blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
112
| license_type
stringclasses 2
values | repo_name
stringlengths 5
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 777
values | visit_date
timestamp[us]date 2015-08-06 10:31:46
2023-09-06 10:44:38
| revision_date
timestamp[us]date 1970-01-01 02:38:32
2037-05-03 13:00:00
| committer_date
timestamp[us]date 1970-01-01 02:38:32
2023-09-06 01:08:06
| github_id
int64 4.92k
681M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 22
values | gha_event_created_at
timestamp[us]date 2012-06-04 01:52:49
2023-09-14 21:59:50
⌀ | gha_created_at
timestamp[us]date 2008-05-22 07:58:19
2023-08-21 12:35:19
⌀ | gha_language
stringclasses 149
values | src_encoding
stringclasses 26
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 3
10.2M
| extension
stringclasses 188
values | content
stringlengths 3
10.2M
| authors
listlengths 1
1
| author_id
stringlengths 1
132
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01097f42356c3084810e62f9534dfe02b930e580
|
44cbcfa0f861e92917e5617cf5fce5832c7fda12
|
/python/练习/客户端.py
|
26938dfaa0223a9678c59db3fa8846e465803893
|
[] |
no_license
|
cao-xing/python
|
9581d1a3ff901d9cca81d368c3088f2ecae75611
|
d260a15b127763c9dc17b4cdb2bb514217373b5e
|
refs/heads/master
| 2021-09-21T03:10:35.460798 | 2018-08-20T01:24:22 | 2018-08-20T01:24:22 | 103,017,659 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 628 |
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2017/8/22 15:56
# @Author : Aries
# @Site :
# @File : 客户端.py
# @Software: PyCharm
import socket
import struct
client=socket.socket()
client.connect(("127.0.0.1",8080))
while True:
msg=input("=>>")
if not msg:continue
client.send(msg.encode("utf-8"))
header_struct=client.recv(4)
# print(type(header_struct),len(header_struct))
total_size=struct.unpack("i",header_struct)[0]
# total_size=header_size[0]
print("total_size",total_size)
server_msg=client.recv(total_size)
print(server_msg.decode('gbk'))
client.close()
|
[
"[email protected]"
] | |
70768a1e403b7f3091fda143abdaa8a45a458a16
|
1fddb12ae9b7db260b9161983a726f1528ece940
|
/Part_02/Exercícios_alien_invasion/13_3_and_13_4_Gotes_de_chuva/test.py
|
b2cb711e049cd969d50595d0e68caac2b6850453
|
[] |
no_license
|
davicosta12/python_work
|
aecf642bbbf2a007fba159f305b4ab21ff00503f
|
5df62d3ced25b7e04cda71846fd07862dda39b4c
|
refs/heads/master
| 2023-04-23T09:49:31.923211 | 2021-04-27T00:31:42 | 2021-04-27T00:31:42 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 562 |
py
|
cria_linha_gota(screen, settings, gota, gotas)
def cria_linha_gota(screen, settings, gota, gotas):
if gota.VerificaOndeAgotaEncosta():
gota = Gota(screen, settings)
avaliando_space_x = settings.screen_width - gota.rect.width
number_gotas = int(avaliando_space_x / (2 * gota.rect.width))
for number_gota in range(number_gotas):
gota = Gota(screen, settings)
position_x = gota.rect.width + (2 * gota.rect.width) * number_gota
gota.rect.x = position_x
gotas.add(gota)
|
[
"[email protected]"
] | |
9f13fd2ca6acccc03d1dd7c37d11b283e8d37c1d
|
d6cb1c056b441fb435b780aac190786b52d18862
|
/python/git-github-fork
|
4c4d7dc4db2685a0e808047bb3ab7a9a2ddaade2
|
[
"MIT"
] |
permissive
|
asottile/scratch
|
2e189b7c903b12a4ade35f1148bbb89673df73e3
|
616a6c972d5c3de8698eb41b8c4b74c393f7f397
|
refs/heads/main
| 2023-08-16T23:51:21.919592 | 2023-08-15T14:18:03 | 2023-08-15T14:18:03 | 30,501,563 | 125 | 13 |
MIT
| 2023-09-05T13:05:32 | 2015-02-08T18:53:26 |
Python
|
UTF-8
|
Python
| false | false | 1,633 |
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import json
import os
import subprocess
import sys
import urllib.request
from typing import NoReturn
from typing import Sequence
def get_slug() -> str:
cmd = ('git', 'config', 'remote.origin.url')
remote = subprocess.check_output(cmd).strip().decode()
assert remote.startswith('[email protected]:'), remote
_, _, slug = remote.partition(':')
return slug
def load_config() -> dict[str, str]:
filename = os.path.expanduser('~/.github-auth.json')
mode = os.stat(filename).st_mode & 0o777
if sys.platform != 'win32' and mode != 0o600:
raise SystemExit(
f'{filename} has too-permissive permissions, Expected 0o600, '
f'got 0o{mode:o}',
)
with open(filename) as f:
return json.load(f)
def fork(slug: str, token: str) -> None:
url = f'https://api.github.com/repos/{slug}/forks'
print(url)
request = urllib.request.Request(url, data=b'')
request.add_header('Authorization', f'token {token}')
urllib.request.urlopen(request)
def add_remote(slug: str, username: str) -> NoReturn:
_, _, repo_name = slug.partition('/')
slug = f'{username}/{repo_name}'
cmd = ('git', 'remote', 'add', username, f'[email protected]:{slug}')
os.execvp(cmd[0], cmd)
def main(argv: Sequence[str] | None = None) -> NoReturn:
parser = argparse.ArgumentParser()
parser.parse_args(argv)
slug = get_slug()
auth = load_config()
fork(slug, auth['token'])
add_remote(slug, auth['username'])
if __name__ == '__main__':
raise SystemExit(main())
|
[
"[email protected]"
] | ||
e955b2bc0135273d801ec2818256ff087b9a4f86
|
ecf6fe6aa87b2c3f041acc30fab11b0cafe3dd46
|
/architecture_py/archi_v3_30.py
|
e3453c90d78789666fb45300a164841e7b14572b
|
[] |
no_license
|
antgratia/Memoire_code
|
73c7806c4576c2e73e00d9a84b1063a2c8f6b559
|
2cdc1339ea24896a6628238f6467edff80f98166
|
refs/heads/main
| 2023-06-20T16:19:07.041464 | 2021-07-13T11:53:48 | 2021-07-13T11:53:48 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,149 |
py
|
import numpy as np
import os
from keras import backend as K
from tensorflow import keras
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.models import Sequential, Model,load_model
from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D, GlobalAveragePooling2D, MaxPool2D, Concatenate, Dropout
from tensorflow.keras.initializers import glorot_uniform
from tensorflow.keras.utils import plot_model
import tensorflow as tf
import sys
import traceback
import csv
from time import time
type_archi = 'LENET'
epsilon = 0.001
dropout_rate = 0.5
axis = 3
compress_factor = 0.5
# load dataset
(train_x, train_y), (test_x, test_y) = keras.datasets.cifar10.load_data()
# normalize to range 0-1
train_x = train_x / 255.0
test_x = test_x / 255.0
val_x = train_x[:5000]
val_y = train_y[:5000]
# init training time
training_time = 0
# init result test/train
test_result_loss = ""
test_result_acc = ""
train_result_loss = ""
train_result_acc = ""
nb_layers = "not build"
try:
def getModel():
X_input = X = Input([32, 32, 3])
X = Conv2D(18, kernel_size=6, strides=3, activation='selu', padding='valid')(X)
X = Conv2D(36, kernel_size=4, strides=4, activation='tanh', padding='same')(X)
X = Flatten()(X)
X = Dense(234, activation='tanh')(X)
X = Dense(10, activation='softmax')(X)
model = Model(inputs=X_input, outputs=X)
return model
model = getModel()
#plot_model(model, show_shapes=True, to_file="../architecture_img/archi_v3_30.png")
model.compile(optimizer='adam', loss=keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'])
start = time()
es = tf.keras.callbacks.EarlyStopping(monitor='loss', verbose=1, restore_best_weights=True, patience=1)
list_cb = [es]
history = model.fit(train_x, train_y, epochs=50, batch_size=64, validation_split=0.3, callbacks=list_cb)
training_time = time()-start
print(model.evaluate(test_x, test_y))
log_file = open("../architecture_log/archi_v3_30.log" , "w")
# save test result
log_file.write('test result : ' + str(model.evaluate(test_x, test_y)))
test_result_loss = model.evaluate(test_x, test_y)[0]
test_result_acc = model.evaluate(test_x, test_y)[1]
# save train result
log_file.write('train result : ' + str(model.evaluate(test_x, test_y)))
log_file.write('History train result : ' + str(history.history))
train_result_loss = model.evaluate(train_x, train_y)[0]
train_result_acc = model.evaluate(train_x, train_y)[1]
print('OK: file ../architecture_log/archi_v3_30.log has been create')
nb_layers = len(model.layers)
log_file.close()
except:
print('error: file ../architecture_log/archi_v3_30_error.log has been create')
error_file = open("../architecture_log/archi_v3_30_error.log" , "w")
traceback.print_exc(file=error_file)
result_loss = "Error"
result_acc = "Error"
error_file.close()
finally:
file = open('../architecture_results_v3.csv', 'a', newline ='')
with file:
# identifying header
header = ['file_name', 'training_time(s)', 'test_result_loss', 'test_result_acc', 'train_result_acc', 'train_result_loss', 'nb_layers', 'epochs', 'type_archi']
writer = csv.DictWriter(file, fieldnames = header)
# writing data row-wise into the csv file
# writer.writeheader()
writer.writerow({'file_name' : 'archi_v3_30',
'training_time(s)': training_time,
'test_result_loss': test_result_loss,
'test_result_acc': test_result_acc,
'train_result_acc': train_result_acc,
'train_result_loss': train_result_loss,
'nb_layers': nb_layers,
'epochs' : len(history.history['loss']),
'type_archi': type_archi})
print('add line into architecture_results_v3.csv')
file.close()
|
[
"[email protected]"
] | |
0b9dbb64c50ea9248b0265712478b99b9d6c8300
|
09e57dd1374713f06b70d7b37a580130d9bbab0d
|
/benchmark/startQiskit_Class1786.py
|
610f8fde6dac66e86511229eaf7f8927e6e439db
|
[
"BSD-3-Clause"
] |
permissive
|
UCLA-SEAL/QDiff
|
ad53650034897abb5941e74539e3aee8edb600ab
|
d968cbc47fe926b7f88b4adf10490f1edd6f8819
|
refs/heads/main
| 2023-08-05T04:52:24.961998 | 2021-09-19T02:56:16 | 2021-09-19T02:56:16 | 405,159,939 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,887 |
py
|
# qubit number=5
# total number=70
import cirq
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import BasicAer, execute, transpile
from pprint import pprint
from qiskit.test.mock import FakeVigo
from math import log2,floor, sqrt, pi
import numpy as np
import networkx as nx
def build_oracle(n: int, f) -> QuantumCircuit:
# implement the oracle O_f^\pm
# NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate
# or multi_control_Z_gate (issue #127)
controls = QuantumRegister(n, "ofc")
oracle = QuantumCircuit(controls, name="Zf")
for i in range(2 ** n):
rep = np.binary_repr(i, n)
if f(rep) == "1":
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.h(controls[n])
if n >= 2:
oracle.mcu1(pi, controls[1:], controls[0])
for j in range(n):
if rep[j] == "0":
oracle.x(controls[j])
# oracle.barrier()
return oracle
def make_circuit(n:int,f) -> QuantumCircuit:
# circuit begin
input_qubit = QuantumRegister(n,"qc")
classical = ClassicalRegister(n, "qm")
prog = QuantumCircuit(input_qubit, classical)
prog.h(input_qubit[0]) # number=3
prog.h(input_qubit[1]) # number=4
prog.h(input_qubit[2]) # number=5
prog.h(input_qubit[1]) # number=29
prog.cz(input_qubit[3],input_qubit[1]) # number=30
prog.h(input_qubit[1]) # number=31
prog.h(input_qubit[3]) # number=6
prog.h(input_qubit[4]) # number=21
Zf = build_oracle(n, f)
repeat = floor(sqrt(2 ** n) * pi / 4)
for i in range(repeat):
prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)])
prog.h(input_qubit[0]) # number=1
prog.h(input_qubit[1]) # number=2
prog.h(input_qubit[2]) # number=7
prog.h(input_qubit[3]) # number=8
prog.h(input_qubit[0]) # number=38
prog.cz(input_qubit[1],input_qubit[0]) # number=39
prog.h(input_qubit[0]) # number=40
prog.h(input_qubit[0]) # number=51
prog.cz(input_qubit[1],input_qubit[0]) # number=52
prog.h(input_qubit[0]) # number=53
prog.h(input_qubit[0]) # number=64
prog.cz(input_qubit[1],input_qubit[0]) # number=65
prog.h(input_qubit[0]) # number=66
prog.x(input_qubit[0]) # number=49
prog.h(input_qubit[0]) # number=57
prog.cz(input_qubit[1],input_qubit[0]) # number=58
prog.h(input_qubit[0]) # number=59
prog.h(input_qubit[0]) # number=54
prog.cz(input_qubit[1],input_qubit[0]) # number=55
prog.h(input_qubit[0]) # number=56
prog.h(input_qubit[4]) # number=41
prog.h(input_qubit[0]) # number=61
prog.cz(input_qubit[1],input_qubit[0]) # number=62
prog.h(input_qubit[0]) # number=63
prog.cx(input_qubit[0],input_qubit[1]) # number=67
prog.x(input_qubit[1]) # number=68
prog.cx(input_qubit[0],input_qubit[1]) # number=69
prog.h(input_qubit[2]) # number=25
prog.cz(input_qubit[0],input_qubit[2]) # number=26
prog.h(input_qubit[2]) # number=27
prog.x(input_qubit[2]) # number=23
prog.cx(input_qubit[0],input_qubit[2]) # number=24
prog.cx(input_qubit[0],input_qubit[3]) # number=32
prog.x(input_qubit[3]) # number=33
prog.h(input_qubit[3]) # number=42
prog.cz(input_qubit[0],input_qubit[3]) # number=43
prog.h(input_qubit[3]) # number=44
if n>=2:
prog.mcu1(pi,input_qubit[1:],input_qubit[0])
prog.x(input_qubit[0]) # number=13
prog.rx(0.6157521601035993,input_qubit[1]) # number=60
prog.x(input_qubit[1]) # number=14
prog.x(input_qubit[2]) # number=15
prog.x(input_qubit[3]) # number=16
prog.h(input_qubit[0]) # number=17
prog.h(input_qubit[1]) # number=18
prog.h(input_qubit[2]) # number=19
prog.h(input_qubit[3]) # number=20
# circuit end
return prog
if __name__ == '__main__':
key = "00000"
f = lambda rep: str(int(rep == key))
prog = make_circuit(5,f)
backend = BasicAer.get_backend('statevector_simulator')
sample_shot =7924
info = execute(prog, backend=backend).result().get_statevector()
qubits = round(log2(len(info)))
info = {
np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3)
for i in range(2 ** qubits)
}
backend = FakeVigo()
circuit1 = transpile(prog,backend,optimization_level=2)
writefile = open("../data/startQiskit_Class1786.csv","w")
print(info,file=writefile)
print("results end", file=writefile)
print(circuit1.depth(),file=writefile)
print(circuit1,file=writefile)
writefile.close()
|
[
"[email protected]"
] | |
ad88fe2e16a5adbea172806fa7d86ebdfa481342
|
673e829dda9583c8dd2ac8d958ba1dc304bffeaf
|
/data/multilingual/Latn.SPA/Mono_16/pdf_to_json_test_Latn.SPA_Mono_16.py
|
0be4ae65d67247118673d5d58736e42717295f37
|
[
"BSD-3-Clause"
] |
permissive
|
antoinecarme/pdf_to_json_tests
|
58bab9f6ba263531e69f793233ddc4d33b783b7e
|
d57a024fde862e698d916a1178f285883d7a3b2f
|
refs/heads/master
| 2021-01-26T08:41:47.327804 | 2020-02-27T15:54:48 | 2020-02-27T15:54:48 | 243,359,934 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 303 |
py
|
import pdf_to_json as p2j
import json
url = "file:data/multilingual/Latn.SPA/Mono_16/udhr_Latn.SPA_Mono_16.pdf"
lConverter = p2j.pdf_to_json.pdf_to_json_converter()
lConverter.mImageHashOnly = True
lDict = lConverter.convert(url)
print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
|
[
"[email protected]"
] | |
e69bcc7516979ce09edabc7d718e8eca0a0d794f
|
e23a4f57ce5474d468258e5e63b9e23fb6011188
|
/125_algorithms/_examples/_algorithms_challenges/leetcode/LeetCode_with_solution/605 Can Place Flowers.py
|
658816e49cf0bf234c579ca59a7d4561b16531c3
|
[] |
no_license
|
syurskyi/Python_Topics
|
52851ecce000cb751a3b986408efe32f0b4c0835
|
be331826b490b73f0a176e6abed86ef68ff2dd2b
|
refs/heads/master
| 2023-06-08T19:29:16.214395 | 2023-05-29T17:09:11 | 2023-05-29T17:09:11 | 220,583,118 | 3 | 2 | null | 2023-02-16T03:08:10 | 2019-11-09T02:58:47 |
Python
|
UTF-8
|
Python
| false | false | 1,311 |
py
|
#!/usr/bin/python3
"""
Suppose you have a long flowerbed in which some of the plots are planted and
some are not. However, flowers cannot be planted in adjacent plots - they would
compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means
empty and 1 means not empty), and a number n, return if n new flowers can be
planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
The input array won't violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won't exceed the input array size.
"""
from typing import List
class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
"""
greedy
"""
if n == 0:
return True
for i in range(len(flowerbed)):
if (
flowerbed[i] != 1 and
(i + 1 >= len(flowerbed) or flowerbed[i+1] != 1) and
(i - 1 < 0 or flowerbed[i - 1] != 1)
):
n -= 1
flowerbed[i] = 1
if n == 0:
return True
return False
|
[
"[email protected]"
] | |
855148317d46238f6f0a99be9e89688696668f5e
|
8845a9557ef7a93a4235bc5aff059110c7c0846c
|
/Decorators/double_return.py
|
7ec2f76092ad954a1a96de46e9c96d749990493c
|
[] |
no_license
|
Makhanya/PythonMasterClass
|
c127791337c862bf5c6c8780a1643642d6e99ab6
|
241f48396e59cd20f1a275f15fa6fec3e8676bb6
|
refs/heads/master
| 2023-07-20T12:44:05.055259 | 2023-07-09T11:20:52 | 2023-07-09T11:20:52 | 86,587,952 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 568 |
py
|
'''
@double_return
def add(x, y):
return x + y
add(1, 2) # [3, 3]
@double_return
def greet(name):
return "Hi, I'm " + name
greet("Colt") # ["Hi, I'm Colt", "Hi, I'm Colt"]
'''
from functools import wraps
def double_return(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
val = fn(*args, **kwargs)
return [val, val]
return wrapper
@double_return
def add(x, y):
return x + y
print(add(1, 2)) # [3, 3]
@double_return
def greet(name):
return "Hi, I'm " + name
print(greet("Colt")) # ["Hi, I'm Colt", "Hi, I'm Colt"]
|
[
"[email protected]"
] | |
7a59066ee89bb5ef496ad54402f4996626383876
|
fa8d2511217e3db4c3ec91ee0bacd3ee70b1af47
|
/asm-unifier.py
|
ffa4ee865ab0f06fa07ee105f9652370bbfc156e
|
[] |
no_license
|
NickSto/indel-mix-denovo
|
588d5435e65895c8e40663225ab5090cc598ee91
|
e5a8b42aae6578565ceb5caea26e24fdea9196db
|
refs/heads/master
| 2020-12-24T08:54:57.857591 | 2019-09-19T21:07:26 | 2019-09-19T21:07:26 | 26,182,388 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 19,314 |
py
|
#!/usr/bin/env python
from __future__ import division
import re
import os
import sys
import shutil
import string
import logging
import argparse
import subprocess
import lavintervals
import fastareader
import lavreader
import distutils.spawn
OPT_DEFAULTS = {'output_name':'Cleaned', 'score_by':'length', 'fasta_width':70}
USAGE = "%(prog)s [options]"
DESCRIPTION = """This tool will simplify an assembly using a reference sequence.
It merges overlapping and adjacent contigs and discards redundant ones."""
EPILOG = """Notes: This is currently under active development and should be
considered in alpha status. At the moment it requires contigs that all overlap
or are adjacent (along the reference), with no gaps between."""
TMP_DIR_BASE = 'cleaning'
SPADES_NAME_PATTERN = r'^(NODE_\d+)_length_\d+_cov_\d+\.?\d+_ID_\d+$'
def main():
parser = argparse.ArgumentParser(description=DESCRIPTION, epilog=EPILOG)
parser.set_defaults(**OPT_DEFAULTS)
parser.add_argument('ref', metavar='reference.fa',
help='The FASTA file of the reference. N.B.: Must contain only one '
'sequence. If the full reference contains multiple chromosomes, you will '
'have to break it into multiple files and run this once per chromsome.')
parser.add_argument('asm', metavar='assembly.fa',
help='The FASTA file of the raw assembly.')
parser.add_argument('-s', '--score-by', choices=['length', 'id', 'support'],
help='The method used to determine which of two overlapping contigs to use '
'in constructing the final sequence. Default: %(default)s.')
parser.add_argument('-O', '--orient', action='store_true',
help='Only orient the contigs, but do not alter them otherwise.')
parser.add_argument('-o', '--output', metavar='assembly-unified.fa',
help='Write the processed assembly FASTA to this file instead of stdout.')
parser.add_argument('-n', '--output-name', metavar='SeqName',
help='Use this name for the output sequence in the FASTA header line. '
'Default: "%(default)s".')
parser.add_argument('-l', '--log', metavar='logfile.txt',
help='A log file to use for writing details of the process, if one is '
'desired.')
parser.add_argument('-v', '--verbosity', type=int, metavar='level',
help='How verbose the log file printing should be. If -v is given but -l '
'is not, log printing will be turned on, to stderr. Give a number from 0 '
'(silent) to 3 (most verbose). Default: 2 when printing to a file, '
'1 when printing to stderr ("-l -").')
parser.add_argument('-W', '--fasta-width', metavar='characters', type=int,
help='Line width of the output FASTA file. Default: %(default)s.')
args = parser.parse_args()
if args.score_by not in ('length'):
raise NotImplementedError('--score-by option not implemented yet.')
if args.output:
outfile = open(args.output, 'w')
else:
outfile = sys.stdout
if not distutils.spawn.find_executable('lastz'):
fail('Error: "lastz" command not found in PATH.')
# Set up logger
# logging level
if args.verbosity == 0:
loglevel = logging.WARNING
elif args.verbosity == 1:
loglevel = logging.INFO
elif args.verbosity == 2:
loglevel = logging.DEBUG
elif args.verbosity >= 3:
loglevel = logging.NOTSET
elif args.verbosity is None:
# default loglevel when printing to screen
if args.log == '-':
loglevel = logging.INFO
# default loglevel when printing to file
else:
loglevel = logging.DEBUG
else:
fail('Error: Invalid verbosity "'+str(args.verbosity)+'"')
# open logger, set to correct output destination
if args.log == '-' or args.verbosity is not None:
logging.basicConfig(stream=sys.stderr, level=loglevel, format='%(message)s')
elif args.log:
logging.basicConfig(filename=args.log, filemode='w', level=loglevel,
format='%(message)s')
else:
logging.disable(logging.CRITICAL)
# open LAV and FASTA files, make temporary directory
tmpdir = get_tmp_path(TMP_DIR_BASE)
try:
os.makedirs(tmpdir)
except OSError:
fail('Error: temporary directory "'+tmpdir+'" exists.')
# on any exception, first close the outfile and remove the temp directory
def cleanup_excepthook(exceptype, value, traceback):
cleanup(outfile, tmpdir)
sys.__excepthook__(exceptype, value, traceback)
sys.excepthook = cleanup_excepthook
# Orient all contigs in forward direction
pre_lav = align(args.ref, args.asm, tmpdir) # LASTZ align asm to ref
asm_fasta_path = orient(args.asm, pre_lav, tmpdir, args.fasta_width)
if args.orient:
with open(asm_fasta_path) as asm_fasta:
for line in asm_fasta:
sys.stdout.write(line)
cleanup(outfile, tmpdir)
sys.exit(0)
asm_fasta = fastareader.FastaLineGenerator(asm_fasta_path)
# Now align the oriented assembly to the reference
lav = align(args.ref, asm_fasta_path, tmpdir)
# convert alignments to a set of intervals and map each to its alignment
#TODO 3: Way to avoid rare collisions of intervals with identical start/ends
# Maybe include an identifier of the origin alignment in the tuple.
# (A simple third field of "query name" helps but won't be sufficient.)
interval_to_aln = lavintervals.alignments_to_intervals(lav)
# extract the intervals into a simple list
intervals = interval_to_aln.keys()
# Construct a final, non-redundant sequence out of the original, by walking
# along the reference, adding sequence from the assembly.
# Algorithm:
# While intervals left:
# Sort list of intervals by starting coordinate
# Pop the first interval off the list
# If the interval is unique (does not overlap any other interval):
# Take the corresponding sequence from the assembly & add it to the output
# Else (it overlaps):
# Break the interval in two: a unique region, followed by the rest
# Add the unique region (if any) to the list of intervals
# Decide between the two overlapping intervals:
# For each, align the overlapping region to the original assembly
# Use the one with the highest LASTZ score
# If the larger interval wins:
# Pop the smaller interval from the list
# Else (smaller interval wins):
# Split the larger interval and pop it from the list
# Add the non-overlapping segment to the list
final_sequence = ''
while len(intervals) > 0:
# Pop the next interval, peek the one after it (if it exists)
#TODO 3: Check how much of a performance bottleneck the sorting is.
# Adds at most a few seconds for 4,000 contigs.
# See: bisect module.
intervals.sort(key=lambda interval: interval[0]) # sort by start coord
interval = intervals[0]
if len(intervals) > 1:
next_interval = intervals[1]
else:
next_interval = None
del(intervals[0])
assert next_interval is None or interval[0] <= next_interval[0]
# Is this interval unique (no overlap between this interval and the next)?
if next_interval is None or interval[1] < next_interval[0]:
# Add query sequence of the interval to the output sequence
seq_name = interval_to_aln[interval].parent.query['name']
interval_on_query = convert_with_alignment(interval,
interval_to_aln[interval],
fail='tryharder')
logging.debug('Using {} for {:>5} to {:>5}'.format(nickname(seq_name),
interval[0],
interval[1]))
final_sequence += asm_fasta.extract(*interval_on_query, chrom=seq_name)
# Is there a gap between this interval and the next?
if next_interval is not None and interval[1] - next_interval[0] > 1:
#TODO 2: Fill gaps with N's
raise NotImplementedError('There must be no gaps between contigs.')
# ..or do the intervals overlap?
else:
# The overlapping region
overlap = (next_interval[0], min(interval[1], next_interval[1]))
# Portion of interval before the overlapping region
unique = (interval[0], next_interval[0]-1)
# All parts of interval after the unique region
rest = (next_interval[0], interval[1])
# Add the unique sequence before the overlap (if any) to the list
if length(unique) > 0:
intervals.append(unique)
interval_to_aln[unique] = interval_to_aln[interval]
# Determine which sequence to use in the overlap section
alignment1 = interval_to_aln[interval]
alignment2 = interval_to_aln[next_interval]
if choose_sequence(alignment1, alignment2, overlap, tmpdir, lav, args):
(winner, loser) = (rest, next_interval)
else:
(winner, loser) = (next_interval, rest)
assert winner[0] == loser[0]
# Make sure the list contains the winning interval and not the losing one.
if loser in intervals:
intervals.remove(loser)
if winner not in intervals:
intervals.append(winner)
if winner == next_interval:
interval_to_aln[winner] = interval_to_aln[next_interval]
else:
interval_to_aln[winner] = interval_to_aln[interval]
# If the losing interval is the larger one, split it and keep the part
# after the overlap.
if length(loser) > length(winner):
loser_rest = (winner[1]+1, loser[1])
intervals.append(loser_rest)
if loser == next_interval:
interval_to_aln[loser_rest] = interval_to_aln[next_interval]
else:
interval_to_aln[loser_rest] = interval_to_aln[interval]
outfile.write(fasta_format(final_sequence, args.output_name, args.fasta_width))
cleanup(outfile, tmpdir)
def length(interval):
"""Get length of interval.
1-based: length((10, 10)) == 1"""
return interval[1] - interval[0] + 1
def align(ref_path, asm_path, tmpdir):
"""LASTZ align two FASTA files and return an LavReader of the result.
Executes "$ lastz ref_path asm_path" and writes the output to an LAV file in
"tmpdir"."""
basename = os.path.splitext(os.path.split(asm_path)[1])[0]
lav_path = os.path.join(tmpdir, basename+'.lav')
with open(lav_path, 'w') as lavfile:
logging.info("$ "+" ".join(['lastz', ref_path, asm_path]))
subprocess.call(['lastz', ref_path, asm_path], stdout=lavfile)
#TODO 3: Check exit code for success or failure
return lavreader.LavReader(lav_path)
def orient(in_fasta_path, lav, tmpdir, fasta_width):
basename = os.path.splitext(os.path.split(in_fasta_path)[1])[0]
out_fasta_path = os.path.join(tmpdir, basename+'.oriented.fa')
# Read the LAV alignment to determine the orientation of each sequence.
# If there are hits to both orientations, decide based on the sum of the
# alignment scores for each.
orientations = {}
scores = {}
for hit in lav:
name = hit.query['name']
#TODO 2: Check that summing alignment scores is a reasonable way of
# scoring a hit.
score = 0
for alignment in hit:
score += alignment.score
if score > scores.get(name, -1):
scores[name] = score
orientations[name] = hit.query['revcomp']
# Read through the input FASTA, printing to each sequence in the correct
# orientation to the output FASTA.
in_fasta = fastareader.FastaLineGenerator(in_fasta_path)
name = None
revcomp = None
seqbuffer = ''
with open(out_fasta_path, 'w') as out_fasta:
for line in in_fasta:
# Started a new sequence; finish up the last one and print header.
if in_fasta.name != name:
if revcomp:
revcomp_seq = get_revcomp(seqbuffer)
out_fasta.write(fasta_format(revcomp_seq, name, width=fasta_width,
header=False))
out_fasta.write(">"+in_fasta.name+"\n")
name = in_fasta.name
revcomp = orientations.get(name, False)
seqbuffer = ''
# If it's reversed, save up the whole sequence so it can be revcomp'd as
# a whole at the end.
if revcomp:
seqbuffer += line
else:
out_fasta.write(line+"\n")
if revcomp:
revcomp_seq = get_revcomp(seqbuffer)
out_fasta.write(fasta_format(revcomp_seq, name, width=fasta_width,
header=False))
return out_fasta_path
def choose_sequence(alignment1, alignment2, overlap, tmpdir, lav, args):
"""Returns True if the first sequence is best, False otherwise.
Decides based on the criteria specified in args.score_by:
"length": Chooses the longer contig.
"id": Chooses the contig with the highest % identity compared to the
reference.
"support": Chooses the contig with the highest coverage in supporting reads.
"""
if args.score_by == 'length':
return choose_sequence_length(alignment1, alignment2)
elif args.score_by == 'id':
return choose_sequence_id(alignment1, alignment2, lav)
elif args.score_by == 'support':
return choose_sequence_support(alignment1, alignment2, tmpdir, args)
def choose_sequence_length(alignment1, alignment2):
id1 = nickname(alignment1.parent.query['id'])
id2 = nickname(alignment2.parent.query['id'])
logging.debug("choosing between {} and {}:".format(id1, id2))
length1 = alignment1.parent.query['length']
length2 = alignment2.parent.query['length']
if length1 >= length2:
logging.debug(' winner: {} ({} >= {})'.format(id1, length1, length2))
return True
else:
logging.debug(' winner: {} ({} < {})'.format(id2, length1, length2))
return False
def choose_sequence_id(alignment1, alignment2, lav):
raise NotImplementedError
def choose_sequence_support(alignment1, alignment2, tmpdir, args):
raise NotImplementedError
def choose_sequence_old(alignment1, alignment2, overlap, tmpdir, asm_raw_file):
best_hits = []
logging.debug("processing {}:".format(overlap))
for (alignment, name) in zip((alignment1, alignment2), ('seq1', 'seq2')):
fastapath = os.path.join(tmpdir, name+'.fa')
overlap_on_query = convert_with_alignment(overlap, alignment,
fail='tryharder')
sequence = asm_merge.extract(*overlap_on_query)
with open(fastapath, 'w') as fastafile:
fastafile.write(fasta_format(sequence, name))
# Perform LASTZ alignment
lavpath = os.path.join(tmpdir, name+'.lav')
with open(lavpath, 'w') as lavfile:
# sys.stderr.write("$ "+" ".join(['lastz', fastapath, asm_raw_file])+"\n")
subprocess.call(['lastz', fastapath, asm_raw_file], stdout=lavfile)
lav = lavreader.LavReader(lavpath)
# Get the top-scoring alignment
logging.debug(" scores for {}:".format(overlap_on_query))
(top_length, top_score) = lav_top_length(lav)
best_hits.append({'length':top_length, 'score':top_score})
# If both match the same contig the best, choose the highest alignment score
# (if length is equal, use alignment score as a tiebreaker).
if best_hits[0]['length'] == best_hits[1]['length']:
return best_hits[0]['score'] > best_hits[1]['score']
else:
return best_hits[0]['length'] > best_hits[1]['length']
def lav_top_score(lav):
"""Score an LAV by the top score of all alignments."""
top_score = 0
for hit in lav:
for alignment in hit:
logging.debug(" {}".format(alignment.score))
if alignment.score > top_score:
top_score = alignment.score
return top_score
def lav_top_id(lav):
"""Score an LAV by the top % identity of all alignments.
% identity of an alignment is computed by an average of all the % identities
of its blocks, weighted by block length."""
top_id = 0
for hit in lav:
for alignment in hit:
total_id = 0
total_length = 0
for block in alignment:
length = block.query['length']
total_length += length
total_id += length * block.identity
id_pct = total_id / total_length
logging.debug(" {}".format(round(id_pct, 2)))
if id_pct > top_id:
top_id = id_pct
return top_id
def lav_top_length(lav):
"""Score an LAV by the length of query sequence of the best hit.
The best hit is determined by its top alignment score."""
length_of_best = 0
top_score = 0
for hit in lav:
log_msg = " len: {}\tscores: ".format(hit.query['length'])
for alignment in hit:
log_msg += "{} ".format(alignment.score)
if alignment.score > top_score:
top_score = alignment.score
length_of_best = hit.query['length']
logging.debug(log_msg)
logging.debug(" best: {}".format(length_of_best))
return (length_of_best, top_score)
def fasta_format(sequence, name, width=70, header=True):
"""Turn a sequence and name into a FASTA-formatted string."""
if header:
output = '>'+name+'\n'
else:
output = ''
for start in range(0, len(sequence), width):
end = start + width
if end > len(sequence):
end = len(sequence)
output += sequence[start:end]+'\n'
return output
def get_revcomp(sequence):
delete_chars = '\r\n '
table = string.maketrans('acgtrymkbdhvACGTRYMKBDHV',
'tgcayrkmvhdbTGCAYRKMVHDB')
return sequence.translate(table, delete_chars)[::-1]
def convert_with_alignment(interval, alignment, fail='throw'):
"""One-off interval conversion, using a pre-chosen alignment.
Converts the interval's start/end coordinates from subject to query
coordinates using the given alignment.
Assumes the interval is actually contained in the alignment."""
#TODO 1: What happens when a coordinate is in a small gap between blocks?
# Make sure the resulting sequence doesn't include 1bp duplications.
table = lavintervals.alignments_to_conv_table([alignment],
query_to_subject=False)
try:
begin = lavintervals.convert(table, interval[0], fail=fail)[0]
end = lavintervals.convert(table, interval[1], fail=fail)[0]
except Exception as e:
if len(e.args) > 1 and e.args[1] == 'fail':
raise AssertionError('Interval must be contained in alignment.')
else:
raise
if begin > end:
(begin, end) = (end, begin)
return (begin, end)
def get_tmp_path(base, max_tries=20):
"""Return an unoccupied path based on the supplied one.
The returned path will be the argument plus ".tmp", or if that's taken, with a
number up to max_tries, like ".3.tmp". Once max_tries has been reached, it
will throw an exception.
