blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
60016e02566b22722c3290ab83e45f138859db6d
d4a78a9099884c1e1c203f7e5b78b844de053ff7
/tensorflow/tools/compatibility/reorders_v2.py
3f05aea6cadeaf75ab57d43fe56d4a2d01b9ed3b
[ "Apache-2.0" ]
permissive
pint1022/tensorflow
b4b7632c0f833135a0bb37ab5a939a6c1ec51ef6
ab1f872bbcf7749112f76a7f9ba17406e8fbbf4e
refs/heads/master
2020-04-15T00:16:48.132100
2019-02-05T17:48:11
2019-02-05T17:48:11
164,233,910
2
2
Apache-2.0
2019-01-05T16:53:25
2019-01-05T16:53:25
null
UTF-8
Python
false
false
8,953
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=line-too-long """List of renames to apply when converting from TF 1.0 to TF 2.0. THIS FILE IS AUTOGENERATED: To update, please run: bazel build tensorflow/tools/compatibility/update:generate_v2_reorders_map bazel-bin/tensorflow/tools/compatibility/update/generate_v2_reorders_map This file should be updated whenever a function is added to self.reordered_function_names in tf_upgrade_v2.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function reorders = { 'tf.argmax': ['input', 'axis', 'name', 'dimension', 'output_type'], 'tf.argmin': ['input', 'axis', 'name', 'dimension', 'output_type'], 'tf.batch_gather': ['params', 'indices', 'name'], 'tf.batch_to_space': ['input', 'crops', 'block_size', 'name'], 'tf.boolean_mask': ['tensor', 'mask', 'name', 'axis'], 'tf.confusion_matrix': ['labels', 'predictions', 'num_classes', 'dtype', 'name', 'weights'], 'tf.convert_to_tensor': ['value', 'dtype', 'name', 'preferred_dtype'], 'tf.decode_csv': ['records', 'record_defaults', 'field_delim', 'use_quote_delim', 'name', 'na_value', 'select_cols'], 'tf.depth_to_space': ['input', 'block_size', 'name', 'data_format'], 'tf.feature_column.categorical_column_with_vocabulary_file': ['key', 'vocabulary_file', 'vocabulary_size', 'num_oov_buckets', 'default_value', 'dtype'], 'tf.io.decode_csv': ['records', 'record_defaults', 'field_delim', 'use_quote_delim', 'name', 'na_value', 'select_cols'], 'tf.io.parse_example': ['serialized', 'features', 'name', 'example_names'], 'tf.io.parse_single_example': ['serialized', 'features', 'name', 'example_names'], 'tf.io.serialize_many_sparse': ['sp_input', 'name', 'out_type'], 'tf.io.serialize_sparse': ['sp_input', 'name', 'out_type'], 'tf.linalg.norm': ['tensor', 'ord', 'axis', 'keepdims', 'name', 'keep_dims'], 'tf.math.argmax': ['input', 'axis', 'name', 'dimension', 'output_type'], 'tf.math.argmin': ['input', 'axis', 'name', 'dimension', 'output_type'], 'tf.math.confusion_matrix': ['labels', 'predictions', 'num_classes', 'dtype', 'name', 'weights'], 'tf.math.in_top_k': ['predictions', 'targets', 'k', 'name'], 'tf.math.reduce_all': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_any': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_logsumexp': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_max': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_mean': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_min': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_prod': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.math.reduce_sum': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.multinomial': ['logits', 'num_samples', 'seed', 'name', 'output_dtype'], 'tf.nn.convolution': ['input', 'filter', 'padding', 'strides', 'dilation_rate', 'name', 'data_format'], 'tf.nn.crelu': ['features', 'name', 'axis'], 'tf.nn.depth_to_space': ['input', 'block_size', 'name', 'data_format'], 'tf.nn.depthwise_conv2d': ['input', 'filter', 'strides', 'padding', 'rate', 'name', 'data_format'], 'tf.nn.embedding_lookup': ['params', 'ids', 'partition_strategy', 'name', 'validate_indices', 'max_norm'], 'tf.nn.embedding_lookup_sparse': ['params', 'sp_ids', 'sp_weights', 'partition_strategy', 'name', 'combiner', 'max_norm'], 'tf.nn.in_top_k': ['predictions', 'targets', 'k', 'name'], 'tf.nn.moments': ['x', 'axes', 'shift', 'name', 'keep_dims'], 'tf.nn.pool': ['input', 'window_shape', 'pooling_type', 'padding', 'dilation_rate', 'strides', 'name', 'data_format'], 'tf.nn.separable_conv2d': ['input', 'depthwise_filter', 'pointwise_filter', 'strides', 'padding', 'rate', 'name', 'data_format'], 'tf.nn.space_to_batch': ['input', 'paddings', 'block_size', 'name'], 'tf.nn.space_to_depth': ['input', 'block_size', 'name', 'data_format'], 'tf.nn.weighted_moments': ['x', 'axes', 'frequency_weights', 'name', 'keep_dims'], 'tf.norm': ['tensor', 'ord', 'axis', 'keepdims', 'name', 'keep_dims'], 'tf.pad': ['tensor', 'paddings', 'mode', 'name', 'constant_values'], 'tf.parse_example': ['serialized', 'features', 'name', 'example_names'], 'tf.parse_single_example': ['serialized', 'features', 'name', 'example_names'], 'tf.quantize_v2': ['input', 'min_range', 'max_range', 'T', 'mode', 'name', 'round_mode'], 'tf.random.multinomial': ['logits', 'num_samples', 'seed', 'name', 'output_dtype'], 'tf.random.poisson': ['lam', 'shape', 'dtype', 'seed', 'name'], 'tf.random_poisson': ['lam', 'shape', 'dtype', 'seed', 'name'], 'tf.reduce_all': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_any': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_join': ['inputs', 'axis', 'keep_dims', 'separator', 'name', 'reduction_indices'], 'tf.reduce_logsumexp': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_max': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_mean': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_min': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_prod': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reduce_sum': ['input_tensor', 'axis', 'keepdims', 'name', 'reduction_indices', 'keep_dims'], 'tf.reverse_sequence': ['input', 'seq_lengths', 'seq_axis', 'batch_axis', 'name', 'seq_dim', 'batch_dim'], 'tf.serialize_many_sparse': ['sp_input', 'name', 'out_type'], 'tf.serialize_sparse': ['sp_input', 'name', 'out_type'], 'tf.shape': ['input', 'name', 'out_type'], 'tf.size': ['input', 'name', 'out_type'], 'tf.space_to_batch': ['input', 'paddings', 'block_size', 'name'], 'tf.space_to_depth': ['input', 'block_size', 'name', 'data_format'], 'tf.sparse.add': ['a', 'b', 'threshold', 'thresh'], 'tf.sparse.concat': ['axis', 'sp_inputs', 'name', 'expand_nonconcat_dim', 'concat_dim'], 'tf.sparse.reduce_max': ['sp_input', 'axis', 'keepdims', 'reduction_axes', 'keep_dims'], 'tf.sparse.segment_mean': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse.segment_sqrt_n': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse.segment_sum': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse.split': ['keyword_required', 'sp_input', 'num_split', 'axis', 'name', 'split_dim'], 'tf.sparse_add': ['a', 'b', 'threshold', 'thresh'], 'tf.sparse_concat': ['axis', 'sp_inputs', 'name', 'expand_nonconcat_dim', 'concat_dim'], 'tf.sparse_matmul': ['a', 'b', 'transpose_a', 'transpose_b', 'a_is_sparse', 'b_is_sparse', 'name'], 'tf.sparse_reduce_max': ['sp_input', 'axis', 'keepdims', 'reduction_axes', 'keep_dims'], 'tf.sparse_segment_mean': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse_segment_sqrt_n': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse_segment_sum': ['data', 'indices', 'segment_ids', 'name', 'num_segments'], 'tf.sparse_split': ['keyword_required', 'sp_input', 'num_split', 'axis', 'name', 'split_dim'], 'tf.strings.length': ['input', 'name', 'unit'], 'tf.strings.reduce_join': ['inputs', 'axis', 'keep_dims', 'separator', 'name', 'reduction_indices'], 'tf.strings.substr': ['input', 'pos', 'len', 'name', 'unit'], 'tf.substr': ['input', 'pos', 'len', 'name', 'unit'], 'tf.transpose': ['a', 'perm', 'name', 'conjugate'], 'tf.tuple': ['tensors', 'name', 'control_inputs'], 'tf.while_loop': ['cond', 'body', 'loop_vars', 'shape_invariants', 'parallel_iterations', 'back_prop', 'swap_memory', 'name', 'maximum_iterations', 'return_same_structure'] }
e478a8dd22f338846584b48de48cc352e36990e4
a574d0c0ebc8e17eb641777f93544c0ae43850c9
/final_problem_set/3_blackjack.py
0cf5d30adb0ea1093e5eedc11666ee8dcdb2ceff
[]
no_license
broepke/GTx
1e33c97d0f86e95124ceb5f0436f965154822466
e12143c9b1fc93d4489eb0f6c093637503139bf6
refs/heads/master
2020-04-08T09:35:41.884572
2020-01-03T03:37:34
2020-01-03T03:37:34
159,230,824
3
2
null
null
null
null
UTF-8
Python
false
false
3,883
py
# ----------------------------------------------------------- # In this problem, we're going to explore a little of how # game AI works. We'll do this with a simple problem: building # an agent to play the popular card game Blackjack. # # Blackjack is a card game played with a standard 52-card # deck. Suits do not matter in Blackjack, and so we'll just # use letters to indicate the different cards: A, 2, 3, 4, 5, # 6, 7, 8, 9, 10, J, Q, K. # # The goal of Blackjack is to get as close to 21 points as # possible without going higher. Each of the thirteen cards # above has a point total attached: the numerals are worth # their given value (2 points for 2, 7 points for 7, etc.). # J, Q, and K are worth 10 points. A is worth either 1 or 11 # points, whichever is better for the player. # # At any time, the player has some number of cards in their # hand. They must then make a decision of whether to Hit or # Stay. Hit means they request an additional card, Stay means # they stop with their current total. Players generally try # to Hit until it is likely that another card will push them # over 21. For example, if a player has a 5 and a 7, there is # a relatively low chance that another card would push them # over 21 (only J, Q, and K would do so, since 12 + 10 = 22). # On the other hand, if they have a 5, a 6, and a 7, they will # likely stay because any card above 3 will push them over 21 # points. # # The specific goal in Blackjack is to get closer to 21 than # the dealer. Dealers must follow a set of prescribed rules # for when to Hit and Stay. These are the rules we'll use for # our Blackjack-playing AI. # # The rules are: # # - The dealer must Hit if their total is below 17. # - The dealer must Stay as soon as their total is 17 or # higher. # - An Ace (A) should be counted as 11 if it puts the # dealer between 17 and 21 points. If it puts them over # 21, though, it should be counted as 1. # # For example, imagine the dealer's first cards are A and 3. # Their point total is either 4 or 14, both below 17, so they # Hit. The next card is a 9. If we count the A as 11, then # their total is now 23 (11 + 3 + 9), and so we count the # A as 1. Their total is 13, and so they Hit again. The next # card is a 7, so their total is 20, so they Stay. # # Write a function called next_move. next_move should have # one parameter, a string. Each character of the string will # be a card in the dealer's current hand, such as "AK" or # "175". The function should return one of three strings: # # - "Hit" if the dealer should take another card. # - "Stay" if the dealer should not take another card. # - "Bust" if the sum is already over 21. # # Remember, your function is only responsible for playing # one move at a time. Take in a string representing the # current hand, return "Hit", "Stay", or "Bust". # Add your code here! def next_move(cards): face_cards = ["J", "Q", "K"] total = 0 ace_count = 0 # turn the string into a list for easy processing cards = list(cards) # sum up the total for item in cards: if item.isdigit(): total += int(item) elif item in face_cards: total += 10 elif item == "A": ace_count += 1 # now add the aces after the other cards have been added for i in range(0, ace_count): if total + 11 > 21: total += 1 else: total += 11 # return the dealer's response if total < 17: return "Hit" elif 16 <= total <= 21: return "Stay" elif total > 21: return "Bust" return total # Below are some lines of code that will test your function. # You can change the value of the variable(s) to test your # function with different inputs. # # If your function works correctly, this will originally # print: Hit, Hit, Stay, and Bust. print(next_move("A39"))
b0c462aa3ac6c9a36bdd6a3d58d5bea208e8680a
47dd9eadf5d2c7421eeb0c39d1ff0bad440ac513
/handprint/__version__.py
f6beec44457f0f8b28ee2024b1f5b6b6faa9147e
[ "CC-BY-3.0", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
JanaldoChen/handprint
53a26f9195e96f1a649dc2c026c85f85d66ce28e
0bc155b65d222fae8e753f75394a6f203d37e47a
refs/heads/master
2020-05-02T10:09:46.746419
2018-12-22T01:48:09
2018-12-22T01:48:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
# ============================================================================= # @file __version__.py # @brief handprint version info # @author Michael Hucka <[email protected]> # @license Please see the file named LICENSE in the project directory # @website https://github.com/caltechlibrary/handprint # ============================================================================= __version__ = '0.9.0' __title__ = 'handprint' __description__ = 'Handprint: HANDwritten Page RecognitIoN Test for Caltech Archives' __url__ = 'https://github.com/caltechlibrary/handprint' __author__ = 'Michael Hucka <[email protected]>' __email__ = '[email protected]' __license__ = 'BSD 3-clause license -- see LICENSE file' __copyright__ = 'Copyright (C) 2018 by the California Institute of Technology'
970f9a3a0c4bb549735c394ed87a95815931f452
f29336e5442d59961e22f925b3e6ee96ed3bf0ca
/src/mnemotopy/middleware/locale.py
8f090b2d5fe154c0ff33927932ce488927e364f7
[]
no_license
louiseGrandjonc/mnemotopy
be00b304924689ecd1cfd714da8416aaac55466c
7744745a7fcba7b5721577ce18c654df48aaa1ba
refs/heads/master
2022-12-10T07:32:47.100612
2020-01-02T10:01:03
2020-01-02T10:01:03
84,743,189
1
1
null
2022-12-08T03:22:03
2017-03-12T17:18:10
JavaScript
UTF-8
Python
false
false
2,327
py
from django.conf import settings from django.conf.urls.i18n import is_language_prefix_patterns_used from django.http import HttpResponseRedirect from django.urls import get_script_prefix, is_valid_path from django.utils import translation from django.utils.cache import patch_vary_headers from django.middleware.locale import LocaleMiddleware class CustomLocaleMiddleware(LocaleMiddleware): def process_request(self, request): urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) i18n_patterns_used, _ = is_language_prefix_patterns_used(urlconf) language = translation.get_language_from_request(request, check_path=i18n_patterns_used) translation.activate(language) request.LANGUAGE_CODE = translation.get_language() def process_response(self, request, response): language = translation.get_language() language_from_path = translation.get_language_from_path(request.path_info) urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) i18n_patterns_used, prefixed_default_language = is_language_prefix_patterns_used(urlconf) if not language_from_path and language != settings.LANGUAGE_CODE: language_path = '/%s%s' % (language, request.path_info) path_valid = is_valid_path(language_path, urlconf) path_needs_slash = ( not path_valid and ( settings.APPEND_SLASH and not language_path.endswith('/') and is_valid_path('%s/' % language_path, urlconf) ) ) if path_valid or path_needs_slash: script_prefix = get_script_prefix() # Insert language after the script prefix and before the # rest of the URL language_url = request.get_full_path(force_append_slash=path_needs_slash).replace( script_prefix, '%s%s/' % (script_prefix, language), 1 ) return self.response_redirect_class(language_url) if not (i18n_patterns_used and language_from_path): patch_vary_headers(response, ('Accept-Language',)) if 'Content-Language' not in response: response['Content-Language'] = language return response
5ffb6b6dd9d960be90008d1703cfd4f5baa5923c
915c31ce84a826d225bcb1cc5f1e0323e712f6e4
/phase_1.py
23d9a60800f43eabfa859f9270499bce8902d0f7
[ "Apache-2.0" ]
permissive
mac389/overdosed
64162aaf8f57f7ca57bcc95678d0d18e231cda87
434255db4ea36581c9f94c7aa09ca6ca15169e8a
refs/heads/master
2021-01-10T07:44:41.804936
2015-06-25T23:22:51
2015-06-25T23:22:51
36,990,551
0
1
null
null
null
null
UTF-8
Python
false
false
1,081
py
import os, gzip, json,tokenize,token import nltk, csv from nltk.corpus import stopwords import utils as tech import matplotlib.pyplot as plt from pprint import pprint #Rule-in component CONTROL = os.path.join(os.getcwd(),'data','control') CASE = os.path.join(os.getcwd(),'data','case') corpus = {'case':CASE} text = {} for condition,path in corpus.iteritems(): if not os.path.isfile(os.path.join(path,'combined.txt')): for filename in os.listdir(path): if filename.endswith('.gz'): ''' Salvaging attempt, this will only pull one tweet text and id from each file. This will hurt controls more than case tweets, which is ok. ''' with gzip.open(os.path.join(path,filename),'rb') as fid, open(os.path.join(path,'combined.txt'),'a+') as outfile: print>>outfile, '\t '.join(tech.get_field_damaged_string(fid.read())) else: text[condition] = open(os.path.join(path,'combined.txt'),'rb').read().splitlines() #reddit and r/Drugs in particular another good source of information #Identify most common words that are not stopwords in case series
1e543f53fd9bfe1768f6b104c50eb5b05ea71eaf
be1907ef4b4eb56567d8df5703a98a7a6a34c88a
/modules/bsg/bsg_encoder.py
75081a8fa6698841440e75fcde77b8df308846f4
[]
no_license
griff4692/LMC
f9bd4803c5b37bbae98cbe5014a719d3c9ea7a2f
f07dfa472d3f6bfd7ce7f7ac7168687beb8efdaf
refs/heads/master
2023-01-30T00:37:53.505757
2020-12-08T17:35:48
2020-12-08T17:35:48
223,016,633
13
0
null
null
null
null
UTF-8
Python
false
false
2,448
py
import os import sys import torch from torch import nn import torch.utils.data home_dir = os.path.expanduser('~/LMC/') sys.path.insert(0, os.path.join(home_dir, 'utils')) from compute_utils import compute_att class BSGEncoder(nn.Module): """ BSG Encoder as described in original BSG paper. It accepts a center word and context words and outputs Gaussian parameters mu and sigma. Its parameters are the shared variational parameters for the distribution q(z|w, c) where z represents latent meaning, w the center word, and c the list of context tokens """ def __init__(self, vocab_size, input_dim=100, hidden_dim=64): super(BSGEncoder, self).__init__() self.embeddings = nn.Embedding(vocab_size, input_dim, padding_idx=0) self.dropout = nn.Dropout(0.2) self.lstm = nn.LSTM(input_dim * 2, hidden_dim, bidirectional=True, batch_first=True) self.att = nn.Linear(hidden_dim * 2, 1, bias=True) self.u = nn.Linear(hidden_dim * 2, input_dim, bias=True) self.v = nn.Linear(hidden_dim * 2, 1, bias=True) def forward(self, center_ids, context_ids, mask, token_mask_p=0.2): """ :param center_ids: LongTensor of batch_size :param context_ids: LongTensor of batch_size x 2 * context_window :param mask: BoolTensor of batch_size x 2 * context_window (which context_ids are just the padding idx) :return: mu (batch_size, latent_dim), var (batch_size, 1) """ batch_size, num_context_ids = context_ids.shape center_embedding = self.embeddings(center_ids) if token_mask_p is not None: device = 'cuda' if torch.cuda.is_available() else 'cpu' context_mask = torch.FloatTensor(batch_size, num_context_ids).uniform_().to(device) < token_mask_p mask.masked_fill_(context_mask, True) context_embedding = self.embeddings(context_ids) center_embedding_tiled = center_embedding.unsqueeze(1).repeat(1, num_context_ids, 1) merged_embeds = torch.cat([center_embedding_tiled, context_embedding], dim=-1) merged_embeds = self.dropout(merged_embeds) mask_tiled = mask.unsqueeze(-1).repeat(1, 1, merged_embeds.size()[-1]) merged_embeds.masked_fill_(mask_tiled, 0) h_reps, (h, _) = self.lstm(merged_embeds) h_sum = self.dropout(compute_att(h_reps, mask, self.att)) return self.u(h_sum), self.v(h_sum).exp()
2eaf99a83d401d021b7fd901f0ccfb97a268d4f6
6f9a5717fed38b0a79c399f7e5da55c6a461de6d
/Templates/RelativeCoord.py
850330f5311780fa1954f91eb4ca1b86c6726a15
[]
no_license
Alfred-Walker/pythonps
d4d3b0f7fe93c138d02651e05ca5165825676a5e
81ef8c712c36aa83d1c53aa50886eb845378d035
refs/heads/master
2022-04-16T21:34:39.316565
2020-04-10T07:50:46
2020-04-10T07:50:46
254,570,527
1
1
null
null
null
null
UTF-8
Python
false
false
60
py
# 상하좌우 네칸 dx = [-1, 0, 1, 0] dy = [0, -1, 0, 1]
c56aaf008716622e25169ac587aa548837eeda2e
3e5cc67b0c8336114110d1558d481a3ff5d0eb3c
/apps/h5/views.py
f565ab6e6efb0570e5fea943a59e3da852b45b65
[]
no_license
xiaoxiaolulu/mtserver
32b46488705bc2c962d60c288c482f81dca0a2b0
912222bbf1cd7c9bd242e96062570073b6544f6a
refs/heads/master
2021-02-22T07:42:57.579124
2020-03-10T17:50:28
2020-03-10T17:50:28
245,372,121
5
1
null
null
null
null
UTF-8
Python
false
false
3,677
py
import random from rest_framework import views from django.contrib.auth import get_user_model from apps.h5.serializers import LoginSerializer from apps.h5.throttles import SMSCodeRateThrottle from apps.meituan.models import Merchant from apps.meituan.serializers import MerchantSerializer from apps.mtauth.authentications import generate_jwt from apps.mtauth.serializers import UserSerializer from utils.CCPSDK import CCPRestSDK from rest_framework.response import Response from rest_framework import status from django.core.cache import cache from django.utils.timezone import now from rest_framework import viewsets from rest_framework import mixins from rest_framework.pagination import PageNumberPagination from rest_framework import generics from rest_framework import filters User = get_user_model() class SmSCodeView(views.APIView): throttle_classes = [SMSCodeRateThrottle] def __init__(self, *args, **kwargs): super(SmSCodeView, self).__init__(*args, **kwargs) self.number = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] def generate_sms_code(self): return "".join(random.choices(self.number, k=4)) def get(self, request): telephone = request.GET.get('tel') if telephone: auth_token = 'a2573d4b2d9a4136b23cc54911a999b7' auth_sid = '8aaf070870bf34550170bf6075260039' app_id = '8aaf070870bf34550170bf607590003f' rest = CCPRestSDK.REST(auth_sid, auth_token, app_id) code = self.generate_sms_code() result = rest.sendTemplateSMS(telephone, [code, 5], "1") cache.set(telephone, code, 60 * 5) return Response({"code": code}) # if result['statusCode'] == '000000': # return Response("success") # else: # return Response(status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: return Response(status=status.HTTP_400_BAD_REQUEST) class LoginView(views.APIView): def generate_sms_code(self): number = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] return "".join(random.choices(number, k=6)) def post(self, request): serializer = LoginSerializer(data=request.data) if serializer.is_valid(): telephone = serializer.validated_data.get('telephone') try: user = User.objects.get(telephone=telephone) user.last_login = now() user.save() except: username = "美团用户" + self.generate_sms_code() password = "" user = User.objects.create(username=username, password=password, telephone=telephone, last_login=now()) serializer = UserSerializer(user) token = generate_jwt(user) return Response({"user": serializer.data, "token": token}) else: return Response(data={"message": dict(serializer.errors)}, status=status.HTTP_400_BAD_REQUEST) class MerchantPagination(PageNumberPagination): page_size = 10 page_query_param = 'page' class MerchantViewSet( viewsets.GenericViewSet, mixins.ListModelMixin, mixins.RetrieveModelMixin ): queryset = Merchant.objects.all() serializer_class = MerchantSerializer pagination_class = MerchantPagination class MerchantSearchView(generics.ListAPIView): class MerchantSearchFilter(filters.SearchFilter): search_param = 'q' queryset = Merchant.objects.all() serializer_class = MerchantSerializer filter_backends = [MerchantSearchFilter] search_fields = ['name', 'categories__name', 'categories__goods_list__name']
d23e8296c9d073516f7dfbbf011c50abf54fda86
97f861630898e1aa38dd6f08f351640688b3c17f
/tensorflow/python/ops/metrics.py
04cd4ecbd4095391abec2422add886a0a9c469f3
[ "Apache-2.0" ]
permissive
alexerwu/tensorflow
31e33020fcfd4cd405a2f4c4ddbad0839352935b
95195bd0ef742f2876a1694ebb4c018f858af062
refs/heads/master
2021-01-12T08:28:27.693374
2016-12-15T17:34:54
2016-12-15T17:34:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
111,386
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluation-related metrics. @@accuracy @@auc @@mean @@mean_absolute_error @@mean_cosine_distance @mean_iou @@mean_relative_error @@mean_squared_error @@mean_tensor @@percentage_below @@precision @@precision_at_thresholds @@recall @@recall_at_k @@recall_at_thresholds @@root_mean_squared_error @@sensitivity_at_specificity @@sparse_average_precision_at_k @@sparse_precision_at_k @@specificity_at_sensitivity """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import confusion_matrix from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import sets from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables def _local_variable(initial_value, validate_shape=True, name=None): """Create variable and add it to `GraphKeys.LOCAL_VARIABLES` collection. Args: initial_value: See variables.Variable.__init__. validate_shape: See variables.Variable.__init__. name: See variables.Variable.__init__. Returns: New variable. """ return variables.Variable( initial_value, trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES], validate_shape=validate_shape, name=name) def _remove_squeezable_dimensions(labels, predictions, weights): """Internal version of _remove_squeezable_dimensions which handles weights. Squeezes `predictions` and `labels` if their rank differs by 1. Squeezes `weights` if its rank is 1 more than the new rank of `predictions` This will use static shape if available. Otherwise, it will add graph operations, which could result in a performance hit. Args: labels: Label values, a `Tensor` whose dimensions match `predictions`. predictions: Predicted values, a `Tensor` of arbitrary dimensions. weights: Optional weight `Tensor`. It will be squeezed if its rank is 1 more than the new rank of `predictions` Returns: Tuple of `predictions`, `labels` and `weights`, possibly with the last dimension squeezed. """ labels, predictions = confusion_matrix.remove_squeezable_dimensions( labels, predictions) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if weights is not None: weights = ops.convert_to_tensor(weights) predictions_shape = predictions.get_shape() predictions_rank = predictions_shape.ndims weights_shape = weights.get_shape() weights_rank = weights_shape.ndims if (predictions_rank is not None) and (weights_rank is not None): # Use static rank. if weights_rank - predictions_rank == 1: weights = array_ops.squeeze(weights, [-1]) elif (weights_rank is None) or ( weights_shape.dims[-1].is_compatible_with(1)): # Use dynamic rank weights = control_flow_ops.cond( math_ops.equal(array_ops.rank(weights), math_ops.add(array_ops.rank(predictions), 1)), lambda: array_ops.squeeze(weights, [-1]), lambda: weights) return labels, predictions, weights def _maybe_expand_labels(labels, predictions): """If necessary, expand `labels` along last dimension to match `predictions`. Args: labels: `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN]. The latter implies num_labels=1, in which case the result is an expanded `labels` with shape [D1, ... DN, 1]. predictions: `Tensor` with shape [D1, ... DN, num_classes]. Returns: `labels` with the same rank as `predictions`. Raises: ValueError: if `labels` has invalid shape. """ with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope: labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) # If sparse, expand sparse shape. if isinstance(labels, sparse_tensor.SparseTensor): return control_flow_ops.cond( math_ops.equal( array_ops.rank(predictions), array_ops.size(labels.dense_shape) + 1), lambda: sparse_ops.sparse_reshape( # pylint: disable=g-long-lambda labels, shape=array_ops.concat(0, (labels.dense_shape, (1,))), name=scope), lambda: labels) # Otherwise, try to use static shape. labels_rank = labels.get_shape().ndims if labels_rank is not None: predictions_rank = predictions.get_shape().ndims if predictions_rank is not None: if predictions_rank == labels_rank: return labels if predictions_rank == labels_rank + 1: return array_ops.expand_dims(labels, -1, name=scope) raise ValueError( 'Unexpected labels shape %s for predictions shape %s.' % ( labels.get_shape(), predictions.get_shape())) # Otherwise, use dynamic shape. return control_flow_ops.cond( math_ops.equal(array_ops.rank(predictions), array_ops.rank(labels) + 1), lambda: array_ops.expand_dims(labels, -1, name=scope), lambda: labels) def _create_local(name, shape, collections=None, validate_shape=True, dtype=dtypes.float32): """Creates a new local variable. Args: name: The name of the new or existing variable. shape: Shape of the new or existing variable. collections: A list of collection names to which the Variable will be added. validate_shape: Whether to validate the shape of the variable. dtype: Data type of the variables. Returns: The created variable. """ # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES collections = list(collections or []) collections += [ops.GraphKeys.LOCAL_VARIABLES] return variables.Variable( initial_value=array_ops.zeros(shape, dtype=dtype), name=name, trainable=False, collections=collections, validate_shape=validate_shape) def _broadcast_weights(weights, values): """Broadcast `weights` to the same shape as `values`. This returns a version of `weights` following the same broadcast rules as `mul(weights, values)`. When computing a weighted average, use this function to broadcast `weights` before summing them; e.g., `reduce_sum(w * v) / reduce_sum(_broadcast_weights(w, v))`. Args: weights: `Tensor` whose shape is broadcastable to `values`. values: `Tensor` of any shape. Returns: `weights` broadcast to `values` shape. """ weights_shape = weights.get_shape() values_shape = values.get_shape() if (weights_shape.is_fully_defined() and values_shape.is_fully_defined() and weights_shape.is_compatible_with(values_shape)): return weights return math_ops.mul( weights, array_ops.ones_like(values), name='broadcast_weights') def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) def _safe_scalar_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is 0. Args: numerator: A scalar `float64` `Tensor`. denominator: A scalar `float64` `Tensor`. name: Name for the returned op. Returns: 0 if `denominator` == 0, else `numerator` / `denominator` """ numerator.get_shape().with_rank_at_most(1) denominator.get_shape().with_rank_at_most(1) return control_flow_ops.cond( math_ops.equal( array_ops.constant(0.0, dtype=dtypes.float64), denominator), lambda: array_ops.constant(0.0, dtype=dtypes.float64), lambda: math_ops.div(numerator, denominator), name=name) def mean(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the (weighted) mean of the given values. The `mean` function creates two local variables, `total` and `count` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): values = math_ops.to_float(values) total = _create_local('total', shape=[]) count = _create_local('count', shape=[]) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) num_values = math_ops.reduce_sum(_broadcast_weights(weights, values)) else: num_values = math_ops.to_float(array_ops.size(values)) total_compute_op = state_ops.assign_add(total, math_ops.reduce_sum(values)) count_compute_op = state_ops.assign_add(count, num_values) mean_t = _safe_div(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = _safe_div(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def accuracy(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculates how often `predictions` matches `labels`. The `accuracy` function creates two local variables, `total` and `count` that are used to compute the frequency with which `predictions` matches `labels`. This frequency is ultimately returned as `accuracy`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `accuracy`. Internally, an `is_correct` operation computes a `Tensor` with elements 1.0 where the corresponding elements of `predictions` and `labels` match and 0.0 otherwise. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `is_correct`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `Tensor` whose shape matches `predictions`. predictions: The predicted values, a `Tensor` of any shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `accuracy` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: accuracy: A `Tensor` representing the accuracy, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `accuracy`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights=weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) if labels.dtype != predictions.dtype: predictions = math_ops.cast(predictions, labels.dtype) is_correct = math_ops.to_float(math_ops.equal(predictions, labels)) return mean(is_correct, weights, metrics_collections, updates_collections, name or 'accuracy') def _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights=None, includes=None): """Computes true_positives, false_negatives, true_negatives, false_positives. This function creates up to four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives`. `true_positive[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`. `false_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `True`. `true_negatives[i]` is defined as the total weight of values in `predictions` at most `thresholds[i]` whose corresponding entry in `labels` is `False`. `false_positives[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `False`. For estimation of these metrics over a stream of data, for each metric the function respectively creates an `update_op` operation that updates the variable and returns its value. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` whose shape matches `predictions`. `labels` will be cast to `bool`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. includes: Tuple of keys to return, from 'tp', 'fn', 'tn', fp'. If `None`, default to all four. Returns: values: Dict of variables of shape `[len(thresholds)]`. Keys are from `includes`. update_ops: Dict of operations that increments the `values`. Keys are from `includes`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if `includes` contains invalid keys. """ all_includes = ('tp', 'fn', 'tn', 'fp') if includes is None: includes = all_includes else: for include in includes: if include not in all_includes: raise ValueError('Invaild key: %s.' % include) labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) num_thresholds = len(thresholds) # Reshape predictions and labels. predictions_2d = array_ops.reshape(predictions, [-1, 1]) labels_2d = array_ops.reshape( math_ops.cast(labels, dtype=dtypes.bool), [1, -1]) # Use static shape if known. num_predictions = predictions_2d.get_shape().as_list()[0] # Otherwise use dynamic shape. if num_predictions is None: num_predictions = array_ops.shape(predictions_2d)[0] thresh_tiled = array_ops.tile( array_ops.expand_dims(array_ops.constant(thresholds), [1]), array_ops.pack([1, num_predictions])) # Tile the predictions after thresholding them across different thresholds. pred_is_pos = math_ops.greater( array_ops.tile(array_ops.transpose(predictions_2d), [num_thresholds, 1]), thresh_tiled) if ('fn' in includes) or ('tn' in includes): pred_is_neg = math_ops.logical_not(pred_is_pos) # Tile labels by number of thresholds label_is_pos = array_ops.tile(labels_2d, [num_thresholds, 1]) if ('fp' in includes) or ('tn' in includes): label_is_neg = math_ops.logical_not(label_is_pos) if weights is not None: weights = math_ops.to_float(weights) weights_tiled = array_ops.tile(array_ops.reshape(_broadcast_weights( weights, predictions), [1, -1]), [num_thresholds, 1]) thresh_tiled.get_shape().assert_is_compatible_with( weights_tiled.get_shape()) else: weights_tiled = None values = {} update_ops = {} if 'tp' in includes: true_p = _create_local('true_positives', shape=[num_thresholds]) is_true_positive = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_pos)) if weights_tiled is not None: is_true_positive *= weights_tiled update_ops['tp'] = state_ops.assign_add( true_p, math_ops.reduce_sum(is_true_positive, 1)) values['tp'] = true_p if 'fn' in includes: false_n = _create_local('false_negatives', shape=[num_thresholds]) is_false_negative = math_ops.to_float( math_ops.logical_and(label_is_pos, pred_is_neg)) if weights_tiled is not None: is_false_negative *= weights_tiled update_ops['fn'] = state_ops.assign_add( false_n, math_ops.reduce_sum(is_false_negative, 1)) values['fn'] = false_n if 'tn' in includes: true_n = _create_local('true_negatives', shape=[num_thresholds]) is_true_negative = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_neg)) if weights_tiled is not None: is_true_negative *= weights_tiled update_ops['tn'] = state_ops.assign_add( true_n, math_ops.reduce_sum(is_true_negative, 1)) values['tn'] = true_n if 'fp' in includes: false_p = _create_local('false_positives', shape=[num_thresholds]) is_false_positive = math_ops.to_float( math_ops.logical_and(label_is_neg, pred_is_pos)) if weights_tiled is not None: is_false_positive *= weights_tiled update_ops['fp'] = state_ops.assign_add( false_p, math_ops.reduce_sum(is_false_positive, 1)) values['fp'] = false_p return values, update_ops def auc(labels, predictions, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, curve='ROC', name=None): """Computes the approximate AUC via a Riemann sum. The `auc` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the AUC. To discretize the AUC curve, a linearly spaced set of thresholds is used to compute pairs of recall and precision values. The area under the ROC-curve is therefore computed using the height of the recall values by the false positive rate, while the area under the PR-curve is the computed using the height of the precision values by the recall. This value is ultimately returned as `auc`, an idempotent operation that computes the area under a discretized curve of precision versus recall values (computed using the aforementioned variables). The `num_thresholds` variable controls the degree of discretization with larger numbers of thresholds more closely approximating the true AUC. The quality of the approximation may vary dramatically depending on `num_thresholds`. For best results, `predictions` should be distributed approximately uniformly in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC approximation may be poor if this is not the case. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `auc`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. num_thresholds: The number of thresholds to use when discretizing the roc curve. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. curve: Specifies the name of the curve to be computed, 'ROC' [default] or 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: auc: A scalar `Tensor` representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'auc', (labels, predictions, weights)): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 def compute_auc(tp, fn, tn, fp, name): """Computes the roc-auc or pr-auc based on confusion counts.""" rec = math_ops.div(tp + epsilon, tp + fn + epsilon) if curve == 'ROC': fp_rate = math_ops.div(fp, fp + tn + epsilon) x = fp_rate y = rec else: # curve == 'PR'. prec = math_ops.div(tp + epsilon, tp + fp + epsilon) x = rec y = prec return math_ops.reduce_sum(math_ops.mul( x[:num_thresholds - 1] - x[1:], (y[:num_thresholds - 1] + y[1:]) / 2.), name=name) # sum up the areas of all the trapeziums auc_value = compute_auc( values['tp'], values['fn'], values['tn'], values['fp'], 'value') update_op = compute_auc( update_ops['tp'], update_ops['fn'], update_ops['tn'], update_ops['fp'], 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, auc_value) if updates_collections: ops.add_to_collections(updates_collections, update_op) return auc_value, update_op def mean_absolute_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean absolute error between the labels and predictions. The `mean_absolute_error` function creates two local variables, `total` and `count` that are used to compute the mean absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_absolute_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_absolute_error`. Internally, an `absolute_errors` operation computes the absolute value of the differences between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `absolute_errors`, and it increments `count` with the reduced sum of `weights` If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_absolute_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_absolute_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_absolute_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ predictions, labels, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) absolute_errors = math_ops.abs(predictions - labels) return mean(absolute_errors, weights, metrics_collections, updates_collections, name or 'mean_absolute_error') def mean_cosine_distance(labels, predictions, dim, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the cosine distance between the labels and predictions. The `mean_cosine_distance` function creates two local variables, `total` and `count` that are used to compute the average cosine distance between `predictions` and `labels`. This average is weighted by `weights`, and it is ultimately returned as `mean_distance`, which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_distance`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of arbitrary shape. predictions: A `Tensor` of the same shape as `labels`. dim: The dimension along which the cosine distance is computed. weights: An optional `Tensor` whose shape is broadcastable to `predictions`, and whose dimension `dim` is 1. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: mean_distance: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) radial_diffs = math_ops.mul(predictions, labels) radial_diffs = math_ops.reduce_sum(radial_diffs, reduction_indices=[dim,], keep_dims=True) mean_distance, update_op = mean(radial_diffs, weights, None, None, name or 'mean_cosine_distance') mean_distance = math_ops.sub(1.0, mean_distance) update_op = math_ops.sub(1.0, update_op) if metrics_collections: ops.add_to_collections(metrics_collections, mean_distance) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_distance, update_op def mean_iou(labels, predictions, num_classes, weights=None, metrics_collections=None, updates_collections=None, name=None): """Calculate per-step mean Intersection-Over-Union (mIOU). Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of ground truth labels with shape [batch size] and of type `int32` or `int64`. The tensor will be flattened, if its rank > 1. predictions: A `Tensor` of prediction results for semantic labels, whose shape is [batch size] and type `int32` or `int64`. The tensor will be flattened, if its rank > 1. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_iou` should be added to. updates_collections: An optional list of collections `update_op` should be added to. name: An optional variable_scope name. Returns: mean_iou: A `Tensor` representing the mean intersection-over-union. update_op: An operation that increments the confusion matrix. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'mean_iou', (predictions, labels, weights)): # Check if shape is compatible. predictions.get_shape().assert_is_compatible_with(labels.get_shape()) # Local variable to accumulate the predictions in the confusion matrix. cm_dtype = dtypes.int64 if weights is not None else dtypes.float64 total_cm = _create_local('total_confusion_matrix', shape=[num_classes, num_classes], dtype=cm_dtype) # Cast the type to int64 required by confusion_matrix_ops. predictions = math_ops.to_int64(predictions) labels = math_ops.to_int64(labels) num_classes = math_ops.to_int64(num_classes) # Flatten the input if its rank > 1. predictions_rank = predictions.get_shape().ndims if predictions_rank > 1: predictions = array_ops.reshape(predictions, [-1]) labels_rank = labels.get_shape().ndims if labels_rank > 1: labels = array_ops.reshape(labels, [-1]) if weights is not None: weights_rank = weights.get_shape().ndims if weights_rank > 1: weights = array_ops.reshape(weights, [-1]) # Accumulate the prediction to current confusion matrix. current_cm = confusion_matrix.confusion_matrix( labels, predictions, num_classes, weights=weights, dtype=cm_dtype) update_op = state_ops.assign_add(total_cm, current_cm) def compute_mean_iou(name): """Compute the mean intersection-over-union via the confusion matrix.""" sum_over_row = math_ops.to_float(math_ops.reduce_sum(total_cm, 0)) sum_over_col = math_ops.to_float(math_ops.reduce_sum(total_cm, 1)) cm_diag = math_ops.to_float(array_ops.diag_part(total_cm)) denominator = sum_over_row + sum_over_col - cm_diag # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = array_ops.where( math_ops.greater(denominator, 0), denominator, array_ops.ones_like(denominator)) iou = math_ops.div(cm_diag, denominator) return math_ops.reduce_mean(iou, name=name) mean_iou_v = compute_mean_iou('mean_iou') if metrics_collections: ops.add_to_collections(metrics_collections, mean_iou_v) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_iou_v, update_op def mean_relative_error(labels, predictions, normalizer, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean relative error by normalizing with the given values. The `mean_relative_error` function creates two local variables, `total` and `count` that are used to compute the mean relative absolute error. This average is weighted by `weights`, and it is ultimately returned as `mean_relative_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_reative_error`. Internally, a `relative_errors` operation divides the absolute value of the differences between `predictions` and `labels` by the `normalizer`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `relative_errors`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. normalizer: A `Tensor` of the same shape as `predictions`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_relative_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_relative_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_relative_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) predictions, normalizer = confusion_matrix.remove_squeezable_dimensions( predictions, normalizer) predictions.get_shape().assert_is_compatible_with(normalizer.get_shape()) relative_errors = array_ops.where( math_ops.equal(normalizer, 0.0), array_ops.zeros_like(labels), math_ops.div(math_ops.abs(labels - predictions), normalizer)) return mean(relative_errors, weights, metrics_collections, updates_collections, name or 'mean_relative_error') def mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the mean squared error between the labels and predictions. The `mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the mean squared error. This average is weighted by `weights`, and it is ultimately returned as `mean_squared_error`: an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) squared_error = math_ops.square(labels - predictions) return mean(squared_error, weights, metrics_collections, updates_collections, name or 'mean_squared_error') def mean_tensor(values, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the element-wise (weighted) mean of the given tensors. In contrast to the `mean` function which returns a scalar with the mean, this function returns an average tensor with the same shape as the input tensors. The `mean_tensor` function creates two local variables, `total_tensor` and `count_tensor` that are used to compute the average of `values`. This average is ultimately returned as `mean` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean`. `update_op` increments `total` with the reduced sum of the product of `values` and `weights`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `Tensor` of arbitrary dimensions. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that `mean` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: mean: A float `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `mean_value`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'mean', (values, weights)): total = _create_local('total_tensor', shape=values.get_shape()) count = _create_local('count_tensor', shape=values.get_shape()) num_values = array_ops.ones_like(values) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) num_values = math_ops.mul(num_values, weights) total_compute_op = state_ops.assign_add(total, values) count_compute_op = state_ops.assign_add(count, num_values) def compute_mean(total, count, name): non_zero_count = math_ops.maximum(count, array_ops.ones_like(count), name=name) return math_ops.truediv(total, non_zero_count, name=name) mean_t = compute_mean(total, count, 'value') with ops.control_dependencies([total_compute_op, count_compute_op]): update_op = compute_mean(total, count, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, mean_t) if updates_collections: ops.add_to_collections(updates_collections, update_op) return mean_t, update_op def percentage_below(values, threshold, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the percentage of values less than the given threshold. The `percentage_below` function creates two local variables, `total` and `count` that are used to compute the percentage of `values` that fall below `threshold`. This rate is weighted by `weights`, and it is ultimately returned as `percentage` which is an idempotent operation that simply divides `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `percentage`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A numeric `Tensor` of arbitrary size. threshold: A scalar threshold. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: percentage: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ is_below_threshold = math_ops.to_float(math_ops.less(values, threshold)) return mean(is_below_threshold, weights, metrics_collections, updates_collections, name or 'percentage_below_threshold') def _count_condition(values, weights=None, metrics_collections=None, updates_collections=None): """Sums the weights of cases where the given values are True. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: values: A `bool` `Tensor` of arbitrary size. weights: An optional `Tensor` whose shape is broadcastable to `values`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ check_ops.assert_type(values, dtypes.bool) count = _create_local('count', shape=[]) values = math_ops.to_float(values) if weights is not None: weights = math_ops.to_float(weights) values = math_ops.mul(values, weights) value_tensor = array_ops.identity(count) update_op = state_ops.assign_add(count, math_ops.reduce_sum(values)) if metrics_collections: ops.add_to_collections(metrics_collections, value_tensor) if updates_collections: ops.add_to_collections(updates_collections, update_op) return value_tensor, update_op def true_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of true_positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'true_positives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_true_positive = math_ops.logical_and(math_ops.equal(labels, 1), math_ops.equal(predictions, 1)) return _count_condition(is_true_positive, weights, metrics_collections, updates_collections) def false_positives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Sum the weights of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_positives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_positive = math_ops.logical_and(math_ops.equal(labels, 0), math_ops.equal(predictions, 1)) return _count_condition(is_false_positive, weights, metrics_collections, updates_collections) def precision(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the precision of the predictions with respect to the labels. The `precision` function creates two local variables, `true_positives` and `false_positives`, that are used to compute the precision. This value is ultimately returned as `precision`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_positives`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `precision` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'precision', (predictions, labels, weights)): labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_p, false_positives_update_op = false_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_precision(name): return array_ops.where( math_ops.greater(true_p + false_p, 0), math_ops.div(true_p, true_p + false_p), 0, name) p = compute_precision('value') with ops.control_dependencies([true_positives_update_op, false_positives_update_op]): update_op = compute_precision('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, p) if updates_collections: ops.add_to_collections(updates_collections, update_op) return p, update_op def precision_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision values for different `thresholds` on `predictions`. The `precision_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `precision[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of values in `predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] + false_positives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `auc` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: precision: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'precision_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fp')) tp = values['tp'] fp = values['fp'] # Avoid division by zero. epsilon = 1e-7 def compute_precision(name): return math_ops.div(tp, epsilon + tp + fp, name='precision_' + name) prec = compute_precision('value') with ops.control_dependencies(update_ops.values()): update_op = compute_precision('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, prec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return prec, update_op def false_negatives(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the total number of false positives. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary dimensions. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that the metric value variable should be added to. updates_collections: An optional list of collections that the metric update ops should be added to. name: An optional variable_scope name. Returns: value_tensor: A `Tensor` representing the current value of the metric. update_op: An operation that accumulates the error from a batch of data. