code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def make_temporal_shift(self):
"""Make temporal shift for some layers."""
for m in self.modules():
if isinstance(m, InvertedResidual) and \
len(m.conv) == 3 and m.use_res_connect:
m.conv[0] = TemporalShift(
m.conv[0],
num_segments=self.num_segments,
shift_div=self.shift_div,
) | Make temporal shift for some layers. | make_temporal_shift | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobilenet_v2_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobilenet_v2_tsm.py | Apache-2.0 |
def init_structure(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if self.is_shift:
self.make_temporal_shift() | Initiate the parameters either from existing checkpoint or from
scratch. | init_structure | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobilenet_v2_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobilenet_v2_tsm.py | Apache-2.0 |
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if self.pretrained2d:
logger = MMLogger.get_current_instance()
self.load_original_weights(logger)
else:
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights() | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobilenet_v2_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobilenet_v2_tsm.py | Apache-2.0 |
def window_partition(x: torch.Tensor,
window_size: Sequence[int]) -> torch.Tensor:
"""
Args:
x (torch.Tensor): The input features of shape :math:`(B, D, H, W, C)`.
window_size (Sequence[int]): The window size, :math:`(w_d, w_h, w_w)`.
Returns:
torch.Tensor: The partitioned windows of shape
:math:`(B*num_windows, w_d*w_h*w_w, C)`.
"""
B, D, H, W, C = x.shape
x = x.view(B, D // window_size[0], window_size[0], H // window_size[1],
window_size[1], W // window_size[2], window_size[2], C)
windows = x.permute(0, 1, 3, 5, 2, 4, 6,
7).contiguous().view(-1, reduce(mul, window_size), C)
return windows | Args:
x (torch.Tensor): The input features of shape :math:`(B, D, H, W, C)`.
window_size (Sequence[int]): The window size, :math:`(w_d, w_h, w_w)`.
Returns:
torch.Tensor: The partitioned windows of shape
:math:`(B*num_windows, w_d*w_h*w_w, C)`. | window_partition | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def window_reverse(windows: torch.Tensor, window_size: Sequence[int], B: int,
D: int, H: int, W: int) -> torch.Tensor:
"""
Args:
windows (torch.Tensor): Input windows of shape
:meth:`(B*num_windows, w_d, w_h, w_w, C)`.
window_size (Sequence[int]): The window size, :meth:`(w_d, w_h, w_w)`.
B (int): Batch size of feature maps.
D (int): Temporal length of feature maps.
H (int): Height of feature maps.
W (int): Width of feature maps.
Returns:
torch.Tensor: The feature maps reversed from windows of
shape :math:`(B, D, H, W, C)`.
"""
x = windows.view(B, D // window_size[0], H // window_size[1],
W // window_size[2], window_size[0], window_size[1],
window_size[2], -1)
x = x.permute(0, 1, 4, 2, 5, 3, 6, 7).contiguous().view(B, D, H, W, -1)
return x | Args:
windows (torch.Tensor): Input windows of shape
:meth:`(B*num_windows, w_d, w_h, w_w, C)`.
window_size (Sequence[int]): The window size, :meth:`(w_d, w_h, w_w)`.
B (int): Batch size of feature maps.
D (int): Temporal length of feature maps.
H (int): Height of feature maps.
W (int): Width of feature maps.
Returns:
torch.Tensor: The feature maps reversed from windows of
shape :math:`(B, D, H, W, C)`. | window_reverse | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def get_window_size(
x_size: Sequence[int],
window_size: Sequence[int],
shift_size: Optional[Sequence[int]] = None
) -> Union[Tuple[int], Tuple[Tuple[int]]]:
"""Calculate window size and shift size according to the input size.
Args:
x_size (Sequence[int]): The input size.
window_size (Sequence[int]): The expected window size.
shift_size (Sequence[int], optional): The expected shift size.
Defaults to None.
Returns:
tuple: The calculated window size and shift size.
"""
use_window_size = list(window_size)
if shift_size is not None:
use_shift_size = list(shift_size)
for i in range(len(x_size)):
if x_size[i] <= window_size[i]:
use_window_size[i] = x_size[i]
if shift_size is not None:
use_shift_size[i] = 0
if shift_size is None:
return tuple(use_window_size)
else:
return tuple(use_window_size), tuple(use_shift_size) | Calculate window size and shift size according to the input size.
Args:
x_size (Sequence[int]): The input size.
window_size (Sequence[int]): The expected window size.
shift_size (Sequence[int], optional): The expected shift size.
Defaults to None.
Returns:
tuple: The calculated window size and shift size. | get_window_size | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def compute_mask(D: int, H: int, W: int, window_size: Sequence[int],
shift_size: Sequence[int],
device: Union[str, torch.device]) -> torch.Tensor:
"""Compute attention mask.
Args:
D (int): Temporal length of feature maps.
H (int): Height of feature maps.
W (int): Width of feature maps.
window_size (Sequence[int]): The window size.
shift_size (Sequence[int]): The shift size.
device (str or :obj:`torch.device`): The device of the mask.
Returns:
torch.Tensor: The attention mask used for shifted window attention.
"""
img_mask = torch.zeros((1, D, H, W, 1), device=device) # 1 Dp Hp Wp 1
cnt = 0
for d in slice(-window_size[0]), slice(-window_size[0],
-shift_size[0]), slice(
-shift_size[0], None):
for h in slice(-window_size[1]), slice(-window_size[1],
-shift_size[1]), slice(
-shift_size[1], None):
for w in slice(-window_size[2]), slice(-window_size[2],
-shift_size[2]), slice(
-shift_size[2], None):
img_mask[:, d, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask,
window_size) # nW, ws[0]*ws[1]*ws[2], 1
mask_windows = mask_windows.squeeze(-1) # nW, ws[0]*ws[1]*ws[2]
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-100.0)).masked_fill(
attn_mask == 0, float(0.0))
return attn_mask | Compute attention mask.
Args:
D (int): Temporal length of feature maps.
H (int): Height of feature maps.
W (int): Width of feature maps.
window_size (Sequence[int]): The window size.
shift_size (Sequence[int]): The shift size.
device (str or :obj:`torch.device`): The device of the mask.
Returns:
torch.Tensor: The attention mask used for shifted window attention. | compute_mask | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Forward function.
Args:
x (torch.Tensor): Input feature maps of shape
:meth:`(B*num_windows, N, C)`.
mask (torch.Tensor, optional): (0/-inf) mask of shape
:meth:`(num_windows, N, N)`. Defaults to None.
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # B_, nH, N, C
q = q * self.scale
attn = q @ k.transpose(-2, -1)
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index[:N, :N].reshape(-1)].reshape(
N, N, -1) # Wd*Wh*Ww,Wd*Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wd*Wh*Ww, Wd*Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0) # B_, nH, N, N
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x | Forward function.
Args:
x (torch.Tensor): Input feature maps of shape
:meth:`(B*num_windows, N, C)`.
mask (torch.Tensor, optional): (0/-inf) mask of shape
:meth:`(num_windows, N, N)`. Defaults to None. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x | Forward function. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward_part1(self, x: torch.Tensor,
mask_matrix: torch.Tensor) -> torch.Tensor:
"""Forward function part1."""
B, D, H, W, C = x.shape
window_size, shift_size = get_window_size((D, H, W), self.window_size,
self.shift_size)
x = self.norm1(x)
# pad feature maps to multiples of window size
pad_l = pad_t = pad_d0 = 0
pad_d1 = (window_size[0] - D % window_size[0]) % window_size[0]
pad_b = (window_size[1] - H % window_size[1]) % window_size[1]
pad_r = (window_size[2] - W % window_size[2]) % window_size[2]
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b, pad_d0, pad_d1))
_, Dp, Hp, Wp, _ = x.shape
# cyclic shift
if any(i > 0 for i in shift_size):
shifted_x = torch.roll(
x,
shifts=(-shift_size[0], -shift_size[1], -shift_size[2]),
dims=(1, 2, 3))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(shifted_x,
window_size) # B*nW, Wd*Wh*Ww, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask) # B*nW, Wd*Wh*Ww, C
# merge windows
attn_windows = attn_windows.view(-1, *(window_size + (C, )))
shifted_x = window_reverse(attn_windows, window_size, B, Dp, Hp,
Wp) # B D' H' W' C
# reverse cyclic shift
if any(i > 0 for i in shift_size):
x = torch.roll(
shifted_x,
shifts=(shift_size[0], shift_size[1], shift_size[2]),
dims=(1, 2, 3))
else:
x = shifted_x
if pad_d1 > 0 or pad_r > 0 or pad_b > 0:
x = x[:, :D, :H, :W, :].contiguous()
return x | Forward function part1. | forward_part1 | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward_part2(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function part2."""
return self.drop_path(self.mlp(self.norm2(x))) | Forward function part2. | forward_part2 | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self, x: torch.Tensor,
mask_matrix: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): Input features of shape :math:`(B, D, H, W, C)`.
mask_matrix (torch.Tensor): Attention mask for cyclic shift.
