conv(norm_3, int(numOut), kernel_size=1, strides=1, pad = 'VALID', name= 'conv') return conv_3 def _skip_layer(self, inputs, numOut, name = 'skip_layer'): """ Skip Layer Args: inputs : Input Tensor numOut : Desired output number of channel name : Name of the bloc Returns: Tensor of shape (None, inputs.height, inputs.width, numOut) """ with tf.name_scope(name): if inputs.get_shape().as_list()[3] == numOut: return inputs else: conv = self._conv(inputs, numOut, kernel_size=1, strides = 1, name = 'conv') return conv def _residual(self, inputs, numOut, name = 'residual_block'): """ Residual Unit Args: inputs : Input Tensor numOut : Number of Output Features (channels) name : Name of the block """ with tf.name_scope(name): convb = self._conv_block(inputs, numOut) skipl = self._skip_layer(inputs, numOut) if self.modif: return tf.nn.relu(tf.add_n([convb, skipl], name = 'res_block')) else: return tf.add_n([convb, skipl], name = 'res_block') def _hourglass(self, inputs, n, numOut, name = 'hourglass'): """ Hourglass Module Args: inputs : Input Tensor n : Number of downsampling step numOut : Number of Output Features (channels) name : Name of the block """ with tf.name_scope(name): # Upper Branch up_1 = self._residual(inputs, numOut, name = 'up_1') # Lower Branch low_ = tf.contrib.layers.max_pool2d(inputs, [2,2], [2,2], padding='VALID') low_1= self._residual(low_, numOut, name = 'low_1') if n > 0: low_2 = self._hourglass(low_1, n-1, numOut, name = 'low_2') else: low_2 = self._residual(low_1, numOut, name = 'low_2') low_3 = self._residual(low_2, numOut, name = 'low_3') up_2 = tf.image.resize_nearest_neighbor(low_3, tf.shape(low_3)[1:3]*2, name = 'upsampling') if self.modif: # Use of RELU return tf.nn.relu(tf.add_n([up_2,up_1]), name='out_hg') else: return tf.add_n([up_2,up_1], name='out_hg') def _argmax(self, tensor): """ ArgMax Args: tensor : 2D - Tensor (Height x Width : 64x64 ) Returns: arg : Tuple of max position """ resh = tf.reshape(tensor, [-1]) argmax = tf.argmax(resh, 0) return (argmax // tensor.get_shape().as_list()[0], argmax % tensor.get_shape().as_list()[0]) def _compute_err(self, u, v): """ Given 2 tensors compute the euclidean distance (L2) between maxima locations Args: u : 2D - Tensor (Height x Width : 64x64 ) v : 2D - Tensor (Height x Width : 64x64 ) Returns: (float) : Distance (in [0,1]) """ u_x,u_y = self._argmax(u) v_x,v_y = self._argmax(v) return tf.divide(tf.sqrt(tf.square(tf.to_float(u_x - v_x)) + tf.square(tf.to_float(u_y - v_y))), tf.to_float(91)) def _accur(self, pred, gtMap, num_image): """ Given a Prediction batch (pred) and a Ground Truth batch (gtMaps), returns one minus the mean distance. Args: pred : Prediction Batch (shape = num_image x 64 x 64) gtMaps : Ground Truth Batch (shape = num_image x 64 x 64) num_image : (int) Number of images in batch Returns: (float) """ err = tf.to_float(0) for i in range(num_image): err = tf.add(err, self._compute_err(pred[i], gtMap[i])) return tf.subtract(tf.to_float(1), err/num_image) # MULTI CONTEXT ATTENTION MECHANISM # WORK IN PROGRESS DO NOT USE THESE METHODS # BASED ON: # Multi-Context Attention for Human Pose Estimation # Authors: Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L. Yuille, Xiaogang Wang # Paper: https://arxiv.org/abs/1702.07432 # GitHub Torch7 Code: https://github.com/bearpaw/pose-attention def _bn_relu(self, inputs): norm = tf.contrib.layers.batch_norm(inputs, 0.9, epsilon=1e-5, activation_fn = tf.nn.relu, is_training = self.training) return norm def _pool_layer(self, inputs, numOut, name = 'pool_layer'): with tf.name_scope(name): bnr_1 = self._bn_relu(inputs) pool = tf.contrib.layers.max_pool2d(bnr_1,[2,2],[2,2],padding='VALID') pad_1 = tf.pad(pool, np.array([[0,0],[1,1],[1,1],[0,0]])) conv_1 = self._conv(pad_1, numOut, kernel_size=3, strides=1, name='conv') bnr_2 = self._bn_relu(conv_1) pad_2 = tf.pad(bnr_2, np.array([[0,0],[1,1],[1,1],[0,0]])) conv_2 = self._conv(pad_2, numOut, kernel_size=3, strides=1, name='conv') upsample = tf.image.resize_nearest_neighbor(conv_2, tf.shape(conv_2)[1:3]*2, name = 'upsampling') return upsample def _attention_iter(self, inputs, lrnSize, itersize, name = 'attention_iter'): with tf.name_scope(name): numIn = inputs.get_shape().as_list()[3] padding = np.floor(lrnSize/2) pad = tf.pad(inputs, np.array([[0,0],[1,1],[1,1],[0,0]])) U = self._conv(pad, filters=1, kernel_size=3, strides=1) pad_2 = tf.pad(U, np.array([[0,0],[padding,padding],[padding,padding],[0,0]])) sharedK = tf.Variable(tf.contrib.layers.xavier_initializer(uniform=False)([lrnSize,lrnSize, 1, 1]), name= 'shared_weights') Q = [] C = [] for i in range(itersize): if i ==0: conv = tf.nn.conv2d(pad_2, sharedK, [1,1,1,1], padding='VALID', data_format='NHWC') else: conv = tf.nn.conv2d(Q[i-1], sharedK, [1,1,1,1], padding='SAME', data_format='NHWC') C.append(conv) Q_tmp = tf.nn.sigmoid(tf.add_n([C[i], U])) Q.append(Q_tmp) stacks = [] for i in range(numIn): stacks.append(Q[-1]) pfeat = tf.multiply(inputs,tf.concat(stacks, axis = 3) ) return pfeat def _attention_part_crf(self, inputs, lrnSize, itersize, usepart, name = 'attention_part'): with tf.name_scope(name): if usepart == 0: return self._attention_iter(inputs, lrnSize, itersize) else: partnum = self.outDim pre = [] for i in range(partnum): att = self._attention_iter(inputs, lrnSize, itersize) pad = tf.pad(att, np.array([[0,0],[0,0],[0,0],[0,0]])) s = self._conv(pad, filters=1, kernel_size=1, strides=1) pre.append(s) return tf.concat(pre, axis = 3) def _residual_pool(self, inputs, numOut, name = 'residual_pool'): with tf.name_scope(name): return tf.add_n([self._conv_block(inputs, numOut), self._skip_layer(inputs, numOut), self._pool_layer(inputs, numOut)]) def _rep_residual(self, inputs, numOut, nRep, name = 'rep_residual'): with tf.name_scope(name): out = [None]*nRep for i in range(nRep): if i == 0: tmpout = self._residual(inputs,numOut) else: tmpout = self._residual_pool(out[i-1],numOut) out[i] = tmpout return out[nRep-1] def _hg_mcam(self, inputs, n, numOut, imSize, nModual, name = 'mcam_hg'): with tf.name_scope(name): #------------Upper Branch pool = tf.contrib.layers.max_pool2d(inputs,[2,2],[2,2],padding='VALID') up = [] low = [] for i in range(nModual): if i == 0: if n>1: tmpup = self._rep_residual(inputs, numOut, n -1) else: tmpup = self._residual(inputs, numOut) tmplow = self._residual(pool, numOut) else: if n>1: tmpup = self._rep_residual(up[i-1], numOut, n-1) else: tmpup = self._residual_pool(up[i-1], numOut) tmplow = self._residual(low[i-1], numOut) up.append(tmpup) low.append(tmplow) #up[i] = tmpup #low[i] = tmplow #----------------Lower Branch if n>1: low2 = self._hg_mcam(low[-1], n-1, numOut, int(imSize/2), nModual) else: low2 = self._residual(low[-1], numOut) low3 = self._residual(low2, numOut) up_2 = tf.image.resize_nearest_neighbor(low3, tf.shape(low3)[1:3]*2, name = 'upsampling') return tf.add_n([up[-1], up_2], name = 'out_hg') def _lin(self, inputs, numOut, name = 'lin'): l = self._conv(inputs, filters = numOut, kernel_size = 1, strides = 1) return self._bn_relu(l) def _graph_mcam(self, inputs): with tf.name_scope('preprocessing'): pad1 = tf.pad(inputs, np.array([[0,0],[3,3],[3,3],[0,0]])) cnv1_ = self._conv(pad1, filters = 64, kernel_size = 7, strides = 1) cnv1 = self._bn_relu(cnv1_) r1 = self._residual(cnv1, 64) pool1 = tf.contrib.layers.max_pool2d(r1,[2,2],[2,2],padding='VALID') r2 = self._residual(pool1, 64) r3 = self._residual(r2, 128) pool2 = tf.contrib.layers.max_pool2d(r3,[2,2],[2,2],padding='VALID') r4 = self._residual(pool2,128) r5 = self._residual(r4, 128) r6 = self._residual(r5, 256) out = [] inter = [] inter.append(r6) if self.nLow == 3: nModual = int(16/self.nStack) else: nModual = int(8/self.nStack) with tf.name_scope('stacks'): for i in range(self.nStack): with tf.name_scope('houglass_' + str(i+1)): hg = self._hg_mcam(inter[i], self.nLow, self.nFeat, 64, nModual) if i == self.nStack - 1: ll1 = self._lin(hg, self.nFeat*2) ll2 = self._lin(ll1, self.nFeat*2) drop = tf.layers.dropout(ll2, rate=0.1, training = self.training) att = self._attention_part_crf(drop, 1, 3, 0) tmpOut = self._attention_part_crf(att, 1, 3, 1) else: ll1 = self._lin(hg, self.nFeat) ll2 = self._lin(ll1, self.nFeat) drop = tf.layers.dropout(ll2, rate=0.1, training = self.training) if i > self.nStack // 2: att = self._attention_part_crf(drop, 1, 3, 0) tmpOut = self._attention_part_crf(att, 1, 3, 1) else: att = self._attention_part_crf(ll2, 1, 3, 0) tmpOut = self._conv(att, filters = self.outDim, kernel_size = 1, strides = 1) out.append(tmpOut) if i < self.nStack - 1: outmap = self._conv(tmpOut, filters = self.nFeat, kernel_size = 1, strides = 1) ll3 = self._lin(outmap, self.nFeat) tmointer = tf.add_n([inter[i], outmap, ll3]) inter.append(tmointer) return tf.stack(out, axis= 1 , name = 'final_output')
ee2e28c481d7afa48b81d0bcf46feb11e033f0ac
61188d30cd69cfa5063b604f73ced3911e377d99
/tests/test_solver.py
c9333da956b04805e1d358204575c85e140b6173
[ "BSD-3-Clause" ]
permissive
bjodah/odelab
8dc984f9bcbb7cb9397cb0d8e598ccdfb52e9301
ac6e2e375579fe10e8ee4d7fc89d2c937bd64f6e
refs/heads/master
2021-01-18T10:41:57.973986
2013-01-08T21:44:55
2013-01-08T21:44:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,460
py
# -*- coding: UTF-8 -*- from __future__ import division from odelab.scheme.rungekutta import * from odelab.scheme.generallinear import * from odelab.scheme import * from odelab.scheme.classic import * from odelab.scheme.exponential import * from odelab.store import Store, PyTableStore, SimpleStore from odelab.system.classic import * from odelab.system.exponential import * from odelab import * import tempfile import os import numpy as np import numpy.testing as npt import nose.tools as nt from nose.plugins.skip import SkipTest import pylab as pl pl.ioff() Solver.catch_runtime = False class Harness(object): no_plot = True def f(t,u): return t*np.ones_like(u) def const_f(c,t,u): return c*np.ones_like(u) def time_f(t,u): return t def test_solver_autosave(): solver = Solver(ExplicitEuler(h=.1), System(f)) solver.initialize(u0=1.) solver.run() nt.assert_equal(solver.guess_name(), 'System_ExplicitEuler_T1.0') def test_duration(): """Duration are added from run to run""" solver = Solver(ExplicitEuler(h=.1), System(f)) solver.initialize(u0=1.,time=1.,) solver.run() d1 = solver.store['duration'] solver.run(time=.1) d2 = solver.store['duration'] nt.assert_greater(d2, d1) def test_initialize_len1(): solver = Solver(ExplicitEuler(.1),System(f)) solver.initialize(u0=1.) nt.assert_equal(len(solver),1) class InitializedTwiceError(ValueError): pass class Scheme_init_once(ExplicitEuler): def __init__(self, *args,**kwargs): super(Scheme_init_once,self).