code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
async def _send_sack(self):
"""
Build and send a selective acknowledgement (SACK) chunk.
"""
gaps = []
gap_next = None
for tsn in sorted(self._sack_misordered):
pos = (tsn - self._last_received_tsn) % SCTP_TSN_MODULO
if tsn == gap_next:
gaps[-1][1] = pos
else:
gaps.append([pos, pos])
gap_next = tsn_plus_one(tsn)
sack = SackChunk()
sack.cumulative_tsn = self._last_received_tsn
sack.advertised_rwnd = max(0, self._advertised_rwnd)
sack.duplicates = self._sack_duplicates[:]
sack.gaps = [tuple(x) for x in gaps]
await self._send_chunk(sack)
self._sack_duplicates.clear()
self._sack_needed = False | Build and send a selective acknowledgement (SACK) chunk. | _send_sack | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
def _set_state(self, state) -> None:
"""
Transition the SCTP association to a new state.
"""
if state != self._association_state:
self.__log_debug("- %s -> %s", self._association_state, state)
self._association_state = state
if state == self.State.ESTABLISHED:
self.__state = "connected"
for channel in list(self._data_channels.values()):
if channel.negotiated and channel.readyState != "open":
channel._setReadyState("open")
asyncio.ensure_future(self._data_channel_flush())
elif state == self.State.CLOSED:
self._t1_cancel()
self._t2_cancel()
self._t3_cancel()
self.__state = "closed"
# close data channels
for stream_id in list(self._data_channels.keys()):
self._data_channel_closed(stream_id)
# no more events will be emitted, so remove all event listeners
# to facilitate garbage collection.
self.remove_all_listeners() | Transition the SCTP association to a new state. | _set_state | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
async def _transmit(self) -> None:
"""
Transmit outbound data.
"""
# send FORWARD TSN
if self._forward_tsn_chunk is not None:
await self._send_chunk(self._forward_tsn_chunk)
self._forward_tsn_chunk = None
# ensure T3 is running
if not self._t3_handle:
self._t3_start()
# limit burst size
if self._fast_recovery_exit is not None:
burst_size = 2 * USERDATA_MAX_LENGTH
else:
burst_size = 4 * USERDATA_MAX_LENGTH
cwnd = min(self._flight_size + burst_size, self._cwnd)
# retransmit
retransmit_earliest = True
for chunk in self._sent_queue:
if chunk._retransmit:
if self._fast_recovery_transmit:
self._fast_recovery_transmit = False
elif self._flight_size >= cwnd:
return
self._flight_size_increase(chunk)
chunk._misses = 0
chunk._retransmit = False
chunk._sent_count += 1
await self._send_chunk(chunk)
if retransmit_earliest:
# restart the T3 timer as the earliest outstanding TSN
# is being retransmitted
self._t3_restart()
retransmit_earliest = False
while self._outbound_queue and self._flight_size < cwnd:
chunk = self._outbound_queue.popleft()
self._sent_queue.append(chunk)
self._flight_size_increase(chunk)
# update counters
chunk._sent_count += 1
chunk._sent_time = time.time()
await self._send_chunk(chunk)
if not self._t3_handle:
self._t3_start() | Transmit outbound data. | _transmit | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
def _update_advanced_peer_ack_point(self) -> None:
"""
Try to advance "Advanced.Peer.Ack.Point" according to RFC 3758.
"""
if uint32_gt(self._last_sacked_tsn, self._advanced_peer_ack_tsn):
self._advanced_peer_ack_tsn = self._last_sacked_tsn
done = 0
streams = {}
while self._sent_queue and self._sent_queue[0]._abandoned:
chunk = self._sent_queue.popleft()
self._advanced_peer_ack_tsn = chunk.tsn
done += 1
if not (chunk.flags & SCTP_DATA_UNORDERED):
streams[chunk.stream_id] = chunk.stream_seq
if done:
# build FORWARD TSN
self._forward_tsn_chunk = ForwardTsnChunk()
self._forward_tsn_chunk.cumulative_tsn = self._advanced_peer_ack_tsn
self._forward_tsn_chunk.streams = list(streams.items()) | Try to advance "Advanced.Peer.Ack.Point" according to RFC 3758. | _update_advanced_peer_ack_point | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
def _update_rto(self, R: float) -> None:
"""
Update RTO given a new roundtrip measurement R.
"""
if self._srtt is None:
self._rttvar = R / 2
self._srtt = R
else:
self._rttvar = (1 - SCTP_RTO_BETA) * self._rttvar + SCTP_RTO_BETA * abs(
self._srtt - R
)
self._srtt = (1 - SCTP_RTO_ALPHA) * self._srtt + SCTP_RTO_ALPHA * R
self._rto = max(SCTP_RTO_MIN, min(self._srtt + 4 * self._rttvar, SCTP_RTO_MAX)) | Update RTO given a new roundtrip measurement R. | _update_rto | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
def _data_channel_close(self, channel, transmit=True):
"""
Request closing the datachannel by sending an Outgoing Stream Reset Request.
"""
if channel.readyState not in ["closing", "closed"]:
channel._setReadyState("closing")
if self._association_state == self.State.ESTABLISHED:
# queue a stream reset
self._reconfig_queue.append(channel.id)
if len(self._reconfig_queue) == 1:
asyncio.ensure_future(self._transmit_reconfig())
else:
# remove any queued messages for the datachannel
new_queue = deque()
for queue_item in self._data_channel_queue:
if queue_item[0] != channel:
new_queue.append(queue_item)
self._data_channel_queue = new_queue
# mark the datachannel as closed
if channel.id is not None:
self._data_channels.pop(channel.id)
channel._setReadyState("closed") | Request closing the datachannel by sending an Outgoing Stream Reset Request. | _data_channel_close | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
async def _data_channel_flush(self) -> None:
"""
Try to flush buffered data to the SCTP layer.
We wait until the association is established, as we need to know
whether we are a client or a server to correctly assign an odd/even ID
to the data channels.
"""
if self._association_state != self.State.ESTABLISHED:
return
while self._data_channel_queue and not self._outbound_queue:
channel, protocol, user_data = self._data_channel_queue.popleft()
# register channel if necessary
stream_id = channel.id
if stream_id is None:
stream_id = self._data_channel_id
while stream_id in self._data_channels:
stream_id += 2
self._data_channels[stream_id] = channel
channel._setId(stream_id)
# send data
if protocol == WEBRTC_DCEP:
await self._send(stream_id, protocol, user_data)
else:
if channel.maxPacketLifeTime:
expiry = time.time() + (channel.maxPacketLifeTime / 1000)
else:
expiry = None
await self._send(
stream_id,
protocol,
user_data,
expiry=expiry,
max_retransmits=channel.maxRetransmits,
ordered=channel.ordered,
)
channel._addBufferedAmount(-len(user_data)) | Try to flush buffered data to the SCTP layer.
We wait until the association is established, as we need to know
whether we are a client or a server to correctly assign an odd/even ID
to the data channels. | _data_channel_flush | python | aiortc/aiortc | src/aiortc/rtcsctptransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcsctptransport.py | BSD-3-Clause |
def expires(self) -> datetime.datetime:
"""
The date and time after which the certificate will be considered invalid.
"""
return self._cert.to_cryptography().not_valid_after_utc | The date and time after which the certificate will be considered invalid. | expires | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def getFingerprints(self) -> List[RTCDtlsFingerprint]:
"""
Returns the list of certificate fingerprints, one of which is computed
with the digest algorithm used in the certificate signature.
"""
return [
RTCDtlsFingerprint(
algorithm=algorithm,
value=certificate_digest(self._cert, algorithm),
)
for algorithm in X509_DIGEST_ALGORITHMS.keys()
] | Returns the list of certificate fingerprints, one of which is computed
with the digest algorithm used in the certificate signature. | getFingerprints | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def generateCertificate(cls: Type[CERTIFICATE_T]) -> CERTIFICATE_T:
"""
Create and return an X.509 certificate and corresponding private key.
:rtype: RTCCertificate
"""
key = ec.generate_private_key(ec.SECP256R1(), default_backend())
cert = generate_certificate(key)
return cls(
key=crypto.PKey.from_cryptography_key(key),
cert=crypto.X509.from_cryptography(cert),
) | Create and return an X.509 certificate and corresponding private key.
:rtype: RTCCertificate | generateCertificate | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def state(self) -> str:
"""
The current state of the DTLS transport.
One of `'new'`, `'connecting'`, `'connected'`, `'closed'` or `'failed'`.
"""
return str(self._state)[6:].lower() | The current state of the DTLS transport.
One of `'new'`, `'connecting'`, `'connected'`, `'closed'` or `'failed'`. | state | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def transport(self):
"""
The associated :class:`RTCIceTransport` instance.
"""
return self._transport | The associated :class:`RTCIceTransport` instance. | transport | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def getLocalParameters(self) -> RTCDtlsParameters:
"""
Get the local parameters of the DTLS transport.
:rtype: :class:`RTCDtlsParameters`
"""
return RTCDtlsParameters(
fingerprints=self.__local_certificate.getFingerprints()
) | Get the local parameters of the DTLS transport.
:rtype: :class:`RTCDtlsParameters` | getLocalParameters | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
async def start(self, remoteParameters: RTCDtlsParameters) -> None:
"""
Start DTLS transport negotiation with the parameters of the remote
DTLS transport.
:param remoteParameters: An :class:`RTCDtlsParameters`.
"""
assert self._state == State.NEW
assert len(remoteParameters.fingerprints)
# For WebRTC, the DTLS role is explicitly determined as part of the
# offer / answer exchange.
#
# For ORTC however, we determine the DTLS role based on the ICE role.
if self._role == "auto":
if self.transport.role == "controlling":
self._set_role("server")
else:
self._set_role("client")
# Initialise SSL.
self._ssl = SSL.Connection(
self.__local_certificate._create_ssl_context(
srtp_profiles=self._srtp_profiles
)
)
if self._role == "server":
self._ssl.set_accept_state()
else:
self._ssl.set_connect_state()
self._set_state(State.CONNECTING)
try:
while not self.encrypted:
try:
self._ssl.do_handshake()
except SSL.WantReadError:
await self._write_ssl()
await self._recv_next()
except SSL.Error as exc:
self.__log_debug("x DTLS handshake failed (error %s)", exc)
self._set_state(State.FAILED)
return
else:
self.encrypted = True
except ConnectionError:
self.__log_debug("x DTLS handshake failed (connection error)")
self._set_state(State.FAILED)
return
# Check remote fingerprints. There must be at least one fingerprint
# with a supported algorithm, and all supported fingerprints must
# match.
x509 = self._ssl.get_peer_certificate()
fingerprint_supported = 0
fingerprint_valid = 0
for f in remoteParameters.fingerprints:
algorithm = f.algorithm.lower()
if algorithm in X509_DIGEST_ALGORITHMS:
fingerprint_supported += 1
if f.value.upper() == certificate_digest(x509, algorithm):
fingerprint_valid += 1
if not fingerprint_supported or fingerprint_valid != fingerprint_supported:
self.__log_debug("x DTLS handshake failed (fingerprint mismatch)")
self._set_state(State.FAILED)
return
# generate keying material
openssl_profile = self._ssl.get_selected_srtp_profile()
for srtp_profile in self._srtp_profiles:
if srtp_profile.openssl_profile == openssl_profile:
self.__log_debug(
"x DTLS handshake negotiated %s",
srtp_profile.openssl_profile.decode(),
)
break
else:
self.__log_debug("x DTLS handshake failed (no SRTP profile negotiated)")
self._set_state(State.FAILED)
return
view = self._ssl.export_keying_material(
b"EXTRACTOR-dtls_srtp",
2 * (srtp_profile.key_length + srtp_profile.salt_length),
)
if self._role == "server":
srtp_tx_key = srtp_profile.get_key_and_salt(view, 1)
srtp_rx_key = srtp_profile.get_key_and_salt(view, 0)
else:
srtp_tx_key = srtp_profile.get_key_and_salt(view, 0)
srtp_rx_key = srtp_profile.get_key_and_salt(view, 1)
rx_policy = Policy(
key=srtp_rx_key,
ssrc_type=Policy.SSRC_ANY_INBOUND,
srtp_profile=srtp_profile.libsrtp_profile,
)
rx_policy.allow_repeat_tx = True
rx_policy.window_size = 1024
self._rx_srtp = Session(rx_policy)
tx_policy = Policy(
key=srtp_tx_key,
ssrc_type=Policy.SSRC_ANY_OUTBOUND,
srtp_profile=srtp_profile.libsrtp_profile,
)
tx_policy.allow_repeat_tx = True
tx_policy.window_size = 1024
self._tx_srtp = Session(tx_policy)
# start data pump
self.__log_debug("- DTLS handshake complete")
self._set_state(State.CONNECTED)
self._task = asyncio.ensure_future(self.__run()) | Start DTLS transport negotiation with the parameters of the remote
DTLS transport.
:param remoteParameters: An :class:`RTCDtlsParameters`. | start | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
async def stop(self) -> None:
"""
Stop and close the DTLS transport.
"""
if self._task is not None:
self._task.cancel()
self._task = None
if self._ssl and self._state in [State.CONNECTING, State.CONNECTED]:
try:
self._ssl.shutdown()
except SSL.Error:
pass
try:
await self._write_ssl()
except ConnectionError:
pass
self.__log_debug("- DTLS shutdown complete") | Stop and close the DTLS transport. | stop | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
async def _write_ssl(self) -> None:
"""
Flush outgoing data which OpenSSL put in our BIO to the transport.
"""
try:
data = self._ssl.bio_read(1500)
except SSL.Error:
data = b""
if data:
await self.transport._send(data)
self.__tx_bytes += len(data)
self.__tx_packets += 1 | Flush outgoing data which OpenSSL put in our BIO to the transport. | _write_ssl | python | aiortc/aiortc | src/aiortc/rtcdtlstransport.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/rtcdtlstransport.py | BSD-3-Clause |
def addTrack(self, track):
"""
Add a track whose media should be discarded.
:param track: A :class:`aiortc.MediaStreamTrack`.
"""
if track not in self.__tracks:
self.__tracks[track] = None | Add a track whose media should be discarded.
:param track: A :class:`aiortc.MediaStreamTrack`. | addTrack | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
async def start(self) -> None:
"""
Start discarding media.
"""
for track, task in self.__tracks.items():
if task is None:
self.__tracks[track] = asyncio.ensure_future(blackhole_consume(track)) | Start discarding media. | start | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
async def stop(self) -> None:
"""
Stop discarding media.
"""
for task in self.__tracks.values():
if task is not None:
task.cancel()
self.__tracks = {} | Stop discarding media. | stop | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
def audio(self) -> MediaStreamTrack:
"""
A :class:`aiortc.MediaStreamTrack` instance if the file contains audio.
"""
return self.__audio | A :class:`aiortc.MediaStreamTrack` instance if the file contains audio. | audio | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
def video(self) -> MediaStreamTrack:
"""
A :class:`aiortc.MediaStreamTrack` instance if the file contains video.
"""
return self.__video | A :class:`aiortc.MediaStreamTrack` instance if the file contains video. | video | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
def addTrack(self, track: MediaStreamTrack) -> None:
"""
Add a track to be recorded.
:param track: A :class:`aiortc.MediaStreamTrack`.
"""
if track.kind == "audio":
if self.__container.format.name in ("wav", "alsa", "pulse"):
codec_name = "pcm_s16le"
elif self.__container.format.name == "mp3":
codec_name = "mp3"
elif self.__container.format.name == "ogg":
codec_name = "libopus"
else:
codec_name = "aac"
stream = self.__container.add_stream(codec_name)
else:
if self.__container.format.name == "image2":
stream = self.__container.add_stream("png", rate=30)
stream.pix_fmt = "rgb24"
else:
stream = self.__container.add_stream("libx264", rate=30)
stream.pix_fmt = "yuv420p"
self.__tracks[track] = MediaRecorderContext(stream) | Add a track to be recorded.
:param track: A :class:`aiortc.MediaStreamTrack`. | addTrack | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
async def start(self) -> None:
"""
Start recording.
"""
for track, context in self.__tracks.items():
if context.task is None:
context.task = asyncio.ensure_future(self.__run_track(track, context)) | Start recording. | start | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
async def stop(self) -> None:
"""
Stop recording.
"""
if self.__container:
for track, context in self.__tracks.items():
if context.task is not None:
context.task.cancel()
context.task = None
for packet in context.stream.encode(None):
self.__container.mux(packet)
self.__tracks = {}
if self.__container:
self.__container.close()
self.__container = None | Stop recording. | stop | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
def subscribe(
self, track: MediaStreamTrack, buffered: bool = True
) -> MediaStreamTrack:
"""
Create a proxy around the given `track` for a new consumer.