"""
shortcut = x
if self.with_cp:
x = checkpoint.checkpoint(self.forward_part1, x, mask_matrix)
else:
x = self.forward_part1(x, mask_matrix)
x = shortcut + self.drop_path(x)
if self.with_cp:
x = x + checkpoint.checkpoint(self.forward_part2, x)
else:
x = x + self.forward_part2(x)
return x | Args:
x (torch.Tensor): Input features of shape :math:`(B, D, H, W, C)`.
mask_matrix (torch.Tensor): Attention mask for cyclic shift. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform patch merging.
Args:
x (torch.Tensor): Input feature maps of shape
:math:`(B, D, H, W, C)`.
Returns:
torch.Tensor: The merged feature maps of shape
:math:`(B, D, H/2, W/2, 2*C)`.
"""
B, D, H, W, C = x.shape
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, :, 0::2, 0::2, :] # B D H/2 W/2 C
x1 = x[:, :, 1::2, 0::2, :] # B D H/2 W/2 C
x2 = x[:, :, 0::2, 1::2, :] # B D H/2 W/2 C
x3 = x[:, :, 1::2, 1::2, :] # B D H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B D H/2 W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x | Perform patch merging.
Args:
x (torch.Tensor): Input feature maps of shape
:math:`(B, D, H, W, C)`.
Returns:
torch.Tensor: The merged feature maps of shape
:math:`(B, D, H/2, W/2, 2*C)`. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self,
x: torch.Tensor,
do_downsample: bool = True) -> torch.Tensor:
"""Forward function.
Args:
x (torch.Tensor): Input feature maps of shape
:math:`(B, C, D, H, W)`.
do_downsample (bool): Whether to downsample the output of
the current layer. Defaults to True.
"""
# calculate attention mask for SW-MSA
B, C, D, H, W = x.shape
window_size, shift_size = get_window_size((D, H, W), self.window_size,
self.shift_size)
x = rearrange(x, 'b c d h w -> b d h w c')
Dp = int(np.ceil(D / window_size[0])) * window_size[0]
Hp = int(np.ceil(H / window_size[1])) * window_size[1]
Wp = int(np.ceil(W / window_size[2])) * window_size[2]
attn_mask = compute_mask(Dp, Hp, Wp, window_size, shift_size, x.device)
for blk in self.blocks:
x = blk(x, attn_mask)
if self.downsample is not None and do_downsample:
x = self.downsample(x)
return x | Forward function.
Args:
x (torch.Tensor): Input feature maps of shape
:math:`(B, C, D, H, W)`.
do_downsample (bool): Whether to downsample the output of
the current layer. Defaults to True. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform video to patch embedding.
Args:
x (torch.Tensor): The input videos of shape
:math:`(B, C, D, H, W)`. In most cases, C is 3.
Returns:
torch.Tensor: The video patches of shape
:math:`(B, embed_dims, Dp, Hp, Wp)`.
"""
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x,
(0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0,
self.patch_size[0] - D % self.patch_size[0]))
x = self.proj(x) # B C Dp Wp Wp
if self.norm is not None:
Dp, Hp, Wp = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2) # B Dp*Hp*Wp C
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dims, Dp, Hp, Wp)
return x | Perform video to patch embedding.
Args:
x (torch.Tensor): The input videos of shape
:math:`(B, C, D, H, W)`. In most cases, C is 3.
Returns:
torch.Tensor: The video patches of shape
:math:`(B, embed_dims, Dp, Hp, Wp)`. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1:
self.pos_drop.eval()
for i in range(0, self.frozen_stages):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def inflate_weights(self, logger: MMLogger) -> None:
"""Inflate the swin2d parameters to swin3d.
The differences between swin3d and swin2d mainly lie in an extra
axis. To utilize the pretrained parameters in 2d model, the weight
of swin2d models should be inflated to fit in the shapes of the
3d counterpart.
Args:
logger (MMLogger): The logger used to print debugging information.
"""
checkpoint = _load_checkpoint(self.pretrained, map_location='cpu')
state_dict = checkpoint['model']
# delete relative_position_index since we always re-init it
relative_position_index_keys = [
k for k in state_dict.keys() if 'relative_position_index' in k
]
for k in relative_position_index_keys:
del state_dict[k]
# delete attn_mask since we always re-init it
attn_mask_keys = [k for k in state_dict.keys() if 'attn_mask' in k]
for k in attn_mask_keys:
del state_dict[k]
state_dict['patch_embed.proj.weight'] = \
state_dict['patch_embed.proj.weight'].unsqueeze(2).\
repeat(1, 1, self.patch_size[0], 1, 1) / self.patch_size[0]
# bicubic interpolate relative_position_bias_table if not match
relative_position_bias_table_keys = [
k for k in state_dict.keys() if 'relative_position_bias_table' in k
]
for k in relative_position_bias_table_keys:
relative_position_bias_table_pretrained = state_dict[k]
relative_position_bias_table_current = self.state_dict()[k]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
L2 = (2 * self.window_size[1] - 1) * (2 * self.window_size[2] - 1)
wd = self.window_size[0]
if nH1 != nH2:
logger.warning(f'Error in loading {k}, passing')
else:
if L1 != L2:
S1 = int(L1**0.5)
relative_position_bias_table_pretrained_resized = \
torch.nn.functional.interpolate(
relative_position_bias_table_pretrained.permute(
1, 0).view(1, nH1, S1, S1),
size=(2 * self.window_size[1] - 1,
2 * self.window_size[2] - 1),
mode='bicubic')
relative_position_bias_table_pretrained = \
relative_position_bias_table_pretrained_resized. \
view(nH2, L2).permute(1, 0)
state_dict[k] = relative_position_bias_table_pretrained.repeat(
2 * wd - 1, 1)
# In the original swin2d checkpoint, the last layer of the
# backbone is the norm layer, and the original attribute
# name is `norm`. We changed it to `norm3` which means it
# is the last norm layer of stage 4.
if hasattr(self, 'norm3'):
state_dict['norm3.weight'] = state_dict['norm.weight']
state_dict['norm3.bias'] = state_dict['norm.bias']
del state_dict['norm.weight']
del state_dict['norm.bias']
msg = self.load_state_dict(state_dict, strict=False)
logger.info(msg) | Inflate the swin2d parameters to swin3d.
The differences between swin3d and swin2d mainly lie in an extra
axis. To utilize the pretrained parameters in 2d model, the weight
of swin2d models should be inflated to fit in the shapes of the
3d counterpart.
Args:
logger (MMLogger): The logger used to print debugging information. | inflate_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initialize the weights in backbone."""
if self.pretrained2d:
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
# Inflate 2D model into 3D model.
self.inflate_weights(logger)
else:
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights() | Initialize the weights in backbone. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> \
Union[Tuple[torch.Tensor], torch.Tensor]:
"""Forward function for Swin3d Transformer."""
x = self.patch_embed(x)
x = self.pos_drop(x)
outs = []
for i, layer in enumerate(self.layers):
x = layer(x.contiguous(), do_downsample=self.out_after_downsample)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
out = norm_layer(x)
out = rearrange(out, 'b d h w c -> b c d h w').contiguous()
outs.append(out)
if layer.downsample is not None and not self.out_after_downsample:
x = layer.downsample(x)
if i < self.num_layers - 1:
x = rearrange(x, 'b d h w c -> b c d h w')
if len(outs) == 1:
return outs[0]
return tuple(outs) | Forward function for Swin3d Transformer. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Convert the model into training mode while keep layers frozen."""
super(SwinTransformer3D, self).train(mode)
self._freeze_stages() | Convert the model into training mode while keep layers frozen. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/swin.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/swin.py | Apache-2.0 |
def init_weights(self):
"""Initialize weights."""
# Lecun norm from ClassyVision
kaiming_init(self.projection, mode='fan_in', nonlinearity='linear') | Initialize weights. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/timesformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The output of the module.
"""
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.projection(x).flatten(2).transpose(1, 2)
return x | Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/timesformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py | Apache-2.0 |
def init_weights(self, pretrained=None):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
state_dict = _load_checkpoint(self.pretrained, map_location='cpu')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
if self.attention_type == 'divided_space_time':
# modify the key names of norm layers
old_state_dict_keys = list(state_dict.keys())
for old_key in old_state_dict_keys:
if 'norms' in old_key:
new_key = old_key.replace('norms.0',
'attentions.0.norm')
new_key = new_key.replace('norms.1', 'ffns.0.norm')
state_dict[new_key] = state_dict.pop(old_key)
# copy the parameters of space attention to time attention
old_state_dict_keys = list(state_dict.keys())
for old_key in old_state_dict_keys:
if 'attentions.0' in old_key:
new_key = old_key.replace('attentions.0',
'attentions.1')
state_dict[new_key] = state_dict[old_key].clone()
load_state_dict(self, state_dict, strict=False, logger=logger) | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/timesformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call."""