__init__(*args, **kwargs) self.is_initialized = False def initialize(self, events): if self.is_initialized: raise InitializedTwiceError('initialized twice!') super(Scheme_init_once,self).initialize(events) self.is_initialized = True def test_start_from_two(): # check that a scheme is not initialized twice, even if we start from more than one event dt = .1 solver = Solver(Scheme_init_once(dt), System(f)) solver.initialize(u0=1.) solver.run(2*dt) nt.assert_equal(len(solver),3) solver.scheme.is_initialized = False solver.run(1.) print len(solver) print solver.get_events() @nt.raises(InitializedTwiceError) def test_initialize_reset_scheme(): solver = Solver(Scheme_init_once(.1), System(f)) solver.initialize(u0=1., name='first') nt.assert_is(solver.current_scheme, None) solver.run(1.) solver.initialize(u0=2.,name='second') solver.run(1.) @nt.raises(MultistepInitializationError) def test_multistep_init_exception(): multi_scheme = AdamsBashforth2(.1) s = Solver(scheme=multi_scheme, system=System(f)) s.initialize(u0=1.) with s.open_store() as events: s.set_scheme(multi_scheme, events) class Test_Access(object): """ Test the Solver.get_events method. """ def setUp(self): self.s = Solver(ExplicitEuler(.1), System(partial(const_f, 1.))) self.time = 100 self.s.initialize(u0=np.array([0.]),time=self.time) def test_access(self): self.s.run() sampling_rate = .5 evts = self.s.get_events(t0=0, time=50.05, sampling_rate=sampling_rate) nt.assert_almost_equal(len(evts.T), len(self.s)*sampling_rate/2, -1) # approx 1/4 of total nb of events ## nt.assert_equal(len(evts.T), 250) npt.assert_array_almost_equal(evts[:,-1], np.array([50.,50.])) @nt.raises(Solver.NotRun) def test_notrun(self): self.s.get_events() from functools import partial const_r = partial(const_f, 1.) const_c = partial(const_f, 1.j) class Harness_Solver(Harness): def setUp(self): self.setup_solver() dim = 1 def set_system(self, f): self.solver.system = System(f) def test_scheme_str(self): # should not raise an exception even though h is not yet set in the underlying scheme: print str(self.solver) def test_initialize(self): u0 = np.random.rand(self.dim) self.solver.initialize(u0=u0,) nt.assert_equal(self.solver.time, Solver.time) nt.assert_equal(len(self.solver), 1) @nt.raises(PyTableStore.AlreadyInitialized) def test_initialize_twice(self): if Store is SimpleStore: raise SkipTest() u0 = np.random.rand(self.dim) self.solver.initialize(u0=u0) self.solver.initialize(u0=u0) def test_initialize_scheme(self): raise SkipTest('not relevant anymore, time step is initialized directly at the scheme level') h = 10. self.solver.initialize(u0=np.random.rand(self.dim),) e0 = self.solver.initial() with self.solver.open_store() as events: self.solver.set_scheme(self.solver.scheme, events) self.solver.step(e0[-1], e0[:-1],) nt.assert_equal(self.solver.scheme.h, h) def test_quadratic(self): print type(self).__name__ self.set_system(time_f) self.solver.initialize(u0=1., time=1.,) self.solver.run() # u'(t) = t; u(0) = u0; => u(t) == u0 + t**2/2 npt.assert_array_almost_equal(self.solver.final(), np.array([3/2,1.]), decimal=1) def check_const(self, f, u0, expected): """should solve the f=c exactly""" print type(self).__name__ self.check_skip(u0,f) self.set_system(f) self.solver.initialize(u0=u0, time=1.,) self.solver.run() expected_event = np.hstack([expected, 1.]) npt.assert_almost_equal(self.solver.final(), expected_event, 1) def check_skip(self,u0,f): return def test_real_const(self): self.check_const(const_r, 1., 2.) def test_complex_const(self): raise SkipTest('Current nonlinear solver does not work with the complex type.') self.check_const(const_c, 1.+0j, 1.+1.j) def test_repr(self): expected = '<Solver: {0}'.format(repr(self.solver.scheme)) r = repr(self.solver) nt.assert_true(r.startswith(expected)) if self.solver.init_scheme is not None: nt.assert_regexp_matches(r, repr(self.solver.init_scheme)) class Test_EEuler(Harness_Solver): def setup_solver(self): self.solver = Solver(ExplicitEuler(h=.1), System(f)) class Test_ETrapezoidal(Harness_Solver): def setup_solver(self): self.solver = Solver(ExplicitTrapezoidal(h=.1), System(f)) class Test_RK4(Harness_Solver): def setup_solver(self): self.solver = Solver(RungeKutta4(h=.1), System(f)) class Test_RK34(Harness_Solver): def setup_solver(self): self.solver = Solver(RungeKutta34(h=.1), System(f)) class Test_AB(Harness_Solver): def setup_solver(self): multi_scheme = AdamsBashforth2(.1) self.solver = Solver(multi_scheme, System(f), init_scheme=ExplicitEuler(h=.1)) class Test_RK34Vdp(object): def setUp(self): time = 7.8 self.h_init = time/50 self.scheme = RungeKutta34(h=self.h_init) self.s = Solver(self.scheme, VanderPol(mu=1.)) self.s.initialize(u0 = array([.2,1]), time=time, ) def test_run(self): self.s.run() nt.assert_less(self.scheme.h, self.h_init) class Harness_Solver_NoComplex(Harness_Solver): def check_skip(self,u0,f): if isinstance(u0,float) and f is const_c: raise SkipTest('Does not work with real initial conditions and complex vector fields') class Test_ode15s(Harness_Solver_NoComplex): def setup_solver(self): self.solver = Solver(ode15s(h=.1), System(f)) class Test_LawsonEuler(Harness_Solver_NoComplex): def set_system(self, f): self.solver.system = NoLinear(f,self.dim) def setup_solver(self): self.solver = Solver(LawsonEuler(h=.1), NoLinear(f,self.dim)) class Test_IEuler(Harness_Solver): def setup_solver(self): self.solver = Solver(ImplicitEuler(h=.1), System(f)) @nt.raises(Solver.Unstable) def test_unstable(): s = Solver(LawsonEuler(h=10.), Linear(np.array([[1.e2]]))) s.initialize(u0 = 1., time = 100,) s.run() def make_lin(A): if np.isscalar(A): def lin(t,u): return A*u else: def lin(t, u): return dot(A,u) lin.exact = make_exp(A) return lin def make_exp(A): if np.isscalar(A): def exact(u0,t0,t): return u0 * exp((t-t0)*A) else: def exact(u0, t0, t): return dot(expm((t-t0)*A),u0) return exact class Harness_Solver_Order(Harness): a = -1. u0 = 1. time = 1. do_plot=False def notest_order(self): self.solver.initialize(u0=self.u0, time=self.time) order = self.solver.plot_error(do_plot=self.do_plot) print order nt.assert_true(order < self.order + .1) class Test_ExplicitEuler(Harness_Solver_Order): def setUp(self): self.solver = Solver(ExplicitEuler(h=.1), System(make_lin(self.a))) self.order = -1. class Test_ImplicitEuler(Harness_Solver_Order): def setUp(self): self.solver = Solver(ImplicitEuler(h=.1), System(make_lin(self.a))) self.order = -1. class Test_RungeKutta4(Harness_Solver_Order): def setUp(self): self.solver = Solver(RungeKutta4(h=.1), System(make_lin(self.a))) self.solver.err_kmin = 1 self.solver.err_kmax = 2.5 self.order = -4. class DummyException(Exception): pass class LimitedSys(System): def __init__(self, limit): self.limit = limit self.i = 0 def f(self, t, x): if self.i < self.limit: self.i += 1 return 0 else: raise DummyException() class Test_FinalTimeExceptions(object): limit = 20 def setUp(self): self.sys = LimitedSys(self.limit) self.scheme = ExplicitEuler(h=.1) self.s = Solver(self.scheme, self.sys) self.s.catch_runtime = True self.s.initialize(u0=0, time=10, ) @nt.raises(Solver.FinalTimeNotReached) def test_final_time_not_reached(self): self.s.run(max_iter = 1) def test_max_iter(self): try: self.s.run() except self.s.RuntimeError: pass nt.assert_greater_equal(self.s._max_iter, self.s.max_iter_factor*self.s.time/self.scheme.h) time = 50 try: self.s.run(50) except self.s.RuntimeError: pass nt.assert_greater_equal(self.s._max_iter, self.s.max_iter_factor*time/self.scheme.h) @nt.raises(Solver.RuntimeError) def test_sys_exception(self): self.s.run() @nt.raises(DummyException) def test_sys_no_runtime_exception(self): self.s.catch_runtime = False self.s.run() def faulty_function(t,u): raise Exception('message') class Test_Exceptions(object): def setUp(self): self.s = Solver(ExplicitEuler(h=.1), Linear(np.array([[1]]))) @nt.raises(Solver.NotInitialized) def test_no_u0(self): self.s.initialize() @nt.raises(Solver.NotInitialized) def test_no_initialize(self): self.s.run() @nt.raises(Solver.Unstable) def test_unstable(self): self.s = Solver(ExplicitEuler(h=.1), Linear(np.array([[float('inf')]]))) self.s.initialize(u0=np.array([0])) self.s.run() @nt.raises(Solver.RuntimeError) def test_runtime_exception(self): self.s = Solver(ExplicitEuler(h=.1), System(faulty_function)) self.s.catch_runtime = True self.s.initialize(u0=0) self.s.run() class TotSys(System): def total(self, xt): return np.sum(xt[:-1],axis=0) def minus_x(t, x): return -x class Test_Simple(object): def setUp(self): sys = TotSys(minus_x) self.s = Solver(ExplicitEuler(h=.1), sys) def test_time(self): sol = self.s sol.h = Solver.time/10 sol.initialize(u0=0.) sol.run(sol.h) npt.assert_(sol.final_time() < Solver.time) def test_extra_run(self): """test that an extra run continues from last time""" sol = self.s sol.initialize(u0=1.) sol.run() npt.assert_almost_equal(sol.final_time(),Solver.time) sol.run() npt.assert_almost_equal(sol.final_time(),2*Solver.time) def test_plot_args(self): self.s.initialize(u0=np.array([1.,1.,1.])) self.s.run() pl.clf() lines = self.s.plot(0,lw=5).axis.lines npt.assert_equal(len(lines),1) pl.clf() lines = self.s.plot(lw=5).axis.lines npt.assert_equal(len(lines),3) npt.assert_equal(lines[-1].get_linewidth(),5) def test_plot_function(self): self.s.initialize(u0=np.array([1.,1.,1.])) self.s.run() lines = self.s.plot_function('total', lw=4).axis.lines npt.assert_equal(lines[-1].get_linewidth(), 4) pl.ion()
a259289c6a6b232a8abc5b6e5b43ede75f107410
60715c9ea4c66d861708531def532814eab781fd
/python-programming-workshop/pythondatastructures/dateandtime/time_yesterday.py
e220240661773649db71af463af4edfd0954a20a
[]
no_license
bala4rtraining/python_programming
6ce64d035ef04486f5dc9572cb0975dd322fcb3e
99a5e6cf38448f5a01b310d5f7fa95493139b631
refs/heads/master
2023-09-03T00:10:26.272124
2021-11-01T08:20:52
2021-11-01T08:20:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
297
py
#Python program that returns yesterday from datetime import date from datetime import timedelta def yesterday(): # Get today. today = date.today() # Subtract timedelta of 1 day. yesterday = today - timedelta(days=1) return yesterday print(date.today()) print(yesterday())
01a2714dc644c9a68e8435d2bc8bbb20cdd487fb
c0c8aeb5aaf08925d8c9e1d660b02c89cbc7ad71
/Algorithms/Medium/55. Jump Game/answer.py
034d33909be49fa36615b2eb76dd8385990d05ed
[ "Apache-2.0" ]
permissive
kenwoov/PlayLeetCode
b2fdc43d799c37683a9efdc31c4df159cf553bf5
4012a2f0a099a502df1e5df2e39faa75fe6463e8
refs/heads/master
2022-12-17T05:54:22.775972
2020-09-26T14:08:43
2020-09-26T14:08:43
214,839,611
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
from typing import List class Solution: def canJump(self, nums: List[int]) -> bool: N = len(nums) lastPosition = N - 1 for i in range(N-1, -1, -1): if i + nums[i] >= lastPosition: lastPosition = i return lastPosition == 0 if __name__ == "__main__": s = Solution() result = s.canJump([3, 2, 1, 0, 4]) print(result)
d03ff966642e5d1c4511a4ac1e8024d75bf5f2e2
3ca67d69abd4e74b7145b340cdda65532f90053b
/LeetCode/Two_Pointers/Valid Palindrome/6047198844.py
b5bb7a7d4d16f6b7caa8c0ae6180b37f36c7b1bb
[]
no_license
DKU-STUDY/Algorithm
19549516984b52a1c5cd73e1ed1e58f774d6d30e
6f78efdbefd8eedab24e43d74c7dae7f95c2893b
refs/heads/master
2023-02-18T06:48:39.309641
2023-02-09T07:16:14
2023-02-09T07:16:14
258,455,710
175
49
null
2023-02-09T07:16:16
2020-04-24T08:42:27
Python
UTF-8
Python
false
false
145
py
import re class Solution: def isPalindrome(self, s: str) -> bool: s = re.sub('[^a-z0-9A-Z]','',s).lower() return s == s[::-1]
5d22821c7019c51b77ad3f13c64f5f67fa04579d
75f0e04c6330950a9bd225fd8b62fdc9fb0021b8
/103.binaryTreeZigzagLevelOrderTraversal.py
3511ea332bce45326491b783728bd51dc0aa9c57
[]
no_license
Minzhe/LeetCode
f07bc1edce77cee778d7dc3c4a379921747637a5
e5cb0212cb83daac829456c14aec557e26eea68c
refs/heads/master
2020-05-04T11:25:07.084483
2020-03-09T02:10:17
2020-03-09T02:10:17
179,107,420