:param track: Source :class:`MediaStreamTrack` which is relayed.
:param buffered: Whether there need a buffer between the source track and
relayed track.
:rtype: :class: MediaStreamTrack
"""
proxy = RelayStreamTrack(self, track, buffered)
self.__log_debug("Create proxy %s for source %s", id(proxy), id(track))
if track not in self.__proxies:
self.__proxies[track] = set()
return proxy | Create a proxy around the given `track` for a new consumer.
:param track: Source :class:`MediaStreamTrack` which is relayed.
:param buffered: Whether there need a buffer between the source track and
relayed track.
:rtype: :class: MediaStreamTrack | subscribe | python | aiortc/aiortc | src/aiortc/contrib/media.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/media.py | BSD-3-Clause |
def add_signaling_arguments(parser):
"""
Add signaling method arguments to an argparse.ArgumentParser.
"""
parser.add_argument(
"--signaling",
"-s",
choices=["copy-and-paste", "tcp-socket", "unix-socket"],
)
parser.add_argument(
"--signaling-host", default="127.0.0.1", help="Signaling host (tcp-socket only)"
)
parser.add_argument(
"--signaling-port", default=1234, help="Signaling port (tcp-socket only)"
)
parser.add_argument(
"--signaling-path",
default="aiortc.socket",
help="Signaling socket path (unix-socket only)",
) | Add signaling method arguments to an argparse.ArgumentParser. | add_signaling_arguments | python | aiortc/aiortc | src/aiortc/contrib/signaling.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/signaling.py | BSD-3-Clause |
def create_signaling(args):
"""
Create a signaling method based on command-line arguments.
"""
if args.signaling == "tcp-socket":
return TcpSocketSignaling(args.signaling_host, args.signaling_port)
elif args.signaling == "unix-socket":
return UnixSocketSignaling(args.signaling_path)
else:
return CopyAndPasteSignaling() | Create a signaling method based on command-line arguments. | create_signaling | python | aiortc/aiortc | src/aiortc/contrib/signaling.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/contrib/signaling.py | BSD-3-Clause |
def target_bitrate(self) -> int:
"""
Target bitrate in bits per second.
"""
return self.__target_bitrate | Target bitrate in bits per second. | target_bitrate | python | aiortc/aiortc | src/aiortc/codecs/vpx.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/codecs/vpx.py | BSD-3-Clause |
def target_bitrate(self) -> int:
"""
Target bitrate in bits per second.
"""
return self.__target_bitrate | Target bitrate in bits per second. | target_bitrate | python | aiortc/aiortc | src/aiortc/codecs/h264.py | https://github.com/aiortc/aiortc/blob/master/src/aiortc/codecs/h264.py | BSD-3-Clause |
def up(self):
"""Bring up interface. Equivalent to ifconfig [iface] up."""
# Set new flags
flags = self.ifflags | IFF_UP
self.ifflags = flags
self.get_mtu() | Bring up interface. Equivalent to ifconfig [iface] up. | up | python | aiortc/aiortc | examples/datachannel-vpn/tuntap.py | https://github.com/aiortc/aiortc/blob/master/examples/datachannel-vpn/tuntap.py | BSD-3-Clause |
def down(self):
"""Bring down interface. Equivalent to ifconfig [iface] down."""
# Set new flags
flags = self.ifflags & ~IFF_UP
self.ifflags = flags | Bring down interface. Equivalent to ifconfig [iface] down. | down | python | aiortc/aiortc | examples/datachannel-vpn/tuntap.py | https://github.com/aiortc/aiortc/blob/master/examples/datachannel-vpn/tuntap.py | BSD-3-Clause |
def is_up(self):
"""Return True if the interface is up, False otherwise."""
if self.ifflags & IFF_UP:
return True
else:
return False | Return True if the interface is up, False otherwise. | is_up | python | aiortc/aiortc | examples/datachannel-vpn/tuntap.py | https://github.com/aiortc/aiortc/blob/master/examples/datachannel-vpn/tuntap.py | BSD-3-Clause |
def open(self):
"""Open file corresponding to the TUN device."""
self.fd = open("/dev/net/tun", "rb+", buffering=0)
tun_flags = IFF_TAP | IFF_NO_PI | IFF_PERSIST
ifr = struct.pack("16sH", self.name, tun_flags)
fcntl.ioctl(self.fd, TUNSETIFF, ifr)
fcntl.ioctl(self.fd, TUNSETOWNER, os.getuid())
self.ifflags = self.ifflags | IFF_RUNNING | Open file corresponding to the TUN device. | open | python | aiortc/aiortc | examples/datachannel-vpn/tuntap.py | https://github.com/aiortc/aiortc/blob/master/examples/datachannel-vpn/tuntap.py | BSD-3-Clause |
async def publish(plugin, player):
"""
Send video to the room.
"""
pc = RTCPeerConnection()
pcs.add(pc)
# configure media
media = {"audio": False, "video": True}
if player and player.audio:
pc.addTrack(player.audio)
media["audio"] = True
if player and player.video:
pc.addTrack(player.video)
else:
pc.addTrack(VideoStreamTrack())
# send offer
await pc.setLocalDescription(await pc.createOffer())
request = {"request": "configure"}
request.update(media)
response = await plugin.send(
{
"body": request,
"jsep": {
"sdp": pc.localDescription.sdp,
"trickle": False,
"type": pc.localDescription.type,
},
}
)
# apply answer
await pc.setRemoteDescription(
RTCSessionDescription(
sdp=response["jsep"]["sdp"], type=response["jsep"]["type"]
)
) | Send video to the room. | publish | python | aiortc/aiortc | examples/janus/janus.py | https://github.com/aiortc/aiortc/blob/master/examples/janus/janus.py | BSD-3-Clause |
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
elif '@git+' in line:
info['package'] = line
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info | Parse information from a line in a requirements text file. | parse_requirements.parse_line | python | open-mmlab/mmaction2 | setup.py | https://github.com/open-mmlab/mmaction2/blob/master/setup.py | Apache-2.0 |
def parse_requirements(fname='requirements.txt', with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
import re
import sys
from os.path import exists
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith('-r '):
# Allow specifying requirements in other files
target = line.split(' ')[1]
for info in parse_require_file(target):
yield info
else:
info = {'line': line}
if line.startswith('-e '):
info['package'] = line.split('#egg=')[1]
elif '@git+' in line:
info['package'] = line
else:
# Remove versioning from the package
pat = '(' + '|'.join(['>=', '==', '>']) + ')'
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info['package'] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ';' in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip,
rest.split(';'))
info['platform_deps'] = platform_deps
else:
version = rest # NOQA
info['version'] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath, 'r') as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith('#'):
for info in parse_line(line):
yield info
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info['package']]
if with_version and 'version' in info:
parts.extend(info['version'])
if not sys.version.startswith('3.4'):
# apparently package_deps are broken in 3.4
platform_deps = info.get('platform_deps')
if platform_deps is not None:
parts.append(';' + platform_deps)
item = ''.join(parts)
yield item
packages = list(gen_packages_items())
return packages | Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())" | parse_requirements | python | open-mmlab/mmaction2 | setup.py | https://github.com/open-mmlab/mmaction2/blob/master/setup.py | Apache-2.0 |
def add_mim_extension():
"""Add extra files that are required to support MIM into the package.
These files will be added by creating a symlink to the originals if the
package is installed in `editable` mode (e.g. pip install -e .), or by
copying from the originals otherwise.
"""
# parse installment mode
if 'develop' in sys.argv:
# installed by `pip install -e .`
mode = 'symlink'
elif 'sdist' in sys.argv or 'bdist_wheel' in sys.argv:
# installed by `pip install .`
# or create source distribution by `python setup.py sdist`
mode = 'copy'
else:
return
filenames = ['tools', 'configs', 'model-index.yml', 'dataset-index.yml']
repo_path = osp.dirname(__file__)
mim_path = osp.join(repo_path, 'mmaction', '.mim')
os.makedirs(mim_path, exist_ok=True)
for filename in filenames:
if osp.exists(filename):
src_path = osp.join(repo_path, filename)
tar_path = osp.join(mim_path, filename)
if osp.isfile(tar_path) or osp.islink(tar_path):
os.remove(tar_path)
elif osp.isdir(tar_path):
shutil.rmtree(tar_path)
if mode == 'symlink':
src_relpath = osp.relpath(src_path, osp.dirname(tar_path))
try:
os.symlink(src_relpath, tar_path)
except OSError:
# Creating a symbolic link on windows may raise an
# `OSError: [WinError 1314]` due to privilege. If
# the error happens, the src file will be copied
mode = 'copy'
warnings.warn(
f'Failed to create a symbolic link for {src_relpath}, '
f'and it will be copied to {tar_path}')
else:
continue
elif mode == 'copy':
if osp.isfile(src_path):
shutil.copyfile(src_path, tar_path)
elif osp.isdir(src_path):
shutil.copytree(src_path, tar_path)
else:
warnings.warn(f'Cannot copy file {src_path}.')
else:
raise ValueError(f'Invalid mode {mode}') | Add extra files that are required to support MIM into the package.
These files will be added by creating a symlink to the originals if the
package is installed in `editable` mode (e.g. pip install -e .), or by
copying from the originals otherwise. | add_mim_extension | python | open-mmlab/mmaction2 | setup.py | https://github.com/open-mmlab/mmaction2/blob/master/setup.py | Apache-2.0 |
def available_models():
"""Returns the names of available ActionCLIP models."""
return list(_MODELS.keys()) | Returns the names of available ActionCLIP models. | available_models | python | open-mmlab/mmaction2 | projects/actionclip/models/load.py | https://github.com/open-mmlab/mmaction2/blob/master/projects/actionclip/models/load.py | Apache-2.0 |
def get_bbox(keypoints):
"""Get bbox from keypoints."""
if len(keypoints) == 0:
return [0, 0, 0, 0]
x1, y1, _ = np.amin(keypoints, axis=0)
x2, y2, _ = np.amax(keypoints, axis=0)
w, h = x2 - x1, y2 - y1
return [x1, y1, w, h] | Get bbox from keypoints. | parse_halpe.get_bbox | python | open-mmlab/mmaction2 | projects/gesture_recognition/parse_pose.py | https://github.com/open-mmlab/mmaction2/blob/master/projects/gesture_recognition/parse_pose.py | Apache-2.0 |
def parse_halpe(file_path, anno_idx):
def get_bbox(keypoints):
"""Get bbox from keypoints."""
if len(keypoints) == 0:
return [0, 0, 0, 0]
x1, y1, _ = np.amin(keypoints, axis=0)
x2, y2, _ = np.amax(keypoints, axis=0)
w, h = x2 - x1, y2 - y1
return [x1, y1, w, h]
with open(file_path) as f:
contents = json.load(f)
data_root = get_data_root(file_path) + '/'
images = contents['images']
annos = contents['annotations']
images_out, annos_out = [], []
for img, anno in zip(images, annos):
assert img['id'] == anno['image_id']
keypoints = np.array(anno['keypoints']).reshape(-1, 3)
lefthand_kpts = keypoints[-42:-21, :]
righthand_kpts = keypoints[-21:, :]
left_mask = lefthand_kpts[:, 2] > 0
right_mask = righthand_kpts[:, 2] > 0
lefthand_box = get_bbox(lefthand_kpts[left_mask])
righthand_box = get_bbox(righthand_kpts[right_mask])
if max(lefthand_box) > 0:
img_out = dict(
file_name=data_root + img['file_name'],
height=img['height'],
width=img['width'],
id=anno_idx)
anno_out = dict(
area=lefthand_box[2] * lefthand_box[3],
iscrowd=anno['iscrowd'],
image_id=anno_idx,
bbox=lefthand_box,
category_id=0,
id=anno_idx)
anno_idx += 1
images_out.append(img_out)
annos_out.append(anno_out)
if max(righthand_box) > 0:
img_out = dict(
file_name=data_root + img['file_name'],
height=img['height'],
width=img['width'],
id=anno_idx)
anno_out = dict(
area=righthand_box[2] * righthand_box[3],
iscrowd=anno['iscrowd'],
image_id=anno_idx,
bbox=righthand_box,
category_id=0,
id=anno_idx)
anno_idx += 1
images_out.append(img_out)
annos_out.append(anno_out)
return images_out, annos_out, anno_idx | Get bbox from keypoints. | parse_halpe | python | open-mmlab/mmaction2 | projects/gesture_recognition/parse_pose.py | https://github.com/open-mmlab/mmaction2/blob/master/projects/gesture_recognition/parse_pose.py | Apache-2.0 |
def get_sinusoid_encoding_table(n_position,
d_hid,
cur_frame=-1,
pre_n_position=1568):
"""Sinusoid position encoding table."""
def get_position_angle_vec(position):
return [
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
sinusoid_table = torch.tensor(
sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
print(f'n_position: {n_position}')
print(f'pre_n_position: {pre_n_position}')
if n_position // cur_frame * 8 != pre_n_position and cur_frame != -1:
T = 8 # checkpoint frame
P = 14 # checkpoint size
C = d_hid
new_P = int((n_position // cur_frame)**0.5) # testing size
print(
f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
print('Interpolate the position embedding')
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
sinusoid_table = sinusoid_table.reshape(-1, P, P,
C).permute(0, 3, 1, 2)
sinusoid_table = torch.nn.functional.interpolate(
sinusoid_table,
size=(new_P, new_P),
mode='bicubic',
align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(
-1, T, new_P, new_P, C)
sinusoid_table = sinusoid_table.flatten(1, 3)
if cur_frame != -1 and cur_frame != 8:
print(f'Pretraining uses 8 frames, but current frame is {cur_frame}')
print('Interpolate the position embedding')
T = 8 # checkpoint frame
new_T = cur_frame # testing frame
# interpolate
P = int((n_position // cur_frame)**0.5) # testing size
C = d_hid
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4,
1).reshape(-1, C,
T) # BHW, C, T
sinusoid_table = torch.nn.functional.interpolate(
sinusoid_table, size=new_T, mode='linear')
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(
0, 4, 1, 2, 3) # B, T, H, W, C
sinusoid_table = sinusoid_table.flatten(1, 3)
if n_position == pre_n_position:
return sinusoid_table
else:
print('Use learnable position embedding')
return nn.Parameter(sinusoid_table, requires_grad=True) | Sinusoid position encoding table. | get_sinusoid_encoding_table | python | open-mmlab/mmaction2 | projects/umt/models/vit.py | https://github.com/open-mmlab/mmaction2/blob/master/projects/umt/models/vit.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call."""
return super().forward(x) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | projects/example_project/models/example_net.py | https://github.com/open-mmlab/mmaction2/blob/master/projects/example_project/models/example_net.py | Apache-2.0 |
def test_transformer_adapter():
"""Test transformer adapter."""
with pytest.raises(RuntimeError):
num_segs_model = 8
num_segs_features = 9
adapter = TransformerAdapter(
num_segs=num_segs_model,
transformer_width=64,
transformer_heads=8,
transformer_layers=2)
features = torch.randn(2, num_segs_features, 64)
adapter(features)
num_segs = 8
adapter = TransformerAdapter(
num_segs=num_segs,
transformer_width=64,
transformer_heads=8,
transformer_layers=2)
adapter.init_weights()
features = torch.randn(2, num_segs, 64)
adapted_features = adapter(features)
assert adapted_features.shape == torch.Size([2, 64]) | Test transformer adapter. | test_transformer_adapter | python | open-mmlab/mmaction2 | tests/models/similarity/test_adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/similarity/test_adapters.py | Apache-2.0 |
def test_simple_mean_adapter():
"""Test simple mean adapter."""
adapter = SimpleMeanAdapter(dim=1)
features = torch.randn(2, 8, 64)
adapted_features = adapter(features)
assert adapted_features.shape == torch.Size([2, 64])
adapter = SimpleMeanAdapter(dim=(1, 2))
features = torch.randn(2, 8, 2, 64)
adapted_features = adapter(features)
assert adapted_features.shape == torch.Size([2, 64]) | Test simple mean adapter. | test_simple_mean_adapter | python | open-mmlab/mmaction2 | tests/models/similarity/test_adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/similarity/test_adapters.py | Apache-2.0 |
def test_TAM():
"""test TAM."""
with pytest.raises(AssertionError):
# alpha must be a positive integer
TAM(16, 8, alpha=0, beta=4)
with pytest.raises(AssertionError):
# beta must be a positive integer
TAM(16, 8, alpha=2, beta=0)
with pytest.raises(AssertionError):
# the channels number of x should be equal to self.in_channels of TAM
tam = TAM(16, 8)
x = torch.rand(64, 8, 112, 112)
tam(x)
tam = TAM(16, 8)
x = torch.rand(32, 16, 112, 112)
output = tam(x)
assert output.shape == torch.Size([32, 16, 112, 112]) | test TAM. | test_TAM | python | open-mmlab/mmaction2 | tests/models/common/test_tam.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/common/test_tam.py | Apache-2.0 |
def test_gcn_head():
"""Test GCNHead."""