# x [batch_size * num_frames, num_patches, embed_dims]
batches = x.shape[0]
x = self.patch_embed(x)
# x [batch_size * num_frames, num_patches + 1, embed_dims]
cls_tokens = self.cls_token.expand(x.size(0), -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.drop_after_pos(x)
# Add Time Embedding
if self.attention_type != 'space_only':
# x [batch_size, num_patches * num_frames + 1, embed_dims]
cls_tokens = x[:batches, 0, :].unsqueeze(1)
x = rearrange(x[:, 1:, :], '(b t) p m -> (b p) t m', b=batches)
x = x + self.time_embed
x = self.drop_after_time(x)
x = rearrange(x, '(b p) t m -> b (p t) m', b=batches)
x = torch.cat((cls_tokens, x), dim=1)
x = self.transformer_layers(x, None, None)
if self.attention_type == 'space_only':
# x [batch_size, num_patches + 1, embed_dims]
x = x.view(-1, self.num_frames, *x.size()[-2:])
x = torch.mean(x, 1)
x = self.norm(x)
# Return Class Token
return x[:, 0] | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/timesformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/timesformer.py | Apache-2.0 |
def _make_stem_layer(self) -> None:
"""Construct the stem layers consists of a conv+norm+act module and a
pooling layer."""
self.conv1 = ConvModule(
self.in_channels,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.maxpool3d_1 = nn.MaxPool3d(
kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 0, 0))
self.maxpool3d_2 = nn.MaxPool3d(
kernel_size=(2, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) | Construct the stem layers consists of a conv+norm+act module and a
pooling layer. | _make_stem_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/c2d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/c2d.py | Apache-2.0 |
def _convert_to_2d(x: torch.Tensor) -> torch.Tensor:
"""(N, C, T, H, W) -> (N x T, C, H, W)"""
x = x.permute((0, 2, 1, 3, 4))
x = x.reshape(-1, x.shape[2], x.shape[3], x.shape[4])
return x | (N, C, T, H, W) -> (N x T, C, H, W) | forward._convert_to_2d | python | open-mmlab/mmaction2 | mmaction/models/backbones/c2d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/c2d.py | Apache-2.0 |
def _convert_to_3d(x: torch.Tensor) -> torch.Tensor:
"""(N x T, C, H, W) -> (N, C, T, H, W)"""
x = x.reshape(batches, -1, x.shape[1], x.shape[2], x.shape[3])
x = x.permute((0, 2, 1, 3, 4))
return x | (N x T, C, H, W) -> (N, C, T, H, W) | forward._convert_to_3d | python | open-mmlab/mmaction2 | mmaction/models/backbones/c2d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/c2d.py | Apache-2.0 |
def forward(self, x: torch.Tensor) \
-> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
Union[torch.Tensor or Tuple[torch.Tensor]]: The feature of the
input samples extracted by the backbone.
"""
batches = x.shape[0]
def _convert_to_2d(x: torch.Tensor) -> torch.Tensor:
"""(N, C, T, H, W) -> (N x T, C, H, W)"""
x = x.permute((0, 2, 1, 3, 4))
x = x.reshape(-1, x.shape[2], x.shape[3], x.shape[4])
return x
def _convert_to_3d(x: torch.Tensor) -> torch.Tensor:
"""(N x T, C, H, W) -> (N, C, T, H, W)"""
x = x.reshape(batches, -1, x.shape[1], x.shape[2], x.shape[3])
x = x.permute((0, 2, 1, 3, 4))
return x
x = _convert_to_2d(x)
x = self.conv1(x)
x = _convert_to_3d(x)
x = self.maxpool3d_1(x)
x = _convert_to_2d(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i == 0:
x = _convert_to_3d(x)
x = self.maxpool3d_2(x)
x = _convert_to_2d(x)
if i in self.out_indices:
x = _convert_to_3d(x)
outs.append(x)
if len(outs) == 1:
return outs[0]
return tuple(outs) | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
Union[torch.Tensor or Tuple[torch.Tensor]]: The feature of the
input samples extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/c2d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/c2d.py | Apache-2.0 |
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
blocks[i] = TemporalShift(
b, num_segments=num_segments, shift_div=self.shift_div)
return nn.Sequential(*blocks) | Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks. | make_temporal_shift.make_block_temporal | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobileone_tsm.py | Apache-2.0 |
def make_temporal_shift(self):
"""Make temporal shift for some layers.
To make reparameterization work, we can only build the shift layer
before the 'block', instead of the 'blockres'
"""
def make_block_temporal(stage, num_segments):
"""Make temporal shift on some blocks.
Args:
stage (nn.Module): Model layers to be shifted.
num_segments (int): Number of frame segments.
Returns:
nn.Module: The shifted blocks.
"""
blocks = list(stage.children())
for i, b in enumerate(blocks):
blocks[i] = TemporalShift(
b, num_segments=num_segments, shift_div=self.shift_div)
return nn.Sequential(*blocks)
self.stage0 = make_block_temporal(
nn.Sequential(self.stage0), self.num_segments)[0]
for i in range(1, 5):
temporal_stage = make_block_temporal(
getattr(self, f'stage{i}'), self.num_segments)
setattr(self, f'stage{i}', temporal_stage) | Make temporal shift for some layers.
To make reparameterization work, we can only build the shift layer
before the 'block', instead of the 'blockres' | make_temporal_shift | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobileone_tsm.py | Apache-2.0 |
def init_structure(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if self.is_shift:
self.make_temporal_shift() | Initiate the parameters either from existing checkpoint or from
scratch. | init_structure | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobileone_tsm.py | Apache-2.0 |
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if self.pretrained2d:
logger = MMLogger.get_current_instance()
self.load_original_weights(logger)
else:
super().init_weights() | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobileone_tsm.py | Apache-2.0 |
def forward(self, x):
"""unpack tuple result."""
x = super().forward(x)
if isinstance(x, tuple):
assert len(x) == 1
x = x[0]
return x | unpack tuple result. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/mobileone_tsm.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mobileone_tsm.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
res = self.residual(x)
x = self.tcn(self.gcn(x)) + res
return self.relu(x) | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/stgcn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/stgcn.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
N, M, T, V, C = x.size()
x = x.permute(0, 1, 3, 4, 2).contiguous()
if self.data_bn_type == 'MVC':
x = self.data_bn(x.view(N, M * V * C, T))
else:
x = self.data_bn(x.view(N * M, V * C, T))
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4,
2).contiguous().view(N * M, C, T, V)
for i in range(self.num_stages):
x = self.gcn[i](x)
x = x.reshape((N, M) + x.shape[1:])
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/stgcn.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/stgcn.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
# x should be a 5-d tensor
assert len(x.shape) == 5
N, C, T, H, W = x.shape
out_shape = (N, self.out_channels, self.stride[0] * T,
self.stride[1] * H, self.stride[2] * W)
x = self.conv(x, output_size=out_shape)
if self.with_bn:
x = self.bn(x)
if self.with_relu:
x = self.relu(x)
return x | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def _calculate_lateral_inplanes(self, kwargs):
"""Calculate inplanes for lateral connection."""
depth = kwargs.get('depth', 50)
expansion = 1 if depth < 50 else 4
base_channels = kwargs.get('base_channels', 64)
lateral_inplanes = []
for i in range(kwargs.get('num_stages', 4)):
if expansion % 2 == 0:
planes = base_channels * (2 ** i) * \
((expansion // 2) ** (i > 0))
else:
planes = base_channels * (2**i) // (2**(i > 0))
if self.lateral and self.lateral_activate[i]:
if self.lateral_inv:
lateral_inplane = planes * \
self.channel_ratio // self.lateral_infl
else:
lateral_inplane = planes * \
self.lateral_infl // self.channel_ratio
else:
lateral_inplane = 0
lateral_inplanes.append(lateral_inplane)
self.lateral_inplanes = lateral_inplanes | Calculate inplanes for lateral connection. | _calculate_lateral_inplanes | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def inflate_weights(self, logger: MMLogger) -> None:
"""Inflate the resnet2d parameters to resnet3d pathway.
The differences between resnet3d and resnet2d mainly lie in an extra
axis of conv kernel. To utilize the pretrained parameters in 2d model,
the weight of conv2d models should be inflated to fit in the shapes of
the 3d counterpart. For pathway the ``lateral_connection`` part should
not be inflated from 2d weights.
Args:
logger (MMLogger): The logger used to print
debugging information.
"""
state_dict_r2d = _load_checkpoint(self.pretrained, map_location='cpu')
if 'state_dict' in state_dict_r2d:
state_dict_r2d = state_dict_r2d['state_dict']
inflated_param_names = []
for name, module in self.named_modules():
if 'lateral' in name:
continue
if isinstance(module, ConvModule):
# we use a ConvModule to wrap conv+bn+relu layers, thus the
# name mapping is needed
if 'downsample' in name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
original_conv_name = name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
original_bn_name = name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
original_conv_name = name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
original_bn_name = name.replace('conv', 'bn')
if original_conv_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_conv_name}')
else:
self._inflate_conv_params(module.conv, state_dict_r2d,
original_conv_name,
inflated_param_names)
if original_bn_name + '.weight' not in state_dict_r2d:
logger.warning(f'Module not exist in the state_dict_r2d'
f': {original_bn_name}')
else:
self._inflate_bn_params(module.bn, state_dict_r2d,
original_bn_name,
inflated_param_names)
# check if any parameters in the 2d checkpoint are not loaded
remaining_names = set(
state_dict_r2d.keys()) - set(inflated_param_names)
if remaining_names:
logger.info(f'These parameters in the 2d checkpoint are not loaded'
f': {remaining_names}') | Inflate the resnet2d parameters to resnet3d pathway.