0
0
null
null
null
null
UTF-8
Python
false
false
877
py
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]: if root is None: return [] ans, order = [], 1 level = [root] while level: if order == 1: ans.append([node.val for node in level]) elif order == -1: ans.append([node.val for node in reversed(level)]) level = self.getnextlevel(level) order *= -1 return ans def getnextlevel(self, level): nextlevel = [] for node in level: if node.left: nextlevel.append(node.left) if node.right: nextlevel.append(node.right) return nextlevel
f1c240360245fffab7d3d52118d4c4bc8ff0e397
33890b0061d0701b32bb7d78776485c3afb9f67e
/pyexe/cpumon.py
93ce008962966b4d1ff7aff3145f366a9cc1de24
[]
no_license
songzg/winterpy
677c7ec77a6923ba89d5f0b98c01d30e981336ae
05f8b3eb43588c452a0f76f4b6e04ee37ca0afb3
refs/heads/master
2020-05-29T11:46:26.768980
2016-05-19T04:08:02
2016-05-19T04:08:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
849
py
#!/usr/bin/env python3 # vim:fileencoding=utf-8 ''' 监视CPU的使用,过高时自动执行命令 2010年7月17日 ''' cmd = 'echo ================== >> ~/tmpfs/cpumon && top -n 1 -b | awk \'{if($4 != 0) print}\' >> ~/tmpfs/cpumon' import os import time def getCPUUsage(): cpu_before = open('/proc/stat').readline().split()[1:] time.sleep(1) cpu_after = open('/proc/stat').readline().split()[1:] cpu = list(map(lambda x, y: int(y)-int(x), cpu_before, cpu_after)) # print(cpu_before, cpu_after, sep='\n') # print(cpu, sum(cpu)) return 1 - cpu[3] / sum(cpu) def monitor(cmd=cmd, threshold=0.9): while True: usage = getCPUUsage() print('CPU Usage: %.2f' % usage) if usage > threshold: os.system(cmd) if __name__ == '__main__': try: monitor(threshold=.5) except KeyboardInterrupt: print('退出')
7e9aa43fbb3cbd1f96f219c92e072a7b3b356403
223499de35fa67f487f332b70364ec48604fb67e
/spotify/migrations/0002_auto_20210326_1421.py
9b8029693ec2d846851e241dfd7445f52ab0f193
[]
no_license
MichelAtieno/Music_Controller
961dfa9c7bbcee0df686a1281d622875eca386e4
059e65167e73f44f1b505184a2f41dcf209b38ed
refs/heads/master
2023-04-07T16:47:17.527827
2021-04-15T11:50:26
2021-04-15T11:50:26
350,689,322
1
0
null
null
null
null
UTF-8
Python
false
false
568
py
# Generated by Django 3.1.7 on 2021-03-26 11:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('spotify', '0001_initial'), ] operations = [ migrations.AlterField( model_name='spotifytoken', name='access_token', field=models.CharField(max_length=1500), ), migrations.AlterField( model_name='spotifytoken', name='refresh_token', field=models.CharField(max_length=1500, null=True), ), ]
fb106f607a49363343562465ba2d40b67c5618fe
e174e13114fe96ad2a4eeb596a3d1c564ae212a8
/Python for Finance Analyze Big Financial Data by Y. Hilpisch/Code of Python For Finance/4375OS_06_Code/4375OS_06_23_interpolation.py
6866265b574971a283ffc99347e4dfdc5debddea
[]
no_license
Kevinqian0501/python_books
c1a7632d66dceb46db439f7cbed86d85370aab42
0691e4685af03a296aafb02447e3585db55ce461
refs/heads/master
2021-08-30T19:27:03.985464
2017-12-19T05:56:31
2017-12-19T05:56:31
104,145,012
1
0
null
null
null
null
UTF-8
Python
false
false
592
py
""" Name : 4375OS_06_23_interpolatioin.py Book : Python for Finance Publisher: Packt Publishing Ltd. Author : Yuxing Yan Date : 12/26/2013 email : [email protected] [email protected] """ import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d x = np.linspace(0, 10, 10) y = np.exp(-x/3.0) f = interp1d(x, y) f2 = interp1d(x, y, kind='cubic') xnew = np.linspace(0, 10, 40) plt.plot(x,y,'o',xnew,f(xnew),'-', xnew, f2(xnew),'--') plt.legend(['data', 'linear', 'cubic'], loc='best') plt.show()
dc29881f87dbe8e453f4f9473740b0d42fd07bda
538aec79c8039e500411647bba4a12343976bd03
/00 - Risorse/PYscripts/05scarica_condensatore.py
d4473036af722c795053b3b7c4825a9576ec40b6
[]
no_license
Andreo95/Lab3_gruppoBF_primosemestre
27adff4fa1b1a9c75cf74840c55ee2653d36d07e
8866ca1200f95bb86712c3b896409aabc395bf81
refs/heads/master
2020-01-23T21:43:47.212214
2017-02-22T22:35:08
2017-02-22T22:35:08
74,684,559
1
0
null
null
null
null
UTF-8
Python
false
false
1,826
py
import scipy from scipy.optimize import curve_fit import pylab import numpy ## indirizzo e nome file indirizzo_dati = '/afs/uz.sns.it/user/albord95/Scrivania/' file_origine = 'data05scarica.txt' ## importiamo i dati sxa, sya = pylab.loadtxt( r'%s%s' %(indirizzo_dati,file_origine), unpack = True ) ## grafici dei dati iniziali pylab.figure(1) pylab.clf() pylab.xlabel('tempo[$\mu$s]') pylab.ylabel('valori arduino[u.a.]') pylab.grid(color = 'gray') pylab.errorbar(sxa, sya, 1, fmt = '.') ## Funzione di fit def f(x, a, b): return a*scipy.exp(-x/b) ## best-fit popt_a, pcov_a = curve_fit(f, sxa, sya) a_fit, b_fit = popt_a da_fit, db_fit = pylab.sqrt(pcov_a.diagonal()) print(' ') print('V_0 = %f +- %f u.a.' % (a_fit, da_fit)) print('tau = %f +- %f micro s' % (b_fit, db_fit)) #chiquadro e coefficiente di correlazione chi2 = ((sya-f(sxa,*popt_a))**2).sum() cov_norm = pcov_a[0,1]/(numpy.sqrt(pcov_a[0,0]*pcov_a[1,1])) print('chiquadro = %g' %(chi2)) print('dof = %g' %(len(sxa)-2)) print('cov norm = %g' %(cov_norm)) print(' ') print(pcov_a) print(numpy.corrcoef(pcov_a)) ## grafico fit pylab.figure(2) pylab.clf() pylab.title('carica condensatore') pylab.ylabel('valore arduino[u.a.]') pylab.xlabel('tempo[$\mu$s]') pylab.grid(color = 'gray') pylab.errorbar(sxa, sya, 1, fmt = '.') pylab.plot(sxa, f(sxa,*popt_a), label='fit') pylab.legend() ## grafico degli errori pylab.figure(3) pylab.clf() pylab.xlabel('tempo[$\mu$s]') pylab.title('carica condensatore') pylab.ylabel('residui normalizzati') pylab.grid(color = 'gray') pylab.plot(sxa,sya-(f(sxa,*popt_a)), '.', label='data') pylab.plot(sxa,scipy.zeros(len(sxa)) , label='rif') media=sum((sya-f(sxa,*popt_a)))/len(sxa) #calcolo media residui pylab.plot(sxa,scipy.ones(len(sxa))*media, label='media') pylab.legend() pylab.show()
eaa89b0f66c0000c7e6c6f864c2936a2557be3e1
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/eventhub/v20210601preview/list_namespace_keys.py
bd36206585e0c79e0cb1b7dc610f727d641a1a59
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,240
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'ListNamespaceKeysResult', 'AwaitableListNamespaceKeysResult', 'list_namespace_keys', 'list_namespace_keys_output', ] @pulumi.output_type class ListNamespaceKeysResult: """ Namespace/EventHub Connection String """ def __init__(__self__, alias_primary_connection_string=None, alias_secondary_connection_string=None, key_name=None, primary_connection_string=None, primary_key=None, secondary_connection_string=None, secondary_key=None): if alias_primary_connection_string and not isinstance(alias_primary_connection_string, str): raise TypeError("Expected argument 'alias_primary_connection_string' to be a str") pulumi.set(__self__, "alias_primary_connection_string", alias_primary_connection_string) if alias_secondary_connection_string and not isinstance(alias_secondary_connection_string, str): raise TypeError("Expected argument 'alias_secondary_connection_string' to be a str") pulumi.set(__self__, "alias_secondary_connection_string", alias_secondary_connection_string) if key_name and not isinstance(key_name, str): raise TypeError("Expected argument 'key_name' to be a str") pulumi.set(__self__, "key_name", key_name) if primary_connection_string and not isinstance(primary_connection_string, str): raise TypeError("Expected argument 'primary_connection_string' to be a str") pulumi.set(__self__, "primary_connection_string", primary_connection_string) if primary_key and not isinstance(primary_key, str): raise TypeError("Expected argument 'primary_key' to be a str") pulumi.set(__self__, "primary_key", primary_key) if secondary_connection_string and not isinstance(secondary_connection_string, str): raise TypeError("Expected argument 'secondary_connection_string' to be a str") pulumi.set(__self__, "secondary_connection_string", secondary_connection_string) if secondary_key and not isinstance(secondary_key, str): raise TypeError("Expected argument 'secondary_key' to be a str") pulumi.set(__self__, "secondary_key", secondary_key) @property @pulumi.getter(name="aliasPrimaryConnectionString") def alias_primary_connection_string(self) -> str: """ Primary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_primary_connection_string") @property @pulumi.getter(name="aliasSecondaryConnectionString") def alias_secondary_connection_string(self) -> str: """ Secondary connection string of the alias if GEO DR is enabled """ return pulumi.get(self, "alias_secondary_connection_string") @property @pulumi.getter(name="keyName") def key_name(self) -> str: """ A string that describes the AuthorizationRule. """ return pulumi.get(self, "key_name") @property @pulumi.getter(name="primaryConnectionString") def primary_connection_string(self) -> str: """ Primary connection string of the created namespace AuthorizationRule. """ return pulumi.get(self, "primary_connection_string") @property @pulumi.getter(name="primaryKey") def primary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "primary_key") @property @pulumi.getter(name="secondaryConnectionString") def secondary_connection_string(self) -> str: """ Secondary connection string of the created namespace AuthorizationRule. """ return pulumi.get(self, "secondary_connection_string") @property @pulumi.getter(name="secondaryKey") def secondary_key(self) -> str: """ A base64-encoded 256-bit primary key for signing and validating the SAS token. """ return pulumi.get(self, "secondary_key") class AwaitableListNamespaceKeysResult(ListNamespaceKeysResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ListNamespaceKeysResult( alias_primary_connection_string=self.alias_primary_connection_string, alias_secondary_connection_string=self.alias_secondary_connection_string, key_name=self.key_name, primary_connection_string=self.primary_connection_string, primary_key=self.primary_key, secondary_connection_string=self.secondary_connection_string, secondary_key=self.secondary_key) def list_namespace_keys(authorization_rule_name: Optional[str] = None, namespace_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableListNamespaceKeysResult: """ Namespace/EventHub Connection String :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The Namespace name :param str resource_group_name: Name of the resource group within the azure subscription. """ __args__ = dict() __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:eventhub/v20210601preview:listNamespaceKeys', __args__, opts=opts, typ=ListNamespaceKeysResult).value return AwaitableListNamespaceKeysResult( alias_primary_connection_string=__ret__.alias_primary_connection_string, alias_secondary_connection_string=__ret__.alias_secondary_connection_string, key_name=__ret__.key_name, primary_connection_string=__ret__.primary_connection_string, primary_key=__ret__.primary_key, secondary_connection_string=__ret__.secondary_connection_string, secondary_key=__ret__.secondary_key) @_utilities.lift_output_func(list_namespace_keys) def list_namespace_keys_output(authorization_rule_name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[ListNamespaceKeysResult]: """ Namespace/EventHub Connection String :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The Namespace name :param str resource_group_name: Name of the resource group within the azure subscription. """ ...
