code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def extract_feat(self,
inputs: Dict[str, torch.Tensor],
stage: str = 'backbone',
data_samples: OptSampleList = None,
test_mode: bool = False) -> Tuple:
"""Extract features.
Args:
inputs (dict[str, torch.Tensor]): The multi-modal input data.
stage (str): Which stage to output the feature.
Defaults to ``'backbone'``.
data_samples (list[:obj:`ActionDataSample`], optional): Action data
samples, which are only needed in training. Defaults to None.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
tuple[torch.Tensor]: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline.
"""
# [N, num_views, C, T, H, W] ->
# [N * num_views, C, T, H, W]
for m, m_data in inputs.items():
m_data = m_data.reshape((-1, ) + m_data.shape[2:])
inputs[m] = m_data
# Record the kwargs required by `loss` and `predict`
loss_predict_kwargs = dict()
x = self.backbone(**inputs)
if stage == 'backbone':
return x, loss_predict_kwargs
if self.with_cls_head and stage == 'head':
x = self.cls_head(x, **loss_predict_kwargs)
return x, loss_predict_kwargs | Extract features.
Args:
inputs (dict[str, torch.Tensor]): The multi-modal input data.
stage (str): Which stage to output the feature.
Defaults to ``'backbone'``.
data_samples (list[:obj:`ActionDataSample`], optional): Action data
samples, which are only needed in training. Defaults to None.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
tuple[torch.Tensor]: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer3d_mm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer3d_mm.py | Apache-2.0 |
def extract_feat(self, inputs: torch.Tensor, **kwargs) -> ForwardResults:
"""Extract features from raw inputs.""" | Extract features from raw inputs. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def with_neck(self) -> bool:
"""bool: whether the recognizer has a neck"""
return hasattr(self, 'neck') and self.neck is not None | bool: whether the recognizer has a neck | with_neck | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def with_cls_head(self) -> bool:
"""bool: whether the recognizer has a cls_head"""
return hasattr(self, 'cls_head') and self.cls_head is not None | bool: whether the recognizer has a cls_head | with_cls_head | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initialize the model network weights."""
if self.backbone_from in ['torchvision', 'timm']:
warnings.warn('We do not initialize weights for backbones in '
f'{self.backbone_from}, since the weights for '
f'backbones in {self.backbone_from} are initialized '
'in their __init__ functions.')
def fake_init():
pass
# avoid repeated initialization
self.backbone.init_weights = fake_init
super().init_weights() | Initialize the model network weights. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def loss(self, inputs: torch.Tensor, data_samples: SampleList,
**kwargs) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
data_samples (List[``ActionDataSample``]): The batch
data samples. It usually includes information such
as ``gt_label``.
Returns:
dict: A dictionary of loss components.
"""
feats, loss_kwargs = \
self.extract_feat(inputs,
data_samples=data_samples)
# loss_aux will be a empty dict if `self.with_neck` is False.
loss_aux = loss_kwargs.get('loss_aux', dict())
loss_cls = self.cls_head.loss(feats, data_samples, **loss_kwargs)
losses = merge_dict(loss_cls, loss_aux)
return losses | Calculate losses from a batch of inputs and data samples.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
data_samples (List[``ActionDataSample``]): The batch
data samples. It usually includes information such
as ``gt_label``.
Returns:
dict: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def predict(self, inputs: torch.Tensor, data_samples: SampleList,
**kwargs) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
data_samples (List[``ActionDataSample``]): The batch
data samples. It usually includes information such
as ``gt_label``.
Returns:
List[``ActionDataSample``]: Return the recognition results.
The returns value is ``ActionDataSample``, which usually contains
``pred_scores``. And the ``pred_scores`` usually contains
following keys.
- item (torch.Tensor): Classification scores, has a shape
(num_classes, )
"""
feats, predict_kwargs = self.extract_feat(inputs, test_mode=True)
predictions = self.cls_head.predict(feats, data_samples,
**predict_kwargs)
return predictions | Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
data_samples (List[``ActionDataSample``]): The batch
data samples. It usually includes information such
as ``gt_label``.
Returns:
List[``ActionDataSample``]: Return the recognition results.
The returns value is ``ActionDataSample``, which usually contains
``pred_scores``. And the ``pred_scores`` usually contains
following keys.
- item (torch.Tensor): Classification scores, has a shape
(num_classes, ) | predict | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def _forward(self,
inputs: torch.Tensor,
stage: str = 'backbone',
**kwargs) -> ForwardResults:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
stage (str): Which stage to output the features.
Returns:
Union[tuple, torch.Tensor]: Features from ``backbone`` or ``neck``
or ``head`` forward.
"""
feats, _ = self.extract_feat(inputs, stage=stage)
return feats | Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
inputs (torch.Tensor): Raw Inputs of the recognizer.
stage (str): Which stage to output the features.
Returns:
Union[tuple, torch.Tensor]: Features from ``backbone`` or ``neck``
or ``head`` forward. | _forward | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def forward(self,
inputs: torch.Tensor,
data_samples: OptSampleList = None,
mode: str = 'tensor',
**kwargs) -> ForwardResults:
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[``ActionDataSample], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'tensor':
return self._forward(inputs, **kwargs)
if mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (torch.Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[``ActionDataSample], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/recognizers/base.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/base.py | Apache-2.0 |
def extract_feat(self,
inputs: Tensor,
stage: str = 'neck',
data_samples: OptSampleList = None,
test_mode: bool = False) -> tuple:
"""Extract features of different stages.
Args:
inputs (torch.Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``'neck'``.
data_samples (list[:obj:`ActionDataSample`], optional): Action data
samples, which are only needed in training. Defaults to None.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
torch.Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``loss_aux``.
"""
# Record the kwargs required by `loss` and `predict`
loss_predict_kwargs = dict()
num_segs = inputs.shape[1]
# [N, num_crops, C, T, H, W] ->
# [N * num_crops, C, T, H, W]
# `num_crops` is calculated by:
# 1) `twice_sample` in `SampleFrames`
# 2) `num_sample_positions` in `DenseSampleFrames`
# 3) `ThreeCrop/TenCrop` in `test_pipeline`
# 4) `num_clips` in `SampleFrames` or its subclass if `clip_len != 1`
inputs = inputs.view((-1, ) + inputs.shape[2:])
# Check settings of test
if test_mode:
if self.test_cfg is not None:
loss_predict_kwargs['fcn_test'] = self.test_cfg.get(
'fcn_test', False)
if self.test_cfg is not None and self.test_cfg.get(
'max_testing_views', False):
max_testing_views = self.test_cfg.get('max_testing_views')
assert isinstance(max_testing_views, int)
total_views = inputs.shape[0]
assert num_segs == total_views, (
'max_testing_views is only compatible '
'with batch_size == 1')
view_ptr = 0
feats = []
while view_ptr < total_views:
batch_imgs = inputs[view_ptr:view_ptr + max_testing_views]
feat = self.backbone(batch_imgs)
if self.with_neck:
feat, _ = self.neck(feat)
feats.append(feat)
view_ptr += max_testing_views
def recursively_cat(feats):
# recursively traverse feats until it's a tensor,
# then concat
out_feats = []
for e_idx, elem in enumerate(feats[0]):
batch_elem = [feat[e_idx] for feat in feats]
if not isinstance(elem, torch.Tensor):
batch_elem = recursively_cat(batch_elem)
else:
batch_elem = torch.cat(batch_elem)
out_feats.append(batch_elem)
return tuple(out_feats)
if isinstance(feats[0], tuple):
x = recursively_cat(feats)
else:
x = torch.cat(feats)
else:
x = self.backbone(inputs)
if self.with_neck:
x, _ = self.neck(x)
return x, loss_predict_kwargs
else:
# Return features extracted through backbone
x = self.backbone(inputs)
if stage == 'backbone':
return x, loss_predict_kwargs
loss_aux = dict()
if self.with_neck:
x, loss_aux = self.neck(x, data_samples=data_samples)
# Return features extracted through neck
loss_predict_kwargs['loss_aux'] = loss_aux
if stage == 'neck':
return x, loss_predict_kwargs
# Return raw logits through head.
if self.with_cls_head and stage == 'head':
x = self.cls_head(x, **loss_predict_kwargs)
return x, loss_predict_kwargs | Extract features of different stages.
Args:
inputs (torch.Tensor): The input data.
stage (str): Which stage to output the feature.
Defaults to ``'neck'``.
data_samples (list[:obj:`ActionDataSample`], optional): Action data
samples, which are only needed in training. Defaults to None.
test_mode (bool): Whether in test mode. Defaults to False.
Returns:
torch.Tensor: The extracted features.
dict: A dict recording the kwargs for downstream
pipeline. These keys are usually included:
``loss_aux``. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/recognizers/recognizer3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/recognizers/recognizer3d.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters from scratch."""
pass | Initiate the parameters from scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def forward(self, inputs, data_samples, mode, **kwargs):
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
inputs = torch.stack(inputs)
if mode == 'tensor':
return self._forward(inputs, **kwargs)
if mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def loss(self, batch_inputs, batch_data_samples, **kwargs):
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components.
"""
gt_bbox = [
sample.gt_instances['gt_bbox'] for sample in batch_data_samples
]
label_confidence, label_start, label_end = self.generate_labels(
gt_bbox)
device = batch_inputs.device
label_confidence = label_confidence.to(device)
label_start = label_start.to(device)
label_end = label_end.to(device)
confidence_map, start, end = self._forward(batch_inputs)
loss = self.loss_cls(confidence_map, start, end, label_confidence,
label_start, label_end, self.bm_mask)
loss_dict = dict(loss=loss[0])
return loss_dict | Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def predict(self, batch_inputs, batch_data_samples, **kwargs):
"""Define the computation performed at every call when testing."""
confidence_map, start, end = self._forward(batch_inputs)
start_scores = start[0].cpu().numpy()
end_scores = end[0].cpu().numpy()
cls_confidence = (confidence_map[0][1]).cpu().numpy()
reg_confidence = (confidence_map[0][0]).cpu().numpy()
max_start = max(start_scores)
max_end = max(end_scores)
# generate the set of start points and end points
start_bins = np.zeros(len(start_scores))
start_bins[0] = 1 # [1,0,0...,0,0]
end_bins = np.zeros(len(end_scores))
end_bins[-1] = 1 # [0,0,0...,0,1]
for idx in range(1, self.tscale - 1):
if start_scores[idx] > start_scores[
idx + 1] and start_scores[idx] > start_scores[idx - 1]:
start_bins[idx] = 1
elif start_scores[idx] > (0.5 * max_start):
start_bins[idx] = 1
if end_scores[idx] > end_scores[
idx + 1] and end_scores[idx] > end_scores[idx - 1]:
end_bins[idx] = 1
elif end_scores[idx] > (0.5 * max_end):
end_bins[idx] = 1
# iterate through all combinations of start_index and end_index
new_proposals = []
for idx in range(self.tscale):
for jdx in range(self.tscale):
start_index = jdx
end_index = start_index + idx + 1
if end_index < self.tscale and start_bins[
start_index] == 1 and end_bins[end_index] == 1:
tmin = start_index / self.tscale
tmax = end_index / self.tscale
tmin_score = start_scores[start_index]
tmax_score = end_scores[end_index]
cls_score = cls_confidence[idx, jdx]
reg_score = reg_confidence[idx, jdx]
score = tmin_score * tmax_score * cls_score * reg_score
new_proposals.append([
tmin, tmax, tmin_score, tmax_score, cls_score,
reg_score, score
])
new_proposals = np.stack(new_proposals)
video_info = batch_data_samples[0].metainfo
proposal_list = post_processing(new_proposals, video_info,
self.soft_nms_alpha,
self.soft_nms_low_threshold,
self.soft_nms_high_threshold,
self.post_process_top_k,
self.feature_extraction_interval)
output = [
dict(
video_name=video_info['video_name'],
proposal_list=proposal_list)
]
return output | Define the computation performed at every call when testing. | predict | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _get_interp1d_bin_mask(seg_tmin, seg_tmax, tscale, num_samples,
num_samples_per_bin):
"""Generate sample mask for a boundary-matching pair."""
plen = float(seg_tmax - seg_tmin)
plen_sample = plen / (num_samples * num_samples_per_bin - 1.0)
total_samples = [
seg_tmin + plen_sample * i
for i in range(num_samples * num_samples_per_bin)
]
p_mask = []
for idx in range(num_samples):
bin_samples = total_samples[idx * num_samples_per_bin:(idx + 1) *
num_samples_per_bin]
bin_vector = np.zeros(tscale)
for sample in bin_samples:
sample_upper = math.ceil(sample)
sample_decimal, sample_down = math.modf(sample)
if 0 <= int(sample_down) <= (tscale - 1):
bin_vector[int(sample_down)] += 1 - sample_decimal
if 0 <= int(sample_upper) <= (tscale - 1):
bin_vector[int(sample_upper)] += sample_decimal
bin_vector = 1.0 / num_samples_per_bin * bin_vector
p_mask.append(bin_vector)
p_mask = np.stack(p_mask, axis=1)
return p_mask | Generate sample mask for a boundary-matching pair. | _get_interp1d_bin_mask | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _get_interp1d_mask(self):
"""Generate sample mask for each point in Boundary-Matching Map."""