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'false_negatives', (predictions, labels, weights)): predictions = ops.convert_to_tensor(predictions) labels = ops.convert_to_tensor(labels) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) is_false_negative = math_ops.logical_and(math_ops.equal(labels, 1), math_ops.equal(predictions, 0)) return _count_condition(is_false_negative, weights, metrics_collections, updates_collections) def recall(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the recall of the predictions with respect to the labels. The `recall` function creates two local variables, `true_positives` and `false_negatives`, that are used to compute the recall. This value is ultimately returned as `recall`, an idempotent operation that simply divides `true_positives` by the sum of `true_positives` and `false_negatives`. For estimation of the metric over a stream of data, the function creates an `update_op` that updates these variables and returns the `recall`. `update_op` weights each prediction by the corresponding value in `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. predictions: The predicted values, a `bool` `Tensor` of arbitrary shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately and whose value matches `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope( name, 'recall', (predictions, labels, weights)): labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) true_p, true_positives_update_op = true_positives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) false_n, false_negatives_update_op = false_negatives( labels, predictions, weights, metrics_collections=None, updates_collections=None, name=None) def compute_recall(true_p, false_n, name): return array_ops.where( math_ops.greater(true_p + false_n, 0), math_ops.div(true_p, true_p + false_n), 0, name) rec = compute_recall(true_p, false_n, 'value') with ops.control_dependencies([true_positives_update_op, false_negatives_update_op]): update_op = compute_recall(true_p, false_n, 'update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def _at_k_name(name, k=None, class_id=None): if k is not None: name = '%s_at_%d' % (name, k) else: name = '%s_at_k' % (name) if class_id is not None: name = '%s_class%d' % (name, class_id) return name def _select_class_id(ids, selected_id): """Filter all but `selected_id` out of `ids`. Args: ids: `int64` `Tensor` or `SparseTensor` of IDs. selected_id: Int id to select. Returns: `SparseTensor` of same dimensions as `ids`. This contains only the entries equal to `selected_id`. """ ids = sparse_tensor.convert_to_tensor_or_sparse_tensor(ids) if isinstance(ids, sparse_tensor.SparseTensor): return sparse_ops.sparse_retain( ids, math_ops.equal(ids.values, selected_id)) # TODO(ptucker): Make this more efficient, maybe add a sparse version of # tf.equal and tf.reduce_any? # Shape of filled IDs is the same as `ids` with the last dim collapsed to 1. ids_shape = array_ops.shape(ids, out_type=dtypes.int64) ids_last_dim = array_ops.size(ids_shape) - 1 filled_selected_id_shape = math_ops.reduced_shape( ids_shape, array_ops.reshape(ids_last_dim, [1])) # Intersect `ids` with the selected ID. filled_selected_id = array_ops.fill( filled_selected_id_shape, math_ops.to_int64(selected_id)) result = sets.set_intersection(filled_selected_id, ids) return sparse_tensor.SparseTensor( indices=result.indices, values=result.values, dense_shape=ids_shape) def _maybe_select_class_id(labels, predictions_idx, selected_id=None): """If class ID is specified, filter all other classes. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: `int64` `Tensor` of class IDs, with shape [D1, ... DN, k] where N >= 1. Commonly, N=1 and `predictions_idx` has shape [batch size, k]. selected_id: Int id to select. Returns: Tuple of `labels` and `predictions_idx`, possibly with classes removed. """ if selected_id is None: return labels, predictions_idx return (_select_class_id(labels, selected_id), _select_class_id(predictions_idx, selected_id)) def _sparse_true_positive_at_k(labels, predictions_idx, class_id=None, weights=None, name=None): """Calculates true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of operation. Returns: A [D1, ... DN] `Tensor` of true positive counts. """ with ops.name_scope(name, 'true_positives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id( labels, predictions_idx, class_id) tp = sets.set_size(sets.set_intersection(predictions_idx, labels)) tp = math_ops.to_double(tp) if weights is not None: weights = math_ops.to_double(weights) tp = math_ops.mul(tp, weights) return tp def _streaming_sparse_true_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step true positives for recall@k and precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ default_name = _at_k_name('true_positive', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope: tp = _sparse_true_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_tp = math_ops.to_double(math_ops.reduce_sum(tp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_tp, name='update') def _sparse_false_negative_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. Returns: A [D1, ... DN] `Tensor` of false negative counts. """ with ops.name_scope(None, 'false_negatives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fn = sets.set_size(sets.set_difference(predictions_idx, labels, aminusb=False)) fn = math_ops.to_double(fn) if weights is not None: weights = math_ops.to_double(weights) fn = math_ops.mul(fn, weights) return fn def _streaming_sparse_false_negative_at_k(labels, predictions_idx, k, class_id=None, weights=None, name=None): """Calculates weighted per step false negatives for recall@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ default_name = _at_k_name('false_negative', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope: fn = _sparse_false_negative_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fn = math_ops.to_double(math_ops.reduce_sum(fn)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fn, name='update') def recall_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes recall@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate recall by considering only the entries in the batch for which `class_id` is in the label, and computing the fraction of them for which `class_id` is in the top-k `predictions`. If `class_id` is not specified, we'll calculate recall as how often on average a class among the labels of a batch entry is in the top-k `predictions`. `sparse_recall_at_k` creates two local variables, `true_positive_at_<k>` and `false_negative_at_<k>`, that are used to compute the recall_at_k frequency. This frequency is ultimately returned as `recall_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_negative_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false negatives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_negative_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range always count towards `false_negative_at_<k>`. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. If class_id is outside this range, the method returns NAN. weights: An optional `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions` and `labels`. metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: recall: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_negatives`. update_op: `Operation` that increments `true_positives` and `false_negatives` variables appropriately, and whose value matches `recall`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ default_name = _at_k_name('recall', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions, labels)) as scope: labels = _maybe_expand_labels(labels, predictions) _, top_k_idx = nn.top_k(predictions, k) top_k_idx = math_ops.to_int64(top_k_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fn, fn_update = _streaming_sparse_false_negative_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fn), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fn_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def recall_at_thresholds(labels, predictions, thresholds, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes various recall values for different `thresholds` on `predictions`. The `recall_at_thresholds` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` for various values of thresholds. `recall[i]` is defined as the total weight of values in `predictions` above `thresholds[i]` whose corresponding entry in `labels` is `True`, divided by the total weight of `True` values in `labels` (`true_positives[i] / (true_positives[i] + false_negatives[i])`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `recall`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. thresholds: A python list or tuple of float thresholds in `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `recall` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: recall: A float `Tensor` of shape `[len(thresholds)]`. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `recall`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'recall_at_thresholds', (predictions, labels, weights)): values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights, includes=('tp', 'fn')) tp = values['tp'] fn = values['fn'] # Avoid division by zero. epsilon = 1e-7 def compute_recall(name): return math_ops.div(tp, epsilon + tp + fn, name='recall_' + name) rec = compute_recall('value') with ops.control_dependencies(update_ops.values()): update_op = compute_recall('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, rec) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rec, update_op def root_mean_squared_error(labels, predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes the root mean squared error between the labels and predictions. The `root_mean_squared_error` function creates two local variables, `total` and `count` that are used to compute the root mean squared error. This average is weighted by `weights`, and it is ultimately returned as `root_mean_squared_error`: an idempotent operation that takes the square root of the division of `total` by `count`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `root_mean_squared_error`. Internally, a `squared_error` operation computes the element-wise square of the difference between `predictions` and `labels`. Then `update_op` increments `total` with the reduced sum of the product of `weights` and `squared_error`, and it increments `count` with the reduced sum of `weights`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of the same shape as `predictions`. predictions: A `Tensor` of arbitrary shape. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. metrics_collections: An optional list of collections that `root_mean_squared_error` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: root_mean_squared_error: A `Tensor` representing the current mean, the value of `total` divided by `count`. update_op: An operation that increments the `total` and `count` variables appropriately and whose value matches `root_mean_squared_error`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ labels, predictions, weights = _remove_squeezable_dimensions( labels, predictions, weights) predictions.get_shape().assert_is_compatible_with(labels.get_shape()) value_tensor, update_op = mean_squared_error( labels, predictions, weights, None, None, name or 'root_mean_squared_error') rmse = math_ops.sqrt(value_tensor) with ops.control_dependencies([update_op]): update_op = math_ops.sqrt(update_op) if metrics_collections: ops.add_to_collections(metrics_collections, rmse) if updates_collections: ops.add_to_collections(updates_collections, update_op) return rmse, update_op def sensitivity_at_specificity( labels, predictions, specificity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `sensitivity_at_specificity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the sensitivity at the given specificity value. The threshold for the given specificity value is computed and used to evaluate the corresponding sensitivity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `sensitivity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. specificity: A scalar value in range `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. num_thresholds: The number of thresholds to use for matching the given specificity. metrics_collections: An optional list of collections that `sensitivity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: sensitivity: A scalar `Tensor` representing the sensitivity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `sensitivity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `specificity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if specificity < 0 or specificity > 1: raise ValueError('`specificity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'sensitivity_at_specificity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) tp = values['tp'] fn = values['fn'] tn = values['tn'] fp = values['fp'] def compute_sensitivity_at_specificity(name): specificities = math_ops.div(tn, tn + fp + kepsilon) tf_index = math_ops.argmin(math_ops.abs(specificities - specificity), 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the sensitivity: return math_ops.div(tp[tf_index], tp[tf_index] + fn[tf_index] + kepsilon, name) sensitivity = compute_sensitivity_at_specificity('value') with ops.control_dependencies(update_ops.values()): update_op = compute_sensitivity_at_specificity('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, sensitivity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return sensitivity, update_op def _expand_and_tile(tensor, multiple, dim=0, name=None): """Slice `tensor` shape in 2, then tile along the sliced dimension. A new dimension is inserted in shape of `tensor` before `dim`, then values are tiled `multiple` times along the new dimension. Args: tensor: Input `Tensor` or `SparseTensor`. multiple: Integer, number of times to tile. dim: Integer, dimension along which to tile. name: Name of operation. Returns: `Tensor` result of expanding and tiling `tensor`. Raises: ValueError: if `multiple` is less than 1, or `dim` is not in `[-rank(tensor), rank(tensor)]`. """ if multiple < 1: raise ValueError('Invalid multiple %s, must be > 0.' % multiple) with ops.name_scope( name, 'expand_and_tile', (tensor, multiple, dim)) as scope: # Sparse. tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor) if isinstance(tensor, sparse_tensor.SparseTensor): if dim < 0: expand_dims = array_ops.reshape( array_ops.size(tensor.dense_shape) + dim, [1]) else: expand_dims = [dim] expanded_shape = array_ops.concat_v2( (array_ops.slice(tensor.dense_shape, [0], expand_dims), [1], array_ops.slice(tensor.dense_shape, expand_dims, [-1])), 0, name='expanded_shape') expanded = sparse_ops.sparse_reshape( tensor, shape=expanded_shape, name='expand') if multiple == 1: return expanded return sparse_ops.sparse_concat( dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope) # Dense. expanded = array_ops.expand_dims( tensor, dim if (dim >= 0) else (dim - 1), name='expand') if multiple == 1: return expanded ones = array_ops.ones_like(array_ops.shape(tensor)) tile_multiples = array_ops.concat_v2( (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples') return array_ops.tile(expanded, tile_multiples, name=scope) def _num_relevant(labels, k): """Computes number of relevant values for each row in labels. For labels with shape [D1, ... DN, num_labels], this is the minimum of `num_labels` and `k`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. k: Integer, k for @k metric. Returns: Integer `Tensor` of shape [D1, ... DN], where each value is the number of relevant values for that row. Raises: ValueError: if inputs have invalid dtypes or values. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope(None, 'num_relevant', (labels,)) as scope: # For SparseTensor, calculate separate count for each row. labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels) if isinstance(labels, sparse_tensor.SparseTensor): return math_ops.minimum(sets.set_size(labels), k, name=scope) # For dense Tensor, calculate scalar count based on last dimension, and # tile across labels shape. labels_shape = array_ops.shape(labels) labels_size = labels_shape[-1] num_relevant_scalar = math_ops.minimum(labels_size, k) return array_ops.fill(labels_shape[0:-1], num_relevant_scalar, name=scope) def _sparse_average_precision_at_k(labels, predictions, k): """Computes average precision@k of predictions with respect to sparse labels. From en.wikipedia.org/wiki/Information_retrieval#Average_precision, formula for each row is: AveP = sum_{i=1...k} P_{i} * rel_{i} / num_relevant_items A "row" is the elements in dimension [D1, ... DN] of `predictions`, `labels`, and the result `Tensors`. In the common case, this is [batch_size]. Each row of the results contains the average precision for that row. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives, which are used to calculate the precision ("P_{i}" term, above). Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. Returns: `float64` `Tensor` of shape [D1, ... DN], where each value is the average precision for that row. Raises: ValueError: if k is invalid. """ if k < 1: raise ValueError('Invalid k=%s.' % k) with ops.name_scope( None, 'average_precision', (predictions, labels, k)) as scope: labels = _maybe_expand_labels(labels, predictions) # Calculate top k indices to produce [D1, ... DN, k] tensor. _, predictions_idx = nn.top_k(predictions, k) predictions_idx = math_ops.to_int64(predictions_idx, name='predictions_idx') # Expand dims to produce [D1, ... DN, k, 1] tensor. This gives us a separate # prediction for each k, so we can calculate separate true positive values # for each k. predictions_idx_per_k = array_ops.expand_dims( predictions_idx, -1, name='predictions_idx_per_k') # Replicate labels k times to produce [D1, ... DN, k, num_labels] tensor. labels_per_k = _expand_and_tile( labels, multiple=k, dim=-1, name='labels_per_k') # The following tensors are all of shape [D1, ... DN, k], containing values # per row, per k value. # `relevant_per_k` (int32) - Relevance indicator, 1 if the prediction at # that k value is correct, 0 otherwise. This is the "rel_{i}" term from # the formula above. # `tp_per_k` (int32) - True positive counts. # `retrieved_per_k` (int32) - Number of predicted values at each k. This is # the precision denominator. # `precision_per_k` (float64) - Precision at each k. This is the "P_{i}" # term from the formula above. # `relevant_precision_per_k` (float64) - Relevant precisions; i.e., # precisions at all k for which relevance indicator is true. relevant_per_k = _sparse_true_positive_at_k( labels_per_k, predictions_idx_per_k, name='relevant_per_k') tp_per_k = math_ops.cumsum(relevant_per_k, axis=-1, name='tp_per_k') retrieved_per_k = math_ops.cumsum( array_ops.ones_like(relevant_per_k), axis=-1, name='retrieved_per_k') precision_per_k = math_ops.div( math_ops.to_double(tp_per_k), math_ops.to_double(retrieved_per_k), name='precision_per_k') relevant_precision_per_k = math_ops.mul( precision_per_k, math_ops.to_double(relevant_per_k), name='relevant_precision_per_k') # Reduce along k dimension to get the sum, yielding a [D1, ... DN] tensor. precision_sum = math_ops.reduce_sum( relevant_precision_per_k, reduction_indices=(-1,), name='precision_sum') # Divide by number of relevant items to get average precision. These are # the "num_relevant_items" and "AveP" terms from the formula above. num_relevant_items = math_ops.to_double(_num_relevant(labels, k)) return math_ops.div(precision_sum, num_relevant_items, name=scope) def sparse_average_precision_at_k(labels, predictions, k, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes average precision@k of predictions with respect to sparse labels. `sparse_average_precision_at_k` creates two local variables, `average_precision_at_<k>/total` and `average_precision_at_<k>/max`, that are used to compute the frequency. This frequency is ultimately returned as `average_precision_at_<k>`: an idempotent operation that simply divides `average_precision_at_<k>/total` by `average_precision_at_<k>/max`. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and `predictions` has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. This will calculate an average precision for range `[1,k]`, as documented above. weights: An optional `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions` and `labels`. metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: mean_average_precision: Scalar `float64` `Tensor` with the mean average precision values. update: `Operation` that increments variables appropriately, and whose value matches `metric`. """ default_name = _at_k_name('average_precision', k) with ops.name_scope(name, default_name, (predictions, labels)) as scope: # Calculate per-example average precision, and apply weights. average_precision = _sparse_average_precision_at_k( predictions=predictions, labels=labels, k=k) if weights is not None: weights = math_ops.to_double(weights) average_precision = math_ops.mul(average_precision, weights) # Create accumulation variables and update ops for max average precision and # total average precision. with ops.name_scope(None, 'max', (average_precision,)) as max_scope: # `max` is the max possible precision. Since max for any row is 1.0: # - For the unweighted case, this is just the number of rows. # - For the weighted case, it's the sum of the weights broadcast across # `average_precision` rows. max_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=max_scope) if weights is None: batch_max = math_ops.to_double( array_ops.size(average_precision, name='batch_max')) else: # TODO(ptucker): More efficient way to broadcast? broadcast_weights = math_ops.mul( weights, array_ops.ones_like(average_precision), name='broadcast_weights') batch_max = math_ops.reduce_sum(broadcast_weights, name='batch_max') max_update = state_ops.assign_add(max_var, batch_max, name='update') with ops.name_scope(None, 'total', (average_precision,)) as total_scope: total_var = _local_variable( array_ops.zeros([], dtype=dtypes.float64), name=total_scope) batch_total = math_ops.reduce_sum(average_precision, name='batch_total') total_update = state_ops.assign_add(total_var, batch_total, name='update') # Divide total by max to get mean, for both vars and the update ops. mean_average_precision = _safe_scalar_div(total_var, max_var, name='mean') update = _safe_scalar_div(total_update, max_update, name=scope) if metrics_collections: ops.add_to_collections(metrics_collections, mean_average_precision) if updates_collections: ops.add_to_collections(updates_collections, update) return mean_average_precision, update def _sparse_false_positive_at_k(labels, predictions_idx, class_id=None, weights=None): """Calculates false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels_sparse`. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. Returns: A [D1, ... DN] `Tensor` of false positive counts. """ with ops.name_scope(None, 'false_positives', (predictions_idx, labels)): labels, predictions_idx = _maybe_select_class_id(labels, predictions_idx, class_id) fp = sets.set_size(sets.set_difference( predictions_idx, labels, aminusb=True)) fp = math_ops.to_double(fp) if weights is not None: weights = math_ops.to_double(weights) fp = math_ops.mul(fp, weights) return fp def _streaming_sparse_false_positive_at_k(labels, predictions_idx, k=None, class_id=None, weights=None, name=None): """Calculates weighted per step false positives for precision@k. If `class_id` is specified, calculate binary true positives for `class_id` only. If `class_id` is not specified, calculate metrics for `k` predicted vs `n` label classes, where `n` is the 2nd dimension of `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions_idx`. predictions_idx: 1-D or higher `int64` `Tensor` with last dimension `k`, top `k` predicted classes. For rank `n`, the first `n-1` dimensions must match `labels`. k: Integer, k for @k metric. This is only used for default op name. class_id: Class for which we want binary metrics. weights: `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions_idx` and `labels`. name: Name of new variable, and namespace for other dependent ops. Returns: A tuple of `Variable` and update `Operation`. Raises: ValueError: If `weights` is not `None` and has an incomptable shape. """ default_name = _at_k_name('false_positive', k, class_id=class_id) with ops.name_scope(name, default_name, (predictions_idx, labels)) as scope: fp = _sparse_false_positive_at_k( predictions_idx=predictions_idx, labels=labels, class_id=class_id, weights=weights) batch_total_fp = math_ops.to_double(math_ops.reduce_sum(fp)) var = _local_variable(array_ops.zeros([], dtype=dtypes.float64), name=scope) return var, state_ops.assign_add(var, batch_total_fp, name='update') def sparse_precision_at_k(labels, predictions, k, class_id=None, weights=None, metrics_collections=None, updates_collections=None, name=None): """Computes precision@k of the predictions with respect to sparse labels. If `class_id` is specified, we calculate precision by considering only the entries in the batch for which `class_id` is in the top-k highest `predictions`, and computing the fraction of them for which `class_id` is indeed a correct label. If `class_id` is not specified, we'll calculate precision as how often on average a class among the top-k classes with the highest predicted values of a batch entry is correct and can be found in the label for that entry. `sparse_precision_at_k` creates two local variables, `true_positive_at_<k>` and `false_positive_at_<k>`, that are used to compute the precision@k frequency. This frequency is ultimately returned as `precision_at_<k>`: an idempotent operation that simply divides `true_positive_at_<k>` by total (`true_positive_at_<k>` + `false_positive_at_<k>`). For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `precision_at_<k>`. Internally, a `top_k` operation computes a `Tensor` indicating the top `k` `predictions`. Set operations applied to `top_k` and `labels` calculate the true positives and false positives weighted by `weights`. Then `update_op` increments `true_positive_at_<k>` and `false_positive_at_<k>` using these values. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: `int64` `Tensor` or `SparseTensor` with shape [D1, ... DN, num_labels] or [D1, ... DN], where the latter implies num_labels=1. N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 and `labels` has shape [batch_size, num_labels]. [D1, ... DN] must match `predictions`. Values should be in range [0, num_classes), where num_classes is the last dimension of `predictions`. Values outside this range are ignored. predictions: Float `Tensor` with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 and predictions has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must match `labels`. k: Integer, k for @k metric. class_id: Integer class ID for which we want binary metrics. This should be in range [0, num_classes], where num_classes is the last dimension of `predictions`. If `class_id` is outside this range, the method returns NAN. weights: An optional `Tensor` whose shape is broadcastable to the first [D1, ... DN] dimensions of `predictions` and `labels`. metrics_collections: An optional list of collections that values should be added to. updates_collections: An optional list of collections that updates should be added to. name: Name of new update operation, and namespace for other dependent ops. Returns: precision: Scalar `float64` `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. update_op: `Operation` that increments `true_positives` and `false_positives` variables appropriately, and whose value matches `precision`. Raises: ValueError: If `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with ops.name_scope(name, _at_k_name('precision', k, class_id=class_id), (predictions, labels, weights)) as scope: labels = _maybe_expand_labels(labels, predictions) _, top_k_idx = nn.top_k(predictions, k) top_k_idx = math_ops.to_int64(top_k_idx) tp, tp_update = _streaming_sparse_true_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) fp, fp_update = _streaming_sparse_false_positive_at_k( predictions_idx=top_k_idx, labels=labels, k=k, class_id=class_id, weights=weights) metric = math_ops.div(tp, math_ops.add(tp, fp), name=scope) update = math_ops.div( tp_update, math_ops.add(tp_update, fp_update), name='update') if metrics_collections: ops.add_to_collections(metrics_collections, metric) if updates_collections: ops.add_to_collections(updates_collections, update) return metric, update def specificity_at_sensitivity( labels, predictions, sensitivity, weights=None, num_thresholds=200, metrics_collections=None, updates_collections=None, name=None): """Computes the specificity at a given sensitivity. The `specificity_at_sensitivity` function creates four local variables, `true_positives`, `true_negatives`, `false_positives` and `false_negatives` that are used to compute the specificity at the given sensitivity value. The threshold for the given sensitivity value is computed and used to evaluate the corresponding specificity. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `specificity`. `update_op` increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` counts with the weight of each case found in the `predictions` and `labels`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. For additional information about specificity and sensitivity, see the following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity Args: labels: A `bool` `Tensor` whose shape matches `predictions`. predictions: A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. sensitivity: A scalar value in range `[0, 1]`. weights: An optional `Tensor` whose shape is broadcastable to `predictions`. num_thresholds: The number of thresholds to use for matching the given sensitivity. metrics_collections: An optional list of collections that `specificity` should be added to. updates_collections: An optional list of collections that `update_op` should be added to. name: An optional variable_scope name. Returns: specificity: A scalar `Tensor` representing the specificity at the given `specificity` value. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `specificity`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `sensitivity` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ if sensitivity < 0 or sensitivity > 1: raise ValueError('`sensitivity` must be in the range [0, 1].') with variable_scope.variable_scope(name, 'specificity_at_sensitivity', (predictions, labels, weights)): kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 - kepsilon] values, update_ops = _confusion_matrix_at_thresholds( labels, predictions, thresholds, weights) tp = values['tp'] fn = values['fn'] tn = values['tn'] fp = values['fp'] def compute_specificity_at_sensitivity(name): """Computes the specificity at the given sensitivity. Args: name: The name of the operation. Returns: The specificity using the aggregated values. """ sensitivities = math_ops.div(tp, tp + fn + kepsilon) # We'll need to use this trick until tf.argmax allows us to specify # whether we should use the first or last index in case of ties. min_val = math_ops.reduce_min(math_ops.abs(sensitivities - sensitivity)) indices_at_minval = math_ops.equal( math_ops.abs(sensitivities - sensitivity), min_val) indices_at_minval = math_ops.to_int64(indices_at_minval) indices_at_minval = math_ops.cumsum(indices_at_minval) tf_index = math_ops.argmax(indices_at_minval, 0) tf_index = math_ops.cast(tf_index, dtypes.int32) # Now, we have the implicit threshold, so compute the specificity: return math_ops.div(tn[tf_index], tn[tf_index] + fp[tf_index] + kepsilon, name) specificity = compute_specificity_at_sensitivity('value') with ops.control_dependencies(update_ops.values()): update_op = compute_specificity_at_sensitivity('update_op') if metrics_collections: ops.add_to_collections(metrics_collections, specificity) if updates_collections: ops.add_to_collections(updates_collections, update_op) return specificity, update_op
06d1da03bb473ec8c74994de7dded0aac1d089af
bc1e4bdfe4c759cb8fc39dfb2181bbcf79a2c5a5
/React-Tasks/dj/lib/python3.6/weakref.py
08e07af5cee91eb3751018654b88c40612e44099
[]
no_license
ProgMmgGhoneim/React_Js
19b4f2eef617c1a9623ef93297b2a3c7c84769c6
d038ac7fbc60757a04d777ffe1b6dc1cfcdfaea7
refs/heads/master
2023-01-10T20:23:03.466801
2019-10-11T11:25:56
2019-10-11T11:25:56
214,394,220
0
0
null
2023-01-05T23:20:36
2019-10-11T09:16:05
Python
UTF-8
Python
false
false
48
py
/home/ghoneim/anaconda3/lib/python3.6/weakref.py
5d2eb91da355a9b16280bef5d63c1395eae24179
f421d6ae91120184a7ce1b82e779255fd64fdf85
/structs/models/conv.py
b8a0b86846e3b9280b45ce61e3af9572f72dbada
[]
no_license
landjbs/MCTS
54f8a979878ad3ca895e6ff151bd3c872e96859c
db6f490cb3c27b6ffc31b48350ce63c68b59315b
refs/heads/master
2020-11-27T05:23:09.726422
2019-12-27T19:44:01
2019-12-27T19:44:01
229,320,234
0
0
null
null
null
null
UTF-8
Python
false
false
2,281
py
import torch import torch.nn as nn class Conv(nn.Module): ''' The Conv model is tasked with prediciting a vector (p) of move probabilities across the avaliable moves and a scalar (v) of win probability at the current state. To avoid shape issues, p always has length 8. Input board is a 4th order tensor with shape (boardSize, boardSize, 4) where the last order has indicies (0-shots, 1-walls, 2-enemies, 3-player). Sizes are currently hard-coded. ''' def __init__(self, lr, boardSize=20): super(Conv, self).__init__() # layers self.conv1 = nn.Sequential( nn.Conv2d(4, 20, kernel_size=1, stride=1, padding=0), nn.ReLU() ) #nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Sequential( nn.Conv2d(20, 20, kernel_size=1, stride=1, padding=0), nn.ReLU() ) #nn.MaxPool2d(kernel_size=2, stride=2) self.dropout = nn.Dropout(p=0.3) self.lin1 = nn.Linear(3 * 3 * 20, 1000) self.pLin = nn.Linear(1000, 8) self.soft = nn.Softmax(dim=1) self.vLin = nn.Linear(1000, 1) self.sig = nn.Sigmoid() # optimizers and loss self.optim = torch.optim.Adam(self.parameters(), lr=lr) # self.pCriterion = nn.CrossEntropyLoss() self.vCriterion = nn.BCELoss() def pCriterion(self, p, target): pC = p[0, target] pLog = torch.log(pC) loss = -(pLog) return loss def forward(self, boardTensor): convOut = self.conv1(boardTensor) convOut = self.conv2(convOut) convOut = convOut.reshape(convOut.size(0), -1) convOut = self.dropout(convOut) linOut = self.lin1(convOut) p = self.soft(self.pLin(linOut)) v = self.sig(self.vLin(linOut))[0] # print(f'p: {p} | v: {v}') return p, v def eval_and_prop(self, pX, vX, pY, vY): pLoss = self.pCriterion(pX, pY) vLoss = self.vCriterion(vX, torch.tensor([vY], dtype=torch.float)) loss = pLoss + vLoss self.optim.zero_grad() loss.backward() self.optim.step() return loss def train_step(self, x, yP, yV): p, v = self(x) return self.eval_and_prop(p, v, yP, yV)
95a32e6f81e5d22d9e2310154eb8ea8d02f8449a
805705b87e889c18ac0b8be6ee50fcc292bf32e1
/main.py
7d5e45fd1fab3b9071debd0070268a77e592ef62
[]
no_license
jaybenaim/day18-reinforcements
283ea6578cb4dbc252da6b30e77a2899b6feac03
e29ae6f1b16ea8c0b5d4fd1eba931799c0a70c57
refs/heads/master
2020-06-24T07:16:45.253006
2019-07-25T20:32:52
2019-07-25T20:32:52
198,893,102
0
0
null
null
null
null
UTF-8
Python
false
false
482
py
def word_counter(string): word_list = [] for words in string: each_word = string.split() if words == None: return 0 else: for word in each_word: word_list.append(word) return len(word_list) print(word_counter('this is a test')) print(word_counter("Hello world") )# returns 2 print(word_counter("This is a sentence")) # returns 4 print(word_counter("")) # returns 0
f84aaf8671a71a32fd27a410f2fb67fb424f2fd9
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2942/60731/239792.py
be1b184072b692962edd810b9ee96fe99b0afb2a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
120
py
n=int(input()) num=input() l=num.split() l.sort(reverse=True) result=''.join(l) num1=int(result) print(result,end='')
b2524bfa2f3066ef2a19eac93a3434a6ce088a9b
223b5e108951378f9de33258d2602fc01c17c4cb
/django16/project_name/settings.py
3e07f544761d6b0d1b95bea8f4090296f58955c3
[ "MIT" ]
permissive
barscka/django-project-template
55934fb14f665aae5accd0dfbef23ed7efa0c3ba
2515d7a4f0964feb8aef2f340db4aa2f820c1d87
refs/heads/master
2021-05-31T09:06:17.254535
2015-07-28T00:14:10
2015-07-28T00:14:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,571
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals """ Django settings for {{ project_name }} project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '{{ secret_key }}' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [ '*', ] # Application definition INSTALLED_APPS = ( # django core 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # third party apps # local apps # south in the end 'south', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = '{{ project_name }}.urls' WSGI_APPLICATION = '{{ project_name }}.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' # ============================================================================= # Django Local settings here # ============================================================================= ADMINS = ( ('John Doe', '[email protected]'), ) EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request', ) TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), ) # ============================================================================= # {{ project_name }} settings here # ============================================================================= SITE_NAME = '{{ project_name }}' SITE_DOMAIN = '{{ project_name }}.com' # ============================================================================= # Load settings_local.py if exists # ============================================================================= try: from .settings_local import * except ImportError: pass
4fac3d9ddcb200a86ec0789f848a9079e75c1994
0c452a191d35a26499abec71854f8a8cdb1efc68
/test/unit/backends/msbuild/test_writer.py
81b41a280bbd23b9d969441b074964552239bd10
[ "BSD-3-Clause" ]
permissive
luc3001/bfg9000
fe609d64d7b605fef0ffb375873729c8cf0bd641
41452e9dd12f1a44bae68d3bf44f362d283e6802
refs/heads/master
2020-09-15T17:10:52.434281
2019-11-22T04:33:26
2019-11-22T04:33:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,200
py
import mock from ... import * from bfg9000.backends.msbuild.writer import version from bfg9000.versioning import Version def mock_bad_which(*args, **kwargs): raise IOError() def mock_bad_execute(*args, **kwargs): raise OSError() class TestMsBuildVersion(TestCase): def test_good(self): with mock.patch('bfg9000.shell.which', return_value=['command']), \ mock.patch('bfg9000.shell.execute', return_value='MSBuild 1.23'): # noqa self.assertEqual(version({}), Version('1.23')) def test_unrecognized_version(self): with mock.patch('bfg9000.shell.which', return_value=['command']), \ mock.patch('bfg9000.shell.execute', return_value='MSBuild'): # noqa self.assertEqual(version({}), None) def test_not_found(self): with mock.patch('bfg9000.shell.which', mock_bad_which): self.assertEqual(version({}), None) def test_bad_execute(self): with mock.patch('bfg9000.shell.which', return_value=['command']), \ mock.patch('bfg9000.shell.execute', mock_bad_execute): # noqa self.assertEqual(version({}), None)
64ea2ea9564dcd0bab25d5cf5c5a4115f4769d93
a81c1492783e7cafcaf7da5f0402d2d283b7ce37
/google/ads/google_ads/v6/proto/enums/shared_set_status_pb2.py
6b94727fd3b8dc33bf74d4a95e08d59671258bef
[ "Apache-2.0" ]
permissive
VincentFritzsche/google-ads-python
6650cf426b34392d1f58fb912cb3fc25b848e766
969eff5b6c3cec59d21191fa178cffb6270074c3
refs/heads/master
2023-03-19T17:23:26.959021
2021-03-18T18:18:38
2021-03-18T18:18:38
null
0
0
null
null
null
null
UTF-8
Python
false
true
4,087
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/enums/shared_set_status.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/enums/shared_set_status.proto', package='google.ads.googleads.v6.enums', syntax='proto3', serialized_options=b'\n!com.google.ads.googleads.v6.enumsB\024SharedSetStatusProtoP\001ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v6/enums;enums\242\002\003GAA\252\002\035Google.Ads.GoogleAds.V6.Enums\312\002\035Google\\Ads\\GoogleAds\\V6\\Enums\352\002!Google::Ads::GoogleAds::V6::Enums', create_key=_descriptor._internal_create_key, serialized_pb=b'\n5google/ads/googleads/v6/enums/shared_set_status.proto\x12\x1dgoogle.ads.googleads.v6.enums\x1a\x1cgoogle/api/annotations.proto\"`\n\x13SharedSetStatusEnum\"I\n\x0fSharedSetStatus\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x0b\n\x07\x45NABLED\x10\x02\x12\x0b\n\x07REMOVED\x10\x03\x42\xe9\x01\n!com.google.ads.googleads.v6.enumsB\x14SharedSetStatusProtoP\x01ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v6/enums;enums\xa2\x02\x03GAA\xaa\x02\x1dGoogle.Ads.GoogleAds.V6.Enums\xca\x02\x1dGoogle\\Ads\\GoogleAds\\V6\\Enums\xea\x02!Google::Ads::GoogleAds::V6::Enumsb\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _SHAREDSETSTATUSENUM_SHAREDSETSTATUS = _descriptor.EnumDescriptor( name='SharedSetStatus', full_name='google.ads.googleads.v6.enums.SharedSetStatusEnum.SharedSetStatus', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='ENABLED', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='REMOVED', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=141, serialized_end=214, ) _sym_db.RegisterEnumDescriptor(_SHAREDSETSTATUSENUM_SHAREDSETSTATUS) _SHAREDSETSTATUSENUM = _descriptor.Descriptor( name='SharedSetStatusEnum', full_name='google.ads.googleads.v6.enums.SharedSetStatusEnum', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _SHAREDSETSTATUSENUM_SHAREDSETSTATUS, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=118, serialized_end=214, ) _SHAREDSETSTATUSENUM_SHAREDSETSTATUS.containing_type = _SHAREDSETSTATUSENUM DESCRIPTOR.message_types_by_name['SharedSetStatusEnum'] = _SHAREDSETSTATUSENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) SharedSetStatusEnum = _reflection.GeneratedProtocolMessageType('SharedSetStatusEnum', (_message.Message,), { 'DESCRIPTOR' : _SHAREDSETSTATUSENUM, '__module__' : 'google.ads.googleads.v6.enums.shared_set_status_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.enums.SharedSetStatusEnum) }) _sym_db.RegisterMessage(SharedSetStatusEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
1522d5404ed627f0931f89bb5684acad594c31df
493a36f1f8606c7ddce8fc7fe49ce4409faf80be
/.history/B073040023/client_20210614185239.py
0b152bdb8714864bface6716198073ed81196b44
[]
no_license
ZhangRRz/computer_network
f7c3b82e62920bc0881dff923895da8ae60fa653
077848a2191fdfe2516798829644c32eaeded11e
refs/heads/main
2023-05-28T02:18:09.902165
2021-06-15T06:28:59
2021-06-15T06:28:59
376,568,344
0
0
null
2021-06-13T14:48:36
2021-06-13T14:48:36
null
UTF-8
Python
false
false
5,029
py
import socket import threading import tcppacket import struct from time import sleep # socket.socket() will create a TCP socket (default) # socket.socket(socket.AF_INET, socket.SOCK_STREAM) to explicitly define a TCP socket sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) # explicitly define a UDP socket udp_host = '127.0.0.1' # Host IP udp_port = 12345 # specified port to connect def init_new_calc_req(msg): sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) oldmsg = msg tcp = tcppacket.TCPPacket(data=msg) tcp.assemble_tcp_feilds() sock.sendto(tcp.raw, (udp_host, udp_port)) # print("UDP target IP:", udp_host) # print("UDP target Port:", udp_port) # Sending message to UDP server while True: data, address = sock.recvfrom(512*1024) sock.connect(address) s = struct.calcsize('!HHLLBBH') unpackdata = struct.unpack('!HHLLBBH', data[:s]) msg = data[s:].decode('utf-8') print(oldmsg,"is", msg) if(unpackdata[5] % 2): # fin_falg fin_falg = 1 else: fin_falg = 0 tcp = tcppacket.TCPPacket( data="ACK".encode('utf-8'), flags_ack=1, flags_fin=fin_falg) tcp.assemble_tcp_feilds() print("ACK send to (IP,port):", address) sock.sendto(tcp.raw, address) if(fin_falg): break def init_new_videoreq_req(i): sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) msg = "video 1".encode('utf-8') # print("UDP target IP:", udp_host) # print("UDP target Port:", udp_port) tcp = tcppacket.TCPPacket(data=msg) tcp.assemble_tcp_feilds() sock.sendto(tcp.raw, (udp_host, udp_port)) # Sending message to UDP server recvdata = b'' ack_seq = 0 seq = 0 counter = 0 while True: data, address = sock.recvfrom(512*1024) s = struct.calcsize('!HHLLBBHHH') raw = struct.unpack('!HHLLBBHHH', data[:s]) print("receive packet from ", address, "with header", raw) if(raw[2] == ack_seq and raw[7] == 0): recvdata += data[s:] if(raw[5] % 2): # fin_falg fin_flag = 1 else: fin_flag = 0 ack_seq += 1 counter += 1 else: print("Receive ERROR packet from ", address) fin_flag = 1 counter = 3 # -------------------------------------------- # send ACK if(counter == 3): tcp = tcppacket.TCPPacket( data=str("ACK").encode('utf-8'), seq=seq, ack_seq=ack_seq, flags_ack=1, flags_fin=fin_flag) tcp.assemble_tcp_feilds() print("ACK send to (IP,port):", address, "with ack seq: ", ack_seq, " and seq: ", seq) sock.sendto(tcp.raw, address) if(not fin_flag): counter = 0 seq += 1 # -------------------------------------------- print(fin_flag) if(fin_flag): break savename = str(i+1)+"received.mp4" f = open(savename, "wb") f.write(recvdata) f.close() def init_new_dns_req(i): # --------------------- sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) oldmsg = msg = "dns google.com" msg = msg.encode('utf-8') tcp = tcppacket.TCPPacket(data=msg) tcp.assemble_tcp_feilds() sock.sendto(tcp.raw, (udp_host, udp_port)) # print("UDP target IP:", udp_host) # print("UDP target Port:", udp_port) while True: data, address = sock.recvfrom(512*1024) sock.connect(address) s = struct.calcsize('!HHLLBBH') unpackdata = struct.unpack('!HHLLBBH', data[:s]) msg = data[s:].decode('utf-8') print(oldmsg,"is", msg) if(unpackdata[5] % 2): # fin_falg fin_falg = 1 else: fin_falg = 0 tcp = tcppacket.TCPPacket( data="ACK".encode('utf-8'), flags_ack=1, flags_fin=fin_falg) tcp.assemble_tcp_feilds() print("ACK send to (IP,port):", address) sock.sendto(tcp.raw, address) if(fin_falg): break # ---------------------- # def init_new threads = [] #Calculation print("Demo calculation function") init_new_calc_req("calc 2 + 6") sleep(0.25) init_new_calc_req("calc 2 - 6") sleep(0.25) init_new_calc_req("calc 2 * 6") sleep(0.25) init_new_calc_req("calc 2 / 6") sleep(0.25) init_new_calc_req("calc 2 + 6") sleep(0.25) init_new_calc_req("calc 2 + 6") sleep(0.25) threads.append(threading.Thread(target = init_new_calc_req, args = (i,))) threads[-1].start() for i in range(1): threads.append(threading.Thread(target = init_new_dns_req, args = (i,))) threads[-1].start() for i in range(1): threads.append(threading.Thread(target = init_new_videoreq_req, args = (i,))) threads[-1].start()
fbe2b17d459317f2efe8ffe5d2cae5b3c831ec34
4e5b20fdcca20f458322f0a8cd11bbdacb6fb3e5
/suning/api/oto/OrderGetRequest.py
4a5953e4ea31fa728bfb4e0a68491e4b13475f83
[]
no_license
shijingyu/sunningAPI
241f33b0660dc84635ce39688fed499f5c57a5da
4a3b2ef7f9bdc4707d1eaff185bc7eb636fe90d5
refs/heads/master
2020-04-24T22:15:11.584028
2019-02-24T06:41:20
2019-02-24T06:41:20
172,305,179
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
# -*- coding: utf-8 -*- ''' Created on 2016-12-2 @author: suning ''' from suning.api.abstract import AbstractApi class OrderGetRequest(AbstractApi): ''' ''' def __init__(self): AbstractApi.__init__(self) self.b2cOrderId = None self.setParamRule({ 'b2cOrderId':{'allow_empty':False} }) def getApiBizName(self): return 'getOrder' def getApiMethod(self): return 'suning.oto.order.get'
f7054ba24a5ccaf1ec397da00458afa1b156dfc4
9184e230f8b212e8f686a466c84ecc89abe375d1
/arcseventdata/tests/module/events2IQQQE_TestCase.py
99df9481553bd7ad7dbd5f5d4277ab0a0d79268b
[]
no_license
danse-inelastic/DrChops
75b793d806e6351dde847f1d92ab6eebb1ef24d2
7ba4ce07a5a4645942192b4b81f7afcae505db90
refs/heads/master
2022-04-26T17:37:41.666851
2015-05-02T23:21:13
2015-05-02T23:21:13
34,094,584
0
1
null
2020-09-10T01:50:10
2015-04-17T03:30:52
Python
UTF-8
Python
false
false
2,272
py
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2007 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # import unittest from unittest import TestCase class events2IQQQE_TestCase(TestCase): def test1(self): 'events2IQQQE: default intensity type (int)' import arcseventdata.arcseventdata as aa events = aa.readevents( "events.dat", 10 ) import numpy I = numpy.zeros( 20*20*20*10, 'i' ) Ei = 60. pixelPositions = aa.readpixelpositions( 'pixelID2position.bin' ) aa.events2IQQQE_numpyarray( events, 10, -10, 10, 1., -10, 10, 1., -10, 10, 1., -50, 50, 10. , I, Ei, pixelPositions) return def test2(self): 'events2IQQQE: intensity type is "double"' import arcseventdata.arcseventdata as aa events = aa.readevents( "events.dat", 10 ) import numpy I = numpy.zeros( 20*20*20*10, 'double' ) Ei = 60. pixelPositions = aa.readpixelpositions( 'pixelID2position.bin' ) ntotpixels = 115*8*128 tofUnit = 1e-7 mod2sample = 13.6 toffset = 0 intensity_npy_typecode = numpy.dtype('double').num aa.events2IQQQE_numpyarray( events, 10, -10, 10, 1., -10, 10, 1., -10, 10, 1., -50, 50, 10. , I, Ei, pixelPositions, ntotpixels, tofUnit, mod2sample, toffset, intensity_npy_typecode, ) return pass # end of events2IQQQE_TestCase def pysuite(): suite1 = unittest.makeSuite(events2IQQQE_TestCase) return unittest.TestSuite( (suite1,) ) def main(): pytests = pysuite() alltests = unittest.TestSuite( (pytests, ) ) unittest.TextTestRunner(verbosity=2).run(alltests) return if __name__ == '__main__': main() # version __id__ = "$Id$" # End of file
c2184ae39c88d495df7b7e3f616625ec741446de
bde1e989aea152374f37b3511c39954d813016ae
/platypush/plugins/media/webtorrent.py
f496644fdf180552d3233c0f94dd5d409194d471
[ "MIT" ]
permissive
lopeben/platypush
bad4f3df159582b77577a91bd03246af428073e8
6ba92e7fdd40090c5ed70fad3dd961c21f894844
refs/heads/master
2022-10-12T12:24:48.789230
2020-05-23T21:12:39
2020-05-23T21:12:45
270,212,467
1
0
MIT
2020-06-07T06:14:53
2020-06-07T06:14:52
null
UTF-8
Python
false
false
15,277
py