e0ed519f505619c172341d75c16b1d767d11c23a
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-lts/huaweicloudsdklts/v2/model/event.py
6769cd2f23ac637c24543600a6c7e0b682fecc30
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,527
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class Event: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'metadata': 'Metadata', 'starts_at': 'object' } attribute_map = { 'metadata': 'metadata', 'starts_at': 'starts_at' } def __init__(self, metadata=None, starts_at=None): """Event - a model defined in huaweicloud sdk""" self._metadata = None self._starts_at = None self.discriminator = None self.metadata = metadata self.starts_at = starts_at @property def metadata(self): """Gets the metadata of this Event. 告警信息 :return: The metadata of this Event. :rtype: Metadata """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this Event. 告警信息 :param metadata: The metadata of this Event. :type: Metadata """ self._metadata = metadata @property def starts_at(self): """Gets the starts_at of this Event. 告警产生时间(时间戳) :return: The starts_at of this Event. :rtype: object """ return self._starts_at @starts_at.setter def starts_at(self, starts_at): """Sets the starts_at of this Event. 告警产生时间(时间戳) :param starts_at: The starts_at of this Event. :type: object """ self._starts_at = starts_at def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Event): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
c18b4b2479e2e52a5c6fb4c2daeb6a110dac55d8
28ef7c65a5cb1291916c768a0c2468a91770bc12
/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/mpii/cpm_mpii_368x368.py
eac8aef24aa08db278f9d31a79fbf5bfe6cd5ab2
[ "Apache-2.0" ]
permissive
bit-scientist/mmpose
57464aae1ca87faf5a4669991ae1ea4347e41900
9671a12caf63ae5d15a9bebc66a9a2e7a3ce617e
refs/heads/master
2023-08-03T17:18:27.413286
2021-09-29T03:48:37
2021-09-29T03:48:37
411,549,076
0
0
Apache-2.0
2021-09-29T06:01:27
2021-09-29T06:01:26
null
UTF-8
Python
false
false
3,842
py
_base_ = ['../../../../_base_/datasets/mpii.py'] log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=10) evaluation = dict(interval=10, metric='PCKh', save_best='PCKh') optimizer = dict( type='Adam', lr=5e-4, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[170, 200]) total_epochs = 210 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), ]) channel_cfg = dict( num_output_channels=16, dataset_joints=16, dataset_channel=list(range(16)), inference_channel=list(range(16))) # model settings model = dict( type='TopDown', pretrained=None, backbone=dict( type='CPM', in_channels=3, out_channels=channel_cfg['num_output_channels'], feat_channels=128, num_stages=6), keypoint_head=dict( type='TopdownHeatmapMultiStageHead', in_channels=channel_cfg['num_output_channels'], out_channels=channel_cfg['num_output_channels'], num_stages=6, num_deconv_layers=0, extra=dict(final_conv_kernel=0, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=True, modulate_kernel=11)) data_cfg = dict( image_size=[368, 368], heatmap_size=[46, 46], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], use_gt_bbox=True, bbox_file=None, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownRandomFlip', flip_prob=0.5), dict( type='TopDownGetRandomScaleRotation', rot_factor=30, scale_factor=0.25), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict(type='TopDownGenerateTarget', sigma=2), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine'), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=['image_file', 'center', 'scale', 'rotation', 'flip_pairs']), ] test_pipeline = val_pipeline data_root = 'data/mpii' data = dict( samples_per_gpu=64, workers_per_gpu=2, val_dataloader=dict(samples_per_gpu=32), test_dataloader=dict(samples_per_gpu=32), train=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_train.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_val.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownMpiiDataset', ann_file=f'{data_root}/annotations/mpii_val.json', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), )
96015b222285a8c5b5df3757e5a37985f0e8a737
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Wyx_w_M_w_Sob_to_Wz_focus/IN_Sob_k5_EroMore/Mae_s001/pyr_Tcrop256_pad20_jit15/pyr_2s/L8/step09_2side_L8.py
1a23ee7f0618f17d796ffbec8ecc0f1b8c68b60b
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
23,295
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_Wxy_w_M_to_Wz_combine import Wyx_w_M_to_Wz from step08_b_use_G_generate_0_util import Tight_crop from step09_c_train_step import Train_step_Wyx_w_M_to_Wz from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME from step10_a1_loss import Sobel_MAE Sob_k5_s001_erose_M = Sobel_MAE(sobel_kernel_size=5, sobel_kernel_scale=1, erose_M=True, erose_More=True) use_gen_op = Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=20, resize=(256, 256), jit_scale= 0), sobel=Sob_k5_s001_erose_M, sobel_only=True ) use_train_step = Train_step_Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=20, resize=(256, 256), jit_scale=15), sobel=Sob_k5_s001_erose_M, sobel_only=True ) import time start_time = time.time() ############################################################################################################################################################################################### ############################################################################################################################################################################################### ########################################################### Block1 ### Block1 ######################################################################################### pyramid_1side_1__2side_1 = [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2] pyramid_1side_2__2side_1 = [2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2] pyramid_1side_2__2side_2 = [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] pyramid_1side_3__2side_1 = [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2] pyramid_1side_3__2side_2 = [2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2] pyramid_1side_3__2side_3 = [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2] pyramid_1side_4__2side_1 = [2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2] pyramid_1side_4__2side_2 = [2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2] pyramid_1side_4__2side_3 = [2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2] pyramid_1side_4__2side_4 = [2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] pyramid_1side_5__2side_1 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2] pyramid_1side_5__2side_2 = [2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2] pyramid_1side_5__2side_3 = [2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2] pyramid_1side_5__2side_4 = [2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2] pyramid_1side_5__2side_5 = [2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2] pyramid_1side_6__2side_1 = [2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2] pyramid_1side_6__2side_2 = [2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2] pyramid_1side_6__2side_3 = [2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2] pyramid_1side_6__2side_4 = [2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2] pyramid_1side_6__2side_5 = [2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2] pyramid_1side_6__2side_6 = [2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2] pyramid_1side_7__2side_1 = [2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_7__2side_2 = [2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_7__2side_3 = [2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_7__2side_4 = [2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_7__2side_5 = [2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_7__2side_6 = [2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_7__2side_7 = [2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_1 = [2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_8__2side_2 = [2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_8__2side_3 = [2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_8__2side_4 = [2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_8__2side_5 = [2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_8__2side_6 = [2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_7 = [2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_8 = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_1 = [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_9__2side_2 = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_9__2side_3 = [2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_9__2side_4 = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_9__2side_5 = [2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_9__2side_6 = [2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_7 = [2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_8 = [2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_9 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] ######################################################################################### ch032_pyramid_1side_1__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_1__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_8, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_9__2side_9 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_9, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ######################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1)) use_model = ch032_pyramid_1side_4__2side_2 use_model = use_model.build() result = use_model.generator(data) print(result.shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary()
5d608efd4cc1a7060a94a1a35e63cdfe6622a273
4be56098894a95da5964622fc4102b69e4530ab6
/题库/727.最小窗口子序列.py
c2e44407c2dae1162aed896872166b476694e850
[]
no_license
ACENDER/LeetCode
7c7c7ecc8d0cc52215272f47ec34638637fae7ac
3383b09ab1246651b1d7b56ab426a456f56a4ece
refs/heads/master
2023-03-13T19:19:07.084141
2021-03-15T09:29:21
2021-03-15T09:29:21
299,332,864
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
# !/usr/bin/env python3 # -*- coding: utf-8 -*- # @File : 727.最小窗口子序列.py
ca598544f88391eaead44fb1a7f25af038a6a186
cc7bbdbb22cb6f7e7916388a5ee8218bc8ffa158
/Python3/Django/HelloREST/HelloREST/urls.py
a3c7eb05f80c131c40a6cde52f0d8a15ec715445
[ "MIT" ]
permissive
youngqqcn/QBlockChainNotes
a816e067642f48a6da38b624663254b4016ec496
c9c143eaba6c06e3cee866669ec286e4d3cdbba8
refs/heads/master
2023-04-03T23:31:05.585545
2023-03-30T09:29:07
2023-03-30T09:29:07
155,657,459
37
15
MIT
2023-03-06T23:09:32
2018-11-01T03:33:11
JavaScript
UTF-8
Python
false
false
993
py
"""HelloREST URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ # path('admin/', admin.site.urls), path(r'app/', include('app.urls', namespace='app'), name='app'), path(r'api/', include('api.urls', namespace='api' ), name='api'), path(r'cbv_demo/', include('cbv_demo.urls', namespace='cbv_demo' ), name='cbv_demo'), ]
5a4e70186cbcee334c036f14dec1ab81b6f690be
7a4ed01a40e8d79126b26f5e8fca43c8e61e78fd
/Harshit Vashisth/Chapter-18(Working With Files)/D-File Input Output Read And Write/234.read_and_write.py
bcda23d9eecfb48a95e74589b9e413c42cf0ca95
[]
no_license
satyam-seth-learnings/python_learning
5a7f75bb613dcd7fedc31a1567a434039b9417f8
7e76c03e94f5c314dcf1bfae6f26b4a8a6e658da
refs/heads/main
2023-08-25T14:08:11.423875
2021-10-09T13:00:49
2021-10-09T13:00:49
333,840,032
1
0
null
null
null
null
UTF-8
Python
false
false
100
py
with open('File5.txt','r') as rf: with open('File5a.txt','w') as wf: wf.write(rf.read())
d7bb46d9cff6cf7b90cb46af434aa1d1b5d00a2d
16b389c8dcace7f7d010c1fcf57ae0b3f10f88d3
/lib/jnpr/healthbot/swagger/models/groupgroupid_roles.py
ba247dfe7ee49ba923fd077393f66bb21f434add
[ "Apache-2.0" ]
permissive
Juniper/healthbot-py-client
e4e376b074920d745f68f19e9309ede0a4173064
0390dc5d194df19c5845b73cb1d6a54441a263bc
refs/heads/master
2023-08-22T03:48:10.506847
2022-02-16T12:21:04
2022-02-16T12:21:04
210,760,509
10
5
Apache-2.0
2022-05-25T05:48:55
2019-09-25T05:12:35
Python
UTF-8
Python
false
false
3,796
py
# coding: utf-8 """ Healthbot APIs API interface for Healthbot application # noqa: E501 OpenAPI spec version: 3.1.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class GroupgroupidRoles(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'role_id': 'str', 'role_name': 'str' } attribute_map = { 'role_id': 'roleId', 'role_name': 'roleName' } def __init__(self, role_id=None, role_name=None): # noqa: E501 """GroupgroupidRoles - a model defined in Swagger""" # noqa: E501 self._role_id = None self._role_name = None self.discriminator = None if role_id is not None: self.role_id = role_id if role_name is not None: self.role_name = role_name @property def role_id(self): """Gets the role_id of this GroupgroupidRoles. # noqa: E501 :return: The role_id of this GroupgroupidRoles. # noqa: E501 :rtype: str """ return self._role_id @role_id.setter def role_id(self, role_id): """Sets the role_id of this GroupgroupidRoles. :param role_id: The role_id of this GroupgroupidRoles. # noqa: E501 :type: str """ self._role_id = role_id @property def role_name(self): """Gets the role_name of this GroupgroupidRoles. # noqa: E501 :return: The role_name of this GroupgroupidRoles. # noqa: E501 :rtype: str """ return self._role_name @role_name.setter def role_name(self, role_name): """Sets the role_name of this GroupgroupidRoles. :param role_name: The role_name of this GroupgroupidRoles. # noqa: E501 :type: str """ self._role_name = role_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(GroupgroupidRoles, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GroupgroupidRoles): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
c19c3248b62dd32e7099185d2caa553d438fe77b
810c479dcaf8a5685a9d5b1a35a79c27f3bf6ba1
/movil/models.py
45eba52e1416087f67c8cbbf4daf9fe80b4bd215
[]
no_license
xangcastle/multipagos
1e8f9cac9033f964e54ab9b9bddb37763f6f275f
72d2b1b0f5494dacd413ae87520a902a413197db
refs/heads/master
2021-01-21T04:55:37.112879
2016-06-22T19:42:46
2016-06-22T19:42:46
50,454,659
0
1
null
2016-03-07T23:31:45
2016-01-26T19:49:09
Python
UTF-8
Python
false
false
1,694
py