N.B.: It will be a relative path if the input is."""
attempts = 0
candidate = base + '.tmp'
while os.path.exists(candidate):
candidate = "{}.{}.{}".format(base, attempts, 'tmp')
attempts+=1
if attempts > 20:
raise Exception('Cannot find an unoccupied temp directory name.')
return candidate
# Turn some types of verbose contig names into more concise ones
def nickname(raw_name):
# SPAdes
new_name = raw_name
match = re.search(SPADES_NAME_PATTERN, raw_name)
if match:
new_name = match.group(1)
return new_name
def cleanup(outfile, tmpdir):
logging.shutdown()
if outfile is not sys.stdout:
outfile.close()
shutil.rmtree(tmpdir)
def fail(message):
sys.stderr.write(message+"\n")
sys.exit(1)
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
4b3ff2faf3fb9d4006638355b98ca3527feb4f92
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p02270/s475630671.py
|
a7913845a9653b909329e96d11e5910a53bdb908
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 541 |
py
|
def check(P):
global w, k
t=1
wt=0
for wi in w:
if wt+wi>P:
wt=wi
t+=1
else:
wt+=wi
if t>k:
return False
return True
def search(l, r):
if r-l==1:
return r
else:
m=(l+r)//2
if not check(m):
return search(m,r)
else:
return search(l,m)
n,k=map(int,input().split())
w=[]
for i in range(n):
w.append(int(input()))
S=sum(w);M=max(w)
#print(S,M)
P0=M-1
#print(P0)
print(search(M-1,S))
|
[
"[email protected]"
] | |
33949dd2321b96eef46329e73735f12ac62437d1
|
0dee7cc69ae44e30c5cb372eb17f2e469635056b
|
/holbertonschool-higher_level_programming/0x01-python-if_else_loops_functions/8-uppercase.py
|
f2a5b337421ce94b40170a794bc783b5c51ba660
|
[] |
no_license
|
HausCloud/Holberton
|
00cd25b4a489041e041551ea8f87674d53f43713
|
b39c5978698e02b9e746121d6c55d791b73e6d9b
|
refs/heads/master
| 2022-12-13T01:06:18.968047 | 2020-09-05T18:23:00 | 2020-09-05T18:23:00 | 293,129,232 | 0 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 250 |
py
|
#!/usr/bin/python3
def uppercase(str):
for var in str:
if ord(var) >= 97 and ord(var) <= 122:
var2 = ord(var) - 32
else:
var2 = ord(var)
print("{:c}".format(var2), end="")
else:
print()
|
[
"[email protected]"
] | |
d3d5566076b929a309da59234c53596ff385821b
|
9c81628bc814841d09eef15ea89068436838836d
|
/neo4j_graph/farm_template.py
|
fe6dddb1b37ce564a3e412716d0e4bee82585994
|
[] |
no_license
|
glenn-edgar/cloud_scada
|
dae9ce58ba1a51a36a26dac578a9ed0461398289
|
d75006f47e67a17d0d07a107cc549322ae2c30d8
|
refs/heads/master
| 2021-01-22T11:10:37.136364 | 2017-11-16T01:58:35 | 2017-11-16T01:58:35 | 49,163,841 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,118 |
py
|
import json
from graph_functions import Build_Configuration
class Construct_Farm():
def __init__( self, bc):
self.bc = bc # Build configuration in graph_functions
def construct_system( self,name=None):
self.bc.construct_node( True,"SYSTEM","SYSTEM",name,{} )
def end_system( self):
self.bc.pop_namespace()
def construct_site( self,name=None,wired=True,address=None):
self.bc.construct_node( push_namespace=True,relationship="SITE", label="SITE", name=name,
properties ={"wired":wired,"address":address})
def end_site( self ):
self.bc.pop_namespace()
def construct_controller( self,name,web_queue,rpc_queue,local_ip,controller_type,vhost,card_dict,redis_controller_key ):
card_dict_json = json.dumps( card_dict )
self.bc.construct_node( push_namespace=True,relationship="CONTROLLER", label="CONTROLLER", name=name,
properties ={"web_queue":web_queue, "rpc_queue":rpc_queue,"local_ip":local_ip,"controller_type":controller_type,"vhost":vhost,"card_dict":card_dict_json,
"irrigation_resets":0,"system_resets":0, "ping_loss":0, "ping_counts":0,"temperature":0 ,"redis_key":redis_controller_key })
def end_controller( self ):
self.bc.pop_namespace()
def add_event_queue( self,name, events ):
self.bc.construct_node( push_namespace=False,relationship="EVENT_QUEUE", label="EVENT_QUEUE", name=name,
properties = { "timestamp":0, "events":json.dumps(events) } )
def add_diagnostic_card_header( self, *args):
self.bc.construct_node( push_namespace=True,
relationship="DIAGNOSTIC_CARD_HEADER",
label="DIAGNOSTIC_CARD_HEADER",
name="DIAGNOSTIC_CARD_HEADER",
properties = {} )
def end_diagnostic_card_header( self, *args):
self.bc.pop_namespace()
def add_diagnostic_card( self, org_name, board_name, list_name, card_name,description=None ):
if description == None:
description = card_name
self.bc.construct_node( push_namespace=False,
relationship="DIAGNOSTIC_CARD",
label="DIAGNOSTIC_CARD",
name = card_name,
properties = { "org_name":org_name, "board_name":board_name, "list_name":list_name, "description":description,"label":"green","new_commit":[] } )
def add_schedule_header( self ):
return self.bc.construct_node( push_namespace=True,relationship="Schedule_Header", label="Schedule_Header", name="Schedule_Header",
properties ={})
def end_schedule_header( self ):
self.bc.pop_namespace()
def add_schedule( self,name,number,flow_sensor_names ,card_link ):
schedule_node = self.bc.construct_node( push_namespace=True,relationship="IRRIGATION_SCHEDULE", label="IRRIGATION_SCHEDULE", name=name,
properties ={"number":number})
for i in range(0,number):
self.bc.construct_node( push_namespace=True,relationship="STEP", label="STEP", name=str(i+1), properties ={ "card":card_link+str(i+1) } )
self.bc.construct_node( push_namespace=True,relationship="FLOW_SENSOR_HEADERS", label="FLOW_SENSOR_HEADERS", name="FLOW_SENSOR_HEADERS",
properties ={ })
for j in flow_sensor_names:
self.bc.construct_node( push_namespace = True, relationship="FLOW_SENSOR_HEADER", label = "FLOW_SENSOR_HEADER", name = j, properties={} )
self.bc.construct_node( push_namespace = False, relationship="FLOW_SENSOR_LIMIT", label = "FLOW_SENSOR_LIMIT", name = j, properties={} )
self.bc.construct_node( push_namespace = False, relationship="FLOW_SENSOR_VALUE", label = "FLOW_SENSOR_VALUE", name = j, properties={} )
self.bc.pop_namespace()
self.bc.pop_namespace()
self.bc.construct_node( push_namespace=False,relationship="COIL_CURRENT", label="COIL_CURRENT", name= "COIL_CURRENT",
properties ={ })
self.bc.construct_node( push_namespace=False,relationship="COIL_CURRENT_LIMIT", label="COIL_CURRENT_LIMIT", name= "COIL_CURRENT_LIMIT",
properties ={ })
for j in flow_sensor_names:
self.bc.construct_node( push_namespace = False, relationship="FLOW_SENSOR_LIMIT", label = "FLOW_SENSOR_LIMIT", name = j, properties={} )
self.bc.pop_namespace()
self.bc.pop_namespace()
def add_flow_sensor_header( self ):
return self.bc.construct_node( push_namespace=True,relationship="FLOW_SENSOR_HEADER", label="FLOW_SENSOR_HEADER", name="flow_sensor_header",
properties ={})
def end_flow_sensor_header( self ):
self.bc.pop_namespace()
def add_flow_sensor( self,name,controller,io,conversion_factor):
return self.bc.construct_node( push_namespace=False,relationship="FLOW_SENSOR", label="FLOW_SENSOR", name=name,
properties ={"name":name,"controller":controller,"io":io,"conversion_factor":conversion_factor})
def add_udp_io_sever(self, name, ip,remote_type, port, redis_key ):
return self.bc.construct_node( push_namespace=True,relationship="UDP_IO_SERVER", label="UDP_IO_SERVER", name=name,
properties ={"name":name,"ip":ip,"remote_type":remote_type,"port":port,"redis_key":redis_key })
def end_udp_io_server(self ):
self.bc.pop_namespace()
def add_rtu_interface(self, name ,protocol,baud_rate ):
return self.bc.construct_node( push_namespace=True,relationship="RTU_INTERFACE", label="RTU_INTERFACE", name=name,
properties ={"name":name,"protocol":protocol,"baud_rate":baud_rate })
def add_remote( self, name,modbus_address,irrigation_station_number, card_dict):
card_dict_json = json.dumps(card_dict)
self.bc.construct_node( push_namespace=True,relationship="REMOTE", label="REMOTE", name=name,
properties ={"name":name,"modbus_address":modbus_address,"irrigation_station_number":irrigation_station_number, "card_dict":card_dict_json})
self.bc.construct_node( push_namespace=True,relationship="IRRIGATION_VALVE_CURRENT_HEADER", label="IRRIGATION_VALVE_CURRENT_HEADER", name = "valve_current_header",
properties ={ })
for i in range(0,irrigation_station_number):
self.bc.construct_node( push_namespace=False,relationship="IRRIGATION_VALVE_CURRENT", label="IRRIGATION_VALVE_CURRENT", name = str(i+1),
properties ={ "active":False })
self.bc.pop_namespace()
self.bc.construct_node( push_namespace=True,relationship="IRRIGATION_VALVE_CURRENT_HEADER", label="IRRIGATION_VALVE_CURRENT_LIMIT_HEADER", name = "valve_current_limit_header",
properties ={ })
for i in range(0,irrigation_station_number):
self.bc.construct_node( push_namespace=False,relationship="IRRIGATION_VALVE_CURRENT_LIMIT", label="IRRIGATION_VALVE_CURRENT_LIMIT", name= str(i+1),
properties ={ "active":False })
self.bc.pop_namespace()
self.bc.pop_namespace()
def end_rtu_interface( self ):
self.bc.pop_namespace()
class Namespace_Decoder():
def __init__( self,key_list = [ None,"system","site","controller"] ):
self.top_key_list = key_list
def decode_name_space( self, app_key_list, name_space, node ):
key_list = copy.copy(self.top_key_list)
key_list.extend(app_key_list)
name_space_list = node.properties["namespace"].split("/" )
if len(key_list) != len(name_space_list):
print "unequal name space lengths"
raise
for i in range(0, len(key_list)):
if key_list[i] != None:
node.properties[key_list[i]] = name_space_list[i]
|
[
"[email protected]"
] | |
1055f2b9979f4f089b71c5f85e6a00f7a510e344
|
3032a58254a0d61403cc75476438bf60a119c2ea
|
/ADB Scripts/GMLAB Scripts/android_test/src/calculator/calculator_sanity.py
|
eec6d9f5a72faa191feac6c5b7f2e19d74a169fd
|
[] |
no_license
|
anithamini/useful-info
|
1e05528d61609ca4249920e41c88957ed1476fd7
|
a393db8d8e727d29d185d75f7920e21770a39e70
|
refs/heads/master
| 2020-04-14T15:42:06.627213 | 2019-01-03T07:02:16 | 2019-01-03T07:02:16 | 163,935,084 | 2 | 3 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,601 |
py
|
'''
Created on Jul 24, 2018
@author: hnagella
'''
import os
from time import sleep
from common import constants
LaunchPassCnt=0
LaunchFailCnt=0
KillPassCnt=0
KillFailCnt=0
DegPassCnt=0
DegFailCnt=0
RadPassCnt=0
RadFailCnt=0
i=0
def Validate(s1,s2):
os.system('adb shell dumpsys '+s2+' > calc.txt') #To Collect the activity logs
with open("calc.txt","r") as fh:
buff=fh.read()
if(s1 in buff):
return(True)
else:
return(False)
def KillCalculator():
os.system("adb shell am force-stop com.google.android.calculator") #To kill the calculator application
sleep(2)
global KillPassCnt
global KillFailCnt
global fileobj_logfile
if(Validate("I=com.android.launcher3/com.android.searchlauncher.SearchLauncher",'activity recents | find "Recent #0"')):
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_1" +"\t"+ "TestKillCalculator"+"\t"+"PASS\n")
KillPassCnt+=1
else:
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_1" +"\t"+ "TestKillCalculator"+"\t"+"FAIL\n")
KillFailCnt+=1
def LaunchCalculator():
global LaunchPassCnt
global LaunchFailCnt
global fileobj_logfile
os.system("adb shell monkey -p com.google.android.calculator -c android.intent.category.LAUNCHER 1") #To Launch the Calculator application
sleep(2)
if(Validate("A=com.google.android.calculator",'activity recents | find "Recent #0"')):
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestLaunchCalculator"+"\t"+"PASS\n")
LaunchPassCnt+=1
else:
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestLaunchCalculator"+"\t"+"FAIL\n")
LaunchFailCnt+=1
def Mathematic():
for i in range(0,2):
os.system("adb shell input keyevent 8") #For tapping number 1
os.system("adb shell input keyevent 67") #To delete the number
os.system("adb shell input keyevent 81") #For '+' operator
os.system("adb shell input keyevent 10") #For tapping number 3
os.system("adb shell input keyevent 66") #For tapping '=' or enter
def Trigonometric():
os.system("adb shell input touchscreen swipe 1057 1343 170 1432") #For dragging the screen to trigonometric operations table
os.system("adb shell input tap 450 1154") #For selecting the sin function
os.system("adb shell input touchscreen swipe 170 1432 1057 1343") #For dragging the screen to mathematical operations table
n=10
for i in range(0,3):
os.system("adb shell input keyevent "+str(n)) #For tapping number 3 for iteration 0
if (i==0): #For tapping number 0 for iteration 1
n-=3 #For '-' operator for iteration 2
else:
n+=59
def RadMode():
global RadPassCnt
global RadFailCnt
global fileobj_logsummary
os.system("adb shell input tap 140 210") #Changing to Radian mode
Mathematic()
Trigonometric()
if(Validate("BFGS change:active","activity")):
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestRadMode"+"\t"+"PASS\n")
RadPassCnt+=1
else:
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestRadMode"+"\t"+"FAIL\n")
RadFailCnt+=1
def DegMode():
global DegPassCnt
global DegFailCnt
global fileobj_logsummary
os.system("adb shell input tap 140 210") #Changing to Degree mode
Mathematic()
Trigonometric()
if(Validate("BFGS change:active","activity")):
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestDegMode"+"\t"+"PASS\n")
DegPassCnt+=1
else:
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("TC_2" +"\t"+ "TestDegMode"+"\t"+"FAIL\n")
DegFailCnt+=1
def TestCalculatorSanity_Setup():
print(constants.logfile_absolutepath)
global fileobj_logfile
fileobj_logfile =open(constants.logfile_absolutepath , 'a+')
fileobj_logfile.write("\nCalculator_sanity\n")
fileobj_logfile.write("---------------------------------------------------\n")
def TestCalculatorSanity_testsuit():
KillCalculator()
LaunchCalculator()
DegMode()
RadMode()
def Calculator_sanity_summary_log():
global LaunchPassCnt
global LaunchFailCnt
global KillPassCnt
global KillFailCnt
global DegPassCnt
global DegFailCnt
global RadPassCnt
global RadFailCnt
global fileobj_logsummary
print("Launch Pass Count=",LaunchPassCnt,",LaunchFail Count=",LaunchFailCnt)
print("Kill Pass Count=",KillPassCnt,",Kill Fail Count=",KillFailCnt)
print("Degree mode Pass Count=",DegPassCnt,",LaunchFail Count=",DegFailCnt)
print("Radian mode Pass Count=",RadPassCnt,",Kill Fail Count=",RadFailCnt)
'''Below code is used to get summary report'''
print(constants.logsummary_absolutepath)
fileobj_logsummary =open(constants.logsummary_absolutepath , 'a+')
fileobj_logsummary.write("\nCalculator_sanity\n")
fileobj_logsummary.write("---------------------------------------------------\n")
fileobj_logsummary.write(str(LaunchPassCnt+LaunchFailCnt)+"\t" + str(LaunchPassCnt) +"\t"+ str(LaunchFailCnt)+"\n")
fileobj_logsummary.write(str(KillPassCnt+KillFailCnt)+"\t" + str(KillPassCnt) +"\t"+ str(KillFailCnt)+"\n")
fileobj_logsummary.write(str(DegPassCnt+DegFailCnt)+"\t" + str(DegPassCnt) +"\t"+ str(DegFailCnt)+"\n")
fileobj_logsummary.write(str(RadPassCnt+RadFailCnt)+"\t" + str(RadPassCnt) +"\t"+ str(RadFailCnt))
fileobj_logsummary.write("\n---------------------------------------------------\n")
fileobj_logsummary.close()
LaunchPassCnt=0
LaunchFailCnt=0
KillPassCnt=0
KillFailCnt=0
DegPassCnt=0
DegFailCnt=0
RadPassCnt=0
RadFailCnt=0
def TestCalculatorSanity_main():
print("Entry of TestCalculatorSanity_main")
TestCalculatorSanity_Setup()
TestCalculatorSanity_testsuit()
Calculator_sanity_summary_log()
|
[
"[email protected]"
] | |
36f37781f09c008b4ba4219c9d9699650fb13314
|
4be56098894a95da5964622fc4102b69e4530ab6
|
/题库/1668.找出最长的超赞子字符串.py
|
b1669f495a20a33d517d87e391451a607da9a5f4
|
[] |
no_license
|
ACENDER/LeetCode
|
7c7c7ecc8d0cc52215272f47ec34638637fae7ac
|
3383b09ab1246651b1d7b56ab426a456f56a4ece
|
refs/heads/master
| 2023-03-13T19:19:07.084141 | 2021-03-15T09:29:21 | 2021-03-15T09:29:21 | 299,332,864 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 101 |
py
|
# !/usr/bin/env python3
# -*- coding: utf-8 -*-
# @File : 1668.找出最长的超赞子字符串.py
|
[
"[email protected]"
] | |
189f941fc040e86b8d500c00756f506cd9174b59
|
d77c62ce48e13f1033d0dc0207d31094e9b32a94
|
/py/trialpatient.py
|
1e68cd8e71c746c64693bfb29fb96fe3907980d0
|
[
"Apache-2.0"
] |
permissive
|
chb/clinical-trials-app
|
bf7c19a202071159353aa81e57a31764fffc7098
|
21a69050788974018b2ea31fc3ef8a3d8e584376
|
refs/heads/master
| 2021-03-27T10:42:22.532446 | 2016-01-13T19:58:49 | 2016-01-13T19:58:49 | 22,513,863 | 4 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 10,193 |
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os.path
import logging
import datetime
import markdown
from dateutil.parser import *
from dateutil.relativedelta import *
import trialcondition
import trialmedication
import trialallergy
import triallab
import trialmutation
import clinicaltrials.jsondocument.jsondocument as jsondocument
import smartclient.fhirclient.models.condition as condition
import smartclient.fhirclient.models.medicationprescription as medicationprescription
import smartclient.fhirclient.models.allergyintolerance as allergyintolerance
import smartclient.fhirclient.models.observation as observation
class TrialPatient(jsondocument.JSONDocument):
""" A representation for a patient.
Properties:
- full_name: string
- gender: string, "female" or "male"
- birthday: ISO-8601 date string
- deathdate: ISO-8601 date string
- age_years: int
- age_string: string
- city: string
- region: string
- country: string
- location = city, region: string
- conditions: [TrialCondition]
- medications: [TrialMedication]
- allergies: [TrialAllergy]
- labs: [TrialLab]
- trial_info: [TrialPatientInfo] (loaded from db on init)
- cached: when the patient data was last cached
"""
def __init__(self, ident, json=None):
super().__init__(ident, "patient", json)
if self.gender is None:
self.gender = "female"
if self.country is None:
self.country = "United States"
if self.location is None:
self.update_location()
self.trial_info = TrialPatientInfo.find({'type': 'trial-patient-info', 'patient_id': ident})
def update_with(self, json):
super().update_with(json)
#print('===> ', json)
if self.conditions is not None:
cond = []
for c in self.conditions:
if isinstance(c, trialcondition.TrialCondition):
cond.append(c)
else:
cond.append(trialcondition.TrialCondition(c))
self.conditions = cond
else:
self.conditions = []
if self.medications is not None:
meds = []
for m in self.medications:
if isinstance(m, trialmedication.TrialMedication):
meds.append(m)
else:
meds.append(trialmedication.TrialMedication(m))
self.medications = meds
else:
self.medications = []
if self.allergies is not None:
allergs = []
for a in self.allergies:
if isinstance(a, trialallergy.TrialAllergy):
allergs.append(a)
else:
allergs.append(trialallergy.TrialAllergy(a))
self.allergies = allergs
else:
self.allergies = []
if self.labs is not None:
lbs = []
for l in self.labs:
if isinstance(l, triallab.TrialLab):
lbs.append(l)
else:
lbs.append(triallab.TrialLab(l))
self.labs = lbs
else:
self.labs = []
def __setattr__(self, name, value):
""" Overridden to perform some value generation after setting certain
properties.
"""
super().__setattr__(name, value)
if 'birthday' == name:
self.update_age_years()
if 'country' == name or 'city' == name or 'region' == name:
self.update_location()
def as_json(self):
js_dict = super().as_json()
if 'trial_info' in js_dict:
del js_dict['trial_info']
if 'fhir' in js_dict:
del js_dict['fhir']
return js_dict
def for_api(self, stripped=False):
js_dict = super().for_api()
if stripped:
#if 'conditions' in js_dict:
# del js_dict['conditions']
if 'medications' in js_dict:
del js_dict['medications']
if 'allergies' in js_dict:
del js_dict['allergies']
if 'labs' in js_dict:
del js_dict['labs']
if 'cached' in js_dict:
del js_dict['cached']
if 'fhir' in js_dict:
del js_dict['fhir']
return js_dict
def process_observations(self, observations):
""" Given a list of FHIR observations, determines which are mutations
and which are lab values, filling the receiver's ivars accordingly.
"""
if observations is None:
return
if self.labs is None:
self.labs = []
for obs in observations:
if triallab.TrialLab.is_lab(obs):
self.labs.append(triallab.TrialLab.from_fhir(obs))
elif trialmutation.TrialMutation.is_mutation(obs):
mut = trialmutation.TrialMutation.from_fhir(obs)
# this is a mutation, find corresponding observation
if self.conditions is not None:
found = False
for cond in self.conditions:
if mut.reference and cond.id == os.path.basename(mut.reference):
if cond.mutations is None:
cond.mutations = []
cond.mutations.append(mut)
found = True
break
if not found:
logging.warning("Found a mutation but not the matching condition in patient {}"
.format(self.id))
else:
logging.warning("Found a mutation but patient {} has no conditions"
.format(self.id))
self.labs = self.labs if len(self.labs) > 0 else None
@classmethod
def load_from_fhir(cls, client):
""" Instantiates a TrialPatient with data from a FHIR Patient resource,
retrieved from a SMART client (fhirclient) instance.
:param client: A handle to a `fhirclient` instance
:returns: A TrialPatient instance, or None on error
"""
fpat = client.patient if client is not None else None
if fpat is None:
return None
patient = cls(fpat.id)
patient.fhir = fpat
patient.full_name = client.human_name(fpat.name[0] if fpat.name and len(fpat.name) > 0 else None)
patient.gender = fpat.gender
patient.birthday = fpat.birthDate.isostring
if fpat.address is not None and len(fpat.address) > 0:
address = fpat.address[0]
for addr in fpat.address:
if 'home' == addr.use:
address = addr
break
patient.city = address.city
patient.region = address.state
patient.country = address.country
# retrieve problem list
cond_search = condition.Condition.where(struct={'subject': fpat.id})
patient.conditions = [trialcondition.TrialCondition.from_fhir(c) for c in cond_search.perform_resources(fpat._server)]
# retrieve observations: labs and mutations
obs_search = observation.Observation.where(struct={'subject': fpat.id})
observations = obs_search.perform_resources(fpat._server)
patient.process_observations(observations)
# retrieve meds
med_search = medicationprescription.MedicationPrescription.where(struct={'subject': fpat.id})
patient.medications = [trialmedication.TrialMedication.from_fhir(m) for m in med_search.perform_resources(fpat._server)]
# retrieve allergies
allerg_search = allergyintolerance.AllergyIntolerance.where(struct={'subject': fpat.id})
patient.allergies = [trialallergy.TrialAllergy.from_fhir(a) for a in allerg_search.perform_resources(fpat._server)]
return patient
# MARK: Trial Info
def info_for_trial(self, trial_id):
if self.trial_info is not None:
for trialinfo in self.trial_info:
if trialinfo.trial_id == trial_id:
return trialinfo
return None
# MARK: Birthday & Age
def age_delta(self):
if self.birthday:
try:
birth = parse(self.birthday)
except Exception as e:
logging.error("Failed to parse birthday \"{}\": {}".format(self.birthday, e))
return None
now = datetime.datetime.now()
if self.deathdate:
try:
now = parse(self.deathdate)
except Exception as e:
logging.error("Failed to parse deathdate \"{}\": {}".format(self.deathdate, e))
return relativedelta(now, birth)
return None
@property
def age_years(self):
if self.__dict__.get('age_years') is None:
self.update_age_years()
return self.__dict__.get('age_years')
@age_years.setter
def age_years(self, years):
self.__dict__['age_years'] = years
def update_age_years(self):
delta = self.age_delta()
self.age_years = delta.years if delta is not None else None
@property
def age_string(self):
delta = self.age_delta()
if delta is not None:
if 1 == delta.years:
years = "{} year".format(delta.years)
else:
years = "{} years".format(delta.years)
if delta.years < 3:
if 1 == delta.months:
return "{} {} month".format(years, delta.months)
return "{} {} months".format(years, delta.months)
return years
return ''
# MARK: Portrait
def load_photo(self):
""" Retrieves a FHIR Patient's first photo and returns a tuple with
content-type and data.
"""
fpat = self.fhir if self.fhir is not None else None
if fpat is None:
logging.warning("Patient instance lost its handle to the FHIR Patient instance, cannot retrieve photo")
return None, None
if fpat.photo is not None:
photo_data = None
for photo in fpat.photo:
if photo.url is not None:
photo_data = fpat._server.request_data(photo.url)
break
elif photo.data is not None:
logging.info("Base-64 encoded photo data is not yet supported")
if photo_data is not None:
return photo.contentType, photo_data
return None, None
# MARK: Location
def update_location(self):
parts = []
if self.city:
parts.append(self.city)
if self.region:
parts.append(self.region)
setattr(self, 'location', ', '.join(parts) if len(parts) > 0 else None)
class TrialPatientInfo(jsondocument.JSONDocument):
""" Information linking a patient and a trial, stored by app users.
"""
def __init__(self, trial_id=None, patient_id=None, json=None):
if json is not None:
if trial_id is None:
trial_id = json.get('trial_id')
if patient_id is None:
patient_id = json.get('patient_id')
if not trial_id or not patient_id:
raise Exception("Need both a trial- and patient-id, have trial: {}, patient: {}"
.format(trial_id, patient_id))
ident = '{}-{}'.format(trial_id, patient_id)
super().__init__(ident, 'trial-patient-info', json)
self.trial_id = trial_id
self.patient_id = patient_id
def for_api(self):
js = {
'trial_id': self.trial_id,
'patient_id': self.patient_id,
}
if self.suggested:
js['suggested'] = True
if self.notes:
js['notes'] = {
'raw': self.notes,
'html': markdown.markdown(self.notes),
}
return js
def update_from_api(self, json):
d = {}
if 'suggested' in json:
d['suggested'] = True if 'true' == json['suggested'] or 1 == int(json['suggested']) else False
if 'notes' in json:
d['notes'] = json['notes']
self.update_with(d)
self.store()
|
[
"[email protected]"
] | |
52b7c325b80ecf5a7a3c95b1d6d91142d29c6b21
|
3546dd5dbcffc8509440c820faa7cf28080c5df7
|
/python35/Lib/site-packages/win32com/demos/connect.py
|
992965ee1eaf18af7978dfda4348d9e446dab4e2
|
[
"Apache-2.0",
"MIT",
"BSD-3-Clause",
"LGPL-2.1-only"
] |
permissive
|
Matchoc/python_env
|
55ad609c8270cc6148eda22d37f36709d73b3652
|
859d84d1717a265a4085ad29706b12c19c62d36f
|
refs/heads/master
| 2022-02-13T11:05:51.825544 | 2020-06-05T02:42:08 | 2020-06-05T02:42:08 | 75,793,921 | 0 | 1 |
Apache-2.0
| 2018-12-14T07:30:28 | 2016-12-07T03:06:13 |
Python
|
UTF-8
|
Python
| false | false | 3,741 |
py
|
# Implements _both_ a connectable client, and a connectable server.
#
# Note that we cheat just a little - the Server in this demo is not created
# via Normal COM - this means we can avoid registering the server.
# However, the server _is_ accessed as a COM object - just the creation
# is cheated on - so this is still working as a fully-fledged server.
import pythoncom
import win32com.server.util
import win32com.server.connect
from win32com.server.exception import Exception
from pywin32_testutil import str2bytes
# This is the IID of the Events interface both Client and Server support.
IID_IConnectDemoEvents = pythoncom.MakeIID("{A4988850-49C3-11d0-AE5D-52342E000000}")
# The server which implements
# Create a connectable class, that has a single public method
# 'DoIt', which echos to a single sink 'DoneIt'
class ConnectableServer(win32com.server.connect.ConnectableServer):
_public_methods_ = ["DoIt"] + win32com.server.connect.ConnectableServer._public_methods_
_connect_interfaces_ = [IID_IConnectDemoEvents]
# The single public method that the client can call on us
# (ie, as a normal COM server, this exposes just this single method.
def DoIt(self,arg):
# Simply broadcast a notification.
self._BroadcastNotify(self.NotifyDoneIt, (arg,))
def NotifyDoneIt(self, interface, arg):
interface.Invoke(1000, 0, pythoncom.DISPATCH_METHOD, 1, arg)
# Here is the client side of the connection world.
# Define a COM object which implements the methods defined by the
# IConnectDemoEvents interface.
class ConnectableClient:
# This is another cheat - I _know_ the server defines the "DoneIt" event
# as DISPID==1000 - I also know from the implementation details of COM
# that the first method in _public_methods_ gets 1000.
# Normally some explicit DISPID->Method mapping is required.
_public_methods_ = ["OnDoneIt"]
def __init__(self):
self.last_event_arg = None
# A client must implement QI, and respond to a query for the Event interface.
# In addition, it must provide a COM object (which server.util.wrap) does.
def _query_interface_(self, iid):
import win32com.server.util
# Note that this seems like a necessary hack. I am responding to IID_IConnectDemoEvents
# but only creating an IDispatch gateway object.
if iid==IID_IConnectDemoEvents: return win32com.server.util.wrap(self)
# And here is our event method which gets called.
def OnDoneIt(self, arg):
self.last_event_arg = arg
def CheckEvent(server, client, val, verbose):
client.last_event_arg = None
server.DoIt(val)
if client.last_event_arg != val:
raise RuntimeError("Sent %r, but got back %r" % (val, client.last_event_arg))
if verbose:
print("Sent and received %r" % val)
# A simple test script for all this.
# In the real world, it is likely that the code controlling the server
# will be in the same class as that getting the notifications.
def test(verbose=0):
import win32com.client.dynamic, win32com.client.connect
import win32com.server.policy
server = win32com.client.dynamic.Dispatch(win32com.server.util.wrap(ConnectableServer()))
connection = win32com.client.connect.SimpleConnection()
client = ConnectableClient()
connection.Connect(server, client, IID_IConnectDemoEvents)
CheckEvent(server, client, "Hello", verbose)
CheckEvent(server, client, str2bytes("Here is a null>\x00<"), verbose)
CheckEvent(server, client, "Here is a null>\x00<", verbose)
val = "test-\xe0\xf2" # 2 extended characters.
CheckEvent(server, client, val, verbose)
if verbose:
print("Everything seemed to work!")
# Aggressive memory leak checking (ie, do nothing!) :-) All should cleanup OK???
if __name__=='__main__':
test(1)
|
[
"[email protected]"
] | |
ca04c2e7dbfd946dbcca42e690b220b9db48573d
|
50948d4cb10dcb1cc9bc0355918478fb2841322a
|
/azure-servicefabric/azure/servicefabric/models/deployed_service_package_health_state_py3.py
|
365b0c4a2811f97f28d15960c152de63d4aff27e
|
[
"MIT"
] |
permissive
|
xiafu-msft/azure-sdk-for-python
|
de9cd680b39962702b629a8e94726bb4ab261594
|
4d9560cfd519ee60667f3cc2f5295a58c18625db
|
refs/heads/master
| 2023-08-12T20:36:24.284497 | 2019-05-22T00:55:16 | 2019-05-22T00:55:16 | 187,986,993 | 1 | 0 |
MIT
| 2020-10-02T01:17:02 | 2019-05-22T07:33:46 |
Python
|
UTF-8
|
Python
| false | false | 2,787 |
py
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is
# regenerated.
# --------------------------------------------------------------------------
from .entity_health_state_py3 import EntityHealthState
class DeployedServicePackageHealthState(EntityHealthState):
"""Represents the health state of a deployed service package, containing the
entity identifier and the aggregated health state.
:param aggregated_health_state: The health state of a Service Fabric
entity such as Cluster, Node, Application, Service, Partition, Replica
etc. Possible values include: 'Invalid', 'Ok', 'Warning', 'Error',
'Unknown'
:type aggregated_health_state: str or
~azure.servicefabric.models.HealthState
:param node_name: Name of the node on which the service package is
deployed.
:type node_name: str
:param application_name: The name of the application, including the
'fabric:' URI scheme.
:type application_name: str
:param service_manifest_name: Name of the manifest describing the service
package.
:type service_manifest_name: str
:param service_package_activation_id: The ActivationId of a deployed
service package. If ServicePackageActivationMode specified at the time of
creating the service
is 'SharedProcess' (or if it is not specified, in which case it defaults
to 'SharedProcess'), then value of ServicePackageActivationId
is always an empty string.
:type service_package_activation_id: str
"""
_attribute_map = {
'aggregated_health_state': {'key': 'AggregatedHealthState', 'type': 'str'},
'node_name': {'key': 'NodeName', 'type': 'str'},
'application_name': {'key': 'ApplicationName', 'type': 'str'},
'service_manifest_name': {'key': 'ServiceManifestName', 'type': 'str'},
'service_package_activation_id': {'key': 'ServicePackageActivationId', 'type': 'str'},
}
def __init__(self, *, aggregated_health_state=None, node_name: str=None, application_name: str=None, service_manifest_name: str=None, service_package_activation_id: str=None, **kwargs) -> None:
super(DeployedServicePackageHealthState, self).__init__(aggregated_health_state=aggregated_health_state, **kwargs)
self.node_name = node_name
self.application_name = application_name
self.service_manifest_name = service_manifest_name
self.service_package_activation_id = service_package_activation_id
|
[
"[email protected]"
] | |
13212c64b30f21f6d73d7d674933112d8939b4ad
|
394bde9dad62eb0b653b3b5b921dfd0425988298
|
/openstackclient/tests/identity/v2_0/test_role_assignment.py
|
ab48c2f418b49a80a8f72d157b4b7ee561ecb851
|
[
"Apache-2.0"
] |
permissive
|
davisaaronj/python-openstackclient
|
13e02dfb0808a1fcabad9e7dcd6184454fc05bf0
|
5f6257206e1df085d1432778cfbc4489b87bc256
|
refs/heads/master
| 2020-05-29T12:28:29.226258 | 2016-07-27T19:50:21 | 2016-07-27T19:50:21 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 8,516 |
py
|
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
import copy
import mock
from openstackclient.common import exceptions
from openstackclient.identity.v2_0 import role_assignment
from openstackclient.tests import fakes
from openstackclient.tests.identity.v2_0 import fakes as identity_fakes
class TestRoleAssignment(identity_fakes.TestIdentityv2):
def setUp(self):
super(TestRoleAssignment, self).setUp()
class TestRoleAssignmentList(TestRoleAssignment):
columns = (
'Role',
'User',
'Project',
)
def setUp(self):
super(TestRoleAssignment, self).setUp()
# Get a shortcut to the UserManager Mock
self.users_mock = self.app.client_manager.identity.users
self.users_mock.reset_mock()
# Get a shortcut to the ProjectManager Mock
self.projects_mock = self.app.client_manager.identity.projects
self.projects_mock.reset_mock()
# Get a shortcut to the RoleManager Mock
self.roles_mock = self.app.client_manager.identity.roles
self.roles_mock.reset_mock()
self.projects_mock.get.return_value = fakes.FakeResource(
None,
copy.deepcopy(identity_fakes.PROJECT),
loaded=True,
)
self.users_mock.get.return_value = fakes.FakeResource(
None,
copy.deepcopy(identity_fakes.USER),
loaded=True,
)
self.roles_mock.roles_for_user.return_value = [
fakes.FakeResource(
None,
copy.deepcopy(identity_fakes.ROLE),
loaded=True,
),
]
# Get the command object to test
self.cmd = role_assignment.ListRoleAssignment(self.app, None)
def test_role_assignment_list_no_filters(self):
arglist = []
verifylist = []
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# This argument combination should raise a CommandError
self.assertRaises(
exceptions.CommandError,
self.cmd.take_action,
parsed_args,
)
def test_role_assignment_list_only_project_filter(self):
arglist = [
'--project', identity_fakes.project_name,
]
verifylist = [
('project', identity_fakes.project_name),
]
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# This argument combination should raise a CommandError
self.assertRaises(
exceptions.CommandError,
self.cmd.take_action,
parsed_args,
)
def test_role_assignment_list_only_user_filter(self):
arglist = [
'--user', identity_fakes.user_name,
]
verifylist = [
('user', identity_fakes.user_name),
]
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# This argument combination should raise a CommandError
self.assertRaises(
exceptions.CommandError,
self.cmd.take_action,
parsed_args,
)
def test_role_assignment_list_project_and_user(self):
self.roles_mock.roles_for_user.return_value = [
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE),
loaded=True,
),
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE_2),
loaded=True,
),
]
arglist = [
'--project', identity_fakes.project_name,
'--user', identity_fakes.user_name,
]
verifylist = [
('user', identity_fakes.user_name),
('project', identity_fakes.project_name),
]
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# In base command class Lister in cliff, abstract method take_action()
# returns a tuple containing the column names and an iterable
# containing the data to be listed.
columns, data = self.cmd.take_action(parsed_args)
self.roles_mock.roles_for_user.assert_called_with(
identity_fakes.user_id,
identity_fakes.project_id,
)
self.assertEqual(self.columns, columns)
datalist = ((
identity_fakes.role_id,
identity_fakes.user_id,
identity_fakes.project_id,
), (identity_fakes.ROLE_2['id'],
identity_fakes.user_id,
identity_fakes.project_id,
),)
self.assertEqual(datalist, tuple(data))
def test_role_assignment_list_def_creds(self):
auth_ref = self.app.client_manager.auth_ref = mock.MagicMock()
auth_ref.project_id.return_value = identity_fakes.project_id
auth_ref.user_id.return_value = identity_fakes.user_id
self.roles_mock.roles_for_user.return_value = [
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE),
loaded=True,
),
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE_2),
loaded=True,
),
]
arglist = [
'--auth-user',
'--auth-project',
]
verifylist = [
('authuser', True),
('authproject', True),
]
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# In base command class Lister in cliff, abstract method take_action()
# returns a tuple containing the column names and an iterable
# containing the data to be listed.
columns, data = self.cmd.take_action(parsed_args)
self.roles_mock.roles_for_user.assert_called_with(
identity_fakes.user_id,
identity_fakes.project_id,
)
self.assertEqual(self.columns, columns)
datalist = ((
identity_fakes.role_id,
identity_fakes.user_id,
identity_fakes.project_id,
), (identity_fakes.ROLE_2['id'],
identity_fakes.user_id,
identity_fakes.project_id,
),)
self.assertEqual(datalist, tuple(data))
def test_role_assignment_list_by_name_project_and_user(self):
self.roles_mock.roles_for_user.return_value = [
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE),
loaded=True,
),
fakes.FakeResource(
None,
copy.deepcopy(
identity_fakes.ROLE_2),
loaded=True,
),
]
arglist = [
'--project', identity_fakes.project_name,
'--user', identity_fakes.user_name,
'--names'
]
verifylist = [
('user', identity_fakes.user_name),
('project', identity_fakes.project_name),
('names', True),
]
parsed_args = self.check_parser(self.cmd, arglist, verifylist)