import enum import os import re import select import subprocess import threading import time from platypush.config import Config from platypush.context import get_bus, get_plugin from platypush.plugins.media import PlayerState, MediaPlugin from platypush.message.event.torrent import TorrentDownloadStartEvent, \ TorrentDownloadCompletedEvent, TorrentDownloadedMetadataEvent from platypush.plugins import action from platypush.utils import find_bins_in_path, find_files_by_ext, \ is_process_alive, get_ip_or_hostname class TorrentState(enum.IntEnum): IDLE = 1 DOWNLOADING_METADATA = 2 DOWNLOADING = 3 DOWNLOADED = 4 class MediaWebtorrentPlugin(MediaPlugin): """ Plugin to download and stream videos using webtorrent Requires: * **webtorrent** installed on your system (``npm install -g webtorrent``) * **webtorrent-cli** installed on your system (``npm install -g webtorrent-cli``) * A media plugin configured for streaming (e.g. media.mplayer, media.vlc, media.mpv or media.omxplayer) """ _supported_media_plugins = {'media.mplayer', 'media.omxplayer', 'media.mpv', 'media.vlc', 'media.webtorrent'} # Download at least 15 MBs before starting streaming _download_size_before_streaming = 15 * 2**20 _web_stream_ready_timeout = 120 def __init__(self, webtorrent_bin=None, webtorrent_port=None, *args, **kwargs): """ media.webtorrent will use the default media player plugin you have configured (e.g. mplayer, omxplayer, mpv) to stream the torrent. :param webtorrent_bin: Path to your webtorrent executable. If not set, then Platypush will search for the right executable in your PATH :type webtorrent_bin: str :param webtorrent_port: Port where the webtorrent will be running streaming server will be running (default: 8000) :type webtorrent_port: int """ super().__init__(*args, **kwargs) self.webtorrent_port = webtorrent_port self._webtorrent_process = None self._init_webtorrent_bin(webtorrent_bin=webtorrent_bin) self._init_media_player() self._download_started_event = threading.Event() self._torrent_stream_urls = {} def _init_webtorrent_bin(self, webtorrent_bin=None): if not webtorrent_bin: bin_name = 'webtorrent.exe' if os.name == 'nt' else 'webtorrent' bins = find_bins_in_path(bin_name) if not bins: raise RuntimeError('Webtorrent executable not specified and ' + 'not found in your PATH. Make sure that ' + 'webtorrent is either installed or ' + 'configured and that both webtorrent and ' + 'webtorrent-cli are installed') self.webtorrent_bin = bins[0] else: webtorrent_bin = os.path.expanduser(webtorrent_bin) if not (os.path.isfile(webtorrent_bin) and (os.name == 'nt' or os.access(webtorrent_bin, os.X_OK))): raise RuntimeError('{} is does not exist or is not a valid ' + 'executable file'.format(webtorrent_bin)) self.webtorrent_bin = webtorrent_bin def _init_media_player(self): self._media_plugin = None for plugin_name in self._supported_media_plugins: try: if Config.get(plugin_name): self._media_plugin = get_plugin(plugin_name) break except: pass if not self._media_plugin: raise RuntimeError(('No media player specified and no ' + 'compatible media plugin configured - ' + 'supported media plugins: {}').format( self._supported_media_plugins)) def _read_process_line(self): line = self._webtorrent_process.stdout.readline().decode().strip() # Strip output of the colors return re.sub('\x1b\[(([0-9]+m)|(.{1,2}))', '', line).strip() def _process_monitor(self, resource, download_dir, download_only, player_type, player_args): def _thread(): if not self._webtorrent_process: return ###### state = TorrentState.IDLE bus = get_bus() webtorrent_url = None output_dir = None media_file = None poll = select.poll() poll.register(self._webtorrent_process.stdout, select.POLLIN) # First wait for the metadata to be ready and the streaming started while True: result = poll.poll(0) if not result: continue if not self._is_process_alive(): break line = self._read_process_line() if 'fetching torrent metadata from' in line.lower() \ and state == TorrentState.IDLE: # IDLE -> DOWNLOADING_METADATA state = TorrentState.DOWNLOADING_METADATA bus.post(TorrentDownloadedMetadataEvent(resource=resource)) elif 'downloading: ' in line.lower() \ and media_file is None: # Find video files in torrent directory output_dir = os.path.join( download_dir, re.search( 'downloading: (.+?)$', line, flags=re.IGNORECASE ).group(1)) elif 'server running at: ' in line.lower() \ and webtorrent_url is None: # Streaming started webtorrent_url = re.search('server running at: (.+?)$', line, flags=re.IGNORECASE).group(1) webtorrent_url = webtorrent_url.replace( 'http://localhost', 'http://' + get_ip_or_hostname()) self._torrent_stream_urls[resource] = webtorrent_url self._download_started_event.set() self.logger.info('Torrent stream started on {}'.format( webtorrent_url)) if output_dir and not media_file: media_files = sorted(find_files_by_ext( output_dir, *self._media_plugin.video_extensions)) if media_files: # TODO support for queueing multiple media media_file = os.path.join(output_dir, media_files[0]) else: time.sleep(1) # Wait before the media file is created if state.value <= TorrentState.DOWNLOADING_METADATA.value \ and media_file and webtorrent_url: # DOWNLOADING_METADATA -> DOWNLOADING state = TorrentState.DOWNLOADING bus.post(TorrentDownloadStartEvent( resource=resource, media_file=media_file, stream_url=webtorrent_url)) break if not output_dir: raise RuntimeError('Could not download torrent') if not download_only and (not media_file or not webtorrent_url): if not media_file: self.logger.warning( 'The torrent does not contain any video files') else: self.logger.warning('WebTorrent could not start streaming') # Keep downloading but don't start the player try: self._webtorrent_process.wait() except: pass return player = None if not download_only: # Wait until we have enough chunks to start the player while True: result = poll.poll(0) if not result: continue if not self._is_process_alive(): break try: if os.path.getsize(media_file) > \ self._download_size_before_streaming: break except FileNotFoundError: continue player = get_plugin('media.' + player_type) if player_type \ else self._media_plugin media = media_file if player.is_local() else webtorrent_url self.logger.info( 'Starting playback of {} to {} through {}'.format( media_file, player.__class__.__name__, webtorrent_url)) subfile = self.get_subtitles(media) if subfile: player_args['subtitles'] = subfile player.play(media, **player_args) self.logger.info('Waiting for player to terminate') self._wait_for_player(player) self.logger.info('Torrent player terminated') bus.post(TorrentDownloadCompletedEvent(resource=resource, output_dir=output_dir, media_file=media_file)) try: self.quit() except: pass self.logger.info('WebTorrent process terminated') return _thread def _wait_for_player(self, player): stop_evt = None if player: media_cls = player.__class__.__name__ if media_cls == 'MediaMplayerPlugin': stop_evt = player._mplayer_stopped_event elif media_cls == 'MediaMpvPlugin' or media_cls == 'MediaVlcPlugin': stop_evt = threading.Event() def stop_callback(): stop_evt.set() player.on_stop(stop_callback) elif media_cls == 'MediaOmxplayerPlugin': stop_evt = threading.Event() def stop_callback(): stop_evt.set() player.add_handler('stop', stop_callback) if stop_evt: stop_evt.wait() else: # Fallback: wait for the webtorrent process to terminate self._webtorrent_process.wait() def _get_torrent_download_dir(self): if self._media_plugin.download_dir: return self._media_plugin.download_dir else: d = os.path.join(os.path.expanduser('~'), 'Downloads') os.makedirs(d, exist_ok=True) return d def get_subtitles(self, filepath): try: plugin = get_plugin('media.subtitles') if not plugin or not plugin.languages: return subs = plugin.get_subtitles(filepath).output if not subs: return sub = plugin.download_subtitles(subs[0]['SubDownloadLink'], filepath).output if sub: return sub['filename'] except Exception as e: self.logger.warning('Could not get subtitles for {}: {}'.format( filepath, str(e))) @action def play(self, resource, player=None, download_only=False, **player_args): """ Download and stream a torrent :param resource: Play a resource, as a magnet link, torrent URL or torrent file path :type resource: str :param player: If set, use this plugin type as a player for the torrent. Supported types: 'mplayer', 'vlc', 'omxplayer', 'chromecast', 'mpv'. If not set, then the default configured media plugin will be used. :type player: str :param player_args: Any arguments to pass to the player plugin's play() method :type player_args: dict :param download_only: If false then it will start streaming the torrent on the local player once the download starts, otherwise it will just download it (default: false) :type download_only: bool """ if self._webtorrent_process: try: self.quit() except Exception as e: self.logger.debug('Failed to quit the previous instance: {}'. format(str(e))) download_dir = self._get_torrent_download_dir() webtorrent_args = [self.webtorrent_bin, 'download', '-o', download_dir] if self.webtorrent_port: webtorrent_args += ['-p', self.webtorrent_port] webtorrent_args += [resource] self._download_started_event.clear() self._webtorrent_process = subprocess.Popen(webtorrent_args, stdout=subprocess.PIPE) threading.Thread(target=self._process_monitor( resource=resource, download_dir=download_dir, player_type=player, player_args=player_args, download_only=download_only)).start() stream_url = None player_ready_wait_start = time.time() while not stream_url: triggered = self._download_started_event.wait( self._web_stream_ready_timeout) if not triggered or time.time() - player_ready_wait_start >= \ self._web_stream_ready_timeout: break stream_url = self._torrent_stream_urls.get(resource) if not stream_url: return (None, ('The webtorrent process hasn\'t started ' + 'streaming after {} seconds').format( self._web_stream_ready_timeout)) return {'resource': resource, 'url': stream_url} @action def download(self, resource, **kwargs): return self.play(resource, download_only=True) @action def stop(self): """ Stop the playback """ return self.quit() @action def quit(self): """ Quit the player """ if self._is_process_alive(): self._webtorrent_process.terminate() self._webtorrent_process.wait() try: self._webtorrent_process.kill() except: pass self._webtorrent_process = None @action def load(self, resource, **kwargs): """ Load a torrent resource in the player. """ return self.play(resource) def _is_process_alive(self): return is_process_alive(self._webtorrent_process.pid) \ if self._webtorrent_process else False @action def status(self): """ Get the current player state. :returns: A dictionary containing the current state. Example:: output = { "state": "play" # or "stop" or "pause" } """ return {'state': self._media_plugin.status().get('state', PlayerState.STOP.value)} # vim:sw=4:ts=4:et:
86956855ea6b190a1147fd6a1574cf7b802e2f9a
d6b8c5594c668cd2aa907f79e80ea00f97b82d97
/lux/openapi/core.py
b2bb9e3338a2e96a216236526b0b6297e14f2503
[ "BSD-3-Clause" ]
permissive
quantmind/lux
68d44242cd10a012f32888174d9db801c09b2715
7318fcd86c77616aada41d8182a04339680a554c
refs/heads/master
2021-01-23T11:32:03.180026
2018-01-06T09:28:30
2018-01-06T09:28:30
16,417,125
21
16
BSD-3-Clause
2019-10-22T23:21:37
2014-01-31T18:53:55
Python
UTF-8
Python
false
false
10,310
py
import logging from collections import OrderedDict from .utils import compact METHODS = ['get', 'head', 'post', 'put', 'patch', 'delete', 'trace'] LOGGER = logging.getLogger('lux.rest.openapi') class OpenAPIError(Exception): """Base class for all apispec-related errors.""" pass class PluginError(OpenAPIError): """Raised when a plugin cannot be found or is invalid.""" pass class OperationInfo: def __init__(self, path=None, body=None, query=None, header=None, responses=None, default_response=200, default_response_schema=None): self.path = path self.body = body self.query = query self.header = header self.default_response = default_response self.responses = dict() self.responses[default_response] = default_response_schema if isinstance(responses, dict): self.responses.update(responses) elif responses: self.responses.update(((r, None) for r in responses)) @property def schema(self): schema = self.responses[self.default_response] if isinstance(schema, list): schema = schema[0] return schema class OpenApiSchema: def __init__(self, name): self.name = name def schema(self): """Convert the schema into a valid OpenApi Json schema object """ raise NotImplementedError def parameters(self, **kwargs): """Convert the schema into a valid OpenApi Parameters map """ raise NotImplementedError class OpenAPIbase: def __init__(self, doc=None): self.doc = doc or {} self.parameters = {} self.servers = [] self._name_loc = {} self.tags = dict(tag_generator(self.doc.pop('tags', None))) def add(self, key, value): if value: self.doc[key] = value def add_parameters(self, schema, spec=None, **kw): """Add parameters from a schema object """ if not schema: return spec = spec or self for func in spec.schema_helpers: schema = func(schema) or schema if isinstance(schema, OpenApiSchema): for param in schema.parameters(spec, **kw): name = param['name'] loc = param['in'] key = (loc, name) if key in self._name_loc: LOGGER.error('parameter %s already in %s', name, loc) else: self._name_loc[key] = True if name in self.parameters: name = '%s%s' % (name, loc) self.parameters[name] = param else: raise PluginError( 'Could not find a valid plugin to convert a schema to ' 'an OpenAPI schema' ) def add_server(self, url, description=None): """Add a server object to this Api Object """ self.servers.append(compact(url=url, description=description)) class OpenAPI(OpenAPIbase): """Open API v 3.0 document builder """ version = '3.0.0' def __init__(self, title, version, info=None, plugins=(), default_content_type=None, default_responses=None, **options): super().__init__(options) self.doc.update( openapi=self.version, info=dict(title=title, version=version), paths=OrderedDict() ) self.doc['info'].update(info or {}) # Metadata self.schemas = {} self.parameters = {} self.responses = {} self.tags = OrderedDict() self.plugins = {} self.default_content_type = default_content_type or 'application/json' self.default_responses = default_responses or {} # self.parameter_helpers = [] self.schema_helpers = [] for plugin_path in plugins: self.setup_plugin(plugin_path) def __repr__(self): return '%s %s' % (self.__class__.__name__, self.version) @property def paths(self): return self.doc['paths'] def to_dict(self): s = self.schemas p = self.parameters r = self.responses ret = self.doc.copy() ret.update(compact( tags=[self.tags[name] for name in sorted(self.tags)], components=compact( schemas=OrderedDict(((k, s[k]) for k in sorted(s))), parameters=OrderedDict(((k, p[k]) for k in sorted(p))), responses=OrderedDict(((k, r[k]) for k in sorted(r))), ), servers=self.servers )) return ret # adapted from Sphinx def setup_plugin(self, path): """Import and setup a plugin. No-op if called twice for the same plugin. :param str path: Import path to the plugin. :raise: PluginError if the given plugin is invalid. """ if path in self.plugins: return try: mod = __import__( path, globals=None, locals=None, fromlist=('setup',) ) except ImportError as err: raise PluginError( 'Could not import plugin "{0}"\n\n{1}'.format(path, err) ) if not hasattr(mod, 'setup'): raise PluginError( 'Plugin "{0}" has no setup(spec) function'.format(path)) else: # Each plugin gets a dict to store arbitrary data self.plugins[path] = {} mod.setup(self) return None def add_path(self, router, **kwargs): path = ApiPath(router, **kwargs) path.add_to_spec(self) def add_schema(self, schema): """Add a schema to the schema mapping in component """ for func in self.schema_helpers: schema = func(schema) or schema if isinstance(schema, OpenApiSchema): if schema.name not in self.schemas: self.schemas[schema.name] = schema.schema(self) return {'$ref': '#/components/schemas/%s' % schema.name} elif schema: LOGGER.error( 'Could not find a valid plugin to convert %r to ' 'an OpenAPI schema', schema ) def schema2parameters(self, schema, **kw): for func in self.parameter_helpers: schema = func(schema) or schema if isinstance(schema, OpenApiSchema): return schema.parameters(self, **kw) else: raise PluginError( 'Could not find a valid plugin to convert schema to ' 'OpenAPI parameters' ) class ApiPath(OpenAPIbase): """Utility class for adding a path object to the OpenAPI spec The path object (dictionary) is extracted from the router HTTP methods """ def __init__(self, path, doc=None): super().__init__(doc) self.path = path self.operations = OrderedDict() def __repr__(self): return self.path def add_to_spec(self, spec): spec.doc['paths'][self.path] = self.doc class ApiOperation(OpenAPIbase): """Utility class for adding an operation to an API Path """ def __init__(self, doc, method, extra_info=None): super().__init__(doc) self.method = method self.info = extra_info def __repr__(self): return self.method def add_to_path(self, path, spec): info = self.info self.tags.update(path.tags) self.add('tags', sorted(self.tags)) spec.tags.update(self.tags) if info: self.add_parameters(info.path, spec, location='path') self.add_parameters(info.query, spec, location='query') self.add_parameters(info.header, spec, location='header') self.add_body(info.body, spec) self.add_responses(path, spec) p = self.parameters self.add('parameters', [p[k] for k in sorted(p)]) return self.doc def add_body(self, schema, spec): if not schema: return body = self.doc.get('requestBody') if not body: self.doc['requestBody'] = body = dict() self.add_content_schema(schema, body, spec) def add_responses(self, path, spec): info = self.info responses = self.doc.get('responses', None) or {} if info: defaults = spec.default_responses all_responses = {} for code, cfg in info.responses.items(): doc = {} doc.update(defaults.get(code) or ()) try: doc.update(responses.get(code) or ()) except ValueError as exc: LOGGER.error( "Cannot updated '%s %s' response '%s' with " "doc string %r, a dictionary is expected", self, path, code, responses[code] ) schema = doc.pop('schema', None) self.add_content_schema(cfg or schema, doc, spec) all_responses[code] = doc responses = all_responses self.doc['responses'] = OrderedDict( ((code, responses[code]) for code in responses) ) def add_content_schema(self, schema, doc, spec, content_type=None): is_array = False if isinstance(schema, list) and len(schema) == 1: is_array = True schema = schema[0] if not isinstance(schema, str): schema = spec.add_schema(schema) if not schema: return if 'content' not in doc: doc['content'] = {} content = doc['content'] if not content_type: content_type = spec.default_content_type if is_array: content[content_type] = dict( schema=dict(type='array', items=schema) ) else: content[content_type] = dict(schema=schema) def tag_generator(tags): for tag in (tags or ()): if isinstance(tag, str): tag = dict(name=tag) yield tag['name'], tag
9fa8a0e9bb487fcb5ad1e68336225d1649d3661b
ccf94dcb6b1500fcbbd56964ae8c4832a496b8b3
/python/baiduads-sdk-auto/test/test_campaign_feed_type.py
e632ecbca72b678f7a4db97229be13d4f1347343
[ "Apache-2.0" ]
permissive
baidu/baiduads-sdk
24c36b5cf3da9362ec5c8ecd417ff280421198ff
176363de5e8a4e98aaca039e4300703c3964c1c7
refs/heads/main
2023-06-08T15:40:24.787863
2023-05-20T03:40:51
2023-05-20T03:40:51
446,718,177
16
11
Apache-2.0
2023-06-02T05:19:40
2022-01-11T07:23:17
Python
UTF-8
Python
false
false
1,017
py
""" dev2 api schema 'dev2.baidu.com' api schema # noqa: E501 Generated by: https://openapi-generator.tech """ import sys import unittest import baiduads from baiduads.campaignfeed.model.app_info_shadow_type import AppInfoShadowType from baiduads.campaignfeed.model.app_info_type import AppInfoType from baiduads.campaignfeed.model.schedule_type import ScheduleType globals()['AppInfoShadowType'] = AppInfoShadowType globals()['AppInfoType'] = AppInfoType globals()['ScheduleType'] = ScheduleType from baiduads.campaignfeed.model.campaign_feed_type import CampaignFeedType class TestCampaignFeedType(unittest.TestCase): """CampaignFeedType unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCampaignFeedType(self): """Test CampaignFeedType""" # FIXME: construct object with mandatory attributes with example values # model = CampaignFeedType() # noqa: E501 pass if __name__ == '__main__': unittest.main()
d6bcca1d303319ff1a55c17cac8ab8a370e5a279
a303be0a547d717b0deb19b5bdcc75010e131b51
/Contests/Others/ Week of Code/ Week of Code 37 /p5.py
e817e377cb4991fe33d589076be6739cb4fb319f
[]
no_license
harrypotter0/competitive-programming
ff883c4dc5aa8d72f1af589bb654a422e32c8a38
82a8497e69212dc62e75af74b0d5a3b390b8aca2
refs/heads/master
2023-03-23T07:07:14.295053
2021-03-17T01:24:45
2021-03-17T01:24:45
70,964,689
16
9
null
2021-03-17T01:24:49
2016-10-15T03:52:53
Python
UTF-8
Python
false
false
6,684
py
# /* # * # ******************************************************************************************** # * AUTHOR : AKASH KANDPAL * # * Language : Python2 * # * Motto : The master has failed more times than the beginner has even tried. * # * IDE used: Atom * # * My Domain : http://harrypotter.tech/ * # ******************************************************************************************** # * # */ from collections import Counter from math import ceil from fractions import gcd import math import itertools from itertools import permutations from itertools import combinations import calendar from itertools import product from datetime import date from string import ascii_uppercase def printdec(ans): print '{0:.6f}'.format(ans) def countchars(stra): s=Counter(stra) return s def readInts(): return list(map(int, raw_input().strip().split())) def readInt(): return int(raw_input()) def readStrs(): return raw_input().split() def readStr(): return raw_input().strip() def readarr(n): return [map(int,list(readStr())) for i in xrange(n)] def readnumbertolist(): a=[int(i) for i in list(raw_input())] return a def strlistTostr(list1): return ''.join(list1) def numlistTostr(list1): return ''.join(str(e) for e in list1) def strTolist(str): return str.split() def strlistTointlist(str): return map(int, str) def slicenum(number,x): return int(str(number)[:x]) def precise(num): return "{0:.10f}".format(num) def rsorted(a): return sorted(a,reverse=True) def binar(x): return '{0:063b}'.format(x) def findpermute(word): perms = [''.join(p) for p in permutations(word)] perms = list(set(perms)) return perms def findsubsets(S,m): return list(set(itertools.combinations(S, m))) def sort1(yy,index): return yy.sort(key = lambda x:x[index]) def reversepair(yy): return yy[::-1] def checkint(x): return (x).is_integer() def sum_digits(n): s = 0 while n: s += n % 10 n //= 10 return s def vowel_count(str): count = 0 vowel = set("aeiouAEIOU") for alphabet in str: if alphabet in vowel: count = count + 1 return count def leapyear(year): return calendar.isleap(year) def factorial(n): p=1 for i in range(2,n+1): p=p*i return p def primes_sieve(limit): limitn = limit+1 not_prime = set() primes = [] for i in range(2, limitn): if i in not_prime: continue for f in range(i*2, limitn, i): not_prime.add(f) primes.append(i) return primes def distinctstr(s): t =''.join(set(s)) return t def countdict(s): d ={} for i in range(len(s)): if s[i] not in d.keys(): d[s[i]]=1 else: d[s[i]]+=1 return d import operator as op def nck(n, k): k = min(n-k,k) result = 1 for i in range(1, k+1): result = result* (n-i+1) / i return result def gcd(a,b): while b > 0: a, b = b, a % b return a def lcm(a, b): return a * b / gcd(a, b) def matrixcheck(x,y): faadu = [] directions = zip((0,0,1,-1),(1,-1,0,0)) for dx,dy in directions: if R>x+dx>=0<=y+dy<C and A[x+dx][y+dy]==0: faadu.append((x+dx,y+dy)) return faadu def stringcount(s): return [s.count(i) for i in "abcdefghijklmnopqrstuvwxyz"] def bubbleSort(arr): n = len(arr) for i in range(n): for j in range(0, n-i-1): if arr[j] > arr[j+1] : arr[j], arr[j+1] = arr[j+1], arr[j] def isSubsetSum(st, n, sm) : # arr, n, k subset=[[True] * (sm+1)] * (n+1) for i in range(0, n+1) : subset[i][0] = True for i in range(1, sm + 1) : subset[0][i] = False for i in range(1, n+1) : for j in range(1, sm+1) : if(j < st[i-1]) : subset[i][j] = subset[i-1][j] if (j >= st[i-1]) : subset[i][j] = subset[i-1][j] or subset[i - 1][j-st[i-1]] return subset[n][sm]; def decimal_to_octal(dec): decimal = int(dec) return oct(decimal) def decimal_to_binary(dec): decimal = int(dec) return bin(decimal) def decimal_to_hexadecimal(dec): decimal = int(dec) return hex(decimal) def find_duplicate(expr): stack=[] char_in_between = 0 f =1 for i in range(0, len(expr)): if expr[i] == '}' or expr[i] == ')': pair = '{' if expr[i] == '}' else '(' pop='' while(len(stack) > 0 and pop != pair): pop = stack.pop() if (pop != '{' and pop != '('): char_in_between +=1 if char_in_between == 0: print "Duplicate" f =0 break char_in_between = 0 else: stack.append(expr[i]) return f def dictlist(keys,values): {d.setdefault(key,[]).append(value) for key, value in zip(keys,values)} return d def mullistbyconst(my_list,r): my_new_list = [] for i in my_list: my_new_list.append(i * r) return my_new_list def coinchange(S, m, n): # (arr,length,sum) table = [0 for k in range(n+1)] table[0] = 1 for i in range(0,m): for j in range(S[i],n+1): table[j] += table[j-S[i]] return table[n] def palincheck(i): return str(i) == str(i)[::-1] def days(year1,year2): begin = date(year1, 1, 1) end = date(year2, 1, 1) return (end-begin).days from functools import reduce def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(pow(n, 0.5) + 1)) if n % i == 0))) def prelongfact(factt): for i in reversed(range(1,int(factt**0.5))): if factt%i==0: break return factt/i def factmul(n,lim,m): mul=1 ans=1 if(n>=lim): print 0 else: for j in range(1,n+1): mul=(mul*j)%m ans=(ans*mul)%m print ans def knapSack(W , wt , val , n): if n == 0 or W == 0 : return 0 if (wt[n-1] > W): return knapSack(W , wt , val , n-1) else: return max(val[n-1] + knapSack(W-wt[n-1] , wt , val , n-1), knapSack(W , wt , val , n-1)) m = 329885391853 lim = prelongfact(m) mod = 10 ** 9 + 7 # fact=[1] # for i in xrange(1,100001): # fact.append(((arr[i-1]%mod)*(i%mod))%mod) # for i,j in product(xrange(R),xrange(C)): # print "Case #{}: {}".format(i+1,ans) for __ in range(readInt()): n,k = readInts() ''' '''
a06675d8d7e084e4ae02e553a590be3a8e9ce495
e206ea09a316757e8028d803616634a4a9a50f72
/atcoder/abc129/b.py
fbb59bcae9ff0c22019f642b3dc086816f80c85a
[]
no_license
seiichiinoue/procon
46cdf27ab42079002c4c11b8abe84662775b34a4
f0b33062a5f31cf0361c7973f4a5e81e8d5a428f
refs/heads/master
2021-06-26T19:02:24.797354
2020-11-01T14:12:54
2020-11-01T14:12:54
140,285,300
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
n, w = int(input()), list(map(int, input().split())) l, r = 0, sum(w) ans = 10 ** 8 for i in range(len(w)): l += w[i] r -= w[i] tmp = abs(l - r) if tmp < ans: ans = tmp print(ans)
0401788f6eda4715532dae6556764db985193daa
75dcb56e318688499bdab789262839e7f58bd4f6
/_algorithms_challenges/pybites/100DaysOfCode-master/081/test_whotweeted.py
081e54fb084f4de91e390ed679575664df25c697
[]
no_license
syurskyi/Algorithms_and_Data_Structure
9a1f358577e51e89c862d0f93f373b7f20ddd261
929dde1723fb2f54870c8a9badc80fc23e8400d3
refs/heads/master
2023-02-22T17:55:55.453535
2022-12-23T03:15:00
2022-12-23T03:15:00
226,243,987
4
1
null
2023-02-07T21:01:45
2019-12-06T04:14:10
Jupyter Notebook
UTF-8
Python
false
false
1,989
py
import unittest from unittest.mock import patch import tweepy from whotweeted import get_country_code, who_is_output from whotweeted import load_cache DATA = dict(AU='875639674244444160', ES='875669971954806784', nopb='846302762736504833', noloc='844092059988508673', badid='8756396742444441da' ) get_tweet = lambda x: load_cache(DATA.get(x)) # noqa E731 class WhoTweetedTestCase(unittest.TestCase): @patch.object(tweepy.API, 'get_status', return_value=get_tweet('AU')) def test_julian(self, mock_method): tweetid = DATA.get('AU') country = get_country_code(tweetid) who_is_out = who_is_output(country) self.assertEqual(country, 'AU') self.assertIn('Julian', who_is_out) @patch.object(tweepy.API, 'get_status', return_value=get_tweet('ES')) def test_bob(self, mock_method): tweetid = DATA.get('ES') country = get_country_code(tweetid) who_is_out = who_is_output(country) self.assertEqual(country, 'ES') self.assertIn('Bob', who_is_out) @patch.object(tweepy.API, 'get_status', return_value=get_tweet('nopb')) def test_no_pybites_account(self, mock_method): tweetid = DATA.get('nopb') with self.assertRaises(ValueError): get_country_code(tweetid) @patch.object(tweepy.API, 'get_status', return_value=get_tweet('noloc')) def test_no_location_in_tweet(self, mock_method): tweetid = DATA.get('noloc') with self.assertRaises(AttributeError): get_country_code(tweetid) # not really a return value, it crashes before decorator can cash tweet @patch.object(tweepy.API, 'get_status', return_value=get_tweet('nopb')) def test_bad_tweet_id(self, mock_method): tweetid = DATA.get('badid') print(tweetid) with self.assertRaises(ValueError): get_country_code(tweetid) if __name__ == '__main__': unittest.main()
1e1f43619e376683aa885790296b265493835bef
1929443c8e4ec6ccd79777f18d161546867e17ef
/methods/transformers/src/transformers/training_args.py
294fc20b905f93d58c360df7ba0ed6a6889c2cab
[ "MIT", "Apache-2.0" ]
permissive
INK-USC/RiddleSense
6f4b00546d7f4d5ada12db50929c1f0d7713d541
a3d57eaf084da9cf6b77692c608e2cd2870fbd97
refs/heads/main
2023-08-14T19:01:01.478946
2021-07-05T04:06:01
2021-07-05T04:06:01
376,487,870
8
2
null
null
null
null
UTF-8
Python
false
false
24,012
py
import dataclasses import json import os import warnings from dataclasses import dataclass, field from enum import Enum from typing import Any, Dict, List, Optional, Tuple from .file_utils import cached_property, is_torch_available, is_torch_tpu_available, torch_required from .trainer_utils import EvaluationStrategy from .utils import logging if is_torch_available(): import torch if is_torch_tpu_available(): import torch_xla.core.xla_model as xm logger = logging.get_logger(__name__) def default_logdir() -> str: """ Same default as PyTorch """ import socket from datetime import datetime current_time = datetime.now().strftime("%b%d_%H-%M-%S") return os.path.join("runs", current_time + "_" + socket.gethostname()) @dataclass class TrainingArguments: """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. Parameters: output_dir (:obj:`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, overwrite the content of the output directory. Use this to continue training if :obj:`output_dir` points to a checkpoint directory. do_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_eval (:obj:`bool`, `optional`): Whether to run evaluation on the dev set or not. Will be set to :obj:`True` if :obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run predictions on the test set or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.EvaluationStrategy`, `optional`, defaults to :obj:`"no"`): The evaluation strategy to adopt during training. Possible values are: * :obj:`"no"`: No evaluation is done during training. * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. * :obj:`"epoch"`: Evaluation is done at the end of each epoch. prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`): When performing evaluation and predictions, only returns the loss. per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. .. warning:: When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training examples. eval_accumulation_steps (:obj:`int`, `optional`): Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but requires more memory). learning_rate (:obj:`float`, `optional`, defaults to 5e-5): The initial learning rate for Adam. weight_decay (:obj:`float`, `optional`, defaults to 0): The weight decay to apply (if not zero). adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): Epsilon for the Adam optimizer. max_grad_norm (:obj:`float`, `optional`, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(:obj:`float`, `optional`, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (:obj:`int`, `optional`, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides :obj:`num_train_epochs`. warmup_steps (:obj:`int`, `optional`, defaults to 0): Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. logging_dir (:obj:`str`, `optional`): Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`. logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to log and evaluate the first :obj:`global_step` or not. logging_steps (:obj:`int`, `optional`, defaults to 500): Number of update steps between two logs. save_steps (:obj:`int`, `optional`, defaults to 500): Number of updates steps before two checkpoint saves. save_total_limit (:obj:`int`, `optional`): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in :obj:`output_dir`. no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to not use CUDA even when it is available or not. seed (:obj:`int`, `optional`, defaults to 42): Random seed for initialization. fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training. fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'): For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the `apex documentation <https://nvidia.github.io/apex/amp.html>`__. local_rank (:obj:`int`, `optional`, defaults to -1): During distributed training, the rank of the process. tpu_num_cores (:obj:`int`, `optional`): When training on TPU, the number of TPU cores (automatically passed by launcher script). debug (:obj:`bool`, `optional`, defaults to :obj:`False`): When training on TPU, whether to print debug metrics or not. dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (:obj:`int`, `optional`): Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the same value as :obj:`logging_steps` if not set. dataloader_num_workers (:obj:`int`, `optional`, defaults to 0): Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. past_index (:obj:`int`, `optional`, defaults to -1): Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, the ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument ``mems``. run_name (:obj:`str`, `optional`): A descriptor for the run. Notably used for wandb logging. disable_tqdm (:obj:`bool`, `optional`): Whether or not to disable the tqdm progress bars. Will default to :obj:`True` if the logging level is set to warn or lower (default), :obj:`False` otherwise. remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`): If using `nlp.Dataset` datasets, whether or not to automatically remove the columns unused by the model forward method. (Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.) label_names (:obj:`List[str]`, `optional`): The list of keys in your dictionary of inputs that correspond to the labels. Will eventually default to :obj:`["labels"]` except if the model used is one of the :obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions", "end_positions"]`. load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to load the best model found during training at the end of training. .. note:: When set to :obj:`True`, the parameters :obj:`save_steps` will be ignored and the model will be saved after each evaluation. metric_for_best_model (:obj:`str`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`. Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation loss). If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to :obj:`False` if your metric is better when lower. greater_is_better (:obj:`bool`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better models should have a greater metric or not. Will default to: - :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or :obj:`"eval_loss"`. - :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`. """ output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory." "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=None, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) evaluate_during_training: bool = field( default=False, metadata={"help": "Run evaluation during training at each logging step."}, ) evaluation_strategy: EvaluationStrategy = field( default="no", metadata={"help": "Run evaluation during training at each logging step."}, ) prediction_loss_only: bool = field( default=False, metadata={"help": "When performing evaluation and predictions, only returns the loss."}, ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) per_gpu_train_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. " "Batch size per GPU/TPU core/CPU for training." }, ) per_gpu_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred." "Batch size per GPU/TPU core/CPU for evaluation." }, ) gradient_accumulation_steps: int = field( default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."}, ) eval_accumulation_steps: Optional[int] = field( default=None, metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."}, ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for Adam optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for Adam optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."}) max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) max_steps: int = field( default=-1, metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."}, ) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_dir: Optional[str] = field(default_factory=default_logdir, metadata={"help": "Tensorboard log dir."}) logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) save_total_limit: Optional[int] = field( default=None, metadata={ "help": ( "Limit the total amount of checkpoints." "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints" ) }, ) no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"}) seed: int = field(default=42, metadata={"help": "random seed for initialization"}) fp16: bool = field( default=False, metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"}, ) fp16_opt_level: str = field( default="O1", metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) }, ) local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"}) tpu_num_cores: Optional[int] = field( default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"} ) tpu_metrics_debug: bool = field( default=False, metadata={"help": "Deprecated, the use of `--debug` is preferred. TPU: Whether to print debug metrics"}, ) debug: bool = field(default=False, metadata={"help": "Whether to print debug metrics on TPU"}) dataloader_drop_last: bool = field( default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."} ) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) dataloader_num_workers: int = field( default=0, metadata={ "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process." }, ) past_index: int = field( default=-1, metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."}, ) run_name: Optional[str] = field( default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."} ) disable_tqdm: Optional[bool] = field( default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."} ) remove_unused_columns: Optional[bool] = field( default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."} ) label_names: Optional[List[str]] = field( default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."} ) load_best_model_at_end: Optional[bool] = field( default=False, metadata={"help": "Whether or not to load the best model found during training at the end of training."}, ) metric_for_best_model: Optional[str] = field( default=None, metadata={"help": "The metric to use to compare two different models."} ) greater_is_better: Optional[bool] = field( default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."} ) def __post_init__(self): if self.disable_tqdm is None: self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN if self.evaluate_during_training is True: self.evaluation_strategy = EvaluationStrategy.STEPS warnings.warn( "The `evaluate_during_training` argument is deprecated in favor of `evaluation_strategy` (which has more options)", FutureWarning, ) self.evaluation_strategy = EvaluationStrategy(self.evaluation_strategy) if self.do_eval is False and self.evaluation_strategy != EvaluationStrategy.NO: self.do_eval = True if self.eval_steps is None: self.eval_steps = self.logging_steps if self.load_best_model_at_end and self.metric_for_best_model is None: self.metric_for_best_model = "loss" if self.greater_is_better is None and self.metric_for_best_model is not None: self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"] if self.run_name is None: self.run_name = self.output_dir if is_torch_available() and self.device.type != "cuda" and self.fp16: raise ValueError("AMP (`--fp16`) can only be used on CUDA devices.") @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size return per_device_batch_size * max(1, self.n_gpu) @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size return per_device_batch_size * max(1, self.n_gpu) @cached_property @torch_required def _setup_devices(self) -> Tuple["torch.device", int]: logger.info("PyTorch: setting up devices") if self.no_cuda: device = torch.device("cpu") n_gpu = 0 elif is_torch_tpu_available(): device = xm.xla_device() n_gpu = 0 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.distributed.init_process_group(backend="nccl") device = torch.device("cuda", self.local_rank) n_gpu = 1 if device.type == "cuda": torch.cuda.set_device(device) return device, n_gpu @property @torch_required def device(self) -> "torch.device": """ The device used by this process. """ return self._setup_devices[0] @property @torch_required def n_gpu(self): """ The number of GPUs used by this process. Note: This will only be greater than one when you have multiple GPUs available but are not using distributed training. For distributed training, it will always be 1. """ return self._setup_devices[1] def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). """ d = dataclasses.asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value return d def to_json_string(self): """ Serializes this instance to a JSON string. """ return json.dumps(self.to_dict(), indent=2) def to_sanitized_dict(self) -> Dict[str, Any]: """ Sanitized serialization to use with TensorBoard’s hparams """ d = self.to_dict() d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}} valid_types = [bool, int, float, str] if is_torch_available(): valid_types.append(torch.Tensor) return {k: v if type(v) in valid_types else str(v) for k, v in d.items()}
fb7e5991c19a66f9ab6e23cb29f7dd6b7855614f
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startPyquil3353.py
660ce9caee9673fe64e6ea34e24751bbdfda931e
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
# qubit number=4 # total number=41 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(3) # number=30 prog += CZ(0,3) # number=31 prog += H(3) # number=32 prog += CNOT(0,3) # number=33 prog += X(3) # number=34 prog += CNOT(0,3) # number=35 prog += CNOT(0,3) # number=29 prog += H(1) # number=2 prog += CNOT(2,0) # number=38 prog += Z(2) # number=39 prog += CNOT(2,0) # number=40 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(2) # number=37 prog += Y(3) # number=12 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=9 prog += Y(2) # number=10 prog += Y(2) # number=11 prog += CNOT(1,0) # number=13 prog += H(0) # number=15 prog += CZ(1,0) # number=16 prog += H(1) # number=20 prog += H(2) # number=19 prog += CNOT(3,0) # number=24 prog += Z(3) # number=25 prog += CNOT(3,0) # number=26 prog += H(0) # number=17 prog += CNOT(2,0) # number=21 prog += X(1) # number=23 prog += CNOT(2,0) # number=22 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil3353.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
928689715808bfb8d54dac1bb4fbce927c5ef862
4fb5eb0a9a24fa5c112a4ebc854ee2604b04adda
/python/test/test_account_properties.py
459f9f00474222b10ed1e1fd2aa16ae83ec57295
[ "MIT" ]
permissive
KoenBal/OANDA_V20_Client
ed4c182076db62ecf7a216c3e3246ae682300e94
e67b9dbaddff6ed23e355d3ce7f9c9972799c702
refs/heads/master
2020-03-27T20:42:25.777471
2019-12-02T15:44:06
2019-12-02T15:44:06
147,088,130
1
0
null
null
null
null
UTF-8
Python
false
false
1,130
py
# coding: utf-8 """ OANDA v20 REST API The full OANDA v20 REST API Specification. This specification defines how to interact with v20 Accounts, Trades, Orders, Pricing and more. To authenticate use the string 'Bearer ' followed by the token which can be obtained at https://www.oanda.com/demo-account/tpa/personal_token # noqa: E501 OpenAPI spec version: 3.0.23 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import oanda from oanda.models.account_properties import AccountProperties # noqa: E501 from oanda.rest import ApiException class TestAccountProperties(unittest.TestCase): """AccountProperties unit test stubs""" def setUp(self): pass def tearDown(self): pass def testAccountProperties(self): """Test AccountProperties""" # FIXME: construct object with mandatory attributes with example values # model = oanda.models.account_properties.AccountProperties() # noqa: E501 pass if __name__ == '__main__': unittest.main()
25e99ed5ed165357611d11826c5c6747f9a2c1c7
015a54d9bfdf81184da6f8513d1870a2cbc17224
/busshaming/conf/dev_settings.py
99b6a3342cc982e6ef9d087e331d059103510590
[ "MIT" ]
permissive
katharosada/bus-shaming
54e4cc4fa36b55faa1da1b6b8a15a390a2f681a6
c8d7cd4baf9ff049cda49c92da4d5ca10f68e6a9
refs/heads/master
2021-01-15T22:08:33.290718
2018-12-03T08:19:24
2018-12-03T08:19:24
99,885,413
44
7
MIT
2018-01-29T06:44:45
2017-08-10T05:38:22
Python
UTF-8
Python
false
false
1,447
py
""" Django settings for busshaming project. Generated by 'django-admin startproject' using Django 1.9.7. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#$sxqt-6%d*d95@7*=j%bg*-32(ic@lst#396=0f$54_4*++r3' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] CORS_ORIGIN_WHITELIST = ( '127.0.0.1:8000', 'localhost:8000', '127.0.0.1:8080', 'localhost:8080', ) ROOT_URLCONF = 'busshaming.urls' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': 'busshaming-local', 'HOST': 'localhost', 'PORT': '', } } LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', } }, 'loggers': { 'django.db.backends': { 'handlers': ['console'], 'level': 'INFO', }, } }
c19cb11d4583210fc5f30bc666a548f7590b7f2d
1f05211127ded22bad7b947d771578d658f4ef77
/apostello/templatetags/apostello_extras.py
1c513fe3ca0769e7b3a0e8f288cbb81540291ced
[ "MIT" ]
permissive
dmccubbing/apostello
60afa716b756a9619f5a01b690223e7705b98b10
859a54e9936097628719680ed3c0a67fe4553947
refs/heads/master
2021-01-12T02:38:59.332852
2016-12-24T15:10:09
2016-12-24T15:10:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,722
py
from django import template from django.urls import reverse from django.utils.safestring import mark_safe register = template.Library() @register.simple_tag def fab_button(href, text, icon_name): """Output a formatted fab link""" result = ''' <a class="hvr-backward item" href="{href}"> <i class="large {icon_name} icon"></i> <div class="content"><div class="header">{text}</div> </div> </a> '''.format( href=href, text=text, icon_name=icon_name, ) return mark_safe(result) # Contacts @register.simple_tag def fab_new_contact(): return fab_button(reverse('recipient'), 'New Contact', 'plus') @register.simple_tag def fab_contacts_archive(): return fab_button( reverse('recipients_archive'), 'Archived Contacts', 'table' ) # Groups @register.simple_tag def fab_new_group(): return fab_button(reverse('group'), 'New Group', 'plus') @register.simple_tag def fab_groups_archive(): return fab_button( reverse('recipient_groups_archive'), 'Archived Groups', 'table' ) @register.simple_tag def fab_groups(): return fab_button(reverse('recipient_groups'), 'Groups', 'table') # Incoming SMS @register.simple_tag def fab_incoming_wall(): return fab_button(reverse('incoming_wall'), 'Live Updates', 'inbox') @register.simple_tag def fab_incoming_wall_curator(): return fab_button( reverse('incoming_wall_curator'), 'Live Curator', 'table' ) # Keywords @register.simple_tag def fab_new_keyword(): return fab_button(reverse('keyword'), 'New Keyword', 'plus') @register.simple_tag def fab_keywords(): return fab_button(reverse('keywords'), 'Keywords', 'table') @register.simple_tag def fab_keywords_archive(): return fab_button( reverse('keywords_archive'), 'Archived Keywords', 'table' ) @register.simple_tag def fab_keyword_csv(keyword): return fab_button( reverse( 'keyword_csv', args=[keyword.pk] ), 'Export {k} responses'.format(k=keyword.keyword), 'download' ) @register.simple_tag def fab_keyword_edit(keyword): return fab_button(reverse('keyword', args=[keyword.pk]), 'Edit', 'edit') @register.simple_tag def fab_keyword_responses(keyword): return fab_button( reverse( 'keyword_responses', args=[keyword.pk] ), 'Replies ({n})'.format(n=keyword.num_matches), 'inbox' ) @register.simple_tag def fab_keyword_responses_archive(keyword): return fab_button( reverse( 'keyword_responses_archive', args=[keyword.pk] ), 'Archived Replies ({n})'.format(n=keyword.num_archived_matches), 'inbox' )
a3f4f5793bcdec480e1194c9dc2ccd3f15a0de41
908655251066427f654ee33ebdf804f9f302fcc3
/Tests/Pedestrian/av_simulator.py
c1fcf61e499b916ebf90939efbc2b8f9ea7c7d17
[]
no_license
maxiaoba/MCTSPO
be567f80f1dcf5c35ac857a1e6690e1ac599a59d
eedfccb5a94e089bd925b58f3d65eef505378bbc
refs/heads/main
2023-07-05T02:20:16.752650
2021-07-06T06:04:40
2021-07-06T06:04:40
381,811,407
0
0
null
null
null
null
UTF-8
Python
false
false
11,541
py
#import base Simulator class from mylab.simulators.simulator import Simulator #Used for math and debugging import numpy as np import pdb #Define the class class AVSimulator(Simulator): """ Class template for a non-interactive simulator. """ #Accept parameters for defining the behavior of the system under test[SUT] def __init__(self, use_seed, #use seed or disturbance at step spaces, num_peds = 1, dt = 0.1, alpha = 0.85, beta = 0.005, v_des = 11.17, delta = 4.0, t_headway = 1.5, a_max = 3.0, s_min = 4.0, d_cmf = 2.0, d_max = 9.0, min_dist_x = 2.5, min_dist_y = 1.4, car_init_x = 35.0, car_init_y = 0.0, **kwargs): #Constant hyper-params -- set by user self.use_seed = use_seed self.spaces = spaces self.c_num_peds = num_peds self.c_dt = dt self.c_alpha = alpha self.c_beta = beta self.c_v_des = v_des self.c_delta = delta self.c_t_headway = t_headway self.c_a_max = a_max self.c_s_min = s_min self.c_d_cmf = d_cmf self.c_d_max = d_max self.c_min_dist = np.array([min_dist_x, min_dist_y]) self.c_car_init_x = car_init_x self.c_car_init_y = car_init_y #These are set by reset, not the user self._car = np.zeros((4)) self._car_accel = np.zeros((2)) self._peds = np.zeros((self.c_num_peds, 4)) self._measurements = np.zeros((self.c_num_peds, 4)) self._car_obs = np.zeros((self.c_num_peds, 4)) self._env_obs = np.zeros((self.c_num_peds, 4)) self._done = False self._reward = 0.0 self._info = [] self._step = 0 self._action = None self._first_step = True self.directions = np.random.randint(2, size=self.c_num_peds) * 2 - 1 self.y = np.random.rand(self.c_num_peds) * 14 - 5 self.x = np.random.rand(self.c_num_peds) * 4 - 2 self.low_start_bounds = [-1.0, -4.25, -1.0, 5.0, 0.0, -6.0, 0.0, 5.0] self.high_start_bounds = [0.0, -3.75, 0.0, 9.0, 1.0, -2.0, 1.0, 9.0] self.v_start = [1.0, -1.0, 1.0, -1.0] self._state = None #initialize the base Simulator super().__init__(**kwargs) def simulate(self, actions, s_0): """ Run/finish the simulation Input ----- action : A sequential list of actions taken by the simulation Outputs ------- (terminal_index) terminal_index : The index of the action that resulted in a state in the goal set E. If no state is found terminal_index should be returned as -1. """ # initialize the simulation path_length = 0 self.reset(s_0) self._info = [] # Take simulation steps unbtil horizon is reached while path_length < self.c_max_path_length: #get the action from the list self._action = actions[path_length] # move the peds self.update_peds() # move the car self._car = self.move_car(self._car, self._car_accel) # take new measurements and noise them noise = self._action.reshape((self.c_num_peds,6))[:, 2:6] self._measurements = self.sensors(self._car, self._peds, noise) # filter out the noise with an alpha-beta tracker self._car_obs = self.tracker(self._car_obs, self._measurements) # select the SUT action for the next timestep self._car_accel[0] = self.update_car(self._car_obs, self._car[0]) # grab simulation state, if interactive self.observe() # record step variables self.log() # check if a crash has occurred. If so return the timestep, otherwise continue if self.is_goal(): return path_length, np.array(self._info) path_length = path_length + 1 # horizon reached without crash, return -1 self._is_terminal = True return -1, np.array(self._info) def step(self, action): """ Handle anything that needs to take place at each step, such as a simulation update or write to file Input ----- action : action taken on the turn Outputs ------- (terminal_index) terminal_index : The index of the action that resulted in a state in the goal set E. If no state is found terminal_index should be returned as -1. """ #get the action from the list if self.use_seed: np.random.seed(action) action = self.action_space.sample() self._action = action # move the peds self.update_peds() # move the car self._car = self.move_car(self._car, self._car_accel) # take new measurements and noise them noise = self._action.reshape((self.c_num_peds,6))[:, 2:6] self._measurements = self.sensors(self._car, self._peds, noise) # filter out the noise with an alpha-beta tracker self._car_obs = self.tracker(self._car_obs, self._measurements) # select the SUT action for the next timestep self._car_accel[0] = self.update_car(self._car_obs, self._car[0]) # grab simulation state, if interactive self.observe() # record step variables self.log() #self._step += 1 if self.is_goal() or self._step >= self.c_max_path_length: self._is_terminal = True return self._env_obs[0] def reset(self, s_0): """ Resets the state of the environment, returning an initial observation. Outputs ------- observation : the initial observation of the space. (Initial reward is assumed to be 0.) """ # initialize variables self._info = [] self._step = 0 self._is_terminal = False self.init_conditions = s_0 self._first_step = True # Get v_des if it is sampled from a range v_des = self.init_conditions[3*self.c_num_peds] # initialize SUT location car_init_x = self.init_conditions[3*self.c_num_peds + 1] self._car = np.array([v_des, 0.0, car_init_x, self.c_car_init_y]) # zero out the first SUT acceleration self._car_accel = np.zeros((2)) # initialize pedestrian locations and velocities pos = self.init_conditions[0:2*self.c_num_peds] self.x = pos[0:self.c_num_peds*2:2] self.y = pos[1:self.c_num_peds*2:2] v_start = self.init_conditions[2*self.c_num_peds:3*self.c_num_peds] self._peds[0:self.c_num_peds, 0] = np.zeros((self.c_num_peds)) self._peds[0:self.c_num_peds, 1] = v_start self._peds[0:self.c_num_peds, 2] = self.x self._peds[0:self.c_num_peds, 3] = self.y # Calculate the relative position measurements self._measurements = self._peds - self._car self._env_obs = self._measurements self._car_obs = self._measurements # return the initial simulation state self._car = np.array([self.c_v_des, 0.0, self.c_car_init_x, self.c_car_init_y]) self._car_accel = np.zeros((2)) self._peds[:, 0:4] = np.array([0.0, 1.0, -0.5, -4.0]) self._measurements = self._peds - self._car self._env_obs = self._measurements self._car_obs = self._measurements return np.ndarray.flatten(self._measurements) def get_reward_info(self): """ returns any info needed by the reward function to calculate the current reward """ return {"peds": self._peds, "car": self._car, "is_goal": self.is_goal(), "is_terminal": self._is_terminal, "action": self._action} def is_goal(self): """ returns whether the current state is in the goal set :return: boolean, true if current state is in goal set. """ # calculate the relative distances between the pedestrians and the car dist = self._peds[:, 2:4] - self._car[2:4] # return True if any relative distance is within the SUT's hitbox if (np.any(np.all(np.less_equal(abs(dist), self.c_min_dist), axis=1))): return True return False def log(self): # Create a cache of step specific variables for post-simulation analysis cache = np.hstack([0.0, # Dummy, will be filled in with trial # during post processing in save_trials.py self._step, np.ndarray.flatten(self._car), np.ndarray.flatten(self._peds), np.ndarray.flatten(self._action), 0.0]) self._info.append(cache) self._step += 1 def sensors(self, car, peds, noise): measurements = peds + noise return measurements def tracker(self, observation_old, measurements): observation = np.zeros_like(observation_old) observation[:, 0:2] = observation_old[:, 0:2] observation[:, 2:4] = observation_old[:, 2:4] + self.c_dt * observation_old[:, 0:2] residuals = measurements[:, 2:4] - observation[:, 2:4] observation[:, 2:4] += self.c_alpha * residuals observation[:, 0:2] += self.c_beta / self.c_dt * residuals return observation def update_car(self, obs, v_car): cond = np.repeat(np.resize(np.logical_and(obs[:, 3] > -1.5, obs[:, 3] < 4.5), (self.c_num_peds, 1)), 4, axis=1) in_road = np.expand_dims(np.extract(cond, obs), axis=0) if in_road.size != 0: mins = np.argmin(in_road.reshape((-1, 4)), axis=0) v_oth = obs[mins[3], 0] s_headway = obs[mins[3], 2] - self._car[2] del_v = v_oth - v_car s_des = self.c_s_min + v_car * self.c_t_headway - v_car * del_v / (2 * np.sqrt(self.c_a_max * self.c_d_cmf)) if self.c_v_des > 0.0: v_ratio = v_car / self.c_v_des else: v_ratio = 1.0 a = self.c_a_max * (1.0 - v_ratio ** self.c_delta - (s_des / s_headway) ** 2) else: del_v = self.c_v_des - v_car a = del_v if np.isnan(a): pdb.set_trace() return np.clip(a, -self.c_d_max, self.c_a_max) def move_car(self, car, accel): car[2:4] += self.c_dt * car[0:2] car[0:2] += self.c_dt * accel return car def update_peds(self): # Update ped state from actions action = self._action.reshape((self.c_num_peds, 6))[:, 0:2] mod_a = np.hstack((action, self._peds[:, 0:2] + 0.5 * self.c_dt * action)) if np.any(np.isnan(mod_a)): pdb.set_trace() self._peds += self.c_dt * mod_a if np.any(np.isnan(self._peds)): pdb.set_trace() def observe(self): self._env_obs = self._peds - self._car @property def observation_space(self): return self.spaces.observation_space @property def action_space(self): return self.spaces.action_space