with pytest.raises(AssertionError):
GCNHead(4, 5)(torch.rand((1, 2, 6, 75, 17)))
gcn_head = GCNHead(num_classes=60, in_channels=256)
gcn_head.init_weights()
feat = torch.rand(1, 2, 256, 75, 25)
cls_scores = gcn_head(feat)
assert gcn_head.num_classes == 60
assert gcn_head.in_channels == 256
assert cls_scores.shape == torch.Size([1, 60])
gcn_head = GCNHead(num_classes=60, in_channels=256, dropout=0.1)
gcn_head.init_weights()
feat = torch.rand(1, 2, 256, 75, 25)
cls_scores = gcn_head(feat)
assert gcn_head.num_classes == 60
assert gcn_head.in_channels == 256
assert cls_scores.shape == torch.Size([1, 60]) | Test GCNHead. | test_gcn_head | python | open-mmlab/mmaction2 | tests/models/heads/test_gcn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_gcn_head.py | Apache-2.0 |
def test_tsn_head():
"""Test loss method, layer construction, attributes and forward function in
tsn head."""
tsn_head = TSNHead(num_classes=4, in_channels=2048)
tsn_head.init_weights()
assert tsn_head.num_classes == 4
assert tsn_head.dropout_ratio == 0.4
assert tsn_head.in_channels == 2048
assert tsn_head.init_std == 0.01
assert tsn_head.consensus.dim == 1
assert tsn_head.spatial_type == 'avg'
assert isinstance(tsn_head.dropout, nn.Dropout)
assert tsn_head.dropout.p == tsn_head.dropout_ratio
assert isinstance(tsn_head.fc_cls, nn.Linear)
assert tsn_head.fc_cls.in_features == tsn_head.in_channels
assert tsn_head.fc_cls.out_features == tsn_head.num_classes
assert isinstance(tsn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert tsn_head.avg_pool.output_size == (1, 1)
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsn head inference
num_segs = input_shape[0]
cls_scores = tsn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# Test multi-class recognition
multi_tsn_head = TSNHead(
num_classes=4,
in_channels=2048,
loss_cls=dict(type='BCELossWithLogits', loss_weight=160.0),
multi_class=True,
label_smooth_eps=0.01)
multi_tsn_head.init_weights()
assert multi_tsn_head.num_classes == 4
assert multi_tsn_head.dropout_ratio == 0.4
assert multi_tsn_head.in_channels == 2048
assert multi_tsn_head.init_std == 0.01
assert multi_tsn_head.consensus.dim == 1
assert isinstance(multi_tsn_head.dropout, nn.Dropout)
assert multi_tsn_head.dropout.p == multi_tsn_head.dropout_ratio
assert isinstance(multi_tsn_head.fc_cls, nn.Linear)
assert multi_tsn_head.fc_cls.in_features == multi_tsn_head.in_channels
assert multi_tsn_head.fc_cls.out_features == multi_tsn_head.num_classes
assert isinstance(multi_tsn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert multi_tsn_head.avg_pool.output_size == (1, 1)
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# multi-class tsn head inference
num_segs = input_shape[0]
cls_scores = tsn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4]) | Test loss method, layer construction, attributes and forward function in
tsn head. | test_tsn_head | python | open-mmlab/mmaction2 | tests/models/heads/test_tsn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tsn_head.py | Apache-2.0 |
def test_tpn_head():
"""Test loss method, layer construction, attributes and forward function in
tpn head."""
tpn_head = TPNHead(num_classes=4, in_channels=2048)
tpn_head.init_weights()
assert hasattr(tpn_head, 'avg_pool2d')
assert hasattr(tpn_head, 'avg_pool3d')
assert isinstance(tpn_head.avg_pool3d, nn.AdaptiveAvgPool3d)
assert tpn_head.avg_pool3d.output_size == (1, 1, 1)
assert tpn_head.avg_pool2d is None
input_shape = (4, 2048, 7, 7)
feat = torch.rand(input_shape)
# tpn head inference with num_segs
num_segs = 2
cls_scores = tpn_head(feat, num_segs)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4])
# tpn head inference with no num_segs
input_shape = (2, 2048, 3, 7, 7)
feat = torch.rand(input_shape)
cls_scores = tpn_head(feat)
assert isinstance(tpn_head.avg_pool2d, nn.AvgPool3d)
assert tpn_head.avg_pool2d.kernel_size == (1, 7, 7)
assert cls_scores.shape == torch.Size([2, 4]) | Test loss method, layer construction, attributes and forward function in
tpn head. | test_tpn_head | python | open-mmlab/mmaction2 | tests/models/heads/test_tpn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tpn_head.py | Apache-2.0 |
def test_tsm_head():
"""Test loss method, layer construction, attributes and forward function in
tsm head."""
tsm_head = TSMHead(num_classes=4, in_channels=2048)
tsm_head.init_weights()
assert tsm_head.num_classes == 4
assert tsm_head.dropout_ratio == 0.8
assert tsm_head.in_channels == 2048
assert tsm_head.init_std == 0.001
assert tsm_head.consensus.dim == 1
assert tsm_head.spatial_type == 'avg'
assert isinstance(tsm_head.dropout, nn.Dropout)
assert tsm_head.dropout.p == tsm_head.dropout_ratio
assert isinstance(tsm_head.fc_cls, nn.Linear)
assert tsm_head.fc_cls.in_features == tsm_head.in_channels
assert tsm_head.fc_cls.out_features == tsm_head.num_classes
assert isinstance(tsm_head.avg_pool, nn.AdaptiveAvgPool2d)
assert tsm_head.avg_pool.output_size == 1
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsm head inference with no init
num_segs = input_shape[0]
cls_scores = tsm_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# tsm head inference with init
tsm_head = TSMHead(num_classes=4, in_channels=2048, temporal_pool=True)
tsm_head.init_weights()
cls_scores = tsm_head(feat, num_segs)
assert cls_scores.shape == torch.Size([2, 4]) | Test loss method, layer construction, attributes and forward function in
tsm head. | test_tsm_head | python | open-mmlab/mmaction2 | tests/models/heads/test_tsm_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_tsm_head.py | Apache-2.0 |
def test_i3d_head():
"""Test loss method, layer construction, attributes and forward function in
i3d head."""
i3d_head = I3DHead(num_classes=4, in_channels=2048)
i3d_head.init_weights()
assert i3d_head.num_classes == 4
assert i3d_head.dropout_ratio == 0.5
assert i3d_head.in_channels == 2048
assert i3d_head.init_std == 0.01
assert isinstance(i3d_head.dropout, nn.Dropout)
assert i3d_head.dropout.p == i3d_head.dropout_ratio
assert isinstance(i3d_head.fc_cls, nn.Linear)
assert i3d_head.fc_cls.in_features == i3d_head.in_channels
assert i3d_head.fc_cls.out_features == i3d_head.num_classes
assert isinstance(i3d_head.avg_pool, nn.AdaptiveAvgPool3d)
assert i3d_head.avg_pool.output_size == (1, 1, 1)
input_shape = (3, 2048, 4, 7, 7)
feat = torch.rand(input_shape)
# i3d head inference
cls_scores = i3d_head(feat)
assert cls_scores.shape == torch.Size([3, 4]) | Test loss method, layer construction, attributes and forward function in
i3d head. | test_i3d_head | python | open-mmlab/mmaction2 | tests/models/heads/test_i3d_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_i3d_head.py | Apache-2.0 |
def test_trn_head():
"""Test loss method, layer construction, attributes and forward function in
trn head."""
from mmaction.models.heads.trn_head import (RelationModule,
RelationModuleMultiScale)
trn_head = TRNHead(num_classes=4, in_channels=2048, relation_type='TRN')
trn_head.init_weights()
assert trn_head.num_classes == 4
assert trn_head.dropout_ratio == 0.8
assert trn_head.in_channels == 2048
assert trn_head.init_std == 0.001
assert trn_head.spatial_type == 'avg'
relation_module = trn_head.consensus
assert isinstance(relation_module, RelationModule)
assert relation_module.hidden_dim == 256
assert isinstance(relation_module.classifier[3], nn.Linear)
assert relation_module.classifier[3].out_features == trn_head.num_classes
assert trn_head.dropout.p == trn_head.dropout_ratio
assert isinstance(trn_head.dropout, nn.Dropout)
assert isinstance(trn_head.fc_cls, nn.Linear)
assert trn_head.fc_cls.in_features == trn_head.in_channels
assert trn_head.fc_cls.out_features == trn_head.hidden_dim
assert isinstance(trn_head.avg_pool, nn.AdaptiveAvgPool2d)
assert trn_head.avg_pool.output_size == 1
input_shape = (8, 2048, 7, 7)
feat = torch.rand(input_shape)
# tsm head inference with no init
num_segs = input_shape[0]
cls_scores = trn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
# tsm head inference with init
trn_head = TRNHead(
num_classes=4,
in_channels=2048,
num_segments=8,
relation_type='TRNMultiScale')
trn_head.init_weights()
assert isinstance(trn_head.consensus, RelationModuleMultiScale)
assert trn_head.consensus.scales == range(8, 1, -1)
cls_scores = trn_head(feat, num_segs)
assert cls_scores.shape == torch.Size([1, 4])
with pytest.raises(ValueError):
trn_head = TRNHead(
num_classes=4,
in_channels=2048,
num_segments=8,
relation_type='RelationModlue') | Test loss method, layer construction, attributes and forward function in
trn head. | test_trn_head | python | open-mmlab/mmaction2 | tests/models/heads/test_trn_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_trn_head.py | Apache-2.0 |
def test_timesformer_head():
"""Test loss method, layer construction, attributes and forward function in
timesformer head."""
timesformer_head = TimeSformerHead(num_classes=4, in_channels=64)
timesformer_head.init_weights()
assert timesformer_head.num_classes == 4
assert timesformer_head.in_channels == 64
assert timesformer_head.init_std == 0.02
input_shape = (2, 64)
feat = torch.rand(input_shape)
cls_scores = timesformer_head(feat)
assert cls_scores.shape == torch.Size([2, 4]) | Test loss method, layer construction, attributes and forward function in
timesformer head. | test_timesformer_head | python | open-mmlab/mmaction2 | tests/models/heads/test_timesformer_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_timesformer_head.py | Apache-2.0 |
def test_rgbpose_head():
"""Test RGBPoseHead."""
rgbpose_head = RGBPoseHead(
num_classes=4,
in_channels=[2048, 512],
dropout=dict(rgb=0.51, pose=0.49))
rgbpose_head.init_weights()
assert rgbpose_head.num_classes == 4
assert rgbpose_head.dropout == dict(rgb=0.51, pose=0.49)
assert rgbpose_head.in_channels == [2048, 512]
assert rgbpose_head.init_std == 0.01
assert isinstance(rgbpose_head.dropout_rgb, nn.Dropout)
assert isinstance(rgbpose_head.dropout_pose, nn.Dropout)
assert rgbpose_head.dropout_rgb.p == rgbpose_head.dropout['rgb']
assert rgbpose_head.dropout_pose.p == rgbpose_head.dropout['pose']
assert isinstance(rgbpose_head.fc_rgb, nn.Linear)
assert isinstance(rgbpose_head.fc_pose, nn.Linear)
assert rgbpose_head.fc_rgb.in_features == rgbpose_head.in_channels[0]
assert rgbpose_head.fc_rgb.out_features == rgbpose_head.num_classes
assert rgbpose_head.fc_pose.in_features == rgbpose_head.in_channels[1]
assert rgbpose_head.fc_pose.out_features == rgbpose_head.num_classes
assert isinstance(rgbpose_head.avg_pool, nn.AdaptiveAvgPool3d)
assert rgbpose_head.avg_pool.output_size == (1, 1, 1)
feat_rgb = torch.rand((2, 2048, 8, 7, 7))
feat_pose = torch.rand((2, 512, 32, 7, 7))
cls_scores = rgbpose_head((feat_rgb, feat_pose))
assert cls_scores['rgb'].shape == torch.Size([2, 4])
assert cls_scores['pose'].shape == torch.Size([2, 4]) | Test RGBPoseHead. | test_rgbpose_head | python | open-mmlab/mmaction2 | tests/models/heads/test_rgbpose_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_rgbpose_head.py | Apache-2.0 |
def test_x3d_head():
"""Test loss method, layer construction, attributes and forward function in
x3d head."""
x3d_head = X3DHead(in_channels=432, num_classes=4, fc1_bias=False)
x3d_head.init_weights()
assert x3d_head.num_classes == 4
assert x3d_head.dropout_ratio == 0.5
assert x3d_head.in_channels == 432
assert x3d_head.init_std == 0.01
assert isinstance(x3d_head.dropout, nn.Dropout)
assert x3d_head.dropout.p == x3d_head.dropout_ratio
assert isinstance(x3d_head.fc1, nn.Linear)
assert x3d_head.fc1.in_features == x3d_head.in_channels
assert x3d_head.fc1.out_features == x3d_head.mid_channels
assert x3d_head.fc1.bias is None
assert isinstance(x3d_head.fc2, nn.Linear)
assert x3d_head.fc2.in_features == x3d_head.mid_channels
assert x3d_head.fc2.out_features == x3d_head.num_classes
assert isinstance(x3d_head.pool, nn.AdaptiveAvgPool3d)
assert x3d_head.pool.output_size == (1, 1, 1)
input_shape = (3, 432, 4, 7, 7)
feat = torch.rand(input_shape)
# i3d head inference
cls_scores = x3d_head(feat)
assert cls_scores.shape == torch.Size([3, 4]) | Test loss method, layer construction, attributes and forward function in
x3d head. | test_x3d_head | python | open-mmlab/mmaction2 | tests/models/heads/test_x3d_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_x3d_head.py | Apache-2.0 |
def test_slowfast_head():
"""Test loss method, layer construction, attributes and forward function in
slowfast head."""
sf_head = SlowFastHead(num_classes=4, in_channels=2304)
sf_head.init_weights()
assert sf_head.num_classes == 4
assert sf_head.dropout_ratio == 0.8
assert sf_head.in_channels == 2304
assert sf_head.init_std == 0.01
assert isinstance(sf_head.dropout, nn.Dropout)
assert sf_head.dropout.p == sf_head.dropout_ratio
assert isinstance(sf_head.fc_cls, nn.Linear)
assert sf_head.fc_cls.in_features == sf_head.in_channels
assert sf_head.fc_cls.out_features == sf_head.num_classes
assert isinstance(sf_head.avg_pool, nn.AdaptiveAvgPool3d)
assert sf_head.avg_pool.output_size == (1, 1, 1)
input_shape = (3, 2048, 32, 7, 7)
feat_slow = torch.rand(input_shape)
input_shape = (3, 256, 4, 7, 7)
feat_fast = torch.rand(input_shape)
sf_head = SlowFastHead(num_classes=4, in_channels=2304)
cls_scores = sf_head((feat_slow, feat_fast))
assert cls_scores.shape == torch.Size([3, 4]) | Test loss method, layer construction, attributes and forward function in
slowfast head. | test_slowfast_head | python | open-mmlab/mmaction2 | tests/models/heads/test_slowfast_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/heads/test_slowfast_head.py | Apache-2.0 |
def test_swin_backbone():
"""Test swin backbone."""