# In base command class Lister in cliff, abstract method take_action()
# returns a tuple containing the column names and an iterable
# containing the data to be listed.
columns, data = self.cmd.take_action(parsed_args)
self.roles_mock.roles_for_user.assert_called_with(
identity_fakes.user_id,
identity_fakes.project_id,
)
self.assertEqual(self.columns, columns)
datalist = ((
identity_fakes.role_name,
identity_fakes.user_name,
identity_fakes.project_name,
), (identity_fakes.ROLE_2['name'],
identity_fakes.user_name,
identity_fakes.project_name,
),)
self.assertEqual(datalist, tuple(data))
|
[
"[email protected]"
] | |
84c661b811a5bddefd7c514ef2e30e4620d1de47
|
e8ea12b8114b5751c5a840c87da50773f8718039
|
/app/aldrovanda/urls.py
|
b45d5490ca2f5af49698cb183e287331f18ca424
|
[] |
no_license
|
juanros13/aldrovanda
|
786964fb6896bc60216e0d297696fa1742d3e9f8
|
0fd363a91b4880da5f3d7978d62474eb81ff8307
|
refs/heads/master
| 2021-01-18T15:21:53.320987 | 2012-10-12T08:56:35 | 2012-10-12T08:56:35 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 652 |
py
|
from django.conf.urls.defaults import patterns, include, url
from django.contrib import admin
from django.conf import settings
from django.conf.urls.static import static
admin.autodiscover()
urlpatterns = patterns('aldrovanda.views',
# Examples:
# url(r'^$', 'app.views.home', name='home'),
# url(r'^app/', include('app.foo.urls')),
# Uncomment the admin/doc line below to enable admin documentation:
# url(r'^admin/doc/', include('django.contrib.admindocs.urls')),
# Uncomment the next line to enable the admin:
url(r'^(?P<product_id>\d+)', 'detail'),
)+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
|
[
"[email protected]"
] | |
8fdbc71c124a3d8aa5382ae8e28eb00b798df2e8
|
bcb36baf1b3d3eceffba383f72c2b5335cc7048d
|
/leetcode/198_house_robber/house_robber.py
|
a4ab696950ba57ffa5c4ef74a78060c3b6c8c914
|
[] |
no_license
|
paulghaddad/solve-it
|
0aa1400cefab783f4ea757921811668fb2c9477c
|
e0f72be0fca82bc0378def5499f7158bafff975b
|
refs/heads/master
| 2023-01-24T03:46:24.285793 | 2021-07-06T19:44:29 | 2021-07-06T19:44:29 | 200,406,482 | 2 | 0 | null | 2023-01-06T13:53:43 | 2019-08-03T18:07:53 |
Python
|
UTF-8
|
Python
| false | false | 744 |
py
|
# Time Cost: O(n)
# Space Cost: O(n)
def rob(nums):
if not nums:
return 0
if len(nums) < 3:
return max(nums)
max_profit_at_each_house = [0] * len(nums)
max_profit_at_each_house[0:2] = nums[0:2]
max_profit_at_each_house[2] = nums[0] + nums[2]
current_max = max(max_profit_at_each_house)
for i in range(3, len(nums)):
profit_two_back = max_profit_at_each_house[i-2]
profit_three_back = max_profit_at_each_house[i-3]
max_profit_at_each_house[i] = max(
profit_two_back + nums[i],
profit_three_back + nums[i]
)
if max_profit_at_each_house[i] > current_max:
current_max = max_profit_at_each_house[i]
return current_max
|
[
"[email protected]"
] | |
51478892c734352ed8fe2f42a076a778a0ee4a67
|
e70a6500f0ad67ca418c34daaebddba60746525b
|
/prototypes/regex/tokenizer.py
|
62af0f6537149c0c6d5da1dc1a5f9ee6d4be7947
|
[
"BSD-3-Clause"
] |
permissive
|
DasIch/editor
|
e2a2d47c59fa3e12696f0f983c8223c7337d0120
|
d906fdae92e1b1856e9b06e51dcd3a092be7b13d
|
refs/heads/master
| 2016-09-01T17:43:15.494985 | 2012-10-17T01:00:33 | 2012-10-17T01:00:33 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,801 |
py
|
# coding: utf-8
"""
regex.tokenizer
~~~~~~~~~~~~~~~
:copyright: 2012 by Daniel Neuhäuser
:license: BSD, see LICENSE.rst
"""
from regex.parser import parse
from regex.matcher import Span
class TokenizerError(Exception):
def __init__(self, reason, position):
Exception.__init__(self, reason, position)
self.reason = reason
self.position = position
class Token(object):
def __init__(self, lexeme, span):
self.lexeme = lexeme
self.span = span
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.lexeme == other.lexeme and self.span == other.span
return NotImplemented
def __ne__(self, other):
return not self == other
def __repr__(self):
return "%s(%r, %r)" % (self.__class__.__name__, self.lexeme, self.span)
class Tokenizer(object):
def __init__(self, definitions):
self.definitions = []
for regex, token_cls in definitions:
self.definitions.append((parse(regex).compile(), token_cls))
def __call__(self, string):
start = 0
while string:
token = self.match_token(string, start)
if token is None:
raise TokenizerError(
"string cannot be further consumed at position %d" % start,
start
)
token, string, start = token
yield token
def match_token(self, string, start=0):
for matcher, token_cls in self.definitions:
end = matcher.match(string)
if end is not None:
return (
token_cls(string[:end], Span(start, start + end)),
string[end:],
start + end
)
|
[
"[email protected]"
] | |
f543081460730c27cc2b22cadb1fbb32ce87b65e
|
f642c054451aa3c87bb18fa63037eea0e6358bda
|
/geektrust/loan_payments/loan_payments/common/utils.py
|
6a7587eee93092587afd23ed034337f7756f4108
|
[] |
no_license
|
devendraprasad1984/python
|
30f3a539e92be13d893246ad28a42907457a38d5
|
0f1badabba07fbe7f5f792b7e543c0748eecd6c7
|
refs/heads/master
| 2023-07-21T08:22:45.193077 | 2021-08-27T15:09:28 | 2021-08-27T15:09:28 | 254,812,552 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,862 |
py
|
import base64
import json
from uuid import uuid4
from django.core import serializers
from django.core.serializers.json import DjangoJSONEncoder
from django.core.signing import Signer
from django.utils import crypto
from loan_manager import models
from ..common import lookup, field_names
from ..middleware import signer_check
failed = "failed"
success = "success"
GET = 'GET'
POST = 'POST'
header = 'HEADER'
signer_header_key = 'geek-signer'
x_csrf_key = 'X-CSRFToken'
app_code = 'g3eK_t7R_#278_s___T'
len_of_uid = 17
CONTENT_TYPE = "application/json"
not_allowed = 'operation not allowed or signer or jwt not verified or borrower mail not matched'
NO_OP_ALLOWED = json.dumps({field_names.msg: not_allowed, field_names.status: failed})
MISSING_FIELD_MSG = {field_names.msg: "some input values are missing or left blank. ", field_names.status: failed}
def getSum(object, field):
sum = 0
num_list = [float(x[field]) for x in object.values()]
for val in num_list:
sum += val.real
return float(sum)
def getSumFromJsonConverted(object, field):
return sum([float(x[field]) if x[field] != None else 0 for x in object])
def getList(ds):
return list(ds.values())
def get_field_values_from_model_object(object, field):
return getattr(object, field)
def getJsonSet(qset):
data = json.loads(serializers.serialize('json', qset))
rows = [f['fields'] for f in data]
return rows
def jsonEncode(obj):
return json.loads(json.dumps(obj, cls=DjangoJSONEncoder))
def getBodyFromReq(req):
return json.loads(req.body.decode('utf-8'))
def getuuid():
uuid = base64.urlsafe_b64encode(uuid4().bytes).rstrip(b'=').decode('ascii')
return uuid[0: len_of_uid].__str__()
def getSecretAccessKey():
return crypto.get_random_string(len_of_uid)
def getSignerObject():
signer = Signer()
object = {field_names.key: getSecretAccessKey(), field_names.app_code: app_code}
signed_object = signer.sign_object(object)
return signed_object, object
def getUnSignerObject(signObj):
signer = Signer()
matched = decoded = False
key = not_allowed
subscription = None
try:
unsignedObj = signer.unsign_object(signObj)
decoded = True
except Exception as ex:
decoded = False
if decoded == True:
key = unsignedObj[field_names.key]
subcription_object = lookup.check_subscriber(secret_key=key)
subscription = subcription_object[field_names.object]
matched = unsignedObj[field_names.app_code] == app_code
return {field_names.key: key, field_names.matched: matched, field_names.subscription: subscription}
def getUnsigned(signkey):
signer = Signer()
return signer.unsign_object(signkey)
def get_uniq_bankid():
uid = f'bnk{getuuid()}'
return uid
def get_uniq_customerid():
uid = f'cst{getuuid()}'
return uid
def get_uniq_loanid():
uid = f'ln{getuuid()}'
return uid
def addlog(type, logObj):
try:
dblog = models.QUERY_LOG(
type=type,
log=json.dumps(logObj)
)
dblog.save()
return True
except Exception as ex:
return str(ex)
def adderror(type, trace):
addlog(type, {field_names.error: trace})
# returning middleware decorator function with parameter to deal with external api type or having CRUD access to do operations
def external_check_signer_middleware():
return signer_check.check_signer_with_api_type(api_type=field_names.external)
def crud_check_signer_middleware():
return signer_check.check_signer_with_api_type(api_type=field_names.crud)
def manager_check_signer_middleware():
return signer_check.check_signer_with_api_type(api_type=field_names.manager)
def borrower_check_signer_middleware():
return signer_check.check_signer_with_api_type(api_type=field_names.borrower)
|
[
"[email protected]"
] | |
1da209714527b7ebcdecc8cc1e560bd621f8a5e1
|
cef6d09715fb354c99987f927ecb961b8bc0e1f5
|
/app.py
|
d7170c77c4db2fcb8e6e231a1ae668fc774b242a
|
[] |
no_license
|
markoknezevic/Store_app
|
745944917fd9f4a5e3f80de82a5cf6151f52856b
|
d5471fe7c65585e54a70bb3ecf183d558f3a9e52
|
refs/heads/master
| 2020-07-29T01:11:27.990991 | 2019-09-20T11:05:12 | 2019-09-20T11:05:12 | 209,610,913 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 824 |
py
|
import os
from flask import Flask
from flask_restful import Api
from flask_jwt import JWT
from security import authenticate, identity
from resources.user import UserRegister
from resources.item import Item, ItemList
from resources.store import Store, StoreList
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = os.environ.get('DATABASE_URL','sqlite:///data.db')
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True
app.secret_key = "jose"
api = Api(app)
jwt = JWT(app, authenticate, identity)
api.add_resource(Item,"/item/<string:name>")
api.add_resource(ItemList,"/items")
api.add_resource(UserRegister,"/register")
api.add_resource(Store,"/store/<string:name>")
api.add_resource(StoreList,"/store")
if __name__ == "__main__":
from db import db
db.init_app(app)
app.run(port=5000,debug=True)
|
[
"[email protected]"
] | |
bc9bddb24ed72ad9acd6f71deb360923c4599a63
|
1f4505ed66f4fd68c6d1edf18ecff58362742fad
|
/algorithm/Tree/922_Sort_Array_By_Parity_II.py
|
e4ee8de225c664f3d08c609454cb4b414ed66a5a
|
[
"MIT"
] |
permissive
|
nishitpatel01/Data-Science-Toolbox
|
0d9b63a365698cc4a423abd5881cde8f6bf672be
|
80dc1310d103c9481feff8792426c550ddcc0a36
|
refs/heads/master
| 2020-05-19T08:26:40.319321 | 2019-05-04T05:58:48 | 2019-05-04T05:58:48 | 184,921,541 | 1 | 1 |
MIT
| 2019-05-04T16:53:21 | 2019-05-04T16:53:20 | null |
UTF-8
|
Python
| false | false | 370 |
py
|
class Solution:
def sortArrayByParityII(self, A: List[int]) -> List[int]:
j = 1
for i in range(0, len(A), 2):
# is A[i] is odd, neets to swap it
if A[i] % 2:
# find an even, break loop when even
while A[j] % 2:
j += 2
A[i], A[j] = A[j], A[i]
return A
|
[
"[email protected]"
] | |
0ea805e9b47a7af0d679f438dd1e1e660e4420cc
|
8c54df511f0d7e08cd63d08a18e38f67c60b43a9
|
/Classes/inheritance.py
|
ddf6e3a4b40fa038e2d459c18f094baccd20ee7a
|
[] |
no_license
|
dsbrown1331/Python2
|
312dd040423daa99adf9cb3b420b276be0c6294d
|
930990a29ee09611ec8dd165acc451fd048265cb
|
refs/heads/master
| 2020-03-24T20:03:20.519261 | 2018-08-10T20:07:35 | 2018-08-10T20:07:35 | 142,957,210 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,920 |
py
|
class Member:
"""a member of a school"""
def __init__(self, name, email):
print("Initializing member")
self.name = name
self.email = email
def __str__(self):
member_string = "{}\n{}".format(self.name,
self.email)
return member_string
class Teacher(Member):
"""teacher at school"""
def __init__(self, name, email, faculty_id):
print("Initializing teacher")
super().__init__(name, email)
self.faculty_id = faculty_id
self.courses_teaching = []
def __str__(self):
member_str = super().__str__()
member_str += "\n{}".format(self.faculty_id)
if len(self.courses_teaching) > 0:
member_str += "\nClasses Teaching: "
for c in self.courses_teaching:
member_str += c + ", "
return member_str
def add_class(self, class_name):
self.courses_teaching.append(class_name)
class Student(Member):
def __init__(self, name, email, student_id):
super().__init__(name, email)
self.student_id = student_id
self.classes_enrolled = list()
self.transcript = dict() #maps from classname to letter grade
def __str__(self):
student_str = super().__str__()
student_str += "\n{}".format(self.student_id)
student_str += "\nClasses:\n"
for c in self.classes_enrolled:
student_str += "\t{}\n".format(c)
student_str += "\nTranscript:"
for k,v in self.transcript.items():
student_str += "\n\t{} : {}".format(k,v)
student_str += "\nGPA = {}".format(self.compute_gpa())
return student_str
def add_class(self, class_name):
self.classes_enrolled.append(class_name)
def add_class_grade(self, class_name, letter_grade):
self.transcript[class_name] = letter_grade
def letter_to_number(self, letter):
if letter == "A":
return 4.0
elif letter == "B":
return 3.0
elif letter == "C":
return 2.0
elif letter == "D":
return 1.0
else:
return 0.0
def compute_gpa(self):
gpa_sum = 0
for c, g in self.transcript.items():
gpa_sum += self.letter_to_number(g)
return gpa_sum / len(self.transcript)
#code to test classes
def main():
bob = Member("Bob Baggins", "[email protected]")
print(bob)
daniel = Teacher("Daniel B.", "[email protected]", 123)
print(daniel)
daniel.add_class("Math")
daniel.add_class("Sleeping 101")
print(daniel)
print("-------")
bill = Student("Bill Bunny", "[email protected]", 1345)
bill.add_class("Chemistry")
bill.add_class("Biology")
bill.add_class_grade("English", "B")
bill.add_class_grade("Mermaid 101", "A")
print(bill)
if __name__=="__main__":
main()
|
[
"[email protected]"
] | |
8a2a26e1390e645131ceb530b85ca9ee1106ac52
|
0fdc732fcdad1c0d76d6ec80cb6e25b6ec17d6e1
|
/crud_sqlite/manage.py
|
da011eb5a543d9ae198637e45311b3c5a1fc13c1
|
[
"MIT"
] |
permissive
|
markbirds/Django-Code-Repo
|
9b3c8bfba948dd8ea1be71e31cbfd2ef26bfa157
|
b55762d2dab00640acf2e8e00ddc66716d53c6b5
|
refs/heads/master
| 2023-01-05T22:44:16.405853 | 2020-11-03T07:17:50 | 2020-11-03T07:17:50 | 299,615,438 | 3 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 667 |
py
|
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
"""Run administrative tasks."""
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'crud_sqlite.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
5aab043341d3666b02ce0e83ee28d159970da1d9
|
790e797fecb4d57d7af37db512f44b47cd956483
|
/migrations/versions/2019_11_07_8f579339eb2d_introduce_broadcast_sent_flag.py
|
b2b1d373ea5100db49535e001cb7ac1dda39e1a6
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
RuslanBitcash/ultimate-poll-bot
|
fc4d5d9a3e8c5bb0200b7d935e2e049f34d9ee10
|
33bc71b56f79453359043bd0e778cd153d3a83a3
|
refs/heads/master
| 2021-02-10T07:46:39.453842 | 2020-02-21T11:51:59 | 2020-02-21T11:51:59 | 244,362,504 | 1 | 0 |
MIT
| 2020-03-02T12:12:34 | 2020-03-02T12:12:33 | null |
UTF-8
|
Python
| false | false | 705 |
py
|
"""Introduce broadcast_sent flag
Revision ID: 8f579339eb2d
Revises: c4feb636bb05
Create Date: 2019-11-07 15:48:23.587967
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '8f579339eb2d'
down_revision = 'c4feb636bb05'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.add_column('user', sa.Column('broadcast_sent', sa.Boolean(), server_default='false', nullable=False))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_column('user', 'broadcast_sent')
# ### end Alembic commands ###
|
[
"[email protected]"
] | |
205799f30dbd8c4516c374573f461240e4d5045d
|
8d90e2eae476ecbe88d46ef2f03fe7ba92cc733b
|
/Programming Fundamentals with Python/3. List_basics/Ex_list_basics_ex5_faro_shuffle.py
|
7a2a16c2468ae995f27471c192a5c4a4a280203b
|
[] |
no_license
|
KaterinaMutafova/SoftUni
|
c3f8bae3c2bf7bd4038da010ca03edc412672468
|
7aeef6f25c3479a8d677676cb1d66df20ca0d411
|
refs/heads/main
| 2023-03-08T10:53:49.748153 | 2021-02-19T15:55:13 | 2021-02-19T15:55:13 | 317,597,660 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 538 |
py
|
cards = input().split(" ")
n_shuffles = int(input())
current_shuffle = cards
new_shuffle = []
counter = 0
for j in range(n_shuffles):
for i in range(len(current_shuffle)//2):
second_deck_start_diff = len(current_shuffle)//2
new_shuffle.append(current_shuffle[i])
new_shuffle.append(current_shuffle[i + second_deck_start_diff])
current_shuffle = new_shuffle
counter += 1
if counter == n_shuffles:
pass
else:
new_shuffle = []
print(new_shuffle)
|
[
"[email protected]"
] | |
f8d5b9fd542aa6f7c1e83fc3627dceffcf010d27
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03268/s723211580.py
|
a4e8e5dc56b77ccae356070cd7fdcb06fe135f85
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 357 |
py
|
n, k = list(map(int, input().split()))
count = 0
i = 1
zero = 0
rem = 0
if k % 2 == 0:
while i <= n:
if i % k == 0:
zero += 1
elif i % int(k/2) == 0:
rem += 1
i += 1
print(zero ** 3 + rem ** 3)
else:
while i <= n :
if i % k == 0:
count += 1
i += 1
print(count ** 3)
|
[
"[email protected]"
] | |
8f9a3b4ca834f94600df59ab404aaa4eebca0837
|
3d19e1a316de4d6d96471c64332fff7acfaf1308
|
/Users/D/drkane/northern_ireland_charity_commission_-_list_of_char.py
|
09ef93417596863fff7ab8b79eb7a099eecfba42
|
[] |
no_license
|
BerilBBJ/scraperwiki-scraper-vault
|
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
|
65ea6a943cc348a9caf3782b900b36446f7e137d
|
refs/heads/master
| 2021-12-02T23:55:58.481210 | 2013-09-30T17:02:59 | 2013-09-30T17:02:59 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,848 |
py
|
###############################################################################
# Scraper for Organisations Previously Known as Charities from the Northern Ireland Charity Commission
# http://www.charitycommissionni.org.uk/Library/ccni_files/List_of_Organisations.htm
###############################################################################
import scraperwiki
from BeautifulSoup import BeautifulSoup
import time
import re
# retrieve the Register of Mergers page
starting_url = 'http://www.charitycommissionni.org.uk/Library/ccni_files/List_of_Organisations.htm'
html = scraperwiki.scrape(starting_url)
soup = BeautifulSoup(html)
#ps = soup.findAll(style='font-size:8.0pt;font-family:Verdana')
ps = soup.findAll('p')
for p in ps:
spans = p.findAll(style='font-size:8.0pt;font-family:Verdana')
if len(spans)>0:
name = ''
for span in spans:
try:
name = name + span.string
except:
continue
name = name.replace('\r',' ')
name = name.replace('\n','')
name = name.replace('&','&')
if name==' ':
continue
elif name==' ':
continue
elif name=='':
continue
elif name==None:
continue
else:
record = { "name" : name }
scraperwiki.datastore.save(["name"], record)
print record, "- saved"
###############################################################################
# Scraper for Organisations Previously Known as Charities from the Northern Ireland Charity Commission
# http://www.charitycommissionni.org.uk/Library/ccni_files/List_of_Organisations.htm
###############################################################################
import scraperwiki
from BeautifulSoup import BeautifulSoup
import time
import re
# retrieve the Register of Mergers page
starting_url = 'http://www.charitycommissionni.org.uk/Library/ccni_files/List_of_Organisations.htm'
html = scraperwiki.scrape(starting_url)
soup = BeautifulSoup(html)
#ps = soup.findAll(style='font-size:8.0pt;font-family:Verdana')
ps = soup.findAll('p')
for p in ps:
spans = p.findAll(style='font-size:8.0pt;font-family:Verdana')
if len(spans)>0:
name = ''
for span in spans:
try:
name = name + span.string
except:
continue
name = name.replace('\r',' ')
name = name.replace('\n','')
name = name.replace('&','&')
if name==' ':
continue
elif name==' ':
continue
elif name=='':
continue
elif name==None:
continue
else:
record = { "name" : name }
scraperwiki.datastore.save(["name"], record)
print record, "- saved"
|
[
"[email protected]"
] | |
a917f4358c749bf08b054a3886d45d1c55f1eb14
|
8192495d68eb7d1c1e4fe967e447422f8ad4f340
|
/tensorflow_datasets/image/inaturalist.py
|
10735264e3be107135ff69847b82702595fa9baf
|
[
"Apache-2.0"
] |
permissive
|
thomwolf/datasets
|
a3fb69a8da680d2d1d1773e7cdd56c41e7505381
|
bc6c38a1bf079ddd030c7750047ee7e4355b813a
|
refs/heads/master
| 2021-04-22T00:40:02.747090 | 2020-03-24T21:44:03 | 2020-03-24T21:48:45 | 249,833,822 | 2 | 0 |
Apache-2.0
| 2020-03-24T22:40:55 | 2020-03-24T22:40:54 | null |
UTF-8
|
Python
| false | false | 6,047 |
py
|
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""INaturalist datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import six.moves.urllib as urllib
import tensorflow.compat.v2 as tf
import tensorflow_datasets.public_api as tfds
_DESCRIPTION = """\
This dataset contains a total of 5,089 categories, across 579,184 training
images and 95,986 validation images. For the training set, the distribution of
images per category follows the observation frequency of that category by the
iNaturalist community.
Although the original dataset contains some images with bounding boxes,
currently, only image-level annotations are provided (single label/image).
In addition, the organizers have not published the test labels, so we only
provide the test images (label = -1).
"""
_CITATION = """\
@InProceedings{Horn_2018_CVPR,
author = {
Van Horn, Grant and Mac Aodha, Oisin and Song, Yang and Cui, Yin and Sun, Chen
and Shepard, Alex and Adam, Hartwig and Perona, Pietro and Belongie, Serge},
title = {The INaturalist Species Classification and Detection Dataset},
booktitle = {
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
"""
_URL = "http://www.vision.caltech.edu/~gvanhorn/datasets/inaturalist/fgvc4_competition/"
class INaturalist2017(tfds.core.GeneratorBasedBuilder):
"""Dataset from the INaturalist Competition 2017."""
VERSION = tfds.core.Version("0.1.0")
def _info(self):
"""Define the dataset info."""
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
"id": tfds.features.Text(),
"image": tfds.features.Image(),
"label": tfds.features.ClassLabel(
names_file=tfds.core.get_tfds_path(
os.path.join("image", "inaturalist_labels.txt"))),
"supercategory": tfds.features.ClassLabel(
names_file=tfds.core.get_tfds_path(
os.path.join("image", "inaturalist_supercategories.txt"))),
}),
supervised_keys=("image", "label"),
homepage="https://github.com/visipedia/inat_comp/tree/master/2017",
citation=_CITATION)
def _split_generators(self, dl_manager):
output_files = dl_manager.download_and_extract({
"trainval_images":
tfds.download.Resource(
url=urllib.parse.urljoin(_URL, "train_val_images.tar.gz"),
extract_method=tfds.download.ExtractMethod.NO_EXTRACT),
"trainval_annos":
urllib.parse.urljoin(_URL, "train_val2017.zip"),
"test_images":
tfds.download.Resource(
url=urllib.parse.urljoin(_URL, "test2017.tar.gz"),
extract_method=tfds.download.ExtractMethod.NO_EXTRACT),
})
return [
tfds.core.SplitGenerator(
name=tfds.Split.TRAIN,
gen_kwargs=dict(
images_archive=dl_manager.iter_archive(
output_files["trainval_images"]),
annon_file=os.path.join(output_files["trainval_annos"],
"train2017.json"),
),
),
tfds.core.SplitGenerator(
name=tfds.Split.VALIDATION,
gen_kwargs=dict(
images_archive=dl_manager.iter_archive(
output_files["trainval_images"]),
annon_file=os.path.join(output_files["trainval_annos"],
"val2017.json"),
),
),
tfds.core.SplitGenerator(
name=tfds.Split.TEST,
gen_kwargs=dict(
images_archive=dl_manager.iter_archive(
output_files["test_images"]),
annon_file=None,
),
),
]
def _generate_examples(self, images_archive, annon_file):
"""Generate examples."""
if annon_file is not None:
# Training and validation images.
with tf.io.gfile.GFile(annon_file, "r") as f:
data = json.load(f)
# First read the annotations file, used to filter the contents of the
# tar.gz file when yielding examples.
key2data = {}
for image, annotation in zip(data["images"], data["annotations"]):
category_id = annotation["category_id"]
category = data["categories"][category_id]["name"]
supercategory = data["categories"][category_id]["supercategory"]
key = os.path.basename(image["file_name"]).split(".")[0]
key2data[key] = {
"id": key,
"label": category,
"supercategory": supercategory,
}
# Read tar.gz file containing train & validation images and yield relevant
# examples.
for fpath, fobj in images_archive:
key = os.path.basename(fpath).split(".")[0]
if key in key2data:
data = key2data[key].copy()
data["image"] = fobj
yield key, data
else:
# Read tar.gz file containing all test images and yield all examples.
for fpath, fobj in images_archive:
key = os.path.basename(fpath).split(".")[0]
# Note: test labels are not annotated, so just return -1 as labels.
yield key, {
"id": key,
"image": fobj,
"label": -1,
"supercategory": -1,
}
|
[
"[email protected]"
] | |
7980ff9b71c7abc0630352b3743f07c480b83c0c
|
d8a5fc2195165c970e2340eee87ae2ad5322da29
|
/{{cookiecutter.repo_name}}/{{cookiecutter.project_name}}/news/migrations/0005_auto__del_field_articleattachment_attachement__add_field_articleattach.py
|
ac6e714243b7731eb922fbb4cd67843300fe4680
|
[
"BSD-3-Clause"
] |
permissive
|
lendlsmith/chrisdev-cookiecutter
|
b76e6194aa8369c2dbf1dac73e3282e025d2b146
|
e0ab2d16bd1a066800ce46bb1740b1254c259a70
|
refs/heads/master
| 2021-10-11T22:20:02.391847 | 2014-07-21T16:57:32 | 2014-07-21T16:57:32 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 13,089 |
py
|
# -*- coding: utf-8 -*-
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models
class Migration(SchemaMigration):
def forwards(self, orm):
# Deleting field 'ArticleAttachment.attachement'
db.delete_column('news_articleattachment', 'attachement_id')
# Adding field 'ArticleAttachment.attachment'
db.add_column('news_articleattachment', 'attachment',
self.gf('django.db.models.fields.related.ForeignKey')(to=orm['filer.File'], null=True, blank=True),
keep_default=False)
def backwards(self, orm):
# Adding field 'ArticleAttachment.attachement'
db.add_column('news_articleattachment', 'attachement',
self.gf('django.db.models.fields.related.ForeignKey')(to=orm['filer.File'], null=True, blank=True),
keep_default=False)
# Deleting field 'ArticleAttachment.attachment'
db.delete_column('news_articleattachment', 'attachment_id')
models = {
'auth.group': {
'Meta': {'object_name': 'Group'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}),
'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'})
},
'auth.permission': {
'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'},
'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '50'})
},
'auth.user': {
'Meta': {'object_name': 'User'},
'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}),
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}),
'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}),
'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}),
'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}),
'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}),
'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}),
'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'})
},
'contenttypes.contenttype': {
'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"},
'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '100'})
},
'filer.file': {
'Meta': {'object_name': 'File'},
'_file_size': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}),
'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}),
'file': ('django.db.models.fields.files.FileField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'folder': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'all_files'", 'null': 'True', 'to': "orm['filer.Folder']"}),
'has_all_mandatory_data': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '255', 'blank': 'True'}),
'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'owned_files'", 'null': 'True', 'to': "orm['auth.User']"}),
'polymorphic_ctype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'polymorphic_filer.file_set'", 'null': 'True', 'to': "orm['contenttypes.ContentType']"}),
'sha1': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '40', 'blank': 'True'}),
'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'filer.folder': {
'Meta': {'ordering': "('name',)", 'unique_together': "(('parent', 'name'),)", 'object_name': 'Folder'},
'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}),
'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}),
'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}),
'owner': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'filer_owned_folders'", 'null': 'True', 'to': "orm['auth.User']"}),
'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['filer.Folder']"}),
'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}),
'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}),
'uploaded_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'filer.image': {
'Meta': {'object_name': 'Image', '_ormbases': ['filer.File']},
'_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}),
'_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}),
'author': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}),
'default_alt_text': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'default_caption': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'file_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['filer.File']", 'unique': 'True', 'primary_key': 'True'}),
'must_always_publish_author_credit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'must_always_publish_copyright': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'subject_location': ('django.db.models.fields.CharField', [], {'default': 'None', 'max_length': '64', 'null': 'True', 'blank': 'True'})
},
'news.article': {
'Meta': {'ordering': "('-published',)", 'object_name': 'Article'},
'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}),
'content_html': ('django.db.models.fields.TextField', [], {}),
'created': ('model_utils.fields.AutoCreatedField', [], {'default': 'datetime.datetime.now'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'modified': ('model_utils.fields.AutoLastModifiedField', [], {'default': 'datetime.datetime.now'}),
'published': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}),
'section': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'articles'", 'null': 'True', 'to': "orm['news.Section']"}),
'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}),
'summary_html': ('django.db.models.fields.TextField', [], {}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '200'})
},
'news.articleattachment': {
'Meta': {'object_name': 'ArticleAttachment'},
'article': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'attachments'", 'null': 'True', 'to': "orm['news.Article']"}),
'attachment': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['filer.File']", 'null': 'True', 'blank': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'})
},
'news.articleimage': {
'Meta': {'object_name': 'ArticleImage'},
'article': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'images'", 'null': 'True', 'to': "orm['news.Article']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'image': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['filer.Image']", 'null': 'True', 'blank': 'True'})
},
'news.revision': {
'Meta': {'object_name': 'Revision'},
'article': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'revisions'", 'to': "orm['news.Article']"}),
'author': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'article_revisions'", 'to': "orm['auth.User']"}),
'content': ('django.db.models.fields.TextField', [], {}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'published': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}),
'summary': ('django.db.models.fields.TextField', [], {}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '90'}),
'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'})
},
'news.section': {
'Meta': {'ordering': "('title',)", 'object_name': 'Section'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '100'})
},
'taggit.tag': {
'Meta': {'object_name': 'Tag'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'})
},
'taggit.taggeditem': {
'Meta': {'object_name': 'TaggedItem'},
'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_tagged_items'", 'to': "orm['contenttypes.ContentType']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}),
'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_items'", 'to': "orm['taggit.Tag']"})
}
}
complete_apps = ['news']
|
[
"[email protected]"
] | |
190b9124071676688dc962a736acac6ca92d2d14
|
f92496bfcd9c77525eb5f37cd205e711b9882f13
|
/manage.py
|
ca747c16f8be9959ad072444a95a9b61628c03c2
|
[] |
no_license
|
crowdbotics-apps/flipit-18243
|
69f9d5b6d3ac7471219fa84ebe6c93f24cdebbd8
|
22309b917b3d100f96c025128899d5af7238c637
|
refs/heads/master
| 2022-11-05T09:13:24.850843 | 2020-06-19T03:59:20 | 2020-06-19T03:59:20 | 273,399,693 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 632 |
py
|
#!/usr/bin/env python
"""Django's command-line utility for administrative tasks."""
import os
import sys
def main():
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'flipit_18243.settings')
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn't import Django. Are you sure it's installed and "
"available on your PYTHONPATH environment variable? Did you "
"forget to activate a virtual environment?"
) from exc
execute_from_command_line(sys.argv)
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
e11ffb8ac23069b6dc4034d4304ba5c6a542a9d5
|
5892ee857d8e3b747d57cdd63a17352e839a6320
|
/tiendita/views.py
|
8ef27776178a454af8efd1d582d434c0c8ecbdaa
|
[] |
no_license
|
HugOoOguH/ComicsShop
|
aac1af3e558def3b14b628e737ad0c09910759b4
|
390fab60a5bf5701f843b9b36ea64f62577e8011
|
refs/heads/master
| 2020-12-06T21:32:26.379380 | 2016-09-02T19:15:56 | 2016-09-02T19:15:56 | 67,190,606 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 731 |
py
|
from django.shortcuts import render, get_object_or_404, redirect, HttpResponse
from django.views.generic import View
from .models import Company, Comic
# Create your views here.
class CompaniesListView(View):
def get(self,request):
template_name = "tiendita/list_company.html"
company = Company.objects.all()
context = {
'company':company,
}
return render(request,template_name,context)
class ComicsListView(View):
def get(self, request, id):
template_name = "tiendita/categories.html"
company = get_object_or_404(Company, id=id)
comics = Comic.objects.all().filter(company=company)
context = {
'comics':comics,
}
return render(request, template_name, context)
class ProductDetailView(View):
pass
|
[
"[email protected]"
] | |
4587705cf2c8a014bd92ccf961338ae09dcf1002
|
354189955ae91d7fad68e1ca82460f3baf73df1f
|
/scripts/check_lof_proportions_in_seziure_genes.py
|
a975361914d8a0b85eda0bad64a742766f1064da
|
[] |
no_license
|
jeremymcrae/ddd_4k
|
db85a121836c2f38042e66fb16189db53046c294
|
244b11a041ef2f80320690cf9f39e95aba5f14ec
|
refs/heads/master
| 2021-09-09T04:35:36.150425 | 2018-03-13T22:14:54 | 2018-03-13T22:14:54 | 54,972,015 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 4,577 |
py
|
"""
Copyright (c) 2015 Genome Research Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from __future__ import print_function, division
import os
import argparse
from scipy.stats import fisher_exact
import pandas
from ddd_4k.load_files import open_phenotypes, open_families, open_de_novos
from ddd_4k.constants import PHENOTYPES, FAMILIES, TRIOS, SANGER_IDS, DIAGNOSED, \
VALIDATIONS, DENOVO_PATH, SEIZURE_GENES
from ddd_4k.rank_hpo import rank_terms
from ddd_4k.hpo_matches import find_hpo_matches
from hpo_similarity.ontology import Ontology
def get_options():
""" parse the command line arguments
"""
parser = argparse.ArgumentParser(description="script to test for a" \
"difference in the proportion of probands with different functional" \
"categories of de novos. This compares the proportion in genes known" \
"to be associated with seizures, and looks for differences in" \
"probands who have been recorded as having seizures versus probands" \
"without any record of seizures. The hypothesis is that probands with" \
"a de novo in a seizure gene, but without any record of seizures" \
"might have a difference in how severe their mutations are compared" \
"to probands who do have a record of seizures.")
parser.add_argument("--de-novos", default=DENOVO_PATH, \
help="Path to table of variants in novel genes.")
parser.add_argument("--phenotypes", default=PHENOTYPES, \
help="Path to table of phenotypic data from probands.")
parser.add_argument("--validations", default=VALIDATIONS, \
help="Path to table of results from de novo validations.")
parser.add_argument("--families", default=FAMILIES,
help="Path to table of DDD families.")
parser.add_argument("--trios", default=TRIOS,
help="Path to table of DDD trios.")
parser.add_argument("--sanger-ids", default=SANGER_IDS,
help="Path to table of mapping DDD IDs to decipher IDs.")
args = parser.parse_args()
return args
def main():
args = get_options()
variants = open_de_novos(args.de_novos, args.validations)
# diagnosed = pandas.read_table(args.diagnosed, sep="\t")
# variants = variants[~variants["person_stable_id"].isin(diagnosed["person_id"])]
# open the phenotype data, and restrict it to the probands with complete trios
pheno = open_phenotypes(args.phenotypes, args.sanger_ids)
trios = pandas.read_table(args.trios, sep="\t")
proband_ids = set(trios["proband_stable_id"])
pheno = pheno[pheno["person_stable_id"].isin(proband_ids)]
# open the HPO ontology, so we can get the set of terms which are relevant
# to each disorder
hpo_ontology = Ontology(None)
graph = hpo_ontology.get_graph()
seizure_root = "HP:0001250"
seizure_terms = graph.get_descendants(seizure_root) | set([seizure_root])
pheno["has_seizures"] = find_hpo_matches(pheno["child_hpo"], seizure_terms)
variants = variants[variants["symbol"].isin(SEIZURE_GENES)]
seizure_variants = variants[["person_stable_id", "sex", "chrom", "pos", "ref", "alt",
"symbol", "category", "consequence"]].merge(
pheno[["person_stable_id", "has_seizures"]], how="left",
on=["person_stable_id"])
has = seizure_variants[seizure_variants["has_seizures"]]["category"].value_counts()
hasnt = seizure_variants[~seizure_variants["has_seizures"]]["category"].value_counts()
print(fisher_exact([has, hasnt]))
if __name__ == '__main__':
main()
|
[
"[email protected]"
] | |
ac960c5200912432220c41002eaa00ee8d86af63
|
54e2ff8f41b98e09bf3fcb71446c539ed9524c16
|
/03_REST_API/dog_api/test_dog_api.py
|
8e825b30549b4d11863972c53be6df31a5253161
|
[] |
no_license
|
vamotest/qa_automation
|
8b941aeebe17b783655f8391069b54bbfd64607d
|
54467b2334b33ae48b5fa5a65cab47fdf03967be
|
refs/heads/master
| 2023-01-07T02:05:07.645726 | 2020-06-04T20:31:10 | 2020-06-04T20:31:10 | 203,171,963 | 4 | 4 | null | 2022-12-26T20:59:48 | 2019-08-19T12:50:08 |
Python
|
UTF-8
|
Python
| false | false | 2,869 |
py
|
import pytest
class TestDog:
def test_response_status(self, response_status):
"""
Тест проверяет текст успешности ответа сервера для запроса произвольно
выбранного изображения собаки
"""
if response_status.lower() == 'success':
assert f'Response status: {response_status}'
elif response_status != 'success':
assert False, f'Response status: {response_status}'
else:
assert False, 'Something wrong'
def test_response_status_code(self, response_status_code):
"""
Тест проверяет код успешности ответа сервера для запроса произвольно
выбранного изображения собаки
"""
if response_status_code == 200:
assert f'Response status code: {response_status_code}'
elif response_status_code != 200:
assert False, f'Response status code: {response_status_code}'
else:
assert False, 'Something wrong'
def test_breed_in_list(self, response_breeds_list):
"""
Тест проверяет успешность нахождения породы собаки в списке всех пород
"""
if 'doberman' in response_breeds_list['message']:
assert 'Doberman in response_breeds_list'
elif 'doberman' not in response_breeds_list['message']:
assert False, 'Doberman not in response_breeds_list'
else:
assert False, 'Something wrong'
def test_response_status_breed(self, response_status_breed):
"""
Тест проверяет успешность ответа сервера для запроса заданной
породы собаки
"""
if 'success' in response_status_breed:
assert f'Response status breed: {response_status_breed}'
elif 'success' not in response_status_breed:
assert False, f'Response status breed: {response_status_breed}'
else:
assert False, 'Something wrong'
@pytest.mark.parametrize('breed', ["akita", "eskimo", "vizsla", "whippet"])
def test_given_breed_in_list(self, response_breeds_list, breed):
"""
Тест проверяет успешность нахождения определенной породы собаки
в списке всех пород
"""
if breed in response_breeds_list['message']:
assert f'{breed} in response_breeds_list'
elif 'doberman' not in response_breeds_list['message']:
assert False, f'{breed} not in response_breeds_list'
else:
assert False, 'Something wrong'
|
[
"[email protected]"
] | |
32830090980c8ffd8b67f41cc253baa1245fb01e
|
592961def9fe287a31e117649f1ac1e97b085a9b
|
/venv/lib/python2.7/site-packages/pip/commands/show.py
|
5b0445325b5b827950bfb37d05cf589317a32ce6
|
[] |
no_license
|
Rushin95/The_Trip_Planner-Lyft_vs_Uber
|
62f03a1df8c6a0268089f50f4e80ec3d9b6b9870
|
4eeea4029eb4df047471b92065455a6828232293
|
refs/heads/master
| 2021-01-19T11:52:47.766019 | 2018-05-03T23:59:58 | 2018-05-03T23:59:58 | 82,268,914 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 5,941 |
py
|
from __future__ import absolute_import
from email.parser import FeedParser
import logging
import os
from pip.basecommand import Command
from pip.status_codes import SUCCESS, ERROR
from pip._vendor import pkg_resources
from pip._vendor.packaging.utils import canonicalize_name
logger = logging.getLogger(__name__)
class ShowCommand(Command):
"""Show information about one or more installed packages."""
name = 'show'
usage = """
%prog [options] <package> ..."""
summary = 'Show information about installed packages.'
def __init__(self, *args, **kw):
super(ShowCommand, self).__init__(*args, **kw)
self.cmd_opts.add_option(
'-f', '--files',
dest='files',
action='store_true',
default=False,
help='Show the full list of installed files for each package.')
self.parser.insert_option_group(0, self.cmd_opts)
def run(self, options, args):
if not args:
logger.warning('ERROR: Please provide a package name or names.')
return ERROR
query = args
results = search_packages_info(query)
if not print_results(
results, list_files=options.files, verbose=options.verbose):
return ERROR
return SUCCESS
def search_packages_info(query):
"""
Gather details from installed distributions. Print distribution name,
version, location, and installed files. Installed files requires a
pip generated 'installed-files.txt' in the distributions '.egg-info'
directory.