218b85febe0584455f176aaf225870a30c0ac84e
241b3614c8493f0b4432b127b63b2dbc17cdce3e
/Chapter 4/4-3.py
26f8738f61b41339e144179e435af6c9a1db00cd
[]
no_license
joose1983/answer-for-python-crush-course-2ndE
6edc5e8909f4374f029ca8ac686ddaf83e331a10
b773e9cffd69695ecbb004d50c60fa9dbbd4f2ff
refs/heads/master
2023-01-07T00:42:00.048631
2020-11-06T10:12:39
2020-11-06T10:12:39
293,987,709
0
0
null
null
null
null
UTF-8
Python
false
false
67
py
numbers=list(range(1,21)) for number in numbers: print(number)
499db621a567d7c9bcdf75cb9232c3c6fbe6ad2e
031b223ef09542b34ad495a941eb895ab367c2fa
/framework/codejam/extract/identifier.py
2ce2957c989136bb6062e295cd1990ac9bc0d662
[ "MIT" ]
permissive
neizod/coding-analysis
7fb41af09cf193b18cac7b58da1f7c4ae085bc6c
cc086bcf204e570032d11b12a46ac819cfe93f2b
refs/heads/master
2021-01-10T07:02:45.672795
2015-05-29T00:15:31
2015-05-29T00:15:31
36,041,627
1
0
null
null
null
null
UTF-8
Python
false
false
1,916
py
import os import logging from framework._utils import FunctionHook class CodeJamExtractIdentifier(FunctionHook): ''' This method will extract all identifiers in submitted source code from each contestants for futher analysis. ''' @staticmethod def get_identifiers(directory): ''' returns all identifiers in source code files in a directory. ''' from framework._utils.misc import datapath from framework._utils.source import SourceCode identifiers = set() for filename in os.listdir(directory): filepath = datapath('codejam', directory, filename) if not os.path.isfile(filepath): continue source_code = SourceCode.open(filepath) try: identifiers |= source_code.identifiers().keys() except NotImplementedError: continue return identifiers def main(self, year, force=False, **_): from framework._utils import write from framework._utils.misc import datapath, make_ext from framework.codejam._helper import iter_submission os.makedirs(datapath('codejam', 'extract'), exist_ok=True) outpath = datapath('codejam', 'extract', make_ext('identifier', year, 'json')) if not force and os.path.isfile(outpath): return logging.warn('output file already exists, aborting.') extracted_data = [] for _, pid, pio, uname in iter_submission(year): directory = datapath('codejam', 'source', pid, pio, uname) logging.info('extracting: %i %i %s', pid, pio, uname) extracted_data += [{ 'pid': pid, 'io': pio, 'uname': uname, 'identifiers': sorted(self.get_identifiers(directory)), }] write.json(extracted_data, open(outpath, 'w'))
018091484c376685fd97ef99f65f8580350e4606
38c10c01007624cd2056884f25e0d6ab85442194
/device/hid/hid.gyp
00b9a90cafed806e6061d85486132b364e924b55
[ "BSD-3-Clause" ]
permissive
zenoalbisser/chromium
6ecf37b6c030c84f1b26282bc4ef95769c62a9b2
e71f21b9b4b9b839f5093301974a45545dad2691
refs/heads/master
2022-12-25T14:23:18.568575
2016-07-14T21:49:52
2016-07-23T08:02:51
63,980,627
0
2
BSD-3-Clause
2022-12-12T12:43:41
2016-07-22T20:14:04
null
UTF-8
Python
false
false
2,332
gyp
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, }, 'targets': [ { 'target_name': 'device_hid', 'type': 'static_library', 'include_dirs': [ '../..', ], 'dependencies': [ '../../components/components.gyp:device_event_log_component', '../../net/net.gyp:net', '../core/core.gyp:device_core', ], 'sources': [ 'device_monitor_linux.cc', 'device_monitor_linux.h', 'fake_input_service_linux.cc', 'fake_input_service_linux.h', 'hid_collection_info.cc', 'hid_collection_info.h', 'hid_connection.cc', 'hid_connection.h', 'hid_connection_linux.cc', 'hid_connection_linux.h', 'hid_connection_mac.cc', 'hid_connection_mac.h', 'hid_connection_win.cc', 'hid_connection_win.h', 'hid_device_filter.cc', 'hid_device_filter.h', 'hid_device_info.cc', 'hid_device_info.h', 'hid_device_info_linux.cc', 'hid_device_info_linux.h', 'hid_report_descriptor.cc', 'hid_report_descriptor.h', 'hid_report_descriptor_item.cc', 'hid_report_descriptor_item.h', 'hid_service.cc', 'hid_service.h', 'hid_service_linux.cc', 'hid_service_linux.h', 'hid_service_mac.cc', 'hid_service_mac.h', 'hid_service_win.cc', 'hid_service_win.h', 'hid_usage_and_page.cc', 'hid_usage_and_page.h', 'input_service_linux.cc', 'input_service_linux.h', ], 'conditions': [ ['use_udev==1', { 'dependencies': [ '../udev_linux/udev.gyp:udev_linux', ], }, { # use_udev==0 # The Linux implementation is based on Udev. 'sources!': [ 'device_monitor_linux.cc', 'device_monitor_linux.h', 'hid_service_linux.cc', 'hid_service_linux.h', 'fake_input_service_linux.cc', 'fake_input_service_linux.h', 'input_service_linux.cc', 'input_service_linux.h', ], }], ], }, ], }
665ecc18a624f9b4460d72d5909f74e5e93b8d51
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startQiskit_QC1775.py
aaf9aaec4c26ff1808999763b15d3f1700a67c47
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,846
py
# qubit number=5 # total number=60 import cirq import qiskit from qiskit import IBMQ from qiskit.providers.ibmq import least_busy from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=31 prog.y(input_qubit[1]) # number=56 prog.cz(input_qubit[1],input_qubit[0]) # number=32 prog.h(input_qubit[1]) # number=52 prog.h(input_qubit[0]) # number=33 prog.h(input_qubit[1]) # number=44 prog.cz(input_qubit[0],input_qubit[1]) # number=45 prog.h(input_qubit[1]) # number=46 prog.cx(input_qubit[0],input_qubit[1]) # number=53 prog.cx(input_qubit[0],input_qubit[1]) # number=57 prog.x(input_qubit[1]) # number=58 prog.cx(input_qubit[0],input_qubit[1]) # number=59 prog.cx(input_qubit[0],input_qubit[1]) # number=55 prog.h(input_qubit[1]) # number=48 prog.cz(input_qubit[0],input_qubit[1]) # number=49 prog.h(input_qubit[1]) # number=50 prog.x(input_qubit[0]) # number=26 prog.cx(input_qubit[1],input_qubit[0]) # number=27 prog.h(input_qubit[1]) # number=37 prog.cz(input_qubit[0],input_qubit[1]) # number=38 prog.h(input_qubit[1]) # number=39 prog.x(input_qubit[1]) # number=35 prog.cx(input_qubit[0],input_qubit[1]) # number=36 prog.x(input_qubit[2]) # number=11 prog.x(input_qubit[3]) # number=12 prog.cx(input_qubit[3],input_qubit[2]) # number=43 prog.cx(input_qubit[3],input_qubit[2]) # number=47 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.cx(input_qubit[0],input_qubit[1]) # number=22 prog.x(input_qubit[1]) # number=23 prog.cx(input_qubit[0],input_qubit[1]) # number=24 prog.x(input_qubit[2]) # number=15 prog.x(input_qubit[1]) # number=29 prog.y(input_qubit[4]) # number=28 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[3]) # number=51 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 2 and not x.configuration().simulator and x.status().operational == True)) sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_QC1775.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
3d6df9e59eb1385aba3f6d29a0ddcc933590dc73
514fd4f09243055e4769efb426710338048454b1
/tensorflow/python/data/kernel_tests/cache_test.py
b561cd58baf732f557d518e7eb237ab00512acc1
[ "Apache-2.0" ]
permissive
nnsuite/ubuntuport-tensorflow
7fa1d26f3cc282cd725bd87f2864c8ac2e76bf99
01ea2d56d3f87063f86076e45673fa49794eebb0
refs/heads/debian/c_api/1.13.1
2022-12-14T03:14:59.691723
2022-12-06T07:29:53
2022-12-07T00:46:40
202,048,406
2
8
Apache-2.0
2022-12-07T00:46:41
2019-08-13T02:36:22
C++
UTF-8
Python
false
false
9,031
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.Dataset.cache()`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os import path import shutil import tempfile import numpy as np from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import variables from tensorflow.python.platform import test @test_util.run_all_in_graph_and_eager_modes class FileCacheTest(test_base.DatasetTestBase): def setUp(self): self.tmp_dir = tempfile.mkdtemp() self.cache_prefix = path.join(self.tmp_dir, "cache") def tearDown(self): if self.tmp_dir: shutil.rmtree(self.tmp_dir, ignore_errors=True) def testCacheDatasetPassthrough(self): components = (np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]), np.array([9.0, 10.0, 11.0, 12.0])) def dataset_fn(count=5, filename=None): repeat_dataset = ( dataset_ops.Dataset.from_tensor_slices(components).repeat(count)) if filename: return repeat_dataset.cache(filename) else: return repeat_dataset self.assertEqual( tuple([c.shape[1:] for c in components]), dataset_fn().output_shapes) get_next = self.getNext(dataset_fn()) # First run without caching to collect the "ground truth". elements = [] for _ in range(20): elements.append(self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) # Assert that the cached dataset has the same elements as the # "ground truth". get_next = self.getNext(dataset_fn(filename=self.cache_prefix)) cached_elements = [] for _ in range(20): cached_elements.append(self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) self.assertAllEqual(elements, cached_elements) # Re-initialize with an empty upstream (to throw errors.OutOfRangeError # if we didn't use the cache). get_next = self.getNext(dataset_fn(count=0, filename=self.cache_prefix)) replayed_elements = [] for _ in range(20): replayed_elements.append(self.evaluate(get_next())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) self.assertEqual(cached_elements, replayed_elements) # Re-initialize with an empty upstream and a missing cache file (should # throw errors.OutOfRangeError immediately). get_next = self.getNext( dataset_fn(count=0, filename=self.cache_prefix + "nonsense")) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) def testConcurrentWriters(self): components = (np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]), np.array([9.0, 10.0, 11.0, 12.0])) cache_dataset1 = ( dataset_ops.Dataset.from_tensor_slices(components).cache( self.cache_prefix)) cache_dataset2 = ( dataset_ops.Dataset.from_tensor_slices(components).cache( self.cache_prefix)) get_next1 = self.getNext(cache_dataset1) get_next2 = self.getNext(cache_dataset2) self.evaluate(get_next1()) # this should succeed with self.assertRaises(errors.AlreadyExistsError): self.evaluate(get_next2()) self.evaluate(get_next1()) # this should continue to succeed def testConcurrentReaders(self): components = (np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]), np.array([9.0, 10.0, 11.0, 12.0])) cache_dataset1 = ( dataset_ops.Dataset.from_tensor_slices(components).cache( self.cache_prefix)) cache_dataset2 = ( dataset_ops.Dataset.from_tensor_slices(components).cache( self.cache_prefix)) get_next1 = self.getNext(cache_dataset1) get_next2 = self.getNext(cache_dataset2) elements = [] for _ in range(4): elements.append(self.evaluate(get_next1())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next1()) # Re-initialize get_next1 = self.getNext(cache_dataset1) get_next2 = self.getNext(cache_dataset2) # Reading concurrently should succeed. elements_itr1 = [] elements_itr2 = [] elements_itr2.append(self.evaluate(get_next2())) elements_itr1.append(self.evaluate(get_next1())) elements_itr2.append(self.evaluate(get_next2())) elements_itr1.append(self.evaluate(get_next1())) # Intentionally reversing the order elements_itr1.append(self.evaluate(get_next1())) elements_itr2.append(self.evaluate(get_next2())) elements_itr1.append(self.evaluate(get_next1())) elements_itr2.append(self.evaluate(get_next2())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next2()) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next1()) self.assertAllEqual(elements, elements_itr1) self.assertAllEqual(elements, elements_itr2) @test_util.run_all_in_graph_and_eager_modes class MemoryCacheTest(test_base.DatasetTestBase): def testCacheDatasetPassthrough(self): with ops.device("cpu:0"): repeat_count = variables.Variable(constant_op.constant(10, dtypes.int64)) dataset = dataset_ops.Dataset.range(3).flat_map( lambda x: dataset_ops.Dataset.from_tensors(x).repeat(repeat_count)) cached_dataset = dataset.cache().repeat(2) uncached_dataset = dataset.repeat(2) self.evaluate(repeat_count.initializer) # Needs to be initializable to capture the variable. cached_next = self.getNext(cached_dataset, requires_initialization=True) uncached_next = self.getNext( uncached_dataset, requires_initialization=True) for i in range(3): for _ in range(10): self.assertEqual(self.evaluate(cached_next()), i) self.assertEqual(self.evaluate(uncached_next()), i) self.evaluate(repeat_count.assign(0)) # The uncached iterator should now be empty. with self.assertRaises(errors.OutOfRangeError): self.evaluate(uncached_next()) # The cached iterator replays from cache. for i in range(3): for _ in range(10): self.assertEqual(self.evaluate(cached_next()), i) # The cached iterator should now be empty. with self.assertRaises(errors.OutOfRangeError): self.evaluate(cached_next()) def testEmptyCacheReading(self): components = (np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]), np.array([9.0, 10.0, 11.0, 12.0])) repeat_dataset = ( dataset_ops.Dataset.from_tensor_slices(components).repeat(0)) cache_dataset = repeat_dataset.cache() # Create initialization ops for iterators without and with # caching, respectively. self.assertDatasetProduces(cache_dataset, expected_output=[]) def testConcurrentReaders(self): dataset = dataset_ops.Dataset.range(5).cache() d1 = dataset.map(lambda x: x + 1) d2 = dataset.map(lambda x: x + 6) get_next1 = self.getNext(d1) self.assertEqual(1, self.evaluate(get_next1())) self.assertEqual(2, self.evaluate(get_next1())) self.assertEqual(3, self.evaluate(get_next1())) get_next2 = self.getNext(d2) self.assertEqual(6, self.evaluate(get_next2())) self.assertEqual(7, self.evaluate(get_next2())) self.assertEqual(4, self.evaluate(get_next1())) # interleave execution self.assertEqual([8, 5], [self.evaluate(get_next2()), self.evaluate(get_next1())]) self.assertEqual(9, self.evaluate(get_next2())) self.assertEqual(10, self.evaluate(get_next2())) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next2()) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next1()) def testCacheTakeRepeat(self): dataset = dataset_ops.Dataset.range(10).cache().take(5).repeat(2) expected_output = [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] self.assertDatasetProduces(dataset, expected_output=expected_output) if __name__ == "__main__": test.main()
ecefc29203c6dbd9ad3567e3c4923a92540392cc
1c390cd4fd3605046914767485b49a929198b470
/codechef/MODULO3.py
56225738efe0487b5051721c932373bd79d04918
[]
no_license
wwwwodddd/Zukunft
f87fe736b53506f69ab18db674311dd60de04a43
03ffffee9a76e99f6e00bba6dbae91abc6994a34
refs/heads/master
2023-01-24T06:14:35.691292
2023-01-21T15:42:32
2023-01-21T15:42:32
163,685,977
7
8
null
null
null
null
UTF-8
Python
false
false
155
py
for t in range(int(input())): a, b = map(int, input().split()) if a % 3 == 0 or b % 3 == 0: print(0) elif a % 3 == b % 3: print(1) else: print(2)
1eb5f0a5a7672ff71340cf10f0cff2fccd26163f
b346530b455135b224470511061cffcffa6274b5
/test/hierarchical/test_hierarchical.py
452d9eae3c129fcdb8f095a3b34bac964cbcce4a
[ "BSD-3-Clause" ]
permissive
ICB-DCM/pyPESTO
cd3ac5c26be0648c77a409d012a6321ade968d5d
9a754573a7b77d30d5dc1f67a8dc1be6c29f1640
refs/heads/main
2023-09-03T19:34:55.581478
2023-06-29T09:22:57
2023-06-29T09:22:57
142,321,950
174
48
BSD-3-Clause
2023-09-14T14:59:50
2018-07-25T15:51:29
Python
UTF-8
Python
false
false
14,990
py
"""Tests for hierarchical optimization.""" import time import amici import numpy as np import pandas as pd import petab import pypesto from pypesto.C import ( INNER_PARAMETER_BOUNDS, LOG10, LOWER_BOUND, MODE_FUN, UPPER_BOUND, InnerParameterType, ) from pypesto.hierarchical.parameter import InnerParameter from pypesto.hierarchical.petab import validate_hierarchical_petab_problem from pypesto.hierarchical.problem import InnerProblem from pypesto.hierarchical.solver import ( AnalyticalInnerSolver, NumericalInnerSolver, ) from pypesto.hierarchical.util import ( apply_offset, apply_scaling, compute_optimal_offset, compute_optimal_offset_coupled, compute_optimal_scaling, compute_optimal_sigma, ) from pypesto.optimize import FidesOptimizer, OptimizeOptions from pypesto.petab import PetabImporter from pypesto.testing.examples import ( get_Boehm_JProteomeRes2014_hierarchical_petab, get_Boehm_JProteomeRes2014_hierarchical_petab_corrected_bounds, ) # Suitable test cases from the benchmark collection # - Boehm # - Fujita def test_hierarchical_optimization_pipeline(): """Test hierarchical optimization of sigma and scaling parameters. Here (mostly): the flags `True` and `False` indicate that hierarchical optimization is enabled and disabled, respectively. """ flags = [False, True] petab_problems = { False: get_Boehm_JProteomeRes2014_hierarchical_petab(), True: get_Boehm_JProteomeRes2014_hierarchical_petab_corrected_bounds(), } problems = {} for flag in flags: importer = PetabImporter(petab_problems[flag], hierarchical=flag) objective = importer.create_objective() problem = importer.create_problem(objective) problem.objective.amici_solver.setSensitivityMethod( amici.SensitivityMethod_adjoint ) problem.objective.amici_solver.setAbsoluteTolerance(1e-8) problem.objective.amici_solver.setRelativeTolerance(1e-8) problems[flag] = problem # Check for same optimization result n_starts = 1 engine = pypesto.engine.SingleCoreEngine() startpoints = problems[False].get_full_vector( pypesto.startpoint.latin_hypercube( n_starts=n_starts, lb=problems[False].lb, ub=problems[False].ub, ) ) problems[False].set_x_guesses(startpoints) outer_indices = [ ix for ix, x in enumerate(problems[False].x_names) if x not in problems[True].objective.calculator.inner_problem.get_x_ids() ] problems[True].set_x_guesses(startpoints[:, outer_indices]) inner_solvers = { 'analytical': AnalyticalInnerSolver(), 'numerical': NumericalInnerSolver(), } history_options = pypesto.HistoryOptions(trace_record=True) def get_result(problem, inner_solver_id, inner_solvers=inner_solvers): if inner_solver_id: problem.objective.calculator.inner_solver = inner_solvers[ inner_solver_id ] start_time = time.time() result = pypesto.optimize.minimize( problem=problem, n_starts=n_starts, engine=engine, history_options=history_options, options=OptimizeOptions(allow_failed_starts=False), optimizer=FidesOptimizer(), ) wall_time = time.time() - start_time best_x = result.optimize_result.list[0].x best_fval = result.optimize_result.list[0].fval result = { 'list': result.optimize_result.list, 'time': wall_time, 'best_x': best_x, 'best_fval': best_fval, } return result results = {} for problem, inner_solver_id in [ (problems[True], 'analytical'), (problems[False], False), (problems[True], 'numerical'), ]: results[inner_solver_id] = get_result(problem, inner_solver_id) trace_False = np.array( results[False]['list'][0].history.get_fval_trace(trim=True) ) trace_numerical = np.array( results['numerical']['list'][0].history.get_fval_trace(trim=True) ) trace_analytical = np.array( results['numerical']['list'][0].history.get_fval_trace(trim=True) ) # The analytical inner solver is at least as good as (fval / speed) the # numerical inner solver. assert at_least_as_good_as(v=trace_analytical, v0=trace_numerical) # The numerical inner solver is at least as good as (fval / speed) no # inner solver (non-hierarchical). assert at_least_as_good_as(v=trace_numerical, v0=trace_False) # Now implied that analytical is at least as good as non-hierarchical. def test_hierarchical_calculator_and_objective(): """Test hierarchical calculation of sigma and objective values. Here (mostly): the flags `True` and `False` indicate that hierarchical optimization is enabled and disabled, respectively. """ petab_problem = ( get_Boehm_JProteomeRes2014_hierarchical_petab_corrected_bounds() ) flags = [False, True] problems = {} for flag in flags: importer = PetabImporter(petab_problem, hierarchical=flag) objective = importer.create_objective() problem = importer.create_problem(objective) problem.objective.amici_solver.setSensitivityMethod( amici.SensitivityMethod_adjoint ) problem.objective.amici_solver.setAbsoluteTolerance(1e-8) problem.objective.amici_solver.setRelativeTolerance(1e-8) problems[flag] = problem def calculate(problem, x_dct): return problem.objective.calculator( x_dct=x_dct, sensi_orders=(0, 1), mode=MODE_FUN, amici_model=problem.objective.amici_model, amici_solver=problem.objective.amici_solver, edatas=problem.objective.edatas, n_threads=1, x_ids=petab_problem.x_ids, parameter_mapping=problem.objective.parameter_mapping, fim_for_hess=False, ) x_dct = dict(zip(petab_problem.x_ids, petab_problem.x_nominal_scaled)) # Nominal sigma values are close to optimal. # One is changed here to facilitate testing. x_dct['sd_pSTAT5A_rel'] = 0.5 calculator_results = { flag: calculate(problems[flag], x_dct=x_dct) for flag in flags } # Hierarchical optimization means that the results differ here, because # the `False` case has suboptimal sigma values. assert not np.isclose( calculator_results[True]['fval'], calculator_results[False]['fval'], ) assert not np.isclose( calculator_results[True]['grad'], calculator_results[False]['grad'], ).all() x_dct.update(calculator_results[True]['inner_parameters']) calculator_results[False] = calculate(problem=problems[False], x_dct=x_dct) # The `False` case has copied the optimal sigma values from hierarchical # optimization, so can produce the same results now. assert np.isclose( calculator_results[True]['fval'], calculator_results[False]['fval'], ) assert np.isclose( calculator_results[True]['grad'], calculator_results[False]['grad'], ).all() parameters = [x_dct[x_id] for x_id in petab_problem.x_free_ids] fval_false = problems[False].objective(parameters) outer_parameters = [ x_dct[x_id] for x_id in problems[True].objective.x_names ] fval_true = problems[True].objective(outer_parameters) # Hierarchical optimization does not affect the function value, if optimal # sigma are provided to the normal function. High precision is required as # the nominal values are very good already, so the test might pass # accidentally if the nominal values are used accidentally. assert np.isclose(fval_true, fval_false, atol=1e-12, rtol=1e-14) def test_analytical_computations(): """Test analytically-solved hierarchical inner parameters.""" function = np.exp timepoints = np.linspace(0, 10, 101) simulation = function(timepoints) dummy_sigma = np.ones(simulation.shape) mask = np.full(simulation.shape, True) expected_scaling_value = 5 expected_offset_value = 2 expected_sigma_value = 2 rtol = 1e-3 # Scaling simulation = function(timepoints) data = expected_scaling_value * simulation scaling_value = compute_optimal_scaling( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) assert np.isclose(scaling_value, expected_scaling_value, rtol=rtol) # Offset simulation = function(timepoints) data = simulation + expected_offset_value offset_value = compute_optimal_offset( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) assert np.isclose(offset_value, expected_offset_value, rtol=rtol) # Coupled (scaling and offset) simulation = function(timepoints) data = expected_scaling_value * simulation + expected_offset_value offset_value = compute_optimal_offset_coupled( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) apply_offset(offset_value=expected_offset_value, data=[data], mask=[mask]) scaling_value = compute_optimal_scaling( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) assert np.isclose(offset_value, expected_offset_value, rtol=rtol) assert np.isclose(scaling_value, expected_scaling_value, rtol=rtol) # All (scaling, offset, sigma) simulation = function(timepoints) data = expected_scaling_value * simulation + expected_offset_value data[0::2] -= expected_sigma_value data[1::2] += expected_sigma_value offset_value = compute_optimal_offset_coupled( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) apply_offset(offset_value=offset_value, data=[data], mask=[mask]) scaling_value = compute_optimal_scaling( data=[data], sim=[simulation], sigma=[dummy_sigma], mask=[mask], ) apply_scaling(scaling_value=scaling_value, sim=[simulation], mask=[mask]) sigma_value = compute_optimal_sigma(data=data, sim=simulation, mask=mask) assert np.isclose(offset_value, expected_offset_value, rtol=rtol) assert np.isclose(scaling_value, expected_scaling_value, rtol=rtol) assert np.isclose(sigma_value, expected_sigma_value, rtol=rtol) def inner_problem_exp(): function = np.exp timepoints = np.linspace(0, 10, 101) expected_values = { 'scaling_': 5, 'offset_': 2, 'sigma_': 3, } simulation = function(timepoints) data = ( expected_values['scaling_'] * simulation + expected_values['offset_'] ) data[0::2] -= expected_values['sigma_'] data[1::2] += expected_values['sigma_'] mask = np.full(data.shape, True) inner_parameters = [ InnerParameter( inner_parameter_id=inner_parameter_id, inner_parameter_type=inner_parameter_type, scale=LOG10, lb=INNER_PARAMETER_BOUNDS[inner_parameter_type][LOWER_BOUND], ub=INNER_PARAMETER_BOUNDS[inner_parameter_type][UPPER_BOUND], ixs=mask, ) for inner_parameter_id, inner_parameter_type in [ ('offset_', InnerParameterType.OFFSET), ('scaling_', InnerParameterType.SCALING), ('sigma_', InnerParameterType.SIGMA), ] ] inner_parameters[0].coupled = True inner_parameters[1].coupled = True inner_problem = InnerProblem(xs=inner_parameters, data=[data]) return inner_problem, expected_values, simulation def test_analytical_inner_solver(): """Test numerically-solved hierarchical inner parameters.""" inner_problem, expected_values, simulation = inner_problem_exp() dummy_sigma = np.ones(simulation.shape) rtol = 1e-3 solver = AnalyticalInnerSolver() result = solver.solve( problem=inner_problem, sim=[simulation], sigma=[dummy_sigma], scaled=False, ) assert np.isclose(result['offset_'], expected_values['offset_'], rtol=rtol) assert np.isclose( result['scaling_'], expected_values['scaling_'], rtol=rtol ) assert np.isclose(result['sigma_'], expected_values['sigma_'], rtol=rtol) def test_numerical_inner_solver(): """Test numerically-solved hierarchical inner parameters.""" inner_problem, expected_values, simulation = inner_problem_exp() dummy_sigma = np.ones(simulation.shape) rtol = 1e-3 solver = NumericalInnerSolver(minimize_kwargs={'n_starts': 10}) result = solver.solve( problem=inner_problem, sim=[simulation], sigma=[dummy_sigma], scaled=False, ) assert np.isclose(result['offset_'], expected_values['offset_'], rtol=rtol) assert np.isclose( result['scaling_'], expected_values['scaling_'], rtol=rtol ) assert np.isclose(result['sigma_'], expected_values['sigma_'], rtol=rtol) def at_least_as_good_as(v, v0) -> bool: """Check that the first vector of fvals is at least as good the second. Parameters ---------- v: The first vector of fvals. v0: The second vector of fvals. Returns ------- Whether the first vector of fvals is at least as good as the second. """ max_index = min(len(v), len(v0)) return (v[:max_index] <= v0[:max_index]).all() def test_validate(): # Scaling shared across multiple observables - okay observable_df = petab.get_observable_df( pd.DataFrame( { petab.OBSERVABLE_ID: ["obs1", "obs2"], petab.OBSERVABLE_FORMULA: [ "observableParameter1_obs1 * x1", "observableParameter1_obs2 * x2", ], petab.NOISE_FORMULA: [ "noiseParameter1_obs1", "noiseParameter1_obs2", ], } ) ) measurement_df = petab.get_measurement_df( pd.DataFrame( { petab.OBSERVABLE_ID: ["obs1", "obs2"], petab.TIME: [0, 1], petab.MEASUREMENT: [1, 2], petab.OBSERVABLE_PARAMETERS: ["s", "s"], petab.NOISE_PARAMETERS: [0.1, 0.1], } ) ) parameter_df = petab.get_parameter_df( pd.DataFrame( { petab.PARAMETER_ID: ["s"], "parameterType": ['scaling'], } ) ) petab_problem = petab.Problem( observable_df=observable_df, parameter_df=parameter_df, measurement_df=measurement_df, ) validate_hierarchical_petab_problem(petab_problem)
6386bb45b6d3ab17a1f9afcb15656b0f1a6892fe
989b3499948137f57f14be8b2c77d0610d5975e6
/question_python(resolved)/chapter3_data_type(완결)/ii_replace_it.py
01732f47a8bda1b2a4f65637446d87f13dd4f158
[]
no_license
namkiseung/python_BasicProject
76b4c070934ad4cb9d16ce844efa05f64fb09ac0
460d05248b2d1431624aba960e28bece888643e4
refs/heads/master
2022-12-13T21:12:06.865241
2020-04-23T01:30:08
2020-04-23T01:30:08
142,980,920
1
1
null
2022-12-08T02:27:40
2018-07-31T07:49:17
Python
UTF-8
Python
false
false
449
py
# -*- coding: utf-8 -*- def replace_it(input_str): """ 입력된 문자열에 소문자 o를, 대문자 O로 바꿔서 반환하는 함수를 작성해보자 hint: replace sample data: "google" expected output: "gOOgle" """ result=input_str.replace('o', 'O') # 여기 작성 return result if __name__ == "__main__": input_str = 'google' print(replace_it(input_str)) pass
415e464cf1107b46d06e17330af69e5a62cabaa7
86986fc336d87823b45c427ac2326d6d733c7f91
/social/groups/views.py
ab699144185ce0ecbebdbef63e928827bb1996db
[]
no_license
CryptAthlos/cryptathloscap
b0d83efb1ed9d628677aec47a24841f6fa52ed4c
1a91ce7a0f57548523e02a7f1544018ccd587d4d
refs/heads/master
2020-03-15T12:11:36.453570
2018-05-29T09:09:50
2018-05-29T09:09:50
132,138,497
0
0
null
2018-05-29T09:09:51
2018-05-04T12:39:09
Python
UTF-8
Python
false
false
1,927
py
from django.contrib import messages from django.db import IntegrityError from django.shortcuts import render, get_object_or_404 from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin from django.core.urlresolvers import reverse from django.views import generic from groups.models import Group, GroupMember # Create your views here. class CreateGroup(LoginRequiredMixin, generic.CreateView): fields = ('name', 'description') model = Group class SingleGroup(generic.DetailView): model = Group class ListGroups(generic.ListView): model = Group class JoinGroup(LoginRequiredMixin, generic.RedirectView): def get_redirect_url(self, *args, **kwargs): return reverse('groups:single', kwargs={'slug': self.kwargs.get('slug')}) def get(self, request, *args, **kwargs): group = get_object_or_404(Group, slug=self.kwargs.get('slug')) try: GroupMember.objects.create(user=self.request.user, group=group) except IntegrityError: messages.warning(self.request, 'Warning already a memebr.') else: messages.success(self.request, 'You are a member') return super().get(request, *args, **kwargs) class LeaveGroup(LoginRequiredMixin, generic.RedirectView): def get_redirect_url(self, *args, **kwargs): return reverse('groups:single', kwargs={'slug': self.kwargs.get('slug')}) def get(self, request, *args, **kwargs): try: membership = GroupMember.objects.filter( user=self.request.user, group__slug=self.kwargs.get('slug') ).get() except GroupMember.DoesNotExist: messages.warning(self.request, 'You are not in this group') else: membership.delete() messages.success(self.request, 'You have left the group') return super().get(request, *args, **kwargs)
a4aebac3982dc6e6551d597587c45f909039ce3b
c3612d29df2fd6224c61b693a0cbd3554b6213f2
/03_django/06_django_axios/articles/views.py
c25a540c0aa075716a900db72f11ad0f2cf75694
[]
no_license
mycomax0416/TIL
5a12b8067e22fc095c7998b9ffb17d6fb210933f
21d3b62db84b1fd64318a278eddc287bdc9678f0
refs/heads/master
2023-01-11T00:59:42.851469
2019-11-28T08:48:54
2019-11-28T08:48:54
195,918,118
3
0
null
2023-01-07T16:48:23
2019-07-09T02:31:05
Jupyter Notebook
UTF-8
Python
false
false
6,798
py
import hashlib from django.http import JsonResponse, HttpResponseBadRequest from IPython import embed from django.contrib.auth import get_user_model from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, get_object_or_404 from django.http import Http404, HttpResponse from django.views.decorators.http import require_POST from .models import Article, Comment, Hashtag from .forms import ArticleForm, CommentForm # Create your views here. def index(request): # session 에 visit_num 키로 접근해 값을 가져온다. # 기본적으로 존재하지 않는 키이기 때문에 키가 없다면(방문한적이 없다면) 0 값을 가져오도록 한다. visits_num = request.session.get('visits_num', 0) # 그리고 가져온 값은 session 에 visits_num 에 매번 1씩 증가한 값으로 할당한다. (유저의 다음 방문을 위해) request.session['visits_num'] = visits_num + 1 # session data 안에 있는 새로운 정보를 수정했따면 django 는 수정한 사실을 알아채지 못하기 때문에 다음과 같이 설정. request.session.modified = True articles = Article.objects.all() context = {'articles': articles, 'visits_num': visits_num,} return render(request, 'articles/index.html', context) @login_required def create(request): if request.method == 'POST': # form 인스턴스를 생성하고 요청에 의한 데이터를 인자로 받는다. (binding) # 이 처리과정은 binding 이라고 불리며 유효성 체크를 할 수 있도록 해준다. form = ArticleForm(request.POST) # form 이 유효한지 체크한다. if form.is_valid(): article = form.save(commit=False) article.user = request.user article.save() # hashtag 의 시작점 for word in article.content.split(): # content 를 공백 기준으로 리스트로 변경 if word.startswith('#'): # '#' 으로 시작하는 요소만 선택 hashtag, created = Hashtag.objects.get_or_create(content=word) # word랑 같은 해시태그를 찾는데 있으면 기존 객체(.get), 없으면 새로운 객체를 생성(.create) article.hashtags.add(hashtag) # created 를 사용하지 않았다면, hashtag[0] 로 작성 return redirect(article) else: form = ArticleForm() # 상황에 따라 context 에 넘어가는 2가지 form # 1. GET : 기본 form # 2. POST : 검증에 실패 후의 form(is_valid == False) context = {'form': form,} return render(request, 'articles/form.html', context) def detail(request, article_pk): article = get_object_or_404(Article, pk=article_pk) comments = article.comment_set.all() # article 의 모든 댓글 person = get_object_or_404(get_user_model(), pk=article.user_id) comment_form = CommentForm() # 댓글 폼 context = {'article': article, 'comment_form': comment_form, 'comments': comments, 'person': person,} return render(request, 'articles/detail.html', context) @require_POST def delete(request, article_pk): if request.user.is_authenticated: article = get_object_or_404(Article, pk=article_pk) if request.user == article.user: article.delete() else: return redirect(article) return redirect('articles:index') @login_required def update(request, article_pk): article = get_object_or_404(Article, pk=article_pk) if request.user == article.user: if request.method == 'POST': form = ArticleForm(request.POST, instance=article) if form.is_valid(): article = form.save() # hashtag article.hashtags.clear() # 해당 article 의 hashtag 전체 삭제 for word in article.content.split(): if word.startswith('#'): hashtag, created = Hashtag.objects.get_or_create(content=word) article.hashtags.add(hashtag) return redirect(article) else: form = ArticleForm(instance=article) else: return redirect('articles:index') context = {'form': form, 'article': article,} return render(request, 'articles/form.html', context) @require_POST def comments_create(request, article_pk): if request.user.is_authenticated: comment_form = CommentForm(request.POST) if comment_form.is_valid(): # 객체를 Create 하지만, db 에 레코드는 작성하지 않는다. comment = comment_form.save(commit=False) comment.article_id = article_pk comment.user = request.user comment.save() return redirect('articles:detail', article_pk) @require_POST def comments_delete(request, article_pk, comment_pk): if request.user.is_authenticated: comment = get_object_or_404(Comment, pk=comment_pk) if request.user == comment.user: comment.delete() return redirect('articles:detail', article_pk) return HttpResponse('You are Unauthorized', status=401) @login_required def like(request, article_pk): if request.is_ajax(): article = get_object_or_404(Article, pk=article_pk) if article.like_users.filter(pk=request.user.pk).exists(): article.like_users.remove(request.user) liked = False else: article.like_users.add(request.user) liked = True context = {'liked': liked, 'count': article.like_users.count()} return JsonResponse(context) else: return HttpResponseBadRequest() # 해당 게시글에 좋아요를 누른 사람들 중에서 현재 접속유저가 있다면 좋아요를 취소 # if request.user in article.like_users.all(): # article.like_users.remove(request.user) # 좋아요 취소 # else: # article.like_users.add(request.user) # 좋아요 @login_required def follow(request, article_pk, user_pk): # 게시글 유저 person = get_object_or_404(get_user_model(), pk=user_pk) # 접속 유저 user = request.user if person != user: # 내(request.user)가 게시글 유저 팔로워 목록에 이미 존재 한다면, if person.followers.filter(pk=user.pk).exists(): person.followers.remove(user) else: person.followers.add(user) return redirect('articles:detail', article_pk) def hashtag(request, hash_pk): hashtag = get_object_or_404(Hashtag, pk=hash_pk) articles = hashtag.article_set.order_by('-pk') context = {'hashtag': hashtag, 'articles': articles,} return render(request, 'articles/hashtag.html', context)
d7269d784f0dd8367a8b8ad07ab5661409480603
51d0377511a5da902033fb9d80184db0e096fe2c
/21-deep-learning-in-python/1-basics-of-deep-learning-and-neural-networks/01-coding-the-forward-propagation-algorithm.py
52eed540367f55989509b534772aa4bdd0b4485f
[]
no_license
sashakrasnov/datacamp
c28c6bda178163337baed646220b2f7dcc36047d
759f4cec297883907e21118f24a3449d84c80761
refs/heads/master
2021-12-07T02:54:51.190672
2021-09-17T21:05:29
2021-09-17T21:05:29
157,093,632
6
5
null
null
null
null
UTF-8
Python
false
false
2,066
py
''' Coding the forward propagation algorithm In this exercise, you'll write code to do forward propagation (prediction) for your first neural network: https://s3.amazonaws.com/assets.datacamp.com/production/course_3524/datasets/1_4.png Each data point is a customer. The first input is how many accounts they have, and the second input is how many children they have. The model will predict how many transactions the user makes in the next year. You will use this data throughout the first 2 chapters of this course. The input data has been pre-loaded as input_data, and the weights are available in a dictionary called weights. The array of weights for the first node in the hidden layer are in weights['node_0'], and the array of weights for the second node in the hidden layer are in weights['node_1']. The weights feeding into the output node are available in weights['output']. NumPy will be pre-imported for you as np in all exercises. ''' import numpy as np input_data = np.array([3, 5]) weights = { 'node_0': np.array([ 2, 4]), 'node_1': np.array([ 4, -5]), 'output': np.array([ 2, 7]) } ''' INSTRUCTIONS * Calculate the value in node 0 by multiplying input_data by its weights weights['node_0'] and computing their sum. This is the 1st node in the hidden layer. * Calculate the value in node 1 using input_data and weights['node_1']. This is the 2nd node in the hidden layer. * Put the hidden layer values into an array. This has been done for you. * Generate the prediction by multiplying hidden_layer_outputs by weights['output'] and computing their sum. * Hit 'Submit Answer' to print the output! ''' # Calculate node 0 value: node_0_value node_0_value = (input_data * weights['node_0']).sum() # Calculate node 1 value: node_1_value node_1_value = (input_data * weights['node_1']).sum() # Put node values into array: hidden_layer_outputs hidden_layer_outputs = np.array([node_0_value, node_1_value]) # Calculate output: output output = (hidden_layer_outputs * weights['output']).sum() # Print output print(output)
5b8c798cf4696fcbcf01bc1c454ccfac58142539
3f7240da3dc81205a0a3bf3428ee4e7ae74fb3a2
/src/Week2/NestedForLoops/printMysteryStarShape.py
e984963bec5498ff2b46607c922afbc823618747
[]
no_license
theguyoverthere/CMU15-112-Spring17
b4ab8e29c31410b4c68d7b2c696a76b9d85ab4d8
b8287092b14e82d2a3aeac6c27bffbc95382eb34
refs/heads/master
2021-04-27T08:52:45.237631
2018-10-02T15:38:18
2018-10-02T15:38:18
107,882,442
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
def printMysteryStarShape(n): for row in range(n): print(row, end=" ") for col in range(row): print("*", end=" ") print() printMysteryStarShape(5)
39cbb5a9beaf9637dc7fb56113ad2c3884e152c0
93c43f774b11d3f44a3c4b83ab94be3600d606df
/Deep-Learning/R-CNN/utils.py
40a7d2ba1b2752903b37b5576f40183ecfa2485c
[ "Apache-2.0" ]
permissive
sadbb/CVCode
299afeafb5a09d030b42ec00c6cd9c8087bc718f
c7c8b527af786d8f113122231e6296987b242b59
refs/heads/master
2020-04-07T04:24:04.040378
2018-11-17T14:13:23
2018-11-17T14:13:23
158,053,757
1
0
Apache-2.0
2018-11-18T05:41:43
2018-11-18T05:41:42
null
UTF-8
Python
false
false
1,408
py
# -*- coding:utf-8 -*- import numpy as np def get_IoU(ground_truth, region): # xmin, ymin, xmax, ymax x1 = max(ground_truth[0], region[0]) y1 = max(ground_truth[1], region[1]) x2 = min(ground_truth[2], region[2]) y2 = min(ground_truth[3], region[3]) if x2 - x1 < 0: return 0 inter_area = (x2 - x1 + 1) * (y2 - y1 + 1) outer_area = (region[2] - region[0]) * (region[3] - region[1]) \ + (ground_truth[2] - ground_truth[0]) * (ground_truth[3] - ground_truth[1]) - inter_area iou = inter_area / outer_area return iou def NMS(nms_sum): regions = [] nms_sum = nms_sum[nms_sum[:,6]!=20] for i in range(len(nms_sum)): i_xmin, i_ymin, i_width, i_height, i_image_region, i_score, i_label = nms_sum[i] flag = False for j in range(len(nms_sum)): if i == j: continue j_xmin, j_ymin, j_width, j_height, j_image_region, j_score, j_label = nms_sum[j] iou = get_IoU([i_xmin, i_xmin+i_width, i_ymin, i_ymin+i_height], [j_xmin, j_xmin+j_width, j_ymin, j_ymin+j_height]) if iou > 0.5 and i_score > j_score: flag = True elif i_score < j_score: break if flag == True: regions.append([[i_xmin, i_ymin, i_width, i_height], i_label]) return np.asarray(regions)
b881534e43a240f73a78798cdc8a12f464a714f5
0ddfc02a2cc459e6ccd5322571b430af3b86001b
/book_management/book_management/asgi.py
bec0c1dc1ddae3d2adafba607aa143eb00c27844
[]
no_license
XMLPro/2020_groupdev
87e5d6d6f9d91bff79f56c29bf24e02b6322fac8
3f01e3e7e74ed76950d2526d74de566158bf3971
refs/heads/master
2023-07-18T16:17:23.892887
2020-06-09T12:50:07
2020-06-09T12:50:07
267,032,912
1
1
null
2021-09-22T19:11:47
2020-05-26T12:10:05
Python
UTF-8
Python
false
false
407
py
""" ASGI config for book_management project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'book_management.settings') application = get_asgi_application()
661012d59719e3422c970f2479d9719ecb5d6489
40132307c631dccbf7aa341eb308f69389715c73
/OLD/idmt/maya/MTD/getInfoByName.py
b34d1be3aea426c52a8e50c35ea69f19dc77fa97
[]
no_license
Bn-com/myProj_octv
be77613cebc450b1fd6487a6d7bac991e3388d3f
c11f715996a435396c28ffb4c20f11f8e3c1a681
refs/heads/master
2023-03-25T08:58:58.609869
2021-03-23T11:17:13
2021-03-23T11:17:13
348,676,742
1
2
null
null
null
null
UTF-8
Python
false
false
744
py
__author__ = 'xuweijian' import maya.cmds as mc class getInfoByName(): def getInfoByScene(self): dict={} fileName = mc.file(q=1, sn=1,shn=1) SceneName=fileName info=SceneName.split('_') SCinfo=[info[1][1:3],info[1][4:7]] dict['project']=info[0] dict['scene']=SCinfo[0] dict['camera']=SCinfo[1] dict['part']=info[2] return dict def getInfoByAsset(self): dict={} fileName = mc.file(q=1, sn=1,shn=1) SceneName=fileName info=SceneName.split('_') SCinfo=[info[1][1:2],info[1][4:6]] dict['project']=info[0] dict['type']=info[1] dict['name']=info[2] dict['part']=info[3] return dict
d83be9292f9ea22d23ead848f56214334727719b
69cefee12d0bd4c374c5a0f0ebb25c6c92e58475
/src/core/geom/prim/box.py
729b0676b2dcc540335185f15922f26bc295a481
[]
no_license
PlumpMath/panda3dstudio
5821353ce5519733f0d75fc518dd97f2e6c1da6c
e736f17bcfb1c597fd4b217610bd5430642eea5a
refs/heads/master
2021-01-25T06:55:38.174353
2017-05-21T14:04:27
2017-05-21T14:04:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,850
py
from .base import * def _get_mesh_density(segments): poly_count = 2 * segments["x"] * segments["y"] poly_count += 2 * segments["x"] * segments["z"] poly_count += 2 * segments["y"] * segments["z"] return poly_count def _define_geom_data(segments, temp=False): geom_data = [] # store PosObjs referring to positions along the box edges, so they can be # shared by adjacent sides; this in turn will ensure that the corresponding # Vertex objects will be merged edge_positions = {} def get_side_data(i): d = {} for sign in (-1, 1): d[sign] = { "normal": tuple(map(lambda x: sign * 1. if x == i else 0., range(3))), "vert_data": {} } return "xyz"[i - 2] + "xyz"[i - 1], d sides = dict(map(get_side_data, range(3))) offsets = {"x": -.5, "y": -.5, "z": 0.} # Define vertex data for plane in sides: axis1, axis2 = plane axis3 = "xyz".replace(axis1, "").replace(axis2, "") coords = {"x": 0., "y": 0., "z": 0.} segs1 = segments[axis1] segs2 = segments[axis2] segs3 = segments[axis3] i1 = "xyz".index(axis1) i2 = "xyz".index(axis2) range1 = xrange(segs1 + 1) range2 = xrange(segs2 + 1) side_pair = sides[plane] for direction in side_pair: vert_id = 0 side = side_pair[direction] vert_data = side["vert_data"] normal = side["normal"] coords[axis3] = (0. if direction == -1 else 1.) + offsets[axis3] offset1 = offsets[axis1] offset2 = offsets[axis2] for i in range2: b = (1. / segs2) * i coords[axis2] = b + offset2 for j in range1: a = (1. / segs1) * j coords[axis1] = a + offset1 pos = tuple(coords[axis] for axis in "xyz") if i in (0, segs2) or j in (0, segs1): k = 0 if direction == -1 else segs3 key_components = {axis1: j, axis2: i, axis3: k} key = tuple(key_components[axis] for axis in "xyz") if key in edge_positions: pos_obj = edge_positions[key] else: pos_obj = PosObj(pos) edge_positions[key] = pos_obj else: pos_obj = PosObj(pos) if temp: vert_data[vert_id] = {"pos": pos_obj, "normal": normal} else: u = (-b if plane == "zx" else a) * direction u += (1. if (direction > 0 if plane == "zx" else direction < 0) else 0.) v = a if plane == "zx" else b vert_data[vert_id] = {"pos": pos_obj, "normal": normal, "uvs": {0: (u, v)}} vert_id += 1 if not temp: smoothing_id = 0 # Define faces for plane in sides: axis1, axis2 = plane segs1 = segments[axis1] segs2 = segments[axis2] side_pair = sides[plane] for direction in side_pair: side = side_pair[direction] vert_data = side["vert_data"] for i in xrange(segs2): for j in xrange(segs1): vi1 = i * (segs1 + 1) + j vi2 = vi1 + 1 vi3 = vi2 + segs1 vi4 = vi3 + 1 vert_ids = (vi1, vi2, vi4) if direction == 1 else (vi1, vi4, vi2) tri_data1 = [vert_data[vi] for vi in vert_ids] vert_ids = (vi1, vi4, vi3) if direction == 1 else (vi1, vi3, vi4) tri_data2 = [vert_data[vi] for vi in vert_ids] if temp: poly_data = (tri_data1, tri_data2) else: tris = (tri_data1, tri_data2) poly_data = {"tris": tris, "smoothing": [(smoothing_id, True)]} geom_data.append(poly_data) if not temp: smoothing_id += 1 return geom_data class TemporaryBox(TemporaryPrimitive): def __init__(self, segments, color, pos): TemporaryPrimitive.__init__(self, "box", color, pos) self._size = {"x": 0., "y": 0., "z": 0.} geom_data = _define_geom_data(segments, True) self.create_geometry(geom_data) self.get_origin().set_sz(.001) def update_size(self, x=None, y=None, z=None): origin = self.get_origin() size = self._size if x is not None: sx = max(abs(x), .001) sy = max(abs(y), .001) origin.set_x((-sx if x < 0. else sx) * .5) origin.set_y((-sy if y < 0. else sy) * .5) if size["x"] != sx: size["x"] = sx origin.set_sx(sx) if size["y"] != sy: size["y"] = sy origin.set_sy(sy) if z is not None: sz = max(abs(z), .001) s = -sz if z < 0. else sz if size["z"] != s: size["z"] = s origin.set_sz(sz) origin.set_z(s if s < 0. else 0.) def get_size(self): return self._size def is_valid(self): return max(self._size.itervalues()) > .001 def finalize(self): pos = self._pivot.get_pos() pivot = self.get_pivot() origin = self.get_origin() x, y, z = origin.get_pos() pos = self.world.get_relative_point(pivot, Point3(x, y, 0.)) pivot.set_pos(self.world, pos) origin.set_x(0.) origin.set_y(0.) return TemporaryPrimitive.finalize(self) class Box(Primitive): def __init__(self, model): prop_ids = ["size_%s" % axis for axis in "xyz"] prop_ids.append("segments") Primitive.__init__(self, "box", model, prop_ids) self._segments = {"x": 1, "y": 1, "z": 1} self._segments_backup = {"x": 1, "y": 1, "z": 1} self._size = {"x": 0., "y": 0., "z": 0.} def define_geom_data(self): return _define_geom_data(self._segments) def create(self, segments): self._segments = segments for step in Primitive.create(self, _get_mesh_density(segments)): yield self.update_initial_coords() def set_segments(self, segments): if self._segments == segments: return False self._segments_backup = self._segments self._segments = segments return True def __update_size(self): size = self._size sx = size["x"] sy = size["y"] sz = size["z"] origin = self.get_origin() origin.set_scale(sx, sy, abs(sz)) origin.set_z(sz if sz < 0. else 0.) self.reset_initial_coords() self.get_geom_data_object().bake_transform() def init_size(self, x, y, z): origin = self.get_origin() size = self._size size["x"] = max(abs(x), .001) size["y"] = max(abs(y), .001) size["z"] = max(abs(z), .001) * (-1. if z < 0. else 1.) self.__update_size() def set_dimension(self, axis, value): if self._size[axis] == value: return False self._size[axis] = value return True def get_side_data(self): side_data = {} side_ids = ("left", "right", "back", "front", "bottom", "top") side_axes = ("x", "x", "y", "y", "z", "z") side_vecs = (Vec3.left(), Vec3.right(), Vec3.back(), Vec3.forward(), Vec3.down(), Vec3.up()) size = self._size.copy() height = size["z"] size["z"] = abs(height) segs = self._segments center = Point3() + Vec3.up() * height * .5 for side_id, side_axis, side_vec in zip(side_ids, side_axes, side_vecs): pos = center + side_vec * size[side_axis] * .5 x, y = [size[axis] for axis in "xyz".replace(side_axis, "")] segs_x, segs_y = [segs[axis] for axis in "xyz".replace(side_axis, "")] side_segs = {"x": segs_x, "y": segs_y} side_data[side_id] = {"pos": pos, "size": (x, y), "segs": side_segs} return side_data def get_data_to_store(self, event_type, prop_id=""): if event_type == "prop_change" and prop_id in self.get_type_property_ids(): data = {} data[prop_id] = {"main": self.get_property(prop_id)} if prop_id == "segments": data.update(self.get_geom_data_backup().get_data_to_store("deletion")) data.update(self.get_geom_data_object().get_data_to_store("creation")) self.remove_geom_data_backup() elif "size" in prop_id: data.update(self.get_geom_data_object().get_property_to_store("subobj_transform", "prop_change", "all")) return data return Primitive.get_data_to_store(self, event_type, prop_id) def cancel_geometry_recreation(self, info): Primitive.cancel_geometry_recreation(self, info) if info == "creation": self._segments = self._segments_backup Mgr.update_remotely("selected_obj_prop", "box", "segments", self._segments) def set_property(self, prop_id, value, restore=""): def update_app(): Mgr.update_remotely("selected_obj_prop", "box", prop_id, self.get_property(prop_id, True)) obj_id = self.get_toplevel_object().get_id() if prop_id == "segments": if restore: segments = value["count"] self.restore_initial_coords(value["pos_data"]) else: segments = self._segments.copy() segments.update(value) change = self.set_segments(segments) if change: if not restore: self.recreate_geometry(_get_mesh_density(segments)) update_app() return change elif "size" in prop_id: axis = prop_id.split("_")[1] change = self.set_dimension(axis, value) if change: task = self.__update_size sort = PendingTasks.get_sort("set_normals", "object") - 1 PendingTasks.add(task, "upd_size", "object", sort, id_prefix=obj_id) self.get_model().update_group_bbox() update_app() return change else: return Primitive.set_property(self, prop_id, value, restore) def get_property(self, prop_id, for_remote_update=False): if prop_id == "segments": if for_remote_update: return self._segments else: return {"count": self._segments, "pos_data": self.get_initial_coords()} elif "size" in prop_id: axis = prop_id.split("_")[1] return self._size[axis] else: return Primitive.get_property(self, prop_id, for_remote_update) def __center_origin(self, adjust_pivot=True): model = self.get_model() origin = self.get_origin() x, y, z = origin.get_pos() pivot = model.get_pivot() if adjust_pivot: pos = self.world.get_relative_point(pivot, Point3(x, y, 0.)) pivot.set_pos(self.world, pos) origin.set_x(0.) origin.set_y(0.) def finalize(self): self.__center_origin() self.__update_size() Primitive.finalize(self) class BoxManager(PrimitiveManager): def __init__(self): PrimitiveManager.__init__(self, "box", custom_creation=True) self._height_axis = V3D(0., 0., 1.) self._draw_plane = None self._draw_plane_normal = V3D() self._dragged_point = Point3() self._tmp_box_origin = None self._created_planes = [] for axis in "xyz": self.set_property_default("size_%s" % axis, 1.) self.set_property_default("temp_segments", {"x": 1, "y": 1, "z": 1}) self.set_property_default("segments", {"x": 1, "y": 1, "z": 1}) Mgr.add_app_updater("box_to_planes", self.__convert_boxes_to_planes) def setup(self): creation_phases = [] creation_phase = (self.__start_creation_phase1, self.__creation_phase1) creation_phases.append(creation_phase) creation_phase = (self.__start_creation_phase2, self.__creation_phase2) creation_phases.append(creation_phase) status_text = {} status_text["obj_type"] = "box" status_text["phase1"] = "draw out the base" status_text["phase2"] = "draw out the height" return PrimitiveManager.setup(self, creation_phases, status_text) def create_temp_primitive(self, color, pos): segs = self.get_property_defaults()["segments"] tmp_segs = self.get_property_defaults()["temp_segments"] segments = dict((axis, min(segs[axis], tmp_segs[axis])) for axis in "xyz") tmp_prim = TemporaryBox(segments, color, pos) return tmp_prim def create_primitive(self, model): prim = Box(model) segments = self.get_property_defaults()["segments"] poly_count = _get_mesh_density(segments) progress_steps = (poly_count // 20) * 4 gradual = progress_steps > 80 for step in prim.create(segments): if gradual: yield yield prim, gradual def init_primitive_size(self, prim, size=None): if size is None: prop_defaults = self.get_property_defaults() x, y, z = [prop_defaults["size_%s" % axis] for axis in "xyz"] else: x, y, z = [size[axis] for axis in "xyz"] prim.init_size(x, y, z) def __start_creation_phase1(self): """ Start drawing out box base """ tmp_prim = self.get_temp_primitive() origin = tmp_prim.get_origin() self._height_axis = self.world.get_relative_vector(origin, V3D(0., 0., 1.)) def __creation_phase1(self): """ Draw out box base """ screen_pos = self.mouse_watcher.get_mouse() point = Mgr.get(("grid", "point_at_screen_pos"), screen_pos) if not point: return grid_origin = Mgr.get(("grid", "origin")) self._dragged_point = self.world.get_relative_point(grid_origin, point) tmp_prim = self.get_temp_primitive() pivot = tmp_prim.get_pivot() x, y, z = pivot.get_relative_point(grid_origin, point) tmp_prim.update_size(x, y) def __start_creation_phase2(self): """ Start drawing out box height """ cam = self.cam() cam_forward_vec = self.world.get_relative_vector(cam, Vec3.forward()) normal = V3D(cam_forward_vec - cam_forward_vec.project(self._height_axis)) # If the plane normal is the null vector, the axis must be parallel to # the forward camera direction. In this case, a new normal can be chosen # arbitrarily, e.g. a horizontal vector perpendicular to the axis. if normal.length_squared() < .0001: x, y, z = self._height_axis # if the height axis is nearly vertical, any horizontal vector will # qualify as plane normal, e.g. a vector pointing in the the positive # X-direction; otherwise, the plane normal can be computed as # perpendicular to the axis normal = V3D(1., 0., 0.) if max(abs(x), abs(y)) < .0001 else V3D(y, -x, 0.) self._draw_plane = Plane(normal, self._dragged_point) if self.cam.lens_type == "persp": cam_pos = cam.get_pos(self.world) if normal * V3D(self._draw_plane.project(cam_pos) - cam_pos) < .0001: normal *= -1. self._draw_plane_normal = normal def __creation_phase2(self): """ Draw out box height """ if not self.mouse_watcher.has_mouse(): return screen_pos = self.mouse_watcher.get_mouse() cam = self.cam() lens_type = self.cam.lens_type near_point = Point3() far_point = Point3() self.cam.lens.extrude(screen_pos, near_point, far_point) rel_pt = lambda point: self.world.get_relative_point(cam, point) near_point = rel_pt(near_point) far_point = rel_pt(far_point) if lens_type == "persp": # the height cannot be calculated if the cursor points away from the plane # in which it is drawn out if V3D(far_point - near_point) * self._draw_plane_normal < .0001: return point = Point3() if not self._draw_plane.intersects_line(point, near_point, far_point): return tmp_prim = self.get_temp_primitive() pivot = tmp_prim.get_pivot() z = pivot.get_relative_point(self.world, point)[2] tmp_prim.update_size(z=z) def create_custom_primitive(self, name, x, y, z, segments, pos, inverted=False, rel_to_grid=False, gradual=False): model_id = self.generate_object_id() model = Mgr.do("create_model", model_id, name, pos) if not rel_to_grid: pivot = model.get_pivot() pivot.clear_transform() pivot.set_pos(self.world, pos) next_color = self.get_next_object_color() model.set_color(next_color, update_app=False) prim = Box(model) for step in prim.create(segments): if gradual: yield prim.init_size(x, y, z) prim.get_geom_data_object().finalize_geometry() model.set_geom_object(prim) self.set_next_object_color() if inverted: prim.set_property("normal_flip", True) yield model def __boxes_to_planes_conversion(self): selection = Mgr.get("selection", "top") objs = selection[:] obj_names = GlobalData["obj_names"] box_names = [] poly_count = 0 for obj in objs: geom_data_obj = obj.get_geom_object().get_geom_data_object() poly_count += len(geom_data_obj.get_subobjects("poly")) progress_steps = (poly_count // 20) * 4 gradual = progress_steps > 80 if gradual: Mgr.show_screenshot() GlobalData["progress_steps"] = progress_steps planes = self._created_planes side_hprs = {"left": VBase3(0., 90., -90.), "right": VBase3(0., 90., 90.), "back": VBase3(0., 90., 0.), "front": VBase3(180., 90., 0.), "bottom": VBase3(180., 180., 0.), "top": VBase3(0., 0., 0.)} for obj in objs: group = obj.get_group() parent = obj.get_parent() material = obj.get_material() box_name = obj.get_name() box_names.append(box_name) box_origin = NodePath(obj.get_origin().node().make_copy()) box_origin.set_transform(obj.get_origin().get_net_transform()) self._tmp_box_origin = box_origin box = obj.get_geom_object() side_data = box.get_side_data() for side_id, data in side_data.iteritems(): name = box_name + " " + side_id name = get_unique_name(name, obj_names) obj_names.append(name) pos = data["pos"] x, y = data["size"] segments = data["segs"] inverted = box.has_flipped_normals() creator = Mgr.do("create_custom_plane", name, x, y, segments, pos, inverted, gradual=gradual) for plane in creator: if gradual: yield True plane.register(restore=False) planes.append(plane) plane_pivot = plane.get_pivot() plane_pivot.set_hpr(side_hprs[side_id]) plane_pivot.reparent_to(box_origin) plane_pivot.wrt_reparent_to(Mgr.get("object_root")) if group: plane.set_group(group.get_id()) elif parent: plane.set_parent(parent.get_id()) if material: plane.set_material(material) box_origin.remove_node() Mgr.exit_state("processing") self._tmp_box_origin = None Mgr.do("update_history_time") obj_data = {} for obj in objs: obj_data[obj.get_id()] = obj.get_data_to_store("deletion") obj.destroy(add_to_hist=False) for plane in planes: hist_data = plane.get_data_to_store("creation") hist_data["selection_state"] = {"main": True} obj_data[plane.get_id()] = hist_data selection.add(planes, add_to_hist=False, update=False) self._created_planes = [] if len(objs) == 1: event_descr = 'Make planes from box "%s"' % box_names[0] else: event_descr = 'Make planes from boxes:\n' event_descr += "".join(['\n "%s"' % name for name in box_names]) event_data = {"objects": obj_data} event_data["object_ids"] = set(Mgr.get("object_ids")) Mgr.do("add_history", event_descr, event_data, update_time_id=False) yield False def __cancel_conversion_process(self, info): if info == "convert_boxes_to_planes": for obj in self._created_planes: obj.destroy(unregister=False, add_to_hist=False) self._created_planes = [] if self._tmp_box_origin: self._tmp_box_origin.remove_node() self._tmp_box_origin = None def __convert_boxes_to_planes(self): Mgr.do("create_registry_backups") Mgr.do("create_id_range_backups") process = self.__boxes_to_planes_conversion() if process.next(): handler = self.__cancel_conversion_process Mgr.add_notification_handler("long_process_cancelled", "box_mgr", handler, once=True) task = lambda: Mgr.remove_notification_handler("long_process_cancelled", "box_mgr") task_id = "remove_notification_handler" PendingTasks.add(task, task_id, "object", id_prefix="box_mgr", sort=100) descr = "Converting..." Mgr.do_gradually(process, "convert_boxes_to_planes", descr, cancellable=True) MainObjects.add_class(BoxManager)