mask_mat = []
for start_index in range(self.tscale):
mask_mat_vector = []
for duration_index in range(self.tscale):
if start_index + duration_index < self.tscale:
p_tmin = start_index
p_tmax = start_index + duration_index
center_len = float(p_tmax - p_tmin) + 1
sample_tmin = p_tmin - (center_len * self.boundary_ratio)
sample_tmax = p_tmax + (center_len * self.boundary_ratio)
p_mask = self._get_interp1d_bin_mask(
sample_tmin, sample_tmax, self.tscale,
self.num_samples, self.num_samples_per_bin)
else:
p_mask = np.zeros([self.tscale, self.num_samples])
mask_mat_vector.append(p_mask)
mask_mat_vector = np.stack(mask_mat_vector, axis=2)
mask_mat.append(mask_mat_vector)
mask_mat = np.stack(mask_mat, axis=3)
mask_mat = mask_mat.astype(np.float32)
self.sample_mask = nn.Parameter(
torch.tensor(mask_mat).view(self.tscale, -1), requires_grad=False) | Generate sample mask for each point in Boundary-Matching Map. | _get_interp1d_mask | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _get_bm_mask(self):
"""Generate Boundary-Matching Mask."""
bm_mask = []
for idx in range(self.tscale):
mask_vector = [1] * (self.tscale - idx) + [0] * idx
bm_mask.append(mask_vector)
bm_mask = torch.tensor(bm_mask, dtype=torch.float)
return bm_mask | Generate Boundary-Matching Mask. | _get_bm_mask | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _match_map(self):
"""Generate match map."""
temporal_gap = 1. / self.tscale
match_map = []
for idx in range(self.tscale):
match_window = []
tmin = temporal_gap * idx
for jdx in range(1, self.tscale + 1):
tmax = tmin + temporal_gap * jdx
match_window.append([tmin, tmax])
match_map.append(match_window)
match_map = np.array(match_map)
match_map = np.transpose(match_map, [1, 0, 2])
match_map = np.reshape(match_map, [-1, 2])
return match_map | Generate match map. | _match_map | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.):
"""Generate temporal anchors.
Args:
tmin_offset (int): Offset for the minimum value of temporal anchor.
Default: 0.
tmax_offset (int): Offset for the maximum value of temporal anchor.
Default: 1.
Returns:
tuple[Sequence[float]]: The minimum and maximum values of temporal
anchors.
"""
temporal_gap = 1. / self.tscale
anchors_tmins = []
anchors_tmaxs = []
for i in range(self.tscale):
anchors_tmins.append(temporal_gap * (i + tmin_offset))
anchors_tmaxs.append(temporal_gap * (i + tmax_offset))
return anchors_tmins, anchors_tmaxs | Generate temporal anchors.
Args:
tmin_offset (int): Offset for the minimum value of temporal anchor.
Default: 0.
tmax_offset (int): Offset for the maximum value of temporal anchor.
Default: 1.
Returns:
tuple[Sequence[float]]: The minimum and maximum values of temporal
anchors. | _temporal_anchors | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _forward(self, x):
"""Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
# x.shape [batch_size, self.feat_dim, self.tscale]
base_feature = self.x_1d_b(x)
# base_feature.shape [batch_size, self.hidden_dim_1d, self.tscale]
start = self.x_1d_s(base_feature).squeeze(1)
# start.shape [batch_size, self.tscale]
end = self.x_1d_e(base_feature).squeeze(1)
# end.shape [batch_size, self.tscale]
confidence_map = self.x_1d_p(base_feature)
# [batch_size, self.hidden_dim_1d, self.tscale]
confidence_map = self._boundary_matching_layer(confidence_map)
# [batch_size, self.hidden_dim_1d,, self.num_sampls, self.tscale, self.tscale] # noqa
confidence_map = self.x_3d_p(confidence_map).squeeze(2)
# [batch_size, self.hidden_dim_3d, self.tscale, self.tscale]
confidence_map = self.x_2d_p(confidence_map)
# [batch_size, 2, self.tscale, self.tscale]
return confidence_map, start, end | Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | _forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def _boundary_matching_layer(self, x):
"""Generate matching layer."""
input_size = x.size()
out = torch.matmul(x,
self.sample_mask).reshape(input_size[0],
input_size[1],
self.num_samples,
self.tscale, self.tscale)
return out | Generate matching layer. | _boundary_matching_layer | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def generate_labels(self, gt_bbox):
"""Generate training labels."""
# TODO: do this without numpy
match_score_confidence_list = []
match_score_start_list = []
match_score_end_list = []
for every_gt_bbox in gt_bbox:
gt_iou_map = []
every_gt_bbox = every_gt_bbox.cpu()
for start, end in every_gt_bbox:
if isinstance(start, torch.Tensor):
start = start.numpy()
if isinstance(end, torch.Tensor):
end = end.numpy()
current_gt_iou_map = temporal_iou(self.match_map[:, 0],
self.match_map[:, 1], start,
end)
current_gt_iou_map = np.reshape(current_gt_iou_map,
[self.tscale, self.tscale])
gt_iou_map.append(current_gt_iou_map)
gt_iou_map = np.array(gt_iou_map).astype(np.float32)
gt_iou_map = np.max(gt_iou_map, axis=0)
gt_tmins = every_gt_bbox[:, 0]
gt_tmaxs = every_gt_bbox[:, 1]
gt_len_pad = 3 * (1. / self.tscale)
gt_start_bboxs = np.stack(
(gt_tmins - gt_len_pad / 2, gt_tmins + gt_len_pad / 2), axis=1)
gt_end_bboxs = np.stack(
(gt_tmaxs - gt_len_pad / 2, gt_tmaxs + gt_len_pad / 2), axis=1)
match_score_start = []
match_score_end = []
for anchor_tmin, anchor_tmax in zip(self.anchors_tmins,
self.anchors_tmaxs):
match_score_start.append(
np.max(
temporal_iop(anchor_tmin, anchor_tmax,
gt_start_bboxs[:, 0], gt_start_bboxs[:,
1])))
match_score_end.append(
np.max(
temporal_iop(anchor_tmin, anchor_tmax,
gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))
match_score_confidence_list.append(gt_iou_map)
match_score_start_list.append(match_score_start)
match_score_end_list.append(match_score_end)
def to_tensor(x):
return torch.Tensor(np.array(x))
match_score_confidence_list = to_tensor(match_score_confidence_list)
match_score_start_list = to_tensor(match_score_start_list)
match_score_end_list = to_tensor(match_score_end_list)
return (match_score_confidence_list, match_score_start_list,
match_score_end_list) | Generate training labels. | generate_labels | python | open-mmlab/mmaction2 | mmaction/models/localizers/bmn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bmn.py | Apache-2.0 |
def forward(self, x: Tensor) -> Tensor:
"""Forward call for LGTE.
Args:
x (torch.Tensor): The input tensor with shape (B, C, L)
"""
x = x.permute(2, 0, 1)
mask = self.mask.repeat(x.size(1), 1, 1, 1)
L = x.shape[0]
x = self.atten(x, attn_mask=mask.reshape(-1, L, L))
x = self.norm1(x)
x = self.ffn(x)
x = self.norm2(x)
x = x.permute(1, 2, 0)
return x | Forward call for LGTE.
Args:
x (torch.Tensor): The input tensor with shape (B, C, L) | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/tcanet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py | Apache-2.0 |
def StartEndRegressor(sample_num: int, feat_dim: int) -> nn.Module:
"""Start and End Regressor in the Temporal Boundary Regressor.
Args:
sample_num (int): number of samples for the start & end.
feat_dim (int): feature dimension.
Returns:
A pytorch module that works as the start and end regressor. The input
of the module should have a shape of (B, feat_dim * 2, sample_num).
"""
hidden_dim = 128
regressor = nn.Sequential(
nn.Conv1d(
feat_dim * 2,
hidden_dim * 2,
kernel_size=3,
padding=1,
groups=8,
stride=2), nn.ReLU(inplace=True),
nn.Conv1d(
hidden_dim * 2,
hidden_dim * 2,
kernel_size=3,
padding=1,
groups=8,
stride=2), nn.ReLU(inplace=True),
nn.Conv1d(hidden_dim * 2, 2, kernel_size=sample_num // 4, groups=2),
nn.Flatten())
return regressor | Start and End Regressor in the Temporal Boundary Regressor.
Args:
sample_num (int): number of samples for the start & end.
feat_dim (int): feature dimension.
Returns:
A pytorch module that works as the start and end regressor. The input
of the module should have a shape of (B, feat_dim * 2, sample_num). | StartEndRegressor | python | open-mmlab/mmaction2 | mmaction/models/localizers/tcanet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py | Apache-2.0 |
def CenterWidthRegressor(temporal_len: int, feat_dim: int) -> nn.Module:
"""Center Width in the Temporal Boundary Regressor.
Args:
temporal_len (int): temporal dimension of the inputs.
feat_dim (int): feature dimension.
Returns:
A pytorch module that works as the start and end regressor. The input
of the module should have a shape of (B, feat_dim, temporal_len).
"""
hidden_dim = 512
regressor = nn.Sequential(
nn.Conv1d(
feat_dim, hidden_dim, kernel_size=3, padding=1, groups=4,
stride=2), nn.ReLU(inplace=True),
nn.Conv1d(
hidden_dim,
hidden_dim,
kernel_size=3,
padding=1,
groups=4,
stride=2), nn.ReLU(inplace=True),
nn.Conv1d(
hidden_dim, hidden_dim, kernel_size=temporal_len // 4, groups=4),
nn.ReLU(inplace=True), nn.Conv1d(hidden_dim, 3, kernel_size=1))
return regressor | Center Width in the Temporal Boundary Regressor.
Args:
temporal_len (int): temporal dimension of the inputs.
feat_dim (int): feature dimension.
Returns:
A pytorch module that works as the start and end regressor. The input
of the module should have a shape of (B, feat_dim, temporal_len). | CenterWidthRegressor | python | open-mmlab/mmaction2 | mmaction/models/localizers/tcanet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py | Apache-2.0 |
def forward(self, inputs, data_samples, mode, **kwargs):
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
if not isinstance(input, Tensor):
inputs = torch.stack(inputs)
if mode == 'tensor':
return self._forward(inputs, **kwargs)
if mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/tcanet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py | Apache-2.0 |
def _forward(self, x):
"""Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
x = self.x_1d_b_f(x)
for layer in self.lgtes:
x = layer(x)
return x | Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | _forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/tcanet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/tcanet.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1) | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.):
"""Generate temporal anchors.
Args:
tmin_offset (int): Offset for the minimum value of temporal anchor.
Default: 0.
tmax_offset (int): Offset for the maximum value of temporal anchor.
Default: 1.
Returns:
tuple[Sequence[float]]: The minimum and maximum values of temporal
anchors.
"""
temporal_gap = 1. / self.temporal_dim
anchors_tmins = []
anchors_tmaxs = []
for i in range(self.temporal_dim):
anchors_tmins.append(temporal_gap * (i + tmin_offset))
anchors_tmaxs.append(temporal_gap * (i + tmax_offset))
return anchors_tmins, anchors_tmaxs | Generate temporal anchors.
Args:
tmin_offset (int): Offset for the minimum value of temporal anchor.
Default: 0.
tmax_offset (int): Offset for the maximum value of temporal anchor.
Default: 1.
Returns:
tuple[Sequence[float]]: The minimum and maximum values of temporal
anchors. | _temporal_anchors | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def _forward(self, x):
"""Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
x = F.relu(self.conv1_ratio * self.conv1(x))
x = F.relu(self.conv2_ratio * self.conv2(x))
x = torch.sigmoid(self.conv3_ratio * self.conv3(x))
return x | Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | _forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def loss(self, batch_inputs, batch_data_samples, **kwargs):
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components.
"""
tem_output = self._forward(batch_inputs)
score_action = tem_output[:, 0, :]
score_start = tem_output[:, 1, :]
score_end = tem_output[:, 2, :]
gt_bbox = [
sample.gt_instances['gt_bbox'] for sample in batch_data_samples
]
label_action, label_start, label_end = self.generate_labels(gt_bbox)
device = batch_inputs.device
label_action = label_action.to(device)
label_start = label_start.to(device)
label_end = label_end.to(device)
loss_action = self.loss_cls(score_action, label_action,
self.match_threshold)
loss_start = self.loss_cls(score_start, label_start,
self.match_threshold)
loss_end = self.loss_cls(score_end, label_end, self.match_threshold)
loss_dict = {
'loss_action': loss_action * self.loss_weight,
'loss_start': loss_start,
'loss_end': loss_end
}
return loss_dict | Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def predict(self, batch_inputs, batch_data_samples, **kwargs):
"""Define the computation performed at every call when testing."""
tem_output = self._forward(batch_inputs).cpu().numpy()
batch_action = tem_output[:, 0, :]
batch_start = tem_output[:, 1, :]
batch_end = tem_output[:, 2, :]
video_results = []
for batch_idx, _ in enumerate(batch_action):
video_name = batch_data_samples[batch_idx].metainfo['video_name']
video_action = batch_action[batch_idx]
video_start = batch_start[batch_idx]
video_end = batch_end[batch_idx]
video_result = np.stack((video_action, video_start, video_end,
self.anchors_tmins, self.anchors_tmaxs),
axis=1)
video_results.append((video_name, video_result))
return video_results | Define the computation performed at every call when testing. | predict | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def generate_labels(self, gt_bbox):
"""Generate training labels."""