"""
installed = {}
for p in pkg_resources.working_set:
installed[canonicalize_name(p.project_name)] = p
query_names = [canonicalize_name(name) for name in query]
for dist in [installed[pkg] for pkg in query_names if pkg in installed]:
package = {
'name': dist.project_name,
'version': dist.version,
'location': dist.location,
'requires': [dep.project_name for dep in dist.requires()],
}
file_list = None
metadata = None
if isinstance(dist, pkg_resources.DistInfoDistribution):
# RECORDs should be part of .dist-info metadatas
if dist.has_metadata('RECORD'):
lines = dist.get_metadata_lines('RECORD')
paths = [l.split(',')[0] for l in lines]
paths = [os.path.join(dist.location, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
if dist.has_metadata('METADATA'):
metadata = dist.get_metadata('METADATA')
else:
# Otherwise use pip's log for .egg-info's
# noinspection PyUnresolvedReferences
if dist.has_metadata('installed-files.txt'):
paths = dist.get_metadata_lines('installed-files.txt')
paths = [os.path.join(dist.egg_info, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
if dist.has_metadata('PKG-INFO'):
metadata = dist.get_metadata('PKG-INFO')
if dist.has_metadata('entry_points.txt'):
entry_points = dist.get_metadata_lines('entry_points.txt')
package['entry_points'] = entry_points
if dist.has_metadata('INSTALLER'):
for line in dist.get_metadata_lines('INSTALLER'):
if line.strip():
package['installer'] = line.strip()
break
# @todo: Should pkg_resources.Distribution have a
# `get_pkg_info` method?
feed_parser = FeedParser()
feed_parser.feed(metadata)
pkg_info_dict = feed_parser.close()
for key in ('metadata-version', 'summary',
'home-page', 'author', 'author-email', 'license'):
package[key] = pkg_info_dict.get(key)
# It looks like FeedParser cannot deal with repeated headers
classifiers = []
for line in metadata.splitlines():
if line.startswith('Classifier: '):
classifiers.append(line[len('Classifier: '):])
package['classifiers'] = classifiers
if file_list:
package['files'] = sorted(file_list)
yield package
def print_results(distributions, list_files=False, verbose=False):
"""
Print the informations from installed distributions found.
"""
results_printed = False
for i, dist in enumerate(distributions):
results_printed = True
if i > 0:
logger.info("---")
logger.info("Name: %s", dist.get('name', ''))
logger.info("Version: %s", dist.get('version', ''))
logger.info("Summary: %s", dist.get('summary', ''))
logger.info("Home-page: %s", dist.get('home-page', ''))
logger.info("Author: %s", dist.get('author', ''))
logger.info("Author-email: %s", dist.get('author-email', ''))
logger.info("License: %s", dist.get('license', ''))
logger.info("Location: %s", dist.get('location', ''))
logger.info("Requires: %s", ', '.join(dist.get('requires', [])))
if verbose:
logger.info("Metadata-Version: %s",
dist.get('metadata-version', ''))
logger.info("Installer: %s", dist.get('installer', ''))
logger.info("Classifiers:")
for classifier in dist.get('classifiers', []):
logger.info(" %s", classifier)
logger.info("Entry-points:")
for entry in dist.get('entry_points', []):
logger.info(" %s", entry.strip())
if list_files:
logger.info("Files:")
for line in dist.get('files', []):
logger.info(" %s", line.strip())
if "files" not in dist:
logger.info("Cannot locate installed-files.txt")
return results_printed
|
[
"[email protected]"
] | |
ea6a0f52b27ba8519529b66cee6fe8c2d89b917f
|
d0efa2026b7ed22ff4f9aa76c27ae2474c30f26d
|
/test/test_block_name.py
|
de8f97ef2f193b97e8727c0ce33e30a4bb88cf00
|
[] |
no_license
|
begum-akbay/Python
|
2075650e0ddbf1c51823ebd749742646bf221603
|
fe8b47e29aae609b7510af2d21e53b8a575857d8
|
refs/heads/master
| 2023-03-28T00:11:00.997194 | 2021-03-25T16:38:17 | 2021-03-25T16:38:17 | 351,499,957 | 0 | 0 | null | 2021-03-25T16:38:17 | 2021-03-25T16:15:16 |
Python
|
UTF-8
|
Python
| false | false | 1,048 |
py
|
# coding: utf-8
"""
Payment Gateway API Specification.
The documentation here is designed to provide all of the technical guidance required to consume and integrate with our APIs for payment processing. To learn more about our APIs please visit https://docs.firstdata.com/org/gateway. # noqa: E501
The version of the OpenAPI document: 21.1.0.20210122.001
Generated by: https://openapi-generator.tech
"""
from __future__ import absolute_import
import unittest
import openapi_client
from openapi_client.models.block_name import BlockName # noqa: E501
from openapi_client.rest import ApiException
class TestBlockName(unittest.TestCase):
"""BlockName unit test stubs"""
def setUp(self):
pass
def tearDown(self):
pass
def testBlockName(self):
"""Test BlockName"""
# FIXME: construct object with mandatory attributes with example values
# model = openapi_client.models.block_name.BlockName() # noqa: E501
pass
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
1a0d0d8a72a7a500a34f2ff5bb7c6bd7caa8fb72
|
ab621c65fc91f5194c4032d68e750efaa5f85682
|
/pabi_asset_management/models/account_invoice.py
|
44523958b5d29300884b805342d127aa926086e3
|
[] |
no_license
|
pabi2/pb2_addons
|
a1ca010002849b125dd89bd3d60a54cd9b9cdeef
|
e8c21082c187f4639373b29a7a0905d069d770f2
|
refs/heads/master
| 2021-06-04T19:38:53.048882 | 2020-11-25T03:18:24 | 2020-11-25T03:18:24 | 95,765,121 | 6 | 15 | null | 2022-10-06T04:28:27 | 2017-06-29T10:08:49 |
Python
|
UTF-8
|
Python
| false | false | 1,553 |
py
|
# -*- coding: utf-8 -*-
from openerp import models, api, fields, _
from openerp.exceptions import ValidationError
class AccountInvoice(models.Model):
_inherit = 'account.invoice'
asset_adjust_id = fields.Many2one(
'account.asset.adjust',
string='Asset Adjustment',
readonly=True,
copy=False,
)
@api.multi
def action_open_asset_adjust(self):
self.ensure_one()
action = self.env.ref('pabi_asset_management.'
'action_account_asset_adjust')
if not action:
raise ValidationError(_('No Action'))
res = action.read([])[0]
res['domain'] = [('id', '=', self.asset_adjust_id.id)]
return res
class AccountInvoiceLine(models.Model):
_inherit = 'account.invoice.line'
@api.multi
@api.constrains('asset_profile_id', 'asset_id')
def _check_asset_id(self):
for rec in self:
if rec.asset_profile_id or rec.asset_id:
raise ValidationError(
_('For PABI2, creating asset on invoice is not allowed.'))
@api.multi
def onchange_account_id(self, product_id, partner_id, inv_type,
fposition_id, account_id):
""" For PABI2, never assigin asset profile in invoice """
res = super(AccountInvoiceLine, self).onchange_account_id(
product_id, partner_id, inv_type, fposition_id, account_id)
if 'value' in res:
res['value'].update({'asset_profile_id': False})
return res
|
[
"[email protected]"
] | |
581fe975ef4f6f1b56c548e29459448b6bc675e0
|
e0980f704a573894350e285f66f4cf390837238e
|
/.history/news/models_20201124145056.py
|
36e7fa7552b6dca3ae2bded184debbc336fd977d
|
[] |
no_license
|
rucpata/WagtailWebsite
|
28008474ec779d12ef43bceb61827168274a8b61
|
5aa44f51592f49c9a708fc5515ad877c6a29dfd9
|
refs/heads/main
| 2023-02-09T15:30:02.133415 | 2021-01-05T14:55:45 | 2021-01-05T14:55:45 | 303,961,094 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,500 |
py
|
from django.db import models
from wagtail.contrib.forms.models import AbstractEmailForm
from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, from wagtail.ImageChooserPanel
# Create your models here.
class FormField(AbstractEmailForm):
page = ParentalKey(
'NewsPage',
on_delete=models.CASCADE,
related_name='form_fields',
)
class NewsPage(AbstractEmailForm):
tempalte ='news/news_page.html'
leanding_page_template = 'news/news_page_leading.html'
subpage_types = []
max_coun = 1
intro = RichTextField(blank=True, features=['bold', 'italic', 'ol', 'ul'])
thank_you_text = RichTextField(
blank=True,
features=['bold', 'italic', 'ol', 'ul'])
map_image = models.ForeignKey(
'wagtailimages.Image',
null=True,
blank=False,
on_delete=models.SET_NULL,
help_text='Obrazek będzie przycięty do rozmairu 588px na 355 px',
related_name='+',
)
map_url = models.URLField(
blank=True,
help_text='Opcjonalne. Jeśli podasz tutaj łączę, obraz stanie się łączem.'
)
content_panels = AbstractEmailForm.content_panel + [
FieldPanel('intro'),
ImageChooserPanel('map_iamge'),
FieldPanel('map_url'),
InlinePanel('form_fields', label="Form Fields"),
FieldPanel('thank_you_text'),
FieldPanel('from_address'),
FieldPanel('to_address'),
FieldPanel('subject'),
]
|
[
"[email protected]"
] | |
47b2b4cd2c7ec2ed353cd1389f68fd0d291375dc
|
1d3f531435a5c60b7676c4321d360722d34c70a4
|
/ksplit/tests/test_kmers.py
|
004412b7574ffac321bda8c3ca41c9549002a293
|
[] |
no_license
|
t-l-g/ksplit
|
24bb425cdce219b294a571da82799ebbc675a290
|
3b0467b255d6defd19f410918d162b7d713c5a51
|
refs/heads/master
| 2023-01-16T06:49:14.325536 | 2020-11-26T10:32:26 | 2020-11-26T10:32:26 | 306,830,063 | 0 | 0 | null | 2020-11-26T10:32:27 | 2020-10-24T07:30:26 |
Python
|
UTF-8
|
Python
| false | false | 3,892 |
py
|
from hypothesis import given, note, strategies as st
import pyximport
import numpy as np
pyximport.install(setup_args={
'include_dirs': np.get_include()
})
from ksplit import kmers
def test_kmers():
testing = 'ATTTAACATGAGATAACATGCATGCATGCATTGCGGCTCAGCTAGTCAGCTAGCTAGCTAGCTACGATCGATCGTAGCATCGATCGATCGATCGATCGATCGATCGTACGTACGTAGCTACGATCGTAGCTAGCTAG'
testing = testing.encode('ascii')
print(kmers.kmers(testing))
testing = 'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'
testing = testing.encode('ascii')
print(kmers.kmers(testing))
def test_error_detection():
testing = 'ATTTAACATGAGXTAACATGCATGCATGCAT'
testing = testing.encode('ascii')
assert kmers.kmers(testing) is None
def test_kmers1():
testing = 'TTTCTTTTTTTTTTTTTTTTTTTTTTTTTTT'
testing = testing.encode('ascii')
ks = kmers.kmers(testing)
assert len(testing) == 31
assert len(ks) == 1
def rc(t):
rcd = {
'A': 'T',
'T': 'A',
'C': 'G',
'G': 'C',
}
return ''.join([rcd[c] for c in t[::-1]])
def test_kmers_reverse():
for t in [
'TTATACATACTGTTGGTATGATAATAGTATA',
'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT',
'ATTTTTTTTTTTTTTTTTTTTTTTTTTTTTT',
'AAAAAAAAAAATTTTTTTTTTTTTTTTTTTT',
]:
assert np.all(kmers.kmers(t.encode('ascii'))
== kmers.kmers(rc(t).encode('ascii')))
def test_kmers_reverse_embed():
k = 'TTATACATACTGTTGGTATGATAATAGTATA'
t0 = k + 'C'
t1 = rc(k) + 'T'
assert kmers.kmers(t0.encode('ascii'))[0] == kmers.kmers(t1.encode('ascii'))[0]
def test_max62():
assert len('{:b}'.format(kmers.kmers('GACATAGCGACGCGGACCCCCTTTTTTTTTTGG'.encode('ascii')).max())) <= 62
def test_kmers_different():
ks = [
'TTATACATACTGTTGGTATGATAATAGTATA',
'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT',
'ATTTTTTTTTTTTTTTTTTTTTTTTTTTTTT',
'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTA',
]
ks = [kmers.kmers(k.encode('ascii'))[0] for k in ks]
assert len(ks) == len(set(ks))
def test_regression_kmers():
"regression on kmer computation"
ks_c = kmers.kmers(b'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC')
ks_g = kmers.kmers(b'GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG')
assert len(set(ks_c)) == 1
assert len(set(ks_g)) == 1
assert np.all(ks_c == ks_g)
KMER_SIZE = 31
def encode_nt(nt):
if type(nt) == str:
nt = nt.encode('ascii')
if nt == b'A': return 0
if nt == b'C': return 1
if nt == b'T': return 2
if nt == b'G': return 3
return -1
def rc1(nt):
return {
'A': 'T',
'T': 'A',
'C': 'G',
'G' : 'C'
}[nt]
def rc(s):
return ''.join(rc1(si) for si in s[::-1])
def encode_kmer(k):
return int(''.join(['{:02b}'.format(encode_nt(ki)) for ki in k[::-1]]),2)
def encode_kmer_rc(k):
return encode_kmer(rc(k))
def encode_kmer_min(k):
assert len(k) == KMER_SIZE
return min(encode_kmer(k),
encode_kmer_rc(k))
@given(seq=st.text(alphabet='ATGC', min_size=KMER_SIZE, max_size=65))
def test_naive(seq):
import numpy as np
n = np.array([encode_kmer_min(seq[i:i+KMER_SIZE])
for i in range(len(seq) - KMER_SIZE + 1)])
fast = kmers.kmers(seq.encode('ascii'))
assert len(n) == len(fast)
assert np.all(n == fast)
@given(seq=st.text(alphabet='ATGC', min_size=KMER_SIZE, max_size=65))
def test_shift(seq):
import numpy as np
shifted = np.array([kmers.kmers(seq[i:i+KMER_SIZE].encode('ascii'))[0]
for i in range(len(seq) - KMER_SIZE + 1)])
fast = kmers.kmers(seq.encode('ascii'))
assert len(shifted) == len(fast)
assert np.all(shifted == fast)
|
[
"[email protected]"
] | |
3f64959763032c01b3d7a56a62b787c7f1b10504
|
d719ca6b0006289ab43f95fd94460aaa5b879daa
|
/python/pyspark/linezone_peacebird_wh_1/edw_spark_sql/p_mod_sku_day_replenish.py
|
f592829da1ababf65f4bb2e1bac3a74e637c3a4e
|
[] |
no_license
|
wugeer/little_code
|
0ca57823be2304ae985dacb9cbb85fc0218584e1
|
602b9de229c3d4e06c66d089ee0aea7afb32a029
|
refs/heads/master
| 2020-05-18T11:35:31.187734 | 2019-05-01T06:59:21 | 2019-05-01T06:59:21 | 184,380,006 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 12,353 |
py
|
# -*- coding: utf-8 -*-
# ----------------------------------------------------------------------------
# Project: peacebird
# Filename: p_mod_sku_day_replenish
# Author: zsm
# Date: 2018/11/26 10:27
# ----------------------------------------------------------------------------
import sys
import time
import datetime
from datetime import timedelta
import os
from dateutil.parser import parse
from multiprocessing import cpu_count
from concurrent import futures
import pandas as pd
from os.path import abspath
from pyspark.sql import SparkSession
from pyspark import SparkConf
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
class SparkInit(object):
def __init__(self, file_name):
warehouse_location = abspath('hdfs://master1:9000/user/hive/warehouse')
# app的名称
app_name = "".join(["PySpark-", file_name])
# config 配置
spark_conf = SparkConf()
spark_conf.set("spark.sql.warehouse.dir", warehouse_location)
spark_conf.set("hive.exec.dynamic.partition.mode", 'nonstrict')
# 目的是解决报错:Detected cartesian product for INNER join between logical plans
spark_conf.set("spark.sql.crossJoin.enabled", 'true')
# 解决 分区下 小文件过多的问题
spark_conf.set("spark.sql.shuffle.partitions", '1')
self.spark = SparkSession \
.builder \
.appName(app_name) \
.config(conf=spark_conf) \
.enableHiveSupport() \
.getOrCreate()
# 获取脚本执行需要的参数
self.params_dict = self.get_params()
@staticmethod
def get_params():
"""
获取参数, 返回python脚本的参数字典,
:return: params_dict 默认返回输入日期和输入日期截断到周一的日期, 正价率的字段,畅销款比率
"""
param_list = sys.argv
p_input_date = parse(param_list[1]).strftime('%Y-%m-%d')
p_input_date_mon = date_trunc('week', p_input_date)
p_input_date_add_one_day = (parse(p_input_date) + timedelta(days=1)).strftime('%Y-%m-%d')
params_dict = {'p_input_date': p_input_date,
'p_input_date_add_one_day': p_input_date_add_one_day,
'p_input_date_mon': p_input_date_mon
}
return params_dict
def create_temp_table(self, sql, table_name):
"""
创建临时表
:param sql: sql语句
:param table_name: 临时表表名
:return:
"""
sql_temp = sql.format(**self.params_dict)
temp_table = self.spark.sql(sql_temp).createOrReplaceTempView(table_name)
return temp_table
def drop_temp_table(self, table_name):
"""
drop临时表
:param table_name:
:return:
"""
self.spark.catalog.dropTempView(table_name)
def execute_sql(self, sql):
"""
spark引擎执行sql语句
:param sql:
:return:
"""
sql_to_execute = sql.format(**self.params_dict)
df = self.spark.sql(sql_to_execute)
return df
def date_trunc(interval, date_str):
"""
截断到指定精度,返回相应的日期字符串
:param interval: ['week', 'month', 'year']
:param date_str:
:return: after_trunc_date_str
"""
date_obj = parse(date_str)
# date_obj = datetime.datetime.strptime(date_str, '%Y-%m-%d')
if interval == 'week':
res = date_obj - timedelta(days=(date_obj.isocalendar()[2] - 1))
elif interval == 'month':
res = datetime.date(date_obj.year, date_obj.month, 1)
elif interval == 'year':
res = datetime.date(date_obj.year, 1, 1)
else:
raise Exception("interval must be ['week', 'month', 'year']")
return res.strftime('%Y-%m-%d')
def main():
"""
主款 替代款 优先级
sku1 sku1 0
sku1 a1 1
sku1 a2 2
---------------------------
"""
sql_tmp_main_alter_sku = '''
select
m_productalias_id as main_skuid
, m_productalias_id as main_alter_skuid
, '0' as priority
from peacebird.st_sku_relate_view
group by m_productalias_id
union all
select
m_productalias_id as main_skuid
, m_productalias2_id as main_alter_skuid
,priority
from peacebird.st_sku_relate_view
'''
spark.create_temp_table(sql_tmp_main_alter_sku, "tmp_main_alter_sku")
# 取总仓CB37中,主款/替代款的库存
sql_main_alter_sku_stock = '''
with
tmp_warehouse_stock as
(select
org_id
, product_id
, color_id
, size_id
, stock_qty
from edw.mid_day_end_stock
where stock_date = '{p_input_date}'
and org_id = '420867'
)
select
tmp_main_alter_sku.main_skuid
, tmp_main_alter_sku.main_alter_skuid
, tmp_main_alter_sku.priority
, stock.stock_qty
from tmp_warehouse_stock as stock
inner join edw.dim_product_sku as dim_sku
on dim_sku.product_id = stock.product_id
and dim_sku.color_id = stock.color_id
and dim_sku.size_id = stock.size_id
inner join tmp_main_alter_sku
on tmp_main_alter_sku.main_alter_skuid = dim_sku.sku_id
'''
main_alter_sku_stock = spark.execute_sql(sql_main_alter_sku_stock)
# 原始模型表
# 不需要处理的模型数据
sql_satis_model = """
select
sku.sku_id
, a.send_org_id
, a.receive_store_id
, a.date_send
, a.date_rec_pred
, a.send_qty
, a.dec_day_date
from (
select *
from edw.mod_sku_day_replenish_model
where dec_day_date = '{p_input_date_add_one_day}'
) as a
inner join edw.dim_product_sku as sku
on a.product_id = sku.product_id
and a.color_id = sku.color_id
and a.size_id = sku.size_id
left join tmp_main_alter_sku as tmp_sku
on sku.sku_id = tmp_sku.main_skuid
where tmp_sku.main_skuid is null
"""
satis_model = spark.execute_sql(sql_satis_model)
print('不需要拆分的补货建议数:{}'.format(satis_model.count()))
# 需要处理的模型数据
sql_origin_model = """
select
sku.sku_id
, a.send_org_id
, a.receive_store_id
, a.date_send
, a.date_rec_pred
, a.send_qty
, a.dec_day_date
from (
select *
from edw.mod_sku_day_replenish_model
where dec_day_date = '{p_input_date_add_one_day}'
) as a
inner join edw.dim_product_sku as sku
on a.product_id = sku.product_id
and a.color_id = sku.color_id
and a.size_id = sku.size_id
inner join (
select distinct main_skuid
from tmp_main_alter_sku
) as tmp_sku
on sku.sku_id = tmp_sku.main_skuid
"""
origin_model = spark.execute_sql(sql_origin_model)
print('需要拆分的补货建议数:{}'.format(origin_model.count()))
unpack_model(main_alter_sku_stock, satis_model, origin_model)
def unpack_model(main_alter_sku_stock, satis_model, origin_model):
main_alter_sku_stock = main_alter_sku_stock.toPandas()
# 判断是否有需要拆分的模型数据,有则处理,无则直接写入mod_sku_day_replenish
if origin_model.count() != 0:
origin_model = origin_model.toPandas()
unpack_list = []
# 需要拆分的每一条模型建议
for i in range(origin_model.shape[0]):
suggest_df = origin_model[i:i + 1]
sku_id = suggest_df['sku_id'].values[0]
send_qty_init = suggest_df['send_qty'].values[0]
send_qty = send_qty_init
stock_order_df = main_alter_sku_stock[main_alter_sku_stock['main_skuid'] == sku_id] \
.sort_values(by='priority')
for j in range(stock_order_df.shape[0]):
alter_stock_df = stock_order_df[j:j + 1]
alter_stock_qty = alter_stock_df['stock_qty'].values[0]
alter_sku_id = alter_stock_df['main_alter_skuid'].values[0]
index = main_alter_sku_stock[main_alter_sku_stock['main_alter_skuid'] == alter_sku_id]. \
index.tolist()[0]
if alter_stock_qty >= send_qty:
# if j == 0:
# unpack_list.append(suggest_df)
# else:
# 把新生成的一条放入原始模型df
extend_suggest_df = suggest_df.replace(sku_id, alter_sku_id, inplace=False) \
.replace(send_qty_init, send_qty)
unpack_list.append(extend_suggest_df)
# 相应的库存赋值为alter_stock_qty-send_qty
main_alter_sku_stock[index: index+1]['stock_qty'] = alter_stock_qty - send_qty
# print(alter_sku_id, alter_stock_qty)
break
# 如果不够,先取出当前这条所有数量,再减去此次得到的数量,得到还需要多少qty,继续下一次循环
else:
if alter_stock_qty <= 0:
continue
else:
extend_suggest_df = suggest_df.replace(sku_id, alter_sku_id, inplace=False) \
.replace(send_qty_init, alter_stock_qty)
unpack_list.append(extend_suggest_df)
# 相应替代款的库存赋值为0
main_alter_sku_stock[index: index+1]['stock_qty'] = 0
send_qty = send_qty - alter_stock_qty
# 把所有unpack_list中的df合并为大的df
if len(unpack_list) != 0:
unpack_model_df = pd.concat(unpack_list, axis=0)
unpack_model_spark_df = spark.spark.createDataFrame(unpack_model_df)
all_unpack_model_spark_df = unpack_model_spark_df.unionAll(satis_model)
else:
all_unpack_model_spark_df = satis_model
else:
all_unpack_model_spark_df = satis_model
# 将大的df插入拆分后的模型表
all_unpack_model_spark_df.createOrReplaceTempView("unpack_model")
insert_sql = """
insert overwrite table edw.mod_sku_day_replenish
select
b.product_id
, b.color_id
, b.size_id
, a.send_org_id
, a.receive_store_id
, a.date_send
, a.date_rec_pred
, a.send_qty
, '{p_input_date_add_one_day}' as dec_day_date
, current_timestamp as etl_time
from unpack_model as a
inner join edw.dim_product_sku as b
on a.sku_id = b.sku_id
"""
spark.execute_sql(insert_sql)
# 写入标志位
sql_model_flag = """
select
'replenish' as category
, '{p_input_date_add_one_day}' as day_date
, 1 as status
, current_timestamp as etl_time
union all
select *
from edw.model_flag
where
day_date != '{p_input_date_add_one_day}'
or category != 'replenish'
"""
model_flag_df = spark.execute_sql(sql_model_flag).toPandas()
model_flag_spark_df = spark.spark.createDataFrame(model_flag_df)
model_flag_spark_df.createOrReplaceTempView("tmp_model_flag")
insert_sql = """
insert overwrite table edw.model_flag
select * from tmp_model_flag
"""
spark.execute_sql(insert_sql)
if __name__ == '__main__':
file_name = os.path.basename(__file__)
spark = SparkInit(file_name)
start_time = time.time()
main()
end_time = time.time()
print(end_time - start_time)
|
[
"[email protected]"
] | |
d04dda139b730895c0e6988185dfb7e479281c01
|
6b2a8dd202fdce77c971c412717e305e1caaac51
|
/solutions_5636311922769920_0/Python/aguy/fractiles.py
|
e02280bdf711f12cc673dc333fc9a4f39d8323b8
|
[] |
no_license
|
alexandraback/datacollection
|
0bc67a9ace00abbc843f4912562f3a064992e0e9
|
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
|
refs/heads/master
| 2021-01-24T18:27:24.417992 | 2017-05-23T09:23:38 | 2017-05-23T09:23:38 | 84,313,442 | 2 | 4 | null | null | null | null |
UTF-8
|
Python
| false | false | 544 |
py
|
def f(k, c, tiles):
ans = 0
for i in tiles:
ans += i
ans *= k
if len(tiles) == c:
return ans // k + 1
return ans * pow(k, c - len(tiles) - 1) + 1
def ans(k,c,s):
if c * s < k:
return "IMPOSSIBLE"
current = []
ans = []
for i in range(k):
current.append(i)
if len(current) == c:
ans.append(f(k,c,current))
current = []
if len(current):
ans.append(f(k,c,current))
return ' '.join(map(str,sorted(ans)))
n = int(input())
for i in range(n):
x = ans(*map(int,input().split()))
print("Case #{0}: {1}".format(i+1, x))
|
[
"[email protected]"
] | |
66eab3b2572e597e0882942e6953d4d89cd3b923
|
99745d24f3adf3031c146d2a57039527f5a9b51c
|
/hropapi/models.py
|
29318fca028bdbc840b218528e409ada69887557
|
[] |
no_license
|
Tartar-san/antihrop
|
f1076fdab11af473217ca861cd5e577a45aae81c
|
5a4b0d9204beb1fd2ce99b3d3f42c07060b2eb76
|
refs/heads/master
| 2020-12-08T23:48:59.363173 | 2016-08-22T16:53:11 | 2016-08-22T16:53:11 | 66,143,162 | 0 | 0 | null | 2016-08-20T23:17:25 | 2016-08-20T11:24:48 |
JavaScript
|
UTF-8
|
Python
| false | false | 2,064 |
py
|
from __future__ import unicode_literals
import time
import random
from random_words import RandomWords
# Create your models here.
from django.contrib.auth.models import User
from django.db import models
from django.utils import timezone
from django.db.models.signals import post_save
from django.dispatch import receiver
# from random_words import RandomWords
from rest_framework.authtoken.models import Token
class Hrop(models.Model):
user = models.ForeignKey(to=User, related_name='hrop', db_index=True, blank=False)
time = models.DateTimeField(verbose_name='Time hroping', blank=False, db_index=True)
period = models.PositiveIntegerField(blank=False, default=0)
response_time = models.PositiveIntegerField(blank=False, default=0)
intensity = models.PositiveIntegerField(blank=False, default=0)
track_name = models.CharField(max_length=150, blank=True, default=None)
volume_track = models.PositiveIntegerField(blank=False, default=0)
class Meta:
verbose_name = 'User hrop'
def __unicode__(self):
return 'Time: {} Response time: '.format(self.time, self.response_time)
@receiver(post_save, sender=User)
def create_auth_token(sender, instance=None, created=False, **kwargs):
if created:
Token.objects.create(user=instance)
for day in xrange(62):
timestamp = time.time() - day * 86400
hrop_iter = random.randint(10, 64)
for i in xrange(hrop_iter):
date = {
"user": instance,
"response_time": random.randint(10, 70),
"intensity": random.randint(20, 95),
"track_name": ' '.join(RandomWords().random_words(count=4)),
"volume_track": random.randint(10, 100)
}
date.update({"period": date['response_time'] + random.randint(5, 15),})
timestamp -= date['period']
date.update({"time": timezone.now().fromtimestamp(timestamp)})
Hrop.objects.create(**date)
|
[
"[email protected]"
] | |
6313d711dc7d48738f6bc4acf1966ca2e94a348a
|
6929a33a7259dad9b45192ca088a492085ed2953
|
/solutions/0369-plus-one-linked-list/plus-one-linked-list.py
|
f2bdf2be627faddbb243dc48c20d4e041cae2605
|
[] |
no_license
|
moqi112358/leetcode
|
70366d29c474d19c43180fd4c282cc02c890af03
|
fab9433ff7f66d00023e3af271cf309b2d481722
|
refs/heads/master
| 2022-12-10T01:46:14.799231 | 2021-01-14T05:00:09 | 2021-01-14T05:00:09 | 218,163,960 | 3 | 0 | null | 2022-07-06T20:26:38 | 2019-10-28T23:26:47 |
Python
|
UTF-8
|
Python
| false | false | 1,338 |
py
|
# Given a non-negative integer represented as a linked list of digits, plus one to the integer.
#
# The digits are stored such that the most significant digit is at the head of the list.
#
#
# Example 1:
# Input: head = [1,2,3]
# Output: [1,2,4]
# Example 2:
# Input: head = [0]
# Output: [1]
#
#
# Constraints:
#
#
# The number of nodes in the linked list is in the range [1, 100].
# 0 <= Node.val <= 9
# The number represented by the linked list does not contain leading zeros except for the zero itself.
#
#
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def plusOne(self, head: ListNode) -> ListNode:
rev_head = self.reverse(head)
flag = 1
cur = rev_head
while cur:
cur.val = cur.val + flag
if cur.val >= 10:
cur.val -= 10
flag = 1
else:
flag = 0
cur = cur.next
res = self.reverse(rev_head)
if flag == 1:
res = ListNode(1, res)
return res
def reverse(self, head):
res = None
while head:
tmp = head.next
head.next = res
res = head
head = tmp
return res
|
[
"[email protected]"
] | |
eb94c351a5475c49b2a69d6f6a0188c182563a2c
|
295eb752d0ea8d6f9c3f0646f9d6b07a707da700
|
/Python/SpeechRecognition/asr_nlp_main_sr_eval/Evaluation_Data_III/evaluate_III.py
|
ce834454888bd170114f87fed6fab5cfc5e0f7ab
|
[] |
no_license
|
GiulliMo/Master_Soft
|
f4f836c0f2a9e105d809e68f9064546ab08fbc0a
|
ae168a90bab75acb4753c87b9d24af3e0752d189
|
refs/heads/master
| 2022-07-27T11:03:00.356237 | 2020-10-20T14:39:12 | 2020-10-20T14:39:12 | 241,363,290 | 0 | 0 | null | 2022-07-06T20:53:41 | 2020-02-18T13:07:44 |
HTML
|
UTF-8
|
Python
| false | false | 6,072 |
py
|
## Author: Hannes Dittmann
## Version: 1.0
## Email: [email protected] / [email protected]
## Status: Fertig
## Kommentar: -Programm zum Auswerten von Hypothesen mit ausgewählten ASR System
## - ground-truth und hypothese wird benötigt
## - form : siehe datei
## - Hier wird zwischen Ordnern unterschieden etc
## - Jeweils für eine Netzwerkarchitektur wird getest, da muessen die flags und modelle angepasst werden
##################################################
from libraries.nlp import *
import tensorflow as tf
import numpy as np
from jiwer import wer, mer
from numpy import savetxt
globals()
nlp = nlp(rnn= True, embedded=True)
## Daten I sind test daten und wurden vom netzwerk noch nicht gesehen
## Daten Laden
ground_truth1 = nlp.loadJsons("ground_truthDeepSpech_DataIII.json")
hypothesis1 = nlp.loadJsons("hypothesisDeepSpech_DataIII.json")
labelsTask1 = nlp.loadJsons("labelsTaskDeepSpech_DataIII.json")
processingtime1 = nlp.loadJsons("processingtimeDeepSpech_DataIII.json")
ground_truth2 = nlp.loadJsons("ground_truthEspnet_DataIII.json")
hypothesis2 = nlp.loadJsons("hypothesisEspnet_DataIII.json")
labelsTask2 = nlp.loadJsons("labelsTaskEspnet_DataIII.json")
processingtime2 = nlp.loadJsons("processingtimeEspnet_DataIII.json")
ground_truth3 = nlp.loadJsons("ground_truthPocket_DataIII.json")
hypothesis3 = nlp.loadJsons("hypothesisPocket_DataIII.json")
labelsTask3 = nlp.loadJsons("labelsTaskPocket_DataIII.json")
processingtime3 = nlp.loadJsons("processingtimePocket_DataIII.json")
gtall = [ground_truth1, ground_truth2, ground_truth3]
htall = [hypothesis1, hypothesis2, hypothesis3]
labelsall = [labelsTask1, labelsTask2, labelsTask3]
ptall = [processingtime1, processingtime2, processingtime3]
data = []
# scores = [score[0]["task"], score[0]["unknow"], score[0]["iterationen"]]
nlp.words = nlp.readWords("../models/words.txt")
print(len(nlp.words))
nlp.vocab_size = len(nlp.words)
nlp.modelTaskClassifier = tf.lite.Interpreter("../models/taskClassifierPhonWordEmbeddingRNN.tflite") # Flags setzen!!
nlp.modelTaskClassifier.allocate_tensors()
for i in range(len(gtall)):
ground_truth = np.asarray(gtall[i])
hypothesis = np.asarray(htall[i])
labelsTask = labelsall[i]
processingtime = ptall[i]
confidence = []
numclass1 = 0
numclass2 = 0
numclass3 = 0
numclass4 = 0
numclass5 = 0
numclass6 = 0
## ab hier wird getestet
for hypo in hypothesis:
confidence.append(nlp.classifierTask(transcript=hypo)) # Flags setzen
cnf2 = np.asarray(confidence)
###Auswertung###
## Mittlere Konfidenz
mean_conf_r = 0 # richtige confidenz
mean_conf_w = 0 # mit wieviel % liegt er falsch?