The differences between resnet3d and resnet2d mainly lie in an extra
axis of conv kernel. To utilize the pretrained parameters in 2d model,
the weight of conv2d models should be inflated to fit in the shapes of
the 3d counterpart. For pathway the ``lateral_connection`` part should
not be inflated from 2d weights.
Args:
logger (MMLogger): The logger used to print
debugging information. | inflate_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def _inflate_conv_params(self, conv3d: nn.Module,
state_dict_2d: OrderedDict, module_name_2d: str,
inflated_param_names: List[str]) -> None:
"""Inflate a conv module from 2d to 3d.
The differences of conv modules betweene 2d and 3d in Pathway
mainly lie in the inplanes due to lateral connections. To fit the
shapes of the lateral connection counterpart, it will expand
parameters by concatting conv2d parameters and extra zero paddings.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated.
"""
weight_2d_name = module_name_2d + '.weight'
conv2d_weight = state_dict_2d[weight_2d_name]
old_shape = conv2d_weight.shape
new_shape = conv3d.weight.data.shape
kernel_t = new_shape[2]
if new_shape[1] != old_shape[1]:
if new_shape[1] < old_shape[1]:
warnings.warn(f'The parameter of {module_name_2d} is not'
'loaded due to incompatible shapes. ')
return
# Inplanes may be different due to lateral connections
new_channels = new_shape[1] - old_shape[1]
pad_shape = old_shape
pad_shape = pad_shape[:1] + (new_channels, ) + pad_shape[2:]
# Expand parameters by concat extra channels
conv2d_weight = torch.cat(
(conv2d_weight,
torch.zeros(pad_shape).type_as(conv2d_weight).to(
conv2d_weight.device)),
dim=1)
new_weight = conv2d_weight.data.unsqueeze(2).expand_as(
conv3d.weight) / kernel_t
conv3d.weight.data.copy_(new_weight)
inflated_param_names.append(weight_2d_name)
if getattr(conv3d, 'bias') is not None:
bias_2d_name = module_name_2d + '.bias'
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
inflated_param_names.append(bias_2d_name) | Inflate a conv module from 2d to 3d.
The differences of conv modules betweene 2d and 3d in Pathway
mainly lie in the inplanes due to lateral connections. To fit the
shapes of the lateral connection counterpart, it will expand
parameters by concatting conv2d parameters and extra zero paddings.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated. | _inflate_conv_params | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
`self.frozen_stages`."""
if self.frozen_stages >= 0:
self.conv1.eval()
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False
if i != len(self.res_layers) and self.lateral:
# No fusion needed in the final stage
lateral_name = self.lateral_connections[i - 1]
conv_lateral = getattr(self, lateral_name)
conv_lateral.eval()
for param in conv_lateral.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
`self.frozen_stages`. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def init_weights(self, pretrained: Optional[str] = None) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if pretrained:
self.pretrained = pretrained
# Override the init_weights of i3d
super().init_weights()
for module_name in self.lateral_connections:
layer = getattr(self, module_name)
for m in layer.modules():
if isinstance(m, (nn.Conv3d, nn.Conv2d)):
kaiming_init(m) | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def build_pathway(cfg: Dict, *args, **kwargs) -> nn.Module:
"""Build pathway.
Args:
cfg (dict): cfg should contain:
- type (str): identify backbone type.
Returns:
nn.Module: Created pathway.
"""
if not (isinstance(cfg, dict) and 'type' in cfg):
raise TypeError('cfg must be a dict containing the key "type"')
cfg_ = cfg.copy()
pathway_type = cfg_.pop('type')
if pathway_type not in pathway_cfg:
raise KeyError(f'Unrecognized pathway type {pathway_type}')
pathway_cls = pathway_cfg[pathway_type]
pathway = pathway_cls(*args, **kwargs, **cfg_)
return pathway | Build pathway.
Args:
cfg (dict): cfg should contain:
- type (str): identify backbone type.
Returns:
nn.Module: Created pathway. | build_pathway | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def init_weights(self, pretrained: Optional[str] = None) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if pretrained:
self.pretrained = pretrained
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
msg = f'load model from: {self.pretrained}'
print_log(msg, logger=logger)
# Directly load 3D model.
load_checkpoint(self, self.pretrained, strict=True, logger=logger)
elif self.pretrained is None:
# Init two branch separately.
self.fast_path.init_weights()
self.slow_path.init_weights()
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> tuple:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
tuple[torch.Tensor]: The feature of the input samples
extracted by the backbone.
"""
x_slow = nn.functional.interpolate(
x,
mode='nearest',
scale_factor=(1.0 / self.resample_rate, 1.0, 1.0))
x_slow = self.slow_path.conv1(x_slow)
x_slow = self.slow_path.maxpool(x_slow)
x_fast = nn.functional.interpolate(
x,
mode='nearest',
scale_factor=(1.0 / (self.resample_rate // self.speed_ratio), 1.0,
1.0))
x_fast = self.fast_path.conv1(x_fast)
x_fast = self.fast_path.maxpool(x_fast)
if self.slow_path.lateral:
x_fast_lateral = self.slow_path.conv1_lateral(x_fast)
x_slow = torch.cat((x_slow, x_fast_lateral), dim=1)
for i, layer_name in enumerate(self.slow_path.res_layers):
res_layer = getattr(self.slow_path, layer_name)
x_slow = res_layer(x_slow)
res_layer_fast = getattr(self.fast_path, layer_name)
x_fast = res_layer_fast(x_fast)
if (i != len(self.slow_path.res_layers) - 1
and self.slow_path.lateral):
# No fusion needed in the final stage
lateral_name = self.slow_path.lateral_connections[i]
conv_lateral = getattr(self.slow_path, lateral_name)
x_fast_lateral = conv_lateral(x_fast)
x_slow = torch.cat((x_slow, x_fast_lateral), dim=1)
out = (x_slow, x_fast)
return out | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
tuple[torch.Tensor]: The feature of the input samples
extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d_slowfast.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d_slowfast.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
msg = f'load model from: {self.pretrained}'
print_log(msg, logger=logger)
load_checkpoint(self, self.pretrained, strict=True, logger=logger)
elif self.pretrained is None:
# Init two branch separately.
self.rgb_path.init_weights()
self.pose_path.init_weights()
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/rgbposeconv3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/rgbposeconv3d.py | Apache-2.0 |
def forward(self, imgs: torch.Tensor, heatmap_imgs: torch.Tensor) -> tuple:
"""Defines the computation performed at every call.
Args:
imgs (torch.Tensor): The input data.
heatmap_imgs (torch.Tensor): The input data.
Returns:
tuple[torch.Tensor]: The feature of the input
samples extracted by the backbone.
"""
if self.training:
rgb_drop_path = torch.rand(1) < self.rgb_drop_path
pose_drop_path = torch.rand(1) < self.pose_drop_path
else:
rgb_drop_path, pose_drop_path = False, False
# We assume base_channel for RGB and Pose are 64 and 32.
x_rgb = self.rgb_path.conv1(imgs)
x_rgb = self.rgb_path.maxpool(x_rgb)
# N x 64 x 8 x 56 x 56
x_pose = self.pose_path.conv1(heatmap_imgs)
x_pose = self.pose_path.maxpool(x_pose)
x_rgb = self.rgb_path.layer1(x_rgb)
x_rgb = self.rgb_path.layer2(x_rgb)
x_pose = self.pose_path.layer1(x_pose)
if hasattr(self.rgb_path, 'layer2_lateral'):
feat = x_pose.detach() if self.rgb_detach else x_pose
x_pose_lateral = self.rgb_path.layer2_lateral(feat)
if rgb_drop_path:
x_pose_lateral = x_pose_lateral.new_zeros(x_pose_lateral.shape)
if hasattr(self.pose_path, 'layer1_lateral'):
feat = x_rgb.detach() if self.pose_detach else x_rgb
x_rgb_lateral = self.pose_path.layer1_lateral(feat)
if pose_drop_path:
x_rgb_lateral = x_rgb_lateral.new_zeros(x_rgb_lateral.shape)
if hasattr(self.rgb_path, 'layer2_lateral'):
x_rgb = torch.cat((x_rgb, x_pose_lateral), dim=1)
if hasattr(self.pose_path, 'layer1_lateral'):
x_pose = torch.cat((x_pose, x_rgb_lateral), dim=1)
x_rgb = self.rgb_path.layer3(x_rgb)
x_pose = self.pose_path.layer2(x_pose)
if hasattr(self.rgb_path, 'layer3_lateral'):
feat = x_pose.detach() if self.rgb_detach else x_pose
x_pose_lateral = self.rgb_path.layer3_lateral(feat)
if rgb_drop_path:
x_pose_lateral = x_pose_lateral.new_zeros(x_pose_lateral.shape)
if hasattr(self.pose_path, 'layer2_lateral'):
feat = x_rgb.detach() if self.pose_detach else x_rgb
x_rgb_lateral = self.pose_path.layer2_lateral(feat)
if pose_drop_path:
x_rgb_lateral = x_rgb_lateral.new_zeros(x_rgb_lateral.shape)
if hasattr(self.rgb_path, 'layer3_lateral'):
x_rgb = torch.cat((x_rgb, x_pose_lateral), dim=1)
if hasattr(self.pose_path, 'layer2_lateral'):
x_pose = torch.cat((x_pose, x_rgb_lateral), dim=1)
x_rgb = self.rgb_path.layer4(x_rgb)
x_pose = self.pose_path.layer3(x_pose)
return x_rgb, x_pose | Defines the computation performed at every call.