# TODO: do this without numpy
match_score_action_list = []
match_score_start_list = []
match_score_end_list = []
for every_gt_bbox in gt_bbox:
gt_tmins = every_gt_bbox[:, 0].cpu().numpy()
gt_tmaxs = every_gt_bbox[:, 1].cpu().numpy()
gt_lens = gt_tmaxs - gt_tmins
gt_len_pad = np.maximum(1. / self.temporal_dim,
self.boundary_ratio * gt_lens)
gt_start_bboxs = np.stack(
(gt_tmins - gt_len_pad / 2, gt_tmins + gt_len_pad / 2), axis=1)
gt_end_bboxs = np.stack(
(gt_tmaxs - gt_len_pad / 2, gt_tmaxs + gt_len_pad / 2), axis=1)
match_score_action = []
match_score_start = []
match_score_end = []
for anchor_tmin, anchor_tmax in zip(self.anchors_tmins,
self.anchors_tmaxs):
match_score_action.append(
np.max(
temporal_iop(anchor_tmin, anchor_tmax, gt_tmins,
gt_tmaxs)))
match_score_start.append(
np.max(
temporal_iop(anchor_tmin, anchor_tmax,
gt_start_bboxs[:, 0], gt_start_bboxs[:,
1])))
match_score_end.append(
np.max(
temporal_iop(anchor_tmin, anchor_tmax,
gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))
match_score_action_list.append(match_score_action)
match_score_start_list.append(match_score_start)
match_score_end_list.append(match_score_end)
match_score_action_list = torch.Tensor(match_score_action_list)
match_score_start_list = torch.Tensor(match_score_start_list)
match_score_end_list = torch.Tensor(match_score_end_list)
return (match_score_action_list, match_score_start_list,
match_score_end_list) | Generate training labels. | generate_labels | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def forward(self, inputs, data_samples, mode, **kwargs):
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
if type(inputs) is not torch.Tensor:
inputs = torch.stack(inputs)
if mode == 'tensor':
return self._forward(inputs, **kwargs)
if mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1) | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def _forward(self, x):
"""Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
x = F.relu(self.fc1_ratio * self.fc1(x))
x = torch.sigmoid(self.fc2_ratio * self.fc2(x))
return x | Define the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | _forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def loss(self, batch_inputs, batch_data_samples, **kwargs):
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components.
"""
device = self.fc1.weight.device
bsp_feature = torch.cat([
sample.gt_instances['bsp_feature'] for sample in batch_data_samples
]).to(device)
reference_temporal_iou = torch.cat([
sample.gt_instances['reference_temporal_iou']
for sample in batch_data_samples
]).to(device)
pem_output = self._forward(bsp_feature)
anchors_temporal_iou = pem_output.view(-1)
u_hmask = (reference_temporal_iou >
self.pem_high_temporal_iou_threshold).float()
u_mmask = (
(reference_temporal_iou <= self.pem_high_temporal_iou_threshold)
& (reference_temporal_iou > self.pem_low_temporal_iou_threshold)
).float()
u_lmask = (reference_temporal_iou <=
self.pem_low_temporal_iou_threshold).float()
num_h = torch.sum(u_hmask)
num_m = torch.sum(u_mmask)
num_l = torch.sum(u_lmask)
r_m = self.u_ratio_m * num_h / (num_m)
r_m = torch.min(r_m, torch.Tensor([1.0]).to(device))[0]
u_smmask = torch.rand(u_hmask.size()[0], device=device)
u_smmask = u_smmask * u_mmask
u_smmask = (u_smmask > (1. - r_m)).float()
r_l = self.u_ratio_l * num_h / (num_l)
r_l = torch.min(r_l, torch.Tensor([1.0]).to(device))[0]
u_slmask = torch.rand(u_hmask.size()[0], device=device)
u_slmask = u_slmask * u_lmask
u_slmask = (u_slmask > (1. - r_l)).float()
temporal_iou_weights = u_hmask + u_smmask + u_slmask
temporal_iou_loss = F.smooth_l1_loss(anchors_temporal_iou,
reference_temporal_iou)
temporal_iou_loss = torch.sum(
temporal_iou_loss *
temporal_iou_weights) / torch.sum(temporal_iou_weights)
loss_dict = dict(temporal_iou_loss=temporal_iou_loss)
return loss_dict | Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs (Tensor): Raw Inputs of the recognizer.
These should usually be mean centered and std scaled.
batch_data_samples (List[:obj:`ActionDataSample`]): The batch
data samples. It usually includes information such
as ``gt_labels``.
Returns:
dict: A dictionary of loss components. | loss | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def predict(self, batch_inputs, batch_data_samples, **kwargs):
"""Define the computation performed at every call when testing."""
device = self.fc1.weight.device
bsp_feature = torch.cat([
sample.gt_instances['bsp_feature'] for sample in batch_data_samples
]).to(device)
pem_output = self._forward(bsp_feature).view(-1).cpu().numpy()
pem_output = pem_output.reshape(-1, 1)
gt_instances = [sample.gt_instances for sample in batch_data_samples]
tmin = self._parse(gt_instances, 'tmin')
tmax = self._parse(gt_instances, 'tmax')
tmin_score = self._parse(gt_instances, 'tmin_score')
tmax_score = self._parse(gt_instances, 'tmax_score')
score = np.array(pem_output * tmin_score * tmax_score).reshape(-1, 1)
result = np.concatenate(
(tmin, tmax, tmin_score, tmax_score, pem_output, score), axis=1)
result = result.reshape(-1, 6)
video_info = batch_data_samples[0].metainfo
proposal_list = post_processing(result, video_info,
self.soft_nms_alpha,
self.soft_nms_low_threshold,
self.soft_nms_high_threshold,
self.post_process_top_k,
self.feature_extraction_interval)
output = [
dict(
video_name=video_info['video_name'],
proposal_list=proposal_list)
]
return output | Define the computation performed at every call when testing. | predict | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def forward(self, inputs, data_samples, mode, **kwargs):
"""The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
batch_inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
batch_data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor.
"""
inputs = torch.stack(inputs)
if mode == 'tensor':
return self._forward(inputs, **kwargs)
if mode == 'predict':
return self.predict(inputs, data_samples, **kwargs)
elif mode == 'loss':
return self.loss(inputs, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | The unified entry for a forward process in both training and test.
The method should accept three modes:
- ``tensor``: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module.
- ``predict``: Forward and return the predictions, which are fully
processed to a list of :obj:`ActionDataSample`.
- ``loss``: Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
batch_inputs (Tensor): The input tensor with shape
(N, C, ...) in general.
batch_data_samples (List[:obj:`ActionDataSample`], optional): The
annotation data of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to ``tensor``.
Returns:
The return type depends on ``mode``.
- If ``mode="tensor"``, return a tensor or a tuple of tensor.
- If ``mode="predict"``, return a list of ``ActionDataSample``.
- If ``mode="loss"``, return a dict of tensor. | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/bsn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/bsn.py | Apache-2.0 |
def __init__(self, pre_nms_thresh, pre_nms_top_n, nms_thresh,
fpn_post_nms_top_n, min_size, num_classes, is_first_stage):
"""
Arguments:
pre_nms_thresh (float)
pre_nms_top_n (int)
nms_thresh (float)
fpn_post_nms_top_n (int)
min_size (int)
num_classes (int)
box_coder (BoxCoder)
"""
super(FCOSPostProcessor, self).__init__()
self.pre_nms_thresh = pre_nms_thresh
self.pre_nms_top_n = pre_nms_top_n
self.nms_thresh = nms_thresh
self.fpn_post_nms_top_n = fpn_post_nms_top_n
self.min_size = min_size
self.num_classes = num_classes
self.innerness_threshold = 0.15
self.downsample_scale = 32
self.is_first_stage = is_first_stage | Arguments:
pre_nms_thresh (float)
pre_nms_top_n (int)
nms_thresh (float)
fpn_post_nms_top_n (int)
min_size (int)
num_classes (int)
box_coder (BoxCoder) | __init__ | python | open-mmlab/mmaction2 | mmaction/models/localizers/drn/drn_utils/inference.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py | Apache-2.0 |
def forward_for_single_feature_map(self, locations, box_cls,
box_regression, level, iou_scores):
"""
Arguments:
anchors: list[BoxList]
box_cls: tensor of size N, A * C, H, W
box_regression: tensor of size N, A * 4, H, W
"""
N, C, T = box_cls.shape
# put in the same format as locations
box_cls = box_cls.permute(0, 2, 1).contiguous().sigmoid()
iou_scores = iou_scores.permute(0, 2, 1).contiguous().sigmoid()
box_regression = box_regression.permute(0, 2, 1)
# centerness = centerness.permute(0, 2, 1)
# centerness = centerness.reshape(N, -1).sigmoid()
# inner = inner.squeeze().sigmoid()
candidate_inds = (box_cls > self.pre_nms_thresh)
pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)
# multiply the classification scores with centerness scores
# box_cls = box_cls * centerness[:, :, None]
# box_cls = box_cls + centerness[:, :, None]
if not self.is_first_stage:
box_cls = box_cls * iou_scores
results = []
for i in range(N):
# per_centerness = centerness[i]
per_box_cls = box_cls[i]
per_candidate_inds = candidate_inds[i]
per_box_cls = per_box_cls[per_candidate_inds]
per_candidate_nonzeros = per_candidate_inds.nonzero()
per_box_loc = per_candidate_nonzeros[:, 0]
per_class = per_candidate_nonzeros[:, 1] + 1
per_box_regression = box_regression[i]
per_box_regression = per_box_regression[per_box_loc]
per_locations = locations[per_box_loc]
# per_centerness = per_centerness[per_box_loc]
per_pre_nms_top_n = pre_nms_top_n[i]
if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
per_box_cls, top_k_indices = \
per_box_cls.topk(per_pre_nms_top_n, sorted=False)
per_class = per_class[top_k_indices]
per_box_regression = per_box_regression[top_k_indices]
per_locations = per_locations[top_k_indices]
# per_centerness = per_centerness[top_k_indices]
detections = torch.stack([
per_locations - per_box_regression[:, 0],
per_locations + per_box_regression[:, 1],
],
dim=1) / self.downsample_scale
detections[:, 0].clamp_(min=0, max=1)
detections[:, 1].clamp_(min=0, max=1)
# remove small boxes
p_start, p_end = detections.unbind(dim=1)
duration = p_end - p_start
keep = (duration >= self.min_size).nonzero().squeeze(1)
detections = detections[keep]
temp_dict = {}
temp_dict['detections'] = detections
temp_dict['labels'] = per_class
temp_dict['scores'] = torch.sqrt(per_box_cls)
temp_dict['level'] = [level]
# temp_dict['centerness'] = per_centerness
temp_dict['locations'] = per_locations / 32
results.append(temp_dict)
return results | Arguments:
anchors: list[BoxList]
box_cls: tensor of size N, A * C, H, W
box_regression: tensor of size N, A * 4, H, W | forward_for_single_feature_map | python | open-mmlab/mmaction2 | mmaction/models/localizers/drn/drn_utils/inference.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py | Apache-2.0 |
def forward(self, locations, box_cls, box_regression, iou_scores):
"""
Arguments:
anchors: list[list[BoxList]]
box_cls: list[tensor]
box_regression: list[tensor]
image_sizes: list[(h, w)]
Returns:
boxlists (list[BoxList]): the post-processed anchors, after
applying box decoding and NMS
"""
sampled_boxes = []
for i, (l, o, b, iou_s) in enumerate(
zip(locations, box_cls, box_regression, iou_scores)):
sampled_boxes.append(
self.forward_for_single_feature_map(l, o, b, i, iou_s))
boxlists = list(zip(*sampled_boxes))
# boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]
boxlists = self.select_over_all_levels(boxlists)
return boxlists | Arguments:
anchors: list[list[BoxList]]
box_cls: list[tensor]
box_regression: list[tensor]
image_sizes: list[(h, w)]
Returns:
boxlists (list[BoxList]): the post-processed anchors, after
applying box decoding and NMS | forward | python | open-mmlab/mmaction2 | mmaction/models/localizers/drn/drn_utils/inference.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/drn/drn_utils/inference.py | Apache-2.0 |
def temporal_iou(proposal_min, proposal_max, gt_min, gt_max):
"""Compute IoU score between a groundtruth bbox and the proposals.