from django.db import models from django.contrib.auth.models import User from metropolitana.models import get_media_url, Zona, Departamento from cartera.models import TipoGestion class UserProfile(models.Model): ''' esta clase es la utilizada para guardar los perfiles de usuario ''' user = models.OneToOneField(User, help_text="el usuaro que anda el movil") foto = models.ImageField(upload_to=get_media_url, null=True, blank=True) zonas = models.ManyToManyField(Zona, null=True, blank=True) tipo_gestion = models.ManyToManyField(TipoGestion, null=True, blank=True, verbose_name="tipos de gestiones que realiza") celular = models.CharField(max_length=14, null=True) is_supervisor = models.BooleanField(default=False, verbose_name="es un supervisor?") departamentos = models.ManyToManyField(Departamento, null=True, blank=True, verbose_name="departamentos que atiende") def __unicode__(self): return "user " + self.user.username class Meta: verbose_name = 'usuario' verbose_name_plural = "usuarios de app movil" from math import radians, cos, sin, asin, sqrt def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * asin(sqrt(a)) r = 6371 # Radius of earth in kilometers. Use 3956 for miles return c * r
ebd2465ef5377d7dbdf889989eb9d1f39004f369
50f2587a55fd5364c5bf8e127eeeda52df1388f1
/ponosen/urls.py
d032e955cd80adb8646dd178f813086a508c0721
[]
no_license
OpenLuna/luna-api
e6cec2ea3adf63e4275f50802130d917bb840142
8f186e02d3b0c8939384dbbcd25bd3a1ccc276ab
refs/heads/master
2021-01-17T12:52:30.149021
2016-06-29T13:20:17
2016-06-29T13:20:17
56,492,804
0
0
null
null
null
null
UTF-8
Python
false
false
365
py
from django.conf.urls import url from ponosen.views import * urlpatterns = [ url(r'^save_email/(?P<email>[\w.%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4})', saveEmail), url(r'^req_recover_password/(?P<email>[\w.%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4})', reqRecoverPassword), url(r'^recover_password/(?P<code>[\w ]+)/', recoverPassword), url(r'^ping/', ping), ]
e22e842a4653476d6dcfc969b8723ce9367fd231
5bc10755eb843642f272b4d96812e968d1229100
/backend/TheFoundater/venv/bin/chardetect
419b4ec56688e56623a40df1766a21e189ddde6c
[]
no_license
AhmedOmi/Rest_APi_Django_React_blog
5c24f90c8da4fd1654788ceab6ab32571158b3b8
e8d7fd23e0b27cc7f6ac9289be80db57ca2732ca
refs/heads/master
2023-04-08T17:33:18.682152
2021-04-21T06:12:52
2021-04-21T06:12:52
360,047,019
0
1
null
null
null
null
UTF-8
Python
false
false
287
#!/Users/ahmedomarmiladi/Documents/theFoundater/backend/TheFoundater/venv/bin/python # -*- coding: utf-8 -*- import re import sys from chardet.cli.chardetect import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
4e7a4ccb3def2f594f32a68e5a868d11b1ff7949
b968a344f81c78a287ecd7addba096de1e1e61c9
/12okt/splitter.py
ab0d0456d813abc1a2532b001b66f04940543a7a
[]
no_license
TeknikhogskolanGothenburg/Python20_Python_Programming
c8f5dbe1ead92418589cc7a10a18658ee708db02
b837ddba4003842675533b87cf6209908b04c125
refs/heads/master
2023-01-22T05:15:22.502267
2020-10-28T10:27:33
2020-10-28T10:27:33
290,459,085
0
0
null
null
null
null
UTF-8
Python
false
false
120
py
def main(): values = input('Enter some values: ').split() print(values) if __name__ == '__main__': main()
e5d24182fdead8cd02d5319ff10780e76a83b905
439386f9097632d44d31d1f599df76ec2820d072
/常规项目/统一大厅常规checklist/1450/DFQP/src/cases/dfqp_mall.py
e7422d7ee1c2b3362eaa672fd34d80bca04b5559
[]
no_license
YiFeng0755/testcase
33693f0940a6497aa40e2e51a0535c9eb6c12b29
edc19480c3e94cbcbf004aa9d20099ec6d1b9304
refs/heads/master
2020-04-28T04:34:28.232022
2019-03-11T11:13:25
2019-03-11T11:13:25
146,287,761
0
0
null
null
null
null
UTF-8
Python
false
false
3,207
py
#!/usr/bin/env python # -*- coding:utf-8 -*- ''' 商城 ''' import time from runcenter.enums import EnumPriority,EnumStatus from runcenter.testcase import debug_run_all,TestCase from uilib.mall_page import Mall_Page from uilib.hall_page import Hall_Page from common.common import Common class C31049_DFQP_Mall(TestCase): ''' 商城界面显示 ''' owner = "MindyZhang" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() # 每个用例都需要关闭活动,把这个放在初始化里面实现 self.common.closeactivity(self.luadriver) self.hall_page = Hall_Page() self.mall_page = Mall_Page() def run_test(self): ''' 测试用例 ''' self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step("进入商城页面") self.hall_page.wait_element("商城").click() time.sleep(2) self.mall_page.get_element("银币页签").click() time.sleep(2) self.mall_page.screenshot('Mall1.png') self.mall_page.wait_element("金条页签").click() time.sleep(2) self.mall_page.screenshot('Mall2.png') self.mall_page.wait_element("道具页签").click() time.sleep(2) self.mall_page.screenshot('Mall3.png') self.mall_page.wait_element("VIP页签").click() time.sleep(2) self.mall_page.screenshot('Mall4.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() class C31056_DFQP_Mall(TestCase): ''' 安装支付宝支付界面显示 ''' owner = "LucyLiu" status = EnumStatus.Design priority = EnumPriority.High timeout = 5 def pre_test(self): self.common = Common() # 初始化Luadriver self.luadriver = self.common.setupdriver() # 每个用例都需要关闭活动,把这个放在初始化里面实现 self.common.closeactivity_switchserver(self.luadriver,"预发布") self.hall_page = Hall_Page() self.mall_page = Mall_Page() def run_test(self): ''' 测试用例 ''' self.start_step("等待页面加载完成") self.hall_page.wait_element("同步标志") self.start_step("进入商城页面") self.hall_page.wait_element("商城").click() time.sleep(5) self.mall_page.get_element("金条商品").click() time.sleep(2) self.mall_page.screenshot('zhifu.png') time.sleep(2) self.mall_page.get_element("支付宝").click() self.mall_page.screenshot('zhifubao.png') def post_test(self): ''' 测试用例执行完成后,清理测试环境 ''' self.common.closedriver() __qtaf_seq_tests__ = [C31056_DFQP_Mall] if __name__ == '__main__': # C002_DFQP_Login_GuestLogin = C002_DFQP_Login_GuestLogin() # C002_DFQP_Login_GuestLogin.debug_run() debug_run_all()
c70e151d43836de3933142d4f083d962c54cc40b
ca6fd0c9807f8811f8c023dcd9683ccf882111d1
/torch/_inductor/graph.py
d39988b7a646b18fd997109b24c3a5ae2c1d4b5f
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
jiayisunx/pytorch
a2a966701b1b77b33641d50b9f5fe02d4f9af440
d643a00efc6e1be655708d60dd2d0e702e0d20b9
refs/heads/master
2023-07-23T23:57:50.236788
2023-04-07T01:33:52
2023-04-07T06:53:31
205,314,147
1
1
null
2019-08-30T05:54:56
2019-08-30T05:54:56
null
UTF-8
Python
false
false
27,452
py
import functools import logging import operator import os import re import sys import time from typing import Dict, List, Optional, Set import sympy import torch import torch._logging import torch.fx from torch._decomp import get_decompositions from torch._dynamo.utils import dynamo_timed from torch.fx.experimental.symbolic_shapes import ( magic_methods, method_to_operator, ShapeEnv, SymTypes, ) from torch.utils._mode_utils import no_dispatch from .._dynamo import config as dynamo_config from . import config, ir from .codegen.wrapper import CppWrapperCodeGen, CudaWrapperCodeGen, WrapperCodeGen from .exc import ( LoweringException, MissingOperatorWithDecomp, MissingOperatorWithoutDecomp, ) from .ir import Constant, FixedLayout, InputBuffer, Pointwise, Reduction, TensorBox from .lowering import ( FALLBACK_ALLOW_LIST, fallback_handler, fallback_node_due_to_unsupported_type, layout_constraints, lowerings, make_fallback, needs_realized_inputs, unsupported_output_tensor, ) from .sizevars import SizeVarAllocator from .utils import ( convert_shape_to_inductor, gather_origins, get_dtype_size, sympy_product, ) from .virtualized import V log = logging.getLogger(__name__) output_code_log = torch._logging.getArtifactLogger(__name__, "output_code") def supported_dtype_of_cpp_wrapper(dtype, cuda): supported_dtype = { torch.float32, torch.float64, torch.int64, torch.int32, torch.int16, torch.int8, torch.uint8, torch.bool, torch.bfloat16, # torch.float16, # TODO: implement this } if cuda: supported_dtype.add(torch.float16) return dtype in supported_dtype def may_get_constant_buffer_dtype(constant_buffer): assert isinstance( constant_buffer, sympy.Symbol ), "get_constant_buffer_dtype only supports input of sympy.Symbol" if constant_buffer.is_integer: return torch.int64 elif constant_buffer.is_float: return torch.float32 else: return None def is_magic_method(op): magic_ops = {method_to_operator(m) for m in magic_methods} return op in magic_ops class GraphLowering(torch.fx.Interpreter): def symbolic_sizes_strides(self, ex: torch.Tensor): """ Support dynamic shapes and dynamic strides by assigning variables to each dimension. We duck-shape tensors, so if two tensors have the same size they get assigned the same symbolic variable. """ if self.reuse_shape_env: return convert_shape_to_inductor(ex.size()), convert_shape_to_inductor( ex.stride() ) else: from torch._dynamo.source import ConstantSource # TODO: this should not be needed once #93059 lands # https://github.com/pytorch/pytorch/pull/94031#discussion_r1096044816 # TODO: make a dedicated UnknownSource for this? # NB: This is using the legacy default behavior from # create_symbolic_sizes_strides_storage_offset but we hope we can # just delete this entirely source = ConstantSource( f"__unknown_tensor_{len(self._shape_env.var_to_val)}" ) ( size, stride, _, ) = self._shape_env.create_symbolic_sizes_strides_storage_offset( ex, source, ) size = [i.node.expr if isinstance(i, torch.SymInt) else i for i in size] stride = [i.node.expr if isinstance(i, torch.SymInt) else i for i in stride] return size, stride def static_sizes_strides(self, ex: torch.Tensor): """ Primarily used to weights """ size = [sympy.Integer(i) for i in ex.size()] stride = [sympy.Integer(i) for i in ex.stride()] return size, stride def __init__( self, gm: torch.fx.GraphModule, shape_env=None, num_static_inputs=None, graph_id=None, cpp_wrapper=False, aot_mode=False, ): super().__init__(gm) self.extra_traceback = False # we do our own error wrapping if shape_env is None: shape_env = ShapeEnv() self.reuse_shape_env = False else: self._shape_env = shape_env self.reuse_shape_env = True self._shape_env = shape_env self.sizevars = SizeVarAllocator(shape_env) self.graph_inputs: Dict[str, TensorBox] = {} self.graph_inputs_original: Dict[str, InputBuffer] = {} self.graph_outputs: Optional[List[ir.IRNode]] = None self.device_types: Set[str] = set() self.device_idxs: Set[int] = set() self.buffers: List[ir.ComputedBuffer] = [] self.constants: Dict[str, torch.Tensor] = {} self.removed_buffers: Set[str] = set() self.inplaced_to_remove: Set[str] = set() self.wrapper_code = None self.num_static_inputs = num_static_inputs self.mutated_inputs: Set[str] = set() self.unaligned_buffers: Set[str] = set() self.randomness_offset = sympy.Integer(0) self.randomness_seeds: List[str] = [] self.name_to_buffer: Dict[str, ir.ComputedBuffer] = {} self.creation_time = time.time() self.name = "GraphLowering" self.cpp_wrapper = cpp_wrapper self.aot_mode = aot_mode self.graph_id = graph_id self.scheduler = None self._warned_fallback = {"aten.convolution_backward"} def warn_fallback(self, name): if name not in self._warned_fallback: self._warned_fallback.add(name) log.info(f"Using FallbackKernel: {name}") def add_device_idx(self, idx: Optional[int]): if idx is not None: self.device_idxs.add(idx) @property def fake_mode(self): return V.fake_mode def get_buffer(self, buffer_name: str): if buffer_name in self.name_to_buffer: return self.name_to_buffer[buffer_name] if buffer_name in self.graph_inputs: return self.graph_inputs[buffer_name] return None def get_dtype(self, buffer_name: str): if buffer_name in self.constants: return self.constants[buffer_name].dtype if buffer_name in self.name_to_buffer: return self.name_to_buffer[buffer_name].get_dtype() if buffer_name in self.graph_inputs: return self.graph_inputs[buffer_name].get_dtype() m = re.match(r"as_strided\(([a-zA-Z0-9_]+),", buffer_name) if m: return self.get_dtype(m.group(1)) raise KeyError(f"could not find {buffer_name}") def random_seed_buffer(self, device: torch.device): """ Return a device-unique 1-element tensor storing our RNG seed. This will get initialized at the start of each graph in `wrapper.py`. Note this is only used by cuda backends. The CPU backend handles RNG seeds as a sizevar. """ name = f"seed_{device.type}_{device.index}" if name not in self.constants: self.constants[name] = torch.zeros((), device=device, dtype=torch.int64) self.randomness_seeds.append(name) return ir.RandSeedBuffer( name=name, layout=ir.FixedLayout( device=device, dtype=torch.int64, size=[], stride=[], ), ) def increment_randomness_offset(self, numel): """ A global counter of how many random numbers we have handed out so far. """ offset = self.randomness_offset self.randomness_offset = offset + numel return offset @dynamo_timed def run(self, *args): return super().run(*args) def disable_cpp_wrapper(self, cond): self.cpp_wrapper = False assert not self.aot_mode, "AOT compilation failed" log.debug("Set cpp_wrapper to False due to %s", cond) def check_buffer_for_cpp_wrapper(self, buffer: ir.ComputedBuffer): if isinstance(buffer, ir.ExternKernel): if not getattr(buffer, "cpp_kernel", False): self.disable_cpp_wrapper("ExternKernel") def register_buffer(self, buffer: ir.ComputedBuffer): if self.cpp_wrapper: self.check_buffer_for_cpp_wrapper(buffer) name = f"buf{len(self.buffers)}" self.buffers.append(buffer) self.name_to_buffer[name] = buffer return name def realize_users_of(self, name: str): """ When a buffer is mutated we need to make sure all the reads to the old version are realized before the mutation happens. """ assert isinstance(name, str) def visit(value): if isinstance(value, (list, tuple)): return [visit(x) for x in value] if isinstance(value, ir.IRNode): if value.is_user_of(name): value.realize() return value for key, value in self.env.items(): try: visit(value) except Exception: log.warning("error in realize_users_of", exc_info=True) def add_tensor_constant(self, data): def allocate(): for name, value in self.constants.items(): if ( data.size() == value.size() and data.stride() == value.stride() and data.dtype == value.dtype and data.device == value.device and torch.eq(data, value).all() ): return name name = f"constant{len(self.constants)}" self.constants[name] = data return name return TensorBox.create( ir.ConstantBuffer( allocate(), FixedLayout(data.device, data.dtype, *self.static_sizes_strides(data)), ) ) def constant_name(self, name: str, device_override: torch.device): """ We AOT copy constants to the devices they are needed on. If device_override doesn't match the constant's device, then copy it and return a different name. """ if self.constants[name].device == device_override or device_override is None: return name alt_name = f"{name}_{device_override.type}{device_override.index or 0}" if alt_name not in self.constants: self.constants[alt_name] = self.constants[name].to(device_override) return alt_name def placeholder(self, target: str, args, kwargs): example = super().placeholder(target, args, kwargs) if isinstance(example, SymTypes): expr = example.node.expr self.graph_inputs[target] = expr return expr elif isinstance(example, (int, bool, float)): expr = sympy.sympify(example) self.graph_inputs[target] = expr return expr assert isinstance(example, torch.Tensor), example # todo(chilli): We can remove the last check once we turn buffers into # static shape tensors. That's a hack to workaround Inductor believing # the buffer should be static but us passing in a fake tensor with # symbolic shapes. if ( config.static_weight_shapes and ( len(self.graph_inputs) < self.num_static_inputs or not dynamo_config.dynamic_shapes ) and not example._has_symbolic_sizes_strides ): # the first N inputs are weights sizes, strides = self.static_sizes_strides(example) else: sizes, strides = self.symbolic_sizes_strides(example) # TODO(jansel): handle input aliasing tensor = TensorBox.create( InputBuffer( target, FixedLayout(example.device, example.dtype, sizes, strides), ) ) self.graph_inputs[target] = tensor self.graph_inputs_original[target] = tensor.data.data self.device_types.add(example.device.type) self.add_device_idx(example.device.index) return tensor def call_function(self, target, args, kwargs): if target is operator.getitem and isinstance(args[0], (list, tuple)): return super().call_function(target, args, kwargs) if hasattr(target, "_inductor_lowering_function"): # passthrough lowerings from .pattern_matcher return target(*args, **kwargs) if target not in lowerings: base_name = target.name().split(".")