Args:
imgs (torch.Tensor): The input data.
heatmap_imgs (torch.Tensor): The input data.
Returns:
tuple[torch.Tensor]: The feature of the input
samples extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/rgbposeconv3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/rgbposeconv3d.py | Apache-2.0 |
def resize_pos_embed(pos_embed: torch.Tensor,
src_shape: Tuple[int],
dst_shape: Tuple[int],
mode: str = 'trilinear',
num_extra_tokens: int = 1) -> torch.Tensor:
"""Resize pos_embed weights.
Args:
pos_embed (torch.Tensor): Position embedding weights with shape
[1, L, C].
src_shape (tuple): The resolution of downsampled origin training
image, in format (T, H, W).
dst_shape (tuple): The resolution of downsampled new training
image, in format (T, H, W).
mode (str): Algorithm used for upsampling. Choose one from 'nearest',
'linear', 'bilinear', 'bicubic' and 'trilinear'.
Defaults to 'trilinear'.
num_extra_tokens (int): The number of extra tokens, such as cls_token.
Defaults to 1.
Returns:
torch.Tensor: The resized pos_embed of shape [1, L_new, C]
"""
if src_shape[0] == dst_shape[0] and src_shape[1] == dst_shape[1] \
and src_shape[2] == dst_shape[2]:
return pos_embed
assert pos_embed.ndim == 3, 'shape of pos_embed must be [1, L, C]'
_, L, C = pos_embed.shape
src_t, src_h, src_w = src_shape
assert L == src_t * src_h * src_w + num_extra_tokens, \
f"The length of `pos_embed` ({L}) doesn't match the expected " \
f'shape ({src_t}*{src_h}*{src_w}+{num_extra_tokens}).' \
'Please check the `img_size` argument.'
extra_tokens = pos_embed[:, :num_extra_tokens]
src_weight = pos_embed[:, num_extra_tokens:]
src_weight = src_weight.reshape(1, src_t, src_h, src_w,
C).permute(0, 4, 1, 2, 3)
dst_weight = F.interpolate(
src_weight, size=dst_shape, align_corners=False, mode=mode)
dst_weight = torch.flatten(dst_weight, 2).transpose(1, 2)
return torch.cat((extra_tokens, dst_weight), dim=1) | Resize pos_embed weights.
Args:
pos_embed (torch.Tensor): Position embedding weights with shape
[1, L, C].
src_shape (tuple): The resolution of downsampled origin training
image, in format (T, H, W).
dst_shape (tuple): The resolution of downsampled new training
image, in format (T, H, W).
mode (str): Algorithm used for upsampling. Choose one from 'nearest',
'linear', 'bilinear', 'bicubic' and 'trilinear'.
Defaults to 'trilinear'.
num_extra_tokens (int): The number of extra tokens, such as cls_token.
Defaults to 1.
Returns:
torch.Tensor: The resized pos_embed of shape [1, L_new, C] | resize_pos_embed | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def resize_decomposed_rel_pos(rel_pos: torch.Tensor, q_size: int,
k_size: int) -> torch.Tensor:
"""Get relative positional embeddings according to the relative positions
of query and key sizes.
Args:
rel_pos (Tensor): relative position embeddings (L, C).
q_size (int): size of query q.
k_size (int): size of key k.
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
resized = F.interpolate(
# (L, C) -> (1, C, L)
rel_pos.transpose(0, 1).unsqueeze(0),
size=max_rel_dist,
mode='linear',
)
# (1, C, L) -> (L, C)
resized = resized.squeeze(0).transpose(0, 1)
else:
resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_h_ratio = max(k_size / q_size, 1.0)
k_h_ratio = max(q_size / k_size, 1.0)
q_coords = torch.arange(q_size)[:, None] * q_h_ratio
k_coords = torch.arange(k_size)[None, :] * k_h_ratio
relative_coords = (q_coords - k_coords) + (k_size - 1) * k_h_ratio
return resized[relative_coords.long()] | Get relative positional embeddings according to the relative positions
of query and key sizes.
Args:
rel_pos (Tensor): relative position embeddings (L, C).
q_size (int): size of query q.
k_size (int): size of key k.
Returns:
Extracted positional embeddings according to relative positions. | resize_decomposed_rel_pos | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def add_decomposed_rel_pos(attn: torch.Tensor,
q: torch.Tensor,
q_shape: Sequence[int],
k_shape: Sequence[int],
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
rel_pos_t: torch.Tensor,
with_cls_token: bool = False) -> torch.Tensor:
"""Spatiotemporal Relative Positional Embeddings."""
sp_idx = 1 if with_cls_token else 0
B, num_heads, _, C = q.shape
q_t, q_h, q_w = q_shape
k_t, k_h, k_w = k_shape
Rt = resize_decomposed_rel_pos(rel_pos_t, q_t, k_t)
Rh = resize_decomposed_rel_pos(rel_pos_h, q_h, k_h)
Rw = resize_decomposed_rel_pos(rel_pos_w, q_w, k_w)
r_q = q[:, :, sp_idx:].reshape(B, num_heads, q_t, q_h, q_w, C)
rel_t = torch.einsum('bythwc,tkc->bythwk', r_q, Rt)
rel_h = torch.einsum('bythwc,hkc->bythwk', r_q, Rh)
rel_w = torch.einsum('bythwc,wkc->bythwk', r_q, Rw)
rel_pos_embed = (
rel_t[:, :, :, :, :, :, None, None] +
rel_h[:, :, :, :, :, None, :, None] +
rel_w[:, :, :, :, :, None, None, :])
attn_map = attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_t, q_h, q_w, k_t,
k_h, k_w)
attn_map += rel_pos_embed
attn[:, :, sp_idx:, sp_idx:] = attn_map.view(B, -1, q_t * q_h * q_w,
k_t * k_h * k_w)
return attn | Spatiotemporal Relative Positional Embeddings. | add_decomposed_rel_pos | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def attention_pool(x: torch.Tensor,
pool: nn.Module,
in_size: Tuple[int],
with_cls_token: bool = False,
norm: Optional[nn.Module] = None) -> tuple:
"""Pooling the feature tokens.
Args:
x (torch.Tensor): The input tensor, should be with shape
``(B, num_heads, L, C)`` or ``(B, L, C)``.
pool (nn.Module): The pooling module.
in_size (Tuple[int]): The shape of the input feature map.
with_cls_token (bool): Whether concatenating class token into video
tokens as transformer input. Defaults to True.
norm (nn.Module, optional): The normalization module.
Defaults to None.
"""
ndim = x.ndim
if ndim == 4:
B, num_heads, L, C = x.shape
elif ndim == 3:
num_heads = 1
B, L, C = x.shape
x = x.unsqueeze(1)
else:
raise RuntimeError(f'Unsupported input dimension {x.shape}')
T, H, W = in_size
assert L == T * H * W + with_cls_token
if with_cls_token:
cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :]
# (B, num_heads, T*H*W, C) -> (B*num_heads, C, T, H, W)
x = x.reshape(B * num_heads, T, H, W, C).permute(0, 4, 1, 2,
3).contiguous()
x = pool(x)
out_size = x.shape[2:]
# (B*num_heads, C, T', H', W') -> (B, num_heads, T'*H'*W', C)
x = x.reshape(B, num_heads, C, -1).transpose(2, 3)
if with_cls_token:
x = torch.cat((cls_tok, x), dim=2)
if norm is not None:
x = norm(x)
if ndim == 3:
x = x.squeeze(1)
return x, out_size | Pooling the feature tokens.
Args:
x (torch.Tensor): The input tensor, should be with shape
``(B, num_heads, L, C)`` or ``(B, L, C)``.
pool (nn.Module): The pooling module.
in_size (Tuple[int]): The shape of the input feature map.
with_cls_token (bool): Whether concatenating class token into video
tokens as transformer input. Defaults to True.
norm (nn.Module, optional): The normalization module.
Defaults to None. | attention_pool | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def init_weights(self) -> None:
"""Weight initialization."""
super().init_weights()
if (isinstance(self.init_cfg, dict)
and get_str_type(self.init_cfg['type']) == 'Pretrained'):
# Suppress rel_pos_zero_init if use pretrained model.
return
if not self.rel_pos_zero_init:
trunc_normal_(self.rel_pos_h, std=0.02)
trunc_normal_(self.rel_pos_w, std=0.02)
trunc_normal_(self.rel_pos_t, std=0.02) | Weight initialization. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def forward(self, x: torch.Tensor, in_size: Tuple[int]) -> tuple:
"""Forward the MultiScaleAttention."""