Args:
proposal_min (list[float]): List of temporal anchor min.
proposal_max (list[float]): List of temporal anchor max.
gt_min (float): Groundtruth temporal box min.
gt_max (float): Groundtruth temporal box max.
Returns:
list[float]: List of iou scores.
"""
len_anchors = proposal_max - proposal_min
int_tmin = np.maximum(proposal_min, gt_min)
int_tmax = np.minimum(proposal_max, gt_max)
inter_len = np.maximum(int_tmax - int_tmin, 0.)
union_len = len_anchors - inter_len + gt_max - gt_min
jaccard = np.divide(inter_len, union_len)
return jaccard | Compute IoU score between a groundtruth bbox and the proposals.
Args:
proposal_min (list[float]): List of temporal anchor min.
proposal_max (list[float]): List of temporal anchor max.
gt_min (float): Groundtruth temporal box min.
gt_max (float): Groundtruth temporal box max.
Returns:
list[float]: List of iou scores. | temporal_iou | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/proposal_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py | Apache-2.0 |
def temporal_iop(proposal_min, proposal_max, gt_min, gt_max):
"""Compute IoP score between a groundtruth bbox and the proposals.
Compute the IoP which is defined as the overlap ratio with
groundtruth proportional to the duration of this proposal.
Args:
proposal_min (list[float]): List of temporal anchor min.
proposal_max (list[float]): List of temporal anchor max.
gt_min (float): Groundtruth temporal box min.
gt_max (float): Groundtruth temporal box max.
Returns:
list[float]: List of intersection over anchor scores.
"""
len_anchors = np.array(proposal_max - proposal_min)
int_tmin = np.maximum(proposal_min, gt_min)
int_tmax = np.minimum(proposal_max, gt_max)
inter_len = np.maximum(int_tmax - int_tmin, 0.)
scores = np.divide(inter_len, len_anchors)
return scores | Compute IoP score between a groundtruth bbox and the proposals.
Compute the IoP which is defined as the overlap ratio with
groundtruth proportional to the duration of this proposal.
Args:
proposal_min (list[float]): List of temporal anchor min.
proposal_max (list[float]): List of temporal anchor max.
gt_min (float): Groundtruth temporal box min.
gt_max (float): Groundtruth temporal box max.
Returns:
list[float]: List of intersection over anchor scores. | temporal_iop | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/proposal_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py | Apache-2.0 |
def soft_nms(proposals, alpha, low_threshold, high_threshold, top_k):
"""Soft NMS for temporal proposals.
Args:
proposals (np.ndarray): Proposals generated by network.
alpha (float): Alpha value of Gaussian decaying function.
low_threshold (float): Low threshold for soft nms.
high_threshold (float): High threshold for soft nms.
top_k (int): Top k values to be considered.
Returns:
np.ndarray: The updated proposals.
"""
proposals = proposals[proposals[:, -1].argsort()[::-1]]
tstart = list(proposals[:, 0])
tend = list(proposals[:, 1])
tscore = list(proposals[:, -1])
rstart = []
rend = []
rscore = []
while len(tscore) > 0 and len(rscore) <= top_k:
max_index = np.argmax(tscore)
max_width = tend[max_index] - tstart[max_index]
iou_list = temporal_iou(tstart[max_index], tend[max_index],
np.array(tstart), np.array(tend))
iou_exp_list = np.exp(-np.square(iou_list) / alpha)
for idx, _ in enumerate(tscore):
if idx != max_index:
current_iou = iou_list[idx]
if current_iou > low_threshold + (high_threshold -
low_threshold) * max_width:
tscore[idx] = tscore[idx] * iou_exp_list[idx]
rstart.append(tstart[max_index])
rend.append(tend[max_index])
rscore.append(tscore[max_index])
tstart.pop(max_index)
tend.pop(max_index)
tscore.pop(max_index)
rstart = np.array(rstart).reshape(-1, 1)
rend = np.array(rend).reshape(-1, 1)
rscore = np.array(rscore).reshape(-1, 1)
new_proposals = np.concatenate((rstart, rend, rscore), axis=1)
return new_proposals | Soft NMS for temporal proposals.
Args:
proposals (np.ndarray): Proposals generated by network.
alpha (float): Alpha value of Gaussian decaying function.
low_threshold (float): Low threshold for soft nms.
high_threshold (float): High threshold for soft nms.
top_k (int): Top k values to be considered.
Returns:
np.ndarray: The updated proposals. | soft_nms | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/proposal_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py | Apache-2.0 |
def post_processing(result, video_info, soft_nms_alpha, soft_nms_low_threshold,
soft_nms_high_threshold, post_process_top_k,
feature_extraction_interval):
"""Post process for temporal proposals generation.
Args:
result (np.ndarray): Proposals generated by network.
video_info (dict): Meta data of video. Required keys are
'duration_frame', 'duration_second'.
soft_nms_alpha (float): Alpha value of Gaussian decaying function.
soft_nms_low_threshold (float): Low threshold for soft nms.
soft_nms_high_threshold (float): High threshold for soft nms.
post_process_top_k (int): Top k values to be considered.
feature_extraction_interval (int): Interval used in feature extraction.
Returns:
list[dict]: The updated proposals, e.g.
[{'score': 0.9, 'segment': [0, 1]},
{'score': 0.8, 'segment': [0, 2]},
...].
"""
if len(result) > 1:
result = soft_nms(result, soft_nms_alpha, soft_nms_low_threshold,
soft_nms_high_threshold, post_process_top_k)
result = result[result[:, -1].argsort()[::-1]]
video_duration = float(
video_info['duration_frame'] // feature_extraction_interval *
feature_extraction_interval
) / video_info['duration_frame'] * video_info['duration_second']
proposal_list = []
for j in range(min(post_process_top_k, len(result))):
proposal = {}
proposal['score'] = float(result[j, -1])
proposal['segment'] = [
max(0, result[j, 0]) * video_duration,
min(1, result[j, 1]) * video_duration
]
proposal_list.append(proposal)
return proposal_list | Post process for temporal proposals generation.
Args:
result (np.ndarray): Proposals generated by network.
video_info (dict): Meta data of video. Required keys are
'duration_frame', 'duration_second'.
soft_nms_alpha (float): Alpha value of Gaussian decaying function.
soft_nms_low_threshold (float): Low threshold for soft nms.
soft_nms_high_threshold (float): High threshold for soft nms.
post_process_top_k (int): Top k values to be considered.
feature_extraction_interval (int): Interval used in feature extraction.
Returns:
list[dict]: The updated proposals, e.g.
[{'score': 0.9, 'segment': [0, 1]},
{'score': 0.8, 'segment': [0, 2]},
...]. | post_processing | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/proposal_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/proposal_utils.py | Apache-2.0 |
def generate_candidate_proposals(video_list,
video_infos,
tem_results_dir,
temporal_scale,
peak_threshold,
tem_results_ext='.csv',
result_dict=None):
"""Generate Candidate Proposals with given temporal evaluation results.
Each proposal file will contain:
'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'.
Args:
video_list (list[int]): List of video indexes to generate proposals.
video_infos (list[dict]): List of video_info dict that contains
'video_name', 'duration_frame', 'duration_second',
'feature_frame', and 'annotations'.
tem_results_dir (str): Directory to load temporal evaluation
results.
temporal_scale (int): The number (scale) on temporal axis.
peak_threshold (float): The threshold for proposal generation.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
dict: A dict contains video_name as keys and proposal list as value.
If result_dict is not None, save the results to it.
"""
if tem_results_ext != '.csv':
raise NotImplementedError('Only support csv format now.')
tscale = temporal_scale
tgap = 1. / tscale
proposal_dict = {}
for video_index in video_list:
video_name = video_infos[video_index]['video_name']
tem_path = osp.join(tem_results_dir, video_name + tem_results_ext)
tem_results = np.loadtxt(
tem_path, dtype=np.float32, delimiter=',', skiprows=1)
start_scores = tem_results[:, 1]
end_scores = tem_results[:, 2]
max_start = max(start_scores)
max_end = max(end_scores)
start_bins = np.zeros(len(start_scores))
start_bins[[0, -1]] = 1
end_bins = np.zeros(len(end_scores))
end_bins[[0, -1]] = 1
for idx in range(1, tscale - 1):
if start_scores[idx] > start_scores[
idx + 1] and start_scores[idx] > start_scores[idx - 1]:
start_bins[idx] = 1
elif start_scores[idx] > (peak_threshold * max_start):
start_bins[idx] = 1
if end_scores[idx] > end_scores[
idx + 1] and end_scores[idx] > end_scores[idx - 1]:
end_bins[idx] = 1
elif end_scores[idx] > (peak_threshold * max_end):
end_bins[idx] = 1
tmin_list = []
tmin_score_list = []
tmax_list = []
tmax_score_list = []
for idx in range(tscale):
if start_bins[idx] == 1:
tmin_list.append(tgap / 2 + tgap * idx)
tmin_score_list.append(start_scores[idx])
if end_bins[idx] == 1:
tmax_list.append(tgap / 2 + tgap * idx)
tmax_score_list.append(end_scores[idx])
new_props = []
for tmax, tmax_score in zip(tmax_list, tmax_score_list):
for tmin, tmin_score in zip(tmin_list, tmin_score_list):
if tmin >= tmax:
break
new_props.append([tmin, tmax, tmin_score, tmax_score])
new_props = np.stack(new_props)
score = (new_props[:, 2] * new_props[:, 3]).reshape(-1, 1)
new_props = np.concatenate((new_props, score), axis=1)
new_props = new_props[new_props[:, -1].argsort()[::-1]]
video_info = video_infos[video_index]
video_frame = video_info['duration_frame']
video_second = video_info['duration_second']
feature_frame = video_info['feature_frame']
corrected_second = float(feature_frame) / video_frame * video_second
gt_tmins = []
gt_tmaxs = []
for annotations in video_info['annotations']:
gt_tmins.append(annotations['segment'][0] / corrected_second)
gt_tmaxs.append(annotations['segment'][1] / corrected_second)
new_iou_list = []
new_ioa_list = []
for new_prop in new_props:
new_iou = max(
temporal_iou(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs))
new_ioa = max(
temporal_iop(new_prop[0], new_prop[1], gt_tmins, gt_tmaxs))
new_iou_list.append(new_iou)
new_ioa_list.append(new_ioa)
new_iou_list = np.array(new_iou_list).reshape(-1, 1)
new_ioa_list = np.array(new_ioa_list).reshape(-1, 1)
new_props = np.concatenate((new_props, new_iou_list), axis=1)
new_props = np.concatenate((new_props, new_ioa_list), axis=1)
proposal_dict[video_name] = new_props
if result_dict is not None:
result_dict[video_name] = new_props
return proposal_dict | Generate Candidate Proposals with given temporal evaluation results.
Each proposal file will contain:
'tmin,tmax,tmin_score,tmax_score,score,match_iou,match_ioa'.
Args:
video_list (list[int]): List of video indexes to generate proposals.
video_infos (list[dict]): List of video_info dict that contains
'video_name', 'duration_frame', 'duration_second',
'feature_frame', and 'annotations'.
tem_results_dir (str): Directory to load temporal evaluation
results.
temporal_scale (int): The number (scale) on temporal axis.
peak_threshold (float): The threshold for proposal generation.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
dict: A dict contains video_name as keys and proposal list as value.
If result_dict is not None, save the results to it. | generate_candidate_proposals | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/bsn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/bsn_utils.py | Apache-2.0 |
def generate_bsp_feature(video_list,
video_infos,
tem_results_dir,
pgm_proposals_dir,
top_k=1000,
bsp_boundary_ratio=0.2,
num_sample_start=8,
num_sample_end=8,
num_sample_action=16,
num_sample_interp=3,
tem_results_ext='.csv',
pgm_proposal_ext='.csv',
result_dict=None):
"""Generate Boundary-Sensitive Proposal Feature with given proposals.
Args:
video_list (list[int]): List of video indexes to generate bsp_feature.
video_infos (list[dict]): List of video_info dict that contains
'video_name'.
tem_results_dir (str): Directory to load temporal evaluation
results.
pgm_proposals_dir (str): Directory to load proposals.
top_k (int): Number of proposals to be considered. Default: 1000
bsp_boundary_ratio (float): Ratio for proposal boundary
(start/end). Default: 0.2.
num_sample_start (int): Num of samples for actionness in
start region. Default: 8.
num_sample_end (int): Num of samples for actionness in end region.
Default: 8.
num_sample_action (int): Num of samples for actionness in center
region. Default: 16.
num_sample_interp (int): Num of samples for interpolation for
each sample point. Default: 3.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
pgm_proposal_ext (str): File extension for proposals. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
bsp_feature_dict (dict): A dict contains video_name as keys and
bsp_feature as value. If result_dict is not None, save the
results to it.