i_r = 0 # anzahl richtige
i_w = 0 # anzahl falsche
wer_r = 0
wer_w = 0
wer_g = 0
k = 0
gt = []
ht = []
gt2 = []
ht2 = []
score_top = 0
for cnf in enumerate(confidence):
probs = list(cnf2[cnf[0]])
max1 = max(probs)
print(probs)
idx1 = np.argmax(probs)
probs[idx1] = 0
idx2 = np.argmax(probs)
print(idx1)
print(idx2)
classified = np.argmax(cnf[1])
wer2 = 0
if ground_truth[k] == " ":
ground_truth[k] = "none"
wer3 = wer(ground_truth[k], hypothesis[k])
wer_g = wer_g + wer3
print(labelsTask[cnf[0]])
print(classified)
if idx1 == labelsTask[cnf[0]] or idx2 == labelsTask[cnf[0]]:
score_top = score_top + 1
if classified == labelsTask[cnf[0]]:
mean_conf_r = mean_conf_r + max(cnf[1])
i_r = i_r + 1
wer2 = wer(ground_truth[k], hypothesis[k])
wer_r = wer_r + wer2
gt2.append(ground_truth[k])
ht2.append(hypothesis[k])
elif classified != labelsTask[cnf[0]]:
mean_conf_w = mean_conf_w + max(cnf[1])
i_w = i_w + 1
gt.append(ground_truth[k])
ht.append(hypothesis[k])
wer2 = wer(ground_truth[k], hypothesis[k])
wer_w = wer_w + wer2
if classified == 0:
numclass1 = numclass1 + 1
elif classified == 1:
numclass2 = numclass2 + 1
elif classified == 2:
numclass3 = numclass3 + 1
elif classified == 3:
numclass4 = numclass4 + 1
elif classified == 4:
numclass5 = numclass5 + 1
elif classified == 5:
numclass6 = numclass6 + 1
k = k + 1
numclass = np.asarray([numclass1, numclass2, numclass3, numclass4, numclass5, numclass6])
mean_conf_r = mean_conf_r / i_r
mean_conf_w = mean_conf_w / i_w
wer_rg = (wer_r + wer_w) / (i_r + i_w)
print(wer_rg)
wer_r = wer_r / i_r
wer_w = wer_w / i_w
print(score_top)
print("Anzahl richtige: " + str(i_r))
print("Anzahl falsche: " + str(i_w))
print("Accuracy: " + str(i_r / len(labelsTask)))
print("Top 2 Error: " + str(score_top / len(labelsTask)))
print("Mittlere Konfidenz bei den richtigen: " + str(mean_conf_r))
print("Mittlere Konfidenz bei den falschen: " + str(mean_conf_w))
print("Mittlere bei allen WER: " + str(wer_rg))
print("Mittlere WER bei richtigen " + str(wer_r))
print("Mittlere WER bei falschen " + str(wer_w))
print("Verteilung Falsche: " + str(numclass / i_w))
print("Transkriptionszeit: " + str(np.mean(np.asarray(processingtime))))
print("wer test fuer falsch: " + str(wer(gt, ht)))
print("wer test fuer richtig: " + str(wer(gt2, ht2)))
print("wer test gesamt: " + str(wer_g / (2328 + 456)))
arr = list([wer_rg, wer_r, wer_w, i_r / len(labelsTask), mean_conf_r, mean_conf_w])
arr = arr + list(numclass / i_w)
arr.append(np.mean(np.asarray(processingtime)))
arr = np.asarray(arr)
print(arr)
data.append(arr)
name = 'data.csv'
if os.path.exists(name):
os.remove(name)
np.savetxt(name, (data[1], data[2],data[0]), fmt='%f')
|
[
"[email protected]"
] | |
d6f66c713de1d552092f12111e42da8300b3e978
|
f786ed57a3b3a689d87e81eef53a94b7da2c82e7
|
/medical_appointment/appointment/tests/selectors/test_appointment_assign_by_id.py
|
8751717f716147b1fa6f1b542a1da0b9dd778a93
|
[] |
no_license
|
italoantonio0909/medical_appointment
|
4c2381285016f2e85dd48554551d99912b029cca
|
4eaadb8e7e8455ea1307c1a06e66cde0ef9b79d2
|
refs/heads/master
| 2023-04-22T07:24:00.613621 | 2021-05-14T06:17:18 | 2021-05-14T06:17:18 | 351,559,720 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,004 |
py
|
import datetime
from datetime import timedelta
from unittest.mock import patch
from django.core.exceptions import ValidationError
from django.test import TestCase
from medical_appointment.appointment.models import AppointmentAssign, Specialty
from medical_appointment.appointment.selectors import appointment_assign_by_id
from medical_appointment.appointment.services import (
appointment_assign_create, specialty_create)
from medical_appointment.common.test_utils import fake
from medical_appointment.users.services import user_create_superuser
class AppointmentAssignByIdTest(TestCase):
def setUp(self):
self.selector = appointment_assign_by_id
@patch('medical_appointment.appointment.selectors.appointment_assign_by_id')
def test_selector_return_nothing(self, appointment_assign_by_id_mock):
with self.assertRaises(ValidationError):
self.selector(id=fake.random_digit())
@patch('medical_appointment.appointment.selectors.appointment_assign_by_id')
def test_selector_return_appointment_assign(self, appointment_assign_by_id):
# Create user
user = user_create_superuser(
first_name=fake.first_name(),
last_name=fake.last_name(),
password=fake.password(),
email=fake.email()
)
# Create specialty
specialty_create(title=fake.bothify(text='Specialty ????-###'))
# Create appointment
# Add day to date
current_date = datetime.date.today()
add_day = timedelta(days=1)
date = current_date + add_day
# Set hour-> range 8:00:00 - 16:00:00
time = datetime.time(10, 30, 00)
appointment_assign_create(
user=user.id,
date=date,
time=time
)
appointment_assign_id = AppointmentAssign.objects.first().id
result = self.selector(id=appointment_assign_id)
# Match appointment with database
self.assertNotEqual([], len([result]))
|
[
"[email protected]"
] | |
f2d1801896babaa067accf4c22c61a4788603700
|
5f0590f00e27822dde2fba0e57edbc783d763c64
|
/extract_csv_column.py
|
8e8bc4e9421310cd5ba856a466259abb3a93c4a5
|
[
"MIT"
] |
permissive
|
YazzyYaz/ethereum-etl
|
188720869e66ca618fe54fcd8c245a5e390ea1c0
|
eb69307ddb7b09733de2c71f17a4f9f0191f9049
|
refs/heads/master
| 2023-04-07T09:14:26.865159 | 2018-11-14T06:10:12 | 2018-11-14T06:10:12 | 157,900,047 | 0 | 1 |
MIT
| 2023-03-28T18:07:32 | 2018-11-16T17:26:43 |
Python
|
UTF-8
|
Python
| false | false | 1,580 |
py
|
# MIT License
#
# Copyright (c) 2018 Evgeny Medvedev, [email protected]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import sys
from ethereumetl.cli.extract_csv_column import extract_csv_column
print('========================================================================================', file=sys.stderr)
print('THIS SCRIPT IS DEPRECATED AND WILL BE REMOVED ON 2019-01-01. Use ethereumetl.py instead.', file=sys.stderr)
print('========================================================================================', file=sys.stderr)
extract_csv_column()
|
[
"[email protected]"
] | |
19533f4c1dda80cc45133cbfd33ea2b59e8996d6
|
3d19e1a316de4d6d96471c64332fff7acfaf1308
|
/Users/P/pinakighosh/pincode2.py
|
1bba96d5e48206ba2d839677d738d653de81693d
|
[] |
no_license
|
BerilBBJ/scraperwiki-scraper-vault
|
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
|
65ea6a943cc348a9caf3782b900b36446f7e137d
|
refs/heads/master
| 2021-12-02T23:55:58.481210 | 2013-09-30T17:02:59 | 2013-09-30T17:02:59 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 6,726 |
py
|
import scraperwiki
import mechanize
import re
import lxml.html
import sys
import requests
def get_start():
url="http://www.indiapost.gov.in/Pin/"
br = mechanize.Browser()
response = br.open(url)
response = br.response() # this is a copy of response
headers = response.info() # currently, this is a mimetools.Message
headers["Content-type"] = "text/html; charset=utf-8"
response.set_data(response.get_data().replace("<!---", "<!--"))
br.set_response(response)
html = scraperwiki.scrape(url)
root = lxml.html.fromstring(html)
br = mechanize.Browser()
response = br.open(url)
VAR1=response.read()
response.set_data(response.get_data()[717:])
br.set_response(response)
br.select_form(nr = 0)
br.set_all_readonly(False)
response = br.submit()
VAR2 = response.read() # source code after submitting show all
#print VAR2
root = lxml.html.fromstring(VAR2)
return VAR2
starturl='http://www.indiapost.gov.in/pin/'
s=requests.session()
r1 = s.get(starturl)
html=get_start()
root = lxml.html.fromstring(html)
l=[]
count=0
br=0
sl_no=1
for el in root.cssselect("table#gvw_offices tr"):
for el2 in el.cssselect("tr td"):
var=el2.text_content()
#print el2.text_content()
if count<3:
l.append(var)
count+=1
else:
l.append(var)
scraperwiki.sqlite.save(unique_keys=["sl_no"],data={"sl_no":sl_no,"Office Name":l[1],"Pincode":l[2],"District":l[3]})
sl_no+=1
#print l[1:]
count=0
l=[]
br+=1
if br==10:
break
if br==10:
break
start=4543
i=0
bias=1
while i<15537:
#for i in range(15537):
#for i in range(7767):
if i==0:
i+=1
continue
print i
#pick up the javascript values
EVENTVALIDATION = root.xpath('//input[@name="__EVENTVALIDATION"]')[0].attrib['value']
print "EVENTVALIDATION"+str(i)
#print EVENTVALIDATION
#find the __EVENTVALIDATION value
VIEWSTATE = root.xpath('//input[@name="__VIEWSTATE"]')[0].attrib['value']
#print VIEWSTATE
#EVENTARGUMENT='Page$'+str(i)
EVENTARGUMENT='Page$11'
#payload={}
payload = {'__EVENTTARGET':'gvw_offices','__EVENTARGUMENT':EVENTARGUMENT,'referer':'http://www.indiapost.gov.in/pin/','__EVENTVALIDATION':EVENTVALIDATION,'__VIEWSTATE':VIEWSTATE,'__VIEWSTATEENCRYPTED':''}
ret=s.post(starturl,data=payload)
html=ret.text
root=lxml.html.fromstring(html)
if i<start:
if i%10==0:
i+=1
else:
#i=bias*10
#bias+=1
i+=5
continue
else:
i+=1
l=[]
count=0
br=0
for el in root.cssselect("table#gvw_offices tr"):
for el2 in el.cssselect("tr td"):
var=el2.text_content()
#print el2.text_content()
if count<3:
l.append(var)
count+=1
else:
l.append(var)
scraperwiki.sqlite.save(unique_keys=["sl_no"],data={"sl_no":sl_no,"Office Name":l[1],"Pincode":l[2],"District":l[3]})
sl_no+=1
#print l[1:]
count=0
l=[]
br+=1
if br==10:
break
if br==10:
breakimport scraperwiki
import mechanize
import re
import lxml.html
import sys
import requests
def get_start():
url="http://www.indiapost.gov.in/Pin/"
br = mechanize.Browser()
response = br.open(url)
response = br.response() # this is a copy of response
headers = response.info() # currently, this is a mimetools.Message
headers["Content-type"] = "text/html; charset=utf-8"
response.set_data(response.get_data().replace("<!---", "<!--"))
br.set_response(response)
html = scraperwiki.scrape(url)
root = lxml.html.fromstring(html)
br = mechanize.Browser()
response = br.open(url)
VAR1=response.read()
response.set_data(response.get_data()[717:])
br.set_response(response)
br.select_form(nr = 0)
br.set_all_readonly(False)
response = br.submit()
VAR2 = response.read() # source code after submitting show all
#print VAR2
root = lxml.html.fromstring(VAR2)
return VAR2
starturl='http://www.indiapost.gov.in/pin/'
s=requests.session()
r1 = s.get(starturl)
html=get_start()
root = lxml.html.fromstring(html)
l=[]
count=0
br=0
sl_no=1
for el in root.cssselect("table#gvw_offices tr"):
for el2 in el.cssselect("tr td"):
var=el2.text_content()
#print el2.text_content()
if count<3:
l.append(var)
count+=1
else:
l.append(var)
scraperwiki.sqlite.save(unique_keys=["sl_no"],data={"sl_no":sl_no,"Office Name":l[1],"Pincode":l[2],"District":l[3]})
sl_no+=1
#print l[1:]
count=0
l=[]
br+=1
if br==10:
break
if br==10:
break
start=4543
i=0
bias=1
while i<15537:
#for i in range(15537):
#for i in range(7767):
if i==0:
i+=1
continue
print i
#pick up the javascript values
EVENTVALIDATION = root.xpath('//input[@name="__EVENTVALIDATION"]')[0].attrib['value']
print "EVENTVALIDATION"+str(i)
#print EVENTVALIDATION
#find the __EVENTVALIDATION value
VIEWSTATE = root.xpath('//input[@name="__VIEWSTATE"]')[0].attrib['value']
#print VIEWSTATE
#EVENTARGUMENT='Page$'+str(i)
EVENTARGUMENT='Page$11'
#payload={}
payload = {'__EVENTTARGET':'gvw_offices','__EVENTARGUMENT':EVENTARGUMENT,'referer':'http://www.indiapost.gov.in/pin/','__EVENTVALIDATION':EVENTVALIDATION,'__VIEWSTATE':VIEWSTATE,'__VIEWSTATEENCRYPTED':''}
ret=s.post(starturl,data=payload)
html=ret.text
root=lxml.html.fromstring(html)
if i<start:
if i%10==0:
i+=1
else:
#i=bias*10
#bias+=1
i+=5
continue
else:
i+=1
l=[]
count=0
br=0
for el in root.cssselect("table#gvw_offices tr"):
for el2 in el.cssselect("tr td"):
var=el2.text_content()
#print el2.text_content()
if count<3:
l.append(var)
count+=1
else:
l.append(var)
scraperwiki.sqlite.save(unique_keys=["sl_no"],data={"sl_no":sl_no,"Office Name":l[1],"Pincode":l[2],"District":l[3]})
sl_no+=1
#print l[1:]
count=0
l=[]
br+=1
if br==10:
break
if br==10:
break
|
[
"[email protected]"
] | |
f89a5dab2d61601fb980032c20f0df33ed1bd820
|
1f63dde39fcc5f8be29f2acb947c41f1b6f1683e
|
/Boss2D/addon/tensorflow-1.2.1_for_boss/tensorflow/python/kernel_tests/linalg_ops_test.py
|
2d31ac85b02d688ab260f840cb62e38435764f23
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
koobonil/Boss2D
|
09ca948823e0df5a5a53b64a10033c4f3665483a
|
e5eb355b57228a701495f2660f137bd05628c202
|
refs/heads/master
| 2022-10-20T09:02:51.341143 | 2019-07-18T02:13:44 | 2019-07-18T02:13:44 | 105,999,368 | 7 | 2 |
MIT
| 2022-10-04T23:31:12 | 2017-10-06T11:57:07 |
C++
|
UTF-8
|
Python
| false | false | 8,265 |
py
|
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.python.ops.linalg_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
def _random_pd_matrix(n, rng):
"""Random positive definite matrix."""
temp = rng.randn(n, n)
return temp.dot(temp.T)
class CholeskySolveTest(test.TestCase):
_use_gpu = False
def setUp(self):
self.rng = np.random.RandomState(0)
def test_works_with_five_different_random_pos_def_matrices(self):
with self.test_session():
for n in range(1, 6):
for np_type, atol in [(np.float32, 0.05), (np.float64, 1e-5)]:
# Create 2 x n x n matrix
array = np.array(
[_random_pd_matrix(n, self.rng), _random_pd_matrix(n, self.rng)
]).astype(np_type)
chol = linalg_ops.cholesky(array)
for k in range(1, 3):
rhs = self.rng.randn(2, n, k).astype(np_type)
x = linalg_ops.cholesky_solve(chol, rhs)
self.assertAllClose(
rhs, math_ops.matmul(array, x).eval(), atol=atol)
class CholeskySolveGpuTest(CholeskySolveTest):
_use_gpu = True
class EyeTest(test.TestCase):
def test_non_batch_2x2(self):
num_rows = 2
dtype = np.float32
np_eye = np.eye(num_rows).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, dtype=dtype)
self.assertAllEqual((num_rows, num_rows), eye.get_shape())
self.assertAllEqual(np_eye, eye.eval())
def test_non_batch_2x3(self):
num_rows = 2
num_columns = 3
dtype = np.float32
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, num_columns=num_columns, dtype=dtype)
self.assertAllEqual((num_rows, num_columns), eye.get_shape())
self.assertAllEqual(np_eye, eye.eval())
def test_1x3_batch_4x4(self):
num_rows = 4
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, batch_shape=batch_shape, dtype=dtype)
self.assertAllEqual(batch_shape + [num_rows, num_rows], eye.get_shape())
eye_v = eye.eval()
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_1x3_batch_4x4_dynamic(self):
num_rows = 4
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows).astype(dtype)
with self.test_session():
num_rows_ph = array_ops.placeholder(dtypes.int32)
batch_shape_ph = array_ops.placeholder(dtypes.int32)
eye = linalg_ops.eye(num_rows_ph, batch_shape=batch_shape_ph, dtype=dtype)
eye_v = eye.eval(
feed_dict={num_rows_ph: num_rows,
batch_shape_ph: batch_shape})
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_1x3_batch_5x4(self):
num_rows = 5
num_columns = 4
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows,
num_columns=num_columns,
batch_shape=batch_shape,
dtype=dtype)
self.assertAllEqual(batch_shape + [num_rows, num_columns],
eye.get_shape())
eye_v = eye.eval()
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_1x3_batch_5x4_dynamic(self):
num_rows = 5
num_columns = 4
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
num_rows_ph = array_ops.placeholder(dtypes.int32)
num_columns_ph = array_ops.placeholder(dtypes.int32)
batch_shape_ph = array_ops.placeholder(dtypes.int32)
eye = linalg_ops.eye(num_rows_ph,
num_columns=num_columns_ph,
batch_shape=batch_shape_ph,
dtype=dtype)
eye_v = eye.eval(feed_dict={
num_rows_ph: num_rows,
num_columns_ph: num_columns,
batch_shape_ph: batch_shape
})
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_non_batch_0x0(self):
num_rows = 0
dtype = np.int64
np_eye = np.eye(num_rows).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, dtype=dtype)
self.assertAllEqual((num_rows, num_rows), eye.get_shape())
self.assertAllEqual(np_eye, eye.eval())
def test_non_batch_2x0(self):
num_rows = 2
num_columns = 0
dtype = np.int64
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, num_columns=num_columns, dtype=dtype)
self.assertAllEqual((num_rows, num_columns), eye.get_shape())
self.assertAllEqual(np_eye, eye.eval())
def test_non_batch_0x2(self):
num_rows = 0
num_columns = 2
dtype = np.int64
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, num_columns=num_columns, dtype=dtype)
self.assertAllEqual((num_rows, num_columns), eye.get_shape())
self.assertAllEqual(np_eye, eye.eval())
def test_1x3_batch_0x0(self):
num_rows = 0
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows, batch_shape=batch_shape, dtype=dtype)
self.assertAllEqual((1, 3, 0, 0), eye.get_shape())
eye_v = eye.eval()
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_1x3_batch_2x0(self):
num_rows = 2
num_columns = 0
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows,
num_columns=num_columns,
batch_shape=batch_shape,
dtype=dtype)
self.assertAllEqual(batch_shape + [num_rows, num_columns],
eye.get_shape())
eye_v = eye.eval()
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
def test_1x3_batch_0x2(self):
num_rows = 0
num_columns = 2
batch_shape = [1, 3]
dtype = np.float32
np_eye = np.eye(num_rows, num_columns).astype(dtype)
with self.test_session():
eye = linalg_ops.eye(num_rows,
num_columns=num_columns,
batch_shape=batch_shape,
dtype=dtype)
self.assertAllEqual(batch_shape + [num_rows, num_columns],
eye.get_shape())
eye_v = eye.eval()
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
self.assertAllEqual(np_eye, eye_v[i, j, :, :])
if __name__ == '__main__':
test.main()
|
[
"[email protected]"
] | |
6a661f3fa6057b4829f61a7afe266be48fd767fb
|
180dc578d12fff056fce1ef8bd1ba5c227f82afc
|
/official/projects/s3d/modeling/inception_utils.py
|
29e6cbb2859c4ed93a07f237d0e04cf7d99c7522
|
[
"Apache-2.0"
] |
permissive
|
jianzhnie/models
|
6cb96c873d7d251db17afac7144c4dbb84d4f1d6
|
d3507b550a3ade40cade60a79eb5b8978b56c7ae
|
refs/heads/master
| 2023-07-12T05:08:23.314636 | 2023-06-27T07:54:20 | 2023-06-27T07:54:20 | 281,858,258 | 2 | 0 |
Apache-2.0
| 2022-03-27T12:53:44 | 2020-07-23T05:22:33 |
Python
|
UTF-8
|
Python
| false | false | 20,360 |
py
|
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains modules related to Inception networks."""
from typing import Callable, Dict, Optional, Sequence, Set, Text, Tuple, Type, Union
import tensorflow as tf
from official.modeling import tf_utils
from official.projects.s3d.modeling import net_utils
from official.vision.modeling.layers import nn_blocks_3d
INCEPTION_V1_CONV_ENDPOINTS = [
'Conv2d_1a_7x7', 'Conv2d_2c_3x3', 'Mixed_3b', 'Mixed_3c', 'Mixed_4b',
'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'Mixed_5b', 'Mixed_5c'
]
# Mapping from endpoint to branch filters. The endpoint shapes below are
# specific for input 64x224x224.
INCEPTION_V1_ARCH_SKELETON = [
('Mixed_3b', [[64], [96, 128], [16, 32], [32]]), # 32x28x28x256
('Mixed_3c', [[128], [128, 192], [32, 96], [64]]), # 32x28x28x480
('MaxPool_4a_3x3', [[3, 3, 3], [2, 2, 2]]), # 16x14x14x480
('Mixed_4b', [[192], [96, 208], [16, 48], [64]]), # 16x14x14x512
('Mixed_4c', [[160], [112, 224], [24, 64], [64]]), # 16x14x14x512
('Mixed_4d', [[128], [128, 256], [24, 64], [64]]), # 16x14x14x512
('Mixed_4e', [[112], [144, 288], [32, 64], [64]]), # 16x14x14x528
('Mixed_4f', [[256], [160, 320], [32, 128], [128]]), # 16x14x14x832
('MaxPool_5a_2x2', [[2, 2, 2], [2, 2, 2]]), # 8x7x7x832
('Mixed_5b', [[256], [160, 320], [32, 128], [128]]), # 8x7x7x832
('Mixed_5c', [[384], [192, 384], [48, 128], [128]]), # 8x7x7x1024
]
INCEPTION_V1_LOCAL_SKELETON = [
('MaxPool_5a_2x2_local', [[2, 2, 2], [2, 2, 2]]), # 8x7x7x832
('Mixed_5b_local', [[256], [160, 320], [32, 128], [128]]), # 8x7x7x832
('Mixed_5c_local', [[384], [192, 384], [48, 128], [128]]), # 8x7x7x1024
]
initializers = tf.keras.initializers
regularizers = tf.keras.regularizers
def inception_v1_stem_cells(
inputs: tf.Tensor,
depth_multiplier: float,
final_endpoint: Text,
temporal_conv_endpoints: Optional[Set[Text]] = None,
self_gating_endpoints: Optional[Set[Text]] = None,
temporal_conv_type: Text = '3d',
first_temporal_kernel_size: int = 7,
use_sync_bn: bool = False,
norm_momentum: float = 0.999,
norm_epsilon: float = 0.001,
temporal_conv_initializer: Union[
Text, initializers.Initializer] = initializers.TruncatedNormal(
mean=0.0, stddev=0.01),
kernel_initializer: Union[Text,
initializers.Initializer] = 'truncated_normal',
kernel_regularizer: Union[Text, regularizers.Regularizer] = 'l2',
parameterized_conv_layer: Type[
net_utils.ParameterizedConvLayer] = net_utils.ParameterizedConvLayer,
layer_naming_fn: Callable[[Text], Text] = lambda end_point: None,
) -> Tuple[tf.Tensor, Dict[Text, tf.Tensor]]:
"""Stem cells used in the original I3D/S3D model.
Args:
inputs: A 5-D float tensor of size [batch_size, num_frames, height, width,
channels].
depth_multiplier: A float to reduce/increase number of channels.
final_endpoint: Specifies the endpoint to construct the network up to. It
can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
'Conv2d_2c_3x3', 'MaxPool_3a_3x3'].
temporal_conv_endpoints: Specifies the endpoints where to perform temporal
convolution.
self_gating_endpoints: Specifies the endpoints where to perform self gating.
temporal_conv_type: '3d' for I3D model and '2+1d' for S3D model.
first_temporal_kernel_size: temporal kernel size of the first convolution
layer.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
temporal_conv_initializer: Weight initializer for temporal convolution
inside the cell. It only applies to 2+1d and 1+2d cases.
kernel_initializer: Weight initializer for convolutional layers other than
temporal convolution.
kernel_regularizer: Weight regularizer for all convolutional layers.
parameterized_conv_layer: class for parameterized conv layer.
layer_naming_fn: function to customize conv / pooling layer names given
endpoint name of the block. This is mainly used to creat model that is
compatible with TF1 checkpoints.
Returns:
A dictionary from components of the network to the corresponding activation.
"""
if temporal_conv_endpoints is None:
temporal_conv_endpoints = set()
if self_gating_endpoints is None:
self_gating_endpoints = set()
if use_sync_bn:
batch_norm = tf.keras.layers.experimental.SyncBatchNormalization
else:
batch_norm = tf.keras.layers.BatchNormalization
if tf.keras.backend.image_data_format() == 'channels_last':
bn_axis = -1
else:
bn_axis = 1
end_points = {}
# batch_size x 32 x 112 x 112 x 64
end_point = 'Conv2d_1a_7x7'
net = tf.keras.layers.Conv3D(
filters=net_utils.apply_depth_multiplier(64, depth_multiplier),
kernel_size=[first_temporal_kernel_size, 7, 7],
strides=[2, 2, 2],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))(
inputs)
net = batch_norm(
axis=bn_axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
scale=False,
gamma_initializer='ones',
name=layer_naming_fn(end_point + '/BatchNorm'))(
net)
net = tf.nn.relu(net)
end_points[end_point] = net
if final_endpoint == end_point:
return net, end_points
# batch_size x 32 x 56 x 56 x 64
end_point = 'MaxPool_2a_3x3'
net = tf.keras.layers.MaxPool3D(
pool_size=[1, 3, 3],
strides=[1, 2, 2],
padding='same',
name=layer_naming_fn(end_point))(
net)
end_points[end_point] = net
if final_endpoint == end_point:
return net, end_points
# batch_size x 32 x 56 x 56 x 64
end_point = 'Conv2d_2b_1x1'
net = tf.keras.layers.Conv3D(
filters=net_utils.apply_depth_multiplier(64, depth_multiplier),
strides=[1, 1, 1],
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))(
net)
net = batch_norm(
axis=bn_axis,
momentum=norm_momentum,
epsilon=norm_epsilon,
scale=False,
gamma_initializer='ones',
name=layer_naming_fn(end_point + '/BatchNorm'))(
net)
net = tf.nn.relu(net)
end_points[end_point] = net
if final_endpoint == end_point:
return net, end_points
# batch_size x 32 x 56 x 56 x 192
end_point = 'Conv2d_2c_3x3'
if end_point not in temporal_conv_endpoints:
temporal_conv_type = '2d'
net = parameterized_conv_layer(
conv_type=temporal_conv_type,
kernel_size=3,
filters=net_utils.apply_depth_multiplier(192, depth_multiplier),
strides=[1, 1, 1],
rates=[1, 1, 1],
use_sync_bn=use_sync_bn,
norm_momentum=norm_momentum,
norm_epsilon=norm_epsilon,
temporal_conv_initializer=temporal_conv_initializer,
kernel_initializer=tf_utils.clone_initializer(kernel_initializer),
kernel_regularizer=kernel_regularizer,
name=layer_naming_fn(end_point))(
net)
if end_point in self_gating_endpoints:
net = nn_blocks_3d.SelfGating(
filters=net_utils.apply_depth_multiplier(192, depth_multiplier),
name=layer_naming_fn(end_point + '/self_gating'))(
net)
end_points[end_point] = net
if final_endpoint == end_point:
return net, end_points
# batch_size x 32 x 28 x 28 x 192
end_point = 'MaxPool_3a_3x3'
net = tf.keras.layers.MaxPool3D(
pool_size=[1, 3, 3],
strides=[1, 2, 2],
padding='same',
name=layer_naming_fn(end_point))(
net)
end_points[end_point] = net
return net, end_points
def _construct_branch_3_layers(
channels: int,
swap_pool_and_1x1x1: bool,
pool_type: Text,
batch_norm_layer: tf.keras.layers.Layer,
kernel_initializer: Union[Text, initializers.Initializer],
kernel_regularizer: Union[Text, regularizers.Regularizer],
):
"""Helper function for Branch 3 inside Inception module."""
kernel_size = [1, 3, 3] if pool_type == '2d' else [3] * 3
conv = tf.keras.layers.Conv3D(
filters=channels,
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer)
activation = tf.keras.layers.Activation('relu')
pool = tf.keras.layers.MaxPool3D(
pool_size=kernel_size, strides=[1, 1, 1], padding='same')
if swap_pool_and_1x1x1:
branch_3_layers = [conv, batch_norm_layer, activation, pool]
else:
branch_3_layers = [pool, conv, batch_norm_layer, activation]
return branch_3_layers
class InceptionV1CellLayer(tf.keras.layers.Layer):
"""A single Tensorflow 2 cell used in the original I3D/S3D model."""
def __init__(
self,
branch_filters: Sequence[Sequence[int]],
conv_type: Text = '3d',
temporal_dilation_rate: int = 1,
swap_pool_and_1x1x1: bool = False,
use_self_gating_on_branch: bool = False,
use_self_gating_on_cell: bool = False,
use_sync_bn: bool = False,
norm_momentum: float = 0.999,
norm_epsilon: float = 0.001,
temporal_conv_initializer: Union[
Text, initializers.Initializer] = initializers.TruncatedNormal(
mean=0.0, stddev=0.01),
kernel_initializer: Union[Text,
initializers.Initializer] = 'truncated_normal',
kernel_regularizer: Union[Text, regularizers.Regularizer] = 'l2',
parameterized_conv_layer: Type[
net_utils.ParameterizedConvLayer] = net_utils.ParameterizedConvLayer,
**kwargs):
"""A cell structure inspired by Inception V1.
Args:
branch_filters: Specifies the number of filters in four branches
(Branch_0, Branch_1, Branch_2, Branch_3). Single number for Branch_0 and
Branch_3. For Branch_1 and Branch_2, each need to specify two numbers,
one for 1x1x1 and one for 3x3x3.
conv_type: The type of parameterized convolution. Currently, we support
'2d', '3d', '2+1d', '1+2d'.
temporal_dilation_rate: The dilation rate for temporal convolution.
swap_pool_and_1x1x1: A boolean flag indicates that whether to swap the
order of convolution and max pooling in Branch_3.
use_self_gating_on_branch: Whether or not to apply self gating on each
branch of the inception cell.
use_self_gating_on_cell: Whether or not to apply self gating on each cell
after the concatenation of all branches.
use_sync_bn: If True, use synchronized batch normalization.
norm_momentum: A `float` of normalization momentum for the moving average.
norm_epsilon: A `float` added to variance to avoid dividing by zero.
temporal_conv_initializer: Weight initializer for temporal convolution
inside the cell. It only applies to 2+1d and 1+2d cases.
kernel_initializer: Weight initializer for convolutional layers other than
temporal convolution.
kernel_regularizer: Weight regularizer for all convolutional layers.
parameterized_conv_layer: class for parameterized conv layer.
**kwargs: keyword arguments to be passed.
Returns:
out_tensor: A 5-D float tensor of size [batch_size, num_frames, height,
width, channels].