with pytest.raises(AssertionError):
SwinTransformer3D(arch='-t')
with pytest.raises(AssertionError):
SwinTransformer3D(arch={'embed_dims': 96})
with pytest.raises(AssertionError):
SwinTransformer3D(arch={
'embed_dims': 96,
'depths': [2, 2, 6],
'num_heads': [3, 6, 12, 24]
})
with pytest.raises(AssertionError):
SwinTransformer3D(
arch={
'embed_dims': 96,
'depths': [2, 2, 6, 2, 2],
'num_heads': [3, 6, 12, 24, 48]
})
with pytest.raises(AssertionError):
SwinTransformer3D(arch='t', out_indices=(4, ))
with pytest.raises(TypeError):
swin_t = SwinTransformer3D(arch='t', pretrained=[0, 1, 1])
swin_t.init_weights()
with pytest.raises(TypeError):
swin_t = SwinTransformer3D(arch='t')
swin_t.init_weights(pretrained=[0, 1, 1])
swin_b = SwinTransformer3D(arch='b', pretrained=None, pretrained2d=False)
swin_b.init_weights()
swin_b.train()
pretrained_url = 'https://download.openmmlab.com/mmaction/v1.0/' \
'recognition/swin/swin_tiny_patch4_window7_224.pth'
swin_t_pre = SwinTransformer3D(
arch='t', pretrained=pretrained_url, pretrained2d=True)
swin_t_pre.init_weights()
swin_t_pre.train()
from mmengine.runner.checkpoint import _load_checkpoint
ckpt_2d = _load_checkpoint(pretrained_url, map_location='cpu')
state_dict = ckpt_2d['model']
patch_embed_weight2d = state_dict['patch_embed.proj.weight'].data
patch_embed_weight3d = swin_t_pre.patch_embed.proj.weight.data
assert torch.equal(
patch_embed_weight3d,
patch_embed_weight2d.unsqueeze(2).expand_as(patch_embed_weight3d) /
patch_embed_weight3d.shape[2])
norm = swin_t_pre.norm3
assert torch.equal(norm.weight.data, state_dict['norm.weight'])
assert torch.equal(norm.bias.data, state_dict['norm.bias'])
for name, param in swin_t_pre.named_parameters():
if 'relative_position_bias_table' in name:
bias2d = state_dict[name]
assert torch.equal(
param.data, bias2d.repeat(2 * swin_t_pre.window_size[0] - 1,
1))
frozen_stages = 1
swin_t_frozen = SwinTransformer3D(
arch='t',
pretrained=None,
pretrained2d=False,
frozen_stages=frozen_stages)
swin_t_frozen.init_weights()
swin_t_frozen.train()
for param in swin_t_frozen.patch_embed.parameters():
assert param.requires_grad is False
for i in range(frozen_stages):
layer = swin_t_frozen.layers[i]
for param in layer.parameters():
assert param.requires_grad is False
input_shape = (1, 3, 6, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = swin_t_frozen(imgs)
assert feat.shape == torch.Size([1, 768, 3, 2, 2])
input_shape = (1, 3, 5, 63, 63)
imgs = generate_backbone_demo_inputs(input_shape)
feat = swin_t_frozen(imgs)
assert feat.shape == torch.Size([1, 768, 3, 2, 2])
swin_t_all_stages = SwinTransformer3D(arch='t', out_indices=(0, 1, 2, 3))
feats = swin_t_all_stages(imgs)
assert feats[0].shape == torch.Size([1, 96, 3, 16, 16])
assert feats[1].shape == torch.Size([1, 192, 3, 8, 8])
assert feats[2].shape == torch.Size([1, 384, 3, 4, 4])
assert feats[3].shape == torch.Size([1, 768, 3, 2, 2])
swin_t_all_stages_after_ds = SwinTransformer3D(
arch='t', out_indices=(0, 1, 2, 3), out_after_downsample=True)
feats = swin_t_all_stages_after_ds(imgs)
assert feats[0].shape == torch.Size([1, 192, 3, 8, 8])
assert feats[1].shape == torch.Size([1, 384, 3, 4, 4])
assert feats[2].shape == torch.Size([1, 768, 3, 2, 2])
assert feats[3].shape == torch.Size([1, 768, 3, 2, 2]) | Test swin backbone. | test_swin_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_swin.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_swin.py | Apache-2.0 |
def test_c2d_backbone():
"""Test c2d backbone."""
input_shape = (1, 3, 8, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# c2d inference test
c2d_r50 = C2D(depth=50)
c2d_r50.init_weights()
c2d_r50.train()
feat = c2d_r50(imgs)
assert feat.shape == torch.Size([1, 2048, 4, 2, 2])
c2d_r101 = C2D(depth=101)
c2d_r101.init_weights()
c2d_r101.train()
feat = c2d_r101(imgs)
assert feat.shape == torch.Size([1, 2048, 4, 2, 2]) | Test c2d backbone. | test_c2d_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_c2d.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_c2d.py | Apache-2.0 |
def test_mobilenetv2_tsm_backbone():
"""Test mobilenetv2_tsm backbone."""
from mmcv.cnn import ConvModule
from mmaction.models.backbones.mobilenet_v2 import InvertedResidual
from mmaction.models.backbones.resnet_tsm import TemporalShift
input_shape = (8, 3, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# mobilenetv2_tsm with width_mult = 1.0
mobilenetv2_tsm = MobileNetV2TSM(pretrained='mmcls://mobilenet_v2')
mobilenetv2_tsm.init_weights()
for cur_module in mobilenetv2_tsm.modules():
if isinstance(cur_module, InvertedResidual) and \
len(cur_module.conv) == 3 and \
cur_module.use_res_connect:
assert isinstance(cur_module.conv[0], TemporalShift)
assert cur_module.conv[0].num_segments == \
mobilenetv2_tsm.num_segments
assert cur_module.conv[0].shift_div == mobilenetv2_tsm.shift_div
assert isinstance(cur_module.conv[0].net, ConvModule)
# TSM-MobileNetV2 with widen_factor = 1.0 forword
feat = mobilenetv2_tsm(imgs)
assert feat.shape == torch.Size([8, 1280, 2, 2])
# mobilenetv2 with widen_factor = 0.5 forword
mobilenetv2_tsm_05 = MobileNetV2TSM(widen_factor=0.5, pretrained2d=False)
mobilenetv2_tsm_05.init_weights()
feat = mobilenetv2_tsm_05(imgs)
assert feat.shape == torch.Size([8, 1280, 2, 2])
# mobilenetv2 with widen_factor = 1.5 forword
mobilenetv2_tsm_15 = MobileNetV2TSM(widen_factor=1.5, pretrained2d=False)
mobilenetv2_tsm_15.init_weights()
feat = mobilenetv2_tsm_15(imgs)
assert feat.shape == torch.Size([8, 1920, 2, 2]) | Test mobilenetv2_tsm backbone. | test_mobilenetv2_tsm_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_mobilenet_v2_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2_tsm.py | Apache-2.0 |
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False | Check if is one of the norms. | test_mobilenetv2_backbone.is_norm | python | open-mmlab/mmaction2 | tests/models/backbones/test_mobilenet_v2.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2.py | Apache-2.0 |
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False | Check if is ResNet building block. | test_mobilenetv2_backbone.is_block | python | open-mmlab/mmaction2 | tests/models/backbones/test_mobilenet_v2.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2.py | Apache-2.0 |
def test_mobilenetv2_backbone():
"""Test MobileNetV2.
Modified from mmclassification.
"""
from torch.nn.modules import GroupNorm
from mmaction.models.backbones.mobilenet_v2 import InvertedResidual
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (InvertedResidual, )):
return True
return False
with pytest.raises(TypeError):
# pretrained must be a string path
model = MobileNetV2()
model.init_weights(pretrained=0)
with pytest.raises(ValueError):
# frozen_stages must in range(1, 9)
MobileNetV2(frozen_stages=9)
with pytest.raises(ValueError):
# tout_indices in range(-1, 8)
MobileNetV2(out_indices=[8])
input_shape = (1, 3, 224, 224)
imgs = generate_backbone_demo_inputs(input_shape)
# Test MobileNetV2 with first stage frozen
frozen_stages = 1
model = MobileNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.conv1.modules():
for param in mod.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with all stages frozen
frozen_stages = 8
model = MobileNetV2(frozen_stages=frozen_stages)
model.init_weights()
model.train()
for mod in model.modules():
if not isinstance(mod, MobileNetV2):
assert mod.training is False
for param in mod.parameters():
assert param.requires_grad is False
# Test MobileNetV2 with norm_eval=True
model = MobileNetV2(norm_eval=True)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), False)
# Test MobileNetV2 forward with widen_factor=1.0, pretrained
model = MobileNetV2(
widen_factor=1.0,
out_indices=range(0, 8),
pretrained='mmcls://mobilenet_v2')
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
assert feat[7].shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with widen_factor=0.5
model = MobileNetV2(widen_factor=0.5, out_indices=range(0, 7))
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 8, 112, 112))
assert feat[1].shape == torch.Size((1, 16, 56, 56))
assert feat[2].shape == torch.Size((1, 16, 28, 28))
assert feat[3].shape == torch.Size((1, 32, 14, 14))
assert feat[4].shape == torch.Size((1, 48, 14, 14))
assert feat[5].shape == torch.Size((1, 80, 7, 7))
assert feat[6].shape == torch.Size((1, 160, 7, 7))
# Test MobileNetV2 forward with widen_factor=2.0
model = MobileNetV2(widen_factor=2.0)
model.init_weights()
model.train()
feat = model(imgs)
assert feat.shape == torch.Size((1, 2560, 7, 7))
# Test MobileNetV2 forward with out_indices=None
model = MobileNetV2(widen_factor=1.0)
model.init_weights()
model.train()
feat = model(imgs)
assert feat.shape == torch.Size((1, 1280, 7, 7))
# Test MobileNetV2 forward with dict(type='ReLU')
model = MobileNetV2(
widen_factor=1.0, act_cfg=dict(type='ReLU'), out_indices=range(0, 7))
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with GroupNorm forward
model = MobileNetV2(widen_factor=1.0, out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with BatchNorm forward
model = MobileNetV2(
widen_factor=1.0,
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
out_indices=range(0, 7))
for m in model.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7))
# Test MobileNetV2 with layers 1, 3, 5 out forward
model = MobileNetV2(widen_factor=1.0, out_indices=(0, 2, 4))
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 3
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 32, 28, 28))
assert feat[2].shape == torch.Size((1, 96, 14, 14))
# Test MobileNetV2 with checkpoint forward
model = MobileNetV2(
widen_factor=1.0, with_cp=True, out_indices=range(0, 7))
for m in model.modules():
if is_block(m):
assert m.with_cp
model.init_weights()
model.train()
feat = model(imgs)
assert len(feat) == 7
assert feat[0].shape == torch.Size((1, 16, 112, 112))
assert feat[1].shape == torch.Size((1, 24, 56, 56))
assert feat[2].shape == torch.Size((1, 32, 28, 28))
assert feat[3].shape == torch.Size((1, 64, 14, 14))
assert feat[4].shape == torch.Size((1, 96, 14, 14))
assert feat[5].shape == torch.Size((1, 160, 7, 7))
assert feat[6].shape == torch.Size((1, 320, 7, 7)) | Test MobileNetV2.
Modified from mmclassification. | test_mobilenetv2_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_mobilenet_v2.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobilenet_v2.py | Apache-2.0 |
def test_tanet_backbone():
"""Test tanet backbone."""
with pytest.raises(NotImplementedError):
# TA-Blocks are only based on Bottleneck block now
tanet_18 = TANet(18, 8)
tanet_18.init_weights()
from mmaction.models.backbones.resnet import Bottleneck
from mmaction.models.backbones.tanet import TABlock
# tanet with depth 50
tanet_50 = TANet(50, 8)
tanet_50.init_weights()
for layer_name in tanet_50.res_layers:
layer = getattr(tanet_50, layer_name)
blocks = list(layer.children())
for block in blocks:
assert isinstance(block, TABlock)
assert isinstance(block.block, Bottleneck)
assert block.tam.num_segments == block.num_segments
assert block.tam.in_channels == block.block.conv1.out_channels
input_shape = (8, 3, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = tanet_50(imgs)
assert feat.shape == torch.Size([8, 2048, 2, 2])
input_shape = (16, 3, 32, 32)
imgs = generate_backbone_demo_inputs(input_shape)
feat = tanet_50(imgs)
assert feat.shape == torch.Size([16, 2048, 1, 1]) | Test tanet backbone. | test_tanet_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_tanet.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_tanet.py | Apache-2.0 |
def test_resnet_backbone():
"""Test resnet backbone."""
with pytest.raises(KeyError):
# ResNet depth should be in [18, 34, 50, 101, 152]
ResNet(20)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=0)
with pytest.raises(AssertionError):
# In ResNet: 1 <= num_stages <= 4
ResNet(50, num_stages=5)
with pytest.raises(AssertionError):
# len(strides) == len(dilations) == num_stages
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)
with pytest.raises(TypeError):
# pretrain must be a str
resnet50 = ResNet(50, pretrained=0)
resnet50.init_weights()
with pytest.raises(AssertionError):
# style must be in ['pytorch', 'caffe']
ResNet(18, style='tensorflow')
with pytest.raises(AssertionError):
# assert not with_cp
ResNet(18, with_cp=True)
# resnet with depth 18, norm_eval False, initial weights
resnet18 = ResNet(18)
resnet18.init_weights()
# resnet with depth 50, norm_eval True
resnet50 = ResNet(50, norm_eval=True)
resnet50.init_weights()
resnet50.train()
assert check_norm_state(resnet50.modules(), False)
# resnet with depth 50, norm_eval True, pretrained
resnet50_pretrain = ResNet(
pretrained='torchvision://resnet50', depth=50, norm_eval=True)
resnet50_pretrain.init_weights()
resnet50_pretrain.train()
assert check_norm_state(resnet50_pretrain.modules(), False)
# resnet with depth 50, norm_eval True, frozen_stages 1
frozen_stages = 1
resnet50_frozen = ResNet(50, frozen_stages=frozen_stages)
resnet50_frozen.init_weights()
resnet50_frozen.train()
assert resnet50_frozen.conv1.bn.training is False
for layer in resnet50_frozen.conv1.modules():
for param in layer.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(resnet50_frozen, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# resnet with depth 50, partial batchnorm
resnet_pbn = ResNet(50, partial_bn=True)
resnet_pbn.train()
count_bn = 0
for m in resnet_pbn.modules():
if isinstance(m, nn.BatchNorm2d):
count_bn += 1
if count_bn >= 2:
assert m.weight.requires_grad is False
assert m.bias.requires_grad is False
assert m.training is False
else:
assert m.weight.requires_grad is True
assert m.bias.requires_grad is True
assert m.training is True
input_shape = (1, 3, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# resnet with depth 18 inference
resnet18 = ResNet(18, norm_eval=False)
resnet18.init_weights()
resnet18.train()
feat = resnet18(imgs)
assert feat.shape == torch.Size([1, 512, 2, 2])
# resnet with depth 50 inference
resnet50 = ResNet(50, norm_eval=False)
resnet50.init_weights()
resnet50.train()
feat = resnet50(imgs)
assert feat.shape == torch.Size([1, 2048, 2, 2])
# resnet with depth 50 in caffe style inference
resnet50_caffe = ResNet(50, style='caffe', norm_eval=False)
resnet50_caffe.init_weights()
resnet50_caffe.train()
feat = resnet50_caffe(imgs)
assert feat.shape == torch.Size([1, 2048, 2, 2])
resnet50_flow = ResNet(
depth=50, pretrained='torchvision://resnet50', in_channels=10)
input_shape = (1, 10, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = resnet50_flow(imgs)
assert feat.shape == torch.Size([1, 2048, 2, 2])
resnet50 = ResNet(
depth=50, pretrained='torchvision://resnet50', in_channels=3)
input_shape = (1, 3, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = resnet50(imgs)
assert feat.shape == torch.Size([1, 2048, 2, 2]) | Test resnet backbone. | test_resnet_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet.py | Apache-2.0 |
def test_mobileone_tsm_backbone():
"""Test MobileOne TSM backbone."""
from mmpretrain.models.backbones.mobileone import MobileOneBlock
from mmaction.models.backbones.resnet_tsm import TemporalShift
model = MobileOneTSM('s0', pretrained2d=False)
model.init_weights()
for cur_module in model.modules():
if isinstance(cur_module, TemporalShift):
# TemporalShift is a wrapper of MobileOneBlock
assert isinstance(cur_module.net, MobileOneBlock)
assert cur_module.num_segments == model.num_segments
assert cur_module.shift_div == model.shift_div
inputs = generate_backbone_demo_inputs((8, 3, 64, 64))
feat = model(inputs)
assert feat.shape == torch.Size([8, 1024, 2, 2])
model = MobileOneTSM('s1', pretrained2d=False)
feat = model(inputs)
assert feat.shape == torch.Size([8, 1280, 2, 2])
model = MobileOneTSM('s2', pretrained2d=False)
feat = model(inputs)
assert feat.shape == torch.Size([8, 2048, 2, 2])
model = MobileOneTSM('s3', pretrained2d=False)
feat = model(inputs)
assert feat.shape == torch.Size([8, 2048, 2, 2])
model = MobileOneTSM('s4', pretrained2d=False)
feat = model(inputs)
assert feat.shape == torch.Size([8, 2048, 2, 2]) | Test MobileOne TSM backbone. | test_mobileone_tsm_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_mobileone_tsm.py | Apache-2.0 |
def test_vit_backbone():
"""Test vit backbone."""