"""
if tem_results_ext != '.csv' or pgm_proposal_ext != '.csv':
raise NotImplementedError('Only support csv format now.')
bsp_feature_dict = {}
for video_index in video_list:
video_name = video_infos[video_index]['video_name']
# Load temporal evaluation results
tem_path = osp.join(tem_results_dir, video_name + tem_results_ext)
tem_results = np.loadtxt(
tem_path, dtype=np.float32, delimiter=',', skiprows=1)
score_action = tem_results[:, 0]
seg_tmins = tem_results[:, 3]
seg_tmaxs = tem_results[:, 4]
video_scale = len(tem_results)
video_gap = seg_tmaxs[0] - seg_tmins[0]
video_extend = int(video_scale / 4 + 10)
# Load proposals results
proposal_path = osp.join(pgm_proposals_dir,
video_name + pgm_proposal_ext)
pgm_proposals = np.loadtxt(
proposal_path, dtype=np.float32, delimiter=',', skiprows=1)
pgm_proposals = pgm_proposals[:top_k]
# Generate temporal sample points
boundary_zeros = np.zeros([video_extend])
score_action = np.concatenate(
(boundary_zeros, score_action, boundary_zeros))
begin_tp = []
middle_tp = []
end_tp = []
for i in range(video_extend):
begin_tp.append(-video_gap / 2 -
(video_extend - 1 - i) * video_gap)
end_tp.append(video_gap / 2 + seg_tmaxs[-1] + i * video_gap)
for i in range(video_scale):
middle_tp.append(video_gap / 2 + i * video_gap)
t_points = begin_tp + middle_tp + end_tp
bsp_feature = []
for pgm_proposal in pgm_proposals:
tmin = pgm_proposal[0]
tmax = pgm_proposal[1]
tlen = tmax - tmin
# Temporal range for start
tmin_0 = tmin - tlen * bsp_boundary_ratio
tmin_1 = tmin + tlen * bsp_boundary_ratio
# Temporal range for end
tmax_0 = tmax - tlen * bsp_boundary_ratio
tmax_1 = tmax + tlen * bsp_boundary_ratio
# Generate features at start boundary
tlen_start = (tmin_1 - tmin_0) / (num_sample_start - 1)
tlen_start_sample = tlen_start / num_sample_interp
t_new = [
tmin_0 - tlen_start / 2 + tlen_start_sample * i
for i in range(num_sample_start * num_sample_interp + 1)
]
y_new_start_action = np.interp(t_new, t_points, score_action)
y_new_start = [
np.mean(y_new_start_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_start)
]
# Generate features at end boundary
tlen_end = (tmax_1 - tmax_0) / (num_sample_end - 1)
tlen_end_sample = tlen_end / num_sample_interp
t_new = [
tmax_0 - tlen_end / 2 + tlen_end_sample * i
for i in range(num_sample_end * num_sample_interp + 1)
]
y_new_end_action = np.interp(t_new, t_points, score_action)
y_new_end = [
np.mean(y_new_end_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_end)
]
# Generate features for action
tlen_action = (tmax - tmin) / (num_sample_action - 1)
tlen_action_sample = tlen_action / num_sample_interp
t_new = [
tmin - tlen_action / 2 + tlen_action_sample * i
for i in range(num_sample_action * num_sample_interp + 1)
]
y_new_action = np.interp(t_new, t_points, score_action)
y_new_action = [
np.mean(y_new_action[i * num_sample_interp:(i + 1) *
num_sample_interp + 1])
for i in range(num_sample_action)
]
feature = np.concatenate([y_new_action, y_new_start, y_new_end])
bsp_feature.append(feature)
bsp_feature = np.array(bsp_feature)
bsp_feature_dict[video_name] = bsp_feature
if result_dict is not None:
result_dict[video_name] = bsp_feature
return bsp_feature_dict | Generate Boundary-Sensitive Proposal Feature with given proposals.
Args:
video_list (list[int]): List of video indexes to generate bsp_feature.
video_infos (list[dict]): List of video_info dict that contains
'video_name'.
tem_results_dir (str): Directory to load temporal evaluation
results.
pgm_proposals_dir (str): Directory to load proposals.
top_k (int): Number of proposals to be considered. Default: 1000
bsp_boundary_ratio (float): Ratio for proposal boundary
(start/end). Default: 0.2.
num_sample_start (int): Num of samples for actionness in
start region. Default: 8.
num_sample_end (int): Num of samples for actionness in end region.
Default: 8.
num_sample_action (int): Num of samples for actionness in center
region. Default: 16.
num_sample_interp (int): Num of samples for interpolation for
each sample point. Default: 3.
tem_results_ext (str): File extension for temporal evaluation
model output. Default: '.csv'.
pgm_proposal_ext (str): File extension for proposals. Default: '.csv'.
result_dict (dict | None): The dict to save the results. Default: None.
Returns:
bsp_feature_dict (dict): A dict contains video_name as keys and
bsp_feature as value. If result_dict is not None, save the
results to it. | generate_bsp_feature | python | open-mmlab/mmaction2 | mmaction/models/localizers/utils/bsn_utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/localizers/utils/bsn_utils.py | Apache-2.0 |
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
"""Encode video."""
b, n, c, h, w = video.shape
video = video.view(-1, c, h, w)
frames_features = self.encode_image(video)
frames_features = frames_features.view(b, n, -1)
video_features = self.adapter(frames_features)
return video_features | Encode video. | encode_video | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def encode_image(self, image: torch.Tensor) -> torch.Tensor:
"""Encode image."""
return self.clip.encode_image(image) | Encode image. | encode_image | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def encode_text(self, text: torch.Tensor) -> torch.Tensor:
"""Encode text."""
return self.clip.encode_text(text) | Encode text. | encode_text | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def extract_feat(self,
inputs: Dict[str, torch.Tensor],
norm: bool = True) -> Tuple:
"""Extract features."""
text_inputs = inputs['text']
video_inputs = inputs['imgs']
text_features = self.encode_text(text_inputs)
video_features = self.encode_video(video_inputs)
if norm:
text_features = text_features / text_features.norm(
dim=-1, keepdim=True)
video_features = video_features / video_features.norm(
dim=-1, keepdim=True)
return video_features, text_features | Extract features. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def forward(self,
inputs: Dict[str, torch.Tensor],
data_samples: OptSampleList = None,
mode: str = 'tensor') -> ForwardResults:
"""Forward function."""
if mode == 'tensor':
return self.extract_feat(inputs, norm=False)
elif mode == 'loss':
video_features, text_features = self.extract_feat(inputs)
video_features = torch.cat(
GatherLayer.apply(video_features), dim=0)
text_features = torch.cat(GatherLayer.apply(text_features), dim=0)
logit_scale = self.clip.logit_scale.exp()
logits_per_video = logit_scale * video_features @ text_features.t()
logits_per_text = logits_per_video.t()
labels = torch.arange(logits_per_video.shape[0]).to(
logit_scale.device)
sim_loss_v2t = self.loss(logits_per_video, labels)
sim_loss_t2v = self.loss(logits_per_text, labels)
losses = dict()
losses['sim_loss_v2t'] = sim_loss_v2t
losses['sim_loss_t2v'] = sim_loss_t2v
return losses
elif mode == 'predict':
video_features, text_features = self.extract_feat(inputs)
for ds, vf, tf in zip(data_samples, video_features, text_features):
features = InstanceData(video_feature=vf, text_feature=tf)
ds.features = features
return data_samples
else:
raise RuntimeError(f'Invalid mode "{mode}". '
'Only supports loss, predict and tensor mode') | Forward function. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_layers``."""
if self.frozen_layers >= 0:
top_layers = [
'ln_final', 'text_projection', 'logit_scale', 'visual.ln_post',
'visual.proj'
]
mid_layers = [
'visual.transformer.resblocks', 'transformer.resblocks'
]
for name, param in self.clip.named_parameters():
if any(name.find(n) == 0 for n in top_layers):
continue
elif any(name.find(n) == 0 for n in mid_layers):
layer_n = int(name.split('.resblocks.')[1].split('.')[0])
if layer_n >= self.frozen_layers:
continue
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_layers``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/similarity/clip_similarity.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/clip_similarity.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform quick gelu."""
return x * torch.sigmoid(1.702 * x) | Perform quick gelu. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def attention(self, x: torch.Tensor) -> torch.Tensor:
"""Perform attention."""
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
return self.attn(
x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | Perform attention. | attention | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
return self.resblocks(x) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initialize the weights."""
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | Initialize the weights. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
b, seq_length, c = x.size()
x_original = x
x = x + self.positional_embedding
x = x.transpose(0, 1) # NLD -> LND
x = self.transformer(x)
x = x.transpose(0, 1) # LND -> NLD
x = x.type(x_original.dtype) + x_original
return x.mean(dim=1) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
return x.mean(dim=self.dim) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/similarity/adapters.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/similarity/adapters.py | Apache-2.0 |
def forward(self,
data: Union[dict, Tuple[dict]],
training: bool = False) -> Union[dict, Tuple[dict]]:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation based on ``BaseDataPreprocessor``.
Args:
data (dict or Tuple[dict]): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict or Tuple[dict]: Data in the same format as the model input.
"""
data = self.cast_data(data)
if isinstance(data, dict):
return self.forward_onesample(data, training=training)
elif isinstance(data, (tuple, list)):
outputs = []
for data_sample in data:
output = self.forward_onesample(data_sample, training=training)
outputs.append(output)
return tuple(outputs)
else:
raise TypeError(f'Unsupported data type: {type(data)}!') | Perform normalization, padding, bgr2rgb conversion and batch
augmentation based on ``BaseDataPreprocessor``.
Args:
data (dict or Tuple[dict]): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict or Tuple[dict]: Data in the same format as the model input. | forward | python | open-mmlab/mmaction2 | mmaction/models/data_preprocessors/data_preprocessor.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/data_preprocessor.py | Apache-2.0 |
def forward_onesample(self, data, training: bool = False) -> dict:
"""Perform normalization, padding, bgr2rgb conversion and batch
augmentation on one data sample.
Args:
data (dict): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
inputs, data_samples = data['inputs'], data['data_samples']
inputs, data_samples = self.preprocess(inputs, data_samples, training)
data['inputs'] = inputs
data['data_samples'] = data_samples
return data | Perform normalization, padding, bgr2rgb conversion and batch
augmentation on one data sample.
Args:
data (dict): data sampled from dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input. | forward_onesample | python | open-mmlab/mmaction2 | mmaction/models/data_preprocessors/data_preprocessor.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/data_preprocessor.py | Apache-2.0 |
def forward(self, data: Dict, training: bool = False) -> Dict:
"""Preprocesses the data into the model input format.
Args:
data (dict): Data returned by dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input.
"""
data = self.cast_data(data)
inputs, data_samples = data['inputs'], data['data_samples']
for modality, modality_data in inputs.items():
preprocessor = self.preprocessors[modality]
modality_data, data_samples = preprocessor.preprocess(
modality_data, data_samples, training)
inputs[modality] = modality_data
data['inputs'] = inputs
data['data_samples'] = data_samples
return data | Preprocesses the data into the model input format.
Args:
data (dict): Data returned by dataloader.
training (bool): Whether to enable training time augmentation.
Returns:
dict: Data in the same format as the model input. | forward | python | open-mmlab/mmaction2 | mmaction/models/data_preprocessors/multimodal_data_preprocessor.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/data_preprocessors/multimodal_data_preprocessor.py | Apache-2.0 |
def assign_wrt_overlaps(self, overlaps: Tensor,
gt_labels: Tensor) -> AssignResult:
"""Assign w.r.t. the overlaps of bboxes with gts.
Args:
overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes,
shape(k, n).
gt_labels (Tensor): Labels of k gt_bboxes, shape
(k, num_classes).
Returns:
:obj:`AssignResult`: The assign result.