"""
super(InceptionV1CellLayer, self).__init__(**kwargs)
self._branch_filters = branch_filters
self._conv_type = conv_type
self._temporal_dilation_rate = temporal_dilation_rate
self._swap_pool_and_1x1x1 = swap_pool_and_1x1x1
self._use_self_gating_on_branch = use_self_gating_on_branch
self._use_self_gating_on_cell = use_self_gating_on_cell
self._use_sync_bn = use_sync_bn
self._norm_momentum = norm_momentum
self._norm_epsilon = norm_epsilon
self._temporal_conv_initializer = temporal_conv_initializer
self._kernel_initializer = kernel_initializer
self._kernel_regularizer = kernel_regularizer
self._parameterized_conv_layer = parameterized_conv_layer
if use_sync_bn:
self._norm = tf.keras.layers.experimental.SyncBatchNormalization
else:
self._norm = tf.keras.layers.BatchNormalization
if tf.keras.backend.image_data_format() == 'channels_last':
self._channel_axis = -1
else:
self._channel_axis = 1
def _build_branch_params(self):
branch_0_params = [
# Conv3D
dict(
filters=self._branch_filters[0][0],
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer),
# norm
dict(
axis=self._channel_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
scale=False,
gamma_initializer='ones'),
# relu
dict(),
]
branch_1_params = [
# Conv3D
dict(
filters=self._branch_filters[1][0],
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer),
# norm
dict(
axis=self._channel_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
scale=False,
gamma_initializer='ones'),
# relu
dict(),
# ParameterizedConvLayer
dict(
conv_type=self._conv_type,
kernel_size=3,
filters=self._branch_filters[1][1],
strides=[1, 1, 1],
rates=[self._temporal_dilation_rate, 1, 1],
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
temporal_conv_initializer=self._temporal_conv_initializer,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer),
]
branch_2_params = [
# Conv3D
dict(
filters=self._branch_filters[2][0],
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer),
# norm
dict(
axis=self._channel_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
scale=False,
gamma_initializer='ones'),
# relu
dict(),
# ParameterizedConvLayer
dict(
conv_type=self._conv_type,
kernel_size=3,
filters=self._branch_filters[2][1],
strides=[1, 1, 1],
rates=[self._temporal_dilation_rate, 1, 1],
use_sync_bn=self._use_sync_bn,
norm_momentum=self._norm_momentum,
norm_epsilon=self._norm_epsilon,
temporal_conv_initializer=self._temporal_conv_initializer,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer)
]
branch_3_params = [
# Conv3D
dict(
filters=self._branch_filters[3][0],
kernel_size=[1, 1, 1],
padding='same',
use_bias=False,
kernel_initializer=tf_utils.clone_initializer(
self._kernel_initializer),
kernel_regularizer=self._kernel_regularizer),
# norm
dict(
axis=self._channel_axis,
momentum=self._norm_momentum,
epsilon=self._norm_epsilon,
scale=False,
gamma_initializer='ones'),
# relu
dict(),
# pool
dict(
pool_size=([1, 3, 3] if self._conv_type == '2d' else [3] * 3),
strides=[1, 1, 1],
padding='same')
]
if self._use_self_gating_on_branch:
branch_0_params.append(dict(filters=self._branch_filters[0][0]))
branch_1_params.append(dict(filters=self._branch_filters[1][1]))
branch_2_params.append(dict(filters=self._branch_filters[2][1]))
branch_3_params.append(dict(filters=self._branch_filters[3][0]))
out_gating_params = []
if self._use_self_gating_on_cell:
out_channels = (
self._branch_filters[0][0] + self._branch_filters[1][1] +
self._branch_filters[2][1] + self._branch_filters[3][0])
out_gating_params.append(dict(filters=out_channels))
return [
branch_0_params, branch_1_params, branch_2_params, branch_3_params,
out_gating_params
]
def build(self, input_shape):
branch_params = self._build_branch_params()
self._branch_0_layers = [
tf.keras.layers.Conv3D(**branch_params[0][0]),
self._norm(**branch_params[0][1]),
tf.keras.layers.Activation('relu', **branch_params[0][2]),
]
self._branch_1_layers = [
tf.keras.layers.Conv3D(**branch_params[1][0]),
self._norm(**branch_params[1][1]),
tf.keras.layers.Activation('relu', **branch_params[1][2]),
self._parameterized_conv_layer(**branch_params[1][3]),
]
self._branch_2_layers = [
tf.keras.layers.Conv3D(**branch_params[2][0]),
self._norm(**branch_params[2][1]),
tf.keras.layers.Activation('relu', **branch_params[2][2]),
self._parameterized_conv_layer(**branch_params[2][3])
]
if self._swap_pool_and_1x1x1:
self._branch_3_layers = [
tf.keras.layers.Conv3D(**branch_params[3][0]),
self._norm(**branch_params[3][1]),
tf.keras.layers.Activation('relu', **branch_params[3][2]),
tf.keras.layers.MaxPool3D(**branch_params[3][3]),
]
else:
self._branch_3_layers = [
tf.keras.layers.MaxPool3D(**branch_params[3][3]),
tf.keras.layers.Conv3D(**branch_params[3][0]),
self._norm(**branch_params[3][1]),
tf.keras.layers.Activation('relu', **branch_params[3][2]),
]
if self._use_self_gating_on_branch:
self._branch_0_layers.append(
nn_blocks_3d.SelfGating(**branch_params[0][-1]))
self._branch_1_layers.append(
nn_blocks_3d.SelfGating(**branch_params[1][-1]))
self._branch_2_layers.append(
nn_blocks_3d.SelfGating(**branch_params[2][-1]))
self._branch_3_layers.append(
nn_blocks_3d.SelfGating(**branch_params[3][-1]))
if self._use_self_gating_on_cell:
self.cell_self_gating = nn_blocks_3d.SelfGating(**branch_params[4][0])
super(InceptionV1CellLayer, self).build(input_shape)
def call(self, inputs):
x = inputs
for layer in self._branch_0_layers:
x = layer(x)
branch_0 = x
x = inputs
for layer in self._branch_1_layers:
x = layer(x)
branch_1 = x
x = inputs
for layer in self._branch_2_layers:
x = layer(x)
branch_2 = x
x = inputs
for layer in self._branch_3_layers:
x = layer(x)
branch_3 = x
out_tensor = tf.concat([branch_0, branch_1, branch_2, branch_3],
axis=self._channel_axis)
if self._use_self_gating_on_cell:
out_tensor = self.cell_self_gating(out_tensor)
return out_tensor
|
[
"[email protected]"
] | |
15927dcf24025279907d2e741868b61cee115051
|
09e57dd1374713f06b70d7b37a580130d9bbab0d
|
/benchmark/startQiskit_QC113.py
|
3d630e9b6df273b3ce63a9772869e196fbbddb71
|
[
"BSD-3-Clause"
] |
permissive
|
UCLA-SEAL/QDiff
|
ad53650034897abb5941e74539e3aee8edb600ab
|
d968cbc47fe926b7f88b4adf10490f1edd6f8819
|
refs/heads/main
| 2023-08-05T04:52:24.961998 | 2021-09-19T02:56:16 | 2021-09-19T02:56:16 | 405,159,939 | 2 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,588 |
py
|
# qubit number=3
# total number=11
import numpy as np
from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ
import networkx as nx
from qiskit.visualization import plot_histogram
from typing import *
from pprint import pprint
from math import log2
from collections import Counter
from qiskit.test.mock import FakeVigo, FakeYorktown
kernel = 'circuit/bernstein'
def make_circuit(n:int) -> QuantumCircuit:
# circuit begin
input_qubit = QuantumRegister(n,"qc")
prog = QuantumCircuit(input_qubit)
prog.h(input_qubit[0]) # number=1
prog.h(input_qubit[1]) # number=2
prog.h(input_qubit[2]) # number=3
prog.x(input_qubit[2]) # number=6
prog.h(input_qubit[3]) # number=4
prog.y(input_qubit[3]) # number=5
for edge in E:
k = edge[0]
l = edge[1]
prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1])
prog.p(gamma, k)
prog.p(gamma, l)
prog.rx(2 * beta, range(len(V)))
prog.swap(input_qubit[1],input_qubit[0]) # number=7
prog.swap(input_qubit[1],input_qubit[0]) # number=8
prog.x(input_qubit[2]) # number=9
prog.x(input_qubit[2]) # number=10
# circuit end
return prog
if __name__ == '__main__':
n = 4
V = np.arange(0, n, 1)
E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)]
G = nx.Graph()
G.add_nodes_from(V)
G.add_weighted_edges_from(E)
step_size = 0.1
a_gamma = np.arange(0, np.pi, step_size)
a_beta = np.arange(0, np.pi, step_size)
a_gamma, a_beta = np.meshgrid(a_gamma, a_beta)
F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * (
1 + np.cos(4 * a_gamma) ** 2)
result = np.where(F1 == np.amax(F1))
a = list(zip(result[0], result[1]))[0]
gamma = a[0] * step_size
beta = a[1] * step_size
prog = make_circuit(4)
sample_shot =5600
writefile = open("../data/startQiskit_QC113.csv", "w")
# prog.draw('mpl', filename=(kernel + '.png'))
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
backend = provider.get_backend("ibmq_5_yorktown")
circuit1 = transpile(prog, FakeYorktown())
circuit1.measure_all()
prog = circuit1
info = execute(prog,backend=backend, shots=sample_shot).result().get_counts()
print(info, file=writefile)
print("results end", file=writefile)
print(circuit1.depth(), file=writefile)
print(circuit1, file=writefile)
writefile.close()
|
[
"[email protected]"
] | |
2d2395a4ac28c64b53583e2fe39ad243adc5160f
|
2db1a0038d26ccb6adc572b536cb5cd401fd7498
|
/tryTen/Lib/encodings/iso2022_jp_2004.py
|
3c1eaafdaa145af7e2fa8dab5dc18e48af4c3667
|
[] |
no_license
|
syurk/labpin
|
e795c557e7d7bcd4ff449cb9a3de32959a8c4968
|
04070dd5ce6c0a32c9ed03765f4f2e39039db411
|
refs/heads/master
| 2022-12-12T02:23:54.975797 | 2018-11-29T16:03:26 | 2018-11-29T16:03:26 | 159,692,630 | 0 | 1 | null | 2022-11-19T12:15:55 | 2018-11-29T16:04:20 |
Python
|
UTF-8
|
Python
| false | false | 1,074 |
py
|
#
# iso2022_jp_2004.py: Python Unicode Codec for ISO2022_JP_2004
#
# Written by Hye-Shik Chang <[email protected]>
#
import _codecs_iso2022, codecs
import _multibytecodec as mbc
codec = _codecs_iso2022.getcodec('iso2022_jp_2004')
class Codec(codecs.Codec):
encode = codec.encode
decode = codec.decode
class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
codecs.IncrementalEncoder):
codec = codec
class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
codecs.IncrementalDecoder):
codec = codec
class StreamReader(Codec, mbc.MultibyteStreamReader, codecs.StreamReader):
codec = codec
class StreamWriter(Codec, mbc.MultibyteStreamWriter, codecs.StreamWriter):
codec = codec
def getregentry():
return codecs.CodecInfo(
name='iso2022_jp_2004',
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamreader=StreamReader,
streamwriter=StreamWriter,
)
|
[
"[email protected]"
] | |
a9488eccd4dbce8dcc9a434b97e18a37d6b2374c
|
fe9b3bbffe50c7cc6c61f08176cc12ede5b6a90e
|
/solutions/2039. The Time When the Network Becomes Idle/2039.py
|
356df5e55b05a74b32c6ed1bbf5981746b22ee95
|
[] |
no_license
|
freephys/LeetCode-6
|
56778d3d5d37b5c3370295c5ada30f4a45fa76f6
|
bbabe6ace73b0176a2210dc0a20cc2d8e5566122
|
refs/heads/main
| 2023-09-03T19:21:16.985774 | 2021-10-19T06:01:34 | 2021-10-19T06:01:34 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 783 |
py
|
class Solution:
def networkBecomesIdle(self, edges: List[List[int]], patience: List[int]) -> int:
n = len(patience)
ans = 0
dist = [inf] * n # dist[i] := dist(i, 0)
graph = [[] for _ in range(n)]
for u, v in edges:
graph[u].append(v)
graph[v].append(u)
q = deque([0])
dist[0] = 0
while q:
for _ in range(len(q)):
node = q.popleft()
for child in graph[node]:
if dist[child] == inf:
dist[child] = dist[node] + 1
q.append(child)
for i in range(1, n):
numResending = (dist[i] * 2 - 1) // patience[i]
lastResendingTime = patience[i] * numResending
lastArrivingTime = lastResendingTime + dist[i] * 2
ans = max(ans, lastArrivingTime)
return ans + 1
|
[
"[email protected]"
] | |
a52aba24ee0c24c2f845c80c62c29ce3528659b8
|
91fe8f479fa921fa84111d19222a5c6aa6eff030
|
/basis/progr-py/Gui/Tour/grid2_same.py
|
6eab34889e18fd70042bc8b849e9ada203ed8582
|
[] |
no_license
|
romanticair/python
|
2055c9cdaa46894c9788d5797643283786ed46dd
|
6f91fe5e7cbedcdf4b8f7baa7641fd615b4d6141
|
refs/heads/master
| 2022-11-03T17:17:17.608786 | 2019-07-05T07:07:29 | 2019-07-05T07:07:29 | 195,356,190 | 0 | 1 | null | 2022-10-14T20:51:14 | 2019-07-05T07:00:33 |
Python
|
UTF-8
|
Python
| false | false | 553 |
py
|
"""
build pack and grid forms on different frames in same window;
can't grid and pack in same parent container (e.g., root window)
but can mix in same window if done in different parent frames;
"""
from tkinter import *
from grid2 import gridbox, packbox
root = Tk()
Label(root, text='Grid:').pack()
frm = Frame(root, bd=5, relief=RAISED)
frm.pack(padx=5, pady=5)
gridbox(frm)
Label(root, text='Pack:').pack()
frm = Frame(root, bd=5, relief=RAISED)
frm.pack(padx=5, pady=5)
packbox(frm)
Button(root, text='Quit', command=root.quit).pack()
mainloop()
|
[
"[email protected]"
] | |
a6f1e1eb27d29d840568bd9dee440e51a8b78d9f
|
9135a1c5bcd20f77971085496d9e966d892fb7e9
|
/reports/python/jobRunsReport/jobRunsReport.py
|
1c20786a601006a31a3fbc95bf8f14abc0b6b594
|
[
"Apache-2.0"
] |
permissive
|
bseltz-cohesity/scripts
|
cc54b2b3534175562b0d9cfba85bd63aa5ca2346
|
53c4b057bb4f41ae079fc8236caacf13fd35c10e
|
refs/heads/master
| 2023-08-23T13:13:12.169724 | 2023-08-22T13:21:22 | 2023-08-22T13:21:22 | 142,414,700 | 83 | 44 |
Apache-2.0
| 2023-08-24T11:42:22 | 2018-07-26T08:50:47 |
PowerShell
|
UTF-8
|
Python
| false | false | 4,679 |
py
|
#!/usr/bin/env python
"""job runs report"""
# import pyhesity wrapper module
from pyhesity import *
from datetime import datetime
import codecs
# command line arguments
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-v', '--vip', type=str, required=True) # cluster to connect to
parser.add_argument('-u', '--username', type=str, required=True) # username
parser.add_argument('-d', '--domain', type=str, default='local') # (optional) domain - defaults to local
parser.add_argument('-i', '--useApiKey', action='store_true') # use API key authentication
parser.add_argument('-pwd', '--password', type=str, default=None) # optional password
parser.add_argument('-j', '--jobname', type=str, required=True)
parser.add_argument('-n', '--numruns', type=int, default=100)
parser.add_argument('-y', '--days', type=int, default=7)
parser.add_argument('-units', '--units', type=str, choices=['MB', 'GB', 'mb', 'gb'], default='MB')
args = parser.parse_args()
vip = args.vip
username = args.username
domain = args.domain
password = args.password
useApiKey = args.useApiKey
jobname = args.jobname
numruns = args.numruns
days = args.days
units = args.units
multiplier = 1024 * 1024
if units.lower() == 'gb':
multiplier = 1024 * 1024 * 1024
# authenticate
apiauth(vip=vip, username=username, domain=domain, password=password, useApiKey=useApiKey, noretry=True)
now = datetime.now()
nowUsecs = dateToUsecs(now.strftime("%Y-%m-%d %H:%M:%S"))
daysBackUsecs = timeAgo(days, 'days')
# outfile
cluster = api('get', 'cluster')
dateString = now.strftime("%Y-%m-%d")
outfile = 'jobRunsReport-%s-%s-%s.csv' % (cluster['name'], jobname, dateString)
f = codecs.open(outfile, 'w')
# headings
f.write('Run Date,Run Type,Duration Seconds,Status,Data Read (%s),Data Written (%s),Success,Error\n' % (units, units))
jobs = api('get', 'data-protect/protection-groups?isDeleted=false&isActive=true&includeTenants=true', v=2)
job = [j for j in jobs['protectionGroups'] if j['name'].lower() == jobname.lower()]
if jobs is None or len(jobs) == 0:
print('job %s not found' % jobname)
exit()
else:
job = job[0]
finishedStates = ['kCanceled', 'kSuccess', 'kFailure', 'kWarning', 'kCanceling', '3', '4', '5', '6']
endUsecs = nowUsecs
while 1:
runs = api('get', 'data-protect/protection-groups/%s/runs?numRuns=%s&endTimeUsecs=%s&includeTenants=true&includeObjectDetails=true' % (job['id'], numruns, endUsecs), v=2)
for run in runs['runs']:
try:
if 'localBackupInfo' in run:
info = run['localBackupInfo']
else:
info = run['archivalInfo']['archivalTargetResults'][0]
endUsecs = info['startTimeUsecs'] - 1
runtype = info['runType'][1:]
if runtype == 'Regular':
runType = 'Incremental'
startTimeUsecs = info['startTimeUsecs']
if 'endTimeUsecs' in info:
endTimeUsecs = info['endTimeUsecs']
else:
endTimeUsecs = nowUsecs
durationSecs = round((endTimeUsecs - startTimeUsecs) / 1000000, 0)
runStartTime = usecsToDate(info['startTimeUsecs'])
if info['startTimeUsecs'] < daysBackUsecs:
break
if 'localSnapshotStats' in info:
bytesread = round(info['localSnapshotStats']['bytesRead'] / multiplier, 2)
byteswritten = round(info['localSnapshotStats']['bytesWritten'] / multiplier, 2)
numsuccess = len([o for o in run['objects'] if o['localSnapshotInfo']['snapshotInfo']['status'] in ['kSuccessful', 'kWarning']])
numfailed = len([o for o in run['objects'] if o['localSnapshotInfo']['snapshotInfo']['status'] == 'kFailed'])
else:
bytesread = ''
byteswritten = ''
if 'stats' in info and 'bytesRead' in info['stats']:
bytesread = round(info['stats']['bytesRead'] / multiplier, 2)
if 'stats' in info and 'physicalBytesTransferred' in info['stats']:
byteswritten = round(info['stats']['physicalBytesTransferred'] / multiplier, 2)
numsuccess = ''
numfailed = ''
status = info['status']
print(" %s %s" % (runStartTime, status))
f.write('"%s","%s","%s","%s","%s","%s","%s","%s"\n' % (runStartTime, runtype, durationSecs, status, bytesread, byteswritten, numsuccess, numfailed))
except Exception as e:
print('exception!')
pass
if len(runs['runs']) < numruns:
break
f.close()
print('\nOutput saved to %s\n' % outfile)
|
[
"[email protected]"
] | |
2b6c535bcc9b8cbd7dad3ca4768e3cf8edf3e7b6
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03455/s099249586.py
|
ed7bae5ea3248483cf2e487ab2a7bf12c75b9a63
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102 | 2021-05-13T17:27:22 | 2021-05-13T17:27:22 | 367,112,348 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 188 |
py
|
import sys
input_list = sys.stdin
for num in input_list:
num_list = num.split(' ')
a = int(num_list[0]) % 2
b = int(num_list[1]) % 2
ans = 'Even'
if a * b == 1:
ans = 'Odd'
print(ans)
|
[
"[email protected]"
] | |
04876ea4060849c387eef743dca95dec82adb55c
|
0b8ae7a9bc185b76c64cb353808da7713c4b8ecd
|
/baekjoon/[Bruteforce]/연습/[Brute_Force]*스타트와 링크.py
|
12fc86f41061398ecda8721884d633c54fd7a0fa
|
[] |
no_license
|
snowedev/baekjoon-code.plus
|
b5f468b99fa70b00521657122f46cef575cabb9b
|
2f983a9c559e803f6dcdeb549aa8d304ff5a664c
|
refs/heads/master
| 2023-04-05T22:22:01.652744 | 2021-04-14T16:11:57 | 2021-04-14T16:11:57 | 357,951,541 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,158 |
py
|
# 스타트와 링크 # B_14889
# N제한(4<=N<=20)
# N명중에 N/2명을 골라서 두 팀으로 나누는 경우의수: N C N/2 -> 20 C 10
# 경우의 수 백만개 이하
"""
1. 백트래킹으로 푸는 방법 (백트래킹: 재귀함수를 이용한 브루트포스 방법.)
* 요구하는 답을 도출할 수 없을 때 불필요한 경우의 수를 만들지 않음으로써(재귀호출중단)
처리속도를 월등히 빨라지게
"""
def go(index, first, second):
if index == n:
if len(first) != n//2:
return -1
if len(second) != n//2:
return -1
t1 = 0
t2 = 0
for i in range(n//2):
for j in range(n//2):
if i == j:
continue
t1 += s[first[i]][first[j]]
t2 += s[second[i]][second[j]]
diff = abs(t1-t2)
return diff
# 백트래킹 컷팅조건: 팀이 n/2을 넘어서면 더 이상 구할 필요가 없음
if len(first) > n//2:
return -1
if len(second) > n//2:
return -1
ans = -1
t1 = go(index+1, first+[index], second)
if ans == -1 or (t1 != -1 and ans > t1):
ans = t1
t2 = go(index+1, first, second+[index])
if ans == -1 or (t2 != -1 and ans > t2):
ans = t2
return ans
n = int(input())
s = [list(map(int,input().split())) for _ in range(n)]
print(go(0, [], []))
"""
2. 비트마스크 풀이
n = int(input())
s = [list(map(int,input().split())) for _ in range(n)]
ans = -1
for i in range((1<<n)):
cnt = 0
for j in range(n):
if (i&(1<<j)) > 0:
cnt += 1
if cnt != n//2:
continue
first = []
second = []
for j in range(n):
if (i&(1<<j)) > 0:
first += [j]
else:
second += [j]
if len(first) != n//2:
continue
t1 = 0
t2 = 0
for l1 in range(n//2):
for l2 in range(n//2):
if l1 == l2:
continue
t1 += s[first[l1]][first[l2]]
t2 += s[second[l1]][second[l2]]
diff = abs(t1-t2)
if ans == -1 or ans > diff:
ans = diff
print(ans)
"""
"""
3. 브루트 포스로 푸는 방법
def next_permutation(a):
i = len(a)-1
while i > 0 and a[i-1] >= a[i]:
i -= 1
if i <= 0:
return False
j = len(a)-1
while a[j] <= a[i-1]:
j -= 1
a[i-1],a[j] = a[j],a[i-1]
j = len(a)-1
while i < j:
a[i],a[j] = a[j],a[i]
i += 1
j -= 1
return True
n = int(input())
a = [list(map(int,input().split())) for _ in range(n)]
b = [0 if i < n/2 else 1 for i in range(n)]
ans = 100000000
while True:
first = []
second = []
for i in range(n):
if b[i] == 0:
first.append(i)
else:
second.append(i)
one = 0
two = 0
for i in range(n//2):
for j in range(n//2):
if i == j:
continue
one += a[first[i]][first[j]]
two += a[second[i]][second[j]]
diff = abs(one-two)
if ans > diff:
ans = diff
if not next_permutation(b):
break
print(ans)
"""
|
[
"[email protected]"
] | |
ca4654278aafa08267bc95a5e8282e44e8ff23d0
|
a44557a162d42edfce3c51d3cf27363342591f96
|
/server/client.py
|
cf5d50bfb0557df17486b2ccecb1ed8b91276448
|
[] |
no_license
|
Jeffrey-Ede/simple-webserver
|
57d9370e630a5949106bd55d32120b898b848543
|
0da4de4567f6e46487ce70af1936e116b7c67339
|
refs/heads/master
| 2020-07-09T14:59:04.047471 | 2019-08-23T13:26:13 | 2019-08-23T13:26:13 | 204,003,153 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,755 |
py
|
from socketIO_client import SocketIO
import zlib
import numpy as np
from scipy.misc import imread
import cv2
from helpers import *
model_dir = "//flexo.ads.warwick.ac.uk/Shared41/Microscopy/Jeffrey-Ede/models/stem-random-walk-nin-20-54/"
addr = model_dir + "truth-975000.tif"
inputs = imread(addr, mode='F')
inputs = np.random.rand(512,512)
#inputs = cv2.resize(inputs, (103,103), interpolation=cv2.INTER_AREA)
#maximum = np.max(inputs)
#minimum = np.min(inputs)
#inputs = (128*norm_img(inputs)).clip(-127, 128)
###############################################################################
message = zlib.compress(inputs.astype(np.float16).tostring()).hex()
import time
t0 = time.time()
def handle_processed_data(stringarray):
#img = np.fromstring(zlib.decompress(bytes.fromhex(stringarray["data"])), dtype=np.float16).reshape((512,512))
print("time", time.process_time()-t0)
#disp(img)
#def handle_processed_data(stringarray):
# #img = np.fromstring(zlib.decompress(bytes.fromhex(stringarray)), dtype=np.float16).reshape((512,512))
# print("time", time.process_time()-t0)
# #disp(img)
#Establish connection to server
socketIO = SocketIO('137.205.164.177', 8000, async_mode="gevent", engineio_logger=True)
#socketIO = SocketIO('137.205.164.200', 8000, async_mode="gevent", engineio_logger=True)
socketIO.wait(seconds=1)
socketIO.on("processed", handle_processed_data)
###############################################################################
for _ in range(5):
t0 = time.process_time()
#socketIO.emit('process', message)
socketIO.emit('process', message)
socketIO.wait(seconds=1)
#socketIO.wait(seconds=1)
|
[
"[email protected]"
] | |
bd0dfb49776e3f17cd52e506a9c1a66a185ca7dd
|
ab6cfc2aedad3de7a04efae4a6105dc893958b9e
|
/hivwholeseq/cross_sectional/clean_reference_alignment.py
|
0cba991807859d03aeaa484bd25f53dd8312ead1
|
[
"MIT"
] |
permissive
|
neherlab/hivwholeseq
|
158c0ce590bc67d1d36042c71b8b0afa3e8d8abf
|
978ce4060362e4973f92b122ed5340a5314d7844
|
refs/heads/master
| 2021-01-15T16:48:15.769316 | 2015-09-04T08:33:52 | 2015-09-04T08:33:52 | 49,801,765 | 4 | 3 | null | 2016-01-17T03:43:46 | 2016-01-17T03:43:44 | null |
UTF-8
|
Python
| false | false | 2,847 |
py
|
# vim: fdm=marker
'''
author: Fabio Zanini
date: 15/01/15
content: Clean a reference alignment from LANL sequences from problematic seqs.
'''
# Modules
import os
import argparse
from collections import defaultdict
from Bio import AlignIO
from hivwholeseq.cross_sectional.filenames import (
get_raw_LANL_sequences_filename,
get_subtype_reference_alignment_filename)
from hivwholeseq.utils.sequence import align_codon_pairwise
# Globals
# Functions
def filter_sequence(seq, VERBOSE=0):
'''Align sequence to refernce, stripping reference gaps'''
seqstr = ''.join(seq).upper()
n_amb = len(seqstr) - sum(map(seqstr.count, ('A', 'C', 'G', 'T', '-')))
if n_amb > 2:
return False
return True
def clean_reference_alignment(region, refname,
VERBOSE=0,
subtype='B',
):
'''Clean reference alignment'''
from hivwholeseq.reference import load_custom_reference
from Bio import SeqIO
from Bio.Align import MultipleSeqAlignment
from hivwholeseq.cross_sectional.filenames import (
get_subtype_reference_alignment_filename)
fn = get_subtype_reference_alignment_filename(region, subtype=subtype,
refname=refname,
VERBOSE=VERBOSE)
ali = AlignIO.read(fn, 'fasta')
nseqs = len(ali)
ali = MultipleSeqAlignment(filter(filter_sequence, ali))
nseqsnew = len(ali)
if VERBOSE >= 2:
print refname, region, subtype+':', nseqsnew, 'of', nseqs, 'seqs kept'
return ali
# Script
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Align to reference',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--region', required=True,
help='Region to anign (e.g. V3)')
parser.add_argument('--reference', default='HXB2',
help='Reference to use for alignment')
parser.add_argument('--verbose', type=int, default=0,
help='Verbosity level [0-4]')
parser.add_argument('--subtype', default='B',
help='Subtype to analyze')
args = parser.parse_args()
region = args.region
refname = args.reference
VERBOSE = args.verbose
subtype = args.subtype
ali = clean_reference_alignment(region, refname,
subtype=subtype,
VERBOSE=VERBOSE)
fn = get_subtype_reference_alignment_filename(region, subtype=subtype,
refname=refname,
VERBOSE=VERBOSE)
AlignIO.write(ali, fn, 'fasta')
|
[
"[email protected]"
] | |
78ef491bb7f375603e96284d1a56004c0d3f2715
|
207bc9a3e7a9f035353963876757745ddbcfc384
|
/knet/tests/accounts/test_oauth.py
|
9692e639f90aae1d3d13c51afdf526b41f76f4e3
|
[] |
no_license
|
oddbird/knet
|
e6322cbca0350dc78d2a4e824a84d81f42960878
|
30e41c37dd608cbc8f1bd794cb30c7d935cf6723
|
refs/heads/master
| 2021-01-25T07:18:53.337897 | 2013-07-27T20:19:33 | 2013-07-27T20:19:33 | 9,507,222 | 0 | 0 | null | 2013-07-27T20:43:07 | 2013-04-17T20:46:55 |
Python
|
UTF-8
|
Python
| false | false | 726 |
py
|
from django.core.urlresolvers import reverse
from django.test.utils import override_settings
from pretend import stub
from knet.accounts.oauth import get_provider
class FakeProvider(stub):
pass
@override_settings(
BASE_URL = 'http://example.com',
OAUTH_PROVIDER='knet.tests.accounts.test_oauth.FakeProvider',
OAUTH_CLIENT_ID='client id',
OAUTH_CLIENT_SECRET='client secret')
def test_get_provider():
provider = get_provider(redirect_to='/foo/')
assert isinstance(provider, FakeProvider)
assert provider.redirect_uri == (
'http://example.com' + reverse('oauth') + '?next=%2Ffoo%2F')
assert provider.client_id == 'client id'
assert provider.client_secret == 'client secret'
|
[
"[email protected]"
] | |
f750b7d131900809440e3ecca557b7f423d4ec30
|
8c8ed3e1046655beddc768672ca45e16a7a1c15e
|
/skbm/generate_dataset.py
|
25290c34ff04c022b713a1c9b9794723a79d5c10
|
[] |
no_license
|
DSABenchmark/DSAB
|
e44759eb31d369d3a9a63505588ee14481c60dfe
|
7af890230add7ac3039c15061eb130f86b4de3b8
|
refs/heads/master
| 2020-04-03T11:23:04.675308 | 2018-12-05T12:26:15 | 2018-12-05T12:26:15 | 155,220,126 | 2 | 1 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,977 |
py
|
import sys
import random
from scipy.stats import powerlaw
import math
import os
'''
input:
dir - directory of the dataset
distributionName - dataset type(zipf/powerlaw/weibull)
bytePerStr - bytes number per item
totalNum - total number in dataset
distinctNum - distinct number in dataset
parameter1 - for zipf/powerlaw, skewness;
for weibull, a parameter in discrete Weibull distribution (0<parameter1<1)
(ref http://www.math.wm.edu/~leemis/chart/UDR/PDFs/Discreteweibull.pdf)
parameter2 - only for weibull, a positive shape parameter
output:
.dat file - for zipf/powerlaw, 'dir+ distributionName+ parameter1.dat'
for weibull, 'dir+ distributionName+ parameter1_parameter2.dat'
'''
def powerlaw(N, s):
res = []
base = 0.0
for n in range(1, N + 1):
t = 1 / (n ** s)
base += t
res.append(t)
return [r / base for r in res]
def weibull(N, p, k):
res = []
for n in range(0, N):
power1 = n ** k
p1 = (1 - p) ** power1
power2 = (n + 1) ** k
p2 = (1 - p) ** power2
res.append(p1 - p2)
return res
def random_bytes(byts):
st = ''
for j in range(byts):
st += random.choice(string.printable[:-5])
b = bytes(st, encoding = 'utf-8')
return b
def gen_random_strings(len, byts):
strs = set()
res = []
for i in range(len):
s = os.urandom(byts)
while s in strs:
s = os.urandom(byts)
res.append(s)
strs.add(s)
return res
def gen(freqs, byts):
data = []
strs = gen_random_strings(len(freqs), byts)
chs = [i for i in range(len(freqs))]
while len(chs) != 0:
p = random.randint(0, len(chs) - 1)
pos = chs[p]
data.append(strs[pos])
freqs[pos] -= 1
if freqs[pos] == 0:
del chs[p]
random.shuffle(data)
return data
def dataset_write(fp, distriName, byts, tot, dis, pa1, pa2):
if distriName == 'zipf' or distriName == 'powerlaw':
props = powerlaw(dis, pa1)
elif distriName == 'weibull':
props = weibull(dis, pa1, pa2)
# if not os.path.exists(fp):
# os.mkdir(fp)
freq = [round(prop * tot)+1 for prop in props]
dataset = gen(freq, byts)
#print(len(dataset))
if distriName == 'zipf' or distriName == 'powerlaw':
# fpath = fp + distriName + str(pa1) + '.dat'
fpath = fp
elif distriName == 'weibull':
# fpath = fp + distriName + str(pa1) + '_' + str(pa2) + '.dat'
fpath = fp
with open(fpath, 'wb') as f:
for d in dataset:
f.write(d)
return fpath
if __name__ == "__main__":
dir = 'dataset/'
distributionName = 'weibull'
bytePerStr = 4
totalNum = 1000000
distinctNum = 50000
parameter1 = 0.3
parameter2 = 2
dataset_write(dir, distributionName, bytePerStr, totalNum, distinctNum, parameter1, parameter2)
|
[
"[email protected]"
] | |
338db2c5671740e8cf914067ab343ce6f98b8c7e
|
6fcfb638fa725b6d21083ec54e3609fc1b287d9e
|
/python/strongh_storm-drpc-client-py/storm-drpc-client-py-master/storm/drpc.py
|
f2e2a2c86713ccfb33f3c443049113a066b9410e
|
[] |
no_license
|
LiuFang816/SALSTM_py_data
|
6db258e51858aeff14af38898fef715b46980ac1
|
d494b3041069d377d6a7a9c296a14334f2fa5acc
|
refs/heads/master
| 2022-12-25T06:39:52.222097 | 2019-12-12T08:49:07 | 2019-12-12T08:49:07 | 227,546,525 | 10 | 7 | null | 2022-12-19T02:53:01 | 2019-12-12T07:29:39 |
Python
|
UTF-8
|
Python
| false | false | 2,017 |
py
|
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol
from repoze.lru import lru_cache
from DistributedRPC import Client
from sasl_client_transport import SaslClientTransport
import json
STORM_SASL_SERVICE = 'storm_thrift_server'
class DRPCClient:
def __init__(self, host, port=3772, timeout=None, reconnect=False, use_plain_sasl=False):
self.host = host
self.port = port
self.timeout = timeout
self.reconnect = reconnect
self.use_plain_sasl = use_plain_sasl
if not reconnect:
self.connect()
def connect(self):
self.socket = TSocket.TSocket(self.host, self.port)
if self.timeout:
self.socket.setTimeout(self.timeout)
if self.use_plain_sasl:
self.transport = SaslClientTransport(self.host, self.socket, service=STORM_SASL_SERVICE, mechanism='PLAIN')
else:
self.transport = TTransport.TFramedTransport(self.socket)
self.protocol = TBinaryProtocol.TBinaryProtocol(self.transport)
self.transport.open()
self.client = Client(self.protocol)
def execute(self, func, args):
if self.reconnect:
self.connect()
r = json.loads(self.client.execute(func, args))
if self.reconnect:
self.close()
return r
def executeJSON(self, func, **kwargs):
return self.execute(func, json.dumps(kwargs))
def close(self):
self.transport.close()
class DRPCLRUClient(DRPCClient):
def __init__(self, host, port=3772, timeout=None, cache_size=50, reconnect=False, use_plain_sasl=False):
self.host = host
self.port = port
self.timeout = timeout
cache_size = 100
self.cache = lru_cache(maxsize=cache_size)
self.execute = self.cache(self.execute)
self.reconnect = reconnect
self.use_plain_sasl = use_plain_sasl
if not reconnect:
self.connect()
|
[
"[email protected]"
] | |
8fc0f772e77af4b547b18176adc8fbf3a50a97c7
|
ce083128fa87ca86c65059893aa8882d088461f5
|
/python/flask-mail-labs/.venv/lib/python2.7/site-packages/alembic/ddl/oracle.py
|
554ac221ab786d06459486e4572bad48841e3978
|
[] |
no_license
|
marcosptf/fedora
|
581a446e7f81d8ae9a260eafb92814bc486ee077
|
359db63ff1fa79696b7bc803bcfa0042bff8ab44
|
refs/heads/master
| 2023-04-06T14:53:40.378260 | 2023-03-26T00:47:52 | 2023-03-26T00:47:52 | 26,059,824 | 6 | 5 | null | 2022-12-08T00:43:21 | 2014-11-01T18:48:56 | null |
UTF-8
|
Python
| false | false | 2,773 |
py
|
from sqlalchemy.ext.compiler import compiles
from .impl import DefaultImpl
from .base import alter_table, AddColumn, ColumnName, \
format_column_name, ColumnNullable, \
format_server_default, ColumnDefault, format_type, ColumnType
class OracleImpl(DefaultImpl):
__dialect__ = 'oracle'
transactional_ddl = False
batch_separator = "/"
command_terminator = ""
def __init__(self, *arg, **kw):
super(OracleImpl, self).__init__(*arg, **kw)
self.batch_separator = self.context_opts.get(
"oracle_batch_separator",
self.batch_separator)
def _exec(self, construct, *args, **kw):
result = super(OracleImpl, self)._exec(construct, *args, **kw)
if self.as_sql and self.batch_separator:
self.static_output(self.batch_separator)
return result
def emit_begin(self):
self._exec("SET TRANSACTION READ WRITE")
def emit_commit(self):
self._exec("COMMIT")
@compiles(AddColumn, 'oracle')
def visit_add_column(element, compiler, **kw):
return "%s %s" % (
alter_table(compiler, element.table_name, element.schema),
add_column(compiler, element.column, **kw),
)
@compiles(ColumnNullable, 'oracle')
def visit_column_nullable(element, compiler, **kw):
return "%s %s %s" % (
alter_table(compiler, element.table_name, element.schema),
alter_column(compiler, element.column_name),
"NULL" if element.nullable else "NOT NULL"
)
@compiles(ColumnType, 'oracle')
def visit_column_type(element, compiler, **kw):
return "%s %s %s" % (
alter_table(compiler, element.table_name, element.schema),
alter_column(compiler, element.column_name),
"%s" % format_type(compiler, element.type_)
)
@compiles(ColumnName, 'oracle')
def visit_column_name(element, compiler, **kw):
return "%s RENAME COLUMN %s TO %s" % (
alter_table(compiler, element.table_name, element.schema),
format_column_name(compiler, element.column_name),
format_column_name(compiler, element.newname)
)
@compiles(ColumnDefault, 'oracle')
def visit_column_default(element, compiler, **kw):
return "%s %s %s" % (
alter_table(compiler, element.table_name, element.schema),
alter_column(compiler, element.column_name),
"DEFAULT %s" %
format_server_default(compiler, element.default)
if element.default is not None
else "DEFAULT NULL"
)
def alter_column(compiler, name):
return 'MODIFY %s' % format_column_name(compiler, name)
def add_column(compiler, column, **kw):
return "ADD %s" % compiler.get_column_specification(column, **kw)
|
[
"[email protected]"
] | |
0b7b856a5e1e08c1b8295026c552fa5de82b3e2f
|
7925e4ff3950cd94275779a51f80d9f2078fe132
|
/algorithm_python/로또_만들기(lotto).py
|
51ff56e714528d74cb1377fd968769821ffee639
|
[] |
no_license
|
Covee/Algorithm_Prac_Python
|
6e7336fbb62cd1e2b3b0215d34618481540983c4
|
42ea338a96949ac8b420e83320610a435b2cee59
|
refs/heads/master
| 2020-03-23T07:35:33.693367 | 2018-08-11T17:27:37 | 2018-08-11T17:27:37 | 141,280,858 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,294 |
py
|
# 백준 / 10947
# 정답 비율: 3.83%
# 문제: 로또 만들기
# 1보다 크거나 같고, 45보다 작거나 같은 수 6개를 출력한다. 채점 프로그램은 랜덤으로 이용해서 '수 6개와, 보너스 숫자 하나'를 구한다.
# 채점 프로그램이 구한 숫자와 6개와 번호가 모두 일치하면 100점을 받는다.
# 5개의 번호가 일치하고, 일치하지 않는 숫자가 보너스 숫자와 일치하면 80점을 받는다.
# 5개의 번호가 일치하면 60점을 받는다. 4개의 번호가 일치하면 40점을 받는다. 3개의 번호가 일치하면 20점을 받는다.
# 그 외의 경우에는 틀렸습니다를 받는다.
import random
def lotto(my_pick, bonus):
lottolist = []
lottobonus = []
for i in range(0, 6):
pick = random.randint(1, 45)
while pick in lottolist: # 리스트 안에 중복되는 수가 존재하면 다시 랜덤 돌려서, 중복 없을때까지 돌린 후 빠져나오는 조건.
pick = random.randint(1, 45)
lottolist.append(pick)
pick = random.randint(1, 45) # 다시 보너스 숫자 한개 추첨(역시 중복 방지)
while pick in lottobonus:
pick = random.randint(1, 45)
lottobonus.append(pick)
lottolist.sort()
my_pick.sort()
# 프로그램이 잘 돌아가는지 체크해 볼 예제 (왜냐하면 로또 1등 당첨이 잘 돌아가는지 확인하려면 1등 당첨이 되야하니까...)
# lottolist = [1, 2, 3, 4, 5, 30]
# lottobonus = [7]
print("추첨 번호: " + str(lottolist) + " / 보너스 번호" + str(lottobonus))
print("입력 번호: " + str(my_pick) + " / 보너스 번호" + str(bonus))
if my_pick == lottolist:
print("숫자 6개가 모두 일치하여 100점 입니다.")
else:
count = 0
for i in range(0, 6):
for j in range(0, 6):
if my_pick[i] == lottolist[j]:
count += 1
if count == 5:
if bonus == lottobonus:
print("숫자 5개가 일치하고 보너스 숫자가 일치하여 80점 입니다.")
else:
print("숫자 5개가 일치하여 60점 입니다.")
elif count == 4:
print("숫자 4개가 일치하여 40점 입니다.")
elif count == 3:
print("숫자 3개가 일치하여 30점 입니다.")
elif count == 2:
print("숫자 2개가 일치하여 20점 입니다.")
elif count <= 1:
print("'도박하시면 망할 팔자시네여!'")
my_pick = list(map(int, input("숫자 1-45 사이의 6개 로또 번호를 띄어쓰기로 구분해서 입력해 주세요(아니면 오류 잘남): ").split(" ")))
bonus = list(map(int, input("보너스 번호를 입력해 주세요: ")))
lotto(my_pick, bonus)
# comment:
# 간단할 줄 알았는데 생각보다 손이 많이가고, while문으로 중복되는 수를 거르고 돌리는 개념 자체를 이해하는데 헤맬 수 있는 문제였다.
# 그리고 입력에 제한을 두는 것(6개 로또번호 입력해야데 7개 혹은 5개 입력한다던지, 번호가 1-45 사이가 아닌 수가 입력되었다던지)은 코딩하지 않았다. 넘 귀찮..
# 다음에 기회되면 그건 넣겠다. if문으로 조건만 걸어주고 똑같이 my_pick 안에 같은수가 입력되면 오류를 뱉는 것만 써주면 되서 어렵지 않을거다.
# 로또를 해본 적이 없어서 약간 헷갈렸다. 그럴 수 있당
|
[
"[email protected]"
] | |
ee6653a72b02fd21634a17952ea141bfba570c33
|
b11e5545ae0de900a0bac981555d2584fbc719ce
|
/0x0A-python-inheritance/8-rectangle.py
|
8ae5581173d3061e4eaaea314725fd1364cbf5cf
|
[] |
no_license
|
AndresCallejasG/holbertonschool-higher_level_programming
|
6fa844002dad56545bc500c839e88cd5c71033f5
|
062fe54721ef0fb3c02da1a7d9b2327496b0838a
|
refs/heads/master
| 2022-12-19T00:23:09.277883 | 2020-09-28T20:19:18 | 2020-09-28T20:19:18 | 259,443,426 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 549 |
py
|
#!/usr/bin/python3
"""Inheritance project
"""
BaseGeometry = __import__("7-base_geometry").BaseGeometry
class Rectangle(BaseGeometry):
""" Rectangle class, inherts from BaseGeometry
"""
def __init__(self, width, height):
"""init method
Arguments:
width {[type]} -- Rectangle width
height {[type]} -- Rectangle height
"""
super().integer_validator("width", width)
self.__width = width
super().integer_validator("height", height)
self.__height = height
|
[
"[email protected]"
] | |
af30ff3d5dbe26b5a0df0ded652657eec22ba988
|
8b606215d26314c046b24f779cad1d29679de73f
|
/GroundSegment/Telemetry/migrations/0016_auto_20190214_2113.py
|
b9d30f70f9242d23cc76484e7c700d502575f117
|
[] |
no_license
|
unlamgidsa/unlam_gs_backend
|
b5a76660458fd43557602840eb24f838aabc4ce2
|
6284a5d55b8fe3b5b7c8f3a8def505409f7ea735
|
refs/heads/master
| 2023-07-20T10:30:30.618320 | 2022-12-29T21:55:51 | 2022-12-29T21:55:51 | 244,700,010 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 930 |
py
|
# Generated by Django 2.0.7 on 2019-02-14 21:13
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('Telemetry', '0015_auto_20190214_1900'),
]
operations = [
migrations.AddField(
model_name='bltlmyvar',
name='endTlmy',
field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, related_name='endBLTmys', to='Telemetry.TlmyVar'),
),
migrations.AddField(
model_name='bltlmyvar',
name='startTlmy',
field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, related_name='startBLTlmys', to='Telemetry.TlmyVar'),
),
migrations.AddField(
model_name='tlmyvarlevel',
name='lastDateTime',
field=models.DateTimeField(null=True),
),
]
|
[
"[email protected]"
] | |
59fe96776dc25c7660fe1ba570f9db92e694dcf2
|
37c3b81ad127c9e3cc26fa9168fda82460ca9bda
|
/SW_expert/sw_1244_최대상금.py
|
c123a5bcc2adb0fe196f3bb4e52211faaabb1755
|
[] |
no_license
|
potomatoo/TIL
|
5d85b69fdaed68966db7cfe2a565b7c64ed3e816
|
395dc190fa13e5ed036e1e3c7d9e0bc2e1ee4d6c
|
refs/heads/master
| 2021-07-08T16:19:40.410097 | 2021-04-19T02:33:40 | 2021-04-19T02:33:40 | 238,872,774 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 774 |
py
|
import sys
sys.stdin = open('./input/input_1244.txt','r')
def getMostMony(k):
global ans
if k == n:
ans = max(int(''.join(arr)), ans)
return
for i in range(N-1):
for j in range(i+1, N):
arr[i], arr[j] = arr[j] , arr[i]
middle = int(''.join(arr))
if middle in visit[k+1]:
continue
visit[k+1].add(middle)
getMostMony(k+1)
arr[i], arr[j] = arr[j], arr[i]
TC = int(input())
for tc in range(TC):
number, n = map(str,input().split())
n = int(n)
arr = []
ans = 0
for i in range(len(number)):
arr.append(number[i])
N = len(arr)
visit = [set() for _ in range(n+1)]
getMostMony(0)
print('#{} {}'.format(tc+1, ans))
|
[
"[email protected]"
] | |
efad72c2ee262764185c9fb6083bb3c7e7e5862d
|
ea00f60f8f690536ad27d4a75586ae5d74a23e13
|
/Book/Ch05/Ch5_3.py
|
bec54b7fac9e42a5701b704baabfa3f3b644c8e1
|
[] |
no_license
|
ricky4235/Python
|
3603a085567d1554358a52c8ad47be70fdb463e9
|
fdeecadc7e156f517cb4ec2eff2bb28423dc1d79
|
refs/heads/master
| 2023-07-20T06:17:18.443342 | 2020-12-23T04:27:53 | 2020-12-23T04:27:53 | 221,387,521 | 2 | 2 | null | 2023-07-06T21:21:28 | 2019-11-13T06:22:25 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 207 |
py
|
from bs4 import BeautifulSoup
soup = BeautifulSoup("<b class='score'>Joe</b>", "lxml")
tag = soup.b
tag.name = "p"
tag["class"] = "question"
tag["id"] = "name"
print(tag)
del tag["class"]
print(tag)
|
[
"[email protected]"
] | |
8f72f19372a8a6d00c1e1dde589bbaee09eace59
|
e53c9a5694b00153f8ac50e6d680fc9817798986
|
/case/migrations/0003_auto_20190111_1705.py
|
2824d646c80940d1ec4d7920a696742d8bd166d3
|
[] |
no_license
|
peijipe/project-management
|
a40923a935d81be58029ea53258e042b5edeb498
|
4446313c382750fa57b855c4c64e9f57f2184831
|
refs/heads/master
| 2020-04-11T17:56:55.017519 | 2019-01-23T08:19:31 | 2019-01-23T08:19:31 | 161,980,473 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 750 |
py
|
# Generated by Django 2.1.4 on 2019-01-11 17:05
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('case', '0002_auto_20190108_1659'),
]
operations = [
migrations.RemoveField(
model_name='case',
name='low_skill',
),
migrations.RemoveField(
model_name='case',
name='nationality',
),
migrations.RemoveField(
model_name='case',
name='status',
),
migrations.DeleteModel(
name='LowSkill',
),
migrations.DeleteModel(
name='Nationality',
),
migrations.DeleteModel(
name='Status',
),
]
|
[
"[email protected]"
] | |
6606ed75976525c40589fa0b1fcf65119bffd351
|
1498f1ff7ed0e4318b4475c04d486b301328a4b5
|
/test/test_field_permission.py
|
15f71e6c80ad4db11cf7097dc545b8fd0cc662ce
|
[
"Apache-2.0"
] |
permissive
|
greenpau/pycherwell
|
b66e27b3e0e07e914a07a092472575a56c48a8bf
|
2a25446d5cf86d69e6158067faf27ce250aba966
|
refs/heads/master
| 2021-07-25T01:58:57.682666 | 2020-07-19T01:40:26 | 2020-07-19T01:40:26 | 199,328,283 | 2 | 2 |
Apache-2.0
| 2020-07-16T21:31:33 | 2019-07-28T19:24:17 |
Python
|
UTF-8
|
Python
| false | false | 890 |
py
|
# coding: utf-8
"""
Cherwell REST API
Unofficial Python Cherwell REST API library. # noqa: E501
The version of the OpenAPI document: 9.3.2
Contact: See AUTHORS.