x = torch.randn(1, 3, 8, 64, 64)
model = VisionTransformer(
img_size=64,
num_frames=8,
qkv_bias=True,
drop_path_rate=0.2,
init_values=0.1)
model.init_weights()
assert model(x).shape == torch.Size([1, 768])
model.eval()
assert model(x).shape == torch.Size([1, 768])
model = VisionTransformer(
img_size=64,
num_frames=8,
use_learnable_pos_emb=True,
drop_rate=0.1,
use_mean_pooling=False)
model.init_weights()
assert model(x).shape == torch.Size([1, 768])
model.eval()
assert model(x).shape == torch.Size([1, 768]) | Test vit backbone. | test_vit_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_vit_mae.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_vit_mae.py | Apache-2.0 |
def test_resnet_csn_backbone():
"""Test resnet_csn backbone."""
with pytest.raises(ValueError):
# Bottleneck mode must be "ip" or "ir"
ResNet3dCSN(152, None, bottleneck_mode='id')
input_shape = (2, 3, 6, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
resnet3d_csn_frozen = ResNet3dCSN(
152, None, bn_frozen=True, norm_eval=True)
resnet3d_csn_frozen.train()
for m in resnet3d_csn_frozen.modules():
if isinstance(m, _BatchNorm):
for param in m.parameters():
assert param.requires_grad is False
# Interaction-preserved channel-separated bottleneck block
resnet3d_csn_ip = ResNet3dCSN(152, None, bottleneck_mode='ip')
resnet3d_csn_ip.init_weights()
resnet3d_csn_ip.train()
for i, layer_name in enumerate(resnet3d_csn_ip.res_layers):
layers = getattr(resnet3d_csn_ip, layer_name)
num_blocks = resnet3d_csn_ip.stage_blocks[i]
assert len(layers) == num_blocks
for layer in layers:
assert isinstance(layer.conv2, nn.Sequential)
assert len(layer.conv2) == 2
assert layer.conv2[1].groups == layer.planes
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_csn_ip = resnet3d_csn_ip.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_csn_ip(imgs_gpu)
assert feat.shape == torch.Size([2, 2048, 1, 2, 2])
else:
feat = resnet3d_csn_ip(imgs)
assert feat.shape == torch.Size([2, 2048, 1, 2, 2])
# Interaction-reduced channel-separated bottleneck block
resnet3d_csn_ir = ResNet3dCSN(152, None, bottleneck_mode='ir')
resnet3d_csn_ir.init_weights()
resnet3d_csn_ir.train()
for i, layer_name in enumerate(resnet3d_csn_ir.res_layers):
layers = getattr(resnet3d_csn_ir, layer_name)
num_blocks = resnet3d_csn_ir.stage_blocks[i]
assert len(layers) == num_blocks
for layer in layers:
assert isinstance(layer.conv2, nn.Sequential)
assert len(layer.conv2) == 1
assert layer.conv2[0].groups == layer.planes
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_csn_ir = resnet3d_csn_ir.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_csn_ir(imgs_gpu)
assert feat.shape == torch.Size([2, 2048, 1, 2, 2])
else:
feat = resnet3d_csn_ir(imgs)
assert feat.shape == torch.Size([2, 2048, 1, 2, 2])
# Set training status = False
resnet3d_csn_ip = ResNet3dCSN(152, None, bottleneck_mode='ip')
resnet3d_csn_ip.init_weights()
resnet3d_csn_ip.train(False)
for module in resnet3d_csn_ip.children():
assert module.training is False | Test resnet_csn backbone. | test_resnet_csn_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet3d_csn.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet3d_csn.py | Apache-2.0 |
def test_aagcn_backbone():
"""Test AAGCN backbone."""
register_all_modules()
mode = 'spatial'
batch_size, num_person, num_frames = 2, 2, 150
# openpose-18 layout
num_joints = 18
model = AAGCN(graph_cfg=dict(layout='openpose', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 18])
# nturgb+d layout
num_joints = 25
model = AAGCN(graph_cfg=dict(layout='nturgb+d', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 25])
# coco layout
num_joints = 17
model = AAGCN(graph_cfg=dict(layout='coco', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 17])
# custom settings
# disable the attention module to degenerate AAGCN to AGCN
model = AAGCN(
graph_cfg=dict(layout='coco', mode=mode), gcn_attention=False)
model.init_weights()
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 17]) | Test AAGCN backbone. | test_aagcn_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_aagcn.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_aagcn.py | Apache-2.0 |
def test_x3d_backbone():
"""Test x3d backbone."""
_ = OmniResNet()
resnet50 = torchvision.models.resnet50()
params = resnet50.state_dict()
torch.save(params, './r50.pth')
model = OmniResNet(pretrain_2d='./r50.pth')
input_shape = (2, 3, 8, 64, 64)
videos = generate_backbone_demo_inputs(input_shape)
feat = model(videos)
assert feat.shape == torch.Size([2, 2048, 8, 2, 2])
input_shape = (2, 3, 64, 64)
images = generate_backbone_demo_inputs(input_shape)
feat = model(images)
assert feat.shape == torch.Size([2, 2048, 2, 2]) | Test x3d backbone. | test_x3d_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet_omni.py | Apache-2.0 |
def test_x3d_backbone():
"""Test x3d backbone."""
with pytest.raises(AssertionError):
# In X3D: 1 <= num_stages <= 4
X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=2.2, num_stages=0)
with pytest.raises(AssertionError):
# In X3D: 1 <= num_stages <= 4
X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=2.2, num_stages=5)
with pytest.raises(AssertionError):
# len(spatial_strides) == num_stages
X3D(gamma_w=1.0,
gamma_b=2.25,
gamma_d=2.2,
spatial_strides=(1, 2),
num_stages=4)
with pytest.raises(AssertionError):
# se_style in ['half', 'all']
X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=2.2, se_style=None)
with pytest.raises(AssertionError):
# se_ratio should be None or > 0
X3D(gamma_w=1.0,
gamma_b=2.25,
gamma_d=2.2,
se_style='half',
se_ratio=0)
# x3d_s, no pretrained, norm_eval True
x3d_s = X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=2.2, norm_eval=True)
x3d_s.init_weights()
x3d_s.train()
assert check_norm_state(x3d_s.modules(), False)
# x3d_l, no pretrained, norm_eval True
x3d_l = X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=5.0, norm_eval=True)
x3d_l.init_weights()
x3d_l.train()
assert check_norm_state(x3d_l.modules(), False)
# x3d_s, no pretrained, norm_eval False
x3d_s = X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=2.2, norm_eval=False)
x3d_s.init_weights()
x3d_s.train()
assert check_norm_state(x3d_s.modules(), True)
# x3d_l, no pretrained, norm_eval False
x3d_l = X3D(gamma_w=1.0, gamma_b=2.25, gamma_d=5.0, norm_eval=False)
x3d_l.init_weights()
x3d_l.train()
assert check_norm_state(x3d_l.modules(), True)
# x3d_s, no pretrained, frozen_stages, norm_eval False
frozen_stages = 1
x3d_s_frozen = X3D(
gamma_w=1.0,
gamma_b=2.25,
gamma_d=2.2,
norm_eval=False,
frozen_stages=frozen_stages)
x3d_s_frozen.init_weights()
x3d_s_frozen.train()
assert x3d_s_frozen.conv1_t.bn.training is False
for param in x3d_s_frozen.conv1_s.parameters():
assert param.requires_grad is False
for param in x3d_s_frozen.conv1_t.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(x3d_s_frozen, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# test zero_init_residual, zero_init_residual is True by default
for m in x3d_s_frozen.modules():
if hasattr(m, 'conv3'):
assert torch.equal(m.conv3.bn.weight,
torch.zeros_like(m.conv3.bn.weight))
assert torch.equal(m.conv3.bn.bias,
torch.zeros_like(m.conv3.bn.bias))
# x3d_s inference
input_shape = (1, 3, 13, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
x3d_s_frozen = x3d_s_frozen.cuda()
imgs_gpu = imgs.cuda()
feat = x3d_s_frozen(imgs_gpu)
assert feat.shape == torch.Size([1, 432, 13, 2, 2])
else:
feat = x3d_s_frozen(imgs)
assert feat.shape == torch.Size([1, 432, 13, 2, 2])
# x3d_m inference
input_shape = (1, 3, 16, 96, 96)
imgs = generate_backbone_demo_inputs(input_shape)
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
x3d_s_frozen = x3d_s_frozen.cuda()
imgs_gpu = imgs.cuda()
feat = x3d_s_frozen(imgs_gpu)
assert feat.shape == torch.Size([1, 432, 16, 3, 3])
else:
feat = x3d_s_frozen(imgs)
assert feat.shape == torch.Size([1, 432, 16, 3, 3]) | Test x3d backbone. | test_x3d_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_x3d.py | Apache-2.0 |
def test_c3d_backbone():
"""Test c3d backbone."""
input_shape = (1, 3, 16, 24, 24)
imgs = generate_backbone_demo_inputs(input_shape)
# c3d inference test
c3d = C3D(out_dim=512)
c3d.init_weights()
c3d.train()
feat = c3d(imgs)
assert feat.shape == torch.Size([1, 4096])
# c3d with bn inference test
c3d_bn = C3D(out_dim=512, norm_cfg=dict(type='BN3d'))
c3d_bn.init_weights()
c3d_bn.train()
feat = c3d_bn(imgs)
assert feat.shape == torch.Size([1, 4096]) | Test c3d backbone. | test_c3d_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_c3d.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_c3d.py | Apache-2.0 |
def test_slowonly_backbone():
"""Test SlowOnly backbone."""
with pytest.raises(AssertionError):
# SlowOnly should contain no lateral connection
ResNet3dSlowOnly(depth=50, pretrained=None, lateral=True)
# test SlowOnly for PoseC3D
so_50 = ResNet3dSlowOnly(
depth=50,
pretrained=None,
in_channels=17,
base_channels=32,
num_stages=3,
out_indices=(2, ),
stage_blocks=(4, 6, 3),
conv1_stride_s=1,
pool1_stride_s=1,
inflate=(0, 1, 1),
spatial_strides=(2, 2, 2),
temporal_strides=(1, 1, 2),
dilations=(1, 1, 1))
so_50.init_weights()
so_50.train()
# test SlowOnly with normal config
so_50 = ResNet3dSlowOnly(depth=50, pretrained=None)
so_50.init_weights()
so_50.train()
# SlowOnly inference test
input_shape = (1, 3, 8, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
so_50 = so_50.cuda()
imgs_gpu = imgs.cuda()
feat = so_50(imgs_gpu)
else:
feat = so_50(imgs)
assert feat.shape == torch.Size([1, 2048, 8, 2, 2]) | Test SlowOnly backbone. | test_slowonly_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet3d_slowonly.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet3d_slowonly.py | Apache-2.0 |
def test_uniformer_backbone():
"""Test uniformer backbone."""
input_shape = (1, 3, 16, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
model = UniFormer(
depth=[3, 4, 8, 3],
embed_dim=[64, 128, 320, 512],
head_dim=64,
drop_path_rate=0.1)
model.init_weights()
model.eval()
assert model(imgs).shape == torch.Size([1, 512, 8, 2, 2]) | Test uniformer backbone. | test_uniformer_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_uniformer.py | Apache-2.0 |
def test_resnet3d_backbone():
"""Test resnet3d backbone."""
with pytest.raises(AssertionError):
# In ResNet3d: 1 <= num_stages <= 4
ResNet3d(34, None, num_stages=0)
with pytest.raises(AssertionError):
# In ResNet3d: 1 <= num_stages <= 4
ResNet3d(34, None, num_stages=5)
with pytest.raises(AssertionError):
# In ResNet3d: 1 <= num_stages <= 4
ResNet3d(50, None, num_stages=0)
with pytest.raises(AssertionError):
# In ResNet3d: 1 <= num_stages <= 4
ResNet3d(50, None, num_stages=5)
with pytest.raises(AssertionError):
# len(spatial_strides) == len(temporal_strides)
# == len(dilations) == num_stages
ResNet3d(
50,
None,
spatial_strides=(1, ),
temporal_strides=(1, 1),
dilations=(1, 1, 1),
num_stages=4)
with pytest.raises(AssertionError):
# len(spatial_strides) == len(temporal_strides)
# == len(dilations) == num_stages
ResNet3d(
34,
None,
spatial_strides=(1, ),
temporal_strides=(1, 1),
dilations=(1, 1, 1),
num_stages=4)
with pytest.raises(TypeError):
# pretrain must be str or None.
resnet3d_34 = ResNet3d(34, ['resnet', 'bninception'])
resnet3d_34.init_weights()
with pytest.raises(TypeError):
# pretrain must be str or None.
resnet3d_50 = ResNet3d(50, ['resnet', 'bninception'])
resnet3d_50.init_weights()
# resnet3d with depth 34, no pretrained, norm_eval True
resnet3d_34 = ResNet3d(34, None, pretrained2d=False, norm_eval=True)
resnet3d_34.init_weights()
resnet3d_34.train()
assert check_norm_state(resnet3d_34.modules(), False)
# resnet3d with depth 50, no pretrained, norm_eval True
resnet3d_50 = ResNet3d(50, None, pretrained2d=False, norm_eval=True)
resnet3d_50.init_weights()
resnet3d_50.train()
assert check_norm_state(resnet3d_50.modules(), False)
# resnet3d with depth 50, pretrained2d, norm_eval True
resnet3d_50_pretrain = ResNet3d(
50, 'torchvision://resnet50', norm_eval=True)
resnet3d_50_pretrain.init_weights()
resnet3d_50_pretrain.train()
assert check_norm_state(resnet3d_50_pretrain.modules(), False)
from mmengine.runner.checkpoint import _load_checkpoint
chkp_2d = _load_checkpoint('torchvision://resnet50')
for name, module in resnet3d_50_pretrain.named_modules():
if len(name.split('.')) == 4:
# layer.block.module.submodule
prefix = name.split('.')[:2]
module_type = name.split('.')[2]
submodule_type = name.split('.')[3]
if module_type == 'downsample':
name2d = name.replace('conv', '0').replace('bn', '1')
else:
layer_id = name.split('.')[2][-1]
name2d = prefix[0] + '.' + prefix[1] + '.' + \
submodule_type + layer_id
if isinstance(module, nn.Conv3d):
conv2d_weight = chkp_2d[name2d + '.weight']
conv3d_weight = getattr(module, 'weight').data
assert torch.equal(
conv3d_weight,
conv2d_weight.data.unsqueeze(2).expand_as(conv3d_weight) /
conv3d_weight.shape[2])
if getattr(module, 'bias') is not None:
conv2d_bias = chkp_2d[name2d + '.bias']
conv3d_bias = getattr(module, 'bias').data
assert torch.equal(conv2d_bias, conv3d_bias)
elif isinstance(module, nn.BatchNorm3d):
for pname in ['weight', 'bias', 'running_mean', 'running_var']:
param_2d = chkp_2d[name2d + '.' + pname]
param_3d = getattr(module, pname).data
assert torch.equal(param_2d, param_3d)
conv3d = resnet3d_50_pretrain.conv1.conv
assert torch.equal(
conv3d.weight,
chkp_2d['conv1.weight'].unsqueeze(2).expand_as(conv3d.weight) /
conv3d.weight.shape[2])
conv3d = resnet3d_50_pretrain.layer3[2].conv2.conv
assert torch.equal(
conv3d.weight, chkp_2d['layer3.2.conv2.weight'].unsqueeze(2).expand_as(
conv3d.weight) / conv3d.weight.shape[2])
# resnet3d with depth 34, no pretrained, norm_eval False
resnet3d_34_no_bn_eval = ResNet3d(
34, None, pretrained2d=False, norm_eval=False)
resnet3d_34_no_bn_eval.init_weights()
resnet3d_34_no_bn_eval.train()
assert check_norm_state(resnet3d_34_no_bn_eval.modules(), True)
# resnet3d with depth 50, no pretrained, norm_eval False
resnet3d_50_no_bn_eval = ResNet3d(
50, None, pretrained2d=False, norm_eval=False)
resnet3d_50_no_bn_eval.init_weights()
resnet3d_50_no_bn_eval.train()
assert check_norm_state(resnet3d_50_no_bn_eval.modules(), True)
# resnet3d with depth 34, no pretrained, frozen_stages, norm_eval False
frozen_stages = 1
resnet3d_34_frozen = ResNet3d(
34, None, pretrained2d=False, frozen_stages=frozen_stages)
resnet3d_34_frozen.init_weights()
resnet3d_34_frozen.train()
assert resnet3d_34_frozen.conv1.bn.training is False
for param in resnet3d_34_frozen.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(resnet3d_34_frozen, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# test zero_init_residual
for m in resnet3d_34_frozen.modules():
if hasattr(m, 'conv2'):
assert torch.equal(m.conv2.bn.weight,
torch.zeros_like(m.conv2.bn.weight))
assert torch.equal(m.conv2.bn.bias,
torch.zeros_like(m.conv2.bn.bias))
# resnet3d with depth 50, no pretrained, frozen_stages, norm_eval False
frozen_stages = 1
resnet3d_50_frozen = ResNet3d(
50, None, pretrained2d=False, frozen_stages=frozen_stages)
resnet3d_50_frozen.init_weights()
resnet3d_50_frozen.train()
assert resnet3d_50_frozen.conv1.bn.training is False
for param in resnet3d_50_frozen.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(resnet3d_50_frozen, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False
# test zero_init_residual
for m in resnet3d_50_frozen.modules():
if hasattr(m, 'conv3'):
assert torch.equal(m.conv3.bn.weight,
torch.zeros_like(m.conv3.bn.weight))
assert torch.equal(m.conv3.bn.bias,
torch.zeros_like(m.conv3.bn.bias))
# resnet3d frozen with depth 34 inference
input_shape = (1, 3, 6, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_34_frozen = resnet3d_34_frozen.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_34_frozen(imgs_gpu)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
else:
feat = resnet3d_34_frozen(imgs)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
# resnet3d with depth 50 inference
input_shape = (1, 3, 6, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_50_frozen = resnet3d_50_frozen.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_50_frozen(imgs_gpu)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
else:
feat = resnet3d_50_frozen(imgs)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
# resnet3d with depth 50 in caffe style inference
resnet3d_50_caffe = ResNet3d(50, None, pretrained2d=False, style='caffe')
resnet3d_50_caffe.init_weights()
resnet3d_50_caffe.train()
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_50_caffe = resnet3d_50_caffe.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_50_caffe(imgs_gpu)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
else:
feat = resnet3d_50_caffe(imgs)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
# resnet3d with depth 34 in caffe style inference
resnet3d_34_caffe = ResNet3d(34, None, pretrained2d=False, style='caffe')
resnet3d_34_caffe.init_weights()
resnet3d_34_caffe.train()
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_34_caffe = resnet3d_34_caffe.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_34_caffe(imgs_gpu)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
else:
feat = resnet3d_34_caffe(imgs)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
# resnet3d with depth with 3x3x3 inflate_style inference
resnet3d_50_1x1x1 = ResNet3d(
50, None, pretrained2d=False, inflate_style='3x3x3')
resnet3d_50_1x1x1.init_weights()
resnet3d_50_1x1x1.train()
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_50_1x1x1 = resnet3d_50_1x1x1.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_50_1x1x1(imgs_gpu)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
else:
feat = resnet3d_50_1x1x1(imgs)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2])
resnet3d_34_1x1x1 = ResNet3d(
34, None, pretrained2d=False, inflate_style='3x3x3')
resnet3d_34_1x1x1.init_weights()
resnet3d_34_1x1x1.train()
# parrots 3dconv is only implemented on gpu
if torch.__version__ == 'parrots':
if torch.cuda.is_available():
resnet3d_34_1x1x1 = resnet3d_34_1x1x1.cuda()
imgs_gpu = imgs.cuda()
feat = resnet3d_34_1x1x1(imgs_gpu)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
else:
feat = resnet3d_34_1x1x1(imgs)
assert feat.shape == torch.Size([1, 512, 3, 2, 2])
# resnet3d with non-local module
non_local_cfg = dict(
sub_sample=True,
use_scale=False,
norm_cfg=dict(type='BN3d', requires_grad=True),
mode='embedded_gaussian')
non_local = ((0, 0, 0), (1, 0, 1, 0), (1, 0, 1, 0, 1, 0), (0, 0, 0))
resnet3d_nonlocal = ResNet3d(
50,
None,
pretrained2d=False,
non_local=non_local,
non_local_cfg=non_local_cfg)
resnet3d_nonlocal.init_weights()
for layer_name in ['layer2', 'layer3']:
layer = getattr(resnet3d_nonlocal, layer_name)
for i, _ in enumerate(layer):
if i % 2 == 0:
assert hasattr(layer[i], 'non_local_block')
feat = resnet3d_nonlocal(imgs)
assert feat.shape == torch.Size([1, 2048, 3, 2, 2]) | Test resnet3d backbone. | test_resnet3d_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet3d.py | Apache-2.0 |
def test_stgcn_backbone():
"""Test STGCN backbone."""