"""
num_gts, num_bboxes = overlaps.size(0), overlaps.size(1)
# 1. assign -1 by default
assigned_gt_inds = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
if num_gts == 0 or num_bboxes == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = overlaps.new_zeros((num_bboxes, ))
assigned_labels = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
if num_gts == 0:
# No truth, assign everything to background
assigned_gt_inds[:] = 0
return AssignResult(
num_gts=num_gts,
gt_inds=assigned_gt_inds,
max_overlaps=max_overlaps,
labels=assigned_labels)
# for each anchor, which gt best overlaps with it
# for each anchor, the max iou of all gts
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# for each gt, which anchor best overlaps with it
# for each gt, the max iou of all proposals
gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1)
# 2. assign negative: below
# the negative inds are set to be 0
if isinstance(self.neg_iou_thr, float):
assigned_gt_inds[(max_overlaps >= 0)
& (max_overlaps < self.neg_iou_thr)] = 0
elif isinstance(self.neg_iou_thr, tuple):
assert len(self.neg_iou_thr) == 2
assigned_gt_inds[(max_overlaps >= self.neg_iou_thr[0])
& (max_overlaps < self.neg_iou_thr[1])] = 0
# 3. assign positive: above positive IoU threshold
pos_inds = max_overlaps >= self.pos_iou_thr
assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1
if self.match_low_quality:
# Low-quality matching will overwrite the assigned_gt_inds
# assigned in Step 3. Thus, the assigned gt might not be the
# best one for prediction.
# For example, if bbox A has 0.9 and 0.8 iou with GT bbox
# 1 & 2, bbox 1 will be assigned as the best target for bbox A
# in step 3. However, if GT bbox 2's gt_argmax_overlaps = A,
# bbox A's assigned_gt_inds will be overwritten to be bbox B.
# This might be the reason that it is not used in ROI Heads.
for i in range(num_gts):
if gt_max_overlaps[i] >= self.min_pos_iou:
if self.gt_max_assign_all:
max_iou_inds = overlaps[i, :] == gt_max_overlaps[i]
assigned_gt_inds[max_iou_inds] = i + 1
else:
assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1
# consider multi-class case (AVA)
assert len(gt_labels[0]) > 1
assigned_labels = assigned_gt_inds.new_zeros(
(num_bboxes, len(gt_labels[0])), dtype=torch.float32)
# If not assigned, labels will be all 0
pos_inds = torch.nonzero(
assigned_gt_inds > 0, as_tuple=False).squeeze()
if pos_inds.numel() > 0:
assigned_labels[pos_inds] = gt_labels[assigned_gt_inds[pos_inds] -
1]
return AssignResult(
num_gts=num_gts,
gt_inds=assigned_gt_inds,
max_overlaps=max_overlaps,
labels=assigned_labels) | Assign w.r.t. the overlaps of bboxes with gts.
Args:
overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes,
shape(k, n).
gt_labels (Tensor): Labels of k gt_bboxes, shape
(k, num_classes).
Returns:
:obj:`AssignResult`: The assign result. | assign_wrt_overlaps | python | open-mmlab/mmaction2 | mmaction/models/task_modules/assigners/max_iou_assigner_ava.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/task_modules/assigners/max_iou_assigner_ava.py | Apache-2.0 |
def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
"""Build model inputs from a sequence or a pair of sequence for
sequence classification tasks by concatenating and adding special
tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with
the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep | Build model inputs from a sequence or a pair of sequence for
sequence classification tasks by concatenating and adding special
tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with
the appropriate special tokens. | build_inputs_with_special_tokens | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/tokenizer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/tokenizer.py | Apache-2.0 |
def all_gather_concat(data: torch.Tensor) -> torch.Tensor:
"""Gather tensors with different first-dimension size and concat to one
tenosr.
Note:
Only the first dimension should be different.
Args:
data (Tensor): Tensor to be gathered.
Returns:
torch.Tensor: The concatenated tenosr.
"""
if dist.get_world_size() == 1:
return data
data_size = torch.tensor(data.size(0), device=data.device)
sizes_list = dist.all_gather(data_size)
total_length = sum(sizes_list)
max_length = max(sizes_list)
size_diff = max_length.item() - data_size.item()
if size_diff:
padding = torch.zeros(
size_diff, *data.size()[1:], device=data.device, dtype=data.dtype)
data = torch.cat((data, padding))
gather_list = dist.all_gather(data)
# gather all data according to the default DDP sampler. For instance,
# 8 samples on 2 GPUs, GPU0: [0,2,4,6], GPU1: [1,3,5,7], will be gathered
# as [0,1,2,3,4,5,6,7]
all_data = []
for gather_batch in zip(*gather_list):
all_data.extend(gather_batch)
return torch.stack(all_data)[:total_length] | Gather tensors with different first-dimension size and concat to one
tenosr.
Note:
Only the first dimension should be different.
Args:
data (Tensor): Tensor to be gathered.
Returns:
torch.Tensor: The concatenated tenosr. | all_gather_concat | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py | Apache-2.0 |
def interpolate_pos_embed_beit(state_dict, new_model):
"""interpolate the positional embeddings. The spatial pe is relative and
temporal pe is absolute. additional temporal pe is padded with 0.
Args:
state_dict (dict): The state_dict.
new_model (nn.Module): The created model.
Returns: dict. The state_dict with updated positional embeddings.
"""
state_dict = interpolate_pos_relative_bias_beit(
state_dict_old=state_dict,
state_dict_new=new_model.state_dict(),
patch_shape_new=new_model.vision_encoder.embeddings.patch_embeddings.
patch_shape,
)
# absolute temporal pos bias
temporal_pe_key = 'vision_encoder.embeddings.temporal_position_embeddings'
if temporal_pe_key in state_dict:
logger = MMLogger.get_current_instance()
logger.info(
f'interpolate temporal positional embeddings: {temporal_pe_key}')
state_dict[temporal_pe_key] = load_temp_embed_with_mismatch(
temp_embed_old=state_dict[temporal_pe_key],
temp_embed_new=new_model.state_dict()[temporal_pe_key],
)
return state_dict | interpolate the positional embeddings. The spatial pe is relative and
temporal pe is absolute. additional temporal pe is padded with 0.
Args:
state_dict (dict): The state_dict.
new_model (nn.Module): The created model.
Returns: dict. The state_dict with updated positional embeddings. | interpolate_pos_embed_beit | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py | Apache-2.0 |
def load_temp_embed_with_mismatch(temp_embed_old,
temp_embed_new,
add_zero=True):
"""Add/Remove extra temporal_embeddings as needed.
https://arxiv.org/abs/2104.00650 shows adding zero paddings works.
temp_embed_old: (1, num_frames_old, 1, d)
temp_embed_new: (1, num_frames_new, 1, d)
add_zero: bool, if True, add zero, else, interpolate trained embeddings.
"""
# TODO zero pad
num_frms_new = temp_embed_new.shape[1]
num_frms_old = temp_embed_old.shape[1]
logger = MMLogger.get_current_instance()
logger.info(
f'Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}')
if num_frms_new > num_frms_old:
if add_zero:
temp_embed_new[:, :num_frms_old] \
= temp_embed_old # untrained embeddings are zeros.
else:
temp_embed_new = interpolate_temporal_pos_embed(
temp_embed_old, num_frms_new)
elif num_frms_new < num_frms_old:
temp_embed_new = temp_embed_old[:, :num_frms_new]
else: # =
temp_embed_new = temp_embed_old
return temp_embed_new | Add/Remove extra temporal_embeddings as needed.
https://arxiv.org/abs/2104.00650 shows adding zero paddings works.
temp_embed_old: (1, num_frames_old, 1, d)
temp_embed_new: (1, num_frames_new, 1, d)
add_zero: bool, if True, add zero, else, interpolate trained embeddings. | load_temp_embed_with_mismatch | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py | Apache-2.0 |
def interpolate_temporal_pos_embed(temp_embed_old, num_frames_new):
"""
temp_embed_old: (1, num_frames_old, 1, d)
Returns:
temp_embed_new: (1, num_frames_new, 1, d)
"""
temp_embed_old = temp_embed_old.squeeze(2).permute(
0, 2, 1) # (1, d, num_frames_old)
temp_embed_new = F.interpolate(
temp_embed_old, num_frames_new,
mode='linear') # (1, d, num_frames_new)
temp_embed_new = temp_embed_new.permute(0, 2, 1).unsqueeze(
2) # (1, num_frames_new, 1, d)
return temp_embed_new | temp_embed_old: (1, num_frames_old, 1, d)
Returns:
temp_embed_new: (1, num_frames_new, 1, d) | interpolate_temporal_pos_embed | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py | Apache-2.0 |
def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new,
patch_shape_new):
"""
Args:
state_dict_old: loaded state dict
state_dict_new: state dict for model with new image size
patch_shape_new: new model patch_shape
ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py # noqa: E501
"""
all_keys = list(state_dict_old.keys())
for key in all_keys:
if 'relative_position_index' in key:
state_dict_old.pop(key)
if 'relative_position_bias_table' in key:
rel_pos_bias = state_dict_old[key]
src_num_pos, num_attn_heads = rel_pos_bias.size()
dst_num_pos, _ = state_dict_new[key].size()
dst_patch_shape = patch_shape_new
if dst_patch_shape[0] != dst_patch_shape[1]:
raise NotImplementedError()
num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (
dst_patch_shape[1] * 2 - 1)
src_size = int((src_num_pos - num_extra_tokens)**0.5)
dst_size = int((dst_num_pos - num_extra_tokens)**0.5)
if src_size != dst_size:
extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
def geometric_progression(a, r, n):
return a * (1.0 - r**n) / (1.0 - r)
left, right = 1.01, 1.5
while right - left > 1e-6:
q = (left + right) / 2.0
gp = geometric_progression(1, q, src_size // 2)
if gp > dst_size // 2:
right = q
else:
left = q
dis = []
cur = 1
for i in range(src_size // 2):
dis.append(cur)
cur += q**(i + 1)
r_ids = [-_ for _ in reversed(dis)]
x = r_ids + [0] + dis
y = r_ids + [0] + dis
t = dst_size // 2.0
dx = np.arange(-t, t + 0.1, 1.0)
dy = np.arange(-t, t + 0.1, 1.0)
all_rel_pos_bias = []
for i in range(num_attn_heads):
z = rel_pos_bias[:, i].view(src_size,
src_size).float().numpy()
f = interpolate.interp2d(x, y, z, kind='cubic')
all_rel_pos_bias.append(
torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(
rel_pos_bias.device))
rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens),
dim=0)
state_dict_old[key] = new_rel_pos_bias
return state_dict_old | Args:
state_dict_old: loaded state dict
state_dict_new: state dict for model with new image size
patch_shape_new: new model patch_shape
ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py # noqa: E501 | interpolate_pos_relative_bias_beit | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/utils.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/utils.py | Apache-2.0 |
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
logger = MMLogger.get_current_instance()
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.'
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info('Converting TensorFlow checkpoint from {}'.format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info('Loading TF weight {} with shape {}'.format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in [
'adam_v',
'adam_m',
'AdamWeightDecayOptimizer',
'AdamWeightDecayOptimizer_1',
'global_step',
] for n in name):
logger.info('Skipping {}'.format('/'.join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
scope_names = re.split(r'_(\d+)', m_name)
else:
scope_names = [m_name]
if scope_names[0] == 'kernel' or scope_names[0] == 'gamma':
pointer = getattr(pointer, 'weight')
elif scope_names[0] == 'output_bias' or scope_names[0] == 'beta':
pointer = getattr(pointer, 'bias')
elif scope_names[0] == 'output_weights':
pointer = getattr(pointer, 'weight')
elif scope_names[0] == 'squad':
pointer = getattr(pointer, 'classifier')
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info('Skipping {}'.format('/'.join(name)))
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == '_embeddings':
pointer = getattr(pointer, 'weight')
elif m_name == 'kernel':
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched'
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info('Initialize PyTorch weight {}'.format(name))
pointer.data = torch.from_numpy(array)
return model | Load tf checkpoints in a pytorch model. | load_tf_weights_in_bert | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/modeling_bert.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py | Apache-2.0 |
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(
mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_() | Initialize the weights. | _init_weights | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/modeling_bert.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py | Apache-2.0 |
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads) | Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel | _prune_heads | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/modeling_bert.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py | Apache-2.0 |
def get_extended_attention_mask(self, attention_mask: Tensor,
input_shape: Tuple[int], device: device,
is_decoder: bool) -> Tensor:
"""Makes broadcastable attention and causal masks so that future and
masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = (
seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <=
seq_ids[None, :, None])
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[
1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
causal_mask[:, None, :, :] *
attention_mask[:, None, None, :])
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
'Wrong shape for input_ids (shape {}) or attention_mask (shape {})'
.format(input_shape, attention_mask.shape))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(
dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask | Makes broadcastable attention and causal masks so that future and
masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. | get_extended_attention_mask | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/modeling_bert.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py | Apache-2.0 |
def tie_aux_decoder_weights(self, module, aux_modules):
"""Tie decoder weights of all `aux_modules` to `module`, (not bias)"""
for m in aux_modules:
m.predictions.decoder.weight = module.predictions.decoder.weight | Tie decoder weights of all `aux_modules` to `module`, (not bias) | tie_aux_decoder_weights | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/modeling_bert.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/modeling_bert.py | Apache-2.0 |
def interpolate_temporal_pos_embed(temp_embed_old, num_frames_new):
"""
temp_embed_old: (1, num_frames_old, 1, d)
Returns:
temp_embed_new: (1, num_frames_new, 1, d)
"""
temp_embed_old = temp_embed_old.squeeze(2).permute(
0, 2, 1) # (1, d, num_frames_old)
temp_embed_new = F.interpolate(
temp_embed_old, num_frames_new,
mode='linear') # (1, d, num_frames_new)
temp_embed_new = temp_embed_new.permute(0, 2, 1).unsqueeze(
2) # (1, num_frames_new, 1, d)
return temp_embed_new | temp_embed_old: (1, num_frames_old, 1, d)
Returns:
temp_embed_new: (1, num_frames_new, 1, d) | interpolate_temporal_pos_embed | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/beit3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py | Apache-2.0 |
def __init__(self, config: BeitConfig):
"""TODO: to be defined."""
super().__init__()
self.layernorm_before = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps)
self.attention = BeitAttention(config, window_size=None)
self.scale = nn.Parameter(
config.temporal_model_init_value * torch.ones(
(config.hidden_size)),
requires_grad=True,
)
self.drop_path = BeitDropPath(config.drop_path_rate) | TODO: to be defined. | __init__ | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/beit3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py | Apache-2.0 |
def forward(self, hidden_states: torch.Tensor):
"""forward function.