[0] if base_name in FALLBACK_ALLOW_LIST: make_fallback(target) elif config.implicit_fallbacks: error = ( MissingOperatorWithDecomp if get_decompositions([target]) else MissingOperatorWithoutDecomp ) log.info( "Creating implicit fallback for:\n%s", error.operator_str(target, args, kwargs), ) make_fallback(target) elif get_decompositions([target]): # There isn't a good way to dynamically patch this in # since AOT Autograd already ran. The error message tells # the user how to fix it. raise MissingOperatorWithDecomp(target, args, kwargs) else: raise MissingOperatorWithoutDecomp(target, args, kwargs) try: out = lowerings[target](*args, **kwargs) return out except Exception as e: raise LoweringException(e, target, args, kwargs).with_traceback( e.__traceback__ ) from None def get_attr(self, target, args, kwargs): # this is a constant value = getattr(self.module, target) if unsupported_output_tensor(value): return self.add_tensor_constant(value) with no_dispatch(): if value.shape == (): return Constant(value.item(), value.dtype, value.device) if len(value.shape) == 1 and value.shape[0] <= 8: # tensor lowering has constant inlining logic from .lowering import tensor return tensor(value.tolist(), dtype=value.dtype, device=value.device) return self.add_tensor_constant(value) def call_module(self, target, args, kwargs): raise AssertionError() def call_method(self, target, args, kwargs): raise AssertionError() def output(self, target, args, kwargs): result = super().output(target, args, kwargs) assert isinstance(result, (tuple, list)), type(result) assert all( isinstance( x, ( TensorBox, ir.Constant, type(None), ir.ConstantBuffer, sympy.Expr, int, ), ) for x in result ), result self.graph_outputs = [ir.ExternKernel.realize_input(x) for x in result] for name, value in self.graph_inputs.items(): assert isinstance(value, (TensorBox, sympy.Expr)) if not isinstance(value, TensorBox): continue value.realize() assert isinstance(value, TensorBox) value = value.data assert isinstance(value, ir.StorageBox) value_storage_box = value value = value.data if not isinstance(value, InputBuffer) or value.get_name() != name: # one of our inputs was mutated, need to turn that into a copy ir.MutationLayout.realize_into(value, self.graph_inputs_original[name]) # replace output with mutated input try: ind = self.graph_outputs.index(value_storage_box) self.graph_outputs[ind] = self.graph_inputs_original[name] except ValueError: pass self.finalize() def finalize(self): for buf in self.buffers: buf.decide_layout() def run_node(self, n: torch.fx.Node): origins = {n} if n.op == "call_function": args, kwargs = self.fetch_args_kwargs_from_env(n) origins |= gather_origins(args, kwargs) with ir.IRNode.current_origins(origins): if ( n.op == "call_function" and n.target is not operator.getitem and fallback_node_due_to_unsupported_type(n) ): result = fallback_handler(n.target, add_to_fallback_set=False)( *args, **kwargs ) elif n.op == "call_function" and n.target in layout_constraints: args, kwargs = layout_constraints[n.target](n, *args, **kwargs) result = self.call_function(n.target, args, kwargs) elif is_magic_method(n.target): if isinstance(n.meta["val"], torch.SymInt): result = n.meta["val"].node.expr else: result = super().run_node(n) else: result = super().run_node(n) # require the same stride order for dense outputs, # 1. user-land view() will not throw because inductor # output different strides than eager # long term the solution is to make view() always succeed # with infallible strides. # 2: as_strided ops, we need make sure its input has same size/stride with # eager model to align with eager behavior. as_strided_ops = [ torch.ops.aten.as_strided.default, torch.ops.aten.as_strided_.default, torch.ops.aten.as_strided_scatter.default, ] if any( user.op == "output" or user.target in as_strided_ops for user in n.users ) and isinstance(n.meta["val"], torch.Tensor): strides = n.meta["val"].stride() dense = torch._prims_common.is_non_overlapping_and_dense(n.meta["val"]) # requiring a stride order for a non-dense output wouldn't # recreate the same strides, and would fail with view, defer for now. if dense and len(strides): result = ir.ExternKernel.require_stride_order( result, ir.get_stride_order(strides) ) # Realize if (1) any user need inputs realized, or (2) there is # already too many reads and rematerializing can be bad. num_users = len(set(n.users)) if num_users > 1 and isinstance(result, TensorBox): for user in n.users: if user.target in needs_realized_inputs: result.realize_hint() # This inclusion is somewhat controversial (from # discussion between Horace, Natalia, and Elias). # Currently, it's not very clear why this is helpful. # The general idea here is that even though a node may # have FlexibleLayout, we still often *treat* it as if # it was contiguous. This appears to sometimes result in # suboptimal behavior. # # When we do a better job selecting layout, we should # revisit this. need_fixed_layout = [ torch.ops.aten.convolution.default, torch.ops.aten.convolution_backward.default, torch.ops.aten.mm.default, torch.ops.aten._int_mm.default, ] if torch._C.has_mkldnn: need_fixed_layout += [ torch.ops.mkldnn._convolution_pointwise.default, torch.ops.mkldnn._convolution_pointwise.binary, torch.ops.mkldnn._convolution_pointwise_.binary, torch.ops.mkldnn._convolution_transpose_pointwise.default, torch.ops.mkldnn._linear_pointwise.default, torch.ops.mkldnn._linear_pointwise.binary, ] if torch._C.has_mkl: need_fixed_layout += [torch.ops.mkl._mkl_linear.default] if user.target in need_fixed_layout: result = ir.ExternKernel.require_stride_order( result, ir.get_stride_order(n.meta["val"].stride()) ) if user.op == "output": if isinstance(result.data.data, (Pointwise, Reduction)): result.realize() # TODO(jansel): introduce a store vs inline choice result.mark_reuse(len(n.users)) # Realize if the IRNode already has accumulated lots of reads if isinstance(result, TensorBox) and result.has_exceeded_max_reads(): # Prevent excessive accumulation in a computed buffer, when # there are multiple branches each with small number of memory # reads, but they converge to a user. result.realize_hint() return result def check_cpp_codegen_disabled(self): if config.disable_cpp_codegen: self.disable_cpp_wrapper("cpp codegen disabled") def check_platform(self): if sys.platform != "linux": self.disable_cpp_wrapper("platform not linux") @functools.lru_cache(None) def get_single_device(self): return list(self.device_types)[0] if len(self.device_types) == 1 else None def check_input_for_cpp_buffer(self, cuda): for _, value in self.graph_inputs.items(): dtype = None if isinstance(value, TensorBox): dtype = value.get_dtype() elif isinstance(value, sympy.Symbol): dtype = may_get_constant_buffer_dtype(value) if not supported_dtype_of_cpp_wrapper(dtype, cuda): self.disable_cpp_wrapper("unsupported inputs dtype") def check_constant_for_cpp_buffer(self): if self.constants: self.disable_cpp_wrapper("Constants") def check_cpp_wrapper(self, cuda): self.check_cpp_codegen_disabled() self.check_platform() self.check_input_for_cpp_buffer(cuda) self.check_constant_for_cpp_buffer() def init_wrapper_code(self): if self.cpp_wrapper: device = self.get_single_device() assert device == "cpu" or device == "cuda" cuda = device == "cuda" self.check_cpp_wrapper(cuda) # Re-check self.cpp_wrapper because it might be disabled due to failed checking if self.cpp_wrapper: self.wrapper_code = ( CudaWrapperCodeGen() if cuda else CppWrapperCodeGen() ) return self.wrapper_code = WrapperCodeGen() def codegen(self): from .scheduler import Scheduler self.init_wrapper_code() self.scheduler = Scheduler(self.buffers) assert self.scheduler is not None # mypy can't figure this out self.scheduler.codegen() assert self.wrapper_code is not None return self.wrapper_code.generate() def count_bytes(self): from .scheduler import FusedSchedulerNode, NopKernelSchedulerNode, Scheduler scheduler = Scheduler(self.buffers) def get_read_write_buffers_sizes(node): if isinstance(node, NopKernelSchedulerNode): return 0 reads = {dep.name for dep in node.read_writes.reads} writes = {dep.name for dep in node.read_writes.writes} def is_materialized(buf): buf_uses = {user.node for user in scheduler.name_to_node[buf].users} return len(buf_uses - set(node.snodes)) > 0 if isinstance(node, FusedSchedulerNode): removed_buffers = {dep for dep in writes if not is_materialized(dep)} writes = writes - removed_buffers reads = reads - removed_buffers node_bytes = 0 for buf in reads | writes: if buf in self.name_to_buffer: buf = self.name_to_buffer[buf] elif buf in self.graph_inputs: buf = self.graph_inputs[buf] else: continue node_bytes += V.graph.sizevars.size_hint( sympy_product(buf.get_size()) ) * get_dtype_size(buf.get_dtype()) return node_bytes total_bytes = 0 node_counts = [] for node in scheduler.nodes: num_bytes = get_read_write_buffers_sizes(node) node_counts.append((node, num_bytes // 4)) total_bytes += num_bytes return total_bytes, node_counts @dynamo_timed def compile_to_module(self): from .codecache import PyCodeCache code, linemap = self.codegen() mod = PyCodeCache.load(code, linemap=linemap) for name, value in self.constants.items(): setattr(mod, name, value) log.debug(f"Output code written to: {mod.__file__}") output_code_log.debug(f"Output code: \n{code}") if config.benchmark_kernel: print(f"Compiled module path: {mod.__file__}", file=sys.stderr) V.debug.output_code(mod.__file__) V.debug.rename(os.path.splitext(mod.__file__)[0] + ".debug") return mod def compile_to_fn(self): if self.aot_mode: from .codecache import AotCodeCache code, linemap = self.codegen() output_code_log.debug(f"Output code: \n{code}") libpath = AotCodeCache.compile( code, cuda=(self.get_single_device() == "cuda") ) return lambda dummy: libpath else: return self.compile_to_module().call def get_output_names(self): assert self.graph_outputs is not None return [ node.get_name() for node in self.graph_outputs if not isinstance(node, ir.NoneAsConstantBuffer) and not isinstance(node, ir.ShapeAsConstantBuffer) ] def is_unspec_arg(self, name: str): # dynamo wraps unspec variable as 0d CPU tensor, # need to convert to scalar during codegen (triton only) return ( name in self.graph_inputs.keys() and self.graph_inputs[name].get_numel() == 1 and self.graph_inputs[name].get_device().type == "cpu" )
25703d130ef26252405e1f3e2b069e65fe2b38c0
fe70f357ac403c3ea6f859ae6648ae1aaae989f3
/apis_v1/documentation_source/organization_follow_doc.py
67287f52be6a872374bbbef485b943783bf12373
[ "MIT" ]
permissive
nickelser/WeVoteServer
313242945b3b556bc602240cc767bc2e41397163
be2c1367e8263f2cdcf3bd2e27e6cd4a6f35af68
refs/heads/develop
2021-01-22T02:24:35.099734
2017-05-25T01:16:47
2017-05-25T01:16:47
92,358,884
1
0
null
2017-05-25T03:00:26
2017-05-25T03:00:25
null
UTF-8
Python
false
false
3,606
py
# apis_v1/documentation_source/organization_follow_doc.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- def organization_follow_doc_template_values(url_root): """ Show documentation about organizationFollow """ required_query_parameter_list = [ { 'name': 'voter_device_id', 'value': 'string', # boolean, integer, long, string 'description': 'An 88 character unique identifier linked to a voter record on the server', }, { 'name': 'organization_id', 'value': 'integer', # boolean, integer, long, string 'description': 'Internal database unique identifier for organization', }, { 'name': 'organization_we_vote_id', 'value': 'string', # boolean, integer, long, string 'description': 'The unique identifier for this organization across all networks ' '(either organization_id OR organization_we_vote_id required -- not both.) ' 'NOTE: In the future we ' 'might support other identifiers used in the industry.', }, { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, ] optional_query_parameter_list = [ ] potential_status_codes_list = [ { 'code': 'VALID_VOTER_DEVICE_ID_MISSING', 'description': 'A valid voter_device_id parameter was not included. Cannot proceed.', }, { 'code': 'VALID_VOTER_ID_MISSING', 'description': 'A valid voter_id was not found from voter_device_id. Cannot proceed.', }, { 'code': 'VALID_ORGANIZATION_ID_MISSING', 'description': 'A valid organization_id was not found. Cannot proceed.', }, { 'code': 'ORGANIZATION_NOT_FOUND_ON_CREATE FOLLOWING', 'description': 'An organization with that organization_id was not found. Cannot proceed.', }, { 'code': 'FOLLOWING', 'description': 'Successfully following this organization', }, ] try_now_link_variables_dict = { 'organization_id': '1', } api_response = '{\n' \ ' "status": string,\n' \ ' "success": boolean,\n' \ ' "voter_device_id": string (88 characters long),\n' \ ' "organization_id": integer,\n' \ ' "organization_we_vote_id": string,\n' \ '}' template_values = { 'api_name': 'organizationFollow', 'api_slug': 'organizationFollow', 'api_introduction': "Call this to save that the voter is following this organization.", 'try_now_link': 'apis_v1:organizationFollowView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, 'api_response_notes': "", 'potential_status_codes_list': potential_status_codes_list, } return template_values
84c206d459224db516ac7058f7b83b45e5b62ea3