mode = 'stgcn_spatial'
batch_size, num_person, num_frames = 2, 2, 150
# openpose-18 layout
num_joints = 18
model = STGCN(graph_cfg=dict(layout='openpose', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 18])
# nturgb+d layout
num_joints = 25
model = STGCN(graph_cfg=dict(layout='nturgb+d', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 25])
# coco layout
num_joints = 17
model = STGCN(graph_cfg=dict(layout='coco', mode=mode))
model.init_weights()
inputs = torch.randn(batch_size, num_person, num_frames, num_joints, 3)
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 17])
# custom settings
# instantiate STGCN++
model = STGCN(
graph_cfg=dict(layout='coco', mode='spatial'),
gcn_adaptive='init',
gcn_with_res=True,
tcn_type='mstcn')
model.init_weights()
output = model(inputs)
assert output.shape == torch.Size([2, 2, 256, 38, 17]) | Test STGCN backbone. | test_stgcn_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_stgcn.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_stgcn.py | Apache-2.0 |
def test_uniformerv2_backbone():
"""Test uniformer backbone."""
input_shape = (1, 3, 8, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
model = UniFormerV2(
input_resolution=64,
patch_size=16,
width=768,
layers=12,
heads=12,
t_size=8,
dw_reduction=1.5,
backbone_drop_path_rate=0.,
temporal_downsample=False,
no_lmhra=True,
double_lmhra=True,
return_list=[8, 9, 10, 11],
n_layers=4,
n_dim=768,
n_head=12,
mlp_factor=4.,
drop_path_rate=0.,
clip_pretrained=False,
mlp_dropout=[0.5, 0.5, 0.5, 0.5])
model.init_weights()
model.eval()
assert model(imgs).shape == torch.Size([1, 768])
# SthSth
input_shape = (1, 3, 16, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
model = UniFormerV2(
input_resolution=64,
patch_size=16,
width=768,
layers=12,
heads=12,
t_size=16,
dw_reduction=1.5,
backbone_drop_path_rate=0.,
temporal_downsample=True,
no_lmhra=False,
double_lmhra=True,
return_list=[8, 9, 10, 11],
n_layers=4,
n_dim=768,
n_head=12,
mlp_factor=4.,
drop_path_rate=0.,
clip_pretrained=False,
mlp_dropout=[0.5, 0.5, 0.5, 0.5])
model.init_weights()
model.eval()
assert model(imgs).shape == torch.Size([1, 768]) | Test uniformer backbone. | test_uniformerv2_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_uniformerv2.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_uniformerv2.py | Apache-2.0 |
def test_resnet_audio_backbone():
"""Test ResNetAudio backbone."""
input_shape = (1, 1, 16, 16)
spec = generate_backbone_demo_inputs(input_shape)
# inference
register_all_modules()
audioonly = ResNetAudio(50, None)
audioonly.init_weights()
audioonly.train()
feat = audioonly(spec)
assert feat.shape == torch.Size([1, 1024, 2, 2]) | Test ResNetAudio backbone. | test_resnet_audio_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet_audio.py | Apache-2.0 |
def test_slowfast_backbone():
"""Test SlowFast backbone."""
with pytest.raises(TypeError):
# cfg should be a dict
ResNet3dSlowFast(slow_pathway=list(['foo', 'bar']))
with pytest.raises(KeyError):
# pathway type should be implemented
ResNet3dSlowFast(slow_pathway=dict(type='resnext'))
# test slowfast with slow inflated
sf_50_inflate = ResNet3dSlowFast(
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained='torchvision://resnet50',
pretrained2d=True,
lateral=True,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1)))
sf_50_inflate.init_weights()
sf_50_inflate.train()
# test slowfast with no lateral connection
sf_50_wo_lateral = ResNet3dSlowFast(
None,
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
lateral=False,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1)))
sf_50_wo_lateral.init_weights()
sf_50_wo_lateral.train()
# slowfast w/o lateral connection inference test
input_shape = (1, 3, 8, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = sf_50_wo_lateral(imgs)
assert isinstance(feat, tuple)
assert feat[0].shape == torch.Size([1, 2048, 1, 2, 2])
assert feat[1].shape == torch.Size([1, 256, 8, 2, 2])
# test slowfast with frozen stages config
frozen_slow = 3
sf_50 = ResNet3dSlowFast(
None,
slow_pathway=dict(
type='resnet3d',
depth=50,
pretrained=None,
pretrained2d=True,
lateral=True,
conv1_kernel=(1, 7, 7),
dilations=(1, 1, 1, 1),
conv1_stride_t=1,
pool1_stride_t=1,
inflate=(0, 0, 1, 1),
frozen_stages=frozen_slow))
sf_50.init_weights()
sf_50.train()
for stage in range(1, sf_50.slow_path.num_stages):
lateral_name = sf_50.slow_path.lateral_connections[stage - 1]
conv_lateral = getattr(sf_50.slow_path, lateral_name)
for mod in conv_lateral.modules():
if isinstance(mod, _BatchNorm):
if stage <= frozen_slow:
assert mod.training is False
else:
assert mod.training is True
for param in conv_lateral.parameters():
if stage <= frozen_slow:
assert param.requires_grad is False
else:
assert param.requires_grad is True
# test slowfast with normal config
sf_50 = ResNet3dSlowFast()
sf_50.init_weights()
sf_50.train()
# slowfast inference test
input_shape = (1, 3, 8, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape)
feat = sf_50(imgs)
assert isinstance(feat, tuple)
assert feat[0].shape == torch.Size([1, 2048, 1, 2, 2])
assert feat[1].shape == torch.Size([1, 256, 8, 2, 2]) | Test SlowFast backbone. | test_slowfast_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet3d_slowfast.py | Apache-2.0 |
def test_rgbposeconv3d():
"""Test RGBPoseConv3D backbone."""
with pytest.raises(AssertionError):
RGBPoseConv3D(pose_drop_path=1.1, rgb_drop_path=1.1)
rgbposec3d = RGBPoseConv3D()
rgbposec3d.init_weights()
rgbposec3d.train()
imgs_shape = (1, 3, 8, 224, 224)
heatmap_imgs_shape = (1, 17, 32, 56, 56)
imgs = generate_backbone_demo_inputs(imgs_shape)
heatmap_imgs = generate_backbone_demo_inputs(heatmap_imgs_shape)
(x_rgb, x_pose) = rgbposec3d(imgs, heatmap_imgs)
assert x_rgb.shape == torch.Size([1, 2048, 8, 7, 7])
assert x_pose.shape == torch.Size([1, 512, 32, 7, 7]) | Test RGBPoseConv3D backbone. | test_rgbposeconv3d | python | open-mmlab/mmaction2 | tests/models/backbones/test_rgbposeconv3d.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_rgbposeconv3d.py | Apache-2.0 |
def test_resnet_tin_backbone():
"""Test resnet_tin backbone."""
with pytest.raises(AssertionError):
# num_segments should be positive
resnet_tin = ResNetTIN(50, num_segments=-1)
resnet_tin.init_weights()
from mmaction.models.backbones.resnet_tin import (CombineNet,
TemporalInterlace)
# resnet_tin with normal config
resnet_tin = ResNetTIN(50)
resnet_tin.init_weights()
for layer_name in resnet_tin.res_layers:
layer = getattr(resnet_tin, layer_name)
blocks = list(layer.children())
for block in blocks:
assert isinstance(block.conv1.conv, CombineNet)
assert isinstance(block.conv1.conv.net1, TemporalInterlace)
assert (
block.conv1.conv.net1.num_segments == resnet_tin.num_segments)
assert block.conv1.conv.net1.shift_div == resnet_tin.shift_div
# resnet_tin with partial batchnorm
resnet_tin_pbn = ResNetTIN(50, partial_bn=True)
resnet_tin_pbn.train()
count_bn = 0
for m in resnet_tin_pbn.modules():
if isinstance(m, nn.BatchNorm2d):
count_bn += 1
if count_bn >= 2:
assert m.training is False
assert m.weight.requires_grad is False
assert m.bias.requires_grad is False
else:
assert m.training is True
assert m.weight.requires_grad is True
assert m.bias.requires_grad is True
input_shape = (8, 3, 64, 64)
imgs = generate_backbone_demo_inputs(input_shape).cuda()
resnet_tin = resnet_tin.cuda()
# resnet_tin with normal cfg inference
feat = resnet_tin(imgs)
assert feat.shape == torch.Size([8, 2048, 2, 2]) | Test resnet_tin backbone. | test_resnet_tin_backbone | python | open-mmlab/mmaction2 | tests/models/backbones/test_resnet_tin.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/backbones/test_resnet_tin.py | Apache-2.0 |
def test_tpn():
"""Test TPN backbone."""
tpn_cfg = dict(
in_channels=(1024, 2048),
out_channels=1024,
spatial_modulation_cfg=dict(
in_channels=(1024, 2048), out_channels=2048),
temporal_modulation_cfg=dict(downsample_scales=(8, 8)),
upsample_cfg=dict(scale_factor=(1, 1, 1)),
downsample_cfg=dict(downsample_scale=(1, 1, 1)),
level_fusion_cfg=dict(
in_channels=(1024, 1024),
mid_channels=(1024, 1024),
out_channels=2048,
downsample_scales=((1, 1, 1), (1, 1, 1))),
aux_head_cfg=dict(out_channels=400, loss_weight=0.5))
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['in_channels'] = list(tpn_cfg_['in_channels'])
TPN(**tpn_cfg_)
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['out_channels'] = float(tpn_cfg_['out_channels'])
TPN(**tpn_cfg_)
with pytest.raises(AssertionError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['downsample_cfg']['downsample_position'] = 'unsupport'
TPN(**tpn_cfg_)
for k in tpn_cfg:
if not k.endswith('_cfg'):
continue
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_[k] = list()
with pytest.raises(AssertionError):
TPN(**tpn_cfg_)
with pytest.raises(ValueError):
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cfg_['flow_type'] = 'unsupport'
TPN(**tpn_cfg_)
target_shape = (32, 1)
target_ = generate_backbone_demo_inputs(target_shape).long().squeeze()
x0_shape = (32, 1024, 1, 4, 4)
x1_shape = (32, 2048, 1, 2, 2)
x0 = generate_backbone_demo_inputs(x0_shape)
x1 = generate_backbone_demo_inputs(x1_shape)
x = [x0, x1]
# ResNetTPN with 'cascade' flow_type
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_cascade = TPN(**tpn_cfg_)
target = get_label(target_)
feat, loss_aux = tpn_cascade(x, target)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 1
# ResNetTPN with 'parallel' flow_type
tpn_cfg_ = copy.deepcopy(tpn_cfg)
tpn_parallel = TPN(flow_type='parallel', **tpn_cfg_)
target = get_label(target_)
feat, loss_aux = tpn_parallel(x, target)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 1
# ResNetTPN with 'cascade' flow_type and target is None
feat, loss_aux = tpn_cascade(x, None)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 0
# ResNetTPN with 'parallel' flow_type and target is None
feat, loss_aux = tpn_parallel(x, None)
assert feat.shape == torch.Size([32, 2048, 1, 2, 2])
assert len(loss_aux) == 0 | Test TPN backbone. | test_tpn | python | open-mmlab/mmaction2 | tests/models/necks/test_tpn.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/necks/test_tpn.py | Apache-2.0 |
def test_fbo_head():
"""Test layer construction, attributes and forward function in fbo head."""
lfb_prefix_path = osp.normpath(
osp.join(osp.dirname(__file__), '../../data/lfb'))
st_feat_shape = (1, 16, 1, 8, 8)
st_feat = torch.rand(st_feat_shape)
rois = torch.randn(1, 5)
rois[0][0] = 0
img_metas = [dict(img_key='video_1, 930')]
# non local fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(
type='non_local',
st_feat_channels=16,
lt_feat_channels=16,
latent_channels=8,
num_st_feat=1,
num_lt_feat=5 * 60,
))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 24, 1, 1, 1)
# avg fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(type='avg'))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 32, 1, 1, 1)
# max fbo
fbo_head = FBOHead(
lfb_cfg=dict(
lfb_prefix_path=lfb_prefix_path,
max_num_sampled_feat=5,
window_size=60,
lfb_channels=16,
dataset_modes=('unittest'),
device='cpu'),
fbo_cfg=dict(type='max'))
fbo_head.init_weights()
out = fbo_head(st_feat, rois, img_metas)
assert out.shape == (1, 32, 1, 1, 1) | Test layer construction, attributes and forward function in fbo head. | test_fbo_head | python | open-mmlab/mmaction2 | tests/models/roi_heads/test_fbo_head.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/roi_heads/test_fbo_head.py | Apache-2.0 |
def test_bbox_head_ava():
"""Test loss method, layer construction, attributes and forward function in
bbox head."""