Args:
hidden_states (torch.Tensor): The input. Shape: [b,t,l,c]
Returns: TODO
"""
b = hidden_states.shape[0]
output = einops.rearrange(hidden_states, 'b t l c -> (b l) t c')
output = self.layernorm_before(output)
output = self.attention(output)
output = einops.rearrange(output[0], '(b l) t c -> b t l c', b=b)
return hidden_states + self.drop_path(output[0]) * self.scale | forward function.
Args:
hidden_states (torch.Tensor): The input. Shape: [b,t,l,c]
Returns: TODO | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/beit3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py | Apache-2.0 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (torch.Tensor): Shape: [B,T,L,C]
"""
if self.layernorm is not None:
# Mean pool the final hidden states of the patch tokens
# patch_tokens = hidden_states[:, 1 + self.num_prompts :, :]
if self.num_prompts > 0:
patch_tokens = hidden_states[:, :, 1:-self.num_prompts, :]
else:
patch_tokens = hidden_states[:, :, 1:, :]
pooled_output = self.layernorm(patch_tokens.mean(2))
else:
# Pool by simply taking the final hidden state of the [CLS] token
pooled_output = hidden_states[:, :, 0]
return pooled_output | Args:
hidden_states (torch.Tensor): Shape: [B,T,L,C] | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/beit3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py | Apache-2.0 |
def forward(self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None
) -> torch.Tensor:
"""
Args:
pixel_values (torch.Tensor): The input image patches.
Shape: [B, T, C, H, W].
"""
t = pixel_values.shape[1]
pixel_values = einops.rearrange(pixel_values,
'b t c h w -> (b t) c h w')
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size() # [(b t) l c]
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
if self.prompt_tokens is not None:
prompt_tokens = self.prompt_tokens.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings, prompt_tokens),
dim=1)
else:
embeddings = torch.cat((cls_tokens, embeddings),
dim=1) # [B*T, L, C]
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = einops.rearrange(embeddings, '(b t) l c -> b t l c', t=t)
if self.temporal_position_embeddings is not None:
if t <= self.temporal_position_embeddings.shape[1]:
embeddings = embeddings + \
self.temporal_position_embeddings[:, :t]
else:
tpe = interpolate_temporal_pos_embed(
self.temporal_position_embeddings, t)
embeddings = embeddings + tpe
embeddings = self.dropout(embeddings)
return embeddings | Args:
pixel_values (torch.Tensor): The input image patches.
Shape: [B, T, C, H, W]. | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/beit3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/beit3d.py | Apache-2.0 |
def loss(self, inputs, data_samples):
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of
"""
questions, question_output = self.forward_encoder(inputs, data_samples)
weights = torch.cat(
[torch.tensor(sample.gt_answer_weight) for sample in data_samples],
dim=0).to(inputs.device)
raw_answers = []
for sample in data_samples:
raw_answers.extend(sample.gt_answer)
answer_count = torch.tensor([
len(sample.gt_answer) for sample in data_samples
]).to(inputs.device)
answers = [a + ' ' + '[SEP]' for a in raw_answers]
answers = self.tokenizer(
answers,
padding='max_length',
truncation=True,
max_length=self.max_answer_len,
return_tensors='pt').to(inputs.device)
answer_targets = answers.input_ids.masked_fill(
answers.input_ids == self.tokenizer.pad_token_id, -100)
question_states = []
question_atts = []
for b, n in enumerate(answer_count):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [questions.attention_mask[b]] * n
question_states = torch.stack(question_states, 0).to(inputs.device)
question_atts = torch.stack(question_atts, 0).to(inputs.device)
answer_output = self.text_decoder(
answers.input_ids,
attention_mask=answers.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
return_dict=True,
reduction='none',
)
loss = weights * answer_output.loss
loss = loss.sum() / inputs.size(0)
return dict(loss=loss) | Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of | loss | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_vqa.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_vqa.py | Apache-2.0 |
def rank_answer(self, question_states, question_atts, answer_ids,
answer_atts, k):
"""
question_states: (bsz, Lq, d)
answer_ids: answer input id after tokenization, (#answers, La)
"""
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction='none',
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(
logits, dim=1).index_select(
dim=1, index=answer_first_token)
topk_probs, topk_ids = prob_first_token.topk(k, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100)
question_states = question_states.repeat_interleave(k, dim=0)
question_atts = question_atts.repeat_interleave(k, dim=0)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction='none',
)
answer_loss = output.loss
answer_loss = answer_loss.view(input_ids.size(0), -1)
# topk_prob: first token probability
topk_probs = topk_probs.view(-1, 1)
log_probs = torch.cat([topk_probs.log(), -answer_loss], dim=1)
# re-calculate log probabilities for the answer sequences
# using chain rule
log_probs_sum = log_probs.sum(1)
log_probs_sum = log_probs_sum.view(num_ques, k)
topk_probs = F.softmax(log_probs_sum, dim=-1)
# get top-k after re-ranking
topk_probs, rerank_id = topk_probs.topk(k, dim=1)
topk_ids = torch.gather(topk_ids, 1, rerank_id)
return topk_ids, topk_probs | question_states: (bsz, Lq, d)
answer_ids: answer input id after tokenization, (#answers, La) | rank_answer | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_vqa.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_vqa.py | Apache-2.0 |
def preprocess_state_dict(self, state_dict):
"""Preprocess pretrained checkpoint for text_encoder and
text_decoder."""
for key in list(state_dict.keys()):
if 'bert' in key:
encoder_key = key.replace('bert.', '')
state_dict[encoder_key] = state_dict[key]
# init text decoder as multimodal encoder
# (last 6 layers of model.text_encoder)
# only for generation tasks like VQA
if self.text_decoder_cfg and 'text_encoder' in key:
if 'layer' in key:
encoder_keys = key.split('.')
layer_num = int(encoder_keys[4])
if layer_num < self.text_encoder_cfg.fusion_layer:
del state_dict[key]
continue
else:
decoder_layer_num = layer_num - 9
encoder_keys[4] = str(decoder_layer_num)
encoder_key = '.'.join(encoder_keys)
else:
encoder_key = key
decoder_key = encoder_key.replace('text_encoder',
'text_decoder')
state_dict[decoder_key] = state_dict[key]
del state_dict[key]
return state_dict | Preprocess pretrained checkpoint for text_encoder and
text_decoder. | preprocess_state_dict | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_vqa.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_vqa.py | Apache-2.0 |
def loss(
self,
inputs: torch.Tensor,
data_samples: Optional[List[ActionDataSample]] = None,
) -> Dict[str, torch.tensor]:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of
"""
output = self.extract_feat(inputs, data_samples)
text_embeds = output['text_embeds']
text_attn_mask = output['text_attn_mask']
image_embeds = output['image_embeds']
image_feat = output['image_feat']
text_feat = output['text_feat']
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(self.device)
# ITC Loss
# B*world_size, D
image_feat_all = torch.cat(dist.all_gather(image_feat))
# B*world_size, D
text_feat_all = torch.cat(dist.all_gather(text_feat))
# image to text similarity
# B, B*world_size
sim_i2t = torch.einsum('mld,nd->mln', image_feat,
text_feat_all).mean(1) / self.temp
# text-image similarity
# B, B*world_size
sim_t2i = torch.einsum('md,nld->mln', text_feat,
image_feat_all).mean(1) / self.temp
rank = dist.get_rank()
bs = inputs.size(0)
itc_targets = torch.linspace(
rank * bs, rank * bs + bs - 1, bs, dtype=int).to(self.device)
itc_loss = (F.cross_entropy(sim_i2t, itc_targets) +
F.cross_entropy(sim_t2i, itc_targets)) / 2
# prepare for itm
output_pos = self.text_encoder(
encoder_embeds=text_embeds,
attention_mask=text_attn_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
mode='fusion',
)
idx = torch.tensor([i.gt_video_id for i in data_samples]).view(-1, 1)
bs = idx.size(0)
if self.negative_all_rank:
idxs = torch.cat(dist.all_gather(idx))
image_feat_world = torch.cat(dist.all_gather(image_feat))
text_feat_world = torch.cat(dist.all_gather(text_feat))
att_mask_world = torch.cat(dist.all_gather(text_attn_mask))
text_embeds_world = torch.cat(all_gather_with_grad(text_embeds))
image_embeds_world = torch.cat(all_gather_with_grad(image_embeds))
else:
idxs = idx
image_feat_world = image_feat.detach()
text_feat_world = text_feat.detach()
image_embeds_world = image_embeds
text_embeds_world = text_embeds
att_mask_world = text_attn_mask
with torch.no_grad():
# compute sample similarity
sim_i2t = torch.einsum('mld,nd->mln', image_feat,
text_feat_world).mean(1) / self.temp
sim_t2i = torch.einsum('md,nld->mln', text_feat,
image_feat_world).mean(1) / self.temp
mask = torch.eq(idx, idxs.t()).to(self.device)
weights_i2t = F.softmax(sim_i2t + 1e-4, dim=1)
weights_i2t.masked_fill_(mask, 0)
weights_t2i = F.softmax(sim_t2i + 1e-4, dim=1)
weights_t2i.masked_fill_(mask, 0)
# select a negative image for each text
neg_idx = torch.multinomial(weights_t2i, 1).squeeze()
image_embeds_neg = image_embeds_world[neg_idx]
# select a negative text for each image
neg_idx = torch.multinomial(weights_i2t, 1).squeeze()
text_embeds_neg = text_embeds_world[neg_idx]
text_atts_neg = att_mask_world[neg_idx]
text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0)
text_atts_all = torch.cat([text_attn_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
output_neg = self.text_encoder(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
mode='fusion',
)
vl_embeddings = torch.cat(
[
output_pos.last_hidden_state[:, 0, :],
output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_targets = torch.ones((3 * bs, ),
dtype=torch.long,
device=inputs.device)
itm_targets[bs:] = 0
itm_logit = self.itm_head(vl_embeddings)
itm_loss = F.cross_entropy(itm_logit, itm_targets)
return dict(itc_loss=itc_loss, itm_loss=itm_loss) | Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of | loss | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py | Apache-2.0 |
def extract_feat(
self,
images: torch.Tensor = None,
data_samples: List[ActionDataSample] = None,
return_texts=True,
) -> Dict[str, torch.Tensor]:
"""Extract features from the input dict.
Args:
images (tensor, optional): The images to extract features.
Defaults to None.
data_samples (list, optional): The data samples containing texts
to extract features. Defaults to None.
return_texts (bool): Whether to return the tokenized text and the
corresponding attention masks. Defaults to True.
Returns:
Tuple[torch.Tensor]: The output features.
If multimodal_backbone is not exist, tuple of torch.Tensor
will be returned.
"""
if data_samples is not None:
texts = self.preprocess_text(data_samples)
else:
texts = None
assert images is not None or texts is not None, \
'At least single modality should be passed as inputs.'
results = {}
if texts is not None and return_texts:
results.update({
'text_ids': texts.input_ids,
'text_attn_mask': texts.attention_mask,
})
# extract image features
if images is not None:
image_embeds, pooled_image_embeds = self.encode_vision(images)
# concat temporal embeds
image_embeds = rearrange(image_embeds,
'b t l c -> b (t l) c').contiguous()
results['image_embeds'] = image_embeds
results['image_feat'] = F.normalize(
self.vision_proj(pooled_image_embeds), dim=-1)
# extract text features
if texts is not None:
texts_output = self.text_encoder(
texts.input_ids,
attention_mask=texts.attention_mask,
return_dict=True,
mode='text')
text_embeds = texts_output.last_hidden_state
pooled_text_feat = text_embeds[:, 0]
results['text_embeds'] = text_embeds
results['text_feat'] = F.normalize(
self.text_proj(pooled_text_feat), dim=-1)
return results | Extract features from the input dict.
Args:
images (tensor, optional): The images to extract features.
Defaults to None.
data_samples (list, optional): The data samples containing texts
to extract features. Defaults to None.
return_texts (bool): Whether to return the tokenized text and the
corresponding attention masks. Defaults to True.
Returns:
Tuple[torch.Tensor]: The output features.
If multimodal_backbone is not exist, tuple of torch.Tensor
will be returned. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py | Apache-2.0 |
def compute_score_matrix_i2t(self, img_feats, img_embeds, text_feats,
text_embeds, text_atts):
"""Compare the score matrix for image-to-text retrieval. Every image
should compare to all the text features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_embeds (torch.Tensor): The input tensor with shape (N, C).
text_atts (torch.Tensor): The input tensor with shape (N, C).