1df2a7f99628c9b74c20ae77a1c0534f60c03ee2
46f2834ae92da9e17463def0c635f75bf05886a1
/abc/abc138/D/main.py
9b51ace7c6d8605a5b3a4db56c898dc568cb7d84
[]
no_license
replu/atcoder
bf3da10c937c955ca1bc3fa33b8f24c74d2d6c50
a6183d03355058bccc2b89db5e07b7f72598fea3
refs/heads/master
2023-03-30T15:03:47.879783
2021-03-28T17:08:19
2021-03-28T17:08:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
979
py
#!/usr/bin/env python3 import sys def solve(N: int, Q: int, a: "List[int]", b: "List[int]", p: "List[int]", x: "List[int]"): return # Generated by 1.1.7.1 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template) def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() N = int(next(tokens)) # type: int Q = int(next(tokens)) # type: int a = [int()] * (N - 1) # type: "List[int]" b = [int()] * (N - 1) # type: "List[int]" for i in range(N - 1): a[i] = int(next(tokens)) b[i] = int(next(tokens)) p = [int()] * (Q) # type: "List[int]" x = [int()] * (Q) # type: "List[int]" for i in range(Q): p[i] = int(next(tokens)) x[i] = int(next(tokens)) solve(N, Q, a, b, p, x) if __name__ == '__main__': main()
acd05ffa3bcc918a2abbf4312a2812f07553c039
649bd422025e421d86025743eac324c9b882a2e8
/exam/1_three-dimensional_atomic_system/dump/phasetrans/temp209_3500.py
5fa9737008648c72e1023832853fbdab46d1d6c0
[]
no_license
scheuclu/atom_class
36ddee1f6a5995872e858add151c5942c109847c
0c9a8c63d9b38898c1869fe8983126cef17662cd
refs/heads/master
2021-01-21T10:52:28.448221
2017-03-07T23:04:41
2017-03-07T23:04:41
83,489,471
0
0
null
null
null
null
UTF-8
Python
false
false
68,815
py
ITEM: TIMESTEP 3500 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp -1.7138210531037575e+02 2.1858210531042008e+02 -1.7138210531037575e+02 2.1858210531042008e+02 -1.7138210531037575e+02 2.1858210531042008e+02 ITEM: ATOMS id type xs ys zs 37 1 0.526386 0.0125299 0.0148382 1848 1 0.61859 0.041269 0.0431283 911 1 0.456585 0.0651106 0.0177887 563 1 0.724494 0.061223 0.0130083 1405 1 0.299137 0.0750985 0.01415 665 1 0.77906 0.498803 0.112953 187 1 0.703163 0.166028 0.0209972 300 1 0.300908 0.491011 0.496003 709 1 0.252767 0.418633 0.477177 1109 1 0.861993 0.296465 0.00476949 778 1 0.574025 0.254773 0.0124845 1449 1 0.159708 0.30292 0.0121509 1312 1 0.295728 0.253473 0.0269219 421 1 0.193101 0.0237521 0.155931 284 1 0.775171 0.313088 0.00590561 1569 1 0.859539 0.31749 0.0214392 691 1 0.114557 0.322269 0.00432635 1323 1 0.259933 0.327337 0.0404397 564 1 0.343064 0.356586 0.036614 1994 1 0.821942 0.114193 0.484088 1366 1 0.278551 0.379666 0.487161 800 1 0.564391 0.425216 0.0348902 1179 1 0.625416 0.457722 0.0385562 1738 1 0.607836 0.427575 0.00559167 1150 1 0.0757371 0.488466 0.0266354 1734 1 0.627131 0.163478 0.0120844 399 1 0.964535 0.422961 0.480119 1049 1 0.236222 0.472889 0.00748955 188 1 0.342177 0.0143592 0.0206597 1806 1 0.240182 0.0328638 0.0459125 1886 1 0.00076344 0.054908 0.0353548 1501 1 0.0322404 0.0627317 0.0168144 1889 1 0.26022 0.140749 0.00913824 817 1 0.826063 0.13226 0.0134929 776 1 0.211001 0.147697 0.0112749 429 1 0.356179 0.146828 0.012872 1206 1 0.737288 0.204296 0.0414402 1664 1 0.0405527 0.262179 0.0234951 575 1 0.554853 0.310621 0.0216895 1064 1 0.00101327 0.495672 0.286583 1947 1 0.00537831 0.00357852 0.392817 1053 1 0.699016 0.35797 0.0320762 1214 1 0.25502 0.367229 0.0165674 1972 1 0.688914 0.416941 0.0568715 673 1 0.303891 0.494971 0.057364 73 1 0.681108 0.396356 0.00181737 1760 1 0.179844 0.464742 0.0575061 554 1 0.1713 0.484147 0.00719237 1022 1 0.688546 0.473262 0.0251384 660 1 0.00812171 0.0809588 0.498008 867 1 0.906503 0.0115078 0.0126497 1803 1 0.671217 0.0218457 0.0400771 1055 1 0.818082 0.0160713 0.0798477 1890 1 0.979502 0.0234739 0.0812527 1822 1 0.228481 0.0767032 0.0484762 77 1 0.927317 0.108717 0.0276405 863 1 0.148027 0.171151 0.0915671 1897 1 0.682613 0.157988 0.083264 1191 1 0.932939 0.119596 0.0475241 445 1 0.00305702 0.124527 0.0416175 1640 1 0.432035 0.158439 0.0377118 1238 1 0.562066 0.19046 0.0741604 341 1 0.0172115 0.216007 0.0343712 793 1 0.570113 0.194919 0.0681847 62 1 0.0664184 0.30017 0.0261862 50 1 0.293232 0.305763 0.021898 957 1 0.752698 0.317331 0.0411497 1245 1 0.635311 0.406241 0.00480324 1523 1 0.761121 0.416055 0.0651185 1752 1 0.516495 0.430969 0.0590714 699 1 0.513082 0.468619 0.0789045 1082 1 0.16382 0.464943 0.0697651 1917 1 0.196303 0.48661 0.0531354 849 1 0.147426 0.00546576 0.338486 1271 1 0.657914 0.0208386 0.0637206 968 1 0.268071 0.140428 0.0399058 1749 1 0.699359 0.168991 0.0546152 68 1 0.959605 0.150601 0.0764109 1891 1 0.228484 0.135655 0.0517556 908 1 0.386056 0.128684 0.0809426 1328 1 0.517247 0.190889 0.0341375 443 1 0.595421 0.20289 0.082162 525 1 0.476414 0.200846 0.0879292 1453 1 0.845629 0.224506 0.0416786 1925 1 0.697109 0.220633 0.0653882 295 1 0.347854 0.236751 0.0676578 1638 1 0.994776 0.258192 0.068115 1244 1 0.485256 0.302527 0.0681909 1673 1 0.494695 0.312999 0.106356 1333 1 0.737544 0.334951 0.0934652 1762 1 0.647584 0.332066 0.0561844 1167 1 0.265719 0.36821 0.0735272 645 1 0.323153 0.393402 0.066371 171 1 0.770247 0.388638 0.101891 1717 1 0.305499 0.407197 0.100384 2045 1 0.342025 0.409383 0.0596619 1283 1 0.00573049 0.411414 0.124295 383 1 0.396425 0.43761 0.0721333 1125 1 0.280903 0.46898 0.0763099 1338 1 0.284977 0.469332 0.0409206 1308 1 0.568523 0.0546802 0.0456526 1255 1 0.293287 0.0669006 0.0497038 774 1 0.862222 0.0473179 0.0758791 1782 1 0.471894 0.119784 0.0958749 612 1 0.195504 0.147433 0.122454 1856 1 0.783752 0.165394 0.106242 1036 1 0.0882586 0.262301 0.0776204 292 1 0.540743 0.281276 0.0767614 1817 1 0.136146 0.313395 0.0671727 1983 1 0.257858 0.338567 0.0715756 1459 1 0.664226 0.385716 0.0780798 1893 1 0.898292 0.403078 0.0480143 1424 1 0.118379 0.452123 0.0736376 365 1 0.49982 0.462859 0.0584243 323 1 0.896069 0.496399 0.0985225 1705 1 0.529347 0.0478694 0.0943626 1028 1 0.861888 0.0759532 0.10245 959 1 0.324863 0.124745 0.103 568 1 0.880965 0.115014 0.0961953 1992 1 0.861677 0.201895 0.114722 390 1 0.896432 0.196646 0.0856564 1525 1 0.962358 0.299911 0.114398 72 1 0.186895 0.240234 0.0642211 797 1 0.831865 0.313706 0.0700918 1375 1 0.498914 0.41569 0.0861595 1973 1 0.888494 0.48695 0.0798269 2037 1 0.410989 0.011356 0.132183 220 1 0.121744 0.0475725 0.127499 460 1 0.581276 0.0374232 0.141503 1730 1 0.731379 0.062392 0.152632 1577 1 0.147536 0.129483 0.127239 990 1 0.954156 0.125603 0.128174 205 1 0.610248 0.167773 0.139487 814 1 0.973937 0.135311 0.0933918 1327 1 0.28859 0.21298 0.111594 2018 1 0.892511 0.260536 0.133504 1732 1 0.306721 0.231285 0.126127 500 1 0.305401 0.358253 0.118303 1066 1 0.36117 0.33769 0.129609 890 1 0.311077 0.400822 0.131719 1196 1 0.348011 0.37539 0.108964 543 1 0.978683 0.411674 0.135488 1911 1 0.181464 0.453931 0.113896 1334 1 0.531887 0.249752 0.486031 1482 1 0.4178 0.0294063 0.137524 370 1 0.395729 0.0610513 0.176718 1062 1 0.580466 0.0532957 0.117438 2022 1 0.851257 0.0646931 0.152123 1713 1 0.870964 0.0522385 0.152946 380 1 0.422998 0.0909225 0.154101 577 1 0.666617 0.0955231 0.134018 1936 1 0.327557 0.137291 0.145614 11 1 0.0497036 0.163977 0.166872 1940 1 0.240984 0.175812 0.138713 947 1 0.195205 0.175877 0.120903 482 1 0.211006 0.208337 0.123364 519 1 0.914113 0.190409 0.163616 1658 1 0.493036 0.234163 0.128656 1364 1 0.972714 0.21108 0.130214 1982 1 0.23161 0.222178 0.128891 1847 1 0.468772 0.229019 0.132528 1478 1 0.27788 0.248625 0.141643 914 1 0.391374 0.292657 0.159035 576 1 0.322269 0.304094 0.178058 766 1 0.403202 0.321749 0.161076 122 1 0.80109 0.351773 0.1501 1083 1 0.0496852 0.35898 0.111009 1502 1 0.103641 0.352201 0.143498 1468 1 0.134783 0.36658 0.165901 720 1 0.278606 0.469523 0.121028 1839 1 0.0734557 0.449061 0.481359 170 1 0.369739 0.0628003 0.136385 61 1 0.322938 0.250746 0.489329 1145 1 0.522079 0.489672 0.388267 1357 1 0.207506 0.0766266 0.158006 895 1 0.346222 0.0794373 0.160418 1807 1 0.455977 0.144321 0.176083 1635 1 0.26869 0.177579 0.172864 796 1 0.714469 0.170705 0.150405 1695 1 0.323077 0.211825 0.170468 1689 1 0.612377 0.228788 0.181619 74 1 0.732852 0.266446 0.135713 1132 1 0.75771 0.269354 0.155161 1788 1 0.602396 0.398363 0.129078 917 1 0.826855 0.354052 0.182911 1235 1 0.0724385 0.42217 0.176742 381 1 0.173174 0.416 0.143719 1309 1 0.963695 0.41926 0.127632 579 1 0.237682 0.447632 0.174536 756 1 0.381899 0.475136 0.177123 807 1 0.448513 0.496344 0.15464 1091 1 0.495809 0.499548 0.135722 1234 1 0.536502 0.0425028 0.183764 114 1 0.544063 0.00210225 0.175938 574 1 0.895881 0.100262 0.195455 1306 1 0.87614 0.0757815 0.179191 1246 1 0.72698 0.1087 0.168874 1443 1 0.509985 0.137987 0.18127 936 1 0.715619 0.160861 0.14319 63 1 0.347952 0.216149 0.143976 1257 1 0.199631 0.334691 0.175889 1102 1 0.747716 0.278514 0.159343 444 1 0.716968 0.288348 0.183975 1185 1 0.0355913 0.402037 0.188345 521 1 0.782571 0.420657 0.147235 1487 1 0.292055 0.433553 0.167152 827 1 0.510191 0.463286 0.185755 992 1 0.801621 0.0429025 0.192382 1474 1 0.753049 0.00255897 0.162881 571 1 0.907753 0.0314589 0.1769 137 1 0.708306 0.0735381 0.192423 836 1 0.795696 0.0489548 0.199531 1773 1 0.916331 0.0971929 0.175235 474 1 0.336349 0.157247 0.172912 643 1 0.017014 0.233577 0.191367 889 1 0.766873 0.22813 0.196842 1791 1 0.167123 0.29501 0.208608 1068 1 0.485523 0.283309 0.216943 662 1 0.210336 0.330807 0.186606 447 1 0.637507 0.350973 0.184325 1320 1 0.287225 0.38295 0.17654 1097 1 0.713272 0.376753 0.203387 722 1 0.0699323 0.394135 0.192486 1812 1 0.544743 0.418837 0.15863 167 1 0.995568 0.409694 0.203279 1582 1 0.387072 0.428626 0.207034 1483 1 0.989988 0.407501 0.18923 933 1 0.346197 0.428893 0.199067 1881 1 0.129839 0.499712 0.184052 1037 1 0.694566 0.00730142 0.23876 956 1 0.952605 0.0784854 0.203791 59 1 0.997634 0.128267 0.199759 1411 1 0.981628 0.1335 0.223561 2040 1 0.472895 0.195937 0.165712 266 1 0.798495 0.264212 0.190424 1237 1 0.773022 0.238722 0.213116 38 1 0.746425 0.265648 0.223355 1232 1 0.125516 0.303045 0.205699 976 1 0.60631 0.350185 0.221899 1184 1 0.870101 0.350651 0.243544 1039 1 0.300543 0.472194 0.22696 1541 1 0.162785 0.0124261 0.225408 1690 1 0.24862 0.0649911 0.227976 1829 1 0.430083 0.0401797 0.245903 1837 1 0.277253 0.0452507 0.231491 1901 1 0.572978 0.0959414 0.232463 1878 1 0.0406789 0.11108 0.241935 1883 1 0.732522 0.131278 0.206379 1513 1 0.934541 0.177243 0.231264 1950 1 0.0920938 0.173459 0.261037 1838 1 0.439372 0.187308 0.265252 449 1 0.672146 0.250621 0.255178 1898 1 0.853183 0.214695 0.24234 67 1 0.956431 0.31295 0.21185 1928 1 0.318273 0.344818 0.228582 1625 1 0.390493 0.34038 0.25748 1186 1 0.470831 0.361521 0.22428 1545 1 0.156508 0.390618 0.250137 1968 1 0.16291 0.429452 0.235085 583 1 0.202882 0.494225 0.0441237 636 1 0.801744 0.493872 0.352841 750 1 0.34685 0.017589 0.256159 1857 1 0.588054 0.0662173 0.24833 1225 1 0.588346 0.0670963 0.230901 620 1 0.402487 0.154412 0.21269 96 1 0.980458 0.172387 0.252251 1604 1 0.677058 0.172882 0.250709 1827 1 0.00120102 0.153778 0.306164 897 1 0.577634 0.190541 0.219717 1135 1 0.395389 0.296058 0.243679 2001 1 0.113882 0.350063 0.25296 1639 1 0.332017 0.395567 0.264663 324 1 0.313272 0.406236 0.277321 121 1 0.989369 0.441384 0.263525 404 1 0.550087 0.495121 0.233245 1084 1 0.734321 0.486526 0.261528 1339 1 0.639915 0.325764 0.0141741 281 1 0.212419 0.0177028 0.296645 846 1 0.0595212 0.0587068 0.235817 1914 1 0.0615928 0.135566 0.261034 1464 1 0.173763 0.113668 0.247642 628 1 0.618748 0.145577 0.275881 834 1 0.274429 0.144854 0.262562 1230 1 0.746763 0.169139 0.262818 837 1 0.0371554 0.17141 0.269788 308 1 0.160167 0.188847 0.243821 1725 1 0.381842 0.288427 0.272425 1578 1 0.410631 0.281574 0.278014 1341 1 0.1761 0.271552 0.280738 240 1 0.195889 0.320546 0.26636 1669 1 0.460383 0.299625 0.2625 1918 1 0.74317 0.304704 0.277361 765 1 0.715643 0.397812 0.252794 1016 1 0.850838 0.418028 0.245769 725 1 0.941162 0.403287 0.268022 742 1 0.62791 0.429496 0.249343 1874 1 0.508174 0.481862 0.26094 1876 1 0.865504 0.488771 0.289832 1954 1 0.181742 0.00335248 0.271384 1969 1 0.418558 0.470052 0.273084 942 1 0.679567 0.0390118 0.297706 1035 1 0.121258 0.0825247 0.278112 176 1 0.26196 0.0651249 0.26291 820 1 0.277434 0.102091 0.269192 1547 1 0.253182 0.0661933 0.27287 595 1 0.390035 0.0820978 0.266018 536 1 0.707688 0.101658 0.297815 719 1 0.0229175 0.178372 0.281167 379 1 0.0641136 0.216475 0.25871 392 1 0.712793 0.15172 0.288317 1263 1 0.613844 0.227358 0.242348 684 1 0.657009 0.205087 0.313252 1816 1 0.57367 0.225197 0.261075 1330 1 0.227527 0.365776 0.289332 366 1 0.726593 0.362787 0.261177 1144 1 0.857468 0.372202 0.260348 1544 1 0.722138 0.375373 0.275969 1430 1 0.822019 0.407785 0.261982 1787 1 0.503619 0.453757 0.294863 491 1 0.0815504 0.486074 0.300359 566 1 0.621695 0.458263 0.255787 1779 1 0.221506 0.15675 0.282132 385 1 0.334063 0.156632 0.305622 1932 1 0.831524 0.171677 0.292458 769 1 0.386357 0.213803 0.278391 1463 1 0.57336 0.237015 0.324263 1748 1 0.749522 0.246275 0.322115 1472 1 0.366574 0.316464 0.302037 1978 1 0.0172933 0.358608 0.319495 406 1 0.631654 0.337036 0.309995 1701 1 0.984988 0.346052 0.272794 1500 1 0.638651 0.343106 0.308193 255 1 0.71411 0.358695 0.327031 1261 1 0.788479 0.364294 0.28718 1054 1 0.642752 0.372831 0.299742 2013 1 0.0533359 0.415352 0.301142 1213 1 0.642739 0.465444 0.290011 333 1 0.593636 0.474313 0.304215 844 1 0.625068 0.021862 0.30053 713 1 0.542668 0.0621124 0.347574 1224 1 0.151476 0.185535 0.362139 1014 1 0.939953 0.197357 0.341425 1915 1 0.948617 0.198803 0.289916 570 1 0.578791 0.210401 0.331731 1413 1 0.413335 0.252084 0.313975 896 1 0.832589 0.259057 0.353133 539 1 0.870489 0.377418 0.36721 232 1 0.202403 0.399407 0.314738 733 1 0.191269 0.458202 0.347473 1528 1 0.53231 0.495505 0.0199044 600 1 0.918957 0.0210117 0.375237 53 1 0.63417 0.0269231 0.314102 944 1 0.895997 0.0591897 0.350163 1197 1 0.185551 0.142303 0.375745 780 1 0.155465 0.127174 0.342458 506 1 0.431884 0.145336 0.360957 1254 1 0.458149 0.189687 0.305766 1902 1 0.662376 0.169289 0.35238 1085 1 0.303961 0.216121 0.364095 199 1 0.138968 0.219819 0.360203 1579 1 0.608277 0.239253 0.399098 1351 1 0.446966 0.273359 0.345422 98 1 0.430232 0.275705 0.338933 1172 1 0.484478 0.28317 0.34696 1611 1 0.751114 0.320801 0.342187 998 1 0.587178 0.322093 0.304438 811 1 0.236287 0.360282 0.351527 931 1 0.468652 0.40738 0.355031 1621 1 0.0270991 0.436493 0.362561 1231 1 0.11215 0.421344 0.344171 1961 1 0.431246 0.395946 0.353284 132 1 0.560882 0.441651 0.353621 1402 1 0.953589 0.404075 0.343939 761 1 0.612909 0.486231 0.351658 1006 1 0.894426 0.470814 0.444248 1706 1 0.518327 0.0261288 0.354816 451 1 0.741957 0.0489234 0.336896 2011 1 0.296731 0.133794 0.35762 997 1 0.0564654 0.178412 0.358607 1260 1 0.130848 0.198965 0.368487 1802 1 0.852678 0.246435 0.389644 943 1 0.111299 0.27733 0.349936 1697 1 0.78979 0.370884 0.334098 546 1 0.579986 0.364249 0.354827 486 1 0.700838 0.368164 0.36033 915 1 0.366811 0.404084 0.318414 1407 1 0.410202 0.463241 0.373439 1957 1 0.468607 0.446576 0.348685 484 1 0.716154 0.463556 0.361691 1511 1 0.91264 0.44004 0.334055 229 1 0.946192 0.00644479 0.367241 1798 1 0.28597 0.0674861 0.34379 706 1 0.0253413 0.0824442 0.369219 1841 1 0.335184 0.101612 0.350942 1659 1 0.743115 0.138043 0.356749 1148 1 0.44114 0.115568 0.40163 573 1 0.143982 0.220204 0.375424 1352 1 0.847929 0.192657 0.399399 2020 1 0.542054 0.230875 0.364207 18 1 0.216436 0.294757 0.374029 772 1 0.626141 0.347718 0.343593 711 1 0.642221 0.319319 0.3658 1624 1 0.265964 0.327623 0.402271 596 1 0.391119 0.339841 0.363032 340 1 0.918415 0.384107 0.348541 142 1 0.76742 0.403073 0.348621 46 1 0.73509 0.417214 0.42859 1964 1 0.391321 0.421281 0.361911 446 1 0.67206 0.42502 0.387269 110 1 0.840995 0.42752 0.377054 1126 1 0.199848 0.493906 0.113126 1979 1 0.985454 0.0337928 0.415788 1326 1 0.0584838 0.0450533 0.423291 489 1 0.935095 0.127473 0.403379 534 1 0.511793 0.129171 0.415347 9 1 0.630368 0.126322 0.390013 685 1 0.46683 0.180031 0.394176 1356 1 0.702487 0.218941 0.390176 297 1 0.393243 0.355148 0.405411 1200 1 0.804272 0.358511 0.400977 1875 1 0.0250826 0.408265 0.378116 1239 1 0.76935 0.42841 0.395831 1506 1 0.427035 0.391964 0.387687 892 1 0.114591 0.477089 0.386378 813 1 0.13156 0.474727 0.412473 1250 1 0.549323 0.0168639 0.493876 920 1 0.255321 0.0238823 0.393062 23 1 0.570509 0.011873 0.408862 191 1 0.557202 0.0817128 0.426411 1476 1 0.581132 0.0883823 0.430376 1358 1 0.623179 0.163355 0.420241 434 1 0.0320096 0.145589 0.401529 1041 1 0.119983 0.137126 0.416712 1509 1 0.636546 0.152613 0.398406 1001 1 0.440227 0.209425 0.434999 1586 1 0.497742 0.250169 0.434659 1163 1 0.57648 0.284175 0.422593 798 1 0.816648 0.271779 0.365507 375 1 0.271469 0.343671 0.429333 1378 1 0.264551 0.390454 0.422511 90 1 0.966345 0.395512 0.392158 904 1 0.569738 0.439602 0.424861 1009 1 0.62396 0.448156 0.443045 856 1 0.0909231 0.499201 0.40834 1546 1 0.637567 0.00368372 0.470962 1486 1 0.675803 0.0492677 0.410599 1866 1 0.997492 0.0387857 0.437056 201 1 0.364111 0.0860163 0.428872 1864 1 0.371658 0.0974585 0.423471 698 1 0.985774 0.1578 0.440987 900 1 0.741933 0.156704 0.420521 777 1 0.406107 0.146926 0.430245 1116 1 0.339722 0.212132 0.433026 593 1 0.475673 0.2283 0.463117 423 1 0.43451 0.273722 0.425894 609 1 0.609848 0.258704 0.425897 39 1 0.9896 0.281123 0.419554 1615 1 0.43309 0.307386 0.404697 1629 1 0.835095 0.301706 0.409256 1661 1 0.115849 0.358888 0.433967 1795 1 0.725579 0.35061 0.45074 1268 1 0.156952 0.423267 0.438241 2043 1 0.424435 0.408652 0.400028 981 1 0.61054 0.0579737 0.446094 1674 1 0.25914 0.0946861 0.455364 1159 1 0.653826 0.110364 0.434264 1832 1 0.621236 0.126152 0.488504 1110 1 0.628451 0.191185 0.429871 1733 1 0.270815 0.163844 0.454891 695 1 0.627647 0.150208 0.460377 676 1 0.539744 0.226406 0.466235 462 1 0.756531 0.240174 0.442464 388 1 0.293288 0.263069 0.439886 996 1 0.784 0.30978 0.486403 2033 1 0.621145 0.367388 0.46303 1211 1 0.79492 0.413144 0.430418 126 1 0.912779 0.37927 0.471307 1105 1 0.201093 0.420421 0.45437 465 1 0.204391 0.477661 0.447549 1771 1 0.657009 0.462298 0.458775 209 1 0.907869 0.460555 0.393258 311 1 0.00169978 0.0205474 0.230054 118 1 0.140337 0.0354995 0.487565 508 1 0.257665 0.0841476 0.48181 1606 1 0.367433 0.495081 0.0215278 149 1 0.852597 0.0995409 0.479357 1273 1 0.436386 0.127794 0.475623 125 1 0.988543 0.136614 0.452844 751 1 0.123272 0.133621 0.466242 1707 1 0.459829 0.181968 0.470341 1844 1 0.0229065 0.155007 0.492569 950 1 0.520117 0.14909 0.494856 1810 1 0.449844 0.20402 0.483241 1754 1 0.835335 0.191805 0.48061 2019 1 0.81476 0.322264 0.480119 1207 1 0.384924 0.33355 0.475302 25 1 0.146036 0.216999 0.496618 1078 1 0.82057 0.355683 0.455428 692 1 0.792979 0.400799 0.470099 217 1 0.351407 0.46757 0.467386 367 1 0.175419 0.45168 0.499901 1536 1 0.227379 0.49695 0.480599 384 1 0.949611 0.460067 0.463228 1416 1 0.894323 0.158149 0.489418 1763 1 0.425328 0.0168201 0.496882 606 1 0.307346 0.319709 0.491978 1157 1 0.0143212 0.0336522 0.4719 1650 1 0.948488 0.0383907 0.474442 955 1 0.711137 0.0921486 0.48393 903 1 0.918859 0.0861859 0.489071 1317 1 0.662427 0.482518 0.358269 984 1 0.836229 0.135859 0.476618 1877 1 0.615572 0.0072142 0.222345 1610 1 0.522706 0.0116992 0.0977406 1576 1 0.06048 0.483591 0.117668 1276 1 0.707841 0.246428 0.475152 1655 1 0.751349 0.234482 0.495826 1612 1 0.0761933 0.0316988 0.129802 1553 1 0.553494 0.0316144 0.395111 702 1 0.978143 0.202708 0.493769 1251 1 0.943796 0.483089 0.00293176 1262 1 0.744197 0.0864972 0.498373 507 1 0.774222 0.476984 0.00201014 1376 1 0.901124 0.470395 0.000434215 155 1 0.945546 0.428448 0.0019166 1910 1 0.918748 0.00508635 0.660223 1161 1 0.32937 0.0363879 0.767221 400 1 0.939811 0.0449434 0.539176 472 1 0.955921 0.0705955 0.518583 2036 1 0.00749938 0.344102 0.504185 771 1 0.201958 0.155271 0.507129 1515 1 0.525017 0.400043 0.994731 179 1 0.957896 0.157861 0.517591 677 1 0.0849944 0.175271 0.503416 578 1 0.596089 0.157135 0.50582 1824 1 0.964757 0.173698 0.519882 1198 1 0.579818 0.0121248 0.595119 1804 1 0.224826 0.00448764 0.576947 1065 1 0.425105 0.141999 0.524106 252 1 0.611648 0.26723 0.54327 103 1 0.520824 0.393958 0.517294 273 1 0.729191 0.395303 0.516364 256 1 0.390033 0.070384 0.99622 934 1 0.502671 0.449045 0.523582 1119 1 0.729289 0.494154 0.512634 2000 1 0.787272 0.435288 0.507605 322 1 0.435265 0.0766063 0.531388 622 1 0.323324 0.093848 0.508818 999 1 0.123292 0.338077 0.996655 1390 1 0.761379 0.116591 0.538261 2030 1 0.821122 0.176986 0.5491 1173 1 0.0725029 0.205885 0.530745 1951 1 0.94442 0.24901 0.532233 75 1 0.210208 0.285656 0.554308 1965 1 0.471292 0.239032 0.530977 1540 1 0.0896024 0.315526 0.536505 1757 1 0.525388 0.36919 0.545062 353 1 0.343047 0.431756 0.501709 1304 1 0.957228 0.387632 0.524597 667 1 0.639429 0.426585 0.524114 151 1 0.885408 0.432603 0.516243 1386 1 0.82655 0.464445 0.50751 728 1 0.640244 0.472531 0.558997 805 1 0.762249 0.463257 0.536328 734 1 0.87144 0.0401868 0.535601 1948 1 0.149873 0.0514 0.546164 1622 1 0.371702 0.150459 0.527248 195 1 0.936829 0.170906 0.519624 1519 1 0.293074 0.18996 0.559571 829 1 0.187203 0.188317 0.554845 717 1 0.119509 0.213477 0.53862 337 1 0.739498 0.251661 0.523816 705 1 0.972093 0.218553 0.548185 1038 1 0.0211311 0.267594 0.600565 1743 1 0.227732 0.273612 0.519011 32 1 0.68393 0.281542 0.553952 815 1 0.437864 0.348729 0.552291 1916 1 0.495051 0.341051 0.553071 919 1 0.556448 0.354711 0.561781 962 1 0.937948 0.370059 0.550261 430 1 0.960889 0.376286 0.529946 52 1 0.0971821 0.411958 0.557277 1537 1 0.892215 0.387746 0.527874 60 1 0.0279057 0.416001 0.550582 659 1 0.429646 0.472875 0.547508 1758 1 0.0421646 0.348969 0.97784 1095 1 0.774431 0.448495 0.533406 389 1 0.378046 0.026223 0.554446 1368 1 0.617926 0.176169 0.575322 748 1 0.064044 0.180648 0.582845 572 1 0.219933 0.202857 0.57367 1677 1 0.909852 0.184356 0.567606 1990 1 0.653392 0.237566 0.58024 1693 1 0.207747 0.288734 0.600002 1099 1 0.243105 0.295768 0.544842 226 1 0.170844 0.356708 0.560755 1882 1 0.929922 0.375479 0.564165 1275 1 0.0499757 0.415015 0.557494 294 1 0.918708 0.381826 0.559626 1160 1 0.776117 0.384908 0.55624 28 1 0.219851 0.453786 0.621641 560 1 0.133836 0.454494 0.541964 225 1 0.35335 0.00618314 0.552474 1724 1 0.648559 0.0621633 0.56811 1293 1 0.839065 0.0541106 0.587602 216 1 0.84933 0.079844 0.600574 2009 1 0.568165 0.138024 0.556378 1668 1 0.80223 0.137909 0.622141 638 1 0.184603 0.127389 0.571893 2006 1 0.338116 0.172074 0.592856 1776 1 0.390738 0.213948 0.562223 1021 1 0.476951 0.260447 0.553974 1849 1 0.918502 0.287098 0.568538 1694 1 0.769039 0.319595 0.589897 435 1 0.311994 0.346062 0.560818 1756 1 0.904672 0.325863 0.589873 953 1 0.126092 0.350222 0.566063 1205 1 0.479862 0.429364 0.634488 1593 1 0.625328 0.402982 0.619919 1253 1 0.28412 0.432136 0.571798 700 1 0.354752 0.425754 0.587887 1409 1 0.318499 0.435915 0.564344 1090 1 0.462709 0.457094 0.60787 275 1 0.604756 0.448589 0.55782 312 1 0.804757 0.459267 0.61295 1410 1 0.296812 0.334761 0.988374 1354 1 0.507915 0.00133262 0.60762 158 1 0.108016 0.0999978 0.594314 148 1 0.248263 0.0982143 0.596467 952 1 0.290649 0.0847743 0.573794 1434 1 0.263354 0.0993425 0.617522 993 1 0.856844 0.102112 0.603374 1607 1 0.75806 0.176212 0.599883 296 1 0.437723 0.167068 0.602201 1508 1 0.533225 0.205946 0.604623 966 1 0.655922 0.302833 0.633117 735 1 0.777672 0.331994 0.591135 1781 1 0.317153 0.432436 0.574311 1024 1 0.662158 0.449449 0.613063 84 1 0.896489 0.468616 0.645559 218 1 0.949116 0.135349 0.501932 792 1 0.984729 0.017715 0.631587 1737 1 0.727269 0.0330371 0.636363 1555 1 0.43978 0.137062 0.645414 1676 1 0.202335 0.15291 0.634331 1123 1 0.946714 0.10235 0.63144 1584 1 0.965899 0.145008 0.616525 334 1 0.463343 0.136218 0.652317 707 1 0.913379 0.199089 0.587598 918 1 0.800324 0.217762 0.605811 1146 1 0.825228 0.260502 0.621957 1414 1 0.533274 0.310983 0.655796 1279 1 0.83426 0.397097 0.627423 162 1 0.752499 0.457507 0.63952 922 1 0.0430949 0.0460103 0.621053 1929 1 0.475039 0.0780988 0.620232 1980 1 0.741053 0.140987 0.649771 134 1 0.156997 0.136487 0.621349 581 1 0.212377 0.129209 0.623524 1853 1 0.0815833 0.167905 0.655338 634 1 0.318021 0.164514 0.643863 639 1 0.0625782 0.231753 0.636408 1485 1 0.803989 0.23893 0.616792 335 1 0.185689 0.292448 0.650751 1521 1 0.183493 0.28799 0.662166 1905 1 0.422606 0.291433 0.643455 127 1 0.462784 0.377889 0.654357 1986 1 0.634285 0.352234 0.640282 1842 1 0.861665 0.37154 0.620646 648 1 0.529475 0.381999 0.626312 88 1 0.650515 0.393707 0.65436 1512 1 0.0319032 0.423314 0.641469 1372 1 0.0764377 0.44355 0.64257 185 1 0.355154 0.433963 0.630112 1070 1 0.713915 0.448109 0.595027 1131 1 0.812862 0.453781 0.643536 982 1 0.76514 0.00978978 0.643755 838 1 0.896122 0.0356241 0.646672 1845 1 0.138269 0.0799141 0.643928 960 1 0.286853 0.0536719 0.674932 1349 1 0.441937 0.0843816 0.641032 1229 1 0.924184 0.0584507 0.675499 885 1 0.541552 0.235348 0.611072 1846 1 0.044936 0.338864 0.663773 1442 1 0.500872 0.414735 0.675157 1360 1 0.102741 0.410255 0.665742 1630 1 0.670872 0.452554 0.662495 2021 1 0.94582 0.490205 0.651254 732 1 0.00729977 0.0234138 0.674983 1285 1 0.47823 0.151473 0.676081 1984 1 0.18379 0.153136 0.689798 1855 1 0.386201 0.198845 0.701088 1369 1 0.180022 0.210195 0.654286 1151 1 0.203528 0.210962 0.693207 1032 1 0.842189 0.267063 0.699583 57 1 0.275307 0.284783 0.726077 989 1 0.839232 0.27188 0.673943 921 1 0.972767 0.310115 0.702365 871 1 0.247256 0.397412 0.672924 590 1 0.818643 0.389506 0.693028 1815 1 0.00320304 0.436364 0.704364 1043 1 0.240006 0.426771 0.686878 770 1 0.732589 0.442521 0.680418 1046 1 0.156495 0.458329 0.638213 905 1 0.0876191 0.498858 0.962326 932 1 0.265766 0.201073 0.970924 1653 1 0.306105 0.0470118 0.513124 1249 1 0.441209 0.0851869 0.71006 120 1 0.224092 0.0856032 0.691128 1735 1 0.799248 0.128233 0.694899 15 1 0.291883 0.185712 0.683638 1048 1 0.23778 0.156264 0.692923 291 1 0.421178 0.152294 0.6978 1421 1 0.901835 0.188693 0.658262 1222 1 0.817502 0.270469 0.718293 1220 1 0.304165 0.262834 0.699174 1470 1 0.462745 0.38199 0.697172 1599 1 0.507951 0.358834 0.731968 347 1 0.641888 0.405368 0.701592 325 1 0.526657 0.408943 0.696275 850 1 0.0685711 0.421226 0.700366 916 1 0.914856 0.446422 0.687486 82 1 0.211704 0.27326 0.994123 401 1 0.150577 0.054674 0.71262 172 1 0.148158 0.0791889 0.695695 1348 1 0.901412 0.0895681 0.695958 153 1 0.0834221 0.0893387 0.699031 1687 1 0.0147179 0.131128 0.691135 1121 1 0.112809 0.179145 0.699222 1835 1 0.310046 0.151275 0.697945 782 1 0.298485 0.219233 0.692989 181 1 0.848003 0.24038 0.742073 80 1 0.532337 0.266344 0.709713 1355 1 0.551796 0.263555 0.730322 510 1 0.221254 0.311425 0.691229 927 1 0.543793 0.302301 0.711319 343 1 0.585933 0.354315 0.665691 145 1 0.694903 0.326878 0.718226 7 1 0.409937 0.35227 0.742063 2023 1 0.176272 0.362905 0.719142 727 1 0.774012 0.416958 0.691884 1575 1 0.950214 0.420155 0.709617 1137 1 0.946424 0.418187 0.758836 503 1 0.150193 0.0313848 0.685963 1665 1 0.11089 0.220786 0.501509 117 1 0.847933 0.0208804 0.706365 213 1 0.773111 0.0501034 0.757786 526 1 0.656743 0.0970737 0.757741 1909 1 0.528133 0.178941 0.749093 641 1 0.586235 0.157017 0.740419 906 1 0.934256 0.192061 0.748845 1919 1 0.39624 0.296182 0.696641 615 1 0.670152 0.314197 0.771106 354 1 0.797821 0.329474 0.771911 135 1 0.392527 0.352632 0.730368 1156 1 0.846928 0.39927 0.751007 607 1 0.878499 0.382807 0.706248 1415 1 0.956953 0.365524 0.753126 1522 1 0.367829 0.431744 0.686047 428 1 0.828803 0.456857 0.728079 730 1 0.387658 0.46593 0.740443 290 1 0.920966 0.135507 0.988009 1138 1 0.909106 0.393463 0.992556 611 1 0.79275 0.0511029 0.771758 1171 1 0.116261 0.0711265 0.74654 1117 1 0.232792 0.0660723 0.730329 588 1 0.908363 0.0942636 0.775689 845 1 0.179546 0.125878 0.746885 886 1 0.347671 0.101679 0.747171 870 1 0.520541 0.124239 0.737022 1454 1 0.415291 0.143574 0.726899 1180 1 0.0196369 0.222297 0.751921 938 1 0.592932 0.193953 0.784859 1850 1 0.667061 0.260943 0.745726 475 1 0.351992 0.314286 0.74546 454 1 0.683342 0.356126 0.714274 819 1 0.177196 0.371384 0.771115 433 1 0.42003 0.374384 0.74773 603 1 0.383873 0.404266 0.74652 27 1 0.959111 0.464493 0.755641 1281 1 0.0242337 0.459412 0.752684 1574 1 0.564976 0.221878 0.533089 1433 1 0.283152 0.0313929 0.779063 51 1 0.472862 0.0147888 0.754604 1025 1 0.497365 0.0483423 0.760349 1086 1 0.709638 0.0660692 0.774768 1457 1 0.733708 0.0721536 0.751776 1404 1 0.867881 0.06897 0.76844 115 1 0.181187 0.0666006 0.778347 490 1 0.528519 0.114109 0.775568 1030 1 0.368059 0.0921749 0.779058 602 1 0.525659 0.0993301 0.753706 1799 1 0.625093 0.0952069 0.741381 1716 1 0.522328 0.123777 0.76896 3 1 0.111814 0.120672 0.78306 785 1 0.336949 0.129854 0.759203 1299 1 0.858244 0.197993 0.786296 31 1 0.135536 0.150965 0.793152 183 1 0.455089 0.180621 0.78337 140 1 0.479025 0.251006 0.746453 528 1 0.948952 0.203224 0.743983 1193 1 0.415281 0.215043 0.755454 1551 1 0.151319 0.307604 0.755261 1526 1 0.0404171 0.369837 0.769556 1759 1 0.175001 0.360532 0.788571 1497 1 0.517832 0.377656 0.78546 2010 1 0.952821 0.36518 0.741736 2046 1 0.0152725 0.394502 0.735752 913 1 0.0988293 0.390344 0.766121 569 1 0.643117 0.403156 0.764841 251 1 0.190027 0.402763 0.757954 1770 1 0.640495 0.44464 0.74108 33 1 0.151648 0.462237 0.764409 234 1 0.678388 0.498543 0.721055 1278 1 0.68019 0.0367792 0.806554 601 1 0.625489 0.0309057 0.780056 1906 1 0.551703 0.101635 0.797682 584 1 0.0393462 0.159271 0.762927 6 1 0.918262 0.152816 0.811241 1471 1 0.604617 0.172461 0.801282 21 1 0.069003 0.26504 0.805286 356 1 0.687691 0.301253 0.808917 675 1 0.54525 0.333668 0.818992 866 1 0.740348 0.343797 0.802844 1726 1 0.966301 0.333186 0.788799 1926 1 0.532697 0.41836 0.762789 242 1 0.227321 0.452876 0.776081 1479 1 0.796121 0.375711 0.776628 1403 1 0.710509 0.488573 0.766506 2024 1 0.980685 0.413934 0.511796 1704 1 0.831991 0.0670343 0.799047 718 1 0.821351 0.0805388 0.812159 327 1 0.107044 0.136746 0.836931 1445 1 0.742827 0.156598 0.812125 1557 1 0.324258 0.381794 0.821729 1518 1 0.37074 0.394075 0.82144 1657 1 0.535701 0.392946 0.812701 876 1 0.430038 0.461197 0.781716 1149 1 0.239023 0.481276 0.803765 230 1 0.104006 0.0261446 0.83199 760 1 0.743666 0.127504 0.82294 204 1 0.74067 0.127795 0.805405 1162 1 0.0151137 0.148754 0.777113 161 1 0.424386 0.234185 0.835033 85 1 0.359005 0.2391 0.797709 1859 1 0.740782 0.262702 0.842556 1922 1 0.644538 0.342252 0.825525 1374 1 0.557517 0.371808 0.816205 901 1 0.918348 0.360351 0.813008 1597 1 0.620129 0.359358 0.790878 320 1 0.608365 0.434293 0.806444 1960 1 0.89461 0.44241 0.826314 65 1 0.969777 0.435764 0.972657 19 1 0.599407 0.492778 0.828019 552 1 0.395801 0.000841213 0.819945 79 1 0.641 0.00863928 0.835816 1953 1 0.584786 0.00236675 0.835696 1287 1 0.429047 0.0608424 0.846908 301 1 0.879015 0.0895092 0.823598 1019 1 0.0142392 0.0952976 0.821663 160 1 0.589802 0.135229 0.865227 99 1 0.460741 0.178191 0.842766 411 1 0.746597 0.221445 0.810444 763 1 0.446654 0.277255 0.812357 1243 1 0.725701 0.360952 0.806415 1556 1 0.183573 0.38189 0.845114 1458 1 0.922319 0.385236 0.859708 548 1 0.133688 0.473825 0.81843 644 1 0.335847 0.443101 0.856241 945 1 0.722616 0.0498634 0.861848 78 1 0.763286 0.0427735 0.854514 1570 1 0.0587468 0.0540587 0.855749 1143 1 0.171448 0.0473799 0.864008 1302 1 0.195065 0.0821859 0.859779 54 1 0.204815 0.12707 0.844984 2038 1 0.306612 0.235404 0.842214 492 1 0.610124 0.236679 0.883656 1315 1 0.215823 0.283981 0.858851 1008 1 0.310569 0.260241 0.858379 350 1 0.890941 0.299136 0.866625 1153 1 0.806686 0.325882 0.84816 995 1 0.974806 0.3773 0.850891 865 1 0.178939 0.389257 0.850602 1367 1 0.272464 0.407104 0.864293 617 1 0.262607 0.498164 0.84552 35 1 0.812888 0.0314233 0.887086 737 1 0.984795 0.0303818 0.868876 437 1 0.850749 0.0774389 0.88796 994 1 0.483537 0.0588694 0.898966 1531 1 0.567583 0.192926 0.896229 937 1 0.111856 0.183808 0.88409 1821 1 0.385086 0.222699 0.897643 477 1 0.179943 0.260018 0.861334 1380 1 0.954484 0.2444 0.860412 1935 1 0.242105 0.287809 0.873226 1588 1 0.606003 0.29922 0.887663 2028 1 0.077252 0.308503 0.882617 1387 1 0.194612 0.334103 0.909451 822 1 0.478079 0.357606 0.849366 1843 1 0.0420525 0.363252 0.909505 1034 1 0.708878 0.376938 0.898303 24 1 0.99987 0.369726 0.859439 1177 1 0.663388 0.413513 0.899975 1052 1 0.0941135 0.435725 0.894298 1335 1 0.0275021 0.0185941 0.909268 894 1 0.947103 0.033651 0.899807 208 1 0.826551 0.0246758 0.856315 394 1 0.885662 0.0520034 0.91521 715 1 0.201884 0.07524 0.915197 101 1 0.420976 0.0674124 0.906645 618 1 0.615197 0.0706513 0.904316 361 1 0.885193 0.068698 0.912283 1708 1 0.678781 0.101448 0.877202 627 1 0.880546 0.118392 0.896487 359 1 0.354209 0.14385 0.895708 93 1 0.298779 0.142208 0.88021 818 1 0.890407 0.189472 0.897801 387 1 0.118535 0.18578 0.917767 1340 1 0.701475 0.210053 0.879487 2027 1 0.795407 0.197529 0.935381 939 1 0.774089 0.205561 0.888263 1392 1 0.114716 0.242088 0.923007 1363 1 0.705741 0.265565 0.904071 1002 1 0.358769 0.304187 0.904485 1565 1 0.437634 0.315419 0.895482 1075 1 0.428523 0.300812 0.918477 531 1 0.581551 0.332353 0.897549 556 1 0.121014 0.380901 0.906508 239 1 0.0141776 0.382175 0.927314 245 1 0.255744 0.480239 0.886171 1934 1 0.468257 0.44705 0.857997 879 1 0.437599 0.0475278 0.92119 1240 1 0.434683 0.0473 0.910675 647 1 0.380947 0.0966149 0.986612 697 1 0.987012 0.10278 0.935813 357 1 0.376984 0.10231 0.920471 403 1 0.913504 0.140782 0.891774 930 1 0.300855 0.212571 0.905714 4 1 0.0103756 0.222689 0.898125 804 1 0.111435 0.256306 0.893886 10 1 0.170723 0.237325 0.913908 784 1 0.441299 0.247096 0.900581 1388 1 0.751208 0.260829 0.894875 1012 1 0.838875 0.326292 0.907133 317 1 0.0632871 0.349118 0.910693 656 1 0.712435 0.398715 0.934004 1089 1 0.742193 0.380741 0.926106 1337 1 0.558289 0.415082 0.917199 1188 1 0.932954 0.428284 0.918691 1792 1 0.0492324 0.00461892 0.965344 1122 1 0.690021 0.0378206 0.952684 1517 1 0.792205 0.0392588 0.89945 1942 1 0.413678 0.0232569 0.951999 1764 1 0.163801 0.0389413 0.914661 1265 1 0.322723 0.0426704 0.914414 1967 1 0.876165 0.0841487 0.943124 258 1 0.174172 0.122025 0.917448 1603 1 0.429143 0.127733 0.93828 480 1 0.565372 0.139216 0.925051 376 1 0.524574 0.225278 0.958665 1550 1 0.885533 0.245569 0.957196 1623 1 0.772957 0.254553 0.899588 1005 1 0.850634 0.262534 0.932374 1027 1 0.522879 0.265009 0.933203 420 1 0.973841 0.27174 0.934948 1563 1 0.587493 0.331687 0.919761 789 1 0.0923946 0.395596 0.926406 640 1 0.884486 0.386449 0.933392 1667 1 0.251186 0.436231 0.947014 1892 1 0.251891 0.435526 0.924371 1362 1 0.450739 0.461245 0.944099 1594 1 0.00295967 0.445562 0.950656 1044 1 0.045637 0.362074 0.978739 1465 1 0.877717 0.053223 0.973304 872 1 0.981419 0.0562375 0.911938 1183 1 0.0203231 0.109896 0.963604 129 1 0.557437 0.10881 0.9635 1609 1 0.733369 0.126391 0.916637 854 1 0.335801 0.114067 0.931278 1395 1 0.863012 0.106961 0.965927 1491 1 0.596166 0.186161 0.953088 965 1 0.205677 0.205864 0.948301 119 1 0.240437 0.2426 0.958775 415 1 0.624902 0.272059 0.981518 1236 1 0.019676 0.321925 0.970652 1439 1 0.0552616 0.359601 0.93684 1767 1 0.134867 0.349347 0.950336 1314 1 0.654987 0.299307 0.999422 1527 1 0.254599 0.338093 0.940351 124 1 0.513785 0.336614 0.940915 1879 1 0.671259 0.33159 0.97149 694 1 0.246827 0.369764 0.95454 857 1 0.466848 0.347741 0.931892 424 1 0.707363 0.452418 0.945413 26 1 0.21655 0.482542 0.956671 1212 1 0.955272 0.493862 0.929894 689 1 0.787768 0.411937 0.981659 505 1 0.0547709 0.0342811 0.973816 1227 1 0.9481 0.0582981 0.947768 1199 1 0.133679 0.0332901 0.976772 330 1 0.302436 0.0967016 0.981273 1215 1 0.474208 0.0669345 0.989919 1870 1 0.81267 0.125158 0.964288 882 1 0.225834 0.165303 0.981958 339 1 0.996723 0.211147 0.994796 875 1 0.192979 0.216375 0.958376 801 1 0.393325 0.210817 0.993982 788 1 0.86931 0.231163 0.91786 439 1 0.502715 0.250417 0.924047 272 1 0.561554 0.247538 0.966805 1289 1 0.361455 0.30372 0.959089 862 1 0.962549 0.0152923 0.757948 1013 1 0.732484 0.397656 0.979941 1755 1 0.225413 0.448595 0.924553 1685 1 0.314249 0.479616 0.951482 1811 1 0.00826005 0.417047 0.973124 1602 1 0.359317 0.485965 0.996233 461 1 0.870377 0.0495804 0.505387 71 1 0.0581167 0.00248328 0.804584 1303 1 0.0366853 0.440511 0.96518 663 1 0.775318 0.484485 0.988622 1274 1 0.38728 0.496932 0.639285 1460 1 0.155261 0.0288777 0.964608 1423 1 0.341146 0.490946 0.512564 1949 1 0.659554 0.0149774 0.960974 189 1 0.206843 0.0933366 0.957792 1680 1 0.676591 0.372334 0.992987 714 1 0.117442 0.12737 0.974762 637 1 0.244554 0.228812 0.985291 1813 1 0.58905 0.244404 0.993934 2025 1 0.882534 0.287189 0.973659 821 1 0.680753 0.517498 0.00120526 753 1 0.842881 0.537743 0.0144082 2044 1 0.684261 0.975878 0.163745 1627 1 0.537985 0.556319 0.0118863 1923 1 0.894074 0.511606 0.243995 1429 1 0.0299054 0.664333 0.00183642 1128 1 0.558902 0.694671 0.00457324 1530 1 0.62363 0.672518 0.02498 1666 1 0.816459 0.507239 0.257239 958 1 0.185928 0.757876 0.00375326 1165 1 0.273604 0.77749 0.0149634 561 1 0.525791 0.610401 0.00102261 1381 1 0.6774 0.989888 0.142626 899 1 0.40973 0.929268 0.470527 1168 1 0.294903 0.978009 0.339574 244 1 0.0191063 0.848056 0.0307937 762 1 0.54605 0.873021 0.0217874 1448 1 0.107692 0.989121 0.137403 987 1 0.0495052 0.987643 0.0177045 1739 1 0.729782 0.946424 0.036987 1259 1 0.853734 0.960158 0.0300567 203 1 0.769991 0.565997 0.481779 924 1 0.380656 0.663112 0.00567853 1336 1 0.399554 0.517223 0.00979462 1228 1 0.42128 0.523379 0.0112834 111 1 0.874434 0.54175 0.0232439 1389 1 0.468291 0.550758 0.0674829 303 1 0.453434 0.574125 0.0331667 1204 1 0.657548 0.684999 0.0502703 977 1 0.194476 0.643829 0.0335057 1642 1 0.632805 0.714569 0.0144866 109 1 0.240363 0.73141 0.0240041 1830 1 0.716342 0.729439 0.0592095 830 1 0.791152 0.734962 0.0288704 1361 1 0.347449 0.800174 0.0520667 2005 1 0.819288 0.784678 0.0329219 476 1 0.969495 0.822828 0.0354396 540 1 0.459262 0.911085 0.0329009 1431 1 0.748791 0.888836 0.0356217 1324 1 0.294041 0.979757 0.0294199 1209 1 0.963278 0.510082 0.360245 1784 1 0.460004 0.520881 0.0545382 56 1 0.792449 0.508846 0.0459839 530 1 0.725979 0.605419 0.0548721 1740 1 0.428662 0.624961 0.0426703 926 1 0.914071 0.661441 0.0447945 2002 1 0.384865 0.735546 0.0348404 1559 1 0.416272 0.704958 0.0477722 1114 1 0.238383 0.722449 0.0435056 12 1 0.411606 0.747634 0.0624181 1751 1 0.860162 0.723775 0.0754429 1452 1 0.236648 0.767483 0.0850856 840 1 0.826521 0.757443 0.0606801 299 1 0.852856 0.754276 0.0697647 666 1 0.427783 0.801712 0.0381926 1307 1 0.468697 0.82891 0.0428435 448 1 0.246072 0.811219 0.0581602 874 1 0.0229632 0.942919 0.0611484 485 1 0.405383 0.990021 0.040309 1567 1 0.774562 0.987215 0.0401047 795 1 0.348794 0.50754 0.396721 1481 1 0.0561245 0.638665 0.0901356 1663 1 0.322008 0.611707 0.0776844 261 1 0.369973 0.601574 0.0867138 726 1 0.435835 0.646686 0.049809 2039 1 0.354653 0.607598 0.0708579 1080 1 0.930332 0.630522 0.0639055 133 1 0.413423 0.76374 0.0535996 1761 1 0.254082 0.777311 0.0518273 1598 1 0.373313 0.798545 0.06931 1636 1 0.702097 0.78715 0.0625852 1684 1 0.41263 0.834369 0.0609607 1534 1 0.109989 0.886457 0.0600733 276 1 0.843544 0.906551 0.0566541 1872 1 0.368452 0.916687 0.0637389 1747 1 0.744246 0.969167 0.0667446 1252 1 0.994038 0.998428 0.0878692 1937 1 0.0377791 0.570773 0.0825919 360 1 0.957369 0.551004 0.0572848 1851 1 0.0722089 0.639818 0.0768009 1647 1 0.482854 0.632443 0.0937013 1744 1 0.745759 0.650315 0.0731081 182 1 0.737374 0.576309 0.0517696 1311 1 0.928929 0.647864 0.110951 2031 1 0.09965 0.664106 0.0671157 978 1 0.632667 0.663691 0.0928547 1966 1 0.761276 0.661417 0.102713 746 1 0.635298 0.740045 0.104402 495 1 0.818706 0.730711 0.0727873 783 1 0.35993 0.761825 0.0821454 1505 1 0.178562 0.759098 0.0779107 186 1 0.262684 0.781152 0.126997 268 1 0.443418 0.780487 0.0801271 1601 1 0.955085 0.774462 0.0620501 368 1 0.307515 0.825356 0.0969313 1595 1 0.36454 0.831614 0.0875688 910 1 0.978806 0.808593 0.104864 736 1 0.124974 0.848215 0.0905086 604 1 0.899607 0.836993 0.10498 909 1 0.550752 0.909111 0.0660057 1370 1 0.0722454 0.87965 0.0937172 1971 1 0.949883 0.883652 0.0970192 608 1 0.353686 0.907735 0.105367 2008 1 0.462478 0.959813 0.0933617 248 1 0.614323 0.942234 0.0815109 1427 1 0.28763 0.968908 0.100672 459 1 0.400021 0.512616 0.115032 635 1 0.0322211 0.99505 0.240634 1201 1 0.407014 0.507841 0.124187 1322 1 0.576184 0.606133 0.0784174 671 1 0.374174 0.626461 0.0866787 344 1 0.929748 0.598189 0.0715105 877 1 0.922958 0.626445 0.160518 964 1 0.377898 0.645283 0.0896205 247 1 0.381125 0.63625 0.0875174 1867 1 0.563347 0.664015 0.0768707 749 1 0.712867 0.679373 0.0725523 1662 1 0.427422 0.694779 0.0926467 712 1 0.113577 0.735748 0.0905594 47 1 0.0127973 0.766525 0.089707 1373 1 0.975143 0.842292 0.111373 1495 1 0.781355 0.83382 0.114389 594 1 0.630157 0.926969 0.123893 86 1 0.0184632 0.970316 0.104348 1520 1 0.394195 0.959066 0.489109 2032 1 0.599586 0.940028 0.111838 1683 1 0.64021 0.528713 0.0990295 1425 1 0.156409 0.520975 0.103791 22 1 0.968773 0.818097 0.488809 1094 1 0.663656 0.50777 0.106737 2003 1 0.947046 0.527524 0.130448 1814 1 0.933941 0.530233 0.0977982 422 1 0.986455 0.575661 0.127707 1223 1 0.167204 0.607581 0.0990181 210 1 0.732445 0.62659 0.120635 1313 1 0.441999 0.659668 0.127258 1974 1 0.545069 0.638286 0.147287 105 1 0.748383 0.675214 0.0881586 1178 1 0.569032 0.730222 0.156154 544 1 0.996293 0.673545 0.132002 412 1 0.598312 0.70665 0.132064 1617 1 0.0700659 0.710673 0.094649 386 1 0.416816 0.702706 0.114491 1218 1 0.226925 0.709148 0.0855505 328 1 0.576329 0.73848 0.134496 651 1 0.825419 0.75495 0.118912 586 1 0.116582 0.782238 0.0864716 731 1 0.122886 0.763991 0.117702 515 1 0.749466 0.789384 0.112473 1412 1 0.921117 0.808166 0.124005 1061 1 0.115489 0.844994 0.113989 1107 1 0.384863 0.854378 0.145366 358 1 0.875596 0.856844 0.138343 1023 1 0.947344 0.82681 0.0962826 1993 1 0.530858 0.895219 0.0846486 1997 1 0.196035 0.943968 0.156936 1417 1 0.454385 0.977204 0.106015 672 1 0.791855 0.973283 0.121032 1477 1 0.182846 0.990179 0.134811 630 1 0.208723 0.610743 0.136896 826 1 0.569447 0.608289 0.123355 2016 1 0.838835 0.602928 0.119905 969 1 0.926222 0.611326 0.125118 1359 1 0.296677 0.64408 0.14081 1652 1 0.321845 0.656809 0.133732 1115 1 0.491993 0.647284 0.139808 407 1 0.489014 0.612206 0.149475 538 1 0.749148 0.657038 0.159508 168 1 0.682811 0.801037 0.119442 1092 1 0.18753 0.80956 0.133692 803 1 0.023649 0.924929 0.182622 1258 1 0.434959 0.568184 0.45787 1295 1 0.645101 0.998014 0.110961 1715 1 0.673793 0.517353 0.169393 1783 1 0.276224 0.526348 0.169752 843 1 0.359273 0.521141 0.145787 348 1 0.570737 0.542588 0.189252 787 1 0.506307 0.544915 0.148572 1000 1 0.185938 0.592679 0.168857 207 1 0.564043 0.648995 0.130501 655 1 0.865933 0.661417 0.17068 729 1 0.837678 0.671323 0.153661 1202 1 0.828902 0.692558 0.12499 1017 1 0.457668 0.756074 0.162171 215 1 0.845027 0.808631 0.187969 565 1 0.756455 0.810688 0.167486 1379 1 0.295336 0.861812 0.161999 1583 1 0.238758 0.888938 0.13981 249 1 0.146272 0.908346 0.149304 1619 1 0.0513885 0.911959 0.176876 1419 1 0.367301 0.994086 0.143696 1216 1 0.0169892 0.965811 0.169923 1345 1 0.0869536 0.893414 0.02917 509 1 0.330166 0.523447 0.177351 1226 1 0.117271 0.57136 0.142757 306 1 0.562465 0.532015 0.147443 949 1 0.573278 0.596546 0.164611 547 1 0.990188 0.618572 0.155863 567 1 0.435294 0.643552 0.194714 1050 1 0.729253 0.654849 0.140964 1865 1 0.839936 0.681945 0.136017 1140 1 0.371745 0.650643 0.143944 1297 1 0.176041 0.680464 0.170531 372 1 0.868338 0.702193 0.183727 1004 1 0.58351 0.751215 0.185611 1498 1 0.662357 0.723986 0.180105 973 1 0.0205791 0.749674 0.190441 779 1 0.609688 0.730963 0.188034 107 1 0.469241 0.761072 0.179941 1709 1 0.62952 0.826131 0.185285 471 1 0.972536 0.831186 0.162466 1651 1 0.119669 0.896613 0.169384 432 1 0.574723 0.979791 0.16935 313 1 0.0106157 0.581321 0.195348 1895 1 0.963262 0.53352 0.216801 887 1 0.405955 0.641715 0.186756 591 1 0.35753 0.720147 0.163666 708 1 0.421366 0.745816 0.194721 1241 1 0.446084 0.737207 0.208501 1104 1 0.225557 0.800644 0.167545 1903 1 0.98 0.755911 0.153884 1298 1 0.640809 0.832669 0.188299 1045 1 0.592039 0.846237 0.15346 1451 1 0.144314 0.878614 0.198552 745 1 0.205712 0.896833 0.203219 1634 1 0.086805 0.876734 0.167515 1343 1 0.158133 0.879087 0.205657 1111 1 0.691253 0.983598 0.197856 458 1 0.752305 0.564281 0.223073 2041 1 0.986033 0.533272 0.244342 1058 1 0.304005 0.562781 0.188991 1192 1 0.872779 0.629772 0.243649 338 1 0.655747 0.729236 0.184439 2012 1 0.118683 0.722361 0.201189 1042 1 0.0634333 0.772709 0.201435 681 1 0.895857 0.830061 0.186474 1399 1 0.683966 0.813892 0.20655 858 1 0.987662 0.861032 0.224748 710 1 0.353925 0.862273 0.225409 1210 1 0.619102 0.850004 0.220781 2034 1 0.204848 0.838134 0.244418 55 1 0.364568 0.865185 0.215148 1981 1 0.241478 0.886321 0.196935 280 1 0.131314 0.904705 0.168901 373 1 0.32442 0.942165 0.229959 1011 1 0.185579 0.560188 0.221937 402 1 0.622745 0.608245 0.210154 1133 1 0.0365476 0.599385 0.221779 391 1 0.359061 0.660063 0.211196 92 1 0.20917 0.709194 0.232443 169 1 0.684696 0.670326 0.220082 1970 1 0.26357 0.669258 0.225559 1277 1 0.916799 0.674972 0.204735 682 1 0.998227 0.648742 0.212486 869 1 0.016288 0.750946 0.24304 282 1 0.163588 0.730841 0.236652 511 1 0.642282 0.751694 0.207916 1786 1 0.58571 0.782324 0.213193 1618 1 0.664019 0.754806 0.261494 263 1 0.753502 0.763472 0.234599 398 1 0.953102 0.831516 0.221162 2026 1 0.223778 0.865934 0.231892 1722 1 0.109365 0.892511 0.225706 1920 1 0.107583 0.882912 0.234771 632 1 0.767241 0.876232 0.195608 1382 1 0.0811333 0.943299 0.21958 498 1 0.669774 0.909822 0.225119 123 1 0.827972 0.904402 0.243885 473 1 0.310694 0.980538 0.236299 1384 1 0.635084 0.990439 0.193478 271 1 0.52038 0.960886 0.488389 988 1 0.629322 0.997919 0.215618 923 1 0.791742 0.911203 0.024412 626 1 0.78169 0.529754 0.247316 136 1 0.846552 0.533724 0.262983 259 1 0.953362 0.624492 0.235848 76 1 0.989108 0.598875 0.261422 1660 1 0.194311 0.640492 0.223875 1904 1 0.964986 0.686678 0.231449 283 1 0.151105 0.722682 0.280446 274 1 0.338842 0.815861 0.256198 190 1 0.205429 0.777525 0.274578 1549 1 0.182898 0.813431 0.213962 1539 1 0.396149 0.838648 0.22274 1952 1 0.059458 0.792824 0.259531 629 1 0.104697 0.85317 0.251132 661 1 0.591326 0.874825 0.264985 157 1 0.159978 0.827455 0.227302 657 1 0.659246 0.86762 0.263546 1112 1 0.336569 0.898196 0.229061 314 1 0.896435 0.840817 0.246983 1101 1 0.916412 0.848917 0.229259 1166 1 0.217486 0.954658 0.248021 624 1 0.545071 0.972053 0.261397 382 1 0.152641 0.542622 0.309558 861 1 0.706102 0.562944 0.289663 1675 1 0.771894 0.542505 0.25128 972 1 0.861637 0.683618 0.263871 1087 1 0.362747 0.767644 0.24944 2 1 0.647269 0.850067 0.258782 929 1 0.614301 0.915764 0.242806 1590 1 0.698462 0.905912 0.272229 542 1 0.879569 0.987137 0.248739 1564 1 0.258775 0.969887 0.295732 967 1 0.344197 0.962504 0.246582 1987 1 0.967428 0.531673 0.287639 1710 1 0.847958 0.835248 0.496119 740 1 0.390901 0.543841 0.315019 1702 1 0.585637 0.547362 0.289873 1316 1 0.901576 0.541323 0.281757 1496 1 0.343599 0.628079 0.264915 1753 1 0.234455 0.671154 0.336964 2004 1 0.429647 0.690882 0.31018 1819 1 0.906786 0.683365 0.260062 58 1 0.358613 0.675857 0.293767 1571 1 0.97933 0.700128 0.281584 1195 1 0.368205 0.761534 0.271115 1862 1 0.948051 0.734685 0.28398 619 1 0.00905473 0.733225 0.299005 1248 1 0.0887495 0.793361 0.290425 1745 1 0.328177 0.782015 0.247657 1632 1 0.354796 0.802452 0.276511 483 1 0.420467 0.78918 0.295465 1408 1 0.672429 0.824124 0.289324 318 1 0.115714 0.866282 0.286721 184 1 0.779997 0.822319 0.309356 1863 1 0.972541 0.842526 0.286498 580 1 0.642531 0.911039 0.322844 212 1 0.258354 0.888821 0.312765 1264 1 0.255442 0.528407 0.294825 1631 1 0.971084 0.888963 0.453826 1147 1 0.19887 0.566459 0.338026 1907 1 0.0119128 0.559059 0.318079 1772 1 0.154311 0.609465 0.29683 1581 1 0.283723 0.617444 0.27788 553 1 0.503367 0.619157 0.327624 828 1 0.698816 0.644499 0.327142 1158 1 0.440934 0.690536 0.325891 1007 1 0.657481 0.720756 0.297711 1301 1 0.813334 0.713098 0.309553 197 1 0.886284 0.732065 0.342351 658 1 0.594889 0.745711 0.312773 1480 1 0.405602 0.808305 0.291635 1998 1 0.330205 0.807625 0.323465 