with pytest.raises(TypeError):
# topk must be None, int or tuple[int]
BBoxHeadAVA(background_class=True, topk=0.1)
with pytest.raises(AssertionError):
# topk should be smaller than num_classes
BBoxHeadAVA(background_class=True, num_classes=5, topk=(3, 5))
bbox_head = BBoxHeadAVA(
background_class=True, in_channels=10, num_classes=4, topk=1)
input = torch.randn([3, 10, 2, 2, 2])
ret = bbox_head(input)
assert ret.shape == (3, 4)
cls_score = torch.tensor(
[[0.568, -0.162, 0.273, -0.390, 0.447, 0.102, -0.409],
[2.388, 0.609, 0.369, 1.630, -0.808, -0.212, 0.296],
[0.252, -0.533, -0.644, -0.591, 0.148, 0.963, -0.525],
[0.134, -0.311, -0.764, -0.752, 0.656, -1.517, 0.185]])
# Test topk_to_matrix()
assert torch.equal(
BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 1),
torch.tensor([[0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0]],
dtype=bool))
assert torch.equal(
BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 2),
torch.tensor([[0, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 0, 1]],
dtype=bool))
assert torch.equal(
BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 3),
torch.tensor([[0, 1, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0],
[0, 0, 0, 1, 1, 1], [1, 0, 0, 1, 0, 1]],
dtype=bool))
assert torch.equal(
BBoxHeadAVA.topk_to_matrix(cls_score[:, 1:], 6),
torch.ones([4, 6], dtype=bool))
# Test Multi-Label Loss
bbox_head = BBoxHeadAVA(
background_class=True) # Why is this here? isn't this redundant?
bbox_head.init_weights()
bbox_head = BBoxHeadAVA(
background_class=True,
temporal_pool_type='max',
spatial_pool_type='avg')
bbox_head.init_weights()
# test without background class
"""
losses = bbox_head.loss(
cls_score=cls_score,
bbox_pred=None,
rois=None,
labels=labels,
label_weights=label_weights)
assert torch.isclose(losses['loss_action_cls'], torch.tensor(0.7162495))
assert torch.isclose(losses['recall@thr=0.5'], torch.tensor(0.6666666))
assert torch.isclose(losses['prec@thr=0.5'], torch.tensor(0.4791665))
assert torch.isclose(losses['recall@top3'], torch.tensor(0.75))
assert torch.isclose(losses['prec@top3'], torch.tensor(0.5))
assert torch.isclose(losses['recall@top5'], torch.tensor(1.0))
assert torch.isclose(losses['prec@top5'], torch.tensor(0.45))
# Test Single-Label Loss
bbox_head = BBoxHeadAVA(multilabel=False)
losses = bbox_head.loss(
cls_score=cls_score,
bbox_pred=None,
rois=None,
labels=labels,
label_weights=label_weights)
assert torch.isclose(losses['loss_action_cls'], torch.tensor(1.639561))
assert torch.isclose(losses['recall@thr=0.5'], torch.tensor(0.25))
assert torch.isclose(losses['prec@thr=0.5'], torch.tensor(0.25))
assert torch.isclose(losses['recall@top3'], torch.tensor(0.75))
assert torch.isclose(losses['prec@top3'], torch.tensor(0.5))
assert torch.isclose(losses['recall@top5'], torch.tensor(1.0))
assert torch.isclose(losses['prec@top5'], torch.tensor(0.45))
# Test ROI
rois = torch.tensor([[0.0, 0.1, 0.2, 0.3, 0.4], [0.0, 0.5, 0.6, 0.7, 0.8]])
rois[1::2] *= 380
rois[2::2] *= 220
crop_quadruple = np.array([0.1, 0.2, 0.8, 0.7])
cls_score = torch.tensor([0.995, 0.728])
img_shape = (320, 480)
flip = True
bbox_head = BBoxHeadAVA(multilabel=True)
bboxes, scores = bbox_head.get_det_bboxes(
rois=rois,
cls_score=cls_score,
img_shape=img_shape,
flip=flip,
crop_quadruple=crop_quadruple)
assert torch.all(
torch.isclose(
bboxes,
torch.tensor([[0.89783341, 0.20043750, 0.89816672, 0.20087500],
[0.45499998, 0.69875002, 0.58166665, 0.86499995]])))
assert torch.all(
torch.isclose(scores, torch.tensor([0.73007441, 0.67436624])))
bbox_head = BBoxHeadAVA(multilabel=False)
bboxes, scores = bbox_head.get_det_bboxes(
rois=rois,
cls_score=cls_score,
img_shape=img_shape,
flip=flip,
crop_quadruple=crop_quadruple)
assert torch.all(
torch.isclose(
bboxes,
torch.tensor([[0.89783341, 0.20043750, 0.89816672, 0.20087500],
[0.45499998, 0.69875002, 0.58166665, 0.86499995]])))
assert torch.all(torch.isclose(scores, torch.tensor([0.56636, 0.43364])))
""" | Test loss method, layer construction, attributes and forward function in
bbox head. | test_bbox_head_ava | python | open-mmlab/mmaction2 | tests/models/roi_heads/test_bbox_heads.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/models/roi_heads/test_bbox_heads.py | Apache-2.0 |
def check_flip(origin_imgs, result_imgs, flip_type):
"""Check if the origin_imgs are flipped correctly into result_imgs in
different flip_types."""
n, _, _, _ = np.shape(origin_imgs)
if flip_type == 'horizontal':
for i in range(n):
if np.any(result_imgs[i] != np.fliplr(origin_imgs[i])):
return False
else:
# yapf: disable
for i in range(n):
if np.any(result_imgs[i] != np.transpose(np.fliplr(np.transpose(origin_imgs[i], (1, 0, 2))), (1, 0, 2))): # noqa:E501
return False
# yapf: enable
return True | Check if the origin_imgs are flipped correctly into result_imgs in
different flip_types. | check_flip | python | open-mmlab/mmaction2 | tests/datasets/transforms/test_wrappers.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_wrappers.py | Apache-2.0 |
def setup_class(cls):
cls.data_prefix = osp.normpath(
osp.join(osp.dirname(__file__), '../../data'))
cls.img_path = osp.join(cls.data_prefix, 'test.jpg')
cls.video_path = osp.join(cls.data_prefix, 'test.mp4')
cls.wav_path = osp.join(cls.data_prefix, 'test.wav')
cls.audio_spec_path = osp.join(cls.data_prefix, 'test.npy')
cls.img_dir = osp.join(cls.data_prefix, 'imgs')
cls.raw_feature_dir = osp.join(cls.data_prefix, 'activitynet_features')
cls.bsp_feature_dir = osp.join(cls.data_prefix, 'bsp_features')
cls.proposals_dir = osp.join(cls.data_prefix, 'proposals')
cls.total_frames = 5
cls.filename_tmpl = 'img_{:05}.jpg'
cls.flow_filename_tmpl = '{}_{:05d}.jpg'
video_total_frames = len(mmcv.VideoReader(cls.video_path))
cls.audio_total_frames = video_total_frames
cls.video_results = dict(
filename=cls.video_path,
label=1,
total_frames=video_total_frames,
start_index=0)
cls.audio_results = dict(
audios=np.random.randn(1280, ),
audio_path=cls.wav_path,
total_frames=cls.audio_total_frames,
label=1,
start_index=0)
cls.audio_feature_results = dict(
audios=np.random.randn(128, 80),
audio_path=cls.audio_spec_path,
total_frames=cls.audio_total_frames,
label=1,
start_index=0)
cls.frame_results = dict(
frame_dir=cls.img_dir,
total_frames=cls.total_frames,
filename_tmpl=cls.filename_tmpl,
start_index=1,
modality='RGB',
offset=0,
label=1)
cls.flow_frame_results = dict(
frame_dir=cls.img_dir,
total_frames=cls.total_frames,
filename_tmpl=cls.flow_filename_tmpl,
modality='Flow',
offset=0,
label=1)
cls.action_results = dict(
video_name='v_test1',
data_prefix=cls.raw_feature_dir,
temporal_scale=5,
boundary_ratio=0.1,
duration_second=10,
duration_frame=10,
feature_frame=8,
annotations=[{
'segment': [3.0, 5.0],
'label': 'Rock climbing'
}])
"""
from mmaction.datasets.ssn_dataset import SSNInstance
cls.proposal_results = dict(
frame_dir=cls.img_dir,
video_id='imgs',
total_frames=cls.total_frames,
filename_tmpl=cls.filename_tmpl,
start_index=1,
out_proposals=[[['imgs', SSNInstance(1, 4, 10, 1, 1, 1)], 0],
[['imgs', SSNInstance(2, 5, 10, 2, 1, 1)], 0]])
"""
cls.ava_results = dict(
fps=30, timestamp=902, timestamp_start=840, shot_info=(0, 27000))
cls.hvu_label_example1 = dict(
categories=['action', 'object', 'scene', 'concept'],
category_nums=[2, 5, 3, 2],
label=dict(action=[0], object=[2, 3], scene=[0, 1]))
cls.hvu_label_example2 = dict(
categories=['action', 'object', 'scene', 'concept'],
category_nums=[2, 5, 3, 2],
label=dict(action=[1], scene=[1, 2], concept=[1])) | from mmaction.datasets.ssn_dataset import SSNInstance
cls.proposal_results = dict(
frame_dir=cls.img_dir,
video_id='imgs',
total_frames=cls.total_frames,
filename_tmpl=cls.filename_tmpl,
start_index=1,
out_proposals=[[['imgs', SSNInstance(1, 4, 10, 1, 1, 1)], 0],
[['imgs', SSNInstance(2, 5, 10, 2, 1, 1)], 0]]) | setup_class | python | open-mmlab/mmaction2 | tests/datasets/transforms/test_sampling.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_sampling.py | Apache-2.0 |
def check_crop(origin_imgs, result_imgs, result_bbox, num_crops=1):
"""Check if the result_bbox is in correspond to result_imgs."""
def check_single_crop(origin_imgs, result_imgs, result_bbox):
result_img_shape = result_imgs[0].shape[:2]
crop_w = result_bbox[2] - result_bbox[0]
crop_h = result_bbox[3] - result_bbox[1]
crop_shape = (crop_h, crop_w)
if not crop_shape == result_img_shape:
return False
left, top, right, bottom = result_bbox
return np.array_equal(
np.array(origin_imgs)[:, top:bottom, left:right, :],
np.array(result_imgs))
if result_bbox.ndim == 1:
return check_single_crop(origin_imgs, result_imgs, result_bbox)
if result_bbox.ndim == 2:
num_batch = len(origin_imgs)
for i, bbox in enumerate(result_bbox):
if num_crops == 10:
if (i // num_batch) % 2 == 0:
flag = check_single_crop([origin_imgs[i % num_batch]],
[result_imgs[i]], bbox)
else:
flag = check_single_crop([origin_imgs[i % num_batch]],
[np.flip(result_imgs[i], axis=1)],
bbox)
else:
flag = check_single_crop([origin_imgs[i % num_batch]],
[result_imgs[i]], bbox)
if not flag:
return False
return True
else:
# bbox has a wrong dimension
return False | Check if the result_bbox is in correspond to result_imgs. | check_crop | python | open-mmlab/mmaction2 | tests/datasets/transforms/test_processing.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_processing.py | Apache-2.0 |
def check_flip(origin_imgs, result_imgs, flip_type):
"""Check if the origin_imgs are flipped correctly into result_imgs in
different flip_types."""
n, _, _, _ = np.shape(origin_imgs)
if flip_type == 'horizontal':
for i in range(n):
if np.any(result_imgs[i] != np.fliplr(origin_imgs[i])):
return False
else:
# yapf: disable
for i in range(n):
if np.any(result_imgs[i] != np.transpose(np.fliplr(np.transpose(origin_imgs[i], (1, 0, 2))), (1, 0, 2))): # noqa:E501
return False
# yapf: enable
return True | Check if the origin_imgs are flipped correctly into result_imgs in
different flip_types. | check_flip | python | open-mmlab/mmaction2 | tests/datasets/transforms/test_processing.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/datasets/transforms/test_processing.py | Apache-2.0 |
def gt_confusion_matrix(gt_labels, pred_labels, normalize=None):
"""Calculate the ground truth confusion matrix."""
max_index = max(max(gt_labels), max(pred_labels))
confusion_mat = np.zeros((max_index + 1, max_index + 1), dtype=np.int64)
for gt, pred in zip(gt_labels, pred_labels):
confusion_mat[gt][pred] += 1
del_index = []
for i in range(max_index):
if sum(confusion_mat[i]) == 0 and sum(confusion_mat[:, i]) == 0:
del_index.append(i)
confusion_mat = np.delete(confusion_mat, del_index, axis=0)
confusion_mat = np.delete(confusion_mat, del_index, axis=1)
if normalize is not None:
confusion_mat = np.array(confusion_mat, dtype=np.float64)
m, n = confusion_mat.shape
if normalize == 'true':
for i in range(m):
s = np.sum(confusion_mat[i], dtype=float)
if s == 0:
continue
confusion_mat[i, :] = confusion_mat[i, :] / s
print(confusion_mat[i, :])
elif normalize == 'pred':
for i in range(n):
s = sum(confusion_mat[:, i])
if s == 0:
continue
confusion_mat[:, i] = confusion_mat[:, i] / s
elif normalize == 'all':
s = np.sum(confusion_mat)
if s != 0:
confusion_mat /= s
return confusion_mat | Calculate the ground truth confusion matrix. | gt_confusion_matrix | python | open-mmlab/mmaction2 | tests/evaluation/metrics/test_metric_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_metric_utils.py | Apache-2.0 |
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
pred = [
ActionDataSample().set_pred_score(i).set_gt_label(k).to_dict()
for i, k in zip([
torch.tensor([0.7, 0.0, 0.3]),
torch.tensor([0.5, 0.2, 0.3]),
torch.tensor([0.4, 0.5, 0.1]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
], [[0], [0], [1], [2], [2], [0]])
]
# Test with score (use score instead of label if score exists)
metric = METRICS.build(dict(type='RetrievalRecall', topk=1))
metric.process(None, pred)
recall = metric.evaluate(6)
self.assertIsInstance(recall, dict)
self.assertAlmostEqual(
recall['retrieval/Recall@1'], 5 / 6 * 100, places=4)
# Test with invalid topk
with self.assertRaisesRegex(RuntimeError, 'selected index k'):
metric = METRICS.build(dict(type='RetrievalRecall', topk=10))
metric.process(None, pred)
metric.evaluate(6)
with self.assertRaisesRegex(ValueError, '`topk` must be a'):
METRICS.build(dict(type='RetrievalRecall', topk=-1))
# Test initialization
metric = METRICS.build(dict(type='RetrievalRecall', topk=5))
self.assertEqual(metric.topk, (5, ))
# Test initialization
metric = METRICS.build(dict(type='RetrievalRecall', topk=(1, 2, 5)))
self.assertEqual(metric.topk, (1, 2, 5)) | Test using the metric in the same way as Evalutor. | test_evaluate | python | open-mmlab/mmaction2 | tests/evaluation/metrics/test_retrieval_metric.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_retrieval_metric.py | Apache-2.0 |
def test_calculate(self):
"""Test using the metric from static method."""