Returns:
torch.Tensor: Score matrix of image-to-text retrieval.
"""
# compute i2t sim matrix
sim_matrix_i2t = torch.einsum('mld,nd->mln', img_feats,
text_feats).mean(1)
if self.fast_match:
return sim_matrix_i2t
score_matrix_i2t = torch.full((img_feats.size(0), text_feats.size(0)),
-100.0).to(self.device)
for i in track_on_main_process(
range(img_feats.size(0)), 'Compute I2T scores...'):
sims = sim_matrix_i2t[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
topk_bz = 32
encoder_output = img_embeds[i].repeat(topk_bz, 1, 1)
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(self.device)
for j in range(0, self.topk // topk_bz):
batch_topk = topk_idx[j * topk_bz:(j + 1) * topk_bz]
output = self.text_encoder(
encoder_embeds=text_embeds[batch_topk],
attention_mask=text_atts[batch_topk],
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode='fusion')
score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_i2t[i, batch_topk] = score
return score_matrix_i2t | Compare the score matrix for image-to-text retrieval. Every image
should compare to all the text features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_embeds (torch.Tensor): The input tensor with shape (N, C).
text_atts (torch.Tensor): The input tensor with shape (N, C).
Returns:
torch.Tensor: Score matrix of image-to-text retrieval. | compute_score_matrix_i2t | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py | Apache-2.0 |
def compute_score_matrix_t2i(self, img_feats, img_embeds, text_feats,
text_embeds, text_atts):
"""Compare the score matrix for text-to-image retrieval. Every text
should compare to all the image features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_embeds (torch.Tensor): The input tensor with shape (M, C).
text_atts (torch.Tensor): The input tensor with shape (M, C).
Returns:
torch.Tensor: Score matrix of text-to-image retrieval.
"""
# compute t2i sim matrix
sim_matrix_t2i = torch.einsum('md,nld->mln', text_feats,
img_feats).mean(1)
if self.fast_match:
return sim_matrix_t2i
score_matrix_t2i = torch.full((text_feats.size(0), img_feats.size(0)),
-100.0).to(self.device)
for i in track_on_main_process(
range(text_feats.size(0)), 'Compute T2I scores...'):
sims = sim_matrix_t2i[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
topk_bz = 32
for j in range(0, self.topk // topk_bz):
batch_topk = topk_idx[j * topk_bz:(j + 1) * topk_bz]
encoder_output = img_embeds[batch_topk]
encoder_att = torch.ones(
encoder_output.size()[:-1],
dtype=torch.long).to(self.device)
output = self.text_encoder(
encoder_embeds=text_embeds[i].repeat(topk_bz, 1, 1),
attention_mask=text_atts[i].repeat(topk_bz, 1),
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
mode='fusion')
score = self.itm_head(output.last_hidden_state[:, 0, :])[:, 1]
score_matrix_t2i[i, batch_topk] = score
return score_matrix_t2i | Compare the score matrix for text-to-image retrieval. Every text
should compare to all the image features.
Args:
img_feats (torch.Tensor): The input img feats tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
img_embeds (torch.Tensor): The input img embeds tensor with shape
(M, C). M stands for numbers of samples on a single GPU.
text_feats (torch.Tensor): The input text feats tensor with shape
(N, C). N stands for numbers of all samples on all GPUs.
text_embeds (torch.Tensor): The input tensor with shape (M, C).
text_atts (torch.Tensor): The input tensor with shape (M, C).
Returns:
torch.Tensor: Score matrix of text-to-image retrieval. | compute_score_matrix_t2i | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py | Apache-2.0 |
def _get_predictions(self,
result: torch.Tensor,
data_samples: List[ActionDataSample],
mode: str = 'i2t'):
"""Post-process the output of retriever.
Args:
result (torch.Tensor): Score matrix of single retrieve,
either from image or text.
data_samples (List[ActionDataSample], optional): The annotation
data of every samples.
mode (str): Retrieve mode, either `i2t` for image to text, or `t2i`
text to image. Defaults to `i2t`.
Returns:
List[ActionDataSample]: the raw data_samples with
the predicted results.
"""
# create data sample if not exists
if data_samples is None:
data_samples = [ActionDataSample() for _ in range(result.size(0))]
elif mode == 't2i':
# Process data samples to align with the num of texts.
new_data_samples = []
for sample in data_samples:
if isinstance(sample.text, (list, tuple)):
texts = sample.text
else:
texts = [sample.text]
for i, text in enumerate(texts):
new_sample = ActionDataSample(text=text)
if 'gt_video_id' in sample:
new_sample.gt_label = sample.gt_video_id[i]
new_data_samples.append(new_sample)
assert len(new_data_samples) == result.size(0)
data_samples = new_data_samples
elif mode == 'i2t':
for sample in data_samples:
if 'gt_text_id' in sample:
sample.gt_label = sample.gt_text_id
else:
raise ValueError(f'Type {mode} is not supported.')
for data_sample, score in zip(data_samples, result):
idx = score.argmax(keepdim=True).detach()
data_sample.set_pred_score(score)
data_sample.set_pred_label(idx)
return data_samples | Post-process the output of retriever.
Args:
result (torch.Tensor): Score matrix of single retrieve,
either from image or text.
data_samples (List[ActionDataSample], optional): The annotation
data of every samples.
mode (str): Retrieve mode, either `i2t` for image to text, or `t2i`
text to image. Defaults to `i2t`.
Returns:
List[ActionDataSample]: the raw data_samples with
the predicted results. | _get_predictions | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret.py | Apache-2.0 |
def forward(self, x: torch.Tensor):
"""forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input.
"""
if x.shape[1] == 1: # for single frame, return itself.
return x
shortcut = x
x = self.linear1(x)
cls = x[:, :, :1, :]
tokens = x[:, :, 1:, :]
tokens = einops.rearrange(
tokens, 'b t (h w) c -> b c t h w', h=self.h).contiguous()
tokens = self.conv(tokens)
tokens = einops.rearrange(tokens, 'b c t h w -> b t (h w) c')
x = torch.cat([cls, tokens], dim=2) # [b, t, 1+h*w, c]
x = self.act(x)
x = self.linear2(x)
return shortcut + self.scale * self.droppath(x) | forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input. | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def __init__(self, input_dim=768, droppath_rate=0.1):
"""
Kwargs:
input_dim (int): The input feature dimension.
"""
super().__init__()
self._input_dim = input_dim
self.temporal_attn = MultiheadAttention(
input_dim, num_heads=input_dim // 64)
self.norm = LayerNorm(input_dim, eps=1e-12)
self.linear = Linear(input_dim, input_dim)
self.droppath = DropPath(droppath_rate)
self.scale = nn.parameter.Parameter(torch.zeros([])) | Kwargs:
input_dim (int): The input feature dimension. | __init__ | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def forward(self, x: torch.Tensor):
"""forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input.
"""
if x.shape[1] == 1: # for single frame, return itself.
return x
shortcut = x
x = einops.rearrange(x, 'b t l c -> t (b l) c')
x = self.norm(x)
x = self.temporal_attn(x, x, x)[0]
x = einops.rearrange(x, 't (b l) c -> b t l c', b=shortcut.shape[0])
return shortcut + self.scale * self.droppath(x) | forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input. | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def __init__(self, input_dim=768, droppath_rate=0.1, window_size=(2, 2)):
"""
Kwargs:
input_dim (int): The input feature dimension.
"""
super().__init__()
self._input_dim = input_dim
self.temporal_attn = MultiheadAttention(
input_dim, num_heads=input_dim // 64)
self.norm = LayerNorm(input_dim, eps=1e-12)
self.droppath = DropPath(droppath_rate)
self.scale = nn.parameter.Parameter(torch.zeros([]))
self.wh, self.ww = window_size | Kwargs:
input_dim (int): The input feature dimension. | __init__ | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def forward(self, x: torch.Tensor):
"""forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input.
"""
if x.shape[1] == 1: # for single frame, return itself.
return x
shortcut = x
h = w = int(math.sqrt(x.shape[2] - 1))
cls_token = x[:, :, :1, :]
x = einops.rearrange(
x[:, :, 1:, :],
'b t (nh wh nw ww) c -> (t wh ww) (b nh nw) c',
nh=h // self.wh,
wh=self.wh,
nw=w // self.ww,
ww=self.ww,
)
x = self.norm(x)
x = self.temporal_attn(x, x, x)[0]
x = einops.rearrange(
x,
'(t wh ww) (b nh nw) c -> b t (nh wh nw ww) c',
wh=self.wh,
ww=self.ww,
nh=h // self.wh,
nw=w // self.ww,
)
# add back cls token.
x = torch.concat([cls_token, x], dim=2)
return shortcut + self.scale * self.droppath(x) | forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input. | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def __init__(self, input_dim=768, droppath_rate=0.1, num_prompts=1):
"""
Kwargs:
input_dim (int): The input feature dimension.
"""
super().__init__()
d_model = input_dim
self.message_fc = nn.Linear(d_model, d_model)
self.message_ln = LayerNorm(d_model, eps=1e-12)
self.message_attn = nn.MultiheadAttention(d_model, d_model // 64)
self.num_prompts = num_prompts
self.droppath = DropPath(droppath_rate) | Kwargs:
input_dim (int): The input feature dimension. | __init__ | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def forward(self, x: torch.Tensor):
"""forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input.
"""
if x.shape[1] == 1: # for single frame, return itself.
return x
msg_token = self.message_ln(self.message_fc(x[:, :,
0, :])) # [b, t, c]
msg_token = rearrange(msg_token, 'b t c -> t b c')
msg_token = msg_token + self.droppath(
self.message_attn(msg_token, msg_token, msg_token)[0])
msg_token = rearrange(msg_token, 't b c -> b t c')
# replace the last prompt token with msg_token.
x = torch.cat([x[:, :, :-1, :],
msg_token.unsqueeze(2)], dim=2) # [b, t, l+1, c]
return x | forward.
Args:
x (torch.Tensor): input features.
Shape: [bs, nframes, l, c]. l = 1 + h*w
Returns: features after adapter. The same shape as input. | forward | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/temporal_model.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/temporal_model.py | Apache-2.0 |
def predict(self, inputs, data_samples, **kwargs):
"""Predict captions from a batch of inputs.
Args:
images (torch.Tensor): The input images tensor with shape
(N, C, ...) in general.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**kwargs: Other keyword arguments accepted by the ``predict``
Returns:
List[ActionDataSample]: Return list of data samples.
"""
num_options_per_q = len(data_samples[0].caption_options)
for sample in data_samples:
sample.text = sample.caption_options
output = self.extract_feat(inputs, data_samples)
text_embeds = output['text_embeds']
text_attn_mask = output['text_attn_mask']
image_embeds = output['image_embeds']
image_feat = output['image_feat']
text_feat = output['text_feat']
# compute similarity between vision feat and caption feat
text_feat = rearrange(
text_feat, '(b n) c -> b c n', n=num_options_per_q)
sim = torch.matmul(image_feat.mean(1, keepdim=True),
text_feat).squeeze(1) / self.temp
sim = F.softmax(sim, dim=1).flatten()
# cross-modal encode
encoder_output = image_embeds.repeat_interleave(
num_options_per_q, dim=0)
image_atts = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(inputs.device)
output = self.text_encoder(
encoder_embeds=text_embeds,
attention_mask=text_attn_mask,
encoder_hidden_states=encoder_output,
encoder_attention_mask=image_atts,
return_dict=True,
mode='fusion',
)
itm_embeds = output.last_hidden_state[:, 0] # [CLS]
itm_score = F.softmax(self.itm_head(itm_embeds), dim=1)[:, 1] # [bs*5]
score = itm_score * self.score_weight + sim * self.similarity_weight
pred_answers = score.view(-1, num_options_per_q).max(1)[1].cpu()
# assemble predictions
ensemble_scores = score.view(-1, num_options_per_q).cpu() # (bsz, 5)
out_data_samples = []
for data_sample, ensemble_score, pred_ans in \
zip(data_samples, ensemble_scores, pred_answers):
data_sample.pred_label = pred_ans.item()
data_sample.score = ensemble_score.numpy()
out_data_samples.append(data_sample)
return out_data_samples | Predict captions from a batch of inputs.
Args:
images (torch.Tensor): The input images tensor with shape
(N, C, ...) in general.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**kwargs: Other keyword arguments accepted by the ``predict``
Returns:
List[ActionDataSample]: Return list of data samples. | predict | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu_ret_mc.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu_ret_mc.py | Apache-2.0 |
def extract_feat(self, inputs: torch.Tensor, **kwargs) -> ForwardResults:
"""Extract features from raw inputs.""" | Extract features from raw inputs. | extract_feat | python | open-mmlab/mmaction2 | mmaction/models/multimodal/vindlu/vindlu.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/multimodal/vindlu/vindlu.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.