888 1 0.339518 0.837419 0.322578 95 1 0.281685 0.878561 0.320082 1908 1 0.492856 0.870693 0.309857 1493 1 0.966166 0.90527 0.320104 1056 1 0.615321 0.927681 0.340114 1854 1 0.872698 0.996865 0.30515 496 1 0.144236 0.55333 0.337807 1325 1 0.950392 0.506792 0.328369 1794 1 0.0354959 0.584929 0.304501 597 1 0.440012 0.627198 0.366642 152 1 0.024893 0.635558 0.325439 1616 1 0.539835 0.634526 0.329274 902 1 0.0818768 0.714881 0.336872 501 1 0.00330607 0.73771 0.3232 431 1 0.187328 0.738164 0.303688 144 1 0.802305 0.730928 0.340623 97 1 0.642073 0.771234 0.333405 851 1 0.718435 0.773599 0.326688 847 1 0.498575 0.744421 0.336554 192 1 0.848061 0.836675 0.336933 1461 1 0.394242 0.87072 0.336572 1272 1 0.186963 0.883478 0.325579 948 1 0.700597 0.935531 0.328718 1267 1 0.829361 0.947556 0.341002 1291 1 0.480951 0.983827 0.303647 1029 1 0.615369 1.00022 0.335323 1296 1 0.0657413 0.976104 0.282042 545 1 0.187218 0.50677 0.32373 450 1 0.199559 0.712928 0.492581 646 1 0.269755 0.598355 0.343985 1560 1 0.0188021 0.689402 0.357338 174 1 0.443262 0.760828 0.351302 739 1 0.209594 0.778038 0.358465 494 1 0.484088 0.750904 0.336516 1256 1 0.853862 0.797938 0.336172 1552 1 0.0384267 0.821536 0.358224 277 1 0.300813 0.825937 0.346585 224 1 0.806228 0.857928 0.325215 1383 1 0.178148 0.87881 0.333261 971 1 0.2581 0.840936 0.326942 279 1 0.537391 0.920029 0.356976 310 1 0.572995 0.849557 0.348827 1646 1 0.845906 0.910672 0.339787 520 1 0.155578 0.906691 0.328921 1899 1 0.355296 0.917509 0.349657 452 1 0.0987486 0.958262 0.345703 1944 1 0.570268 0.970899 0.337935 1746 1 0.0832893 0.526355 0.361479 523 1 0.931891 0.531958 0.358708 285 1 0.322897 0.550986 0.35714 1079 1 0.973705 0.517855 0.379285 1999 1 0.840488 0.587695 0.318695 1608 1 0.642461 0.597802 0.370091 1554 1 0.927479 0.626873 0.350748 767 1 0.717623 0.626713 0.35188 1401 1 0.919903 0.698404 0.37643 1628 1 0.157311 0.700297 0.32394 683 1 0.568859 0.686153 0.379021 1620 1 0.508619 0.647987 0.322088 1945 1 0.222005 0.70182 0.354794 1711 1 0.646948 0.768708 0.375898 502 1 0.00120536 0.794804 0.348588 131 1 0.374848 0.830077 0.358343 1777 1 0.527999 0.940836 0.340701 138 1 0.560492 0.972662 0.351589 196 1 0.982123 0.979561 0.370369 883 1 0.444619 0.523519 0.374392 1637 1 0.42418 0.803643 0.496837 1063 1 0.73461 0.540139 0.390741 599 1 0.0762594 0.579808 0.347882 533 1 0.879061 0.5953 0.380163 214 1 0.876794 0.556214 0.344663 557 1 0.346237 0.636481 0.401095 1393 1 0.23839 0.6374 0.389464 524 1 0.340518 0.678323 0.38132 180 1 0.86762 0.667689 0.379045 1040 1 0.764517 0.717382 0.394936 1769 1 0.69403 0.734305 0.412896 855 1 0.222679 0.755239 0.409765 154 1 0.75053 0.768451 0.406356 1124 1 0.631461 0.832016 0.362782 260 1 0.605935 0.828525 0.386325 1775 1 0.723893 0.867793 0.390073 413 1 0.923178 0.882586 0.365794 1946 1 0.189425 0.886898 0.38627 518 1 0.653442 0.879747 0.368255 288 1 0.978248 0.897082 0.39032 222 1 0.237643 0.94868 0.395839 1774 1 0.277929 0.959565 0.369499 48 1 0.367524 0.94218 0.372202 558 1 0.705059 0.967369 0.368258 652 1 0.647311 0.937773 0.494416 336 1 0.609995 0.804593 0.483695 1321 1 0.108621 0.586536 0.374891 1818 1 0.147431 0.570823 0.39877 1467 1 0.489016 0.66646 0.388191 1686 1 0.75012 0.7016 0.403096 1217 1 0.123447 0.63574 0.416924 262 1 0.803576 0.728533 0.409169 1596 1 0.872559 0.78162 0.388229 69 1 0.207924 0.771989 0.382998 49 1 0.413307 0.849579 0.398772 1440 1 0.19095 0.909082 0.356062 1365 1 0.974685 0.923601 0.367868 487 1 0.421654 0.940962 0.37466 986 1 0.182057 0.961852 0.386802 1 1 0.554039 0.715802 0.0161144 393 1 0.747684 0.539467 0.446217 512 1 0.9254 0.587896 0.411218 409 1 0.949724 0.597118 0.422927 1573 1 0.512429 0.581479 0.438562 233 1 0.607808 0.616949 0.401349 1436 1 0.869398 0.65947 0.424356 1933 1 0.529135 0.688205 0.414916 678 1 0.596687 0.718579 0.428877 928 1 0.150157 0.725353 0.446678 1884 1 0.303588 0.760006 0.41813 270 1 0.444393 0.759617 0.409414 156 1 0.766253 0.798406 0.447554 1288 1 0.339125 0.869906 0.375213 1633 1 0.180713 0.891451 0.452963 305 1 0.533362 0.866998 0.401613 925 1 0.5702 0.888012 0.414951 108 1 0.223469 0.917059 0.441891 254 1 0.875864 0.932991 0.408914 1861 1 0.0327701 0.953046 0.440067 1096 1 0.976148 0.963655 0.41996 1473 1 0.99004 0.725821 0.471271 842 1 0.989131 0.576778 0.453634 1712 1 0.937564 0.639198 0.397237 442 1 0.470634 0.649201 0.445933 1871 1 0.616491 0.705265 0.441589 1098 1 0.742777 0.799395 0.431825 1789 1 0.176114 0.762747 0.424762 206 1 0.226873 0.984095 0.455415 1797 1 0.662458 0.969643 0.428531 1270 1 0.0693181 0.541705 0.487336 1800 1 0.139612 0.5452 0.485545 1825 1 0.935435 0.566079 0.442829 649 1 0.454402 0.551703 0.46197 1641 1 0.270257 0.569784 0.433742 241 1 0.0668786 0.615228 0.440572 703 1 0.379412 0.6143 0.471177 1645 1 0.087261 0.667984 0.43844 34 1 0.611002 0.720523 0.443391 100 1 0.583641 0.707557 0.472838 1538 1 0.197918 0.733651 0.454341 1793 1 0.172438 0.777009 0.475472 1731 1 0.508728 0.801666 0.44876 1391 1 0.445349 0.782668 0.446611 1943 1 0.419731 0.793145 0.4595 1490 1 0.677085 0.815507 0.479305 610 1 0.984915 0.836426 0.434256 1432 1 0.0156438 0.860467 0.44855 621 1 0.126395 0.96533 0.476409 1719 1 0.869766 0.970431 0.464838 66 1 0.143549 0.510379 0.491803 860 1 0.285435 0.53352 0.48987 1100 1 0.381494 0.543281 0.490716 106 1 0.133999 0.566323 0.471969 493 1 0.116514 0.728474 0.447867 178 1 0.111723 0.68344 0.472242 1868 1 0.853784 0.735964 0.457344 36 1 0.538113 0.773491 0.44537 1568 1 0.984972 0.848054 0.475087 1723 1 0.0221851 0.874843 0.482675 625 1 0.598991 0.962211 0.474756 1350 1 0.0144009 0.955344 0.466796 1858 1 0.0688646 0.864465 0.0188039 1447 1 0.343417 0.991761 0.492308 1329 1 0.0876572 0.862728 0.012494 1377 1 0.71603 0.83479 0.490896 724 1 0.311746 0.991546 0.0436118 1103 1 0.119799 0.818369 0.486849 1566 1 0.444303 0.591066 0.48294 824 1 0.435837 0.712751 0.478837 363 1 0.486999 0.749001 0.481169 1310 1 0.998282 0.788093 0.495563 589 1 0.205983 0.996754 0.297655 287 1 0.732449 0.633337 0.00941855 853 1 0.472186 0.567211 0.0204534 1319 1 0.8305 0.510443 0.0140232 94 1 0.00198988 0.993325 0.0169606 319 1 0.387597 0.998409 0.0325406 1174 1 0.883039 0.944675 0.499755 1187 1 0.937504 0.760849 0.986673 1831 1 0.258366 0.584997 0.527597 687 1 0.861484 0.523954 0.517981 397 1 0.983109 0.548098 0.504255 194 1 0.155168 0.535512 0.522827 1344 1 0.505644 0.580046 0.510384 414 1 0.246899 0.511718 0.693705 759 1 0.3827 0.580869 0.51639 812 1 0.423519 0.616464 0.546764 1721 1 0.644082 0.625446 0.50647 517 1 0.623986 0.673914 0.500187 1996 1 0.27748 0.648342 0.519075 680 1 0.767119 0.990747 0.999693 935 1 0.102126 0.988373 0.78498 236 1 0.322502 0.810157 0.5319 1921 1 0.512892 0.575613 0.515712 419 1 0.70793 0.971827 0.69914 1913 1 0.954315 0.7828 0.544442 1836 1 0.15231 0.772088 0.545196 469 1 0.471944 0.806652 0.51854 1955 1 0.0840184 0.829223 0.974531 1494 1 0.962141 0.858624 0.531041 721 1 0.434662 0.827287 0.529894 1900 1 0.728162 0.857967 0.513094 2035 1 0.0318415 0.890105 0.519243 1219 1 0.326444 0.925882 0.511915 752 1 0.882807 0.512676 0.704428 940 1 0.804878 0.932116 0.524809 1342 1 0.367233 0.999472 0.637181 163 1 0.637908 0.993536 0.934231 1286 1 0.411977 0.571278 0.509957 985 1 0.305185 0.577381 0.533433 89 1 0.612211 0.562575 0.528654 716 1 0.782111 0.512685 0.803496 693 1 0.859416 0.554956 0.518726 605 1 0.343037 0.623903 0.537832 1587 1 0.0661737 0.691184 0.55794 5 1 0.131279 0.677144 0.527565 1031 1 0.307041 0.700477 0.502608 302 1 0.789902 0.723593 0.515927 809 1 0.297852 0.759705 0.50837 1155 1 0.369615 0.746161 0.534994 1585 1 0.0261051 0.778243 0.526297 1869 1 0.948757 0.511741 0.951278 307 1 0.932225 0.81531 0.531496 378 1 0.328806 0.884153 0.518386 1081 1 0.637974 0.890239 0.539331 1504 1 0.777682 0.8675 0.539916 1208 1 0.512415 0.928391 0.567689 1018 1 0.584099 0.953362 0.548485 1455 1 0.571431 0.54273 0.569008 1057 1 0.217611 0.537572 0.510352 1510 1 0.786705 0.519291 0.512121 541 1 0.820651 0.541376 0.551156 1129 1 0.665203 0.556973 0.548044 499 1 0.693291 0.587494 0.549014 781 1 0.2784 0.641445 0.536516 1700 1 0.962484 0.654072 0.583514 613 1 0.535431 0.621659 0.560608 1820 1 0.339506 0.677471 0.55664 481 1 0.862542 0.740996 0.556094 786 1 0.00891665 0.771868 0.548358 623 1 0.0589997 0.824276 0.529286 653 1 0.0587683 0.851002 0.536805 1142 1 0.235677 0.846895 0.506417 670 1 0.498141 0.909245 0.511446 741 1 0.860007 0.519729 0.59647 1499 1 0.475841 0.525696 0.579534 1924 1 0.505028 0.534387 0.591199 2014 1 0.435722 0.5825 0.591373 17 1 0.508269 0.628194 0.553056 1170 1 0.0442865 0.72994 0.544161 1727 1 0.861587 0.760858 0.566841 1514 1 0.141422 0.786255 0.563419 642 1 0.279102 0.896039 0.545343 304 1 0.355758 0.932704 0.576354 102 1 0.724706 0.928987 0.581895 374 1 0.787816 0.897448 0.586562 975 1 0.899451 0.958053 0.567427 1720 1 0.519221 0.948213 0.577135 970 1 0.881417 0.939845 0.575153 1181 1 0.657014 0.981905 0.569339 686 1 0.533261 0.551537 0.996125 1488 1 0.435261 0.537321 0.589954 425 1 0.940228 0.547453 0.599157 704 1 0.187927 0.648409 0.573154 1026 1 0.323799 0.683409 0.582313 1681 1 0.269063 0.640223 0.571309 1294 1 0.0891138 0.714571 0.620907 1975 1 0.0761849 0.796995 0.575946 1406 1 0.224556 0.780387 0.609854 1790 1 0.174483 0.837439 0.61908 1728 1 0.838819 0.836091 0.586121 1614 1 0.790331 0.865564 0.548818 535 1 0.341796 0.86273 0.602647 1385 1 0.547888 0.884973 0.572214 852 1 0.719612 0.925826 0.567063 321 1 0.71784 0.908783 0.623288 1809 1 0.806609 0.937827 0.580198 345 1 0.876997 0.955449 0.546732 1956 1 0.172227 0.977872 0.540743 513 1 0.425121 0.996379 0.602804 128 1 0.232633 0.521712 0.620206 974 1 0.854741 0.51507 0.619573 1418 1 0.982785 0.502701 0.929654 427 1 0.658428 0.538599 0.57987 755 1 0.579527 0.551459 0.597167 1644 1 0.395561 0.520866 0.57593 768 1 0.640726 0.58331 0.613402 395 1 0.90468 0.601674 0.588454 1450 1 0.954415 0.639607 0.603707 1398 1 0.489663 0.6687 0.618004 2048 1 0.728714 0.709166 0.634174 1120 1 0.651477 0.746456 0.610715 211 1 0.0704889 0.741023 0.56271 1532 1 0.00278116 0.773285 0.605298 1108 1 0.266219 0.787097 0.625373 1912 1 0.919898 0.829771 0.628991 1672 1 0.38858 0.843237 0.558511 831 1 0.835248 0.84116 0.634914 864 1 0.775852 0.979646 0.588763 1190 1 0.132657 0.512289 0.636761 1233 1 0.179403 0.582519 0.621448 331 1 0.948739 0.508775 0.657482 585 1 0.554313 0.566133 0.624081 873 1 0.834542 0.544023 0.629853 64 1 0.112289 0.564432 0.626227 1438 1 0.135117 0.546368 0.61667 1242 1 0.989148 0.588819 0.646483 1958 1 0.762835 0.582049 0.623352 592 1 0.846141 0.586953 0.636471 723 1 0.116126 0.636137 0.630096 1426 1 0.841041 0.603318 0.592737 1670 1 0.956251 0.596706 0.599148 44 1 0.379894 0.632771 0.589834 504 1 0.522622 0.650041 0.61029 1939 1 0.763585 0.629393 0.622439 1182 1 0.129081 0.70604 0.608562 1524 1 0.742732 0.752984 0.642968 758 1 0.324373 0.839975 0.603162 951 1 0.684379 0.871629 0.633818 1446 1 0.542237 0.979119 0.617615 1456 1 0.35984 0.843469 0.984747 816 1 0.0608244 0.556504 0.65078 664 1 0.36208 0.523796 0.650839 747 1 0.0092609 0.565903 0.641444 1130 1 0.373654 0.607912 0.659283 1331 1 0.752781 0.664191 0.65922 1420 1 0.899854 0.661633 0.62554 679 1 0.213052 0.751645 0.687964 1247 1 0.124122 0.722945 0.659841 1643 1 0.539984 0.719634 0.644166 1516 1 0.554609 0.774653 0.636587 478 1 0.613154 0.807661 0.623266 1093 1 0.963715 0.833333 0.67564 1930 1 0.783924 0.84619 0.655521 1703 1 0.838753 0.835785 0.623119 1462 1 0.792763 0.889755 0.6404 159 1 0.459728 0.942101 0.605094 559 1 0.369209 0.947926 0.625511 198 1 0.933803 0.963694 0.605744 614 1 0.0393918 0.957542 0.645805 898 1 0.613802 0.995184 0.759604 227 1 0.28468 0.531986 0.645826 1072 1 0.393157 0.549041 0.654454 1840 1 0.704622 0.535593 0.636238 1649 1 0.746824 0.544752 0.678634 1118 1 0.816376 0.55609 0.657537 1896 1 0.538166 0.538577 0.662953 309 1 0.553797 0.588421 0.679042 738 1 0.336791 0.5611 0.646933 466 1 0.391093 0.668081 0.66642 408 1 0.616192 0.658649 0.671557 1888 1 0.0261389 0.718075 0.680939 1020 1 0.966909 0.731599 0.640466 696 1 0.996089 0.782882 0.665271 1600 1 0.783971 0.740243 0.640226 764 1 0.315687 0.869191 0.675227 87 1 0.0285039 0.88386 0.646225 1671 1 0.731763 0.862311 0.645234 1435 1 0.765723 0.901859 0.630922 371 1 0.217991 0.902055 0.644897 1548 1 0.282198 0.937206 0.670886 881 1 0.521475 0.952368 0.654304 1282 1 0.729048 0.926867 0.668877 202 1 0.597894 0.965322 0.684735 1572 1 0.993594 0.981469 0.656392 1613 1 0.465581 0.996491 0.641573 267 1 0.756867 0.529788 0.508074 562 1 0.906828 0.573025 0.696599 243 1 0.496996 0.594709 0.661961 112 1 0.0835019 0.771954 0.666251 1692 1 0.0514113 0.856113 0.649593 1088 1 0.96403 0.817293 0.675152 1698 1 0.436112 0.837524 0.688566 946 1 0.697421 0.845026 0.701883 1003 1 0.326684 0.901177 0.659261 235 1 0.118932 0.884624 0.680314 278 1 0.19693 0.894519 0.680528 200 1 0.120572 0.879521 0.691883 1991 1 0.228543 0.93694 0.683604 193 1 0.188475 0.93172 0.682426 1682 1 0.46927 0.937322 0.657353 1059 1 0.901176 0.60854 0.68034 773 1 0.201834 0.62664 0.689956 878 1 0.241543 0.710717 0.70349 1656 1 0.508602 0.70852 0.718456 532 1 0.133823 0.812271 0.676103 147 1 0.260547 0.865183 0.704716 130 1 0.766418 0.897597 0.691325 1808 1 0.978821 0.851217 0.644498 1152 1 0.336957 0.879328 0.715289 1941 1 0.698635 0.878495 0.687984 941 1 0.0880073 0.916658 0.701082 1696 1 0.357291 0.899392 0.682466 790 1 0.744328 0.948417 0.674681 522 1 0.117059 0.952267 0.718416 29 1 0.436308 0.538361 0.691267 1280 1 0.549456 0.500008 0.704836 1346 1 0.346666 0.551121 0.719256 1778 1 0.746924 0.661557 0.705805 1780 1 0.29417 0.669042 0.707401 891 1 0.766313 0.675243 0.722288 463 1 0.715747 0.726718 0.726179 550 1 0.400851 0.733549 0.687396 650 1 0.586976 0.752852 0.714335 808 1 0.513784 0.856203 0.711852 549 1 0.960548 0.860808 0.726777 377 1 0.350592 0.926134 0.694125 1221 1 0.400859 0.937009 0.705752 1074 1 0.842388 0.935367 0.710395 1169 1 0.0415358 0.967906 0.707477 1985 1 0.136606 0.564681 0.507713 436 1 0.916535 0.549589 0.718058 237 1 0.611544 0.515992 0.734701 1742 1 0.678203 0.530173 0.736094 456 1 0.249147 0.567381 0.737523 1269 1 0.381326 0.591676 0.724116 1592 1 0.525572 0.604628 0.743669 1397 1 0.765563 0.621062 0.732328 141 1 0.055721 0.645982 0.736258 264 1 0.600457 0.675033 0.728469 848 1 0.248895 0.698671 0.725848 464 1 0.121245 0.742123 0.721198 980 1 0.923418 0.747179 0.670235 1489 1 0.973317 0.77516 0.752986 1766 1 0.713092 0.847601 0.744277 150 1 0.65252 0.882782 0.73831 1033 1 0.606624 0.928128 0.743418 246 1 0.542376 0.608597 0.760071 1626 1 0.74441 0.548787 0.712126 1860 1 0.0426045 0.618713 0.738687 1300 1 0.695334 0.6967 0.739801 743 1 0.159852 0.670413 0.764868 326 1 0.767142 0.669146 0.730949 979 1 0.668994 0.790579 0.75667 1428 1 0.546406 0.826189 0.740028 286 1 0.550258 0.876216 0.723108 587 1 0.111382 0.886468 0.776354 1134 1 0.813116 0.959759 0.746441 342 1 0.195681 0.531547 0.779917 961 1 0.49753 0.502976 0.748284 488 1 0.834874 0.50708 0.714635 2047 1 0.571557 0.600622 0.746606 453 1 0.281603 0.596688 0.777544 1139 1 0.143268 0.623216 0.77232 757 1 0.00979567 0.714076 0.792054 43 1 0.442964 0.794902 0.783629 1591 1 0.128228 0.816859 0.803074 1318 1 0.172446 0.886973 0.764655 1894 1 0.434401 0.878233 0.740387 907 1 0.581961 0.900082 0.787475 1648 1 0.305359 0.88952 0.983206 1699 1 0.251282 0.602969 0.520387 1852 1 0.290438 0.536277 0.786795 223 1 0.674634 0.54341 0.809999 175 1 0.869977 0.531637 0.79019 416 1 0.92019 0.541207 0.807158 668 1 0.478622 0.575005 0.802393 219 1 0.295296 0.559891 0.780036 1164 1 0.678213 0.597363 0.770541 1371 1 0.447744 0.635855 0.778016 616 1 0.424131 0.713653 0.763775 40 1 0.392487 0.725438 0.804136 551 1 0.598554 0.714476 0.795682 1113 1 0.984929 0.737329 0.774552 250 1 0.28665 0.71724 0.803906 351 1 0.338485 0.741337 0.816196 1469 1 0.741248 0.793964 0.767304 537 1 0.674926 0.804811 0.782568 868 1 0.068081 0.816159 0.794391 1959 1 0.101866 0.917253 0.805831 146 1 0.299593 0.874094 0.786107 1823 1 0.950489 0.939607 0.830836 438 1 0.651833 0.941787 0.801522 701 1 0.44256 0.503398 0.808101 238 1 0.679781 0.545417 0.794677 1988 1 0.648277 0.594257 0.811734 45 1 0.264576 0.569725 0.853453 1284 1 0.0293283 0.655179 0.813387 315 1 0.834301 0.662791 0.790791 1785 1 0.865203 0.683234 0.783026 81 1 0.0119117 0.695687 0.857503 70 1 0.875453 0.728424 0.815876 14 1 0.561852 0.764381 0.803126 457 1 0.864169 0.778761 0.803714 893 1 0.757463 0.827228 0.789151 1194 1 0.431516 0.802493 0.826321 289 1 0.633745 0.814975 0.793551 1437 1 0.64618 0.902087 0.817518 744 1 0.723132 0.899394 0.820185 859 1 0.145294 0.925636 0.77384 440 1 0.545216 0.896674 0.827426 362 1 0.132083 0.746472 0.993743 1466 1 0.376884 0.504963 0.841571 954 1 0.0333923 0.580129 0.831719 1010 1 0.929311 0.545552 0.806013 116 1 0.960254 0.560206 0.856542 468 1 0.527481 0.608273 0.835365 1203 1 0.736824 0.722442 0.812634 631 1 0.191643 0.757122 0.821514 1051 1 0.258522 0.833407 0.831698 810 1 0.904868 0.859688 0.834471 832 1 0.655833 0.891485 0.821086 1885 1 0.256083 0.916813 0.829347 1562 1 0.46101 0.878039 0.835137 1475 1 0.535225 0.938192 0.841597 355 1 0.652337 0.602768 0.851657 690 1 0.638093 0.600473 0.850914 1963 1 0.172691 0.571832 0.873675 775 1 0.203724 0.592006 0.864952 1873 1 0.300339 0.618611 0.852237 555 1 0.708007 0.620825 0.815251 1290 1 0.134144 0.649171 0.833748 1175 1 0.930175 0.695345 0.842977 1394 1 0.868931 0.725522 0.836773 364 1 0.066648 0.70668 0.818274 2029 1 0.0234425 0.742614 0.834235 880 1 0.177304 0.753378 0.816721 1176 1 0.0334589 0.747211 0.835483 527 1 0.115393 0.785409 0.866314 1741 1 0.524886 0.78059 0.802042 405 1 0.571948 0.765955 0.800874 83 1 0.601844 0.800569 0.849689 1441 1 0.107012 0.807243 0.835452 1503 1 0.223044 0.810606 0.857366 983 1 0.90609 0.845446 0.845746 1688 1 0.699218 0.871871 0.854397 1396 1 0.136531 0.948078 0.858062 884 1 0.00627238 0.97995 0.847648 2017 1 0.637298 0.991395 0.86163 20 1 0.441908 0.522673 0.834212 1353 1 0.60874 0.570429 0.849912 991 1 0.823618 0.600816 0.869212 688 1 0.655534 0.618413 0.894175 1106 1 0.904856 0.645215 0.837812 113 1 0.795189 0.694586 0.859727 346 1 0.648424 0.762521 0.882852 1060 1 0.149744 0.836578 0.83054 332 1 0.674486 0.840525 0.829276 1492 1 0.285792 0.929604 0.884802 1266 1 0.758763 0.975055 0.863186 467 1 0.107702 0.991253 0.841163 674 1 0.90873 0.966261 0.853725 329 1 0.039371 0.504647 0.876912 257 1 0.450171 0.52297 0.86146 1938 1 0.933612 0.58657 0.879831 1543 1 0.0874855 0.586504 0.891049 1400 1 0.83527 0.67489 0.859464 1561 1 0.0300464 0.716034 0.8665 1977 1 0.408463 0.723075 0.859473 497 1 0.495618 0.698802 0.863605 754 1 0.631669 0.70751 0.898071 1136 1 0.456088 0.698916 0.884883 441 1 0.0618588 0.766107 0.864019 1976 1 0.77517 0.779633 0.892333 41 1 0.398144 0.792563 0.877171 794 1 0.316021 0.816433 0.913971 228 1 0.778047 0.820074 0.860882 1077 1 0.987037 0.85804 0.864816 669 1 0.424991 0.909245 0.874739 269 1 0.501415 0.905724 0.88728 1067 1 0.970688 0.954601 0.868275 164 1 0.572826 0.539481 0.928543 1154 1 0.00130564 0.618483 0.903943 352 1 0.408174 0.602929 0.901869 173 1 0.627383 0.5723 0.888499 16 1 0.300448 0.649483 0.915263 1927 1 0.93304 0.643929 0.892167 963 1 0.530293 0.650579 0.912424 806 1 0.198387 0.6982 0.900418 1580 1 0.196762 0.775581 0.904909 1189 1 0.965908 0.769079 0.894765 1422 1 0.721176 0.781718 0.87971 316 1 0.322462 0.847193 0.922548 479 1 0.0750595 0.836984 0.871814 1292 1 0.465278 0.811732 0.891636 514 1 0.725807 0.845759 0.924725 1071 1 0.40069 0.882147 0.934529 791 1 0.957496 0.968415 0.8973 1347 1 0.0922256 0.966551 0.915551 1047 1 0.567124 0.975492 0.906138 91 1 0.149995 0.520432 0.898149 1605 1 0.0921231 0.571353 0.897016 1678 1 0.732144 0.590084 0.901863 1801 1 0.95997 0.603986 0.942184 1076 1 0.258433 0.625927 0.916863 426 1 0.032319 0.637857 0.896925 177 1 0.432748 0.614445 0.929369 293 1 0.392099 0.667634 0.905519 1887 1 0.669183 0.685244 0.924208 1880 1 0.83903 0.68047 0.905976 396 1 0.604443 0.713137 0.941674 1989 1 0.083129 0.784798 0.919727 802 1 0.0963214 0.768832 0.884695 598 1 0.295636 0.801551 0.889948 1542 1 0.211056 0.843493 0.89192 42 1 0.949144 0.835174 0.937829 529 1 0.764723 0.878671 0.880887 418 1 0.124324 0.971217 0.893698 823 1 0.845191 0.991119 0.894343 1484 1 0.707321 0.564325 0.913587 1679 1 0.927806 0.64663 0.936216 349 1 0.360155 0.659326 0.930273 1332 1 0.970162 0.742877 0.936085 1529 1 0.782591 0.781425 0.932364 1507 1 0.745658 0.834457 0.965366 1995 1 0.215636 0.860241 0.926356 1765 1 0.212996 0.936392 0.951867 104 1 0.120003 0.93985 0.919677 1141 1 0.444848 0.523468 0.949753 470 1 0.494648 0.677516 0.952573 1069 1 0.654248 0.695879 0.967608 231 1 0.834399 0.686195 0.99378 1833 1 0.447216 0.719955 0.946482 1654 1 0.822529 0.714859 0.925339 1718 1 0.995881 0.75328 0.95731 2042 1 0.213038 0.757596 0.966486 253 1 0.476994 0.782293 0.952796 633 1 0.0600548 0.807341 0.935903 1073 1 0.749944 0.813176 0.967889 265 1 0.195584 0.833966 0.972039 1736 1 0.392562 0.871137 0.93712 369 1 0.798893 0.859004 0.968831 1589 1 0.789146 0.909135 0.959963 1834 1 0.413383 0.904092 0.935768 139 1 0.988506 0.851203 0.931368 143 1 0.782844 0.897034 0.960755 1796 1 0.771898 0.931907 0.958932 1805 1 0.0514794 0.945294 0.957583 799 1 0.981876 0.972213 0.953689 1535 1 0.0834334 0.524705 0.959223 2015 1 0.0375074 0.68713 0.934484 1962 1 0.305758 0.775826 0.956691 833 1 0.814224 0.792278 0.999519 1444 1 0.800219 0.785926 0.922681 841 1 0.916065 0.849157 0.978577 1714 1 0.687208 0.83385 0.942588 1305 1 0.107905 0.885608 0.960072 1768 1 0.230501 0.85964 0.968946 654 1 0.495958 0.894521 0.941774 417 1 0.612085 0.538796 0.985644 835 1 0.751864 0.556608 0.984591 825 1 0.767602 0.520386 0.737498 165 1 0.545164 0.992498 0.707342 1558 1 0.397115 0.510164 0.74504 1750 1 0.804555 0.619299 0.982533 221 1 0.334413 0.690827 0.986916 1691 1 0.596921 0.981005 0.57883 839 1 0.193512 0.531252 0.534275 455 1 0.530627 0.705509 0.980709 8 1 0.293317 0.721768 0.980921 582 1 0.0638162 0.725733 0.993711 298 1 0.724307 0.716759 0.9546 13 1 0.281912 0.777848 0.976871 410 1 0.802634 0.9428 0.958587 1729 1 0.741353 0.987151 0.73623 516 1 0.720986 0.978373 0.976255 1826 1 0.192276 0.965997 0.972468 1127 1 0.626778 0.907967 0.992992 30 1 0.974141 0.906492 0.995145 166 1 0.434719 0.932005 0.996926 1533 1 0.418568 0.589984 0.988811 912 1 0.366599 0.995925 0.577453 2007 1 0.217862 0.993424 0.668931 1828 1 0.759639 0.995111 0.752485 1015 1 0.0495187 0.999561 0.563128 1931 1 0.635153 0.753988 0.999394
89fdfc7929383d46dd47a2c43d1b8f94270d44c9
e3b9aa9b17ebb55e53dbc4fa9d1f49c3a56c6488
/duo_auth/vendor/duo_client_python/duo_client/accounts.py
556580b7f43fe411ee3f8915eed02cbb5f3ca610
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
OSSSP/insightconnect-plugins
ab7c77f91c46bd66b10db9da1cd7571dfc048ab7
846758dab745170cf1a8c146211a8bea9592e8ff
refs/heads/master
2023-04-06T23:57:28.449617
2020-03-18T01:24:28
2020-03-18T01:24:28
248,185,529
1
0
MIT
2023-04-04T00:12:18
2020-03-18T09:14:53
null
UTF-8
Python
false
false
1,287
py
""" Duo Security Accounts API reference client implementation. <http://www.duosecurity.com/docs/accountsapi> """ from __future__ import absolute_import from . import client class Accounts(client.Client): def get_child_accounts(self): """ Return a list of all child accounts of the integration's account. """ params = {} response = self.json_api_call('POST', '/accounts/v1/account/list', params) return response def create_account(self, name): """ Create a new child account of the integration's account. """ params = { 'name': name, } response = self.json_api_call('POST', '/accounts/v1/account/create', params) return response def delete_account(self, account_id): """ Delete a child account of the integration's account. """ params = { 'account_id': account_id, } response = self.json_api_call('POST', '/accounts/v1/account/delete', params) return response
ad182d71d82a93f43397c6323d260b37ee09705a
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_160/ch10_2019_06_06_18_15_04_170519.py
e076ee131d18a9953d0f81065eebe575a27e2103
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
62
py
def libras_para_kg(libras): kg = libras/2.20 return kg
5ea84d476170a94be1ff7dcd2b8b67bd8b5db885
782316ea755c025a331bf084b89b7d8e775a36eb
/main.py
c94a3077af22bb818b1e35bf4284517ec30f27e5
[]
no_license
ravenusmc/market
eb7c5f1e1736a3de02d77df7f7e63828dab6bca6
ad9fed2e24b8789e8ae6b554dfa219cd50d089d6
refs/heads/master
2021-08-19T14:49:04.153170
2017-11-26T18:34:51
2017-11-26T18:34:51
106,032,373
0
0
null
null
null
null
UTF-8
Python
false
false
4,564
py
#importing outside libraries for use in the project from flask import Flask, session, jsonify, redirect, url_for, escape, render_template, request, flash import json import requests #importing files I made for this project from food import * from food_data import * from quote import * from user import * #Setting up Flask app = Flask(__name__) #This route takes the user to the landing page @app.route('/', methods=['GET', 'POST']) def landing(): if request.method == 'POST': #Recieving the information from the user. username = request.form['username'] password = request.form['password'] #Creating a user object user = User() #Checking to see if the user is in the database. flag, not_found, password_no_match = user.check(username, password) #Conditional statement to test if the user is a member of the site. if flag == True: #If the user is in the database, the user gets sent to the index page. session['username'] = request.form['username'] #Sending the user to the index page return redirect(url_for('home')) else: #If the user is not in the database then they will be sent to the #sign up page. if not_found: flash('Username not found, maybe sign up!') elif password_no_match: flash('Password does not match! Maybe sign up!') return render_template('login.html') #This route takes the user to the signup page @app.route('/signup', methods=['GET', 'POST']) def signup(): if request.method == 'POST': name = request.form['name'] username = request.form['username'] password = request.form['password'] #Creating the user object user = User() #Encrypting the password password, hashed = user.encrypt_pass(password) #Adding the user to the database user.insert(name, username, hashed) #Letting them into the index Page return redirect(url_for('home')) return render_template('signup.html') #This route takes the user to the home page @app.route('/home', methods=['GET', 'POST']) def home(): #This session will prevent users who have not signed up from coming in. if 'username' not in session: return redirect(url_for('signup')) #This method fires when the user hits the submit button. if request.method == 'POST': #Creating a food object food = Food() #Calling the get_food method which will set food amounts for each type of food. food_list = food.get_Food() #Creating the food data object to insert food into the database data = Food_Data() data.insert_food(food_list) username = session['username'] #Creating a list to hold the quotes quotes = [] #Setting up the quote object quote = Quote() #Getting the response from my quote api response = quote.getting_quotes() #parsing out the data that I need-the actual quotes quotes = quote.get_data(response) return render_template('home.html', name = username, quotes = quotes) #This route will take the user to the stats page @app.route('/stats', methods=['GET', "POST"]) def stats(): #Creating a food object food = Food_Data() #Calling the pull_food method which will pull the data out of the database food_data = food.pull_food() #Here I'm getting the total pounds for EACH food pound_data = food.get_pounds(food_data) #Here I'm getting the total profit for EACH food profit_data = food.get_profit(food_data) #Here I'm getting the total pounds for all the food total_pounds = food.total_pounds(pound_data) #Here I'm getting the total profit for all the food total_profit = food.total_profit(profit_data) return render_template('stats_page.html', pound_info = pound_data, total_pounds = total_pounds, profit_info =profit_data, total_profit = total_profit, pound_data=json.dumps(pound_data), profit_data=json.dumps(profit_data)) #This function is what will log out the user. @app.route('/sign_out') def logout(): # remove the username from the session if it's there session.pop('username', None) #Redirect to Landing page return redirect(url_for('landing')) # set the secret key. keep this really secret: app.secret_key = 'n3A\xef(\xb0Cf^\xda\xf7\x97\xb1x\x8e\x94\xd5r\xe0\x11\x88\x1b\xb9' #This line will actually run the app. if __name__ == '__main__': app.run(debug=True)
c0eaa6d05399b136b2483494825e6cbc648f18a0
fd11d784974fc316b57dfd48827c038ff0d98909
/baselines/jft/experiments/jft300m_vit_base16.py
108071743048fce2f8459f78789299f0b9641fde
[ "Apache-2.0" ]
permissive
SuhongMoon/uncertainty-baselines
ada6c3382f91aeff548d5fb707863f08acd8fc7b
1a7b24f86994c7b69d9263bf47be7169736f0da9
refs/heads/main
2023-08-05T21:07:12.515521
2021-09-13T20:50:57
2021-09-13T20:51:22
398,609,284
0
0
Apache-2.0
2021-08-21T16:45:13
2021-08-21T16:45:12
null
UTF-8
Python
false
false
3,225
py
# coding=utf-8 # Copyright 2021 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""ViT-B/16. """ # pylint: enable=line-too-long import ml_collections import get_fewshot # local file import def get_config(): """Config for training a patch-transformer on JFT.""" config = ml_collections.ConfigDict() # Directory for the version de-dup'd from BiT downstream test-sets. config.dataset = 'jft/entity:1.0.0' config.val_split = 'test[:49511]' # aka tiny_test/test[:5%] in task_adapt config.train_split = 'train' # task_adapt used train+validation so +64167 config.num_classes = 18291 config.init_head_bias = -10.0 config.trial = 0 config.batch_size = 4096 config.num_epochs = 7 pp_common = '|value_range(-1, 1)' pp_common += f'|onehot({config.num_classes})' # To use ancestor 'smearing', use this line instead: # pp_common += f'|onehot({config.num_classes}, key='labels_extended', key_result='labels') # pylint: disable=line-too-long pp_common += '|keep("image", "labels")' config.pp_train = 'decode_jpeg_and_inception_crop(224)|flip_lr' + pp_common config.pp_eval = 'decode|resize_small(256)|central_crop(224)' + pp_common config.shuffle_buffer_size = 250_000 # Per host, so small-ish is ok. config.log_training_steps = 50 config.log_eval_steps = 1000 # NOTE: eval is very fast O(seconds) so it's fine to run it often. config.checkpoint_steps = 1000 # Model section config.model = ml_collections.ConfigDict() config.model.patches = ml_collections.ConfigDict() config.model.patches.size = [16, 16] config.model.hidden_size = 768 config.model.transformer = ml_collections.ConfigDict() config.model.transformer.attention_dropout_rate = 0. config.model.transformer.dropout_rate = 0. config.model.transformer.mlp_dim = 3072 config.model.transformer.num_heads = 12 config.model.transformer.num_layers = 12 config.model.classifier = 'token' # Or 'gap' config.model.representation_size = 768 # Optimizer section config.optim_name = 'Adam' config.optim = ml_collections.ConfigDict() config.optim.weight_decay = 0.1 config.optim.beta1 = 0.9 config.optim.beta2 = 0.999 config.weight_decay = None # No explicit weight decay # TODO(lbeyer): make a mini-language like preprocessings. config.lr = ml_collections.ConfigDict() config.lr.base = 8e-4 # LR has to be lower for larger models! config.lr.warmup_steps = 10_000 config.lr.decay_type = 'linear' config.lr.linear_end = 1e-5 # Few-shot eval section config.fewshot = get_fewshot() config.fewshot.log_steps = 25_000 config.args = {} return config def get_sweep(hyper): return hyper.product([])
ffbf4f577cb055f3ba0aff800f1e40d5f72aef31
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_135/3039.py
c0fc7a7b9f2a2f7aa673c3c70009e8f2ea1a127d
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,341
py
#!/usr/bin/python import sys,os def solve(index1, grid1, index2, grid2): """Returns a string result to one case of a problem""" intersection = set(grid1[index1]) & set(grid2[index2]) if len(intersection) > 1 : return "Bad magician!" if len(intersection) < 1 : return "Volunteer cheated!" return intersection.pop() #Shared######################################################################## def main(): with open(sys.argv[1], 'rU') as f_in: cases = int(f_in.readline().strip()) for case in range(1,cases+1): #Get input data index1 = int(f_in.readline().strip()) - 1 grid1 = [[int(x) for x in f_in.readline().strip().split()] for _ in range(4)] index2 = int(f_in.readline().strip()) - 1 grid2 = [[int(x) for x in f_in.readline().strip().split()] for _ in range(4)] #Solve and output print("Case #{}: {}".format(case, solve(index1, grid1, index2, grid2))) if __name__ == '__main__': if len(sys.argv) > 1 and os.path.exists(sys.argv[1]): main() elif len(sys.argv) > 1 and not os.path.exists(sys.argv[1]): print "File '"+str(sys.argv[1])+"' does not exist!" else: print "No file supplied! Run program this way: '"+str(sys.argv[0])+" something.in'"
bae6c38d93ed8a773579e39d1ec375da72b1dfee
0ef993b4dc63d6ed10e579304f6258c04f5d9f47
/032.py
668f6bd489044477e6250af0ad17fe73f9ba29ac
[]
no_license
yu5shi8/yukicoder
c5eb9f77d355cfdb1ae4e36634acca18b1d797f2
2bfc5b1b044b8f2c5a33db037585788787ebbc88
refs/heads/master
2020-05-02T04:46:17.694923
2020-03-12T08:37:28
2020-03-12T08:37:28
177,757,480
0
0
null
null
null
null
UTF-8
Python
false
false
655
py
# -*- coding: utf-8 -*- # No.32 貯金箱の憂鬱 # https://yukicoder.me/problems/5 # 硬貨の枚数を入力 l = int(input()) m = int(input()) n = int(input()) # 後から見返してみると、if を毎度付けなくても良かった件 # 1円硬貨の場合 if n >= 25: m = m + (n // 25) n = n % 25 # 25円硬貨の場合 if m >= 4: l = l + (m // 4) m = m % 4 # 100円硬貨の場合 if l >= 10: l = l % 10 # 硬貨の合計数 coin_count = l + m + n print(coin_count) ''' 【参考回答】 https://yukicoder.me/submissions/321110 l,m,n = [int(input()) for _ in '1'*3] print(n%25 + (n//25+m)%4 + ((n//25+m)//4+l)%10) '''
9331f10c63e60f252f6aea317e8e0f8981837a4e
d1c6de4e0d4aafbe1e7d15a02487494f86bf9b7e
/알고리즘문제/공통조상.py
fb4e31b961fce86f0136ebde7630b07013b14abe
[]
no_license
kdm604/TIL
d2ce2122e0b828a595530ac2a405a4661cf60205
554bbd8e884f4e7fbebdefbfa22a1a5eee0fa452
refs/heads/master
2023-01-11T21:41:57.845549
2020-03-24T08:55:10
2020-03-24T08:55:10
195,938,033
0
0
null
2023-01-05T01:14:37
2019-07-09T05:23:00
Python
UTF-8
Python
false
false
1,048
py
def check(T): if T: ans.append(nxn[T][2]) check(nxn[T][2]) def check2(T): if T: ans2.append(nxn[T][2]) check2(nxn[T][2]) def number(T): if T: num.append(T) number(nxn[T][0]) number(nxn[T][1]) T = int(input()) for test in range(T): V, E, A, B = map(int, input().split()) nxn = [[0 for _ in range(3)] for _ in range(V + 1)] arr = list(map(int, input().split())) ans = [] ans2 = [] max = 0 b = 0 for i in range(0, len(arr), 2): if nxn[arr[i]][0] == 0: nxn[arr[i]][0] = arr[i + 1] nxn[arr[i + 1]][2] = arr[i] else: nxn[arr[i]][1] = arr[i + 1] nxn[arr[i + 1]][2] = arr[i] check(A) check2(B) for i in range(len(ans)): for j in range(len(ans2)): if ans[i] == ans2[j]: max = ans[i] b = 1 break if b == 1: break num = [] number(max) print("#%d %d %d" % (test+1, max, len(num)))
9e1518600878f1c780387c3d1ba96ee3f7a7b7d8
f889bc01147869459c0a516382e7b95221295a7b
/test/test_sales_data_shipment_item_creation_interface.py
b6198d3e36b25d454919911ba2064c4129ed7f47
[]
no_license
wildatheart/magento2-api-client
249a86f5c0289743f8df5b0324ccabd76f326512
e6a707f85b37c6c3e4ef3ff78507a7deb8f71427
refs/heads/master
2021-07-14T16:01:17.644472
2017-10-18T13:33:08
2017-10-18T13:33:08
107,412,121
1
1
null
null
null
null
UTF-8
Python
false
false
1,135
py
# coding: utf-8 """ Magento Community No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: 2.2 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.sales_data_shipment_item_creation_interface import SalesDataShipmentItemCreationInterface class TestSalesDataShipmentItemCreationInterface(unittest.TestCase): """ SalesDataShipmentItemCreationInterface unit test stubs """ def setUp(self): pass def tearDown(self): pass def testSalesDataShipmentItemCreationInterface(self): """ Test SalesDataShipmentItemCreationInterface """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.sales_data_shipment_item_creation_interface.SalesDataShipmentItemCreationInterface() pass if __name__ == '__main__': unittest.main()
31f909913d17784821fc85958b1ace8371fbcc6c
e0378adb07d3a051b65420e98ed8d141aabcbf18
/Assignment 10/tests/test_repository.py
1992e7d97bbfc504289619266be344a85d787f3c
[]
no_license
BVlad917/Fundamentals-of-Programming
bc36c961be8d7144dd57aaf97b7419db551bd291
afd98cd572d456b2dda40c41882c1f2eb8f139f5
refs/heads/main
2023-08-06T17:02:26.966825
2021-09-20T19:56:11
2021-09-20T19:56:11
408,119,112
0
0
null
null
null
null
UTF-8
Python
false
false
3,590
py
import unittest from domain.person import Person from repository.custom_repo import Repository from repository.in_memory_repo import Repository as InMemoryRepo from repository.repository_exceptions import DeleteException, AddException, RepositoryException class TestRepository(unittest.TestCase): def setUp(self): self.pers_1 = Person(1, 'Vlad Bogdan', '0745000111') self.pers_2 = Person(2, 'Test Person', '0241234567') self.custom_repo = Repository() self.in_memory_repo = InMemoryRepo() def test_length_repo_attribute(self): self.assertEqual(len(self.custom_repo.elements), 0) self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) self.assertEqual(len(self.custom_repo.elements), 2) def test_contains_attribute_repo(self): self.custom_repo.add_to_repo(self.pers_1) self.assertTrue(self.pers_1 in self.custom_repo.elements) self.assertFalse(self.pers_2 in self.custom_repo.elements) def test_iter_repo(self): self.custom_repo.add_to_repo(self.pers_1) list_of_pers = [] # Test to see if repository is iterable for pers in self.custom_repo.elements: list_of_pers.append(pers) # Test to see if repository is 'index-able' self.assertEqual(list_of_pers[0], self.custom_repo.elements[0]) def test_delete_item_from_repo_by_id(self): self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.delete_by_id(1) self.assertEqual(len(self.custom_repo.elements), 0) self.assertRaises(DeleteException, self.custom_repo.delete_by_id, 1) self.assertRaises(DeleteException, self.in_memory_repo.delete_by_id, 1) def test_get_all_ids(self): self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) self.assertEqual(self.custom_repo.get_all_ids(), [1, 2]) def test_find_by_id(self): self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) self.assertEqual(self.custom_repo.find_by_id(1)[0], self.pers_1) def test_add_to_repo(self): self.assertEqual(len(self.custom_repo.elements), 0) self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) self.assertEqual(len(self.custom_repo.elements), 2) self.assertRaises(AddException, self.custom_repo.add_to_repo, self.pers_1) self.in_memory_repo.add_to_repo(self.pers_1) self.assertRaises(AddException, self.in_memory_repo.add_to_repo, self.pers_1) def test_get_all(self): self.assertEqual(self.custom_repo.elements, []) self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) self.assertEqual(self.custom_repo.elements, [self.pers_1, self.pers_2]) def test_update(self): self.custom_repo.add_to_repo(self.pers_1) self.custom_repo.add_to_repo(self.pers_2) update_pers = Person(15, 'New Name', '0745 094 735') self.assertRaises(RepositoryException, self.custom_repo.update, update_pers) update_pers = Person(1, 'New Name', '0745 094 735') self.custom_repo.update(update_pers) pers1, _ = self.custom_repo.find_by_id(1) self.assertEqual(pers1.name, 'New Name') self.assertEqual(pers1.phone_number, '0745 094 735') self.assertRaises(RepositoryException, self.in_memory_repo.update, self.pers_1)
0182ed33149dae1755168e285acaf878bfeb96b8
bd4535b2ff5fc80234eed709f46da53b9ab260cf
/Packs/TeamCymru/Integrations/TeamCymru/TeamCymru_test.py
84aa522a7c62c7309caf6468531c5395be42a3bd
[ "MIT" ]
permissive
vibhuabharadwaj/content
0641284c862668b577e82e32e2daecdb9fabb39a
518da763814fefce538379560282ff8c2ce661b9
refs/heads/master
2023-03-07T21:36:31.768989
2022-09-28T15:50:46
2022-09-28T15:50:46
202,795,410
1
0
MIT
2023-03-06T17:25:01
2019-08-16T20:30:23
Python
UTF-8
Python
false
false
8,298
py
"""TeamCymru for Cortex XSOAR - Unit Tests file""" import json import demistomock as demisto import pytest from unittest.mock import MagicMock import TeamCymru '''GLOBALS''' client = MagicMock() MOCK_ENTRY_ID = '@123' MOCK_BULK_LIST = "1.1.1.1, b, 2.2.2, n, 3.3.3.3,2001:0db8:85a3:0000:0000:8a2e:0370:7334,a,\"8.8.8.8\"," \ "4.4.4.4, 1.1.2.2, 6,6.6.6.6, 1.1.2.2" MOCK_IPS_LIST = ['1.1.1.1', 'b', '2.2.2', 'n', '3.3.3.3', '2001:0db8:85a3:0000:0000:8a2e:0370:7334', 'a', '8.8.8.8', '4.4.4.4', '1.1.2.2', '6', '6.6.6.6', '1.1.2.2'] MOCK_INVALID_IPS = ['b', '2.2.2', 'n', '2001:0db8:85a3:0000:0000:8a2e:0370:7334', 'a', '6'] MOCK_VALID_IPS = ['1.1.1.1', '3.3.3.3', '8.8.8.8', '4.4.4.4', '1.1.2.2', '6.6.6.6', '1.1.2.2'] MOCK_FILE_RES = { 'id': 'test_id', 'path': 'test_data/test_ips_file.csv', 'name': 'test_ips_file.csv', } def load_test_data(json_path): with open(json_path) as f: return json.load(f) @pytest.mark.parametrize('args, expected_error', [({'ip': None}, 'IP not specified'), ({'ip': '172.16.0'}, 'The given IP address: 172.16.0 is not valid')]) def test_ip_command_invalid_ip(args, expected_error): """ Given: - Invalid IP When: - Running the IP command Then: - Raise ValueError with the expected value """ from TeamCymru import ip_command with pytest.raises(ValueError, match=expected_error): ip_command(client, args) def test_ip_command(mocker): """ Given: - Command arguments: ip ip = 8.8.8.8 (valid IPv4) When: - Running the IP command Then: - Validate the output compared to the mock output """ from TeamCymru import ip_command mock_arg = {'ip': '8.8.8.8'} test_data = load_test_data('test_data/test_ip_command.json') return_value = test_data.get('ip_command_response') mocker.patch.object(TeamCymru, 'team_cymru_ip', return_value=return_value) response = ip_command(client, mock_arg) mock_outputs = test_data.get('mock_output') mock_readable_outputs = test_data.get('mock_readable') assert mock_outputs == response[0].outputs assert mock_readable_outputs == response[0].readable_output assert response[0].indicator def test_ip_command_with_list(mocker): """ Given: - List of IP addresses When: - Running the IP command Then: - Verify support list of IPs - Verify the result is as expected and returns the expected warning """ from TeamCymru import ip_command mock_arg = {"ip": MOCK_BULK_LIST} test_data = load_test_data('test_data/test_cymru_bulk_whois_command.json') return_value = test_data.get('cymru_bulk_whois_command_response') mocker.patch.object(TeamCymru, 'team_cymru_bulk_whois', return_value=return_value) warning = mocker.patch.object(TeamCymru, 'return_warning') mock_outputs = test_data.get('mock_output') mock_readable_outputs = test_data.get('mock_readable') response = ip_command(client, mock_arg) assert warning.call_args[0][0] == test_data.get("warning_message") assert warning.call_args[1] == {'exit': False} for i, res in enumerate(response): assert mock_outputs[i] == res.outputs assert res.indicator assert mock_readable_outputs[i] == res.readable_output def test_cymru_bulk_whois_command_with_file(mocker): """ Given: - File of IP addresses When: - Running the cymru_bulk_whois command Then: - Verify support file of IPs - Verify the result is as expected """ from TeamCymru import cymru_bulk_whois_command mock_arg = {"entry_id": MOCK_ENTRY_ID} test_data = load_test_data('test_data/test_cymru_bulk_whois_command.json') return_value = test_data.get('cymru_bulk_whois_command_response') mocker.patch.object(TeamCymru, 'team_cymru_bulk_whois', return_value=return_value) mocker.patch.object(demisto, 'getFilePath', return_value=MOCK_FILE_RES) mock_outputs = test_data.get('mock_output') mock_readable_outputs = test_data.get('mock_readable') response = cymru_bulk_whois_command(client, mock_arg) for i, res in enumerate(response): assert mock_outputs[i] == res.outputs assert res.indicator assert mock_readable_outputs[i] == res.readable_output @pytest.mark.parametrize('args, expected_error', [({'entry_id': MOCK_ENTRY_ID}, 'No file was found for given entry_id'), ({}, 'No entry_id specified.')]) def test_cymru_bulk_whois_invalid_bulk(args, expected_error, mocker): """ Given: - Invalid given argument When: - Running the cymru-bulk-whois command Then: - Raise ValueError with the expected value """ from TeamCymru import cymru_bulk_whois_command mocker.patch.object(demisto, 'getFilePath', return_value=None) with pytest.raises(ValueError, match=expected_error): cymru_bulk_whois_command(client, args) def test_team_cymru_parse_file(): """ Given: - get_file_path_res, dict: Object contains file ID, path and name When: - Running the parse_file function Then: - Return list of the elements in the file without spaces """ from TeamCymru import parse_file mock_arg = { 'id': 'test_id', 'path': 'test_data/test_ips_file.csv', 'name': 'test_ips_file.csv', } assert parse_file(mock_arg) == MOCK_IPS_LIST def test_team_cymru_validate_ip_addresses(): """ Given: - Ips list When: - Running the validate_ip_addresses function Then: - Returns two list of invalid and valid IPv4 addresses """ from TeamCymru import validate_ip_addresses invalid_ip_addresses, valid_ip_addresses = validate_ip_addresses(MOCK_IPS_LIST) assert invalid_ip_addresses == MOCK_INVALID_IPS assert valid_ip_addresses == MOCK_VALID_IPS def test_team_cymru_parse_ip_result(): """ Given: - The function arguments: ip, ip_data When: - Running the parse_ip_result function Then: - Validate the returned value (commandResult) compared to the mock output """ from TeamCymru import parse_ip_result from CommonServerPython import Common test_data = load_test_data('test_data/test_ip_command.json') ip_data = test_data.get('ip_command_response') ip = "8.8.8.8" mock_entry_context = test_data.get('mock_output') mock_readable = test_data.get('mock_readable') command_result = parse_ip_result(ip, ip_data) assert command_result.outputs == mock_entry_context assert command_result.readable_output == mock_readable assert command_result.indicator assert command_result.raw_response == ip_data assert isinstance(command_result.indicator, Common.IP) def test_empty_command_result(mocker): """ Given: - Valid ip address, running the ip_command and cymru_bulk_whois_command functions When: - team_cymru_ip, team_cymru_bulk_whois functions return None Then: - Verify the functions doesn't fail and returns empty list """ from TeamCymru import ip_command, cymru_bulk_whois_command mocker.patch("TeamCymru.team_cymru_ip", return_value=None) result = ip_command(client, {'ip': '1.1.1.1'}) assert not result mocker.patch("TeamCymru.team_cymru_bulk_whois", return_value=None) mocker.patch.object(demisto, 'getFilePath', return_value=MOCK_FILE_RES) result = cymru_bulk_whois_command(client, {'entry_id': MOCK_ENTRY_ID}) assert not result def assert_results_ok(): assert demisto.results.call_count == 1 # call_args is tuple (args list, kwargs). we only need the first one results = demisto.results.call_args[0] assert len(results) == 1 assert results[0] == 'ok' def test_test_command(mocker): mocker.patch.object(demisto, 'results') mocker.patch.object(demisto, 'command', return_value='test-module') return_value = load_test_data('test_data/test_ip_command.json').get('ip_command_response') mocker.patch("TeamCymru.team_cymru_ip", return_value=return_value) TeamCymru.main() assert_results_ok()
04196cf405334cb323c1846ac46eeb6777d8eef4
8b634dc196162dff328d61bf6f8d4121dfb59bd4
/Queue/movingAverage.py
87c8bc033130a1c01772012764b36c6e3cf616d4
[]
no_license
kqg13/LeetCode
84268b2146dc8323cb71f041b6664069baaa339c
1c584f4ca4cda7a3fb3148801a1ff4c73befed24
refs/heads/master
2023-08-05T09:46:28.103910
2023-07-29T21:02:26
2023-07-29T21:02:26
165,123,023
0
0
null
null
null
null
UTF-8
Python
false
false
744
py
# Easy queue problem 346: Moving Average from Data Stream # Given a stream of integers and a window size, calculate the moving average # of all integers in the sliding window. # Example: # MovingAverage m = new MovingAverage(3); # m.next(1) = 1 # m.next(10) = (1 + 10) / 2 # m.next(3) = (1 + 10 + 3) / 3 # m.next(5) = (10 + 3 + 5) / 3 from collections import deque class MovingAverage: def __init__(self, size): """ Initialize your data structure here. :type size: int """ self.size = size self.d = deque(maxlen=self.size) def next(self, val): """ :type val: int :rtype: float """ self.d.append(val) return sum(self.d) / len(self.d)
6d1846fe2f0d777ba67f4e06e571587e1499e552
10ddfb2d43a8ec5d47ce35dc0b8acf4fd58dea94
/Python/remove-all-ones-with-row-and-column-flips.py
c8c1b705b138b90f15933da251f8e4dc0c4d8bf7
[ "MIT" ]
permissive
kamyu104/LeetCode-Solutions
f54822059405ef4df737d2e9898b024f051fd525
4dc4e6642dc92f1983c13564cc0fd99917cab358
refs/heads/master
2023-09-02T13:48:26.830566
2023-08-28T10:11:12
2023-08-28T10:11:12
152,631,182
4,549
1,651
MIT
2023-05-31T06:10:33
2018-10-11T17:38:35
C++
UTF-8
Python
false
false
302
py
# Time: O(m * n) # Space: O(1) class Solution(object): def removeOnes(self, grid): """ :type grid: List[List[int]] :rtype: bool """ return all(grid[i] == grid[0] or all(grid[i][j] != grid[0][j] for j in xrange(len(grid[0]))) for i in xrange(1, len(grid)))
71f373e412b3cdc65f292f31da7234801c241465
fb16f7024e0d93ecb07c122e633c1a957a8ab645
/django/project31/app31/views.py
879c85bbdf9271ed121d3b5472a6fc43df156373
[]
no_license
rajeshanu/rajeshprograms
c23cf550e060040c7b336242a805e274d3305371
83f0fc9c4a8628bba590d1066ca93fd98137f0bc
refs/heads/master
2020-04-04T13:17:55.986558
2018-11-03T06:42:51
2018-11-03T06:42:51
155,956,676
1
0
null
null
null
null
UTF-8
Python
false
false
1,634
py
from django.shortcuts import render from .models import register from app31.models import login # Create your views here. def showindex(request): return render(request,"index.html") def show(request): name=request.POST.get("t1") cno=request.POST.get("t2") email=request.POST.get("t3") password=request.POST.get("t4") r=register(name=name,cno=cno,email=email,password=password) r.save() return render(request,"index.html",{"msg":"data saved"}) def login(request): email=request.POST.get("t5") password=request.POST.get("t6") #p=register(email=email,password=password) #p.save() s=register.objects.get(email=email) if s.email==email and s.password==password: return render(request,"details.html",{"email":s.email}) else: return render(request,"index.html",{"msg2":"invalid"}) def profile(request): email=request.GET.get("email") d=register.objects.get(email=email) return render(request,"profile.html",{"email":email}) def feedback(request): uemail=request.GET.get("email") try: fmail=request.session["email"] if uemail==fmail: return render(request,"details.html",{"msg1":" already given feedback"}) else: return render(request,"feedback.html",{"email":uemail}) except: return render(request,"feedback.html",{"email":uemail}) def savefeedback(request): email=request.POST.get("id") feed=request.POST.get("msg") l=login(feedback=feed,uemail=email) l.save() request.session["email"]=email return render(request,"details.html",{"msg":"feedback given "})
b8997bbbf7cc05c670173ee6e09e86e7926a283b
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
/python/eliben_deep-learning-samples/deep-learning-samples-master/logistic-regression/timer.py
91f4c60c70cdc0ca403d542731a68b3ae57a0cdd
[]
no_license
LiuFang816/SALSTM_py_data
6db258e51858aeff14af38898fef715b46980ac1
d494b3041069d377d6a7a9c296a14334f2fa5acc
refs/heads/master
2022-12-25T06:39:52.222097
2019-12-12T08:49:07
2019-12-12T08:49:07
227,546,525
10
7
null
2022-12-19T02:53:01
2019-12-12T07:29:39
Python
UTF-8
Python
false
false
411
py
from __future__ import print_function import sys import time class Timer(object): def __init__(self, name=None): self.name = name def __enter__(self): self.tstart = time.time() if self.name: print('[%s] ' % self.name, end='') sys.stdout.flush() def __exit__(self, type, value, traceback): print('Elapsed: %s' % (time.time() - self.tstart))
a3fa619d0476dcab06ff8e9e1a778e21dcc927c2
b22588340d7925b614a735bbbde1b351ad657ffc
/athena/DataQuality/DataQualityUtils/scripts/physval_make_web_display.py
00caa4b028f5b52fe6935076c5a26874739787fa
[]
no_license
rushioda/PIXELVALID_athena
90befe12042c1249cbb3655dde1428bb9b9a42ce
22df23187ef85e9c3120122c8375ea0e7d8ea440
refs/heads/master
2020-12-14T22:01:15.365949
2020-01-19T03:59:35
2020-01-19T03:59:35
234,836,993
1
0
null
null
null
null
UTF-8
Python
false
false
13,841
py