B, N, _ = x.shape # (B, H*W, C)
# qkv: (B, H*W, 3, num_heads, C)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1)
# q, k, v: (B, num_heads, H*W, C)
q, k, v = qkv.permute(2, 0, 3, 1, 4).unbind(0)
q, q_shape = attention_pool(
q,
self.pool_q,
in_size,
norm=self.norm_q,
with_cls_token=self.with_cls_token)
k, k_shape = attention_pool(
k,
self.pool_k,
in_size,
norm=self.norm_k,
with_cls_token=self.with_cls_token)
v, v_shape = attention_pool(
v,
self.pool_v,
in_size,
norm=self.norm_v,
with_cls_token=self.with_cls_token)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.rel_pos_embed:
attn = add_decomposed_rel_pos(attn, q, q_shape, k_shape,
self.rel_pos_h, self.rel_pos_w,
self.rel_pos_t, self.with_cls_token)
attn = attn.softmax(dim=-1)
x = attn @ v
if self.residual_pooling:
if self.with_cls_token:
x[:, :, 1:, :] += q[:, :, 1:, :]
else:
x = x + q
# (B, num_heads, H'*W', C'//num_heads) -> (B, H'*W', C')
x = x.transpose(1, 2).reshape(B, -1, self.out_dims)
x = self.proj(x)
return x, q_shape | Forward the MultiScaleAttention. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def forward(self, x: torch.Tensor) ->\
Tuple[Union[torch.Tensor, List[torch.Tensor]]]:
"""Forward the MViT."""
B = x.shape[0]
x, patch_resolution = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.use_abs_pos_embed:
x = x + resize_pos_embed(
self.pos_embed,
self.patch_resolution,
patch_resolution,
mode=self.interpolate_mode,
num_extra_tokens=self.num_extra_tokens)
if not self.with_cls_token:
# Remove class token for transformer encoder input
x = x[:, 1:]
outs = []
for i, block in enumerate(self.blocks):
x, patch_resolution = block(x, patch_resolution)
if i in self.stage_indices:
stage_index = self.stage_indices[i]
if stage_index in self.out_scales:
B, _, C = x.shape
x = getattr(self, f'norm{stage_index}')(x)
tokens = x.transpose(1, 2)
if self.with_cls_token:
patch_token = tokens[:, :, 1:].reshape(
B, C, *patch_resolution)
cls_token = tokens[:, :, 0]
else:
patch_token = tokens.reshape(B, C, *patch_resolution)
cls_token = None
if self.output_cls_token:
out = [patch_token, cls_token]
else:
out = patch_token
outs.append(out)
return tuple(outs) | Forward the MViT. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/mvit.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/mvit.py | Apache-2.0 |
def conv_3xnxn(inp: int,
oup: int,
kernel_size: int = 3,
stride: int = 3,
groups: int = 1):
"""3D convolution with kernel size of 3xnxn.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
kernel_size (int): The spatial kernel size (i.e., n).
Defaults to 3.
stride (int): The spatial stride.
Defaults to 3.
groups (int): Group number of operated features.
Defaults to 1.
"""
return nn.Conv3d(
inp,
oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0),
groups=groups) | 3D convolution with kernel size of 3xnxn.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
kernel_size (int): The spatial kernel size (i.e., n).
Defaults to 3.
stride (int): The spatial stride.
Defaults to 3.
groups (int): Group number of operated features.
Defaults to 1. | conv_3xnxn | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def conv_1xnxn(inp: int,
oup: int,
kernel_size: int = 3,
stride: int = 3,
groups: int = 1):
"""3D convolution with kernel size of 1xnxn.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
kernel_size (int): The spatial kernel size (i.e., n).
Defaults to 3.
stride (int): The spatial stride.
Defaults to 3.
groups (int): Group number of operated features.
Defaults to 1.
"""
return nn.Conv3d(
inp,
oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0),
groups=groups) | 3D convolution with kernel size of 1xnxn.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
kernel_size (int): The spatial kernel size (i.e., n).
Defaults to 3.
stride (int): The spatial stride.
Defaults to 3.
groups (int): Group number of operated features.
Defaults to 1. | conv_1xnxn | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def conv_1x1x1(inp: int, oup: int, groups: int = 1):
"""3D convolution with kernel size of 1x1x1.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1.
"""
return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) | 3D convolution with kernel size of 1x1x1.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1. | conv_1x1x1 | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def conv_3x3x3(inp: int, oup: int, groups: int = 1):
"""3D convolution with kernel size of 3x3x3.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1.
"""
return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) | 3D convolution with kernel size of 3x3x3.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1. | conv_3x3x3 | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def conv_5x5x5(inp: int, oup: int, groups: int = 1):
"""3D convolution with kernel size of 5x5x5.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1.
"""
return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups) | 3D convolution with kernel size of 5x5x5.
Args:
inp (int): Dimension of input features.
oup (int): Dimension of output features.
groups (int): Group number of operated features.
Defaults to 1. | conv_5x5x5 | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def bn_3d(dim):
"""3D batch normalization.
Args:
dim (int): Dimension of input features.
"""
return nn.BatchNorm3d(dim) | 3D batch normalization.
Args:
dim (int): Dimension of input features. | bn_3d | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def _load_pretrained(self, pretrained: str = None) -> None:
"""Load ImageNet-1K pretrained model.
The model is pretrained with ImageNet-1K.
https://github.com/Sense-X/UniFormer
Args:
pretrained (str): Model name of ImageNet-1K pretrained model.
Defaults to None.
"""
if pretrained is not None:
model_path = _MODELS[pretrained]
logger.info(f'Load ImageNet pretrained model from {model_path}')
state_dict = _load_checkpoint(model_path, map_location='cpu')
state_dict_3d = self.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys(
) and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
logger.info(f'Ignore: {k}')
continue
logger.info(f'Inflate: {k}, {state_dict[k].shape}' +
f' => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = self._inflate_weight(
state_dict[k], time_dim)
self.load_state_dict(state_dict, strict=False) | Load ImageNet-1K pretrained model.
The model is pretrained with ImageNet-1K.
https://github.com/Sense-X/UniFormer
Args:
pretrained (str): Model name of ImageNet-1K pretrained model.
Defaults to None. | _load_pretrained | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def init_weights(self):
"""Initialize the weights in backbone."""
if self.pretrained2d:
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
self._load_pretrained(self.pretrained)
else:
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights() | Initialize the weights in backbone. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformer.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformer.py | Apache-2.0 |
def _round_width(width, multiplier, min_width=8, divisor=8):
"""Round width of filters based on width multiplier."""
width *= multiplier
min_width = min_width or divisor
width_out = max(min_width,
int(width + divisor / 2) // divisor * divisor)
if width_out < 0.9 * width:
width_out += divisor
return int(width_out) | Round width of filters based on width multiplier. | _round_width | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The output of the module.
"""
module_input = x
x = self.avg_pool(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return module_input * x | Defines the computation performed at every call.
Args:
x (Tensor): The input data.
Returns:
Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.se_ratio is not None:
out = self.se_module(out)
out = self.swish(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out | Forward wrapper for utilizing checkpoint. | forward._inner_forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call."""
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.se_ratio is not None:
out = self.se_module(out)
out = self.swish(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _round_width(width, multiplier, min_depth=8, divisor=8):
"""Round width of filters based on width multiplier."""
if not multiplier:
return width
width *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth,
int(width + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * width:
new_filters += divisor
return int(new_filters) | Round width of filters based on width multiplier. | _round_width | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _round_repeats(repeats, multiplier):
"""Round number of layers based on depth multiplier."""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats)) | Round number of layers based on depth multiplier. | _round_repeats | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def make_res_layer(self,
block,
layer_inplanes,
inplanes,
planes,
blocks,
spatial_stride=1,
se_style='half',
se_ratio=None,
use_swish=True,
norm_cfg=None,
act_cfg=None,
conv_cfg=None,
with_cp=False,
**kwargs):
"""Build residual layer for ResNet3D.
Args:
block (nn.Module): Residual module to be built.
layer_inplanes (int): Number of channels for the input feature
of the res layer.
inplanes (int): Number of channels for the input feature in each
block, which equals to base_channels * gamma_w.
planes (int): Number of channels for the output feature in each
block, which equals to base_channel * gamma_w * gamma_b.
blocks (int): Number of residual blocks.
spatial_stride (int): Spatial strides in residual and conv layers.
Default: 1.
se_style (str): The style of inserting SE modules into BlockX3D,
'half' denotes insert into half of the blocks, while 'all'
denotes insert into all blocks. Default: 'half'.
se_ratio (float | None): The reduction ratio of squeeze and
excitation unit. If set as None, it means not using SE unit.