Generated by: https://openapi-generator.tech
"""
from __future__ import absolute_import
import unittest
import pycherwell
from pycherwell.models.field_permission import FieldPermission # noqa: E501
from pycherwell.rest import ApiException
class TestFieldPermission(unittest.TestCase):
"""FieldPermission unit test stubs"""
def setUp(self):
pass
def tearDown(self):
pass
def testFieldPermission(self):
"""Test FieldPermission"""
# FIXME: construct object with mandatory attributes with example values
# model = pycherwell.models.field_permission.FieldPermission() # noqa: E501
pass
if __name__ == '__main__':
unittest.main()
|
[
"[email protected]"
] | |
5e9d59a96ffe4d5350f32346b070ded5a6294235
|
0353ecdc410b3b047d873ea9d5e30000d4d7b724
|
/contrib/devtools/check-doc.py
|
be4293146b1fe3d74652e2897016589e4689cf2c
|
[
"MIT"
] |
permissive
|
MotoAcidic/BaseSource
|
d3c58b881997f5434b12d5c4f5e548b4a8a1d3b2
|
2b48377ddda416fff1c83dbfc8b96997613521ea
|
refs/heads/main
| 2023-06-10T19:31:39.127177 | 2021-05-21T00:20:55 | 2021-05-21T00:20:55 | 369,367,072 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,909 |
py
|
#!/usr/bin/env python
# Copyright (c) 2015-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
'''
This checks if all command line args are documented.
Return value is 0 to indicate no error.
Author: @MarcoFalke
'''
from subprocess import check_output
import re
FOLDER_GREP = 'src'
FOLDER_TEST = 'src/test/'
CMD_ROOT_DIR = '`git rev-parse --show-toplevel`/%s' % FOLDER_GREP
CMD_GREP_ARGS = r"egrep -r -I '(map(Multi)?Args(\.count\(|\[)|Get(Bool)?Arg\()\"\-[^\"]+?\"' %s | grep -v '%s'" % (CMD_ROOT_DIR, FOLDER_TEST)
CMD_GREP_DOCS = r"egrep -r -I 'HelpMessageOpt\(\"\-[^\"=]+?(=|\")' %s" % (CMD_ROOT_DIR)
REGEX_ARG = re.compile(r'(?:map(?:Multi)?Args(?:\.count\(|\[)|Get(?:Bool)?Arg\()\"(\-[^\"]+?)\"')
REGEX_DOC = re.compile(r'HelpMessageOpt\(\"(\-[^\"=]+?)(?:=|\")')
# list unsupported, deprecated and duplicate args as they need no documentation
SET_DOC_OPTIONAL = set(['-rpcssl', '-benchmark', '-h', '-help', '-socks', '-tor', '-debugnet', '-whitelistalwaysrelay', '-prematurewitness', '-walletprematurewitness', '-promiscuousmempoolflags', '-blockminsize', '-sendfreetransactions', '-checklevel', '-liquidityprovider', '-anonymizenwoamount'])
def main():
used = check_output(CMD_GREP_ARGS, shell=True)
docd = check_output(CMD_GREP_DOCS, shell=True)
args_used = set(re.findall(REGEX_ARG,used))
args_docd = set(re.findall(REGEX_DOC,docd)).union(SET_DOC_OPTIONAL)
args_need_doc = args_used.difference(args_docd)
args_unknown = args_docd.difference(args_used)
print "Args used : %s" % len(args_used)
print "Args documented : %s" % len(args_docd)
print "Args undocumented: %s" % len(args_need_doc)
print args_need_doc
print "Args unknown : %s" % len(args_unknown)
print args_unknown
exit(len(args_need_doc))
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
669b428f6be8288621b19bee3a8405ce64aa9813
|
d2df591c50458f88b3ebef4e5f9c65fa8ba42688
|
/Algorithm-Study/Backjoon/10989_countingSort.py
|
711d61749dae0fb5d6fe0143c610309119da9caf
|
[] |
no_license
|
JuHyang/today-I-learned
|
16eba628b3e9e8c99cb3ca6bcdf1d49f9f496f94
|
6a262bc7a88612aa22fcb5119d4d182bacb22b49
|
refs/heads/main
| 2022-02-10T16:37:36.793196 | 2022-01-28T01:06:02 | 2022-01-28T01:06:02 | 222,265,241 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 379 |
py
|
## counting sort
import sys
def countingSort (N, list_num) :
for i in range (10000) :
list_num.append(0)
for i in range (N) :
list_num[int (sys.stdin.readline()) - 1] += 1
for i in range (len(list_num)) :
for j in range (list_num[i]) :
print (i + 1)
N = int (input ())
list_num = list ()
countingSort(N, list_num)
|
[
"[email protected]"
] | |
1e6601ecbaad109d19ffd77a2d1735d7d723e8b4
|
e246361dddc75a79c22e983c6af06e47ad76fb31
|
/JumpScale9RecordChain/servers/gedis/GedisCmds.py
|
f78d542b483991fd8da71eb613684e10689300d0
|
[] |
no_license
|
Dinaamagdy/recordchain
|
2a3e97c1db9c3ccddade2e498777e35824d2ca18
|
a5b048d7b5d3ee3f41f5c7702731e65e28e13bd7
|
refs/heads/master
| 2020-03-22T05:28:23.195917 | 2018-07-03T09:09:38 | 2018-07-03T09:09:38 | 139,568,296 | 0 | 0 | null | 2018-07-03T10:39:35 | 2018-07-03T10:39:34 | null |
UTF-8
|
Python
| false | false | 3,428 |
py
|
from js9 import j
import inspect
# import imp
import sys
import os
JSBASE = j.application.jsbase_get_class()
class GedisCmds(JSBASE):
def __init__(self, server, namespace, class_):
JSBASE.__init__(self)
self.server = server
SCHEMA = """
@url = jumpscale.gedis.cmd
@name = GedisCmd
name = ""
comment = ""
code = ""
schema_in = ""
schema_out = ""
@url = jumpscale.gedis.api
@name = GedisServerSchema
namespace = ""
cmds = (LO) !jumpscale.gedis.cmd
"""
j.data.schema.schema_add(SCHEMA)
# s1 = self.schema_from_url("jumpscale.gedis.cmd")
self.schema = j.data.schema.schema_from_url("jumpscale.gedis.api")
self.data = self.schema.new()
self.name = namespace
self.data.namespace = namespace
for name, item in inspect.getmembers(class_):
if name.startswith("_"):
continue
if (name, item) in inspect.getmembers(JSBASE):
continue
if inspect.isfunction(item):
cmd = self.data.cmds.new()
cmd.name = name
code = inspect.getsource(item)
cmd.code,cmd.comment,cmd.schema_in, cmd.schema_out= self.source_process(code)
@property
def code(self):
code = self.server.code_server_template.render(obj=self)
return code
def source_process(self, txt):
"""
return code, comment, schema_in, schema_out
"""
txt = j.data.text.strip(txt)
code = ""
comment = ""
schema_in = ""
schema_out = ""
state = "START"
for line in txt.split("\n"):
lstrip = line.strip()
if state == "START" and lstrip.startswith("def"):
state = "DEF"
continue
if lstrip.startswith("\"\"\""):
if state == "DEF":
state = "COMMENT"
continue
if state == "COMMENT":
state = "CODE"
continue
raise RuntimeError()
if lstrip.startswith("```") or lstrip.startswith("'''"):
if state.startswith("SCHEMA"): # are already in schema go back to comment
state = "COMMENT"
continue
if state == "COMMENT": # are in comment, now found the schema
if lstrip.endswith("out"):
state = "SCHEMAO"
else:
state = "SCHEMAI"
continue
raise RuntimeError()
if state == "SCHEMAI":
schema_in += "%s\n" % line
continue
if state == "SCHEMAO":
schema_out += "%s\n" % line
continue
if state == "COMMENT":
comment += "%s\n" % line
continue
if state == "CODE" or state == "DEF":
code += "%s\n" % line
continue
raise RuntimeError()
schema_in = j.data.schema.schema_from_text(j.data.text.strip(schema_in))
schema_out = j.data.schema.schema_from_text(j.data.text.strip(schema_out))
return j.data.text.strip(code), j.data.text.strip(comment), schema_in, schema_out
|
[
"[email protected]"
] | |
948e9f658720fceb019e2fc85c9764063c0f34ac
|
d99ac626d62c663704444a9cce7e7fc793a9e75e
|
/asm2vec/examples/non_crypto_code/PackedArray_functions.py
|
3dd0a419891408f18b4950cba1887d59b0e80456
|
[] |
no_license
|
Experiment5X/CryptoFunctionDetection
|
3ab32d5573a249d24db1faf772721bc80b8d905d
|
dac700193e7e84963943593e36844b173211a8a1
|
refs/heads/master
| 2023-04-19T09:12:35.828268 | 2021-05-13T22:39:27 | 2021-05-13T22:39:27 | 355,299,557 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,211 |
py
|
function_names = [
'___PackedArray_pack_1',
'___PackedArray_unpack_1',
'___PackedArray_pack_2',
'___PackedArray_unpack_2',
'___PackedArray_pack_3',
'___PackedArray_unpack_3',
'___PackedArray_pack_4',
'___PackedArray_unpack_4',
'___PackedArray_pack_5',
'___PackedArray_unpack_5',
'___PackedArray_pack_6',
'___PackedArray_unpack_6',
'___PackedArray_pack_7',
'___PackedArray_unpack_7',
'___PackedArray_pack_8',
'___PackedArray_unpack_8',
'___PackedArray_pack_9',
'___PackedArray_unpack_9',
'___PackedArray_pack_10',
'___PackedArray_unpack_10',
'___PackedArray_pack_11',
'___PackedArray_unpack_11',
'___PackedArray_pack_12',
'___PackedArray_unpack_12',
'___PackedArray_pack_13',
'___PackedArray_unpack_13',
'___PackedArray_pack_14',
'___PackedArray_unpack_14',
'___PackedArray_pack_15',
'___PackedArray_unpack_15',
'___PackedArray_pack_16',
'___PackedArray_unpack_16',
'___PackedArray_pack_17',
'___PackedArray_unpack_17',
'___PackedArray_pack_18',
'___PackedArray_unpack_18',
'___PackedArray_pack_19',
'___PackedArray_unpack_19',
'___PackedArray_pack_20',
'___PackedArray_unpack_20',
'___PackedArray_pack_21',
'___PackedArray_unpack_21',
'___PackedArray_pack_22',
'___PackedArray_unpack_22',
'___PackedArray_pack_23',
'___PackedArray_unpack_23',
'___PackedArray_pack_24',
'___PackedArray_unpack_24',
'___PackedArray_pack_25',
'___PackedArray_unpack_25',
'___PackedArray_pack_26',
'___PackedArray_unpack_26',
'___PackedArray_pack_27',
'___PackedArray_unpack_27',
'___PackedArray_pack_28',
'___PackedArray_unpack_28',
'___PackedArray_pack_29',
'___PackedArray_unpack_29',
'___PackedArray_pack_30',
'___PackedArray_unpack_30',
'___PackedArray_pack_31',
'___PackedArray_unpack_31',
'___PackedArray_pack_32',
'___PackedArray_unpack_32',
'_PackedArray_create',
'_PackedArray_destroy',
'_PackedArray_pack',
'_PackedArray_unpack',
'_PackedArray_set',
'_PackedArray_get',
'_PackedArray_bufferSize',
'_PackedArray_computeBitsPerItem'
]
|
[
"[email protected]"
] | |
c95ff50362c7341f7c89fa4b3dd5edb04f69b817
|
9cf434b6ee59ab22496ee031fb4ab145bbaff1a2
|
/tranque_v1.8.4_source/backend/src/api/v1/views/template_views.py
|
7164ea45395b746ffd813d084a755a1961feb06e
|
[] |
no_license
|
oliverhernandezmoreno/SourcesOH
|
f2ff1a5e3377f0ac1fb8b3153d99d0ee703700b7
|
5d9ca5ab1caceafd4d11207139c9e56210156ef8
|
refs/heads/master
| 2023-01-05T02:51:25.172103 | 2020-08-27T14:39:34 | 2020-08-27T14:39:34 | 64,422,812 | 0 | 1 | null | 2022-12-30T17:25:10 | 2016-07-28T19:33:44 |
JavaScript
|
UTF-8
|
Python
| false | false | 5,809 |
py
|
import tempfile
import coreapi
import coreschema
from django.http import FileResponse
from rest_framework import response, viewsets, serializers
from rest_framework.decorators import action
from rest_framework.utils.urls import replace_query_param
from base.pagination import PageNumberPagination
from base.permissions import StaffOnly
from base import schemas
from targets.graphs import template_graph
from targets.profiling.base import serialize_node
class CustomTemplateViewSchema(schemas.CustomSchema):
@schemas.parameters.get('/template/')
def default_list_filters(self):
return [
coreapi.Field(
name='page',
required=False,
location='query',
schema=coreschema.Integer(
description='A page number within the pageinated result set.'
),
),
coreapi.Field(
name='page_size',
required=False,
location='query',
schema=coreschema.Integer(
description='Number of results to return per page.'
),
),
coreapi.Field(
name='category',
required=False,
location='query',
schema=coreschema.String(
description='The category to filter templates',
),
),
]
@schemas.parameters.get('/graph/')
def graph_parameters(self):
return [
coreapi.Field(
name='direction',
required=False,
location='query',
schema=coreschema.String(
description='The direction the graph should be traversed (up or down)',
),
),
]
def int_or_default(variant, default, minimum, maximum):
if not variant:
return default
try:
parsed = int(variant, 10)
if parsed < minimum:
return minimum
if parsed > maximum:
return maximum
return parsed
except ValueError:
return default
class TemplateView(viewsets.GenericViewSet):
lookup_value_regex = '[^/]+'
lookup_field = 'canonical_name'
pagination_class = None
schema = CustomTemplateViewSchema.as_schema()
serializer_class = serializers.Serializer
def get_paginated_response(self, data):
page_data = sorted(data, key=lambda n: n.value.canonical_name)
page_size = int_or_default(
self.request.query_params.get("page_size"),
PageNumberPagination.page_size,
1,
PageNumberPagination.max_page_size,
)
max_page = len(page_data) // page_size + 1
if len(page_data) == (max_page - 1) * page_size:
max_page -= 1
page = int_or_default(
self.request.query_params.get("page"),
1,
1,
len(page_data) // page_size + 1,
)
start = (page - 1) * page_size
end = page * page_size
return response.Response(data={
"count": len(page_data),
"next": (
replace_query_param(
self.request.build_absolute_uri(),
"page",
page + 1,
) if page < max_page else None
),
"previous": (
replace_query_param(
self.request.build_absolute_uri(),
"page",
page - 1,
) if page > 1 else None
),
"results": map(serialize_node, page_data[start:end]),
})
def list(self, request, **kwargs):
from targets.profiling import FOREST
category = self.request.query_params.get("category")
return self.get_paginated_response(
node
for node in FOREST.values()
if (category is not None and node.value.category == category)
or category is None
)
def retrieve(self, request, canonical_name=None, **kwargs):
from targets.profiling import FOREST
node = next(
(
n
for n in FOREST.values()
if n.value.canonical_name == canonical_name
),
None,
)
if node is None:
return response.Response(status=404, data={"detail": "Not found."})
return response.Response(data=serialize_node(node))
@action(methods=["get"], detail=True, permission_classes=(StaffOnly,))
def graph(self, request, canonical_name=None, **kwargs):
direction = {"down": "inputs", "up": "derivations"}.get(
request.query_params.get("direction", "down"),
"inputs",
)
try:
tmp = tempfile.TemporaryFile()
template_graph(canonical_name, tmp, direction=direction)
tmp.seek(0)
except ValueError:
return response.Response(status=404, data={"detail": "Not found."})
return FileResponse(tmp, content_type="image/svg+xml")
class ManifestView(viewsets.GenericViewSet):
lookup_value_regex = '[^/]+'
lookup_field = 'name'
pagination_class = None
serializer_class = serializers.Serializer
def list(self, request, **kwargs):
from targets.profiling import MANIFESTS
return response.Response(data={"results": list(MANIFESTS.values())})
def retrieve(self, request, name=None, **kwargs):
from targets.profiling import MANIFESTS
manifest = MANIFESTS.get(name)
if manifest is None:
return response.Response(status=404, data={"detail": "Not found."})
return response.Response(data=manifest)
|
[
"[email protected]"
] | |
7a440f8fa9a713d4169d492dec2d1fd25cfc15a4
|
7676f139bea57f37b7af399afdfb04016f17b30a
|
/test/test_lor.py
|
e309eb79ee6824b4e528837bfddeaf40b6ee2417
|
[] |
no_license
|
Canisback/pantheon
|
32da2239dd20255a85f5a4d78edd888d0ed995df
|
3a9588a635035e2f89489fef35eec690f3069f96
|
refs/heads/master
| 2023-07-21T05:00:32.315615 | 2023-07-14T19:19:58 | 2023-07-14T19:19:58 | 129,768,571 | 57 | 17 | null | 2022-11-10T15:22:19 | 2018-04-16T15:51:04 |
Python
|
UTF-8
|
Python
| false | false | 643 |
py
|
from .config import *
def test_leaderboard():
try:
data = loop.run_until_complete(panth.get_lor_leaderboard())
except Exception as e:
print(e)
assert "players" in data
assert type(data["players"]) == list
def test_match():
try:
data = loop.run_until_complete(panth.get_lor_match(lor_matchId))
except Exception as e:
print(e)
assert "metadata" in data
assert "info" in data
def test_matchlist():
try:
data = loop.run_until_complete(panth.get_lor_matchlist(lor_puuid))
except Exception as e:
print(e)
assert type(data) == list
|
[
"[email protected]"
] | |
047903756bde3ab9de086df778b2e72bda0cbd03
|
82b728e805d887102c0b8c415731b353877690cd
|
/samples/generated_samples/aiplatform_generated_aiplatform_v1beta1_vizier_service_lookup_study_sync.py
|
5d076d04aa6c105097f75f75cd4c7af7ec1a84e8
|
[
"Apache-2.0"
] |
permissive
|
geraint0923/python-aiplatform
|
90c7742c9bdbde05b9688b117e8e59c0406d6f85
|
7ab05d5e127636d96365b7ea408974ccd6c2f0fe
|
refs/heads/main
| 2023-08-24T05:30:38.519239 | 2021-10-27T20:38:25 | 2021-10-27T20:38:25 | 370,803,114 | 0 | 0 |
Apache-2.0
| 2021-05-25T19:15:47 | 2021-05-25T19:15:46 | null |
UTF-8
|
Python
| false | false | 1,599 |
py
|
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Generated code. DO NOT EDIT!
#
# Snippet for LookupStudy
# NOTE: This snippet has been automatically generated for illustrative purposes only.
# It may require modifications to work in your environment.
# To install the latest published package dependency, execute the following:
# python3 -m pip install google-cloud-aiplatform
# [START aiplatform_generated_aiplatform_v1beta1_VizierService_LookupStudy_sync]
from google.cloud import aiplatform_v1beta1
def sample_lookup_study():
"""Snippet for lookup_study"""
# Create a client
client = aiplatform_v1beta1.VizierServiceClient()
# Initialize request argument(s)
request = aiplatform_v1beta1.LookupStudyRequest(
parent="projects/{project}/locations/{location}",
display_name="display_name_value",
)
# Make the request
response = client.lookup_study(request=request)
# Handle response
print(response)
# [END aiplatform_generated_aiplatform_v1beta1_VizierService_LookupStudy_sync]
|
[
"[email protected]"
] | |
fa5c4a3f82722a7f4ea1911d46cd805a4cc0a118
|
5a9798598f3e3575c46584f1b0185186066860ac
|
/tfx/experimental/templates/penguin/pipeline/pipeline.py
|
4dc773cb75bab4e60a0aab3810f136f36d2a9176
|
[
"Apache-2.0"
] |
permissive
|
UsharaniPagadala/tfx
|
1cfbc8dbc5934cfceea8ceae4896d09404638369
|
4576b783e8c91e688337d3cd3b5dbdf93dbd278f
|
refs/heads/master
| 2023-08-07T17:47:29.629144 | 2021-09-21T08:03:06 | 2021-09-21T08:03:06 | 353,321,718 | 0 | 0 |
Apache-2.0
| 2021-09-21T08:03:07 | 2021-03-31T10:46:51 |
Python
|
UTF-8
|
Python
| false | false | 5,988 |
py
|
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFX penguin template pipeline definition.
This file defines TFX pipeline and various components in the pipeline.
"""
from typing import List, Optional, Text
import tensorflow_model_analysis as tfma
from tfx import v1 as tfx
from tfx.experimental.templates.penguin.models import features
from ml_metadata.proto import metadata_store_pb2
def create_pipeline(
pipeline_name: Text,
pipeline_root: Text,
data_path: Text,
preprocessing_fn: Text,
run_fn: Text,
train_args: tfx.proto.TrainArgs,
eval_args: tfx.proto.EvalArgs,
eval_accuracy_threshold: float,
serving_model_dir: Text,
metadata_connection_config: Optional[
metadata_store_pb2.ConnectionConfig] = None,
beam_pipeline_args: Optional[List[Text]] = None,
) -> tfx.dsl.Pipeline:
"""Implements the penguin pipeline with TFX."""
components = []
# Brings data into the pipeline or otherwise joins/converts training data.
# TODO(step 2): Might use another ExampleGen class for your data.
example_gen = tfx.components.CsvExampleGen(input_base=data_path)
components.append(example_gen)
# Computes statistics over data for visualization and example validation.
statistics_gen = tfx.components.StatisticsGen(
examples=example_gen.outputs['examples'])
components.append(statistics_gen)
# Generates schema based on statistics files.
schema_gen = tfx.components.SchemaGen(
statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True)
components.append(schema_gen)
# Performs anomaly detection based on statistics and data schema.
example_validator = tfx.components.ExampleValidator( # pylint: disable=unused-variable
statistics=statistics_gen.outputs['statistics'],
schema=schema_gen.outputs['schema'])
components.append(example_validator)
# Performs transformations and feature engineering in training and serving.
transform = tfx.components.Transform( # pylint: disable=unused-variable
examples=example_gen.outputs['examples'],
schema=schema_gen.outputs['schema'],
preprocessing_fn=preprocessing_fn)
# TODO(step 3): Uncomment here to add Transform to the pipeline.
# components.append(transform)
# Uses user-provided Python function that implements a model using Tensorflow.
trainer = tfx.components.Trainer(
run_fn=run_fn,
examples=example_gen.outputs['examples'],
# Use outputs of Transform as training inputs if Transform is used.
# examples=transform.outputs['transformed_examples'],
# transform_graph=transform.outputs['transform_graph'],
schema=schema_gen.outputs['schema'],
train_args=train_args,
eval_args=eval_args)
# TODO(step 4): Uncomment here to add Trainer to the pipeline.
# components.append(trainer)
# Get the latest blessed model for model validation.
model_resolver = tfx.dsl.Resolver(
strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
model_blessing=tfx.dsl.Channel(
type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
'latest_blessed_model_resolver')
# TODO(step 5): Uncomment here to add Resolver to the pipeline.
# components.append(model_resolver)
# Uses TFMA to compute a evaluation statistics over features of a model and
# perform quality validation of a candidate model (compared to a baseline).
eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key=features.LABEL_KEY)],
slicing_specs=[tfma.SlicingSpec()],
metrics_specs=[
tfma.MetricsSpec(metrics=[
tfma.MetricConfig(
class_name='SparseCategoricalAccuracy',
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value': eval_accuracy_threshold}),
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value': -1e-10})))
])
])
evaluator = tfx.components.Evaluator( # pylint: disable=unused-variable
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
# Change threshold will be ignored if there is no baseline (first run).
eval_config=eval_config)
# TODO(step 5): Uncomment here to add Evaluator to the pipeline.
# components.append(evaluator)
# Pushes the model to a file destination if check passed.
pusher = tfx.components.Pusher( # pylint: disable=unused-variable
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
# TODO(step 5): Uncomment here to add Pusher to the pipeline.
# components.append(pusher)
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
components=components,
# Change this value to control caching of execution results. Default value
# is `False`.
# enable_cache=True,
metadata_connection_config=metadata_connection_config,
beam_pipeline_args=beam_pipeline_args,
)
|
[
"[email protected]"
] | |
117876ae2a3f04ee3bbb6df29713c1dad3bcc9c0
|
d5d5b042bdc74130d562574dce62bf4d732411b7
|
/test/gdsctools/test_gdsc1000.py
|
b16c3cac1f32336f643dc4ba8d48bd3dee5eb8e8
|
[
"BSD-3-Clause",
"BSD-2-Clause"
] |
permissive
|
cokelaer/gdsctools
|
e8d932f29c4ab9d2f4fea8b64c701a13995f3535
|
5609aadf8b29c8672dc7e47a1d37fbef43728da2
|
refs/heads/master
| 2023-08-13T21:32:57.542738 | 2021-10-17T15:58:48 | 2021-10-17T15:58:48 | 417,879,371 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,629 |
py
|
from gdsctools import GDSC1000
def test_download(tmpdir):
p = tmpdir.mkdir("download")
name = "download/"
gg = GDSC1000(data_folder_name=name)
gg.download_data()
gg = GDSC1000(data_folder_name=name)
gg.load_data(annotation=False)
# now some filtering. Let us start with alteration_type
assert gg.genomic_df.shape == (42231, 8)
gg.filter_by_alteration_type(["DELETION"])
assert gg.genomic_df.shape == (1614, 8)
gg.reset_genomic_data()
assert gg.genomic_df.shape == (42231, 8)
# by gene
gg.filter_by_gene(["A2ML1"])
assert len(gg.genomic_df)
gg.reset_genomic_data()
# by core genes
# numbers labelled (for sure) were found in Liz document
gg = GDSC1000(data_folder_name=name)
gg.load_data() # Here, we include the annotations
gg.filter_by_gene("Core Genes")
assert len(gg.genomic_df['GENE'].unique()) == 310 # For sure
assert len(gg.genomic_df)
assert gg.get_genomic_info()["cosmic"].METHYLATION == 108 # for sure
assert gg.get_methylation_info().iloc[0,0] == 338 # for sure
gg.get_cna_info()
gg.reset_genomic_data()
# by tissues
gg.filter_by_tissue_type(["COAD/READ"])
assert len(gg.genomic_df)
gg.reset_genomic_data()
# by cell line
gg.filter_by_cell_line()
gg.filter_by_cell_line(["SW1116"])
assert len(gg.genomic_df)
gg.reset_genomic_data()
# by cosmic id
gg.filter_by_cosmic_id()
gg.filter_by_cosmic_id([909746])
assert len(gg.genomic_df)
gg.reset_genomic_data()
gg.filter_by_recurrence()
gg.filter_by_recurrence(3)
gg.make_matrix()
|
[
"[email protected]"
] | |
fdcdc18790dfa2b5e639771b3495089885d4d850
|
ebf3e0fdb7ca2c19e04f893b49120cd4fdf10649
|
/Models_pro/population.py
|
e4121535f2c153a614db5986cb4b4c74d53eb44f
|
[] |
no_license
|
Sem31/Django-Basics
|
19f8528f683c1bbc67a4d5d01988fa8d64d251c2
|
3219143d135a1d918e0994b61128375b01b35a5d
|
refs/heads/master
| 2022-12-12T00:01:04.518559 | 2019-09-29T18:16:57 | 2019-09-29T18:16:57 | 190,061,340 | 0 | 0 | null | 2022-12-08T05:22:25 | 2019-06-03T18:37:25 |
Python
|
UTF-8
|
Python
| false | false | 1,008 |
py
|
import os
os.environ.setdefault('DJANGO_SETTINGS_MODULE','Models_pro.settings')
import django
django.setup()
#fake pop script
import random
from first_app.models import AccessRecord,Webpage,Topic
from faker import Faker
fakegen = Faker()
topics = ['Search','Social','Marketplace','News','Games']
def add_topic():
t = Topic.objects.get_or_create(top_name=random.choice(topics))[0]
t.save()
return t
def population(N=5):
for entry in range(N):
#get topic
top = add_topic()
#get fake data for that entry
fake_url = fakegen.url()
fake_date = fakegen.date()
fake_name = fakegen.company()
#create the webpage
webpg = Webpage.objects.get_or_create(topic = top,url = fake_url,name = fake_name)[0]
#fake accessrecords
acc_rec = AccessRecord.objects.get_or_create(name = webpg,date = fake_date)
if __name__ == "__main__":
print('Populate the script')
population(20)
print('Populatating complete')
|
[
"[email protected]"
] | |
58c50599c5bb0fed81a5e29f8f9ab92dad0b3ed3
|
b3528a3795ce373e27d52362128de3cff6f9969d
|
/python/delta_debugging/delta_debugging.py
|
775517fdbe826a7e4fff8b4f14483d909055a65e
|
[] |
no_license
|
greenmonn/daily-coding
|
43e0f3775678c7d6116df7ba5034ea18489d87c9
|
ef6ecc88e6db61e18364eef3ea071c11e1385a99
|
refs/heads/master
| 2023-01-14T04:59:14.130309 | 2021-02-08T23:32:56 | 2021-02-08T23:32:56 | 157,735,438 | 1 | 1 | null | 2022-12-21T02:13:17 | 2018-11-15T15:47:37 |
Python
|
UTF-8
|
Python
| false | false | 2,663 |
py
|
import subprocess
prefix = """
import org.junit.FixMethodOrder;
import org.junit.Test;
import org.junit.runners.MethodSorters;
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class MyTest {
public static boolean debug = false;
@Test
public void test4() throws Throwable {
Account account1 = new Account((int) 'a');
"""
lines = [
"boolean boolean3 = account1.Borrow((int) '#');",
"boolean boolean5 = account1.Repay((int) '#');",
"boolean boolean7 = account1.Borrow((int) (short) 10);",
"java.lang.Class<?> wildcardClass8 = account1.getClass();",
"boolean boolean10 = account1.Borrow((int) '4');",
"boolean boolean12 = account1.Send(0);",
"java.lang.Class<?> wildcardClass13 = account1.getClass();",
"boolean boolean15 = account1.Receive(0);",
"boolean boolean17 = account1.Borrow((int) '4');",
"boolean boolean19 = account1.Borrow(1);",
"boolean boolean21 = account1.Borrow(100);",
"boolean boolean23 = account1.Borrow((int) (short) 100);",
]
suffix = "\n}}"
def compile(source):
filename = 'MyTest'
with open(filename + '.java', 'w') as f:
f.write(source)
try:
subprocess.check_call(
'javac -cp junit-4.13-beta-2.jar:hamcrest-core-1.3.jar:.:./target ' + filename + '.java', shell=True)
except subprocess.CalledProcessError:
return None
return filename
def execute(target):
result = subprocess.run(
'java -cp junit-4.13-beta-2.jar:hamcrest-core-1.3.jar:.:./target org.junit.runner.JUnitCore ' + target, stdout=subprocess.PIPE, shell=True)
output = str(result.stdout)
if 'FAILURES!!!' in output:
return 'fail'
elif 'SUCCESS' in output:
return 'success'
else:
return 'unknown'
def check_failure(input_lines):
source = prefix + '\n'.join(input_lines) + suffix
target = compile(source)
if target:
test_result = execute(target)
if test_result == 'fail':
return True
return False
def DD(p, lines):
length = len(lines)
if length == 1:
return lines
l1 = lines[:length // 2]
l2 = lines[length // 2:]
p1 = p + l1
p2 = p + l2
if check_failure(p1):
return DD(p, l1)
elif check_failure(p2):
return DD(p, l2)
else:
return DD(p2, l1) + DD(p1, l2)
def apply_delta_debugging(lines):
return DD([], lines)
reduced_lines = apply_delta_debugging(lines)
source = prefix + '\n'.join(reduced_lines) + suffix
target = compile(source)
if target:
test_result = execute(target)
try:
assert test_result == 'fail'
except AssertionError:
print('Failed to Generate Reduced Test Suite')
exit(1)
print('Reduced Test Suite Generated: ' + target + '.java')
|
[
"[email protected]"
] | |
f45259da4d410c951bd7fab63394ea93796504a9
|
1c9a5513a573e43aab30b032529699e6767540ba
|
/flask_sqlalchemy_jsonapi/sort.py
|
eb62cf35b7021747096db589ea00a016e7a7174d
|
[
"MIT"
] |
permissive
|
Raistlfiren/sqlalchemy-jsonapi-collections
|
bdefeb411316950c944d0ff53822467e8a6330ee
|
890d6377e9a3ee07e14a0b4028ba24a03a1420ef
|
refs/heads/master
| 2020-12-11T01:47:36.187863 | 2016-03-29T13:24:24 | 2016-03-29T13:24:24 | 55,098,906 | 0 | 0 | null | 2016-03-30T21:24:45 | 2016-03-30T21:24:45 | null |
UTF-8
|
Python
| false | false | 3,322 |
py
|
# -*- coding: utf-8 -*-
from sqlalchemy import desc
from flask_sqlalchemy_jsonapi.errors import FieldError
class SortValue(object):
"""Validate and sort a provided `marshmallow` schema field name."""
attribute = None
descending = False
join = None
def __init__(self, schema, value):
"""Set the `SQLAlchemy` column name from the provided attribute.
Dot seperated strings are understood to be the attributes of a
related schema. If the preceding name does not match a valid
relationship field an error will be thrown. If the proceeding
name does not match an attribute on the related schema an error
will be thrown.
:param schema: `marshmallow` schema object.
:param value: String path to sorted schema attribute.
"""
self.schema = schema
self.value = value
self.descending = value.startswith('-')
if self.descending:
value = value[1:]
if "." in value:
table, column = value.split('.', 1)
relationship = self._get_field(table, schema)
field = self._get_field(column, relationship.schema)
self.attribute = field.attribute or column
self.join = table
else:
field = self._get_field(value, schema)
self.attribute = field.attribute or value
@property
def column(self):
"""A sorted `SQLAlchemy` column reference."""
column = getattr(self.schema.Meta.model, self.attribute)
if self.descending:
return desc(column)
return column
def _get_field(self, field, schema):
"""Get the schema field associated with the specified name.
:param field: String name of a declared attribute.
:param schema: `marshmallow` schema object.
"""
if field not in schema._declared_fields:
raise FieldError(
'Invalid field specified: {}.'.format(self.value))
return schema._declared_fields[field]
@classmethod
def generate(cls, schema, values):
"""Parse a series of strings into `SortValue` instances.
Dot notation can be used to sort by the attributes of a related
schema. E.g. `relationship.attribute`.
If the string can not be converted, an error is marshaled as a
member of a string list.
:param schema: `marshmallow` schema reference.
:param values: String list of attributes.
"""
errors = []
fields = []
for value in values:
try:
fields.append(cls(schema, value))
except FieldError as error:
errors.append(error.message)
return fields, errors
@staticmethod
def sort_by(query, values):
"""Apply a series of `SortValue` instances to a `SQLAlchemy` query.
Dot seperated sorts will have the appropriate tables joined
prior to applying the sort.
:param query: `SQLAlchemy` query object.
:param values: List of `SortValue` instances.