#!/usr/bin/env python # Copyright (C) 2002-2017 CERN for the benefit of the ATLAS collaboration """ Transate arbitrary root file into a han config file @author: [email protected] 9 Oct 2008 Adapted for physics validation 14 May 2014 """ from DQConfMakerBase.DQElements import * from DQConfMakerBase.Helpers import IDHelper, make_thresholds from DataQualityUtils.hanwriter import writeHanConfiguration import ROOT repeatalgorithm = DQAlgorithm(id='RepeatAlgorithm', libname='libdqm_algorithms.so') worst = DQAlgorithm(id='WorstCaseSummary',libname='libdqm_summaries.so') ### SOME THINGS YOU MIGHT WANT TO EDIT # Edit this to change what algorithm is applied (AuxAlgName--xxx) # or to disable printing the number of entries for each reference #algorithmparameters = [DQAlgorithmParameter('AuxAlgName--Chi2Test_Prob', 1), algorithmparameters = [DQAlgorithmParameter('AuxAlgName--Chi2Test_Chi2_per_NDF', 1), DQAlgorithmParameter('RepeatAlgorithm--ResultsNEntries', 1)] # Edit this to change thresholds thresh = make_thresholds('Chi2_per_NDF', 1.0, 1.50, 'Chi2Thresholds') def recurse(rdir, dqregion, ignorepath, refs=None, displaystring='Draw=PE', displaystring2D='Draw=COLZ', regex=None, startpath=None, hists=None): import re for key in rdir.GetListOfKeys(): cl = key.GetClassName(); rcl = ROOT.TClass.GetClass(cl) if ' ' in key.GetName(): print 'WARNING: cannot have spaces in histogram names for han config; not including %s %s' % (cl, key.GetName()) continue if rcl.InheritsFrom('TH1') or rcl.InheritsFrom('TGraph') or rcl.InheritsFrom('TEfficiency'): if '/' in key.GetName(): print 'WARNING: cannot have slashes in histogram names, encountered in directory %s, histogram %s' % (rdir.GetPath(), key.GetName()) continue if key.GetName() == 'summary': print 'WARNING: cannot have histogram named summary, encountered in %s' % rdir.GetPath() continue fpath = rdir.GetPath().replace(ignorepath, '') name = (fpath + '/' + key.GetName()).lstrip('/') #print rdir.GetPath(), ignorepath, name if hists: match = False for hist in hists: if hist.match(name): match = True if not match: continue elif regex: if not regex.match(name): continue dqpargs = { 'id' : ('' if fpath else 'top_level/') + name, 'algorithm': repeatalgorithm, 'inputdatasource': (startpath + '/' if startpath else '') + name, 'algorithmparameters': algorithmparameters, #'thresholds': chi2thresh, 'thresholds': thresh, } if refs: dqpargs['references'] = refs dqpar = dqregion.newDQParameter( **dqpargs) drawstrs = [] if not options.normalize: drawstrs.append('NoNorm') if options.logy and (cl.startswith('TH1') or cl.startswith('TProfile')): drawstrs.append('LogY') if options.logy and cl.startswith('TH2'): drawstrs.append('LogZ') if cl.startswith('TH1'): drawstrs.append(displaystring) if cl.startswith('TProfile'): drawstrs.append(displaystring) if cl.startswith('TH2'): drawstrs.append(displaystring2D) if options.scaleref != 1: drawstrs.append('ScaleRef=%f' % options.scaleref) if options.ratio: drawstrs.append('RatioPad') #if options.ratio: drawstrs.append('Ref2DSignif') if options.ratio2D: drawstrs.append('Ref2DRatio') if options.ratiorange is not None: drawstrs.append('delta(%f)' % options.ratiorange) drawstrs.append('DataName=%s' % options.title) dqpar.addAnnotation('display', ','.join(drawstrs)) elif rcl.InheritsFrom('TDirectory'): newregion = dqregion.newDQRegion( key.GetName(), algorithm=worst ) recurse(key.ReadObj(), newregion, ignorepath, refs, displaystring, displaystring2D, regex, startpath, hists) def prune(dqregion): """ returns True if we should kill this node False if we should not """ params = dqregion.getDQParameters() if params == None: params = [] subregions = dqregion.getSubRegions() if subregions == None: subregions = [] else: subregions = subregions[:] # kill subregions for sr in subregions: if sr == None: continue if prune(sr): dqregion.delRelation('DQRegions', sr) subregions = dqregion.getSubRegions() if subregions == None: subregions = [] if len(subregions) + len(params) == 0: return True else: return False def paramcount(dqregion): params = dqregion.getDQParameters() if params == None: params = [] subregions = dqregion.getSubRegions() if subregions == None: subregions = [] return len(params) + sum([paramcount(region) for region in subregions]) def process(infname, confname, options, refs=None): import re f = ROOT.TFile.Open(infname, 'READ') if not f.IsOpen(): print 'ERROR: cannot open %s' % infname return top_level = DQRegion(id='topRegion',algorithm=worst) print 'Building tree...' refpairs = refs.split(',') try: refdict = dict(_.split(':') for _ in refpairs) except Exception, e: print e dqrs = [DQReference(reference='%s:same_name' % v, id=k) for k, v in refdict.items()] displaystring = options.drawopt if options.refdrawopt: displaystring += ',' + (','.join('DrawRef=%s' % _ for _ in options.refdrawopt.split(','))) displaystring2D = options.drawopt2D if options.drawrefopt2D: displaystring2D += ',' + (','.join('DrawRef2D=%s' % _ for _ in options.drawrefopt2D.split(','))) if options.startpath: topindir = f.Get(options.startpath) if not topindir: raise ValueError("Path %s doesn't exist in input file" % options.startpath) topindirname = f.GetPath() + options.startpath.strip('/') startpath = options.startpath.strip('/') else: topindir = f topindirname = f.GetPath() startpath = None hists = [] if options.histlistfile: hists = [re.compile(line.rstrip('\n')) for line in open(options.histlistfile)] if options.pathregex: print "histlistfile given, pathregex is ignored" recurse(topindir, top_level, topindirname, dqrs, displaystring, displaystring2D, re.compile(options.pathregex), startpath, hists) print 'Pruning dead branches...' prune(top_level) pc = paramcount(top_level) sublevel = top_level.getSubRegions()[:] for x in sublevel: top_level.delRelation('DQRegions', x) print 'Writing output' writeHanConfiguration( filename = confname , roots = sublevel) return pc def super_process(fname, options): import shutil, os, sys, contextlib import ROOT han_is_found = (ROOT.gSystem.Load('libDataQualityInterfaces') != 1) if not han_is_found: print 'ERROR: unable to load offline DQMF; unable to proceed' sys.exit(1) bname = os.path.basename(fname) hanconfig = None hanhcfg = None hanoutput = None failed = False @contextlib.contextmanager def tmpdir(): import tempfile td = tempfile.mkdtemp() yield td shutil.rmtree(td) with tmpdir() as hantmpdir: try: print '====> Processing file %s' % (fname) print '====> Generating han configuration file' hantmpinput = os.path.join(hantmpdir, bname) shutil.copyfile(fname, hantmpinput) haninput = hantmpinput hanconfig = os.path.join(hantmpdir, 'han.config') rv = process(hantmpinput, hanconfig, options, options.reffile) #shutil.copy(hanconfig, os.getcwd()) # bad hack. rv = number of histogram nodes if rv == 0: print 'No histograms to display; exiting with code 0' sys.exit(0) print '====> Compiling han configuration' hanhcfg = os.path.join(hantmpdir, 'han.hcfg') ROOT.dqi.HanConfig().AssembleAndSave( hanconfig, hanhcfg ) print '====> Executing han' import resource memlimit = resource.getrlimit(resource.RLIMIT_AS) resource.setrlimit(resource.RLIMIT_AS, (memlimit[1], memlimit[1])) hanoutput = haninput.rpartition('.')[0] + '_han.root' rv = ROOT.dqi.HanApp().Analyze( hanhcfg, haninput, hanoutput ) if rv != 0: raise Exception('failure in han') print '====> Dumping web display output' from DataQualityUtils import handimod handimod.handiWithComparisons( options.title, hanoutput, options.outdir, '', False, False, 'https://atlasdqm.web.cern.ch/atlasdqm/js/', 3 if options.jsRoot else 1) ## print '====> Copying to', hantargetdir ## hantargetfile = os.path.join(hantargetdir, 'out_han.root') ## if not os.access(hantargetdir, os.W_OK): ## try: ## os.makedirs(hantargetdir) ## except Exception, e: ## print 'Unable to create %s for some reason: %s' % (hantargetdir, e) ## raise Exception('Error during execute') ## shutil.copy2(hanoutput, hantargetfile) ## print '====> Cleaning up' os.unlink(hanoutput) except Exception, e: print e if 'canonical format' not in str(e): failed = True finally: try: if not prebuilt_hcfg: os.unlink(hantmpinput) os.unlink(hanconfig) os.unlink(hanhcfg) os.unlink(hanoutput) except: pass return not failed if __name__=="__main__": import sys, optparse, shutil, os os.environ['TDAQ_ERS_NO_SIGNAL_HANDLERS']='1' parser = optparse.OptionParser(usage='usage: %prog [options] inputfile') parser.add_option('--reffile', default=None, help='Reference files to use. Must have same structure as inputfile. Format: tag1:reffile1.root,tag2:reffile2.root,...') parser.add_option('--outdir', default='./handi', help='Directory for web ouptut') parser.add_option('--normalize', default=False, action='store_true', help='Normalize reference histograms for display') parser.add_option('--title', default='Summary', help='Title for histograms being tested') parser.add_option('--drawopt', default='Draw=PE', help='Draw options for tested histograms (only use if you know what you are doing)') parser.add_option('--refdrawopt', help='ROOT Draw option for reference histograms (e.g. HIST)') parser.add_option('--drawopt2D', default='Draw=COLZ', help='Draw options for tested TH2 histograms (only use if you know what you are doing)') parser.add_option('--drawrefopt2D', default=None, help='Draw options for reference TH2 histograms. If nothing is specified, no 2D reference histograms are drawn. If you want to draw both test and reference histo, recommended settings are --drawopt2D="Draw=BOX" --drawrefopt2D="COLZ"') parser.add_option('--logy', action='store_true', help='Display on log Y scale') parser.add_option('--pathregex', default='.*', help='Specify regex to match histograms, e.g. "(Btag|Jets)"') parser.add_option('--startpath', default=None, help='Start from this subdirectory of the file') parser.add_option('--histlistfile', help='text file with a list of regexes/histogram names') parser.add_option('--scaleref', type=float, default=1, help='Scale references by this value') parser.add_option('--Kolmogorov', default=False, action='store_true', help='Run Kolmogorov test instead of Chi2 test') parser.add_option('--ratio', default=False, action='store_true', help='Draw histograms with ratio plots') parser.add_option('--ratio2D', default=False, action='store_true', help='Draw 2D histograms with ratio plots') parser.add_option('--jsRoot',action='store_true', default=False, help="make interactive jsRoot displays") parser.add_option('--ratiorange', default=None, type=float, help='set range for ratio plots (as delta to 1.0)') options, args = parser.parse_args() if not 1 == len(args): parser.print_help() sys.exit(1) fname = args[0] if options.Kolmogorov: algorithmparameters = [DQAlgorithmParameter('AuxAlgName--KolmogorovTest_Prob', 1), DQAlgorithmParameter('RepeatAlgorithm--ResultsNEntries', 1)] thresh = make_thresholds('P', 0.05, 0.01, 'pThresholds') rv = super_process(fname, options) if rv == True: sys.exit(0) else: sys.exit(1)
5583ff3947649c6f8c30dd9edb02cad147b9a2fe
60543d88cb19e7a264cf30622cb45ea039b243f8
/mnist/keras/mnist_train.py
07627f828c25aef98e42601ab9c313a26050aa83
[]
no_license
andrewsmedina/kaggle
90b3a9bb6945b839d75ee4a9bb52d76b4b5c9bef
51bc2fad9e6b57e00ed50e36897870cdbead6372
refs/heads/master
2021-01-10T22:19:58.366222
2018-07-29T16:39:55
2018-07-29T16:39:55
69,138,999
0
0
null
null
null
null
UTF-8
Python
false
false
1,973
py
from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K batch_size = 128 num_classes = 10 epochs = 12 # input image dimensions img_rows, img_cols = 28, 28 # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) model.save('my_model.h5')
0819c7e1251822f165d64e5c64fa8b790cb86716
bb4dc40ec0b62e5d2fc3ce1234013aebd4e648d5
/src/modules/customised/payroll_test_2/payroll_currupt/hr_payroll_arrear/hr_payroll_arrear.py
e84abac33ee604e572e2008b06091712ae5e3934
[]
no_license
kakamble-aiims/work
ba6cbaf4c525ff7bc28d0a407f16c829d0c35983
cd392bf0e80d71c4742568e9c1dd5e5211da56a9
refs/heads/master
2022-04-02T14:45:58.515014
2019-12-31T14:00:51
2019-12-31T14:00:51
199,015,147
0
0
null
null
null
null
UTF-8
Python
false
false
688
py
from trytond.pool import Pool, PoolMeta __all__ = [ 'HrSalaryRule', ] class HrSalaryRule(metaclass=PoolMeta): __name__ = 'hr.salary.rule' def calculate_OTA(self, payslip, employee, contract): amount = 0 pool = Pool() ota = pool.get('hr.allowance.ota') ot_allowance = ota.search([ ('employee', '=', employee), ('salary_code', '=', employee.salary_code), #('state', '=', 'approve') ]) if ot_allowance != []: employee_record = ot_allowance[0] amount = employee_record.amount return amount else: return amount
6c87fe2f66b078f6b284dbe97e0a53bba2d75771
35c8d8762a87f9adf8964d1ec50c7ed69583d92e
/lecturer/migrations/0004_auto_20171213_2143.py
f91ccaab02e610d73c024ecf38f583e4da85ef7a
[ "MIT" ]
permissive
VirginiaNdungu1/Grading-System
f15b9c1346986fc10336ab75938079393331330e
7f30a81cf2b1717c9f0a5a7f5814404c646eee9d
refs/heads/master
2021-05-06T06:34:39.719493
2017-12-24T14:30:04
2017-12-24T14:30:04
113,868,441
1
0
null
null
null
null
UTF-8
Python
false
false
877
py
# Generated by Django 2.0 on 2017-12-13 18:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lecturer', '0003_auto_20171213_1916'), ] operations = [ migrations.AddField( model_name='profile', name='roles', field=models.CharField(blank=True, choices=[('STUDENT', 'Student'), ('TEACHER', 'Teacher'), ('DEAN', 'Dean')], max_length=30), ), migrations.AlterField( model_name='profile', name='gender', field=models.CharField(blank=True, choices=[('FEMALE', 'F'), ('MALE', 'M'), ('NONE', 'None')], default='NONE', max_length=30), ), migrations.AlterField( model_name='profile', name='reg_date', field=models.DateTimeField(auto_now_add=True), ), ]
99a93a979b8bff83507c7790ad34b390b3361f5b
3f4edccfbcada494673214bb4556dea5098a7af3
/dataset/binary_train.py
9321d1f73510ec2044f114ff440353e7bd602448
[]
no_license
Below0/konlpy-nf-analyzer
a79b401c641586fd191f518286c2aa54f9f4cf25
e6abf1181efccdad15bfd1119320f70d709ab440
refs/heads/master
2023-01-21T11:29:29.053651
2020-11-29T09:54:09
2020-11-29T09:54:09
315,824,970
0
0
null
2020-11-25T11:34:16
2020-11-25T04:05:55
Jupyter Notebook
UTF-8
Python
false
false
3,982
py
import codecs import csv import pandas as pd import numpy as np import os import sys import urllib.request from urllib.parse import * import requests from bs4 import BeautifulSoup #from kafka import KafkaProducer import json import re import json import datetime from konlpy.tag import * import konlpy import re from keras.preprocessing.text import Tokenizer from keras_preprocessing.text import tokenizer_from_json from keras.models import model_from_json def below_threshold_len(max_len, nested_list): cnt = 0 for s in nested_list: if len(s) <= max_len: cnt = cnt + 1 print('전체 샘플 중 길이가 %s 이하인 샘플의 비율: %s' % (max_len, (cnt / len(nested_list)) * 100)) dataset = pd.read_csv('./dataset3.csv') train_data = dataset[:11000] test_data = dataset[11000:] stopwords = ['.', ',', '', '의', '가', '이', '은', '들', '는', '좀', '잘', '걍', '과', '도', '를', '으로', '자', '에', '와', '한', '하다'] # In[72]: okt = Mecab() hangul = re.compile('[^ ㄱ-ㅣ가-힣]+') X_train = [] for sentence in train_data['content']: temp_X = okt.morphs(sentence) # 토큰화 token_X = [] for word in temp_X: temp = hangul.sub('', word) if temp == '' or temp in stopwords: continue token_X.append(temp) X_train.append(token_X) X_test = [] for sentence in test_data['content']: temp_X = okt.morphs(sentence) # 토큰화 token_X = [] for word in temp_X: temp = hangul.sub('', word) if temp == '' or temp in stopwords: continue token_X.append(temp) X_test.append(token_X) print('tokenizing complete!') # In[73]: max_words = 50000 tokenizer = Tokenizer(num_words=max_words) tokenizer.fit_on_texts(X_train) X_train = tokenizer.texts_to_sequences(X_train) X_test = tokenizer.texts_to_sequences(X_test) tokenizer_json = tokenizer.to_json() with open('tokenizer3.json', 'w', encoding='utf-8') as f: f.write(json.dumps(tokenizer_json, ensure_ascii=False)) y_train = [] y_test = [] for i in range(len(train_data['label'])): if train_data['label'].iloc[i] == 1: y_train.append([1]) elif train_data['label'].iloc[i] == -1: y_train.append([0]) for i in range(len(test_data['label'])): if test_data['label'].iloc[i] == 1: y_test.append([1]) elif test_data['label'].iloc[i] == -1: y_test.append([0]) y_train = np.array(y_train) y_test = np.array(y_test) print('리뷰의 최대 길이 :', max(len(l) for l in X_train)) print('리뷰의 평균 길이 :', sum(map(len, X_train)) / len(X_train)) below_threshold_len(200, X_train) # In[77]: from keras.layers import Embedding, Dense, LSTM from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import load_model from keras.callbacks import EarlyStopping, ModelCheckpoint max_len = 200 # 전체 데이터의 길이를 20로 맞춘다 X_train = pad_sequences(X_train, maxlen=max_len) X_test = pad_sequences(X_test, maxlen=max_len) model = Sequential() model.add(Embedding(max_words, 128)) model.add(LSTM(128)) model.add(Dense(1, activation='sigmoid')) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=7) mc = ModelCheckpoint('best_model.h5', monitor='val_acc', mode='max', verbose=1, save_best_only=True) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(X_train, y_train, epochs=15, callbacks=[es, mc], batch_size=1000, validation_split=0.1) model_json = model.to_json() with open("model3.json", "w") as json_file : json_file.write(model_json) # In[78]: with open("model3.json", "r") as json_file: loaded_model_json = json_file.read() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights("best_model.h5") loaded_model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) print(model.evaluate(X_test, y_test)[1] * 100)
91759c4c00968d80511f1adeb92b86e2bbe92547
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2169/60615/257442.py
8f2708f19202be73ba8ddf22bf44ef88570c0474
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
606
py
time=int(input()) result=[] opset=['+','-','*','/'] while time>0: postfix=[i for i in input()] #231*+9- num=[] for item in postfix: if item not in opset: num.append(int(item)) else: if item=='+': temp=num[-2]+num[-1] elif item=='-': temp=num[-2]-num[-1] elif item=='*': temp=num[-2]*num[-1] else: temp=num[-2]/num[-1] del num[-2:] num.append(temp) result.append(num[0]) time=time-1 for res in result: print(res)
e88db4589a9f0746f6feef2ebb164eba6e4790e2
62974b03a14008f950db0c68d5962311a3401d3b
/medium/slidewindow/test_209_Minimum_Size_Subarray_Sum.py
0932a43778243b2896f0388d188dcf9c386f90e7
[]
no_license
wuxu1019/leetcode_sophia
818f39e8324aaf2b588150b1f7edbc2897f64935
0e99f9a5226507706b3ee66fd04bae813755ef40
refs/heads/master
2018-10-13T13:58:29.762836
2018-07-24T04:20:23
2018-07-24T04:20:23
111,624,101
1
0
null
null
null
null
UTF-8
Python
false
false
2,020
py
""" Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead. Example: Input: [2,3,1,2,4,3], s = 7 Output: 2 Explanation: the subarray [4,3] has the minimal length under the problem constraint. """ class Solution(object): def minSubArrayLen_bruteforce(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ if not nums: return 0 ans = float('INF') record = [nums[0]] for i in range(1, len(nums)): record.append(record[i-1] + nums[i]) for i in range(len(nums)): for j in range(i, len(nums)): sm = record[j] - record[i] + nums[i] if sm >= s: ans = min(ans, j - i + 1) return ans if ans != float('INF') else 0 def minSubArrayLen_binarysearch(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ if not nums: return 0 ans = float('INF') record = [nums[0]] for i in range(1, len(nums)): record.append(record[i - 1] + nums[i]) for i in range(0, len(nums)): if i == 0: to_find = s else: to_find = s + record[i - 1] j = bisect.bisect_left(record, to_find, i) if j < len(nums): ans = min(ans, j - i + 1) return ans if ans != float('INF') else 0 def minSubArrayLen_onepass(self, s, nums): """ :type s: int :type nums: List[int] :rtype: int """ j = 0 sm = 0 ans = float('INF') for i in range(len(nums)): sm += nums[i] while sm >= s: ans = min(ans, i - j + 1) sm -= nums[j] j += 1 return ans if ans != float('INF') else 0
4c75404055009fd4e4fe3fb26886920537e95665
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_200/3855.py
20efe8a1143906981815f06e93781546149a4733
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,522
py
import sys class InputFileParser(object): def __init__(self, filename): self.test_cases = [] with open(filename, 'r') as in_f: self.test_case_count = int(in_f.readline()) for i in xrange(1, self.test_case_count + 1): tc = TestCase(i) tc.last = int(in_f.readline()) self.test_cases.append(tc) class TestCase(object): def __init__(self, index): self.index = index self.last = 0 self.result = 0 def to_digits(number): return map(lambda digit_str: int(digit_str), str(number)) def to_number(digits): return int(''.join(map(str, digits))) def drop_last(digits): result = digits[:-1] result[-1] = result[-1] - 1 return result def is_tidy(digits): previous = 0 for digit in digits: if digit < previous: return False previous = digit return True def last_tidy(last): left = to_digits(last) right = [] while not is_tidy(left): right.append(9) left = drop_last(left) return to_number(left + right) if __name__ == '__main__': if len(sys.argv) < 3: exit('input and output file not specified!') parser = InputFileParser(sys.argv[1]) with open(sys.argv[2], 'w') as out_f: for tc in parser.test_cases: tc.result = last_tidy(tc.last) print 'Case #{0}: {1}'.format(tc.index, tc.result) out_f.write('Case #{0}: {1}\n'.format(tc.index, tc.result))
8433440edf9c893209f3b5aff55141b655b9b5d9
ae5a285b64731886c736a076b9cb35b6f5e18266
/blogs/mainapp/urls.py
b25f20645ded6357044666bb29924b915c61d538
[]
no_license
MichaelDc86/test_task_django
0c398af6c748532bcdc217f9dd23acdfd48ce0c5
04a58a29f6786037e310329a9b28a13efbfe2d41
refs/heads/master
2023-04-26T14:48:32.183376
2019-06-28T13:29:21
2019-06-28T13:29:21
193,847,278
0
0
null
2023-04-21T20:33:20
2019-06-26T06:57:04
JavaScript
UTF-8
Python
false
false
732
py
from django.contrib.auth.views import LogoutView from django.urls import re_path import mainapp.views as mainapp app_name = 'mainapp' urlpatterns = [ re_path(r'^$', mainapp.BlogListView.as_view(), name='blog_list'), re_path(r'login/$', mainapp.BloggerLogin.as_view(), name='login'), re_path(r'register/$', mainapp.BloggerRegister.as_view(), name='register'), re_path(r'logout/$', LogoutView.as_view(), name='logout'), re_path(r'post_create/$', mainapp.PostblogCreateView.as_view(), name='post_create'), re_path(r'post_update/(?P<pk>\d+)/$', mainapp.PostBlogUpdateView.as_view(), name='post_update'), re_path(r'post_delete/(?P<pk>\d+)/$', mainapp.PostBlogDeleteView.as_view(), name='post_delete'), ]
257e6320821547e22d65ca68d945fad58dc00cfe
276c86a451c4110ba0885dbe8509d46f23c21715
/esp32-micropython/examples/oled_thermometer.py
e94deebb1ab3bf42ebb3dc5fddf9718e04a3d88f
[]
no_license
vtt-info/octopuslab
055c9bfdc1466a6e5acf90a3cd0db2826e72dee7
3d20933c05bae3eec4d0c033f228bde369e46e07
refs/heads/master
2022-07-27T14:19:16.386241
2020-05-16T13:50:21
2020-05-16T13:50:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
# octopusLAB example - 2019 # simple example: dallas thermometer and oled display from time import sleep from util.octopus import oled_init from util.iot import Thermometer from util.display_segment import threeDigits print("init > ") ts = Thermometer() oled = oled_init() print("start > ") while True: temp = ts.get_temp() print(temp) temp10 = int(temp * 10) threeDigits(oled, temp10, True, True) sleep(1)
b79572bf6408b286a553a38cf007ee7d293068da
b2db386a35e167dd67d6de90d95c06d5c2ed91cd
/403_FrogJump.py
fcab3104b67560cffd6596e6451af41ef135978a
[]
no_license
rohitmungre/leetcode
9edb1b8b0cd714eb1a5e1fa847f2e17c455fd624
d49836b2b46a980f073bb9a6f2e47c4a903e48ac
refs/heads/master
2020-08-07T16:55:38.699188
2020-03-12T11:00:13
2020-03-12T11:00:13
213,531,119
1
0
null
null
null
null
UTF-8
Python
false
false
1,977
py
import copy class Solution(object): def canCross(self, stones): """ :type stones: List[int] :rtype: bool """ if len(stones) == 0: return False return self.cc_dp(stones, 0, [], {}) def cc_dp(self, stones, idx, steps, memo): if idx == len(stones)-1: return True if idx == 0: if stones[1] != 1: return False k = 0 csteps = copy.copy(steps) csteps.append(1) return self.cc_dp(stones, 1 , csteps, memo) else: k = steps[-1] mstr = str(idx) + '~' + str(k) if mstr in memo: return memo[mstr] stm1 = stones[idx] + k-1 st0 = stones[idx] + k stp1 = stones[idx] + k+1 if stm1 not in stones and stp1 not in stones and st0 not in stones: memo[mstr] = False return False if stp1 not in stones and st0 not in stones and k==1: memo[mstr] = False return False if stp1 in stones: csteps = copy.copy(steps) csteps.append(k+1) rp = self.cc_dp(stones, stones.index(stp1), csteps, memo) if rp: memo[mstr] = True return True if stm1 in stones and k !=1 : csteps = copy.copy(steps) csteps.append(k-1) rm = self.cc_dp(stones, stones.index(stm1), csteps, memo) if rm: memo[mstr] = True return True if st0 in stones and k !=0 : csteps = copy.copy(steps) csteps.append(k) r0 = self.cc_dp(stones, stones.index(st0), csteps, memo) if r0: memo[mstr] = True return True memo[mstr] = False return memo[mstr]
db2c9ab6255eab8ada3b3adeee266a9885a90be2
31a928cff4960236923b6bc3b68e34bb2f46f470
/Speculator/speculator/utils/stats.py
b5694a5daf9476ee9825d50ef9478a2dc65ded64
[ "MIT", "BSD-3-Clause" ]
permissive
webclinic017/ml_monorepo
707df2afd2f986eb0721d26430e6135c917817c6
945f0a83d6b94282c547bb6f4805f3381ad9c16a
refs/heads/master
2021-10-19T21:02:53.322944
2019-02-19T20:58:51
2019-02-23T20:06:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
""" Various math functions used throughout Speculator """ def avg(vals, count=None): """ Returns the average value Args: vals: List of numbers to calculate average from. count: Int of total count that vals was part of. Returns: Float average value throughout a count. """ sum = 0 for v in vals: sum += v if count is None: count = len(vals) return float(sum) / count
209b0f1761fc67877e597f756011b8176fe26c31
853d4cec42071b76a80be38c58ffe0fbf9b9dc34
/venv/Lib/site-packages/pandas/core/missing.py
84bd72cb184263e97bf91d22e1eb5c4af5de2c80
[]
no_license
msainTesting/TwitterAnalysis
5e1646dbf40badf887a86e125ef30a9edaa622a4
b1204346508ba3e3922a52380ead5a8f7079726b
refs/heads/main
2023-08-28T08:29:28.924620
2021-11-04T12:36:30
2021-11-04T12:36:30
424,242,582
0
0
null
null
null
null
UTF-8
Python
false
false
20,162
py
""" Routines for filling missing data. """ import numpy as np from pandas._libs import algos, lib from pandas.compat._optional import import_optional_dependency from pandas.core.dtypes.cast import infer_dtype_from_array from pandas.core.dtypes.common import ( ensure_float64, is_datetime64_dtype, is_datetime64tz_dtype, is_integer, is_integer_dtype, is_numeric_v_string_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import isna def mask_missing(arr, values_to_mask): """ Return a masking array of same size/shape as arr with entries equaling any member of values_to_mask set to True """ dtype, values_to_mask = infer_dtype_from_array(values_to_mask) try: values_to_mask = np.array(values_to_mask, dtype=dtype) except Exception: values_to_mask = np.array(values_to_mask, dtype=object) na_mask = isna(values_to_mask) nonna = values_to_mask[~na_mask] mask = None for x in nonna: if mask is None: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask = False else: mask = arr == x # if x is a string and arr is not, then we get False and we must # expand the mask to size arr.shape if is_scalar(mask): mask = np.zeros(arr.shape, dtype=bool) else: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask |= False else: mask |= arr == x if na_mask.any(): if mask is None: mask = isna(arr) else: mask |= isna(arr) # GH 21977 if mask is None: mask = np.zeros(arr.shape, dtype=bool) return mask def clean_fill_method(method, allow_nearest=False): # asfreq is compat for resampling if method in [None, "asfreq"]: return None if isinstance(method, str): method = method.lower() if method == "ffill": method = "pad" elif method == "bfill": method = "backfill" valid_methods = ["pad", "backfill"] expecting = "pad (ffill) or backfill (bfill)" if allow_nearest: valid_methods.append("nearest") expecting = "pad (ffill), backfill (bfill) or nearest" if method not in valid_methods: msg = "Invalid fill method. Expecting {expecting}. Got {method}".format( expecting=expecting, method=method ) raise ValueError(msg) return method def clean_interp_method(method, **kwargs): order = kwargs.get("order") valid = [ "linear", "time", "index", "values", "nearest", "zero", "slinear", "quadratic", "cubic", "barycentric", "polynomial", "krogh", "piecewise_polynomial", "pchip", "akima", "spline", "from_derivatives", ] if method in ("spline", "polynomial") and order is None: raise ValueError("You must specify the order of the spline or " "polynomial.") if method not in valid: raise ValueError( "method must be one of {valid}. Got '{method}' " "instead.".format(valid=valid, method=method) ) return method def interpolate_1d( xvalues, yvalues, method="linear", limit=None, limit_direction="forward", limit_area=None, fill_value=None, bounds_error=False, order=None, **kwargs ): """ Logic for the 1-d interpolation. The result should be 1-d, inputs xvalues and yvalues will each be 1-d arrays of the same length. Bounds_error is currently hardcoded to False since non-scipy ones don't take it as an argument. """ # Treat the original, non-scipy methods first. invalid = isna(yvalues) valid = ~invalid if not valid.any(): # have to call np.asarray(xvalues) since xvalues could be an Index # which can't be mutated result = np.empty_like(np.asarray(xvalues), dtype=np.float64) result.fill(np.nan) return result if valid.all(): return yvalues if method == "time": if not getattr(xvalues, "is_all_dates", None): # if not issubclass(xvalues.dtype.type, np.datetime64): raise ValueError( "time-weighted interpolation only works " "on Series or DataFrames with a " "DatetimeIndex" ) method = "values" valid_limit_directions = ["forward", "backward", "both"] limit_direction = limit_direction.lower() if limit_direction not in valid_limit_directions: msg = "Invalid limit_direction: expecting one of {valid!r}, " "got {invalid!r}." raise ValueError( msg.format(valid=valid_limit_directions, invalid=limit_direction) ) if limit_area is not None: valid_limit_areas = ["inside", "outside"] limit_area = limit_area.lower() if limit_area not in valid_limit_areas: raise ValueError( "Invalid limit_area: expecting one of {}, got " "{}.".format(valid_limit_areas, limit_area) ) # default limit is unlimited GH #16282 if limit is None: # limit = len(xvalues) pass elif not is_integer(limit): raise ValueError("Limit must be an integer") elif limit < 1: raise ValueError("Limit must be greater than 0") from pandas import Series ys = Series(yvalues) # These are sets of index pointers to invalid values... i.e. {0, 1, etc... all_nans = set(np.flatnonzero(invalid)) start_nans = set(range(ys.first_valid_index())) end_nans = set(range(1 + ys.last_valid_index(), len(valid))) mid_nans = all_nans - start_nans - end_nans # Like the sets above, preserve_nans contains indices of invalid values, # but in this case, it is the final set of indices that need to be # preserved as NaN after the interpolation. # For example if limit_direction='forward' then preserve_nans will # contain indices of NaNs at the beginning of the series, and NaNs that # are more than'limit' away from the prior non-NaN. # set preserve_nans based on direction using _interp_limit if limit_direction == "forward": preserve_nans = start_nans | set(_interp_limit(invalid, limit, 0)) elif limit_direction == "backward": preserve_nans = end_nans | set(_interp_limit(invalid, 0, limit)) else: # both directions... just use _interp_limit preserve_nans = set(_interp_limit(invalid, limit, limit)) # if limit_area is set, add either mid or outside indices # to preserve_nans GH #16284 if limit_area == "inside": # preserve NaNs on the outside preserve_nans |= start_nans | end_nans elif limit_area == "outside": # preserve NaNs on the inside preserve_nans |= mid_nans # sort preserve_nans and covert to list preserve_nans = sorted(preserve_nans) xvalues = getattr(xvalues, "values", xvalues) yvalues = getattr(yvalues, "values", yvalues) result = yvalues.copy() if method in ["linear", "time", "index", "values"]: if method in ("values", "index"): inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if needs_i8_conversion(inds.dtype.type): inds = inds.view(np.int64) if inds.dtype == np.object_: inds = lib.maybe_convert_objects(inds) else: inds = xvalues result[invalid] = np.interp(inds[invalid], inds[valid], yvalues[valid]) result[preserve_nans] = np.nan return result sp_methods = [ "nearest", "zero", "slinear", "quadratic", "cubic", "barycentric", "krogh", "spline", "polynomial", "from_derivatives", "piecewise_polynomial", "pchip", "akima", ] if method in sp_methods: inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if issubclass(inds.dtype.type, np.datetime64): inds = inds.view(np.int64) result[invalid] = _interpolate_scipy_wrapper( inds[valid], yvalues[valid], inds[invalid], method=method, fill_value=fill_value, bounds_error=bounds_error, order=order, **kwargs ) result[preserve_nans] = np.nan return result def _interpolate_scipy_wrapper( x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs ): """ Passed off to scipy.interpolate.interp1d. method is scipy's kind. Returns an array interpolated at new_x. Add any new methods to the list in _clean_interp_method. """ extra = "{method} interpolation requires SciPy.".format(method=method) import_optional_dependency("scipy", extra=extra) from scipy import interpolate new_x = np.asarray(new_x) # ignores some kwargs that could be passed along. alt_methods = { "barycentric": interpolate.barycentric_interpolate, "krogh": interpolate.krogh_interpolate, "from_derivatives": _from_derivatives, "piecewise_polynomial": _from_derivatives, } if getattr(x, "is_all_dates", False): # GH 5975, scipy.interp1d can't hande datetime64s x, new_x = x._values.astype("i8"), new_x.astype("i8") if method == "pchip": try: alt_methods["pchip"] = interpolate.pchip_interpolate except AttributeError: raise ImportError( "Your version of Scipy does not support " "PCHIP interpolation." ) elif method == "akima": alt_methods["akima"] = _akima_interpolate interp1d_methods = [ "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", ] if method in interp1d_methods: if method == "polynomial": method = order terp = interpolate.interp1d( x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error ) new_y = terp(new_x) elif method == "spline": # GH #10633, #24014 if isna(order) or (order <= 0): raise ValueError( "order needs to be specified and greater than 0; " "got order: {}".format(order) ) terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs) new_y = terp(new_x) else: # GH 7295: need to be able to write for some reason # in some circumstances: check all three if not x.flags.writeable: x = x.copy() if not y.flags.writeable: y = y.copy() if not new_x.flags.writeable: new_x = new_x.copy() method = alt_methods[method] new_y = method(x, y, new_x, **kwargs) return new_y def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives. Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] order: None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R. """ from scipy import interpolate # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x) def _akima_interpolate(xi, yi, x, der=0, axis=0): """ Convenience function for akima interpolation. xi and yi are arrays of values used to approximate some function f, with ``yi = f(xi)``. See `Akima1DInterpolator` for details. Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : array_like A 1-D array of real values. `yi`'s length along the interpolation axis must be equal to the length of `xi`. If N-D array, use axis parameter to select correct axis. x : scalar or array_like Of length M. der : int or list, optional How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative. axis : int, optional Axis in the yi array corresponding to the x-coordinate values. See Also -------- scipy.interpolate.Akima1DInterpolator Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ from scipy import interpolate P = interpolate.Akima1DInterpolator(xi, yi, axis=axis) if der == 0: return P(x) elif interpolate._isscalar(der): return P(x, der=der) else: return [P(x, nu) for nu in der] def interpolate_2d( values, method="pad", axis=0, limit=None, fill_value=None, dtype=None ): """ Perform an actual interpolation of values, values will be make 2-d if needed fills inplace, returns the result. """ transf = (lambda x: x) if axis == 0 else (lambda x: x.T) # reshape a 1 dim if needed ndim = values.ndim if values.ndim == 1: if axis != 0: # pragma: no cover raise AssertionError("cannot interpolate on a ndim == 1 with " "axis != 0") values = values.reshape(tuple((1,) + values.shape)) if fill_value is None: mask = None else: # todo create faster fill func without masking mask = mask_missing(transf(values), fill_value) method = clean_fill_method(method) if method == "pad": values = transf(pad_2d(transf(values), limit=limit, mask=mask, dtype=dtype)) else: values = transf( backfill_2d(transf(values), limit=limit, mask=mask, dtype=dtype) ) # reshape back if ndim == 1: values = values[0] return values def _cast_values_for_fillna(values, dtype): """ Cast values to a dtype that algos.pad and algos.backfill can handle. """ # TODO: for int-dtypes we make a copy, but for everything else this # alters the values in-place. Is this intentional? if ( is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) or is_timedelta64_dtype(dtype) ): values = values.view(np.int64) elif is_integer_dtype(values): # NB: this check needs to come after the datetime64 check above values = ensure_float64(values) return values def _fillna_prep(values, mask=None, dtype=None): # boilerplate for pad_1d, backfill_1d, pad_2d, backfill_2d if dtype is None: dtype = values.dtype if mask is None: # This needs to occur before datetime/timedeltas are cast to int64 mask = isna(values) values = _cast_values_for_fillna(values, dtype) mask = mask.view(np.uint8) return values, mask def pad_1d(values, limit=None, mask=None, dtype=None): values, mask = _fillna_prep(values, mask, dtype) algos.pad_inplace(values, mask, limit=limit) return values def backfill_1d(values, limit=None, mask=None, dtype=None): values, mask = _fillna_prep(values, mask, dtype) algos.backfill_inplace(values, mask, limit=limit) return values def pad_2d(values, limit=None, mask=None, dtype=None): values, mask = _fillna_prep(values, mask, dtype) if np.all(values.shape): algos.pad_2d_inplace(values, mask, limit=limit) else: # for test coverage pass return values def backfill_2d(values, limit=None, mask=None, dtype=None): values, mask = _fillna_prep(values, mask, dtype) if np.all(values.shape): algos.backfill_2d_inplace(values, mask, limit=limit) else: # for test coverage pass return values _fill_methods = {"pad": pad_1d, "backfill": backfill_1d} def get_fill_func(method): method = clean_fill_method(method) return _fill_methods[method] def clean_reindex_fill_method(method): return clean_fill_method(method, allow_nearest=True) def _interp_limit(invalid, fw_limit, bw_limit): """ Get indexers of values that won't be filled because they exceed the limits. Parameters ---------- invalid : boolean ndarray fw_limit : int or None forward limit to index bw_limit : int or None backward limit to index Returns ------- set of indexers Notes ----- This is equivalent to the more readable, but slower .. code-block:: python def _interp_limit(invalid, fw_limit, bw_limit): for x in np.where(invalid)[0]: if invalid[max(0, x - fw_limit):x + bw_limit + 1].all(): yield x """ # handle forward first; the backward direction is the same except # 1. operate on the reversed array # 2. subtract the returned indices from N - 1 N = len(invalid) f_idx = set() b_idx = set() def inner(invalid, limit): limit = min(limit, N) windowed = _rolling_window(invalid, limit + 1).all(1) idx = set(np.where(windowed)[0] + limit) | set( np.where((~invalid[: limit + 1]).cumsum() == 0)[0] ) return idx if fw_limit is not None: if fw_limit == 0: f_idx = set(np.where(invalid)[0]) else: f_idx = inner(invalid, fw_limit) if bw_limit is not None: if bw_limit == 0: # then we don't even need to care about backwards # just use forwards return f_idx else: b_idx = list(inner(invalid[::-1], bw_limit)) b_idx = set(N - 1 - np.asarray(b_idx)) if fw_limit == 0: return b_idx return f_idx & b_idx def _rolling_window(a, window): """ [True, True, False, True, False], 2 -> [ [True, True], [True, False], [False, True], [True, False], ] """ # https://stackoverflow.com/a/6811241 shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
15e688993d21c158b79180b3621f8f9c92e788ca
f5c3841a08c3faa1818d3ee210c8b9921dc9499d
/sql/selection.py
158e8c8c265a604e3ee97f88126eb69744e3da20
[]
no_license
villancikos/realpython-book2
a4e74b51fe1d3a8e5af206c2938ff4966ef00df6
6c9a2ef714531f1163f3c78c80fad335661dacf2
refs/heads/master
2016-09-06T10:06:49.227106
2014-09-22T18:56:58
2014-09-22T18:56:58
23,493,659
1
1
null
2014-09-19T23:35:40
2014-08-30T14:44:52
Python
UTF-8
Python
false
false
304
py
# SELECT statement import sqlite3 with sqlite3.connect('new.db') as connection: c = connection.cursor() #for row in c.execute("SELECT firstname, lastname from employees"): # print row c.execute("SELECT firstname, lastname from employees") rows = c.fetchall() for r in rows: print r[0],r[1]
3e8ef970d06299d87bd03604d228bc22a57da735
283bbf2ce575ea72010e9823907285b08d20fce4
/breathecode/tests/mocks/screenshotmachine/requests_mock.py
bc661c61e3d798348dce1188edecdeee67e37d3f
[]
no_license
AnMora/apiv2
c084ffcb4ff5b7a0a01dac8fca26f4f4c37aad97
fa3b3f0ce4a069facdecd18e133c7b4222a0004a
refs/heads/master
2023-05-19T23:00:34.257230
2021-06-08T21:17:56
2021-06-08T21:17:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
""" Requests mock """ class ResponseMock(): """Simutate Response to be used by mocks""" status_code = None data = None content = None def __init__(self, status_code=200, data=''): self.status_code = status_code if isinstance(data, str): self.content = data else: self.data = data def json(self) -> dict: """Convert Response to JSON""" return self.data def get_mock(url: str, stream=False): """Requests get mock""" return ResponseMock(data='ok', status_code=200)
cc7e44a17c3f456e0f8fa5d7f81a928fcb8c2e17
d680f545562589a34224f3a422c00c1697c84c5d
/mutasi_aset_2021/perkim/pm_perkim_ke_dinas_koperasi/pm_perkim_ke_dinas_koperasi_insert.py
43c13c1e420a8f0068401f47303524a0b009cc78
[ "BSD-2-Clause" ]
permissive
muntaza/catatan_openaset_balangan
9362d0beb4de6e0abc3f4ec5ebb63a5aaff66294
01d1eb79ea8f203d231956d74b88e39789d54429
refs/heads/master
2022-02-18T10:27:21.494091
2022-02-14T10:19:50
2022-02-14T10:19:50
233,332,577
0
0
null
null
null
null
UTF-8
Python
false
false
4,923
py
from peralatanmesin.models import PeralatanMesin from gedungbangunan.clone_object import clone_object def pm_perkim_ke_dinas_koperasi(): clone_object(PeralatanMesin.objects.get(pk=28772)) clone_object(PeralatanMesin.objects.get(pk=28773)) clone_object(PeralatanMesin.objects.get(pk=28774)) clone_object(PeralatanMesin.objects.get(pk=28776)) clone_object(PeralatanMesin.objects.get(pk=28777)) clone_object(PeralatanMesin.objects.get(pk=28778)) clone_object(PeralatanMesin.objects.get(pk=28779)) clone_object(PeralatanMesin.objects.get(pk=28781)) clone_object(PeralatanMesin.objects.get(pk=28782)) clone_object(PeralatanMesin.objects.get(pk=28783)) clone_object(PeralatanMesin.objects.get(pk=28784)) clone_object(PeralatanMesin.objects.get(pk=28830)) clone_object(PeralatanMesin.objects.get(pk=28832)) clone_object(PeralatanMesin.objects.get(pk=28833)) clone_object(PeralatanMesin.objects.get(pk=28834)) clone_object(PeralatanMesin.objects.get(pk=28838)) clone_object(PeralatanMesin.objects.get(pk=28841)) clone_object(PeralatanMesin.objects.get(pk=28843)) clone_object(PeralatanMesin.objects.get(pk=28844)) clone_object(PeralatanMesin.objects.get(pk=28845)) clone_object(PeralatanMesin.objects.get(pk=28846)) clone_object(PeralatanMesin.objects.get(pk=28847)) clone_object(PeralatanMesin.objects.get(pk=28848)) clone_object(PeralatanMesin.objects.get(pk=28849)) clone_object(PeralatanMesin.objects.get(pk=52028)) clone_object(PeralatanMesin.objects.get(pk=71070)) clone_object(PeralatanMesin.objects.get(pk=88871)) clone_object(PeralatanMesin.objects.get(pk=88873)) clone_object(PeralatanMesin.objects.get(pk=88874)) clone_object(PeralatanMesin.objects.get(pk=88875)) clone_object(PeralatanMesin.objects.get(pk=88882)) clone_object(PeralatanMesin.objects.get(pk=88883)) clone_object(PeralatanMesin.objects.get(pk=88884)) clone_object(PeralatanMesin.objects.get(pk=88891)) clone_object(PeralatanMesin.objects.get(pk=88892)) clone_object(PeralatanMesin.objects.get(pk=88893)) clone_object(PeralatanMesin.objects.get(pk=88898)) clone_object(PeralatanMesin.objects.get(pk=88908)) clone_object(PeralatanMesin.objects.get(pk=88909)) clone_object(PeralatanMesin.objects.get(pk=88910)) clone_object(PeralatanMesin.objects.get(pk=88911)) clone_object(PeralatanMesin.objects.get(pk=88912)) clone_object(PeralatanMesin.objects.get(pk=88913)) clone_object(PeralatanMesin.objects.get(pk=88914)) clone_object(PeralatanMesin.objects.get(pk=88915)) clone_object(PeralatanMesin.objects.get(pk=89759)) clone_object(PeralatanMesin.objects.get(pk=89760)) clone_object(PeralatanMesin.objects.get(pk=89761)) clone_object(PeralatanMesin.objects.get(pk=89762)) clone_object(PeralatanMesin.objects.get(pk=89763)) clone_object(PeralatanMesin.objects.get(pk=89764)) clone_object(PeralatanMesin.objects.get(pk=89955)) clone_object(PeralatanMesin.objects.get(pk=89956)) clone_object(PeralatanMesin.objects.get(pk=99266)) clone_object(PeralatanMesin.objects.get(pk=99385)) clone_object(PeralatanMesin.objects.get(pk=99386)) clone_object(PeralatanMesin.objects.get(pk=99387)) clone_object(PeralatanMesin.objects.get(pk=99388)) clone_object(PeralatanMesin.objects.get(pk=99389)) clone_object(PeralatanMesin.objects.get(pk=99393)) clone_object(PeralatanMesin.objects.get(pk=99394)) clone_object(PeralatanMesin.objects.get(pk=99395)) clone_object(PeralatanMesin.objects.get(pk=99396)) clone_object(PeralatanMesin.objects.get(pk=99410)) clone_object(PeralatanMesin.objects.get(pk=99411)) clone_object(PeralatanMesin.objects.get(pk=99412)) clone_object(PeralatanMesin.objects.get(pk=99413)) clone_object(PeralatanMesin.objects.get(pk=99414)) clone_object(PeralatanMesin.objects.get(pk=99415)) clone_object(PeralatanMesin.objects.get(pk=99416)) clone_object(PeralatanMesin.objects.get(pk=99417)) clone_object(PeralatanMesin.objects.get(pk=99418)) clone_object(PeralatanMesin.objects.get(pk=99419)) clone_object(PeralatanMesin.objects.get(pk=99433)) clone_object(PeralatanMesin.objects.get(pk=99436)) clone_object(PeralatanMesin.objects.get(pk=99437)) clone_object(PeralatanMesin.objects.get(pk=99438)) clone_object(PeralatanMesin.objects.get(pk=99466)) clone_object(PeralatanMesin.objects.get(pk=99467)) clone_object(PeralatanMesin.objects.get(pk=99468)) clone_object(PeralatanMesin.objects.get(pk=99469)) clone_object(PeralatanMesin.objects.get(pk=99470)) clone_object(PeralatanMesin.objects.get(pk=99471)) clone_object(PeralatanMesin.objects.get(pk=99472)) clone_object(PeralatanMesin.objects.get(pk=99473)) clone_object(PeralatanMesin.objects.get(pk=99474)) clone_object(PeralatanMesin.objects.get(pk=99475))
84936bffedb2e3603a2b4acff728d7de87b37826
cf7c928d6066da1ce15d2793dcf04315dda9b9ed
/Jungol/Lv1_LCoder_Python/py20_변수와입력/Main_JO_725_변수와입력_자가진단6.py
bf0bc102b6ac2ee3d0fcceed1c228fdd9570335d
[]
no_license
refresh6724/APS
a261b3da8f53de7ff5ed687f21bb1392046c98e5
945e0af114033d05d571011e9dbf18f2e9375166
refs/heads/master
2022-02-01T23:31:42.679631
2021-12-31T14:16:04
2021-12-31T14:16:04
251,617,280
0
0
null
null
null
null
UTF-8
Python
false
false
371
py
print("Number 1?") Number1 = int(input()) print("Number 2?") Number2 = int(input()) mul = Number1*Number2 div = float(Number1)/Number2 print("%d * %d = %d" % (Number1, Number2, Number1 * Number2)) # 왜 다를까 # print("%d / %d = %f" % (Number1, Number2, Number1 / Number2)) # 79 / 74 = 1.067568 print(f"{Number1} / {Number2} = {div}") # 79 / 74 = 1.0675675675675675
c8aa8d0b005670120daa41f4f2b57539208a43e2
a5a386c05ea962cd34f27214130d4117e650f1e7
/awards/serializer.py
ee55415fb39d51df5732b1ccd57ce5a92ccf01d0
[ "MIT" ]
permissive
iankabugi/Awards
eccba8866b16830ced36227c657c773a1bb5088b
3d0e58faf679b71cf4e588e59e8c705660830d2f
refs/heads/master
2021-09-09T09:33:12.535405
2019-06-25T22:43:32
2019-06-25T22:43:32
175,820,927
1
0
MIT
2021-09-08T00:54:20
2019-03-15T13:00:27
Python
UTF-8
Python
false
false
370
py
from rest_framework import serializers from .models import Profile, Project class ProfSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('bio', 'profile_pic', 'user') class ProjectSerializer(serializers.ModelSerializer): class Meta: model = Project fields = ('title', 'description', 'landing_page')
b0b14e8a0b6dfcb29da3c2d478cb88bddfc84212
68c1cb7e2e7b7bb4174951c817a36b16cf1e9f83
/pytype/tools/arg_parser.py
c3fe1d9b319c84b1f507a25a020a0c5d6b218caa
[ "Apache-2.0", "MIT" ]
permissive
priyansh19/pytype
f28f439943859f61e3ce5ff51d8a56a925ae5cb8
44b1f6f7cddccb326abac4c21b4f26688369764e
refs/heads/master
2020-06-19T07:11:11.508597
2019-07-11T18:34:08
2019-07-11T18:34:08
196,610,656
2
0
NOASSERTION
2019-07-12T16:23:13
2019-07-12T16:23:13
null
UTF-8
Python
false
false
2,790
py
"""Argument parsing for tools that pass args on to pytype_single.""" import argparse from pytype import config as pytype_config class ParserWrapper(object): """Wrapper that adds arguments to a parser while recording them.""" def __init__(self, parser, actions=None): self.parser = parser self.actions = {} if actions is None else actions def add_argument(self, *args, **kwargs): try: action = self.parser.add_argument(*args, **kwargs) except argparse.ArgumentError: # We might want to mask some pytype-single options. pass else: self.actions[action.dest] = action def add_argument_group(self, *args, **kwargs): group = self.parser.add_argument_group(*args, **kwargs) wrapped_group = self.__class__(group, actions=self.actions) return wrapped_group def string_to_bool(s): return s == 'True' if s in ('True', 'False') else s def convert_string(s): s = s.replace('\n', '') try: return int(s) except ValueError: return string_to_bool(s) class Parser(object): """Parser that integrates tool and pytype-single args.""" def __init__(self, parser, pytype_single_args): """Initialize a parser. Args: parser: An argparse.ArgumentParser or compatible object pytype_single_args: Iterable of args that will be passed to pytype_single """ self.parser = parser self.pytype_single_args = pytype_single_args def create_initial_args(self, keys): """Creates the initial set of args. Args: keys: A list of keys to create args from Returns: An argparse.Namespace. """ return argparse.Namespace(**{k: None for k in keys}) def parse_args(self, argv): """Parses argv. Args: argv: sys.argv[1:] Returns: An argparse.Namespace. """ args = self.create_initial_args(self.pytype_single_args) self.parser.parse_args(argv, args) self.postprocess(args) return args def postprocess(self, args, from_strings=False): """Postprocesses the subset of pytype_single_args that appear in args. Args: args: an argparse.Namespace. from_strings: Whether the args are all strings. If so, we'll do our best to convert them to the right types. """ names = set() for k in self.pytype_single_args: if hasattr(args, k): names.add(k) if from_strings: setattr(args, k, convert_string(getattr(args, k))) pytype_config.Postprocessor(names, args).process() def get_pytype_kwargs(self, args): """Return a set of kwargs to pass to pytype.config.Options. Args: args: an argparse.Namespace. Returns: A dict of kwargs with pytype_single args as keys. """ return {k: getattr(args, k) for k in self.pytype_single_args}
c81b79fe6529cc8728ee50a7f74f7af8d732f321
a8d1abca67457263e6e2d85e1005bbef2ef1b059
/app/supplier/__init__.py
a260ee8c0aa173ca38726f57095177bdfa29ec35
[]
no_license
kid-kodi/manager
a46d706b11e411943e86bcfbcdc19783826a73a8
cb1f1233a795fce7148bcbf70989815687248db0
refs/heads/master
2022-12-05T04:29:24.248769
2018-12-28T11:00:58
2018-12-28T11:00:58
163,323,042
0
0
null
2022-11-22T02:55:02
2018-12-27T18:01:49
Python
UTF-8
Python
false
false
95
py
from flask import Blueprint bp = Blueprint('supplier', __name__) from . import routes, forms
38e12f8b9db38ea3e3eae5f141e881819ae484c8
6320fef2ea7376c2b35f97f1a5af004e90f09098
/1-2주차 실습(복습)/venv/Lib/site-packages/pygame/_numpysndarray.py
5daa10746bf656d4595f81604d3399fbe65bd257
[]
no_license
Dplo1514/ploaistudy
7aa08d7f71653748a9e32dcc09ee8f6cec0aaed9
e35e42b1e5f0c90cc1e2a59993a1ef73d8872d0c
refs/heads/master
2023-09-03T00:45:55.601651
2021-10-24T12:19:38
2021-10-24T12:19:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,660
py
## pygame - Python Game Library ## Copyright (C) 2008 Marcus von Appen ## ## This library is free software; you can redistribute it and/or ## modify it under the terms of the GNU Library General Public ## License as published by the Free Software Foundation; either ## version 2 of the License, or (at your option) any later version. ## ## This library is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## Library General Public License for more details. ## ## You should have received a copy of the GNU Library General Public ## License along with this library; if not, write to the Free ## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ## ## Marcus von Appen ## [email protected] """pygame module for accessing sound sample data using numpy Functions to convert between numpy arrays and Sound objects. This module will only be available when pygame can use the external numpy package. Sound data is made of thousands of samples per second, and each sample is the amplitude of the wave at a particular moment in time. For example, in 22-kHz format, element number 5 of the array is the amplitude of the wave after 5/22000 seconds. Each sample is an 8-bit or 16-bit integer, depending on the data format. A stereo sound file has two values per sample, while a mono sound file only has one. """ import pygame.mixer as mixer import numpy def array(sound): """pygame._numpysndarray.array(Sound): return array Copy Sound samples into an array. Creates a new array for the sound data and copies the samples. The array will always be in the format returned from pygame.mixer.get_init(). """ return numpy.array(sound, copy=True) def samples(sound): """pygame._numpysndarray.samples(Sound): return array Reference Sound samples into an array. Creates a new array that directly references the samples in a Sound object. Modifying the array will change the Sound. The array will always be in the format returned from pygame.mixer.get_init(). """ return numpy.array(sound, copy=False) def make_sound(array): """pygame._numpysndarray.make_sound(array): return Sound Convert an array into a Sound object. Create a new playable Sound object from an array. The mixer module must be initialized and the array format must be similar to the mixer audio format. """ return mixer.Sound(array=array)
ebca73888ad4378afca4d9cc286766ded94c5a00
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03612/s108764043.py
931ac55645fd8b56e3c8ddb91cf3650d5feaebe2
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
N = int(input()) A = list(map(int, input().split())) cnt = 0 for i, a in enumerate(A, 1): if a == i: if i != len(A): x = A[i - 1] y = A[i] A[i - 1] = y A[i] = x cnt += 1 else: x = A[i - 2] y = A[i - 1] A[i - 2] = y A[i - 1] = x cnt += 1 print(cnt)
fb1aef471f1ebba3fa245f15ce0af02930d314ec
a37c6678a5630925e6600fe65113828918f80563
/raylab/envs/environments/hvac.py
c23e639295c021d002a4d06af42c2efd75694361
[ "MIT" ]
permissive
rudrasohan/raylab
658186d2955b7f949ab13045fb8f72ac8bd17978