Default: None.
use_swish (bool): Whether to use swish as the activation function
before and after the 3x3x3 conv. Default: True.
conv_cfg (dict | None): Config for norm layers. Default: None.
norm_cfg (dict | None): Config for norm layers. Default: None.
act_cfg (dict | None): Config for activate layers. Default: None.
with_cp (bool | None): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
Returns:
nn.Module: A residual layer for the given config.
"""
downsample = None
if spatial_stride != 1 or layer_inplanes != inplanes:
downsample = ConvModule(
layer_inplanes,
inplanes,
kernel_size=1,
stride=(1, spatial_stride, spatial_stride),
padding=0,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
use_se = [False] * blocks
if self.se_style == 'all':
use_se = [True] * blocks
elif self.se_style == 'half':
use_se = [i % 2 == 0 for i in range(blocks)]
else:
raise NotImplementedError
layers = []
layers.append(
block(
layer_inplanes,
planes,
inplanes,
spatial_stride=spatial_stride,
downsample=downsample,
se_ratio=se_ratio if use_se[0] else None,
use_swish=use_swish,
norm_cfg=norm_cfg,
conv_cfg=conv_cfg,
act_cfg=act_cfg,
with_cp=with_cp,
**kwargs))
for i in range(1, blocks):
layers.append(
block(
inplanes,
planes,
inplanes,
spatial_stride=1,
se_ratio=se_ratio if use_se[i] else None,
use_swish=use_swish,
norm_cfg=norm_cfg,
conv_cfg=conv_cfg,
act_cfg=act_cfg,
with_cp=with_cp,
**kwargs))
return nn.Sequential(*layers) | Build residual layer for ResNet3D.
Args:
block (nn.Module): Residual module to be built.
layer_inplanes (int): Number of channels for the input feature
of the res layer.
inplanes (int): Number of channels for the input feature in each
block, which equals to base_channels * gamma_w.
planes (int): Number of channels for the output feature in each
block, which equals to base_channel * gamma_w * gamma_b.
blocks (int): Number of residual blocks.
spatial_stride (int): Spatial strides in residual and conv layers.
Default: 1.
se_style (str): The style of inserting SE modules into BlockX3D,
'half' denotes insert into half of the blocks, while 'all'
denotes insert into all blocks. Default: 'half'.
se_ratio (float | None): The reduction ratio of squeeze and
excitation unit. If set as None, it means not using SE unit.
Default: None.
use_swish (bool): Whether to use swish as the activation function
before and after the 3x3x3 conv. Default: True.
conv_cfg (dict | None): Config for norm layers. Default: None.
norm_cfg (dict | None): Config for norm layers. Default: None.
act_cfg (dict | None): Config for activate layers. Default: None.
with_cp (bool | None): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
Returns:
nn.Module: A residual layer for the given config. | make_res_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _make_stem_layer(self):
"""Construct the stem layers consists of a conv+norm+act module and a
pooling layer."""
self.conv1_s = ConvModule(
self.in_channels,
self.base_channels,
kernel_size=(1, 3, 3),
stride=(1, 2, 2),
padding=(0, 1, 1),
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=None,
act_cfg=None)
self.conv1_t = ConvModule(
self.base_channels,
self.base_channels,
kernel_size=(5, 1, 1),
stride=(1, 1, 1),
padding=(2, 0, 0),
groups=self.base_channels,
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg) | Construct the stem layers consists of a conv+norm+act module and a
pooling layer. | _make_stem_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _freeze_stages(self):
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.conv1_s.eval()
self.conv1_t.eval()
for param in self.conv1_s.parameters():
param.requires_grad = False
for param in self.conv1_t.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv3d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, BlockX3D):
constant_init(m.conv3.bn, 0)
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input
samples extracted by the backbone.
"""
x = self.conv1_s(x)
x = self.conv1_t(x)
for layer_name in self.res_layers:
res_layer = getattr(self, layer_name)
x = res_layer(x)
x = self.conv5(x)
return x | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input
samples extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def train(self, mode=True):
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/x3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/x3d.py | Apache-2.0 |
def _load_pretrained(self, pretrained: str = None) -> None:
"""Load CLIP pretrained visual encoder.
The visual encoder is extracted from CLIP.
https://github.com/openai/CLIP
Args:
pretrained (str): Model name of pretrained CLIP visual encoder.
Defaults to None.
"""
assert pretrained is not None, \
'please specify clip pretraied checkpoint'
model_path = _MODELS[pretrained]
logger.info(f'Load CLIP pretrained model from {model_path}')
state_dict = _load_checkpoint(model_path, map_location='cpu')
state_dict_3d = self.state_dict()
for k in state_dict.keys():
if k in state_dict_3d.keys(
) and state_dict[k].shape != state_dict_3d[k].shape:
if len(state_dict_3d[k].shape) <= 2:
logger.info(f'Ignore: {k}')
continue
logger.info(f'Inflate: {k}, {state_dict[k].shape}' +
f' => {state_dict_3d[k].shape}')
time_dim = state_dict_3d[k].shape[2]
state_dict[k] = self._inflate_weight(state_dict[k], time_dim)
self.load_state_dict(state_dict, strict=False) | Load CLIP pretrained visual encoder.
The visual encoder is extracted from CLIP.
https://github.com/openai/CLIP
Args:
pretrained (str): Model name of pretrained CLIP visual encoder.
Defaults to None. | _load_pretrained | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformerv2.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformerv2.py | Apache-2.0 |
def init_weights(self):
"""Initialize the weights in backbone."""
if self.clip_pretrained:
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
self._load_pretrained(self.pretrained)
else:
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights() | Initialize the weights in backbone. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/uniformerv2.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/uniformerv2.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
out = self.relu(out)
return out | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out | Forward wrapper for utilizing checkpoint. | forward._inner_forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def make_res_layer(block: nn.Module,
inplanes: int,
planes: int,
blocks: int,
stride: int = 1,
dilation: int = 1,
style: str = 'pytorch',
conv_cfg: Optional[ConfigType] = None,
norm_cfg: Optional[ConfigType] = None,
act_cfg: Optional[ConfigType] = None,
with_cp: bool = False) -> nn.Module:
"""Build residual layer for ResNet.
Args:
block: (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input feature in each block.
planes (int): Number of channels for the output feature in each block.
blocks (int): Number of residual blocks.
stride (int): Stride in the conv layer. Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
conv_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
norm_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
act_cfg (Union[dict, ConfigDict], optional): Config for activate
layers. Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
Returns:
nn.Module: A residual layer for the given config.
"""
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = ConvModule(
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
layers = []
layers.append(
block(
inplanes,
planes,
stride,
dilation,
downsample,
style=style,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(
inplanes,
planes,
1,
dilation,
style=style,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
with_cp=with_cp))
return nn.Sequential(*layers) | Build residual layer for ResNet.
Args:
block: (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input feature in each block.
planes (int): Number of channels for the output feature in each block.
blocks (int): Number of residual blocks.
stride (int): Stride in the conv layer. Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``, the
stride-two layer is the 3x3 conv layer, otherwise the stride-two
layer is the first 1x1 conv layer. Defaults to ``pytorch``.
conv_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
norm_cfg (Union[dict, ConfigDict], optional): Config for norm layers.
Defaults to None.
act_cfg (Union[dict, ConfigDict], optional): Config for activate
layers. Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
Returns:
nn.Module: A residual layer for the given config. | make_res_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _make_stem_layer(self) -> None:
"""Construct the stem layers consists of a conv+norm+act module and a
pooling layer."""
self.conv1 = ConvModule(
self.in_channels,
64,
kernel_size=7,
stride=2,
padding=3,
bias=False,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | Construct the stem layers consists of a conv+norm+act module and a
pooling layer. | _make_stem_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _load_conv_params(conv: nn.Module, state_dict_tv: OrderedDict,
module_name_tv: str,
loaded_param_names: List[str]) -> None:
"""Load the conv parameters of resnet from torchvision.
Args:
conv (nn.Module): The destination conv module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding conv module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded.
"""
weight_tv_name = module_name_tv + '.weight'
if conv.weight.data.shape == state_dict_tv[weight_tv_name].shape:
conv.weight.data.copy_(state_dict_tv[weight_tv_name])
loaded_param_names.append(weight_tv_name)
if getattr(conv, 'bias') is not None:
bias_tv_name = module_name_tv + '.bias'
if conv.bias.data.shape == state_dict_tv[bias_tv_name].shape:
conv.bias.data.copy_(state_dict_tv[bias_tv_name])
loaded_param_names.append(bias_tv_name) | Load the conv parameters of resnet from torchvision.
Args:
conv (nn.Module): The destination conv module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding conv module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded. | _load_conv_params | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _load_bn_params(bn: nn.Module, state_dict_tv: OrderedDict,
module_name_tv: str,
loaded_param_names: List[str]) -> None:
"""Load the bn parameters of resnet from torchvision.
Args:
bn (nn.Module): The destination bn module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding bn module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded.