"""
sorts = []
for value in values:
if value.join is not None:
query = query.join(value.join)
sorts.append(value.column)
return query.order_by(*sorts)
|
[
"[email protected]"
] | |
5a395cb6dd196f8daa741e17a6699b05aabaf543
|
9b55ea0385c7508b0373d2e1059bbb4aa44a6f37
|
/oxigraph_admin/schemas/security.py
|
0182a145f8540c1753ad7df738d40d925e84f6a0
|
[
"LicenseRef-scancode-unknown-license-reference",
"MIT"
] |
permissive
|
edmondchuc/oxigraph-admin
|
0b239ca34c3e5cece2dc18211f69f9a67e76549f
|
689d1ee8905b81075d0809487bbad26c2c935939
|
refs/heads/master
| 2023-03-29T20:06:34.560483 | 2021-03-28T05:41:34 | 2021-03-28T05:41:34 | 352,244,254 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 86 |
py
|
from pydantic import BaseModel
class SecuritySettings(BaseModel):
enabled: bool
|
[
"[email protected]"
] | |
e8d26fb2e48c2f7a7151e58560c9f695f093a8be
|
05dcaeb9cbb86d8139118fdc306b2b722739098c
|
/media_manager/decorators.py
|
0891df76694b9887e251caf1624f001895fbf0b2
|
[] |
permissive
|
Harvard-ATG/media_management_lti
|
a6363276a920653dfc7d130c1fc1155e90b1f638
|
a4b89c3e1c5f7a8adc31a258413b512507916a94
|
refs/heads/main
| 2023-05-25T09:41:56.843354 | 2021-09-21T14:24:50 | 2021-09-21T14:24:50 | 47,143,864 | 5 | 5 |
BSD-3-Clause
| 2023-05-22T23:55:11 | 2015-11-30T20:24:09 |
JavaScript
|
UTF-8
|
Python
| false | false | 368 |
py
|
from media_manager.lti import LTILaunch
from functools import wraps
def require_permission(permission):
def perm_decorator(func):
@wraps(func)
def func_wrapper(request, *args, **kwargs):
LTILaunch(request).require_perm(permission)
return func(request, *args, **kwargs)
return func_wrapper
return perm_decorator
|
[
"[email protected]"
] | |
8703fbf0dae4888bfc097f5cda483e79df4193bb
|
4a852785538f4589e6e5122c075437118f1ae31f
|
/src/richmond/webapp/api/gateways/e_scape/backend.py
|
ea552c7bb7be9c3ac04b96a957395b12b0ed6672
|
[] |
no_license
|
euan/richmond
|
3ebc132cc103567ed6c93f25d735bce848128180
|
cd4b02998f5f5cc50f21aea6608e66449c0f32c9
|
refs/heads/master
| 2021-01-21T01:27:27.783146 | 2010-08-18T08:16:05 | 2010-08-18T08:16:05 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 3,120 |
py
|
from richmond.webapp.api.utils import callback
import xml.etree.ElementTree as ET
from collections import namedtuple
class E_ScapeException(Exception): pass
class E_ScapeReponse(object):
recipient = None
sender = None
status = None
smsc = None
text = None
class E_Scape(object):
def __init__(self, api_id):
"""
* api_id is assigned to you by E-scape
* if smsc is provided then this is used as the default for all
messages sent unless it's specified again when calling send_sms
"""
self.api_id = api_id
self.gateway_url = 'http://site.demoru.com/api.php'
def send_sms(self, smsc, sender, recipients, text):
"""
We mimick a FORM post to the given URL and get back an HTML table.
Got this from http://site.demoru.com/?page_id=27
HTTP 200 OK
Date Thu: 03 Jun 2010 18:32:15 GMT
Connection Close
Transfer-Encoding chunked
Content-Type text/html; charset=UTF-8
<table class="widefat" border="0">
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>smsc</th>
<th>status</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>+35566</td>
<td>+44778962937</td>
<td>ESC-P1Celtel</td>
<td>0: Accepted for delivery</td>
<td> http://www.mobi-fee.com/link/g.lnk?ID=135</td>
</tr>
</tbody>
<tfoot>
<tr>
<th>from</th>
<th>to</th>
<th>smsc</th>
<th>status</th>
<th>text</th>
</tr>
</tfoot>
</table>
"""
if not all([msisdn.startswith('+') for msisdn in recipients]):
raise E_ScapeException, 'All msisdns should start with a +'
kwargs = {
's': sender,
'r': ','.join(recipients),
'text': text,
'smsc': smsc,
'api_id': self.api_id,
'send': 'go' # apparently the form submission key
}
return parse_response(callback(self.gateway_url, kwargs.items()))
def parse_response(self, response):
tree = ET.fromstring(response)
rows = tree.findall('tbody/tr')
if not rows:
raise E_ScapeException('Unparsable response: %s' % response)
responses = []
for row in rows:
sender, recipient, smsc, status, text = [td.text for td in row.findall('td')]
response = E_ScapeReponse()
response.sender = sender
response.recipient = recipient
response.smsc = smsc
response.status = [s.strip() for s in status.split(':')]
response.text = text
responses.append(response)
return responses
|
[
"[email protected]"
] | |
b9fbf432be4d10e425c65617e63fa9e902bcfb71
|
cf0ab8503d4d704045070deea1e2125375711e86
|
/apps/admins/migrations/0016_email_trgm_index.py
|
37fb89311f3da4b1e63edf8e88407ba4ae5ec7d9
|
[] |
no_license
|
faierbol/syncano-platform
|
c3c6468600115752fd9fa5e46a0ad59f75f6bc9c
|
879111874d1ef70418b4890cf970720b0a2be4d8
|
refs/heads/master
| 2023-07-20T10:13:40.066127 | 2021-02-08T15:01:13 | 2021-02-08T15:01:13 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 377 |
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.9.7 on 2016-07-04 13:14
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('admins', '0015_auto_20151116_1124'),
]
operations = [
migrations.RunSQL(
"""
CREATE INDEX admins_admin_trgm_email ON admins_admin
USING GIN (email gin_trgm_ops);
"""
)
]
|
[
"[email protected]"
] | |
8b19f88bf31d2955f25c21644e2842d7b82b3fb4
|
15f321878face2af9317363c5f6de1e5ddd9b749
|
/solutions_python/Problem_155/3211.py
|
c858ddd5d9f486b0a798b83f0bd5067a8acacfd8
|
[] |
no_license
|
dr-dos-ok/Code_Jam_Webscraper
|
c06fd59870842664cd79c41eb460a09553e1c80a
|
26a35bf114a3aa30fc4c677ef069d95f41665cc0
|
refs/heads/master
| 2020-04-06T08:17:40.938460 | 2018-10-14T10:12:47 | 2018-10-14T10:12:47 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 612 |
py
|
#!/usr/bin/env python
from __future__ import print_function
def main():
f = open('myfile','w')
with open("sample.txt") as fp:
line_count = int(next(fp).strip())
for inst in range(line_count):
line = next(fp).strip()
shyMax, audi = line.split()
sum = 0
pplcnt = 0
for i in range(int(shyMax) + 1):
if i > sum:
pplcnt += 1
sum += 1
sum += int(audi[i])
print("Case #{}: {}".format(inst + 1, pplcnt), file=f)
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
88d169aa75a10b91bbdce47120e6b90e421aba8c
|
8a6dde82fa2bb14a92ee9c45013c15424572c076
|
/flask_app/adoption_app/app.py
|
64805087af9022502b90179d089ec251ad63dee6
|
[] |
no_license
|
irekpi/flask
|
4c9d6f65d0b54bcb4bf5e2e59fdca3e426793c7e
|
4bc9caddebcb903a7da0e2fd9eef507112d358ed
|
refs/heads/master
| 2022-04-11T03:33:16.630625 | 2020-03-26T19:30:57 | 2020-03-26T19:30:57 | 250,352,874 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 182 |
py
|
from adoption import app
from flask import render_template
@app.route('/')
def index():
return render_template('home.html')
if __name__ == '__main__':
app.run(debug=True)
|
[
"[email protected]"
] | |
5ae87aa4a615766ce9e138470e20a278f275cc6f
|
7deda84f7a280f5a0ee69b98c6a6e7a2225dab24
|
/Receptionist/migrations/0003_auto_20200101_1048.py
|
faf01ddd9b6e58c1f60a74740ab12f7d4d570747
|
[] |
no_license
|
Cornex-Inc/Coffee
|
476e30f29412373fb847b2d518331e6c6b9fdbbf
|
fcd86f20152e2b0905f223ff0e40b1881db634cf
|
refs/heads/master
| 2023-01-13T01:56:52.755527 | 2020-06-08T02:59:18 | 2020-06-08T02:59:18 | 240,187,025 | 0 | 0 | null | 2023-01-05T23:58:52 | 2020-02-13T05:47:41 |
Python
|
UTF-8
|
Python
| false | false | 386 |
py
|
# Generated by Django 2.1.15 on 2020-01-01 10:48
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('Receptionist', '0002_auto_20200101_1047'),
]
operations = [
migrations.RenameField(
model_name='payment',
old_name='discounted_percent',
new_name='discounted',
),
]
|
[
"[email protected]"
] | |
effe1cf035f81d7f598fa870362c76740cf17bdd
|
65c31008f79a1227e8eda04f507e2ef26413bd3a
|
/maximum.py
|
ff9df3ccf61cda2c3e302ef62ece83362625c5bf
|
[] |
no_license
|
qwangzone/leetcode_pro
|
da2b98770d12e3d3e57b585f24727cdd600adb96
|
0e008fa293f54cc97c79e86648fadf67c0507e7a
|
refs/heads/master
| 2020-03-06T22:22:47.434221 | 2018-04-28T09:00:53 | 2018-04-28T09:00:53 | 127,101,654 | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 385 |
py
|
class Solution:
# @param A, a list of integers
# @return an integer
# 6:57
def maxSubArray(self, A):
if not A:
return 0
curSum = maxSum = A[0]
for num in A[1:]:
curSum = max(num, curSum + num)
maxSum = max(maxSum, curSum)
return maxSum
a = Solution()
print()
print(a.maxSubArray([1,2,3,4,5,-1,-3]))
|
[
"[email protected]"
] | |
efae14ea5b64bab7cfc0a336e7bea98939e7bd96
|
5bc9cd49ea8852852fc7caf38bd40c261c178985
|
/blogs/urls.py
|
f38a877ec835a48ff07207693b6918c5b28df95c
|
[
"Apache-2.0"
] |
permissive
|
Tooskich/python_core
|
90f2ae97c1cde6b7eca0bdd84da1237d54db9b53
|
ae2d9e201a903fc5fabcddf66b3e96aff1176007
|
refs/heads/master
| 2021-01-19T01:42:23.866215 | 2015-12-29T12:20:20 | 2015-12-29T12:20:20 | 16,333,738 | 0 | 1 | null | 2016-06-28T06:30:19 | 2014-01-29T02:55:21 |
Python
|
UTF-8
|
Python
| false | false | 903 |
py
|
from django.conf.urls import patterns, url
from blogs import views
urlpatterns = patterns(
'blogs.views',
# url(
# regex=r'^$',
# view='bloggers',
# name='basic_urls',
# ),
# url(
# regex=r'^bloggers/$',
# view='bloggers',
# name='basic_urls',
# ),
# url(
# regex=r'^posts/$',
# view='posts',
# name='basic_urls',
# ),
# url(
# regex=r'^posts/blog/$',
# view='blogId',
# name='basic_urls',
# ),
# url(
# regex=r'^bloggers/save/$',
# view='saveBlogger',
# name='basic_urls',
# ),
# url(
# regex=r'^posts/save/$',
# view='savePost',
# name='basic_urls',
# ),
# url(
# regex=r'^bloggers/delete/$',
# view='deleteBlogger',
# name='basic_urls',
# ),
# url(
# regex=r'^posts/delete/$',
# view='deletePost',
# name='basic_urls',
# ),
)
|
[
"[email protected]"
] | |
9334d740d8de1a87835894fd708ca2daeea156d5
|
9df2fb0bc59ab44f026b0a2f5ef50c72b2fb2ceb
|
/sdk/network/azure-mgmt-network/generated_samples/inbound_nat_rule_list.py
|
5b4a92fc37a9078fe6a20e541fbfbbf2e19b8d7a
|
[
"MIT",
"LGPL-2.1-or-later",
"LicenseRef-scancode-generic-cla"
] |
permissive
|
openapi-env-test/azure-sdk-for-python
|
b334a2b65eeabcf9b7673879a621abb9be43b0f6
|
f61090e96094cfd4f43650be1a53425736bd8985
|
refs/heads/main
| 2023-08-30T14:22:14.300080 | 2023-06-08T02:53:04 | 2023-06-08T02:53:04 | 222,384,897 | 1 | 0 |
MIT
| 2023-09-08T08:38:48 | 2019-11-18T07:09:24 |
Python
|
UTF-8
|
Python
| false | false | 1,547 |
py
|
# coding=utf-8
# --------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
# Code generated by Microsoft (R) AutoRest Code Generator.
# Changes may cause incorrect behavior and will be lost if the code is regenerated.
# --------------------------------------------------------------------------
from azure.identity import DefaultAzureCredential
from azure.mgmt.network import NetworkManagementClient
"""
# PREREQUISITES
pip install azure-identity
pip install azure-mgmt-network
# USAGE
python inbound_nat_rule_list.py
Before run the sample, please set the values of the client ID, tenant ID and client secret
of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID,
AZURE_CLIENT_SECRET. For more info about how to get the value, please see:
https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal
"""
def main():
client = NetworkManagementClient(
credential=DefaultAzureCredential(),
subscription_id="subid",
)
response = client.inbound_nat_rules.list(
resource_group_name="testrg",
load_balancer_name="lb1",
)
for item in response:
print(item)
# x-ms-original-file: specification/network/resource-manager/Microsoft.Network/stable/2022-11-01/examples/InboundNatRuleList.json
if __name__ == "__main__":
main()
|
[
"[email protected]"
] | |
570c820b05b72513c06662d62245d9fabbae0603
|
d635f439116674f6ed5d8c7b3bbc6991026925eb
|
/scheduled_bots/disease_ontology/disease_ontology/deprecated_code/mesh_changes.py
|
147b6a5cc89e21fa9f3b6a274a15637436151428
|
[
"MIT"
] |
permissive
|
SuLab/scheduled-bots
|
141a73949e2b2e97738944ecb1a0fcd214af5d77
|
bc83f5e013fd18247805efc4bf1f8f948aef859e
|
refs/heads/main
| 2023-02-24T16:19:24.926230 | 2023-02-17T10:48:03 | 2023-02-17T10:48:03 | 74,090,171 | 7 | 13 |
MIT
| 2022-12-08T05:07:36 | 2016-11-18T03:04:06 |
Jupyter Notebook
|
UTF-8
|
Python
| false | false | 9,994 |
py
|
"""
Instead of the change detector looking at each revision for an item
what i want here, is to compare the current state of an item's key/value pairs that I define, with another
set of data (a reference dataset, from an owl/obographs json file)
Steps:
- Does a sparql query against wikidata to get all mesh IDs on all items with a DOID. Looks for a mapping relation type (P4390)
if available. If no mapping rel type is specified, default to oboInOwl:hasDbXref
- Sparql query against the latest doid.owl release file looking for mesh terms using the relations:
{skos:closeMatch skos:narrowMatch skos:broadMatch skos:relatedMatch skos:exactMatch oboInOwl:hasDbXref}
- Compare the mesh IDs on wd vs whats in DO. Returns a table listing all of the differences
"""
import subprocess
from collections import defaultdict
import pandas as pd
import requests
from rdflib import Graph
from rdflib import URIRef, Literal
from tqdm import tqdm
from wikidataintegrator.wdi_core import WDItemEngine
from wikidataintegrator.wdi_helpers import id_mapper
BIOPORTAL_KEY = "a1ac23bb-23cb-44cf-bf5e-bcdd7446ef37"
DOID_QID = id_mapper("P699")
DO_OWL_PATH = "doid.owl"
QID_MAP_REL_TYPE_CURIE = {'Q39893184': 'skos:closeMatch',
'Q39893967': 'skos:narrowMatch',
'Q39894595': 'skos:broadMatch',
'Q39894604': 'skos:relatedMatch',
'Q39893449': 'skos:exactMatch'}
QID_MAP_REL_TYPE_CURIE = defaultdict(lambda: "oboInOwl:hasDbXref", QID_MAP_REL_TYPE_CURIE)
"""
MAP_REL_TYPE_QID = {'http://www.w3.org/2004/02/skos/core#broadMatch': 'Q39894595',
'http://www.w3.org/2004/02/skos/core#closeMatch': 'Q39893184',
'http://www.w3.org/2004/02/skos/core#exactMatch': 'Q39893449',
'http://www.w3.org/2004/02/skos/core#narrowMatch': 'Q39893967',
'http://www.w3.org/2004/02/skos/core#relatedMatch': 'Q39894604'}
"""
PREFIX_TO_CURIE = {
'http://www.w3.org/2004/02/skos/core#': 'skos',
'http://www.geneontology.org/formats/oboInOwl#': 'oboInOwl'
}
purl_to_curie = lambda s: s.replace("http://purl.obolibrary.org/obo/", "").replace("_", ":")
curie_to_purl = lambda s: "http://purl.obolibrary.org/obo/" + s.replace(":", "_")
def get_wikidata_do_mesh():
# get mesh xrefs, and including mapping relation type
# {'DOID:0050856': {'skos:broadMatch_D019958'}}
query = """
select ?item ?doid ?mesh ?mesh_rt where {
?item wdt:P699 ?doid .
?item p:P486 ?mesh_s .
?mesh_s ps:P486 ?mesh .
optional { ?mesh_s pq:P4390 ?mesh_rt }
}"""
results = WDItemEngine.execute_sparql_query(query)['results']['bindings']
results = [{k: v['value'].replace("http://www.wikidata.org/entity/", "") for k, v in item.items()} for item in
results]
df = pd.DataFrame(results)
df['mesh_rt'] = df.apply(lambda row: QID_MAP_REL_TYPE_CURIE[row.mesh_rt] + "_MESH:" + row.mesh, axis=1)
df['_item'] = df['item']
r = df.groupby("_item").aggregate(lambda x: set(y for y in x if not pd.isnull(y))).to_dict("records")
wd = {list(x['doid'])[0]: x for x in r}
wd = {k: v['mesh_rt'] for k, v in wd.items()}
wd = {k: v for k, v in wd.items() if v}
return wd
def getConceptLabel(qid):
return getConceptLabels((qid,))[qid]
def getConceptLabels(qids):
qids = "|".join({qid.replace("wd:", "") if qid.startswith("wd:") else qid for qid in qids})
params = {'action': 'wbgetentities', 'ids': qids, 'languages': 'en', 'format': 'json', 'props': 'labels'}
r = requests.get("https://www.wikidata.org/w/api.php", params=params)
print(r.url)
r.raise_for_status()
wd = r.json()['entities']
return {k: v['labels']['en']['value'] for k, v in wd.items()}
def get_do_metadata():
# from the do owl file, get do labels, descriptions
g = Graph()
g.parse(DO_OWL_PATH)
disease_ontology = Literal('disease_ontology', datatype=URIRef('http://www.w3.org/2001/XMLSchema#string'))
query = """
SELECT * WHERE {
?id oboInOwl:hasOBONamespace ?disease_ontology .
?id rdfs:label ?label .
OPTIONAL {?id obo:IAO_0000115 ?descr}
FILTER NOT EXISTS {?id owl:deprecated ?dep}
}
"""
rows = g.query(query, initBindings={'disease_ontology': disease_ontology})
res = [{str(k): str(v) for k, v in binding.items()} for binding in rows.bindings]
df = pd.DataFrame(res)
df.drop_duplicates(subset=['id'], inplace=True)
df.fillna("", inplace=True)
do = df.to_dict("records")
do = {purl_to_curie(x['id']): x for x in do}
return do
def parse_do_owl():
"""
Parse xrefs and skos matches from owl file.
Returns dict. key: doid curie, value: set of xrefs in the format: relation type + "_" + xref. (ex: oboInOwl:hasDbXref_MESH:D007690)
:return:
"""
g = Graph()
g.parse(DO_OWL_PATH)
disease_ontology = Literal('disease_ontology', datatype=URIRef('http://www.w3.org/2001/XMLSchema#string'))
true = Literal('true', datatype=URIRef('http://www.w3.org/2001/XMLSchema#boolean'))
query = """
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?id ?rel_type ?xref WHERE {
?id oboInOwl:hasOBONamespace ?disease_ontology .
OPTIONAL {
values ?rel_type {skos:closeMatch skos:narrowMatch skos:broadMatch skos:relatedMatch skos:exactMatch oboInOwl:hasDbXref}
?id ?rel_type ?xref .
}
FILTER NOT EXISTS {?id owl:deprecated ?true}
}
"""
rows = g.query(query, initBindings={'disease_ontology': disease_ontology, 'true': true})
res = [{str(k): str(v) for k, v in binding.items()} for binding in rows.bindings]
df = pd.DataFrame(res)
df["doid"] = df["id"]
df.dropna(subset=['xref'], inplace=True)
df.rel_type = df.rel_type.apply(
lambda x: x.replace(x.split("#")[0] + "#", PREFIX_TO_CURIE[x.split("#")[0] + "#"] + ":"))
df.xref = df.apply(lambda row: row.rel_type + "_" + row.xref, axis=1)
r = df.groupby("id").aggregate(lambda x: set(y for y in x if not pd.isnull(y))).to_dict("records")
do = {purl_to_curie(list(x['doid'])[0]): x for x in r}
do = {k: v['xref'] for k, v in do.items()}
# filter mesh xrefs only
do = {k: set([x for x in v if "MESH:" in x]) for k, v in do.items()}
do = {k: v for k, v in do.items() if v}
# do['DOID:5570']
return do
def compare(wd, do):
# for each DO item, does wd have everything it should? What else does it have?
wd = defaultdict(set, wd)
do = defaultdict(set, do)
leftover_in_wd = dict()
leftover_in_do = dict()
doids = set(wd.keys()) | set(do.keys())
missing = []
for doid in doids:
leftover_in_wd[doid] = set()
leftover_in_do[doid] = set()
if doid not in wd:
missing.append(doid)
continue
leftover_in_wd[doid] = wd[doid] - do[doid]
leftover_in_do[doid] = do[doid] - wd[doid]
leftover_in_wd = {k: v for k, v in leftover_in_wd.items() if v}
leftover_in_do = {k: v for k, v in leftover_in_do.items() if v}
print("Items missing in wikidata: {}".format(missing))
return leftover_in_wd, leftover_in_do
def get_changes():
wd = get_wikidata_do_mesh()
do = parse_do_owl()
leftover_in_wd, leftover_in_do = compare(wd, do)
return leftover_in_wd, leftover_in_do
def get_mesh_info(mesh_id):
url = "http://data.bioontology.org/ontologies/MESH/classes/http%3A%2F%2Fpurl.bioontology.org%2Fontology%2FMESH%2F{}"
d = requests.get(url.format(mesh_id), params={'apikey': BIOPORTAL_KEY}).json()
if "errors" in d:
return {'mesh_label': '', 'mesh_descr': ''}
d = {'mesh_label': d['prefLabel'], 'mesh_descr': d['definition'], 'mesh_synonyms': ";".join(d['synonym'])}
d['mesh_descr'] = d['mesh_descr'][0] if d['mesh_descr'] else ''
return d
def get_mesh_changes(leftover_in_wd):
# from the things added to wikidata, make a table with the metadata about the change
# starting with things added to wd
mesh_info = []
mesh_url = "https://meshb.nlm.nih.gov/record/ui?ui={}"
do_metadata = get_do_metadata()
for doid, meshs in tqdm(leftover_in_wd.items()):
for mesh in meshs:
relation, mesh = mesh.split("_")
mesh = mesh.split(":")[1]
qid = DOID_QID[doid]
do_node = do_metadata.get(doid, dict())
x = {'qid': qid, 'wd_label': getConceptLabel(qid),
'doid': doid, 'do_label': do_node.get("label"), 'doid_url': curie_to_purl(doid),
'do_def': do_node.get("descr"),
'mesh': mesh, 'mesh_url': mesh_url.format(mesh),
'relation': relation}
x.update(get_mesh_info(mesh))
mesh_info.append(x)
df = pd.DataFrame(mesh_info)
df = df[['doid', 'do_label', 'do_def', 'doid_url', 'mesh', 'mesh_label',
'mesh_descr', 'mesh_synonyms', 'mesh_url', 'qid', 'wd_label', 'relation']]
print(df.head(2))
remove_me = df[df.mesh_label.isnull()]
if not remove_me.empty:
print("you should remove these")
print(remove_me)
# make a formatted df
df_fmt = df.copy()
df_fmt.doid = df_fmt.apply(lambda x: "[" + x.doid + "](" + x.doid_url + ")", 1)
del df_fmt['doid_url']
df_fmt.mesh = df_fmt.apply(lambda x: "[" + x.mesh + "](" + x.mesh_url + ")", 1)
del df_fmt['mesh_url']
df_fmt.qid = df_fmt.qid.apply(lambda x: "[" + x + "](https://www.wikidata.org/wiki/" + x + ")")
return df, df_fmt
def download_do_owl(release):
url = "https://github.com/DiseaseOntology/HumanDiseaseOntology/raw/master/src/ontology/releases/{}/doid.owl"
subprocess.check_call(["wget", "-N", url.format(release)])
def main(release):
# release = "2017-11-28"
download_do_owl(release)
leftover_in_wd, leftover_in_do = get_changes()
df, df_fmt = get_mesh_changes(leftover_in_wd)
return df, df_fmt
|
[
"[email protected]"
] | |
16ee3ce5d7916d66726b2fa0302489056100e2b9
|
5a4b7c41ffe95a1b0422a8eb1cb89bd9a75fd68c
|
/tests/models/mappa/test_response_models.py
|
7c3405ea6f91df8fbd0e20e83d48b3bfe62ef812
|
[
"MIT"
] |
permissive
|
escoteirando/escoteiros-mappa-old
|
3c7ca4f6b4c4e9dbee1abb5430cc773c9ee4d903
|
4917da4cae49ded521db248fdea39ca79b7ef8f7
|
refs/heads/develop
| 2022-12-11T06:26:10.239310 | 2020-04-20T00:52:03 | 2020-04-20T00:52:03 | 253,770,625 | 1 | 1 |
MIT
| 2022-12-08T09:39:59 | 2020-04-07T11:16:18 |
Python
|
UTF-8
|
Python
| false | false | 2,188 |
py
|
import unittest
from datetime import datetime, tzinfo
from dateutil.tz import tzutc
from mappa.models.mappa.associado import AssociadoModel
from mappa.models.mappa.escotista import EscotistaModel
from mappa.models.mappa.login import LoginModel
class TestResponseModels(unittest.TestCase):
def test_login_mappa(self):
data = '''{
"id": "904QVxCGR0mLG6uDqWt7EOZLZZyfbaBRatKnoMefohwfkpPjc5jeuyUNAWED5t7H",
"ttl": 1209600,
"created": "2019-10-26T02:19:09.146Z",
"userId": 50442
}'''
login = LoginModel(data)
self.assertEqual(
login.id, "904QVxCGR0mLG6uDqWt7EOZLZZyfbaBRatKnoMefohwfkpPjc5jeuyUNAWED5t7H")
self.assertEqual(login.ttl, 1209600)
self.assertEqual(login.created, datetime(
2019, 10, 26, 2, 19, 9, 146000, tzutc()))
self.assertEqual(login.userId, 50442)
def test_associado_mappa(self):
data = '''{
"codigo":850829,
"nome":"GUIONARDO FURLAN",
"codigoFoto":null,
"codigoEquipe":null,
"username":1247937,
"numeroDigito":3,
"dataNascimento":"Sat Feb 05 1977 00:00:00 GMT+0000 (UTC)",
"dataValidade":"2019-01-01T00:00:00.000Z",
"nomeAbreviado":"",
"sexo":"M",
"codigoRamo":2,
"codigoCategoria":5,
"codigoSegundaCategoria":0,
"codigoTerceiraCategoria":0,
"linhaFormacao":"Escotista",
"codigoRamoAdulto":2,
"dataAcompanhamento":null
}'''
associado = AssociadoModel(data)
self.assertEqual(associado.codigo, 850829)
self.assertEqual(associado.nome, 'GUIONARDO FURLAN')
self.assertEqual(associado.codigoFoto, None)
self.assertEqual(associado.dataAcompanhamento, None)
def test_escotista_mappa(self):
data = '''{
"codigo": 50442,
"codigoAssociado": 850829,
"username": "Guionardo",
"nomeCompleto": "GuionardoFurlan",
"ativo": "S",
"codigoGrupo": 32,
"codigoRegiao": "SC",
"codigoFoto": null
}'''
escotista = EscotistaModel(data)
self.assertEqual(escotista.codigo, 50442)
self.assertEqual(escotista.codigoAssociado, 850829)
self.assertEqual(escotista.ativo, 'S')
|
[
"[email protected]"
] | |
da4219c9fa4f5b076e85b7cc131e88c1acf86898
|
353def93fa77384ee3a5e3de98cfed318c480634
|
/.history/week01/homework02/maoyanspiders/maoyanspiders/spiders/movies_20200628000400.py
|
d60bfbff6cf07f0498fc2d12a1ed68303c1eecd8
|
[] |
no_license
|
ydbB/Python001-class01
|
d680abc3ea1ccaeb610751e3488421417d381156
|
ad80037ccfc68d39125fa94d2747ab7394ac1be8
|
refs/heads/master
| 2022-11-25T11:27:45.077139 | 2020-07-19T12:35:12 | 2020-07-19T12:35:12 | 272,783,233 | 0 | 0 | null | 2020-06-16T18:28:15 | 2020-06-16T18:28:15 | null |
UTF-8
|
Python
| false | false | 2,441 |
py
|
# -*- coding: utf-8 -*-
import scrapy
from maoyanspiders.items import MaoyanspidersItem
# import xlml.etree
from bs4 import BeautifulSoup as bs
class MoviesSpider(scrapy.Spider):
name = 'movies'
allowed_domains = ['maoyan.com']
start_urls = ['http://maoyan.com/board/4']
# def parse(self, response):
# pass
def start_requests(self):
header = {
'Content-Type': 'text/plain; charset=UTF-8',
'Cookie' : '__mta=251934006.1593072991075.1593267136578.1593267143630.29; uuid_n_v=v1; uuid=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; _csrf=8557626db9b655cf9050ae7e5b2aab69278c8061c21eca95e1c3cf2130b0b64c; _lxsdk_cuid=172ea8cb247c8-0a73066b1c0a8b-4353760-100200-172ea8cb248c8; _lxsdk=2395D3F0B6BC11EA9F28E30FF5FFF73C9A16AE2FA53A448DA75AEAA9D715CB59; mojo-uuid=c457eacb7c1eb59d3d2f6c1f8d75b9c9; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593072989,1593073002; _lx_utm=utm_source%3Dgoogle%26utm_medium%3Dorganic; __mta=251934006.1593072991075.1593140975947.1593145813576.21; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593267144; _lxsdk_s=172f6570f57-262-d57-29%7C%7C1',
# 'Host' : 'http://www.baidu.com',
'Origin': 'https://maoyan.com',
'Referer': 'https://maoyan.com/board/4',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36',
}
url = f'https://maoyan.com/board/4'
yield scrapy.Request(url=url,headers=header,callback=self.parse)
def parse(self, response):
soup = bs(response.text,'html.parser')
for i in soup.find_all('div',attrs={'class' : 'movie-item-info'}):
item = MaoyanspidersItem()
title = i.find('p',attrs={'class':'name'}).find('a')
name = title.get('title')
link = 'https://maoyan.com/'+ title.get('href')
time = i.find('p',attrs={'class' : 'releasetime'}).text
item['films_name'] = name
item['release_time'] = time
yield scrapy.Request(url=link, meta={'item':item},callback=self.parse1)
return soup
def parse1(self, response):
item = response.meta['item']
soup = bs(response.text,'html.parser')
type = soup.find('div',attrs={'class' :'movie-brief-container'}).find_all('li')[0]
item['films_type'] = type
yield item
|
[
"[email protected]"
] | |
dff0faa0489696fca7561a52f1eed242eed66498
|
a838d4bed14d5df5314000b41f8318c4ebe0974e
|
/sdk/mixedreality/azure-mixedreality-authentication/tests/test_static_access_token_credential_async.py
|
f9b7171460fd4f5c33b8e663c249d8255f338ad3
|
[
"MIT",
"LicenseRef-scancode-generic-cla",
"LGPL-2.1-or-later"
] |
permissive
|
scbedd/azure-sdk-for-python
|
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
|
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
|
refs/heads/master
| 2023-09-01T08:38:56.188954 | 2021-06-17T22:52:28 | 2021-06-17T22:52:28 | 159,568,218 | 2 | 0 |
MIT
| 2019-08-11T21:16:01 | 2018-11-28T21:34:49 |
Python
|
UTF-8
|
Python
| false | false | 933 |
py
|
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from azure.core.credentials import AccessToken
from devtools_testutils import AzureTestCase
from azure.mixedreality.authentication._shared.aio.static_access_token_credential import StaticAccessTokenCredential
class TestAsyncStaticAccessTokenCredential:
@AzureTestCase.await_prepared_test
async def test_get_token(self):
token = "My access token"
expiration = 0
access_token = AccessToken(token=token, expires_on=expiration)
staticAccessToken = StaticAccessTokenCredential(access_token)
actual = await staticAccessToken.get_token()
assert access_token == actual
|
[
"[email protected]"
] | |
7944dbc113b7f3dbd221b524d325116a297c83f5
|
f640fcb49bf99ebec5f34603748121fbbe9171dc
|
/lib_openshift/models/v1_image_change_trigger.py
|
b8b6b0fc4058951c8cd4fd60243032141171ce3b
|
[] |
no_license
|
tbielawa/lib_openshift
|
bea8a11c4904a7d6c815abdd2b206de5a4cc7a93
|
34ca0f6a0c5388624a040223f29552dc4c0f8c49
|
refs/heads/master
| 2023-06-16T22:41:15.894021 | 2016-07-11T21:26:59 | 2016-07-11T21:26:59 | 63,156,531 | 0 | 0 | null | 2016-07-12T12:35:29 | 2016-07-12T12:35:29 | null |
UTF-8
|
Python
| false | false | 4,909 |
py
|
# coding: utf-8
"""
Copyright 2016 SmartBear Software
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Ref: https://github.com/swagger-api/swagger-codegen
"""
from pprint import pformat
from six import iteritems
class V1ImageChangeTrigger(object):
"""
NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
def __init__(self):
"""
V1ImageChangeTrigger - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition.
"""
self.swagger_types = {
'last_triggered_image_id': 'str',
'_from': 'V1ObjectReference'
}
self.attribute_map = {
'last_triggered_image_id': 'lastTriggeredImageID',
'_from': 'from'
}
self._last_triggered_image_id = None
self.__from = None
@property
def last_triggered_image_id(self):
"""
Gets the last_triggered_image_id of this V1ImageChangeTrigger.
LastTriggeredImageID is used internally by the ImageChangeController to save last used image ID for build
:return: The last_triggered_image_id of this V1ImageChangeTrigger.
:rtype: str
"""
return self._last_triggered_image_id
@last_triggered_image_id.setter
def last_triggered_image_id(self, last_triggered_image_id):
"""
Sets the last_triggered_image_id of this V1ImageChangeTrigger.
LastTriggeredImageID is used internally by the ImageChangeController to save last used image ID for build
:param last_triggered_image_id: The last_triggered_image_id of this V1ImageChangeTrigger.
:type: str
"""
self._last_triggered_image_id = last_triggered_image_id
@property
def _from(self):
"""
Gets the _from of this V1ImageChangeTrigger.
From is a reference to an ImageStreamTag that will trigger a build when updated It is optional. If no From is specified, the From image from the build strategy will be used. Only one ImageChangeTrigger with an empty From reference is allowed in a build configuration.
:return: The _from of this V1ImageChangeTrigger.
:rtype: V1ObjectReference
"""
return self.__from
@_from.setter
def _from(self, _from):
"""
Sets the _from of this V1ImageChangeTrigger.
From is a reference to an ImageStreamTag that will trigger a build when updated It is optional. If no From is specified, the From image from the build strategy will be used. Only one ImageChangeTrigger with an empty From reference is allowed in a build configuration.
:param _from: The _from of this V1ImageChangeTrigger.
:type: V1ObjectReference
"""
self.__from = _from
def to_dict(self):
"""
Returns the model properties as a dict
"""
result = {}
for attr, _ in iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""
Returns the string representation of the model
"""
return pformat(self.to_dict())
def __repr__(self):
"""
For `print` and `pprint`
"""
return self.to_str()
def __eq__(self, other):
"""
Returns true if both objects are equal
"""
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""
Returns true if both objects are not equal
"""
return not self == other
|
[
"[email protected]"
] | |
7065790d2280e02944b4499fb05d3b4af79dbde3
|
ce18877752c43eb66f03bdc169e3ef45a1720d15
|
/src/apps/shop/__init__.py
|
e929914882f6d6647c0575acdfc548c0d37f700c
|
[] |
no_license
|
ajlexgit/robin
|
26e8682ae09795acf0f3fc1297d20044285b83df
|
25ac1c3455838fc26656cfa16d05b2943d0cbba6
|
refs/heads/master
| 2021-07-13T22:49:09.177207 | 2017-10-13T07:44:42 | 2017-10-13T07:44:42 | 103,655,240 | 1 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 1,396 |
py
|
"""
Интернет-магазин с корзиной в localStorage и сессии.
Установка:
settings.py:
INSTALLED_APPS = (
...
'mptt',
'shop',
...
)
SUIT_CONFIG = {
...
{
'app': 'shop',
'icon': 'icon-shopping-cart',
'models': (
'ShopOrder',
'ShopProduct',
'ShopCategory',
'ShopConfig',
)
},
...
}
MIDDLEWARE_CLASSES = (
...
'libs.js_storage.middleware.JSStorageMiddleware',
...
'shop.middleware.CartMiddleware',
...
)
urls.py:
...
url(r'^shop/', include('shop.urls', namespace='shop')),
...
При конкретной реализации, нужно вызывать Django-сигналы
для подтверждения, оплаты и отмены заказа:
from .signals import order_confirmed
...
order_confirmed.send(sender=ShopOrder, order=order, request=request)
"""
default_app_config = 'shop.apps.Config'
|
[
"[email protected]"
] | |
8e8a7aaabbfac8bdccff57b2331e7edeaf82e5b9
|
9dab41a71bf19a9ad17ee3e9f77c0f58aebd1d6d
|
/python/DistrictUserUploadTask/main.py
|
21fca594a2a3b2985d5fe605991b29340f8573b3
|
[] |
no_license
|
apollowesley/Demo
|
f0ef8ec6c4ceb0aec76771da8dd9a62fb579eac8
|
471c4af95d3a7222d6933afc571a8e52e8fe4aee
|
refs/heads/master
| 2021-02-15T04:01:51.590697 | 2018-01-29T01:44:29 | 2018-01-29T01:44:29 | null | 0 | 0 | null | null | null | null |
UTF-8
|
Python
| false | false | 2,274 |
py
|
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import logging
import logging.config
import ConfigParser
import string
import os
import sys
import re
import getpass
from task import UploadTask
# 日志
logging.config.fileConfig("./log.conf")
logger = logging.getLogger("example01")
# 获取配置信息
def load_config():
mysql = {}
try:
cf = ConfigParser.ConfigParser()
cf.read("config.conf")
# 获取所有节
secs = cf.sections()
for sec in secs:
task = {}
if sec == "mysql":
for item in cf.items(sec):
mysql[item[0]] = item[1]
except Exception as e:
logger.error("加载配置文件出现异常:{}".format(e))
return mysql
def prn_obj(obj):
print '\n'.join(['%s:%s' % item for item in obj.__dict__.items()])
def main():
reload(sys)
sys.setdefaultencoding('utf-8')
logger.info("准备运行工具")
# 加载配置文件
mysql = load_config()
logger.info("MySQL配置信息为 %s" % str(mysql))
# 获取目录upload下文件,查看文件命名是否符合要求,如果有不符合退出
upload_files = os.listdir('./upload')
if len(upload_files) == 0:
print("上传目录文件为空,请先放置上传文件")
return
for filename in upload_files:
print(filename)
if not re.match(".*area_(\d+)_.*\..*", filename):
print("文件名不符合规范. %s" % filename)
os.exit(1)
# 提示输入数据库密码
password = getpass.getpass("请输入MySQL用户%s密码:" % mysql["username"])
mysql["password"] = password
# 遍历查看Excel记录是否符合要求
logger.info("核对Excel记录是否正确")
for filename in upload_files:
task = UploadTask(filename, mysql, logger)
if not task.verify_records():
print("上传文件中内容格式有误,请按提示修改后,再执行操作")
os.exit(1)
# 执行上传功能
logger.info("准备写入Excel记录到MySQL上")
for filename in upload_files:
task = UploadTask(filename, mysql, logger)
task.upload()
logger.info("上传完毕")
if __name__ == "__main__":
main()
|
[
"[email protected]"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.