e17ecf9839e8a4d450f6376f7b79d90ae6b365d8
/tlpipe/map/fmmode/util/safeeval.py
e899d2991d593fa20a92291beacf6764c22b5146
[]
no_license
wufq/tlpipe
4f490ac47c351085841d8a2bd7a34765511c49e3
62928c7fdd16680d56d76c8e1db5d3b863e23d16
refs/heads/master
2021-05-12T06:55:50.711254
2017-08-02T06:36:00
2017-08-02T06:36:00
117,227,941
0
0
null
2018-01-12T10:30:00
2018-01-12T10:30:00
null
UTF-8
Python
false
false
15,348
py
#---------------------------------------------------------------------- # I, Babar K. Zafar, the author or of this code dedicate any and all # copyright interest in this code to the public domain. I make this # dedication for the benefit of the public at large and to the # detriment of our heirs and successors. I intend this dedication to # be an overt act of relinquishment in perpetuity of all present and # future rights this code under copyright law. # # Version 0.1 / May 27 2006 #---------------------------------------------------------------------- import __builtin__ import inspect, compiler.ast import thread, time #---------------------------------------------------------------------- # Module globals. #---------------------------------------------------------------------- # Toggle module level debugging mode. DEBUG = False # List of all AST node classes in compiler/ast.py. all_ast_nodes = \ [name for (name, obj) in inspect.getmembers(compiler.ast) if inspect.isclass(obj) and issubclass(obj, compiler.ast.Node)] # List of all builtin functions and types (ignoring exception classes). # all_builtins = \ # [name for (name, obj) in inspect.getmembers(__builtins__) # if inspect.isbuiltin(obj) or (inspect.isclass(obj) and \ # not issubclass(obj, Exception))] all_builtins = \ [name for (name, obj) in inspect.getmembers(__builtin__) if inspect.isbuiltin(obj) or (inspect.isclass(obj) and \ not issubclass(obj, Exception))] #---------------------------------------------------------------------- # Utilties. #---------------------------------------------------------------------- def classname(obj): return obj.__class__.__name__ def is_valid_ast_node(name): return name in all_ast_nodes def is_valid_builtin(name): return name in all_builtins def get_node_lineno(node): return (node.lineno) and node.lineno or 0 #---------------------------------------------------------------------- # Restricted AST nodes & builtins. #---------------------------------------------------------------------- # Deny evaluation of code if the AST contain any of the following nodes: unallowed_ast_nodes = [ # 'Add', 'And', # 'AssAttr', 'AssList', 'AssName', 'AssTuple', # 'Assert', 'Assign', 'AugAssign', 'Backquote', # 'Bitand', 'Bitor', 'Bitxor', 'Break', # 'CallFunc', 'Class', 'Compare', 'Const', 'Continue', # 'Decorators', 'Dict', 'Discard', 'Div', # 'Ellipsis', 'EmptyNode', 'Exec', # 'Expression', 'FloorDiv', # 'For', 'From', # 'Function', # 'GenExpr', 'GenExprFor', 'GenExprIf', 'GenExprInner', # 'Getattr', 'Global', 'If', 'Import', # 'Invert', # 'Keyword', 'Lambda', 'LeftShift', # 'List', 'ListComp', 'ListCompFor', 'ListCompIf', 'Mod', # 'Module', # 'Mul', 'Name', 'Node', 'Not', 'Or', 'Pass', 'Power', # 'Print', 'Printnl', 'Raise', # 'Return', 'RightShift', 'Slice', 'Sliceobj', # 'Stmt', 'Sub', 'Subscript', 'TryExcept', 'TryFinally', # 'Tuple', 'UnaryAdd', 'UnarySub', # 'While','Yield' ] # Deny evaluation of code if it tries to access any of the following builtins: unallowed_builtins = [ '__import__', # 'abs', 'apply', 'basestring', 'bool', 'buffer', # 'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile', # 'complex', 'delattr', # 'dict', 'dir', # 'divmod', 'enumerate', 'eval', 'execfile', 'file', # 'filter', 'float', 'frozenset', 'getattr', 'globals', 'hasattr', # 'hash', 'hex', 'id', 'input', # 'int', 'intern', 'isinstance', 'issubclass', 'iter', # 'len', 'list', 'locals', # 'long', 'map', 'max', 'min', 'object', 'oct', 'open', # 'ord', 'pow', 'property', 'range', 'raw_input', # 'reduce', 'reload', # 'repr', 'reversed', 'round', 'set', 'setattr', # 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super', # 'tuple', 'type', 'unichr', 'unicode', 'vars', # 'xrange', 'zip' ] for ast_name in unallowed_ast_nodes: assert(is_valid_ast_node(ast_name)) for name in unallowed_builtins: assert(is_valid_builtin(name)) def is_unallowed_ast_node(kind): return kind in unallowed_ast_nodes def is_unallowed_builtin(name): return name in unallowed_builtins #---------------------------------------------------------------------- # Restricted attributes. #---------------------------------------------------------------------- # In addition to these we deny access to all lowlevel attrs (__xxx__). unallowed_attr = [ 'im_class', 'im_func', 'im_self', 'func_code', 'func_defaults', 'func_globals', 'func_name', 'tb_frame', 'tb_next', 'f_back', 'f_builtins', 'f_code', 'f_exc_traceback', 'f_exc_type', 'f_exc_value', 'f_globals', 'f_locals'] def is_unallowed_attr(name): return (name[:2] == '__' and name[-2:] == '__') or \ (name in unallowed_attr) #---------------------------------------------------------------------- # SafeEvalVisitor. #---------------------------------------------------------------------- class SafeEvalError(object): """ Base class for all which occur while walking the AST. Attributes: errmsg = short decription about the nature of the error lineno = line offset to where error occured in source code """ def __init__(self, errmsg, lineno): self.errmsg, self.lineno = errmsg, lineno def __str__(self): return "line %d : %s" % (self.lineno, self.errmsg) class SafeEvalASTNodeError(SafeEvalError): "Expression/statement in AST evaluates to a restricted AST node type." pass class SafeEvalBuiltinError(SafeEvalError): "Expression/statement in tried to access a restricted builtin." pass class SafeEvalAttrError(SafeEvalError): "Expression/statement in tried to access a restricted attribute." pass class SafeEvalVisitor(object): """ Data-driven visitor which walks the AST for some code and makes sure it doesn't contain any expression/statements which are declared as restricted in 'unallowed_ast_nodes'. We'll also make sure that there aren't any attempts to access/lookup restricted builtin declared in 'unallowed_builtins'. By default we also won't allow access to lowlevel stuff which can be used to dynamically access non-local envrioments. Interface: walk(ast) = validate AST and return True if AST is 'safe' Attributes: errors = list of SafeEvalError if walk() returned False Implementation: The visitor will automatically generate methods for all of the available AST node types and redirect them to self.ok or self.fail reflecting the configuration in 'unallowed_ast_nodes'. While walking the AST we simply forward the validating step to each of node callbacks which take care of reporting errors. """ def __init__(self): "Initialize visitor by generating callbacks for all AST node types." self.errors = [] for ast_name in all_ast_nodes: # Don't reset any overridden callbacks. if getattr(self, 'visit' + ast_name, None): continue if is_unallowed_ast_node(ast_name): setattr(self, 'visit' + ast_name, self.fail) else: setattr(self, 'visit' + ast_name, self.ok) def walk(self, ast): "Validate each node in AST and return True if AST is 'safe'." self.visit(ast) return self.errors == [] def visit(self, node, *args): "Recursively validate node and all of its children." fn = getattr(self, 'visit' + classname(node)) if DEBUG: self.trace(node) fn(node, *args) for child in node.getChildNodes(): self.visit(child, *args) def visitName(self, node, *args): "Disallow any attempts to access a restricted builtin/attr." name = node.getChildren()[0] lineno = get_node_lineno(node) if is_unallowed_builtin(name): self.errors.append(SafeEvalBuiltinError( \ "access to builtin '%s' is denied" % name, lineno)) elif is_unallowed_attr(name): self.errors.append(SafeEvalAttrError( \ "access to attribute '%s' is denied" % name, lineno)) def visitGetattr(self, node, *args): "Disallow any attempts to access a restricted attribute." name = node.attrname lineno = get_node_lineno(node) if is_unallowed_attr(name): self.errors.append(SafeEvalAttrError( \ "access to attribute '%s' is denied" % name, lineno)) def ok(self, node, *args): "Default callback for 'harmless' AST nodes." pass def fail(self, node, *args): "Default callback for unallowed AST nodes." lineno = get_node_lineno(node) self.errors.append(SafeEvalASTNodeError( \ "execution of '%s' statements is denied" % classname(node), lineno)) def trace(self, node): "Debugging utility for tracing the validation of AST nodes." print classname(node) for attr in dir(node): if attr[:2] != '__': print ' ' * 4, "%-15.15s" % attr, getattr(node, attr) #---------------------------------------------------------------------- # Safe 'eval' replacement. #---------------------------------------------------------------------- class SafeEvalException(Exception): "Base class for all safe-eval related errors." pass class SafeEvalCodeException(SafeEvalException): """ Exception class for reporting all errors which occured while validating AST for source code in safe_eval(). Attributes: code = raw source code which failed to validate errors = list of SafeEvalError """ def __init__(self, code, errors): self.code, self.errors = code, errors def __str__(self): return '\n'.join([str(err) for err in self.errors]) class SafeEvalContextException(SafeEvalException): """ Exception class for reporting unallowed objects found in the dict intended to be used as the local enviroment in safe_eval(). Attributes: keys = list of keys of the unallowed objects errors = list of strings describing the nature of the error for each key in 'keys' """ def __init__(self, keys, errors): self.keys, self.errors = keys, errors def __str__(self): return '\n'.join([str(err) for err in self.errors]) class SafeEvalTimeoutException(SafeEvalException): """ Exception class for reporting that code evaluation execeeded the given timelimit. Attributes: timeout = time limit in seconds """ def __init__(self, timeout): self.timeout = timeout def __str__(self): return "Timeout limit execeeded (%s secs) during exec" % self.timeout def exec_timed(code, context, timeout_secs): """ Dynamically execute 'code' using 'context' as the global enviroment. SafeEvalTimeoutException is raised if execution does not finish within the given timelimit. """ assert(timeout_secs > 0) signal_finished = False def alarm(secs): def wait(secs): for n in xrange(timeout_secs): time.sleep(1) if signal_finished: break else: thread.interrupt_main() thread.start_new_thread(wait, (secs,)) try: alarm(timeout_secs) exec code in context signal_finished = True except KeyboardInterrupt: raise SafeEvalTimeoutException(timeout_secs) def safe_eval(code, context = {}, timeout_secs = 5): """ Validate source code and make sure it contains no unauthorized expression/statements as configured via 'unallowed_ast_nodes' and 'unallowed_builtins'. By default this means that code is not allowed import modules or access dangerous builtins like 'open' or 'eval'. If code is considered 'safe' it will be executed via 'exec' using 'context' as the global environment. More details on how code is executed can be found in the Python Reference Manual section 6.14 (ignore the remark on '__builtins__'). The 'context' enviroment is also validated and is not allowed to contain modules or builtins. The following exception will be raised on errors: if 'context' contains unallowed objects = SafeEvalContextException if code is didn't validate and is considered 'unsafe' = SafeEvalCodeException if code did not execute within the given timelimit = SafeEvalTimeoutException """ ctx_errkeys, ctx_errors = [], [] for (key, obj) in context.items(): if inspect.isbuiltin(obj): ctx_errkeys.append(key) ctx_errors.append("key '%s' : unallowed builtin %s" % (key, obj)) if inspect.ismodule(obj): ctx_errkeys.append(key) ctx_errors.append("key '%s' : unallowed module %s" % (key, obj)) if ctx_errors: raise SafeEvalContextException(ctx_errkeys, ctx_errors) ast = compiler.parse(code) checker = SafeEvalVisitor() if checker.walk(ast): exec_timed(code, context, timeout_secs) else: raise SafeEvalCodeException(code, checker.errors) #---------------------------------------------------------------------- # Basic tests. #---------------------------------------------------------------------- import unittest class TestSafeEval(unittest.TestCase): def test_builtin(self): # attempt to access a unsafe builtin self.assertRaises(SafeEvalException, safe_eval, "open('test.txt', 'w')") def test_getattr(self): # attempt to get arround direct attr access self.assertRaises(SafeEvalException, \ safe_eval, "getattr(int, '__abs__')") def test_func_globals(self): # attempt to access global enviroment where fun was defined self.assertRaises(SafeEvalException, \ safe_eval, "def x(): pass; print x.func_globals") def test_lowlevel(self): # lowlevel tricks to access 'object' self.assertRaises(SafeEvalException, \ safe_eval, "().__class__.mro()[1].__subclasses__()") def test_timeout_ok(self): # attempt to exectute 'slow' code which finishes within timelimit def test(): time.sleep(2) env = {'test':test} safe_eval("test()", env, timeout_secs = 5) def test_timeout_exceed(self): # attempt to exectute code which never teminates self.assertRaises(SafeEvalException, \ safe_eval, "while 1: pass") def test_invalid_context(self): # can't pass an enviroment with modules or builtins env = {'f' : __builtins__.open, 'g' : time} self.assertRaises(SafeEvalException, \ safe_eval, "print 1", env) def test_callback(self): # modify local variable via callback self.value = 0 def test(): self.value = 1 env = {'test':test} safe_eval("test()", env) self.assertEqual(self.value, 1) if __name__ == "__main__": unittest.main() #---------------------------------------------------------------------- # The End. #----------------------------------------------------------------------