12b93003a863caf7f9ead621d3afe4c83c4d7ee1
refs/heads/master
2023-03-24T11:03:57.626283
2021-03-11T19:53:53
2021-03-11T19:53:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,344
py
# pylint:disable=missing-docstring,invalid-name import gym import numpy as np import torch DEFAULT_CONFIG = { "ADJ": [[False, True, True], [False, False, True], [False, False, False]], "ADJ_OUTSIDE": [True, True, False], "ADJ_HALL": [True, False, True], "R_OUTSIDE": [4.0, 4.0, 4.0], "R_HALL": [2.0, 2.0, 2.0], "R_WALL": [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], "IS_ROOM": [True, True, True], "CAP": [80.0, 80.0, 80.0], "CAP_AIR": 1.006, "COST_AIR": 1.0, "TIME_DELTA": 1.0, "TEMP_AIR": 40.0, "TEMP_UP": [23.5, 23.5, 23.5], "TEMP_LOW": [20.0, 20.0, 20.0], "PENALTY": 20000.0, "AIR_MAX": [10.0, 10.0, 10.0], "TEMP_OUTSIDE_MEAN": [6.0, 6.0, 6.0], "TEMP_OUTSIDE_VARIANCE": [1.0, 1.0, 1.0], "TEMP_HALL_MEAN": [10.0, 10.0, 10.0], "TEMP_HALL_VARIANCE": [1.0, 1.0, 1.0], "init": {"temp": [10.0, 10.0, 10.0]}, "horizon": 40, } class HVACEnv(gym.Env): metadata = {"render.modes": ["human"]} def __init__(self, config=None): self._config = {**DEFAULT_CONFIG, **(config or {})} self._num_rooms = len(self._config["init"]["temp"]) self.observation_space = gym.spaces.Box( low=np.array([-np.inf] * self._num_rooms + [0.0], dtype=np.float32), high=np.array([np.inf] * self._num_rooms + [1.0], dtype=np.float32), ) self.action_space = gym.spaces.Box( low=np.array([0.0] * self._num_rooms, dtype=np.float32), high=np.array([1.0] * self._num_rooms, dtype=np.float32), ) self._horizon = self._config["horizon"] self._state = None self.reset() def reset(self): self._state = np.array(self._config["init"]["temp"] + [0.0]) return self._state @property def temp(self): obs, _ = self._unpack_state(self._state) return torch.as_tensor(obs, dtype=torch.float32) @torch.no_grad() def step(self, action): state, action = map(torch.as_tensor, (self._state, action)) next_state, _ = self.transition_fn(state, action) reward = self.reward_fn(state, action, next_state).item() self._state = next_state.numpy() return self._state, reward, self._terminal(), {} def transition_fn(self, state, action, sample_shape=()): # pylint:disable=missing-docstring state, time = self._unpack_state(state) AIR_MAX = torch.as_tensor(self._config["AIR_MAX"]) action = torch.as_tensor(action) * AIR_MAX temp_hall, logp_temp_hall = self._temp_hall(sample_shape) temp_outside, logp_temp_outside = self._temp_outside(sample_shape) next_state = self._temp(action, temp_outside, temp_hall) logp = logp_temp_hall + logp_temp_outside time = self._step_time(time) time = time.expand_as(next_state[..., -1:]) return torch.cat([next_state, time], dim=-1), logp def _temp_hall(self, sample_shape=()): TEMP_HALL_MEAN = torch.as_tensor(self._config["TEMP_HALL_MEAN"]) TEMP_HALL_VARIANCE = torch.sqrt( torch.as_tensor(self._config["TEMP_HALL_VARIANCE"]) ) dist = torch.distributions.Normal(TEMP_HALL_MEAN, TEMP_HALL_VARIANCE) sample = dist.rsample(sample_shape) logp = dist.log_prob(sample.detach()) return sample, logp def _temp_outside(self, sample_shape=()): TEMP_OUTSIDE_MEAN = torch.as_tensor(self._config["TEMP_OUTSIDE_MEAN"]) TEMP_OUTSIDE_VARIANCE = torch.sqrt( torch.as_tensor(self._config["TEMP_OUTSIDE_VARIANCE"]) ) dist = torch.distributions.Normal(TEMP_OUTSIDE_MEAN, TEMP_OUTSIDE_VARIANCE) sample = dist.rsample(sample_shape) logp = dist.log_prob(sample.detach()) return sample, logp def _temp(self, action, temp_outside, temp_hall): # pylint:disable=too-many-locals air = action TIME_DELTA = torch.as_tensor(self._config["TIME_DELTA"]) CAP = torch.as_tensor(self._config["CAP"]) CAP_AIR = torch.as_tensor(self._config["CAP_AIR"]) TEMP_AIR = torch.as_tensor(self._config["TEMP_AIR"]) IS_ROOM = torch.as_tensor(self._config["IS_ROOM"]) ADJ = torch.as_tensor(self._config["ADJ"]) ADJ_OUTSIDE = torch.as_tensor(self._config["ADJ_OUTSIDE"]) ADJ_HALL = torch.as_tensor(self._config["ADJ_HALL"]) R_OUTSIDE = torch.as_tensor(self._config["R_OUTSIDE"]) R_HALL = torch.as_tensor(self._config["R_HALL"]) R_WALL = torch.as_tensor(self._config["R_WALL"]) temp = self.temp temp_ = temp + TIME_DELTA / CAP * ( air * CAP_AIR * (TEMP_AIR - temp) * IS_ROOM + ((ADJ | ADJ.T) * (temp[np.newaxis] - temp[np.newaxis].T) / R_WALL).sum( dim=-1 ) + ADJ_OUTSIDE * (temp_outside - temp) / R_OUTSIDE + ADJ_HALL * (temp_hall - temp) / R_HALL ) return temp_ def _step_time(self, time): timestep = torch.round(self._horizon * time) return torch.clamp((timestep + 1) / self._horizon, 0, 1) def reward_fn(self, state, action, next_state): # pylint:disable=unused-argument,missing-docstring AIR_MAX = torch.as_tensor(self._config["AIR_MAX"]) air = torch.as_tensor(action) * AIR_MAX temp, _ = self._unpack_state(next_state) IS_ROOM = torch.as_tensor(self._config["IS_ROOM"]) COST_AIR = torch.as_tensor(self._config["COST_AIR"]) TEMP_LOW = torch.as_tensor(self._config["TEMP_LOW"]) TEMP_UP = torch.as_tensor(self._config["TEMP_UP"]) PENALTY = torch.as_tensor(self._config["PENALTY"]) reward = -( IS_ROOM * ( air * COST_AIR + ((temp < TEMP_LOW) | (temp > TEMP_UP)) * PENALTY + 10.0 * torch.abs((TEMP_UP + TEMP_LOW) / 2.0 - temp) ) ).sum(dim=-1) return reward def _terminal(self): _, time = self._unpack_state(self._state) return time.item() >= 1.0 @staticmethod def _unpack_state(state): obs = torch.as_tensor(state[..., :-1], dtype=torch.float32) time = torch.as_tensor(state[..., -1:], dtype=torch.float32) return obs, time def render(self, mode="human"): pass
342cf1d5605e21d8c21f41d42db60fb27432b9a7
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/eagerli.py
488fed7f8a0bcdbe716710498de1ed841c81ca21
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
1,767
py
ii = [('EmerRN.py', 1), ('CookGHP3.py', 7), ('LyelCPG2.py', 1), ('MarrFDI.py', 4), ('RogePAV2.py', 3), ('CoolWHM2.py', 4), ('GodwWSL2.py', 6), ('RogePAV.py', 2), ('SadlMLP.py', 6), ('FerrSDO3.py', 1), ('WilbRLW.py', 3), ('WilbRLW4.py', 3), ('RennJIT.py', 3), ('AubePRP2.py', 1), ('CookGHP.py', 9), ('MartHSI2.py', 1), ('KembFJ1.py', 2), ('WilkJMC3.py', 2), ('WilbRLW5.py', 1), ('PettTHE.py', 1), ('TennAP.py', 1), ('PeckJNG.py', 1), ('BailJD2.py', 25), ('WilbRLW2.py', 4), ('ClarGE2.py', 3), ('CarlTFR.py', 8), ('LyttELD.py', 2), ('CoopJBT2.py', 4), ('TalfTAC.py', 2), ('GrimSLE.py', 1), ('RoscTTI3.py', 7), ('AinsWRR3.py', 7), ('CookGHP2.py', 1), ('KiddJAE.py', 1), ('BailJD1.py', 16), ('RoscTTI2.py', 2), ('CoolWHM.py', 2), ('CrokTPS.py', 2), ('ClarGE.py', 8), ('IrviWVD.py', 1), ('GilmCRS.py', 4), ('DaltJMA.py', 1), ('WestJIT2.py', 2), ('DibdTRL2.py', 1), ('AinsWRR.py', 5), ('WadeJEB.py', 1), ('FerrSDO2.py', 2), ('TalfTIT.py', 2), ('GodwWLN.py', 3), ('CoopJBT.py', 4), ('KirbWPW2.py', 3), ('BackGNE.py', 3), ('HowiWRL2.py', 1), ('BailJD3.py', 15), ('MereHHB.py', 1), ('WilkJMC.py', 1), ('MartHRW.py', 6), ('MackCNH.py', 1), ('WestJIT.py', 1), ('FitzRNS4.py', 4), ('CoolWHM3.py', 5), ('DequTKM.py', 4), ('FitzRNS.py', 3), ('EdgeMHT.py', 6), ('FerrSDO.py', 2), ('RoscTTI.py', 3), ('StorJCC.py', 1), ('KembFJ2.py', 2), ('JacoWHI2.py', 1), ('SomeMMH.py', 1), ('WilbRLW3.py', 4), ('AinsWRR2.py', 2), ('MereHHB2.py', 1), ('JacoWHI.py', 1), ('ClarGE3.py', 6), ('RogeSIP.py', 2), ('MartHRW2.py', 3), ('FitzRNS2.py', 15), ('HogaGMM2.py', 4), ('EvarJSP.py', 1), ('DwigTHH.py', 2), ('SadlMLP2.py', 4), ('BowrJMM2.py', 1), ('BeckWRE.py', 2), ('TaylIF.py', 8), ('WordWYR.py', 3), ('KirbWPW.py', 1), ('WaylFEP.py', 1), ('BentJDO.py', 1), ('ClarGE4.py', 5), ('HowiWRL.py', 4)]
77f6155a68dccbb2a045fcc13e502d7bf2afd801
d7fac5517b409224584e5ffef20b1bf3dbb895cc
/test/test_generic_throttle_policy.py
09f96db22b801129ab65e7415ccc4d0ff3aa0864
[]
no_license
junetigerlee/python-wso2-apim-adminclient
0bac09899e02a8eee6fd5a0e80cc34472ec6b055
7eca928a727e8eb6901c38be83bc1adeb87540cf
refs/heads/master
2021-01-01T16:12:24.090906
2017-07-25T06:22:09
2017-07-25T06:22:09
97,788,017
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
# coding: utf-8 """ WSO2 API Manager - Admin This document specifies a **RESTful API** for WSO2 **API Manager** - Admin Portal. It is written with [swagger 2](http://swagger.io/). OpenAPI spec version: 0.11.0 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import wso2_apim_adminclient from wso2_apim_adminclient.rest import ApiException from wso2_apim_adminclient.models.generic_throttle_policy import GenericThrottlePolicy class TestGenericThrottlePolicy(unittest.TestCase): """ GenericThrottlePolicy unit test stubs """ def setUp(self): pass def tearDown(self): pass def testGenericThrottlePolicy(self): """ Test GenericThrottlePolicy """ # FIXME: construct object with mandatory attributes with example values #model = wso2_apim_adminclient.models.generic_throttle_policy.GenericThrottlePolicy() pass if __name__ == '__main__': unittest.main()
204856232cbe127a20e8e3eae73148857c5dab65
d5f0377d31e708b0be7f1e79dca714e274deba67
/hex_game/create_databases.py
97e08f94919b393048db84a91eca2f71dc2fed7e
[]
no_license
Phyronnaz/TIPE_Hex
b65a2651476661930e52f07654d2a843b1201ddb
fda070968368204dac08ac81d79a4ab0d604296a
refs/heads/master
2021-01-16T21:52:07.530676
2017-06-15T15:34:48
2017-06-15T15:34:48
68,295,841
0
0
null
2017-05-18T11:46:33
2016-09-15T13:22:49
Jupyter Notebook
UTF-8
Python
false
false
477
py
import os import sys # path = os.path.dirname(os.path.realpath(__file__))[:-8] path = "/home/victor/PycharmProjects/TIPE_Hex/" if path not in sys.path: sys.path.insert(0, path) import numpy as np from hex_game.q_learning import create_database size = int(sys.argv[1]) path = os.path.expanduser("~") + "/Hex/database_{}.npy".format(size) if os.path.exists(path): database = np.load(path) else: database = create_database(size, 10000) np.save(path, database)
9f230e3838e4776ce4c598ffa0521f145bb1d3d8
7a0144da5a567d8497551b09875298ea224bb5bd
/백준/백준 1904.py
8e1eae03c8e54734ee929270ed6129b7f8fe2c5d
[]
no_license
SLT-DJH/algorithm
dba34614bb0fbbad0ecf5d85b02cb541ab047c5a
e33c843be4efdfc6c6a7300ab4e53b9a7c4b2e67
refs/heads/master
2023-03-08T08:27:01.476793
2021-02-25T15:06:42
2021-02-25T15:06:42
297,017,366
0
0
null
null
null
null
UTF-8
Python
false
false
320
py
def fibo(num) : if num == 1 : return 1 elif num == 2 : return 2 else : num = num - 2 a = 1 b = 2 while num != 0 : c = (a+b) % 15746 a = b b = c num = num - 1 return b a = int(input()) print(fibo(a))
3efae8c54e17d120f845bd7510d914395fad5f69
6ab31b5f3a5f26d4d534abc4b197fe469a68e8e5
/tests/kyu_4_tests/test_roman_numerals_encoder.py
e944d06c5e05cbbdc925b8114ab23e040fd2a232
[ "MIT" ]
permissive
mveselov/CodeWars
e4259194bfa018299906f42cd02b8ef4e5ab6caa
1eafd1247d60955a5dfb63e4882e8ce86019f43a
refs/heads/master
2021-06-09T04:17:10.053324
2017-01-08T06:36:17
2017-01-08T06:36:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
import unittest from katas.kyu_4.roman_numerals_encoder import solution class RomanNumeralsEncoderTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(solution(1), 'I') def test_equals_2(self): self.assertEqual(solution(4), 'IV') def test_equals_3(self): self.assertEqual(solution(6), 'VI')
5f809c27b6953e210a747515d832cb54e2f3eadb
e34cbf5fce48f661d08221c095750240dbd88caf
/python/homework/day23_cmdb_web/s16MadKing/asset/views.py
7ded2a7085ab28d0954eacb4d1a5ae9594548088
[]
no_license
willianflasky/growup
2f994b815b636e2582594375e90dbcb2aa37288e
1db031a901e25bbe13f2d0db767cd28c76ac47f5
refs/heads/master
2023-01-04T13:13:14.191504
2020-01-12T08:11:41
2020-01-12T08:11:41
48,899,304
2
0
null
2022-12-26T19:46:22
2016-01-02T05:04:39
C
UTF-8
Python
false
false
2,631
py
from django.shortcuts import render, HttpResponse import json from django.views.decorators.csrf import csrf_exempt from asset import core from asset import utils from asset.models import * import datetime # Create your views here. @csrf_exempt def asset_with_no_asset_id(request): if request.method == 'POST': ass_handler = core.Asset(request) res = ass_handler.get_asset_id_by_sn() # return render(request,'assets/acquire_asset_id_test.html',{'response':res}) return HttpResponse(json.dumps(res)) @csrf_exempt @utils.token_required def asset_report(request): if request.method == "POST": ass_handler = core.Asset(request) if ass_handler.data_is_valid(): ass_handler.data_inject() return HttpResponse(json.dumps(ass_handler.response)) def login(request): pass def index(request): return render(request, 'index.html', locals()) def asset(request): from asset.page import PageInfo all_count = Asset.objects.all().count() page_info = PageInfo(request.GET.get('p'), 20, all_count, request.path_info, page_range=3) objs = Asset.objects.all()[page_info.start():page_info.end()] # result = [] # all_data = Asset.objects.all().values() # for line in all_data: # line['create_date'] = line['create_date'].strftime('%Y-%m-%d %H:%M:%S') # line['update_date'] = line['update_date'].strftime('%Y-%m-%d %H:%M:%S') # result.append(line) return render(request, 'asset.html', locals()) def data(request): # 图表1 asset_list_num = [] asset_list = [] asset_dic = {'server': "服务器", 'networkdevice': "网络设备", 'storagedevice': "存储设备", 'securitydevice': "安全设备", 'idcdevice': "IDC设备", 'accescories': "备件", 'software': "软件"} for item, value in asset_dic.items(): res = Asset.objects.filter(asset_type=item).count() asset_list_num.append(res) asset_list.append(value) # 图表2 status_list = [] status_result = [] status_dic = {0: '在线', 1: '已下线', 2: '未知', 3: '故障', 4: '备用'} for item, value in status_dic.items(): status_tmp = {'value': 0, 'name': ""} res = Asset.objects.filter(status=item).count() status_list.append(value) status_tmp['value'] = res status_tmp['name'] = value status_result.append(status_tmp) data = { 'p11': asset_list, 'p12': asset_list_num, 'p21': status_list, 'p22': status_result } return HttpResponse(json.dumps(data))
800b9ad4822aef0e6593471d1a2f467a7fbb3365
a499fbdd93f85a286505433a08afc25d84c8ff04
/python/tvm/topi/gpu/dense.py
b9009d3f3393afddc4cb2d6a32b717cffa09776e
[ "Apache-2.0", "Zlib", "MIT", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
elphinkuo/tvm
a81e0ccc5950a1473efdcdbb8263de9adbe36787
9df2ae8eaa8b394013182a7ad09ac57fe401f80e
refs/heads/main
2023-08-05T07:41:18.652097
2021-09-28T00:38:26
2021-09-28T00:38:26
411,311,927
2
0
Apache-2.0
2021-09-28T14:51:56
2021-09-28T14:17:46
null
UTF-8
Python
false
false
8,459
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-argument """Schedule for dense operator""" import logging from tvm import autotvm, te from tvm.autotvm.task.space import SplitEntity from .. import nn from ..utils import traverse_inline, get_const_tuple logger = logging.getLogger("topi") @autotvm.register_topi_compute("dense_small_batch.gpu") def dense_small_batch(cfg, data, weight, bias=None, out_dtype=None): """Dense operator on GPU""" return nn.dense(data, weight, bias, out_dtype) @autotvm.register_topi_schedule("dense_small_batch.gpu") def schedule_dense_small_batch(cfg, outs): """Schedule float32/64 dense with small batch size""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "dense": _schedule_dense_small_batch(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s @autotvm.register_topi_compute("matmul_default.gpu") def matmul_default( cfg, tensor_a, tensor_b, bias=None, out_dtype=None, transpose_a=False, transpose_b=False, ): """Matmul operator on GPU""" return nn.matmul(tensor_a, tensor_b, bias, out_dtype, transpose_a, transpose_b) @autotvm.register_topi_schedule("matmul_default.gpu") def schedule_matmul_default(cfg, outs): """Schedule matmul on GPU""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "matmul": # Temporary use this as a basic schedule for matmul # TODO(jcf94): Add a more general schedule for matmul _schedule_dense_small_batch(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_dense_small_batch(cfg, s, C): A, weights = C.op.input_tensors _, in_dim_weights = get_const_tuple(weights.shape) _, in_dim_A = get_const_tuple(A.shape) if isinstance(in_dim_A, int): in_dim = in_dim_A elif isinstance(in_dim_weights, int): in_dim = in_dim_weights else: in_dim = None if in_dim is not None: cfg.define_split("tile_k", in_dim, num_outputs=2) if cfg.is_fallback: cfg["tile_k"] = SplitEntity([-1, 64] if in_dim > 64 else [1, 64]) _, kf = cfg["tile_k"].apply(s, C, C.op.reduce_axis[0]) else: tile_k = 64 _, kf = s[C].split(C.op.reduce_axis[0], tile_k) CF = s.rfactor(C, kf) if C.op in s.outputs: Out = C else: Out = s.outputs[0].output(0) s[C].compute_at(s[Out], s[Out].op.axis[1]) s[Out].bind(s[Out].op.axis[0], te.thread_axis("blockIdx.y")) s[Out].bind(s[Out].op.axis[1], te.thread_axis("blockIdx.x")) tx = s[C].op.reduce_axis[0] thread_x = te.thread_axis("threadIdx.x") s[C].bind(tx, thread_x) s[CF].compute_at(s[C], tx) s[C].set_store_predicate(thread_x.var.equal(0)) s[Out].set_store_predicate(thread_x.var.equal(0)) @autotvm.register_topi_compute("dense_large_batch.gpu") def dense_large_batch(cfg, data, weight, bias=None, out_dtype=None): """Dense operator on GPU""" return nn.dense(data, weight, bias, out_dtype) @autotvm.register_topi_schedule("dense_large_batch.gpu") def schedule_dense_large_batch(cfg, outs): """Schedule float32/64 dense with large batch size""" outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def _callback(op): if op.tag == "dense": _schedule_dense_large_batch(cfg, s, op.output(0)) traverse_inline(s, outs[0].op, _callback) return s def _schedule_dense_large_batch(cfg, s, C): """Schedule float32/64 dense with large batch size""" A, B = C.op.input_tensors batch, in_dim = get_const_tuple(A.shape) out_dim, _ = get_const_tuple(B.shape) k = C.op.reduce_axis[0] # create tuning space try: block_cand = [64, 128] vthread_cand = [2 ** x for x in range(1, 7)] n_thread_cand = [2 ** x for x in range(3, 7)] cfg.define_split( "tile_x", batch, num_outputs=4, filter=lambda x: ( x.size[1] in vthread_cand and x.size[2] in n_thread_cand and (x.size[1] * x.size[2] * x.size[3]) in block_cand ), ) cfg.define_split( "tile_y", out_dim, num_outputs=4, filter=lambda x: ( x.size[1] in vthread_cand and x.size[2] in n_thread_cand and (x.size[1] * x.size[2] * x.size[3]) in block_cand ), ) cfg.define_split("tile_k", in_dim, num_outputs=3, filter=lambda x: x.size[0] > 2) except IndexError: # Index error happens when no entities left after filtering, which was designed # to prune tuning space for better search efficiency. logger.debug("Tuning space was created without pruning due to unfit shapes") cfg.define_split("tile_x", batch, num_outputs=4) cfg.define_split("tile_y", out_dim, num_outputs=4) cfg.define_split("tile_k", in_dim, num_outputs=3) if cfg.is_fallback: if batch > 1: cfg["tile_x"] = SplitEntity([-1, 2, 16, 2]) else: cfg["tile_x"] = SplitEntity([1, 1, 1, 1]) if out_dim > 1: cfg["tile_y"] = SplitEntity([-1, 2, 16, 2]) else: cfg["tile_y"] = SplitEntity([1, 1, 1, 1]) if in_dim > 8: cfg["tile_k"] = SplitEntity([-1, 8, 1]) else: cfg["tile_k"] = SplitEntity([-1, 1, 1]) # Explicit memory access AA = s.cache_read(A, "shared", [C]) BB = s.cache_read(B, "shared", [C]) AL = s.cache_read(AA, "local", [C]) BL = s.cache_read(BB, "local", [C]) CC = s.cache_write(C, "local") # Deal with op fusion if C.op not in s.outputs: s[C].compute_inline() C = s.outputs[0].output(0) # Split and reorder computation bx, txz, tx, xi = cfg["tile_x"].apply(s, C, C.op.axis[0]) by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1]) s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi) s[CC].compute_at(s[C], tx) # Binding s[C].bind(by, te.thread_axis("blockIdx.y")) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(tyz, te.thread_axis("vthread")) s[C].bind(txz, te.thread_axis("vthread")) s[C].bind(ty, te.thread_axis("threadIdx.y")) s[C].bind(tx, te.thread_axis("threadIdx.x")) # Split reduction yo, xo = CC.op.axis ko, kt, ki = cfg["tile_k"].apply(s, CC, k) s[CC].reorder(ko, kt, ki, yo, xo) s[AA].compute_at(s[CC], ko) s[BB].compute_at(s[CC], ko) s[CC].unroll(kt) s[AL].compute_at(s[CC], kt) s[BL].compute_at(s[CC], kt) # Schedule for A's shared memory load num_thread_x = cfg["tile_x"].size[2] ty, _ = s[AA].split(s[AA].op.axis[0], nparts=num_thread_x) _, xi = s[AA].split(s[AA].op.axis[1], factor=num_thread_x * 4) tx, xi = s[AA].split(xi, nparts=num_thread_x) s[AA].bind(ty, te.thread_axis("threadIdx.y")) s[AA].bind(tx, te.thread_axis("threadIdx.x")) s[AA].double_buffer() # Schedule for B' shared memory load num_thread_y = cfg["tile_y"].size[2] ty, _ = s[BB].split(s[BB].op.axis[0], nparts=num_thread_y) _, xi = s[BB].split(s[BB].op.axis[1], factor=num_thread_y * 4) tx, xi = s[BB].split(xi, nparts=num_thread_y) s[BB].bind(ty, te.thread_axis("threadIdx.y")) s[BB].bind(tx, te.thread_axis("threadIdx.x")) s[BB].double_buffer()
5b510ccf31da37f6df7b6f12e6ab9ac61759eaec
fffa5f1fe7e1d2bd875f302fefa2295563773440
/posts/migrations/0001_initial.py
204feab05266016c6f35f1128814ec13ff33dfd0
[]
no_license
Awalamoo7/blogs-api
9d2fe2d37837366863e8ffbab4372aa927e49875
fd8112d666b10d728a3f12cfc284d7379eeedf41
refs/heads/main
2023-08-28T13:06:45.637222
2021-10-24T01:20:02
2021-10-24T01:20:02
420,555,567
0
0
null
null
null
null
UTF-8
Python
false
false
1,159
py
# Generated by Django 3.2.8 on 2021-10-23 17:30 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_time', models.DateTimeField(auto_created=True)), ('title', models.CharField(max_length=400)), ('description', models.TextField()), ('active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_time', models.DateTimeField(auto_created=True)), ('text', models.TextField()), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='posts.post')), ], ), ]
8fc3e828360f0eb1a186ea87f4cfc474a58e4949
195b8d12796872c05d539aa9283fc3f407b8d8b5
/cinder/cinder/volume/drivers/nexenta/volume.py
2b752314f48e0f3831ddd234b86042da954388a0
[ "Apache-2.0" ]
permissive
rvbelapure/openstack-nova-sched
afaa5928da3a8430b64bc23aedb251bae0e7d3ef
325da0e08979d79b7470d7506ced1b4210e2b696
refs/heads/master
2021-01-17T05:28:44.474242
2013-04-20T21:18:35
2013-04-20T21:18:35
9,082,500
0
1
null
2021-09-07T08:33:18
2013-03-28T17:30:46
Python
UTF-8
Python
false
false
11,503
py
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2011 Nexenta Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ :mod:`nexenta.volume` -- Driver to store volumes on Nexenta Appliance ===================================================================== .. automodule:: nexenta.volume .. moduleauthor:: Yuriy Taraday <[email protected]> """ from oslo.config import cfg from cinder import exception from cinder import flags from cinder.openstack.common import log as logging from cinder.volume import driver from cinder.volume.drivers import nexenta from cinder.volume.drivers.nexenta import jsonrpc LOG = logging.getLogger(__name__) FLAGS = flags.FLAGS nexenta_opts = [ cfg.StrOpt('nexenta_host', default='', help='IP address of Nexenta SA'), cfg.IntOpt('nexenta_rest_port', default=2000, help='HTTP port to connect to Nexenta REST API server'), cfg.StrOpt('nexenta_rest_protocol', default='auto', help='Use http or https for REST connection (default auto)'), cfg.StrOpt('nexenta_user', default='admin', help='User name to connect to Nexenta SA'), cfg.StrOpt('nexenta_password', default='nexenta', help='Password to connect to Nexenta SA', secret=True), cfg.IntOpt('nexenta_iscsi_target_portal_port', default=3260, help='Nexenta target portal port'), cfg.StrOpt('nexenta_volume', default='cinder', help='pool on SA that will hold all volumes'), cfg.StrOpt('nexenta_target_prefix', default='iqn.1986-03.com.sun:02:cinder-', help='IQN prefix for iSCSI targets'), cfg.StrOpt('nexenta_target_group_prefix', default='cinder/', help='prefix for iSCSI target groups on SA'), cfg.StrOpt('nexenta_blocksize', default='', help='block size for volumes (blank=default,8KB)'), cfg.BoolOpt('nexenta_sparse', default=False, help='flag to create sparse volumes'), ] FLAGS.register_opts(nexenta_opts) class NexentaDriver(driver.ISCSIDriver): # pylint: disable=R0921 """Executes volume driver commands on Nexenta Appliance.""" def __init__(self, *args, **kwargs): super(NexentaDriver, self).__init__(*args, **kwargs) def do_setup(self, context): protocol = FLAGS.nexenta_rest_protocol auto = protocol == 'auto' if auto: protocol = 'http' self.nms = jsonrpc.NexentaJSONProxy( '%s://%s:%s/rest/nms/' % (protocol, FLAGS.nexenta_host, FLAGS.nexenta_rest_port), FLAGS.nexenta_user, FLAGS.nexenta_password, auto=auto) def check_for_setup_error(self): """Verify that the volume for our zvols exists. :raise: :py:exc:`LookupError` """ if not self.nms.volume.object_exists(FLAGS.nexenta_volume): raise LookupError(_("Volume %s does not exist in Nexenta SA"), FLAGS.nexenta_volume) @staticmethod def _get_zvol_name(volume_name): """Return zvol name that corresponds given volume name.""" return '%s/%s' % (FLAGS.nexenta_volume, volume_name) @staticmethod def _get_target_name(volume_name): """Return iSCSI target name to access volume.""" return '%s%s' % (FLAGS.nexenta_target_prefix, volume_name) @staticmethod def _get_target_group_name(volume_name): """Return Nexenta iSCSI target group name for volume.""" return '%s%s' % (FLAGS.nexenta_target_group_prefix, volume_name) def create_volume(self, volume): """Create a zvol on appliance. :param volume: volume reference """ self.nms.zvol.create( self._get_zvol_name(volume['name']), '%sG' % (volume['size'],), FLAGS.nexenta_blocksize, FLAGS.nexenta_sparse) def delete_volume(self, volume): """Destroy a zvol on appliance. :param volume: volume reference """ try: self.nms.zvol.destroy(self._get_zvol_name(volume['name']), '') except nexenta.NexentaException as exc: if "zvol has children" in exc.args[1]: raise exception.VolumeIsBusy(volume_name=volume['name']) else: raise def create_snapshot(self, snapshot): """Create snapshot of existing zvol on appliance. :param snapshot: shapshot reference """ self.nms.zvol.create_snapshot( self._get_zvol_name(snapshot['volume_name']), snapshot['name'], '') def create_volume_from_snapshot(self, volume, snapshot): """Create new volume from other's snapshot on appliance. :param volume: reference of volume to be created :param snapshot: reference of source snapshot """ self.nms.zvol.clone( '%s@%s' % (self._get_zvol_name(snapshot['volume_name']), snapshot['name']), self._get_zvol_name(volume['name'])) def delete_snapshot(self, snapshot): """Delete volume's snapshot on appliance. :param snapshot: shapshot reference """ try: self.nms.snapshot.destroy( '%s@%s' % (self._get_zvol_name(snapshot['volume_name']), snapshot['name']), '') except nexenta.NexentaException as exc: if "snapshot has dependent clones" in exc.args[1]: raise exception.SnapshotIsBusy(snapshot_name=snapshot['name']) else: raise def local_path(self, volume): """Return local path to existing local volume. We never have local volumes, so it raises NotImplementedError. :raise: :py:exc:`NotImplementedError` """ raise NotImplementedError def _do_export(self, _ctx, volume, ensure=False): """Do all steps to get zvol exported as LUN 0 at separate target. :param volume: reference of volume to be exported :param ensure: if True, ignore errors caused by already existing resources :return: iscsiadm-formatted provider location string """ zvol_name = self._get_zvol_name(volume['name']) target_name = self._get_target_name(volume['name']) target_group_name = self._get_target_group_name(volume['name']) try: self.nms.iscsitarget.create_target({'target_name': target_name}) except nexenta.NexentaException as exc: if not ensure or 'already configured' not in exc.args[1]: raise else: LOG.info(_('Ignored target creation error "%s"' ' while ensuring export'), exc) try: self.nms.stmf.create_targetgroup(target_group_name) except nexenta.NexentaException as exc: if not ensure or 'already exists' not in exc.args[1]: raise else: LOG.info(_('Ignored target group creation error "%s"' ' while ensuring export'), exc) try: self.nms.stmf.add_targetgroup_member(target_group_name, target_name) except nexenta.NexentaException as exc: if not ensure or 'already exists' not in exc.args[1]: raise else: LOG.info(_('Ignored target group member addition error "%s"' ' while ensuring export'), exc) try: self.nms.scsidisk.create_lu(zvol_name, {}) except nexenta.NexentaException as exc: if not ensure or 'in use' not in exc.args[1]: raise else: LOG.info(_('Ignored LU creation error "%s"' ' while ensuring export'), exc) try: self.nms.scsidisk.add_lun_mapping_entry(zvol_name, { 'target_group': target_group_name, 'lun': '0'}) except nexenta.NexentaException as exc: if not ensure or 'view entry exists' not in exc.args[1]: raise else: LOG.info(_('Ignored LUN mapping entry addition error "%s"' ' while ensuring export'), exc) return '%s:%s,1 %s 0' % (FLAGS.nexenta_host, FLAGS.nexenta_iscsi_target_portal_port, target_name) def create_export(self, _ctx, volume): """Create new export for zvol. :param volume: reference of volume to be exported :return: iscsiadm-formatted provider location string """ loc = self._do_export(_ctx, volume, ensure=False) return {'provider_location': loc} def ensure_export(self, _ctx, volume): """Recreate parts of export if necessary. :param volume: reference of volume to be exported """ self._do_export(_ctx, volume, ensure=True) def remove_export(self, _ctx, volume): """Destroy all resources created to export zvol. :param volume: reference of volume to be unexported """ zvol_name = self._get_zvol_name(volume['name']) target_name = self._get_target_name(volume['name']) target_group_name = self._get_target_group_name(volume['name']) self.nms.scsidisk.delete_lu(zvol_name) try: self.nms.stmf.destroy_targetgroup(target_group_name) except nexenta.NexentaException as exc: # We assume that target group is already gone LOG.warn(_('Got error trying to destroy target group' ' %(target_group)s, assuming it is ' 'already gone: %(exc)s'), {'target_group': target_group_name, 'exc': exc}) try: self.nms.iscsitarget.delete_target(target_name) except nexenta.NexentaException as exc: # We assume that target is gone as well LOG.warn(_('Got error trying to delete target %(target)s,' ' assuming it is already gone: %(exc)s'), {'target': target_name, 'exc': exc}) def copy_image_to_volume(self, context, volume, image_service, image_id): """Fetch the image from image_service and write it to the volume.""" raise NotImplementedError() def copy_volume_to_image(self, context, volume, image_service, image_meta): """Copy the volume to the specified image.""" raise NotImplementedError() def create_cloned_volume(self, volume, src_vref): """Creates a clone of the specified volume.""" raise NotImplementedError()
cb9081784eab4efbdda08880b0b3ceeae5077746
1d9138d777744fa2d9d6e3b629a43041f2358d06
/real_time/abc/116/2.py
30a70f19d2c5f010e386aaa7b16333c9f9b3ca64
[]
no_license
Yuyats/AtCoderAnswers
f1956b790ee64a4d0b3b48b98791a91679a30244
fac7e3eb74a888e77ba7a6b6a15d836c589baa3e
refs/heads/master
2021-06-24T16:19:45.848524
2021-06-13T03:51:07
2021-06-13T03:51:07
198,857,448
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
def f(n): if n % 2 == 0: return n / 2 else: return 3 * n + 1 s = int(input()) a = [] for i in range(1, 1000000): if i == 1: a.append(s) else: ai = f(a[-1]) if ai in a: print(i) break else: a.append(ai) def f(n): if n % 2 == 0: return n / 2 else: return 3 * n + 1 s = int(input()) a = [s] for i in range(2, 1000001): ai = f(a[-1]) if ai in a: print(i) break else: a.append(ai)
97d7f3bed79bfe6a5b45e7b0f4a83a690de7fcc1
10a18920f93008659f49b18fb016b84a21765e73
/server/venv_ubuntu/lib/python3.8/site-packages/oslo_reports/tests/test_openstack_generators.py
84bd46deb5bdd50843dced8da3a4d297ad4c65bb
[]
no_license
psitadmin/network-junco
48fa704878fe9566cda393eddd88dafae07fa47c
63a1e4afa46514852345e03eb32a2911621540f2
refs/heads/master
2023-08-18T07:01:48.836761
2021-09-28T09:47:42
2021-09-28T09:47:42
403,928,187
0
0
null
null
null
null
UTF-8
Python
false
false
5,757
py
# Copyright 2011 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import threading from unittest import mock import greenlet from oslo_config import cfg from oslotest import base import six from oslo_reports.generators import conf as os_cgen from oslo_reports.generators import threading as os_tgen from oslo_reports.generators import version as os_pgen from oslo_reports.models import threading as os_tmod class TestOpenstackGenerators(base.BaseTestCase): def test_thread_generator(self): model = os_tgen.ThreadReportGenerator()() # self.assertGreaterEqual(len(model.keys()), 1) self.assertTrue(len(model.keys()) >= 1) was_ok = False for val in model.values(): self.assertIsInstance(val, os_tmod.ThreadModel) self.assertIsNotNone(val.stack_trace) if val.thread_id == threading.current_thread().ident: was_ok = True break self.assertTrue(was_ok) model.set_current_view_type('text') self.assertIsNotNone(six.text_type(model)) def test_thread_generator_tb(self): class FakeModel(object): def __init__(self, thread_id, tb): self.traceback = tb with mock.patch('oslo_reports.models' '.threading.ThreadModel', FakeModel): model = os_tgen.ThreadReportGenerator("fake traceback")() curr_thread = model.get(threading.current_thread().ident, None) self.assertIsNotNone(curr_thread, None) self.assertEqual("fake traceback", curr_thread.traceback) def test_green_thread_generator(self): curr_g = greenlet.getcurrent() model = os_tgen.GreenThreadReportGenerator()() # self.assertGreaterEqual(len(model.keys()), 1) self.assertTrue(len(model.keys()) >= 1) was_ok = False for tm in model.values(): if tm.stack_trace == os_tmod.StackTraceModel(curr_g.gr_frame): was_ok = True break self.assertTrue(was_ok) model.set_current_view_type('text') self.assertIsNotNone(six.text_type(model)) def test_config_model(self): conf = cfg.ConfigOpts() conf.register_opt(cfg.StrOpt('crackers', default='triscuit')) conf.register_opt(cfg.StrOpt('secrets', secret=True, default='should not show')) conf.register_group(cfg.OptGroup('cheese', title='Cheese Info')) conf.register_opt(cfg.IntOpt('sharpness', default=1), group='cheese') conf.register_opt(cfg.StrOpt('name', default='cheddar'), group='cheese') conf.register_opt(cfg.BoolOpt('from_cow', default=True), group='cheese') conf.register_opt(cfg.StrOpt('group_secrets', secret=True, default='should not show'), group='cheese') model = os_cgen.ConfigReportGenerator(conf)() model.set_current_view_type('text') # oslo.config added a default config_source opt which gets included # in our output, but we also need to support older versions where that # wasn't the case. This logic can be removed once the oslo.config # lower constraint becomes >=6.4.0. config_source_line = ' config_source = \n' try: conf.config_source except cfg.NoSuchOptError: config_source_line = '' target_str = ('\ncheese: \n' ' from_cow = True\n' ' group_secrets = ***\n' ' name = cheddar\n' ' sharpness = 1\n' '\n' 'default: \n' '%s' ' crackers = triscuit\n' ' secrets = ***') % config_source_line self.assertEqual(target_str, six.text_type(model)) def test_package_report_generator(self): class VersionObj(object): def vendor_string(self): return 'Cheese Shoppe' def product_string(self): return 'Sharp Cheddar' def version_string_with_package(self): return '1.0.0' model = os_pgen.PackageReportGenerator(VersionObj())() model.set_current_view_type('text') target_str = ('product = Sharp Cheddar\n' 'vendor = Cheese Shoppe\n' 'version = 1.0.0') self.assertEqual(target_str, six.text_type(model)) def test_package_report_generator_without_vendor_string(self): class VersionObj(object): def product_string(self): return 'Sharp Cheddar' def version_string_with_package(self): return '1.0.0' model = os_pgen.PackageReportGenerator(VersionObj())() model.set_current_view_type('text') target_str = ('product = Sharp Cheddar\n' 'vendor = None\n' 'version = 1.0.0') self.assertEqual(target_str, six.text_type(model))
ede14b5deeefa8d17da62f26de32885f2fad3528
c0c536f619292d8cac6bc0d340fa855ce6d21310
/torch/_guards.py
35550f1d664a71efca5309ca80d89bd38c780b67
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
manuelmusngi/pytorch
32915e01515f1ba81cdd20340dbae5dbfe6809e6
bab21d20ebf45a5dc620b48791bb526f664445a5
refs/heads/main
2023-07-01T23:21:47.013111
2023-06-19T19:34:42
2023-06-20T09:24:21
339,895,372
2
0
NOASSERTION
2021-02-18T00:46:11
2021-02-18T00:46:11
null
UTF-8
Python
false
false
19,443
py
import contextlib import dataclasses import enum import logging import traceback import unittest.mock import weakref from abc import ABC, abstractmethod from contextlib import contextmanager from typing import ( Any, Callable, Dict, Generic, List, NamedTuple, Optional, Set, Tuple, TypeVar, ) import torch log = logging.getLogger(__name__) import sympy """ torch._guards is the definitional source of truth for general purpose guard structures. An important thing to keep in mind here is the preservation of layering. There should be no dynamo notions, and no guard installation notions here. """ class GuardSource(enum.Enum): LOCAL = 0 GLOBAL = 1 LOCAL_NN_MODULE = 2 GLOBAL_NN_MODULE = 3 CONSTANT = 4 RANDOM_VALUE = 5 SHAPE_ENV = 6 LOCAL_FSDP_MODULE = 7 GLOBAL_FSDP_MODULE = 8 def select(self, locals_, globals_): # SHAPE_ENV counts as locals, because the guard expressions # created by shape env can reference f_locals # # RANDOM_VALUE counts as locals, because what we do is we run # Python RNG and assign it to a temporary, and then perform # guard tests on that temporary if self in ( GuardSource.LOCAL, GuardSource.LOCAL_NN_MODULE, GuardSource.LOCAL_FSDP_MODULE, GuardSource.SHAPE_ENV, GuardSource.RANDOM_VALUE, ): return locals_ if self in ( GuardSource.GLOBAL, GuardSource.GLOBAL_NN_MODULE, GuardSource.GLOBAL_FSDP_MODULE, ): return globals_ raise NotImplementedError(str(self)) def is_fsdp_module(self) -> bool: return self in (GuardSource.GLOBAL_FSDP_MODULE, GuardSource.LOCAL_FSDP_MODULE) def is_nn_module(self) -> bool: return ( self in ( GuardSource.GLOBAL_NN_MODULE, GuardSource.LOCAL_NN_MODULE, ) or self.is_fsdp_module() ) def is_local(self): return self in ( GuardSource.LOCAL, GuardSource.LOCAL_NN_MODULE, GuardSource.LOCAL_FSDP_MODULE, ) """ Base class for a "GuardBuilder" role. The GuardBuilderBase role is to represent a scope within which to build a guard. The name is a little confusing, as its not a builder, but for the sake of avoiding a lot of renames and keeping the original reference to torchdynamo's GuardBuilder. Note: create_fn is invoked with a GuardBuilderBase and a Guard. A GuardBuilder is chosen based on GuardSource's select function. There is value in keeping this GuardBuilderBase empty to keep layering clean. """ class GuardBuilderBase: pass class ShapeGuard(NamedTuple): expr: sympy.Expr # TODO: store this in slightly less formatted form stack: str @dataclasses.dataclass class Guard: # The name of a Guard specifies what exactly it is the guard is guarding # on. The meaning of the name is dependent on the create_fn; you must # look at the use-site inside create_fn to know what name means. # # That being said, although you might think this is just a "name", name is # usually an arbitrary Python expression that will be evaluated with all # globals (and locals, if you create a LOCAL guard) to extract the Python # object that we want to perform guard tests on. This evaluation # typically happens in GuardBuilder.eval. In these cases, name is # typically produced by Source.name() (not to be confused with # GuardSource)--morally, we could have stored a Source here. # # Occasionally, name is not a valid Python expression; sometimes # it is meaningless. Example create_fns that are like this include # GRAD_MODE and SHAPE_ENV. name: str source: GuardSource create_fn: Callable[[GuardBuilderBase, "Guard"], None] is_volatile: bool = False # Export only. These values are written to at time of guard check_fn creation. guard_types: Optional[List[str]] = None code_list: Optional[List[str]] = None obj_weakref: Optional[object] = None guarded_class_weakref: Optional[type] = None def __hash__(self): return hash((self.name, self.source, id(self.create_fn))) def sort_key(self): return ( self.source.value if self.source else -1, len(self.name), self.name, self.create_fn.__code__.co_firstlineno, ) def __lt__(self, other): return self.sort_key() < other.sort_key() @staticmethod def weakref_to_str(obj_weakref): """ This is a workaround of a Python weakref bug. `obj_weakref` is instance returned by `weakref.ref`, `str(obj_weakref)` is buggy if the original obj overrides __getattr__, e.g: class MyConfig(dict): def __getattr__(self, x): return self[x] obj = MyConfig(offset=5) obj_weakref = weakref.ref(obj) str(obj_weakref) # raise error: KeyError: '__name__' """ if isinstance(obj_weakref, weakref.ReferenceType): obj = obj_weakref() if obj is not None: return f"<weakref at {hex(id(obj_weakref))}; to '{obj.__class__.__name__}' at {hex(id(obj))}>" else: return f"<weakref at {hex(id(obj_weakref))}; dead>" else: return str(obj_weakref) def __repr__(self): s = f""" {self.source.name.lower() if self.source else ""} {repr(self.name)} {self.create_fn.__name__} {{ 'guard_types': {self.guard_types}, 'code': {self.code_list}, 'obj_weakref': {self.weakref_to_str(self.obj_weakref)} 'guarded_class': {self.guarded_class_weakref} }} """ return s def __str__(self): output = f"Name: {repr(self.name)}\n" source = self.source.name.lower() if self.source else "" output += f" Source: {source}\n" output += f" Create Function: {self.create_fn.__name__}\n" output += f" Guard Types: {self.guard_types}\n" output += f" Code List: {self.code_list}\n" output += f" Object Weakref: {self.weakref_to_str(self.obj_weakref)}\n" output += f" Guarded Class Weakref: {self.guarded_class_weakref}\n" return output def create(self, local_builder: GuardBuilderBase, global_builder: GuardBuilderBase): return self.create_fn(self.source.select(local_builder, global_builder), self) def is_nn_module(self): return self.source.is_nn_module() def is_fsdp_module(self): return self.source.is_fsdp_module() def is_local(self): return self.source.is_local() def set_export_info(self, guard_type, guarded_class, code_list, obj_weakref): if not self.guard_types: self.guard_types = list() self.guard_types.append(guard_type) assert self.guarded_class_weakref in ( guarded_class, None, ), "Guarded class id must be identical, or None" self.guarded_class_weakref = guarded_class if not self.code_list: self.code_list = code_list else: self.code_list.extend(code_list) assert self.obj_weakref in ( obj_weakref, None, ), "Guarded object must be identical, or None" self.obj_weakref = obj_weakref T = TypeVar("T") """ Parent structure for guard env expressions. A GuardEnvExpr can have any subtype. Note: All subtypes must be handled exhaustively in torch._dynamo.guards._parse_guard_env_guards to avoid a RuntimeError. """ @dataclasses.dataclass class GuardEnvExpr: pass """ A class representing a pair of duplicate inputs. input_pos_a and input_pos_b are input positions we have deduped. """ @dataclasses.dataclass class DuplicateInputs(GuardEnvExpr): input_source_a: "Source" input_source_b: "Source" def __post_init__(self): assert self.input_source_a != self.input_source_b """ Checkpointable is an interface for driving state snapshotting, left purposely vague for now. copy_graphstate() -> T, a somewhat legacy name, is expected to emit a snapshot of any type that can also be taken in at restore_graphstate(T) calls. When to snapshot, is, at the moment, an implementation detail of upstream callers. Checkpointable does not provide any garuantees around consistency, idempotency, or safety of calling its APIs, yet. In the future, it will have a closer coupling to a generic Checkpoint management system. """ class Checkpointable(ABC, Generic[T]): @abstractmethod def copy_graphstate(self) -> T: ... @abstractmethod def restore_graphstate(self, state: T): ... """ The GuardCheckpointState - it is the T of Checkpointable[T] for GuardsContext """ class GuardsCheckpointState: dynamo_guards: Set[Guard] = set() def __init__(self, dynamo_guards): self.dynamo_guards = dynamo_guards """ Produces a delta against another GuardsCheckpointState. Returns None if no delta is found, otherwise, return a set() of mismatched Guard type objects. """ def diff(self, other): r = self.dynamo_guards.difference(other.dynamo_guards) if len(r) == 0: return None return r def __eq__(self, other): return self.diff(other) is None class ModuleContextCheckpointState: nn_modules: Dict[str, torch.nn.Module] = {} def __init__(self, nn_modules): self.nn_modules = nn_modules """ Produces a delta against another ModuleContextCheckpointState. Returns None if no delta is found, otherwise, return a set() of mismatched module key names. """ def diff(self, other): r = set(self.nn_modules.keys()).difference(set(other.nn_modules.keys())) if len(r) == 0: return None return r def __eq__(self, other): return self.diff(other) is None class ModuleContext(Checkpointable[ModuleContextCheckpointState]): def __init__(self): self.nn_modules: Dict[str, torch.nn.Module] = {} def copy_graphstate(self): return ModuleContextCheckpointState(dict(self.nn_modules)) def restore_graphstate(self, state): assert isinstance(state, ModuleContextCheckpointState) self.nn_modules = state.nn_modules class GlobalContextCheckpointState: global_state: Dict[str, Tuple[Callable, ...]] = {} def __init__(self, global_states): self.global_state = global_states """ Produces a delta against another GlobalContextCheckpointState. Returns None if no delta is found, otherwise, return a set() of mismatched global key names. """ def diff(self, other): r = set(self.global_state.keys()).difference(set(other.global_state.keys())) if len(r) == 0: return None return r def __eq__(self, other): return self.diff(other) is None class GlobalContext(Checkpointable[GlobalContextCheckpointState]): """ This keeps track of the global torch state during tracing of a function. For example, torch.is_grad_enabled. """ _supported_global_states = { "grad_enabled", "autocast_enabled", "autocast_cpu_enabled", "autocast_gpu_dtype", "autocast_cpu_dtype", "autocast_cache_enabled", } def __init__(self): self.global_state: Dict[str, Tuple[Callable, ...]] = {} def copy_graphstate(self): return GlobalContextCheckpointState(dict(self.global_state)) def restore_graphstate(self, state): assert isinstance(state, GlobalContextCheckpointState) self.global_state = state.global_state assert ( len(self.global_state) == len(self._supported_global_states) and set(self.global_state.keys()) == self._supported_global_states ), "Global state mismatch" for func, args in self.global_state.values(): func(args) """ A GuardsContext is a checkpointable representation of all the guards in the current tracing context. It's lifecycle is bound 1:1 to the tracing context, and it should never be instantiated directly outside of it. For passing around internal state representations of this object, prefer to extract them with copy_graphstate to produce a GuardsCheckpointState. """ class GuardsContext(Checkpointable[GuardsCheckpointState]): def __init__(self): self.dynamo_guards: Set[Guard] = set() self.aotautograd_guards: List[GuardEnvExpr] = [] def copy_graphstate(self): return GuardsCheckpointState(set(self.dynamo_guards)) def restore_graphstate(self, state): assert isinstance(state, GuardsCheckpointState) self.dynamo_guards = state.dynamo_guards _CURRENT_TRACING_CONTEXT = None """ TracingContext is the source of truth for all currently accumulated information needed to trace. Its lifecycle is kept 1:1 when using TorchDynamo, but other systems are open to managing their own TracingContext with that in mind. Currently, only guards live on the TracingContext, in the form of a GuardsContext. However, future implementations will move FakeTensorMode (and its owned ShapeEnv), as well as other structures into it. The purpose of TracingContext is not to be a dumping ground, or god object, but rather to avoid having to plumb complex subsystems across multiple verticals. Ex: A common example is guard accumulation between dynamo, shape_env, aot_autograd, and inductor. Accessing the current tracing context via TracingContext.get() allows users to accumulate their own guards for processing, without needing to know how to plumb objects back up to where frame interpretation happened. """ class TracingContext: """ Provides the currently installed TracingContext, or None. Note that it is a staticmethod, and invocations outside of `with tracing()` (see below), are valid but will return None. """ @staticmethod def get() -> Optional["TracingContext"]: return _CURRENT_TRACING_CONTEXT def __init__(self, fake_mode): self.guards_context = GuardsContext() self.module_context = ModuleContext() self.global_context = GlobalContext() self.fake_mode = fake_mode self.frame_summary_stack = [] self.loc_in_frame = None # this is only set after aot_autograd self.fw_metadata = None self.params_flat = None @staticmethod def extract_stack(): self = TracingContext.get() if self is None: return traceback.StackSummary() stack = list(self.frame_summary_stack) if self.loc_in_frame is not None: stack.append(self.loc_in_frame) return traceback.StackSummary.from_list(stack) # Call this when you want to call into some code that isn't necessarily # associated with the current frame state @staticmethod @contextlib.contextmanager def clear_frame(): tc = TracingContext.get() assert ( tc is not None ), "Frame context manager must be called within an ongoing trace." with unittest.mock.patch.object( tc, "frame_summary_stack", [] ), unittest.mock.patch.object(tc, "loc_in_frame", None): yield @staticmethod @contextlib.contextmanager def current_frame(frame_summary): tc = TracingContext.get() assert ( tc is not None ), "Frame context manager must be called within an ongoing trace." tc.frame_summary_stack.append(frame_summary) try: yield finally: tc.frame_summary_stack.pop() @staticmethod def set_current_loc(filename, lineno, frame_name): tc = TracingContext.get() assert ( tc is not None ), "Loc context manager must be called within an ongoing trace." tc.loc_in_frame = traceback.FrameSummary(filename, lineno, frame_name) """ This function installs the passed in tracing context as a dynamic scoped global variable. Calls to TracingContext.get() while not under a `with tracing()` context will return None. """ @contextmanager def tracing(context: TracingContext): global _CURRENT_TRACING_CONTEXT old_context = _CURRENT_TRACING_CONTEXT _CURRENT_TRACING_CONTEXT = context try: yield _CURRENT_TRACING_CONTEXT finally: _CURRENT_TRACING_CONTEXT = old_context # Subclasses can be found in torch/_dynamo/source.py # TODO(voz): Consider a toplevel torch/_source.py @dataclasses.dataclass(frozen=True) class Source: def reconstruct(self, codegen): raise NotImplementedError() def guard_source(self) -> GuardSource: raise NotImplementedError() def name(self) -> str: raise NotImplementedError() def make_guard(self, fn, is_volatile=False) -> Guard: if self.guard_source() is GuardSource.CONSTANT: raise NotImplementedError() return Guard(self.name(), self.guard_source(), fn, is_volatile) def is_nn_module(self) -> bool: return self.guard_source().is_nn_module() # Subclasses can be found in torch/_dynamo/source.py # Note - there is an odd exception to this invariant of a single base, # see class SuperSource @dataclasses.dataclass(frozen=True) class ChainedSource(Source): base: Source def detect_fake_mode(inputs: Any = None): """ Attempts to "detect" what the current fake mode is. If there is one ambiently available from TracingContext, we preferentially use that. Otherwise, we heuristically detect the fake mode via the following sources, in order of priority: - Currently active fake mode on stack - Fake mode associated with passed in tensors (inputs does not have to be flattened) """ from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode from torch.utils._pytree import tree_flatten fake_modes = [] context = TracingContext.get() if context is not None: fake_mode = context.fake_mode if fake_mode is not None: fake_modes.append((fake_mode, "tracing context", 0)) from torch.utils._python_dispatch import _get_current_dispatch_mode_stack for i, m in enumerate(reversed(_get_current_dispatch_mode_stack())): if isinstance(m, FakeTensorMode): fake_modes.append((m, "active fake mode", i)) flat_inputs, _ = tree_flatten(inputs) for i, flat_input in enumerate(flat_inputs): if isinstance(flat_input, FakeTensor): fake_modes.append((flat_input.fake_mode, "fake tensor input", i)) if fake_modes: fake_mode, desc1, i1 = fake_modes[0] for m, desc2, i2 in fake_modes[1:]: assert ( fake_mode is m ), f"fake mode ({fake_mode}) from {desc1} {i1} doesn't match mode ({m}) from {desc2} {i2}" return fake_mode else: return None EXPORT_FAKE_MODE = None @contextlib.contextmanager def export_fake_mode(fake_mode): global EXPORT_FAKE_MODE assert EXPORT_FAKE_MODE is None EXPORT_FAKE_MODE = fake_mode try: yield finally: EXPORT_FAKE_MODE = None
376ec43ace0b27750be44e8dc6139fac96157d25
9e138b34d78573f70ef9bdb3335efa1fd65712aa
/users/migrations/0002_auto_20210122_0209.py
138dbebb6e18566f27d87a81983c82259772b95b
[]
no_license
crowdbotics-apps/sample-23979
425d0a0f1542ddc4189d68ca941eb3e0b1dcbae6
08630ad101da5da1bff294b827630c9114be5f22
refs/heads/master
2023-02-20T05:10:47.820119
2021-01-22T02:09:03
2021-01-22T02:09:03
331,809,685
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# Generated by Django 2.2.17 on 2021-01-22 02:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterField( model_name='user', name='name', field=models.CharField(blank=True, max_length=255, null=True), ), ]
6fd5d011b418c7de5e80a6fbddc50b9f85a3fcfe
141d1fb160fcfb4294d4b0572216033218da702d
/exec -l /bin/zsh/google-cloud-sdk/lib/surface/notebooks/environments/__init__.py
dad9f635bf941599a6342ab5848568562a9de4d2
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
sudocams/tech-club
1f2d74c4aedde18853c2b4b729ff3ca5908e76a5
c8540954b11a6fd838427e959e38965a084b2a4c
refs/heads/master
2021-07-15T03:04:40.397799
2020-12-01T20:05:55
2020-12-01T20:05:55
245,985,795
0
1
null
2021-04-30T21:04:39
2020-03-09T08:51:41
Python
UTF-8
Python
false
false
986
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The gcloud notebooks environments command group.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base @base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA) class Environments(base.Group): """Notebooks Environments Command Group.""" pass