"""
for param_name, param in bn.named_parameters():
param_tv_name = f'{module_name_tv}.{param_name}'
param_tv = state_dict_tv[param_tv_name]
if param.data.shape == param_tv.shape:
param.data.copy_(param_tv)
loaded_param_names.append(param_tv_name)
for param_name, param in bn.named_buffers():
param_tv_name = f'{module_name_tv}.{param_name}'
# some buffers like num_batches_tracked may not exist
if param_tv_name in state_dict_tv:
param_tv = state_dict_tv[param_tv_name]
if param.data.shape == param_tv.shape:
param.data.copy_(param_tv)
loaded_param_names.append(param_tv_name) | Load the bn parameters of resnet from torchvision.
Args:
bn (nn.Module): The destination bn module.
state_dict_tv (OrderedDict): The state dict of pretrained
torchvision model.
module_name_tv (str): The name of corresponding bn module in the
torchvision model.
loaded_param_names (list[str]): List of parameters that have been
loaded. | _load_bn_params | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _load_torchvision_checkpoint(self,
logger: mmengine.MMLogger = None) -> None:
"""Initiate the parameters from torchvision pretrained checkpoint."""
state_dict_torchvision = _load_checkpoint(
self.pretrained, map_location='cpu')
if 'state_dict' in state_dict_torchvision:
state_dict_torchvision = state_dict_torchvision['state_dict']
loaded_param_names = []
for name, module in self.named_modules():
if isinstance(module, ConvModule):
# we use a ConvModule to wrap conv+bn+relu layers, thus the
# name mapping is needed
if 'downsample' in name:
# layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
original_conv_name = name + '.0'
# layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
original_bn_name = name + '.1'
else:
# layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
original_conv_name = name
# layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
original_bn_name = name.replace('conv', 'bn')
self._load_conv_params(module.conv, state_dict_torchvision,
original_conv_name, loaded_param_names)
self._load_bn_params(module.bn, state_dict_torchvision,
original_bn_name, loaded_param_names)
# check if any parameters in the 2d checkpoint are not loaded
remaining_names = set(
state_dict_torchvision.keys()) - set(loaded_param_names)
if remaining_names:
logger.info(
f'These parameters in pretrained checkpoint are not loaded'
f': {remaining_names}') | Initiate the parameters from torchvision pretrained checkpoint. | _load_torchvision_checkpoint | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
if self.torchvision_pretrain:
# torchvision's
self._load_torchvision_checkpoint(logger)
else:
# ours
if self.pretrained:
self.init_cfg = dict(
type='Pretrained', checkpoint=self.pretrained)
super().init_weights()
elif self.pretrained is None:
super().init_weights()
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def forward(self, x: torch.Tensor) \
-> Union[torch.Tensor, Tuple[torch.Tensor]]:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
Union[torch.Tensor or Tuple[torch.Tensor]]: The feature of the
input samples extracted by the backbone.
"""
x = self.conv1(x)
x = self.maxpool(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
return tuple(outs) | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
Union[torch.Tensor or Tuple[torch.Tensor]]: The feature of the
input samples extracted by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.conv1.bn.eval()
for m in self.conv1.modules():
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def _partial_bn(self) -> None:
"""Freezing BatchNorm2D except the first one."""
logger = MMLogger.get_current_instance()
logger.info('Freezing BatchNorm2D except the first one.')
count_bn = 0
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
count_bn += 1
if count_bn >= 2:
m.eval()
# shutdown update in frozen mode
m.weight.requires_grad = False
m.bias.requires_grad = False | Freezing BatchNorm2D except the first one. | _partial_bn | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
if mode and self.partial_bn:
self._partial_bn() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def make_res_layer(block: nn.Module,
inplanes: int,
planes: int,
blocks: int,
stride: int = 1,
dilation: int = 1,
factorize: int = 1,
norm_cfg: Optional[ConfigType] = None,
with_cp: bool = False) -> nn.Module:
"""Build residual layer for ResNetAudio.
Args:
block (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input feature
in each block.
planes (int): Number of channels for the output feature
in each block.
blocks (int): Number of residual blocks.
stride (int): Strides of residual blocks of each stage.
Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
factorize (Uninon[int, Sequence[int]]): Determine whether to
factorize for each block. Defaults to 1.
norm_cfg (Union[dict, ConfigDict], optional): Config for norm
layers. Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save
some memory while slowing down the training speed.
Defaults to False.
Returns:
nn.Module: A residual layer for the given config.
"""
factorize = factorize if not isinstance(
factorize, int) else (factorize, ) * blocks
assert len(factorize) == blocks
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = ConvModule(
inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False,
norm_cfg=norm_cfg,
act_cfg=None)
layers = []
layers.append(
block(
inplanes,
planes,
stride,
dilation,
downsample,
factorize=(factorize[0] == 1),
norm_cfg=norm_cfg,
with_cp=with_cp))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(
inplanes,
planes,
1,
dilation,
factorize=(factorize[i] == 1),
norm_cfg=norm_cfg,
with_cp=with_cp))
return nn.Sequential(*layers) | Build residual layer for ResNetAudio.
Args:
block (nn.Module): Residual module to be built.
inplanes (int): Number of channels for the input feature
in each block.
planes (int): Number of channels for the output feature
in each block.
blocks (int): Number of residual blocks.
stride (int): Strides of residual blocks of each stage.
Defaults to 1.
dilation (int): Spacing between kernel elements. Defaults to 1.
factorize (Uninon[int, Sequence[int]]): Determine whether to
factorize for each block. Defaults to 1.
norm_cfg (Union[dict, ConfigDict], optional): Config for norm
layers. Defaults to None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save
some memory while slowing down the training speed.
Defaults to False.
Returns:
nn.Module: A residual layer for the given config. | make_res_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def _make_stem_layer(self) -> None:
"""Construct the stem layers consists of a ``conv+norm+act`` module and
a pooling layer."""
self.conv1 = ConvModule(
self.in_channels,
self.base_channels,
kernel_size=self.conv1_kernel,
stride=self.conv1_stride,
bias=False,
conv_cfg=dict(type='ConvAudio', op='sum'),
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg) | Construct the stem layers consists of a ``conv+norm+act`` module and
a pooling layer. | _make_stem_layer | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def _freeze_stages(self) -> None:
"""Prevent all the parameters from being optimized before
``self.frozen_stages``."""
if self.frozen_stages >= 0:
self.conv1.bn.eval()
for m in [self.conv1.conv, self.conv1.bn]:
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'layer{i}')
m.eval()
for param in m.parameters():
param.requires_grad = False | Prevent all the parameters from being optimized before
``self.frozen_stages``. | _freeze_stages | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def init_weights(self) -> None:
"""Initiate the parameters either from existing checkpoint or from
scratch."""
if isinstance(self.pretrained, str):
logger = MMLogger.get_current_instance()
logger.info(f'load model from: {self.pretrained}')
load_checkpoint(self, self.pretrained, strict=False, logger=logger)
elif self.pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck2dAudio):
constant_init(m.conv3.bn, 0)
else:
raise TypeError('pretrained must be a str or None') | Initiate the parameters either from existing checkpoint or from
scratch. | init_weights | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input samples extracted
by the backbone.
"""
x = self.conv1(x)
for layer_name in self.res_layers:
res_layer = getattr(self, layer_name)
x = res_layer(x)
return x | Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The feature of the input samples extracted
by the backbone. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def train(self, mode: bool = True) -> None:
"""Set the optimization status when training."""
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval() | Set the optimization status when training. | train | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet_audio.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet_audio.py | Apache-2.0 |
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out | Forward wrapper for utilizing checkpoint. | forward._inner_forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
if self.non_local:
out = self.non_local_block(out)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out | Forward wrapper for utilizing checkpoint. | forward._inner_forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Defines the computation performed at every call."""
def _inner_forward(x):
"""Forward wrapper for utilizing checkpoint."""
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
identity = self.downsample(x)
out = out + identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
if self.non_local:
out = self.non_local_block(out)
return out | Defines the computation performed at every call. | forward | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
def _inflate_conv_params(conv3d: nn.Module, state_dict_2d: OrderedDict,
module_name_2d: str,
inflated_param_names: List[str]) -> None:
"""Inflate a conv module from 2d to 3d.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated.
"""
weight_2d_name = module_name_2d + '.weight'
conv2d_weight = state_dict_2d[weight_2d_name]
kernel_t = conv3d.weight.data.shape[2]
new_weight = conv2d_weight.data.unsqueeze(2).expand_as(
conv3d.weight) / kernel_t
conv3d.weight.data.copy_(new_weight)
inflated_param_names.append(weight_2d_name)
if getattr(conv3d, 'bias') is not None:
bias_2d_name = module_name_2d + '.bias'
conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
inflated_param_names.append(bias_2d_name) | Inflate a conv module from 2d to 3d.
Args:
conv3d (nn.Module): The destination conv3d module.
state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
module_name_2d (str): The name of corresponding conv module in the
2d model.
inflated_param_names (list[str]): List of parameters that have been
inflated. | _inflate_conv_params | python | open-mmlab/mmaction2 | mmaction/models/backbones/resnet3d.py | https://github.com/open-mmlab/mmaction2/blob/master/mmaction/models/backbones/resnet3d.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.