cd0d381a1c80726c12b3a0929446246ddd281b45
d554b1aa8b70fddf81da8988b4aaa43788fede88
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/225/users/4413/codes/1671_1104.py
72209cb1de809196d3880e615f97612ea59aa388
[]
no_license
JosephLevinthal/Research-projects
a3bc3ca3b09faad16f5cce5949a2279cf14742ba
60d5fd6eb864a5181f4321e7a992812f3c2139f9
refs/heads/master
2022-07-31T06:43:02.686109
2020-05-23T00:24:26
2020-05-23T00:24:26
266,199,309
1
0
null
null
null
null
UTF-8
Python
false
false
124
py
a = float(input("numero 1: ")) b = float(input("numero 2: ")) c = float(input("numero 3: ")) d = float(input("numero 4: "))
575b7eebc7449a5c217a0894b3470af53972e4bf
1dad74c0d1b050e4a66026599f9f883d82dabd60
/practices/pil_merge.py
ffd3726d223788c952f5145f00a3506c2fd90c2a
[]
no_license
DingZiming/python-api-tesing
0af0f9963f00f6de38e2c7bf7ebe8d85afb9e286
efd220ce3eca5d2728eea5110d8169c767e3eff2
refs/heads/master
2020-04-09T13:27:23.924448
2018-12-04T08:43:32
2018-12-04T08:43:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,131
py
#!/usr/bin/python3 # -*- coding: utf-8 -*- # 技术支持:https://www.jianshu.com/u/69f40328d4f0 # 技术支持 https://china-testing.github.io/ # https://github.com/china-testing/python-api-tesing/blob/master/practices/pil_merge.py # 项目实战讨论QQ群630011153 144081101 # CreateDate: 2018-12-04 import math from PIL import Image column = 2 width = 802 height = 286 size = (802, 286) list_im = [r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg', r'd:\code.jpg'] list_im = list_im*11 imgs = [Image.open(i) for i in list_im] row_num = math.ceil(len(imgs)/column) target = Image.new('RGB', (width*column, height*row_num)) for i in range(len(list_im)): if i % column == 0: end = len(list_im) if i + column > len(list_im) else i + column for col, image in enumerate(imgs[i:i+column]): target.paste(image, (width*col, height*(i//column), width*(col + 1), height*(i//column + 1))) target.show() target.save('d:\code2.jpg')
34fd125ce84e0a0bc0a8960ea874107dbbf28dea
59afd4e7c4a16838afb11f69ba2f908695c17794
/atcoder006/c.py
da243ca226b10fdc54e9628581b70bd0187a486f
[]
no_license
mugenen/AtCoder-Solution
ca29437abdcb90177eca6ff59f499235cb046bfc
a25c54a365f41e7a61abc9d4f7a90657c39fdd46
refs/heads/master
2021-01-01T17:57:49.228749
2013-10-12T15:25:10
2013-10-12T15:25:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
# -*- coding: utf-8 -*- import math N = int(raw_input()) w = int(raw_input()) stack = [[w]] for i in xrange(N - 1): w = int(raw_input()) for j in stack: if j[-1] >= w: j.append(w) break else: stack.append([w]) stack.sort(lambda x, y: cmp(x[-1], y[-1])) # print stack print len(stack)
fac680958628294515257aa44df4dceddd5d0101
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03378/s856989995.py
f7d9d1fe3966811a933ff601b0728cdcd2a7c4ea
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
n,m,x = map(int,input().split()) a=list(map(int,input().split())) cnt1, cnt2 = 0, 0 for i in range(m): if 0 <= a[i] < x: cnt1 += 1 if x < a[i] <= a[-1]: cnt2 += 1 print(min(cnt1, cnt2))
507054441fa8c8cb81c76f7c51336ccd96dddea1
f4ccf2f4bd7f806d32ef7121d949af2b9d45f159
/pytorch/scripts/compile_results_pytorch_bs.py
fbe7d1bd2e0856abeba20a8c837e1a4f57ff3b53
[]
no_license
shadowkun/deeplearning-benchmark
77d6089faa89025248c6794f3dcadcb441399dd3
85a7854440d74bce2f07b407077c7892f5c7537b
refs/heads/master
2023-06-19T03:44:40.088762
2021-07-13T05:03:54
2021-07-13T05:03:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,088
py
# -*- coding: utf-8 -*- import os import re import argparse import pandas as pd # You need add your own experiments here so it can be included in the generated csv files # naming convention # key: config name # value: renaming the system so it is easier to read list_system_single = [ ('V100', 'V100 32GB'), ('QuadroRTX8000', 'RTX 8000'), ('QuadroRTX6000', 'RTX 6000'), ('QuadroRTX5000', 'RTX 5000'), ('TitanRTX', 'Titan RTX'), ('2080Ti', 'RTX 2080Ti'), ('1080Ti', 'GTX 1080Ti'), ('2080SuperMaxQ', 'RTX 2080 SUPER MAX-Q'), ('2080MaxQ', 'RTX 2080 MAX-Q'), ('2070MaxQ', 'RTX 2070 MAX-Q'), ('3070', 'RTX 3070'), ('3080', 'RTX 3080'), ('3090', 'RTX 3090'), ('A100_PCIe', 'A100 40GB PCIe'), ('A100_SXM4', 'A100 40GB SXM4'), ('A6000', 'RTX A6000'), ('A5000', 'RTX A5000'), ('LambdaCloud_A6000', 'Lambda Cloud — RTX A6000'), ('3080Max-Q', 'RTX 3080 Max-Q'), ('A40', 'RTX A40'), ('A4000', 'RTX A4000'), ] list_system_multiple = [ ('2x2080TiNVlink_trt', '2x RTX 2080Ti NVLink'), ('2x2080Ti_trt', '2x RTX 2080Ti'), ('4x2080TiNVlink_trt', '4x RTX 2080Ti NVLink'), ('4x2080Ti_trt', '4x RTX 2080Ti'), ('8x2080TiNVlink_trt', '8x RTX 2080Ti NVLink'), ('8x2080Ti_trt', '8x RTX 2080Ti'), ('2xQuadroRTX8000NVlink_trt2', '2x RTX 8000 NVLink'), ('2xQuadroRTX8000_trt2', '2x RTX 8000'), ('4xQuadroRTX8000NVlink_trt2', '4x RTX 8000 NVLink'), ('4xQuadroRTX8000_trt2', '4x RTX 8000'), ('8xQuadroRTX8000NVlink_trt2', '8x RTX 8000 NVLink'), ('8xQuadroRTX8000_trt2', '8x RTX 8000'), ('2xV100', '2x V100 32GB'), ('4xV100', '4x V100 32GB'), ('8xV100', '8x V100 32GB'), ('LambdaCloud_4x1080Ti', 'Lambda Cloud — 4x GTX 1080Ti'), ('LambdaCloud_2xQuadroRTX6000', 'Lambda Cloud — 2x RTX 6000'), ('LambdaCloud_4xQuadroRTX6000', 'Lambda Cloud — 4x RTX 6000'), ('LambdaCloud_8xV10016G', 'Lambda Cloud — 8x V100 16GB'), ('Linode_2xQuadroRTX6000', 'Linode Cloud — 2x RTX 6000'), ('p3.16xlarge', 'p3.16xlarge'), ('p3.8xlarge', 'p3.8xlarge'), ('2x3070', '2x RTX 3070'), ('2x3080', '2x RTX 3080'), ('2x3090', '2x RTX 3090'), ('3x3090', '3x RTX 3090'), ('4x3070', '4x RTX 3070'), ('4x3090', '4x RTX 3090'), ('8x3070', '8x RTX 3070'), ('8x3090', '8x RTX 3090'), ('2xA100_PCIe', '2x A100 40GB PCIe'), ('4xA100_PCIe', '4x A100 40GB PCIe'), ('8xA100_PCIe', '8x A100 40GB PCIe'), ('2xA100_SXM4', '2x A100 40GB SXM4'), ('4xA100_SXM4', '4x A100 40GB SXM4'), ('8xA100_SXM4', '8x A100 40GB SXM4'), ('8xA6000', '8x RTX A6000'), ('4xA6000', '4x RTX A6000'), ('2xA6000', '2x RTX A6000'), ('4xA5000', '4x RTX A5000'), ('2xA5000', '2x RTX A5000'), ('8xA100_p4', 'p4d.24xlarge'), ('LambdaCloud_2xA6000', 'Lambda Cloud — 2x RTX A6000'), ('LambdaCloud_4xA6000', 'Lambda Cloud — 4x RTX A6000'), ('8xA40', '8x RTX A40'), ('4xA40', '4x RTX A40'), ('2xA40', '2x RTX A40'), ('8xA4000', '8x RTX A4000'), ('4xA4000', '4x RTX A4000'), ('2xA4000', '2x RTX A4000'), ] # These are the rules to extract batch size from config files list_test_fp32 = { 'PyTorch_SSD_FP32': (4, -1, 1, 'ssd'), 'PyTorch_resnet50_FP32': (7, -1, 1, 'resnet50'), 'PyTorch_maskrcnn_FP32': (4, -1, 0, 'maskrcnn'), 'PyTorch_gnmt_FP32': (4, -1, 1, 'gnmt'), 'PyTorch_ncf_FP32': (5, -1, 0, 'ncf'), 'PyTorch_transformerxlbase_FP32': (5, -1, 0, 'transformerxlbase'), 'PyTorch_transformerxllarge_FP32': (5, -1, 0, 'transformerxllarge'), 'PyTorch_tacotron2_FP32': (7, -1, 1, 'tacotron2'), 'PyTorch_waveglow_FP32': (8, -1, 1, 'waveglow'), 'PyTorch_bert_large_squad_FP32': (5, -1, 1, 'bert_large_squad'), 'PyTorch_bert_base_squad_FP32': (5, -1, 1, 'bert_base_squad'), } list_test_fp16 = { 'PyTorch_SSD_AMP': (4, -1, 1, 'ssd'), 'PyTorch_resnet50_FP16': (9, -1, 1, 'resnet50'), 'PyTorch_maskrcnn_FP16': (4, -1, 0, 'maskrcnn'), 'PyTorch_gnmt_FP16': (4, -1, 1, 'gnmt'), 'PyTorch_ncf_FP16': (5, -1, 0, 'ncf'), 'PyTorch_transformerxlbase_FP16': (5, -1, 0, 'transformerxlbase'), 'PyTorch_transformerxllarge_FP16': (5, -1, 0, 'transformerxllarge'), 'PyTorch_tacotron2_FP16': (7, -1, 1, 'tacotron2'), 'PyTorch_waveglow_FP16': (8, -1, 1, 'waveglow'), 'PyTorch_bert_large_squad_FP16': (5, -1, 1, 'bert_large_squad'), 'PyTorch_bert_base_squad_FP16': (5, -1, 1, 'bert_base_squad'), } def gather(list_test, key, name, df, path_config): f_name = os.path.join(path_config, 'config_pytorch_' + key + '.sh') with open(f_name, 'r') as f: lines = f.readlines() idx_gpu = [i for i, s in enumerate(lines) if 'NUM_GPU=' in s] num_gpu = int(lines[idx_gpu[0]].rstrip().split("=")[1]) for test_name, value in sorted(list_test.items()): idx = lines.index(test_name + "_PARAMS=(\n") line = lines[idx + value[0]].rstrip().split(" ") line = list(filter(lambda a: a != "", line)) bs = int(line[value[1]][1:-1]) * (num_gpu if value[2] else 1) if bs == 1: bs = 0 df.at[name, value[3]] = bs df.at[name, 'num_gpu'] = num_gpu def main(): parser = argparse.ArgumentParser(description='Gather benchmark results.') parser.add_argument('--path', type=str, default='scripts/config', help='path that has the results') parser.add_argument('--precision', type=str, default='fp32', choices=['fp32', 'fp16'], help='Choose becnhmark precision') parser.add_argument('--system', type=str, default='all', choices=['single', 'multiple', 'all'], help='Choose system type (single or multiple GPUs)') args = parser.parse_args() list_test_all = list_test_fp32.copy() for key, value in list_test_fp16.items(): list_test_all[key] = value if args.precision == 'fp32': list_test = list_test_fp32 elif args.precision == 'fp16': list_test = list_test_fp16 else: sys.exit("Wrong precision: " + args.precision + ', choose between fp32 and fp16') if args.system == 'single': list_system = list_system_single elif args.system == 'multiple': list_system = list_system_multiple else: list_system = list_system_single + list_system_multiple columns = [] columns.append('num_gpu') for test_name, value in sorted(list_test.items()): columns.append(value[3]) df = pd.DataFrame(index=[i[1] for i in list_system], columns=columns) for s in list_system: key = s[0] s_name = s[1] gather(list_test, key, s_name, df, args.path) df.index.name = 'name_gpu' df.to_csv('pytorch-train-bs-' + args.precision + '.csv') if __name__ == "__main__": main()
a42805b8e555c430f0797491343fdda4821e6518
7d0fdfeba2f6b1b2c4c2ac519ce31a2e0adc8d5d
/loan_prediction/__manifest__.py
f3789ad0338609af1dd51b9ccba57270464d51fd
[]
no_license
Inoxevious/malin_erp-custom-addons
54806cdf2b4083ad3f1833ba2d2ab9a65701e17c
11951bbad1df51347c2169da93a6ab21b5554e3c
refs/heads/main
2023-03-27T23:16:57.396133
2021-03-29T14:17:28
2021-03-29T14:17:28
344,091,174
0
1
null
null
null
null
UTF-8
Python
false
false
1,108
py
# -*- coding: utf-8 -*- { 'name': "loan_prediction", 'summary': """ Short (1 phrase/line) summary of the module's purpose, used as subtitle on modules listing or apps.openerp.com""", 'description': """ Long description of module's purpose """, 'author': "My Company", 'website': "http://www.yourcompany.com", # Categories can be used to filter modules in modules listing # Check https://github.com/colossal/colossal/blob/14.0/colossal/addons/base/data/ir_module_category_data.xml # for the full list 'category': 'Uncategorized', 'version': '0.1', # any module necessary for this one to work correctly 'depends': ['base'], # always loaded 'data': [ # 'security/ir.model.access.csv', 'views/views.xml', 'views/templates.xml', 'views/loan.xml', ], # only loaded in demonstration mode 'demo': [ 'demo/demo.xml', ], 'images': [], 'license': 'AGPL-3', 'installable': True, 'application': True, 'auto_install': False, }
5fc865d16ff6b2687f32bb164813ffafd1e684be
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/coverage-big-4885.py
3edf480f7df952263fa6bc691c5e9064090b4063
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
13,348
py
count:int = 0 count2:int = 0 count3:int = 0 count4:int = 0 count5:int = 0 def foo(s: str) -> int: return len(s) def foo2(s: str, s2: str) -> int: return len(s) def foo3(s: str, s2: str, s3: str) -> int: return len(s) def foo4(s: str, s2: str, s3: str, s4: str) -> int: return len(s) def foo5(s: str, s2: str, s3: str, s4: str, s5: str) -> int: return len(s) class bar(object): p: bool = True def baz(self:"bar", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar2(object): p: bool = True p2: bool = True def baz(self:"bar2", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar2", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar3(object): p: bool = True p2: bool = True p3: bool = True def baz(self:"bar3", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar3", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar3", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar4(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True def baz(self:"bar4", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar4", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar4", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar4", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" class bar5(object): p: bool = True p2: bool = True p3: bool = True p4: bool = True p5: bool = True def baz(self:"bar5", xx: [int]) -> str: global count x:int = 0 y:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz2(self:"bar5", xx: [int], xx2: [int]) -> str: global count x:int = 0 x2:int = 0 y:int = 1 y2:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz3(self:"bar5", xx: [int], xx2: [int], xx3: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 y:int = 1 y2:int = 1 y3:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz4(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" def baz5(self:"bar5", xx: [int], xx2: [int], xx3: [int], xx4: [int], xx5: [int]) -> str: global count x:int = 0 x2:int = 0 x3:int = 0 x4:int = 0 x5:int = 0 y:int = 1 y2:int = 1 y3:int = 1 y4:int = 1 y5:int = 1 def qux(y: int) -> object: nonlocal x if x > y: x = -1 def qux2(y: int, y2: int) -> object: nonlocal x nonlocal x2 if x > y: x = -1 def qux3(y: int, y2: int, y3: int) -> object: nonlocal x nonlocal x2 nonlocal x3 if x > y: x = -1 def qux4(y: int, y2: int, y3: int, y4: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 if x > y: x = -1 def qux5(y: $ID, y2: int, y3: int, y4: int, y5: int) -> object: nonlocal x nonlocal x2 nonlocal x3 nonlocal x4 nonlocal x5 if x > y: x = -1 for x in xx: self.p = x == 2 qux(0) # Yay! ChocoPy count = count + 1 while x <= 0: if self.p: xx[0] = xx[1] self.p = not self.p x = x + 1 elif foo("Long"[0]) == 1: self.p = self is None return "Nope" print(bar().baz([1,2]))