# seq of indices format
y_true = [[0, 2, 5, 8, 9], [1, 4, 6]]
y_pred = [np.arange(10)] * 2
# test with average is 'macro'
recall_score = RetrievalRecall.calculate(
y_pred, y_true, topk=1, pred_indices=True, target_indices=True)
expect_recall = 50.
self.assertEqual(recall_score[0].item(), expect_recall)
# test with tensor input
y_true = torch.Tensor([[1, 0, 1, 0, 0, 1, 0, 0, 1, 1],
[0, 1, 0, 0, 1, 0, 1, 0, 0, 0]])
y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2)
recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=1)
expect_recall = 50.
self.assertEqual(recall_score[0].item(), expect_recall)
# test with topk is 5
y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2)
recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=2)
expect_recall = 100.
self.assertEqual(recall_score[0].item(), expect_recall)
# test with topk is (1, 5)
y_pred = np.array([np.linspace(0.95, 0.05, 10)] * 2)
recall_score = RetrievalRecall.calculate(y_pred, y_true, topk=(1, 5))
expect_recalls = [50., 100.]
self.assertEqual(len(recall_score), len(expect_recalls))
for i in range(len(expect_recalls)):
self.assertEqual(recall_score[i].item(), expect_recalls[i])
# Test with invalid pred
y_pred = dict()
y_true = [[0, 2, 5, 8, 9], [1, 4, 6]]
with self.assertRaisesRegex(AssertionError, '`pred` must be Seq'):
RetrievalRecall.calculate(y_pred, y_true, True, True)
# Test with invalid target
y_true = dict()
y_pred = [np.arange(10)] * 2
with self.assertRaisesRegex(AssertionError, '`target` must be Seq'):
RetrievalRecall.calculate(
y_pred, y_true, topk=1, pred_indices=True, target_indices=True)
# Test with different length `pred` with `target`
y_true = [[0, 2, 5, 8, 9], [1, 4, 6]]
y_pred = [np.arange(10)] * 3
with self.assertRaisesRegex(AssertionError, 'Length of `pred`'):
RetrievalRecall.calculate(
y_pred, y_true, topk=1, pred_indices=True, target_indices=True)
# Test with invalid pred
y_true = [[0, 2, 5, 8, 9], dict()]
y_pred = [np.arange(10)] * 2
with self.assertRaisesRegex(AssertionError, '`target` should be'):
RetrievalRecall.calculate(
y_pred, y_true, topk=1, pred_indices=True, target_indices=True)
# Test with invalid target
y_true = [[0, 2, 5, 8, 9], [1, 4, 6]]
y_pred = [np.arange(10), dict()]
with self.assertRaisesRegex(AssertionError, '`pred` should be'):
RetrievalRecall.calculate(
y_pred, y_true, topk=1, pred_indices=True, target_indices=True) | Test using the metric from static method. | test_calculate | python | open-mmlab/mmaction2 | tests/evaluation/metrics/test_retrieval_metric.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_retrieval_metric.py | Apache-2.0 |
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
pred = [
ActionDataSample().set_pred_score(i).set_pred_label(
j).set_gt_label(k).to_dict() for i, j, k in zip([
torch.tensor([0.7, 0.0, 0.3]),
torch.tensor([0.5, 0.2, 0.3]),
torch.tensor([0.4, 0.5, 0.1]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
torch.tensor([0.0, 0.0, 1.0]),
], [0, 0, 1, 2, 2, 2], [0, 0, 1, 2, 1, 0])
]
# Test with score (use score instead of label if score exists)
metric = METRICS.build(dict(type='ConfusionMatrix'))
metric.process(None, pred)
res = metric.evaluate(6)
self.assertIsInstance(res, dict)
self.assertTensorEqual(
res['confusion_matrix/result'],
torch.tensor([
[2, 0, 1],
[0, 1, 1],
[0, 0, 1],
]))
# Test with label
for sample in pred:
del sample['pred_score']
metric = METRICS.build(dict(type='ConfusionMatrix'))
metric.process(None, pred)
with self.assertRaisesRegex(AssertionError,
'Please specify the `num_classes`'):
metric.evaluate(6)
metric = METRICS.build(dict(type='ConfusionMatrix', num_classes=3))
metric.process(None, pred)
self.assertIsInstance(res, dict)
self.assertTensorEqual(
res['confusion_matrix/result'],
torch.tensor([
[2, 0, 1],
[0, 1, 1],
[0, 0, 1],
])) | Test using the metric in the same way as Evalutor. | test_evaluate | python | open-mmlab/mmaction2 | tests/evaluation/metrics/test_acc_metric.py | https://github.com/open-mmlab/mmaction2/blob/master/tests/evaluation/metrics/test_acc_metric.py | Apache-2.0 |
def parse_version_info(version_str: str):
"""Parse a version string into a tuple.
Args:
version_str (str): The version string.
Returns:
tuple[int or str]: The version info, e.g., "1.3.0" is parsed into
(1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1').
"""
version_info = []
for x in version_str.split('.'):
if x.isdigit():
version_info.append(int(x))
elif x.find('rc') != -1:
patch_version = x.split('rc')
version_info.append(int(patch_version[0]))
version_info.append(f'rc{patch_version[1]}')
return tuple(version_info) | Parse a version string into a tuple.
Args:
version_str (str): The version string.
Returns:
tuple[int or str]: The version info, e.g., "1.3.0" is parsed into
(1, 3, 0), and "2.0.0rc1" is parsed into (2, 0, 0, 'rc1'). | parse_version_info | python | open-mmlab/mmaction2 | mmaction/version.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/version.py | Apache-2.0 |
def extract_feat(self,
inputs: torch.Tensor,
stage: str = 'backbone',
**kwargs) -> Tuple:
"""Extract features at the given stage.
Args:
inputs (torch.Tensor): The input skeleton with shape of
`(B, num_clips, num_person, clip_len, num_joints, 3 or 2)`.
stage (str): The stage to output the features.
Defaults to ``'backbone'``.
Returns:
tuple: THe extracted features and a dict recording the kwargs
for downstream pipeline, which is an empty dict for the
GCN-based recognizer.
"""
# Record the kwargs required by `loss` and `predict`
loss_predict_kwargs = dict()
bs, nc = inputs.shape[:2]
inputs = inputs.reshape((bs * nc, ) + inputs.shape[2:])
x = self.backbone(inputs)
if stage == 'backbone':
return x, loss_predict_kwargs
if self.with_cls_head and stage == 'head':
x = self.cls_head(x, **loss_predict_kwargs)
return x, loss_predict_kwargs | Extract features at the given stage.
Args:
inputs (torch.Tensor): The input skeleton with shape of
`(B, num_clips, num_person, clip_len, num_joints, 3 or 2)`.
stage (str): The stage to output the features.
Defaults to ``'backbone'``.
Returns:
tuple: THe extracted features and a dict recording the kwargs
for downstream pipeline, which is an empty dict for the
GCN-based recognizer. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_gcn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_gcn.py | Apache-2.0 |
def forward(self, *data_samples, mode: str, **kwargs) -> ForwardResults:
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
data_samples: should be a sequence of ``SampleList`` if
``mode="predict"`` or ``mode="loss"``. Each ``SampleList`` is
the annotation data of one data source.
It should be a single torch tensor if ``mode="tensor"``.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss' or mode == 'predict':
if mode == 'loss':
return self.loss(data_samples)
return self.predict(data_samples)
elif mode == 'tensor':
assert isinstance(data_samples, torch.Tensor)
data_ndim = data_samples.ndim
if data_ndim not in [4, 5]:
info = f'Input is a {data_ndim}D tensor. '
info += 'Only 4D (BCHW) or 5D (BCTHW) tensors are supported!'
raise ValueError(info)
return self._forward(data_samples, **kwargs) | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
data_samples: should be a sequence of ``SampleList`` if
``mode="predict"`` or ``mode="loss"``. Each ``SampleList`` is
the annotation data of one data source.
It should be a single torch tensor if ``mode="tensor"``.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def loss(self, data_samples: Sequence[SampleList]) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
data_samples (Sequence[SampleList]): a sequence of SampleList. Each
SampleList contains data samples from the same data source.
Returns:
dict: A dictionary of loss components.
"""
loss_dict = {}
for idx, data in enumerate(data_samples):
inputs, data_samples = data['inputs'], data['data_samples']
feats = self.extract_feat(inputs)
loss_cls = self.cls_head.loss(feats, data_samples)
for key in loss_cls:
loss_dict[key + f'_{idx}'] = loss_cls[key]
return loss_dict | Calculate losses from a batch of inputs and data samples.
Args:
data_samples (Sequence[SampleList]): a sequence of SampleList. Each
SampleList contains data samples from the same data source.
Returns:
dict: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def predict(self, data_samples: Sequence[SampleList]) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
data_samples (Sequence[SampleList]): a sequence of SampleList. Each
SampleList contains data samples from the same data source.
Returns:
List[``ActionDataSample``]: Return the recognition results.
The returns value is ``ActionDataSample``, which usually contains
``pred_scores``. And the ``pred_scores`` usually contains
following keys.
- item (torch.Tensor): Classification scores, has a shape
(num_classes, )
"""
assert len(data_samples) == 1
feats = self.extract_feat(data_samples[0]['inputs'], test_mode=True)
predictions = self.cls_head.predict(feats,
data_samples[0]['data_samples'])
return predictions | Predict results from a batch of inputs and data samples with post-
processing.
Args:
data_samples (Sequence[SampleList]): a sequence of SampleList. Each
SampleList contains data samples from the same data source.
Returns:
List[``ActionDataSample``]: Return the recognition results.
The returns value is ``ActionDataSample``, which usually contains
``pred_scores``. And the ``pred_scores`` usually contains
following keys.
- item (torch.Tensor): Classification scores, has a shape
(num_classes, ) | predict | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def _forward(self,
inputs: torch.Tensor,
stage: str = 'backbone',
**kwargs) -> ForwardResults:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
stage (str): Which stage to output the features.
Returns:
Union[tuple, torch.Tensor]: Features from ``backbone`` or ``head``
forward.
"""
feats, _ = self.extract_feat(inputs, stage=stage)
return feats | Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
stage (str): Which stage to output the features.
Returns:
Union[tuple, torch.Tensor]: Features from ``backbone`` or ``head``
forward. | _forward | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def _run_forward(self, data: Union[dict, tuple, list],
mode: str) -> Union[Dict[str, torch.Tensor], list]:
"""Unpacks data for :meth:`forward`
Args:
data (dict or tuple or list): Data sampled from dataset.
mode (str): Mode of forward.
Returns:
dict or list: Results of training or testing mode.
"""
if isinstance(data, dict):
data = [data]
results = self(*data, mode=mode)
elif isinstance(data, (list, tuple)):
results = self(*data, mode=mode)
else:
raise TypeError
return results | Unpacks data for :meth:`forward`
Args:
data (dict or tuple or list): Data sampled from dataset.
mode (str): Mode of forward.
Returns:
dict or list: Results of training or testing mode. | _run_forward | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def extract_feat(self,
inputs: torch.Tensor,
stage: str = 'backbone',
test_mode: bool = False) -> tuple:
"""Extract features of different stages.
Args:
inputs (torch.Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``'backbone'``.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
torch.Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``loss_aux``.
"""
if len(inputs.shape) == 6:
inputs = inputs.view((-1, ) + inputs.shape[2:])
# Check settings of test
if test_mode:
x = self.backbone(inputs)
return x
else:
# Return features extracted through backbone
x = self.backbone(inputs)
if stage == 'backbone':
return x
x = self.cls_head(x)
return x | Extract features of different stages.
Args:
inputs (torch.Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``'backbone'``.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
torch.Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``loss_aux``. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_omni.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_omni.py | Apache-2.0 |
def extract_feat(self,
batch_inputs: Tensor,
stage: str = 'backbone',
**kwargs) -> tuple:
"""Extract features of different stages.
Args:
batch_inputs (Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``backbone``.
Returns:
Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. This will be an empty dict in audio recognizer.
"""
# Record the kwargs required by `loss` and `predict`
loss_predict_kwargs = dict()
batch_inputs = batch_inputs.view((-1, ) + batch_inputs.shape[2:])
x = self.backbone(batch_inputs)
if stage == 'backbone':
return x, loss_predict_kwargs
if self.with_cls_head and stage == 'head':
x = self.cls_head(x, **loss_predict_kwargs)
return x, loss_predict_kwargs | Extract features of different stages.
Args:
batch_inputs (Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``backbone``.
Returns:
Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. This will be an empty dict in audio recognizer. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer_audio.py | Apache-2.0 |
def extract_feat(self,
inputs: torch.Tensor,
stage: str = 'neck',
data_samples: SampleList = None,
test_mode: bool = False) -> tuple:
"""Extract features of different stages.
Args:
inputs (Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``neck``.
data_samples (List[:obj:`ActionDataSample`]): Action data
samples, which are only needed in training. Defaults to None.
test_mode: (bool): Whether in test mode. Defaults to False.
Returns:
Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``num_segs``, ``fcn_test``, ``loss_aux``.
"""
# Record the kwargs required by `loss` and `predict`.
loss_predict_kwargs = dict()
num_segs = inputs.shape[1]
loss_predict_kwargs['num_segs'] = num_segs
# [N, num_crops * num_segs, C, H, W] ->
# [N * num_crops * num_segs, C, H, W]
# `num_crops` is calculated by:
# 1) `twice_sample` in `SampleFrames`
# 2) `num_sample_positions` in `DenseSampleFrames`
# 3) `ThreeCrop/TenCrop` in `test_pipeline`
# 4) `num_clips` in `SampleFrames` or its subclass if `clip_len != 1`
inputs = inputs.view((-1, ) + inputs.shape[2:])
def forward_once(batch_imgs):
# Extract features through backbone.
if (hasattr(self.backbone, 'features')
and self.backbone_from == 'torchvision'):
x = self.backbone.features(batch_imgs)
elif self.backbone_from == 'timm':
x = self.backbone.forward_features(batch_imgs)
elif self.backbone_from in ['mmcls', 'mmpretrain']:
x = self.backbone(batch_imgs)
if isinstance(x, tuple):
assert len(x) == 1
x = x[0]
else:
x = self.backbone(batch_imgs)
if self.backbone_from in ['torchvision', 'timm']:
if not self.feature_shape:
# Transformer-based feature shape: B x L x C.
if len(x.shape) == 3:
self.feature_shape = 'NLC'
# Resnet-based feature shape: B x C x Hs x Ws.
elif len(x.shape) == 4:
self.feature_shape = 'NCHW'
if self.feature_shape == 'NHWC':
x = nn.AdaptiveAvgPool2d(1)(x.permute(0, 3, 1,
2)) # B x C x 1 x 1
elif self.feature_shape == 'NCHW':
x = nn.AdaptiveAvgPool2d(1)(x) # B x C x 1 x 1
elif self.feature_shape == 'NLC':
x = nn.AdaptiveAvgPool1d(1)(x.transpose(1, 2)) # B x C x 1
x = x.reshape((x.shape[0], -1)) # B x C
x = x.reshape(x.shape + (1, 1)) # B x C x 1 x 1
return x
# Check settings of `fcn_test`.
fcn_test = False
if test_mode:
if self.test_cfg is not None and self.test_cfg.get(
'fcn_test', False):
fcn_test = True
num_segs = self.test_cfg.get('num_segs',
self.backbone.num_segments)
loss_predict_kwargs['fcn_test'] = fcn_test
# inference with batch size of `max_testing_views` if set
if self.test_cfg is not None and self.test_cfg.get(
'max_testing_views', False):
max_testing_views = self.test_cfg.get('max_testing_views')
assert isinstance(max_testing_views, int)
# backbone specify num_segments
num_segments = self.backbone.get('num_segments')
if num_segments is not None:
assert max_testing_views % num_segments == 0, \
'make sure that max_testing_views is a multiple of ' \
'num_segments, but got {max_testing_views} and '\
'{num_segments}'
total_views = inputs.shape[0]
view_ptr = 0
feats = []
while view_ptr < total_views:
batch_imgs = inputs[view_ptr:view_ptr + max_testing_views]
feat = forward_once(batch_imgs)
if self.with_neck:
feat, _ = self.neck(feat)
feats.append(feat)
view_ptr += max_testing_views
def recursively_cat(feats):
# recursively traverse feats until it's a tensor,
# then concat
out_feats = []
for e_idx, elem in enumerate(feats[0]):
batch_elem = [feat[e_idx] for feat in feats]
if not isinstance(elem, torch.Tensor):
batch_elem = recursively_cat(batch_elem)
else:
batch_elem = torch.cat(batch_elem)
out_feats.append(batch_elem)
return tuple(out_feats)
if isinstance(feats[0], tuple):
x = recursively_cat(feats)
else:
x = torch.cat(feats)
else:
x = forward_once(inputs)
else:
x = forward_once(inputs)
# Return features extracted through backbone.
if stage == 'backbone':
return x, loss_predict_kwargs
loss_aux = dict()
if self.with_neck:
# x is a tuple with multiple feature maps.
x = [
each.reshape((-1, num_segs) +
each.shape[1:]).transpose(1, 2).contiguous()
for each in x
]
x, loss_aux = self.neck(x, data_samples=data_samples)
if not fcn_test:
x = x.squeeze(2)
loss_predict_kwargs['num_segs'] = 1
elif fcn_test:
# full convolution (fcn) testing when no neck
# [N * num_crops * num_segs, C', H', W'] ->
# [N * num_crops, C', num_segs, H', W']
x = x.reshape((-1, num_segs) +
x.shape[1:]).transpose(1, 2).contiguous()
loss_predict_kwargs['loss_aux'] = loss_aux
# Return features extracted through neck.
if stage == 'neck':
return x, loss_predict_kwargs
# Return raw logits through head.
if self.with_cls_head and stage == 'head':
# [N * num_crops, num_classes]
x = self.cls_head(x, **loss_predict_kwargs)
return x, loss_predict_kwargs | Extract features of different stages.
Args:
inputs (Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``neck``.
data_samples (List[:obj:`ActionDataSample`]): Action data
samples, which are only needed in training. Defaults to None.
test_mode: (bool): Whether in test mode. Defaults to False.
Returns:
Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``num_segs``, ``fcn_test``, ``loss_aux``. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer2d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer2d.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.